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Abstract
Arguably, a desirable feature of a learner is that its performance gets better with an increas-
ing amount of training data, at least in expectation. This issue has received renewed atten-
tion in recent years and some curious and surprising findings have been reported on. In 
essence, these results show that more data does actually not necessarily lead to improved 
performance—worse even, performance can deteriorate. Clustering, however, has not 
been subjected to such kind of study up to now. This paper shows that k-means cluster-
ing, a ubiquitous technique in machine learning and data mining, suffers from the same 
lack of so-called monotonicity and can display deterioration in expected performance with 
increasing training set sizes. Our main, theoretical contributions prove that 1-means clus-
tering is monotonic, while 2-means is not even weakly monotonic, i.e., the occurrence of 
nonmonotonic behavior persists indefinitely, beyond any training sample size. For larger k, 
the question remains open.

Keywords Learning curve · k-Means clustering · k-Means algorithm · Monotonicity · 
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1 Introduction

k-Means continues to remain among the most-used techniques both in data mining and in 
machine learning. Next to being employed for analysis, k-means is also actively researched 
and further developed as such. Among recent work, for instance, we find that Stem-
mer (2021) studied k-means in the differentially private setting, Klochkov et  al. (2021) 
developed a robustified version and report non-asymptotic bounds, Liu (2021) provided 
improved learning bounds, Ghadiri et al. (2021) came up with a fair k-means, while Cohen-
Addad et  al. (2021) developed and analyzed an online version. The, largely theoretical, 
study that we provide in this work concerns the learning curve behavior of k-means.

Learning curves (or, alternatively, sample complexity curves (Zubek and Plewczyn-
ski 2016)) consider, on a specific learning problem, the average performance of a learner 
against the sample size of the training set (Perlich, 2010; Viering & Loog, 2022). At least 
since the work by Vallet et al. (1989), it is known that such curves can exhibit counterin-
tuitive behavior and show deteriorating performance with increasing training set sizes, i.e., 
these learners can display so-called nonmonotonic behavior (Loog et al., 2019).

The investigation of such a, arguably, problematic property (Loog & Viering, 2022) has 
found renewed attention in the wake of the important work by Belkin et al. (2019). They 
raise various issues concerning classical learning theory in the light of modern-day over-
parameterized learners. The phenomenon for which this work seems to be cited primarily, 
however, was essentially described by Vallet et  al. (1989) already (see also Loog et  al., 
2020). Following Belkin et al. (2019), it is nowadays referred to as double descent, also 
in the learning curve setting: the curve starts off as expected and improves with increasing 
numbers of training samples, then its performance starts to deteriorate over a consecutive 
number of training sizes, following which it again gets to improved performance with more 
training data.

There is a gamut of surprising and curious learning curve behaviors next to double 
descent. One of the more peculiar ones is the zigzag curve that least absolute deviation 
regression can display and which has been explained recently by Chen et al. (2023). Loog 
and Viering (2022) provide a complete overview of the present state of affairs. Our cur-
rent work is, more specifically, in line with the findings from Loog et al. (2019). There it 
is shown that learners that rely on empirical risk minimization (ERM), being at the basis 
of many learners these days, can act nonmonotonically no matter the training sample size. 
Stated differently, with some sense of drama, Loog et al. (2019) show that even if, during 
the training phase, we optimize for the loss that we are also using during the test phase,1 
test-time performance can still deteriorate in expectation. The original work showed the 
emergence of such behavior for classification, regression, and density estimation.

1.1  Contributions and outline

In this work, we show, in a precise sense, that k-means clustering is not devoid of such 
quirks either. Our contribution is limited in the sense that we merely manage to prove 

1 This may seem like an odd statement, but it is often not realized that, for instance, most classifiers actu-
ally optimize an essentially different objective function than what is going to be used during their evalua-
tion. Not surprisingly, this can have unexpected consequences and hamper analysis (Loog & Duin, 2012; 
Ben-David et al., 2021; Loog et al., 2016).
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nonmonotonicity for k = 2 . Nevertheless, this is significant, firstly, for the fact that we can 
at all prove that something like this happens for k-means and, secondly, because it dem-
onstrates that nonmonotonicity extends to settings beyond classification, regression, and 
density estimation.

The next section goes through some preliminaries and provides further related work. 
It primarily puts k-means in the context of empirical risk minimization and introduces the 
precise notion of monotonicity. Section 3 formulates our two main results: for k = 1 the 
learning curve of k-means always behaves properly, i.e., it improves with more data, but 
for k = 2 its behavior can be problematic. More precisely, we show that no matter the size 
of the training set, there are clustering problems for which the 2-means performance still 
becomes worse with even more training data. While the proof for the former result is pro-
vided in the same section, all of Sect. 4 revolves around the proof of the second result. Sec-
tion 5 discusses and concludes our work.

2  Preliminaries and additional related work

We formulate k-means clustering within the framework of empirical risk minimization 
(ERM) and touch upon some further relevant literature in this context. In addition, we 
make precise the notion of monotonicity that we are going to employ. Regarding the latter, 
we largely follow the notation and definitions as proposed in (Viering et al., 2019; Loog 
et al., 2019).

2.1  Empirical risk minimization and k‑means

Let SN =
(
x1,… , xN

)
∈

N

X  be a training set of size N. This is, in our k-means setting, an 
i.i.d. sample from a distribution D over the standard d-dimensional feature space X =

d

ℝ . In 
addition, we have as hypothesis class the set of sets of k means

Note that, as every m ∈ M
k

 is an actual set, their cardinality |m| is smaller than k in case 
mi = mj for one or more pairs i ≠ j . That is, redundant means are discarded.

The particular loss function that we consider in our case could be termed the cluster-
wise or group-wise squared loss. We, however, go with within-group squared (WGS) loss, 
inspired by the term within-group sum of squares that Hartigan (1978) considers in the 
context of k-means:

The ultimate objective is to minimize the expected loss, i.e., the risk:

(1)Mk =
{
m = {m1,… ,mk}

||mi ∈ ℝ
d,∀i ∈ {1,… , k}

}
.

(2)
�WGS ∶X×Mk → ℝ

(x,m) ↦ min
i∈{1,…,�m�} ‖x − mi‖2,

(3)RD(m) ∶= �
x∼D

�WGS(x,m).
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As we do not know the actual underlying distribution D, the principle of ERM (Vapnik, 
1982) suggests the learner to rely on its empirical distribution, defined by the training sam-
ple of size N, and to consider the loss on this distribution:

This empirical risk is then equivalent to Hartigan (1978)’s within-group sum of squares.
We can now define the following:

Definition 1 (k-means clustering) k-means clustering is the learner Ak that maps from the 

set of all samples S ∶=
⋃∞

i=1

i

X  to the hypothesis class Mk , i.e., Ak ∶ S → Mk , according 
to the optimality assignment

The first minimizers in our definition picks out all mean sets that minimize the empirical 
risk. A(SN) can indeed be a set of solutions, in particular when N < k . The second minimizer 
then makes sure that we obtain a solution set of minimal cardinality.

The ERM view on k-means that we consider is equivalent to the formulation that Pol-
lard (1981) provides. Different formulations are possible, for instance, where ones does not 
consider the squared distance to the closest means, but where one looks for a partitioning of 
the space in optimal regions. The latter can be found, for example, in the works by Dalenius 
(1950), MacQueen (1967), Ben-David et al. (2006). The former “center-based” formulation 
can also be found in Rakhlin (2005), Rakhlin and Caponnetto (2006) and Ben-David (2004) 
(under the name vector quantization problem). Buhmann (1998) provides a slightly different 
ERM setting and normalizes the influence of every cluster with its size. Bock (2007) relates 
different center-based and partitioning based approaches.

2.2  Idealized and practical k‑means

Note that the specific k-means that we consider is, in some sense, idealized, because we actu-
ally assume that it minimizes the empirical risk globally, which is known to be an NP-hard 
problem (Dasgupta, 2008; Aloise et al., 2009).

For this reason, in practice, one often needs to resort to suboptimal approaches when car-
rying out the optimization in Eq. (5). This is where the well-known alternating optimization 
method of assigned points to means, then updating the means, and repeating this process 
comes in (Steinhaus, 1956; Jancey 1966; Bock 2007). Often, k-means is actually associated 
with exactly this algorithm, which we expressly do not do in this paper.

The successful k-means++ algorithm (Arthur & Vassilvitskii, 2007) has been shown to 
provide a reasonable solution to the k-means problem, despite it being NP-hard. More spe-
cifically, it is guaranteed to achieve a WGS risk in polynomial time that is, in expectation, no 
worse than log k + 2 times the optimal. It should be noted that k-means++ considers the WGS 
risk of the training set, while we are primarily interested in the expected loss of k-means on 
the full problem distribution.

(4)RSN
(m) ∶=

1

N

N�
j=1

�WGS(xj,m) =
1

N

N�
j=1

min
i∈{1,…,�m�} ‖xj − mi‖2.

(5)

A(SN) ∶= argmin
m∈Mk

RSN
(m),

Ak(SN) ∶= argmin
m∈A(SN )

|m|.
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2.3  Monotonic or smart?

We note that more than 20 years before Loog et  al. (2019), Devroye et  al. (1996) 
already suggested the notion of smart rules, which refers to classifiers that show non-
increasing expected error rates with increasing training set sizes. The terms smart and 
smartness, may be better choices than the terms monotonic and monotonicity. The lat-
ter term, as it is used originally, does of course not distinguish between increasing or 
decreasing curves. What we are after, in particular, is a nonincreasing curve in terms 
of the expected risk. As we evaluate in terms of the same loss as the one that is being 
optimized during training, this risk is not the error rate in our setting, but equals the 
expected within-group squared loss from Eq. (3).

2.4  Monotonicity

The behavior we are interested in is that we get better, or at least not worse, test perfor-
mance when having more data to train on. In particular, we want k-means to not perform 
worse with increasing N in terms of the expected within-group squared loss as given by 
Eq. (3). As adding a single very bad sample can always ruin performance, it is reason-
able to merely ask for such performance non-deterioration in expectation, i.e., over all 
possible samples SN and SN+1 of size N and N + 1 , respectively. A basic initial definition 
is therefore the following.

Definition 2 (local monotonicity) Ak is (D,�WGS,N)-monotonic with respect to a distribu-
tion D and an integer N ∈ ℕ ∶= {1, 2,…} if

The two entities we would like to get rid of in Definition 2 are N and D. The for-
mer, because we would like our learner to act monotonically irrespective of the sam-
ple size. The latter, because we typically do not know the underlying distribution. 
What we do know, however, is in which domain we are operating, which is ℝd for our 
k-means. Therefore, employing the difference ΔN+1

N
 as defined in Eq. (6), the following 

is appropriate.

Definition 3 (local ℝd-monotonicity) Ak is (locally) (ℝd,�WGS,N)-monotonic with respect 
to an integer N ∈ ℕ if, for all distributions D on ℝd for which ΔN+1

N
 exists, ΔN+1

N
≥ 0.

Note that the above definition is a refinement of the original from (Viering et al., 2019; 
Loog et al., 2019). In particular, we added the statement on the existence of the difference 
in expected risks to make sure that the learner is ℝd-monotonic even though on some distri-
butions the necessary integrals may not exist or the difference in itself is problematic. Such 
issues arise, for instance, when both expectations in the difference evaluate to infinity and 
ΔN+1

N
 would become ∞−∞.

The double-descent phenomenon that we covered earlier shows that learning curves can have 
some difficulties being monotonous from the start. The second best thing to hope for is that a 
learner becomes monotonic after some sample size, which leads to a weak form of monotonicity.

(6)ΔN+1
N

∶= �
SN∼D

N

[RD(Ak(SN))] − �
SN+1∼D

N+1
[RD(Ak(SN+1))] ≥ 0.
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Definition 4 (weak ℝd-monotonicity) Ak is weakly (ℝd,�WGS, n)-monotonic if there is an 
integer n ∈ ℕ such that for all N ≥ n , the learner is locally (ℝd,�WGS,N)-monotonic.

If the n from Definition 4 can be set to 1, the learner is called globally ℝd-monotonic.

Definition 5 (global ℝd-monotonicity) Ak is globally (ℝd,�WGS)-monotonic if for every 
integer N ∈ ℕ , the learner is locally (ℝd,�WGS,N)-monotonic.

2.5  Learning curves and bounds

Meek et al. (2002) were possibly the first to consider learning curves for clustering tech-
niques in an application setting. In particular, they studied mixtures of Gaussians, but the 
notion can be transferred readily to the setting of k-means as seen in what follows. Interest-
ingly, apart from Meek et al. (2002), there seems little additional learning curve work.

There is more work available on theoretical bounds for k-means. These report non-
asymptotic bounds on the excess risk—or excess distortion as it is also called in this set-
ting. Some of the more recent works are (Levrard, 2015; Maurer, 2016; Chichignoud & 
Loustau, 2014; Levrard, 2013; Biau et al., 2008). Earlier mentioned (Klochkov et al., 2021) 
is one of the recent additions, which, alternatively, studies a robust version of k-means. 
Their bounds show the typical 1/N or 

√
1∕N power-law behavior in terms of the training 

sample size N. Clearly, as these are bounds, they do not necessarily say a lot about the 
actual (local) behavior of the learning curve.

3  Main theoretical results

Having laid the groundwork in the previous section, we can now come to our main results.

Theorem 1 A1 is globally (
d

ℝ,�WGS)-monotonic.

The proof follows in Sect. 3.1. It is fairly uninvolved—certainly compared to the proof 
of the next theorem. Nevertheless, the result is there both for completeness and to contrast 
it with what happens when k = 2 , in which case the behavior changes notably.

Theorem 2 For A2 in combination with any integer N ≥ 14 , there exists a distribution D 
for which ΔN+1

N
< 0 and, therefore, A2 is not weakly (ℝd,�WGS, n)-monotonic for any n ∈ ℕ.

The proof of this result is relatively involved and could be considered a bit cumbersome. 
We therefore dedicate a separate section to it, which is Sect. 4.

3.1  Proof of Theorem 1

Proof It is easy to check that the minimizing hypothesis of the empirical risk A1(SN) is 
attained for the mean: mN ∶=

1

N

∑N

i=1
xi , as we are dealing with only one cluster.

Let � now denote the expectation both over the training sample SN ∼ DN and over the 
test sample x ∼ D , where this latter expectation comes from the risk RD expressed by Eq. 3. 
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With � the true mean of the distribution D, we can write the following for the expected 
within-cluster loss for sample size N:

Only the last term matters as it is the only part depending on the training set size. We have

Now, for ΔN+1
N

 (as defined in Eq. (6)) to exist, �
�‖x − �‖2� needs to be finite. In that case, 

as �
�‖x − �‖2� is nonnegative, we have that

for any N and so A1 is globally monotonic.   ◻

4  Proof of Theorem 2

At a high level, the proof is fairly straightforward. We explicitly construct a class of 
distributions that has two free parameters and we show that by having those param-
eters depend on N in the right way, we can always make the learning curve go up 
when going from a sample of size N to one of size N + 1 on that same distribution, i.e., 
ΔN+1

N
< 0 . As we can construct such a distribution for any N ≥ 14 (so the distribution 

is allowed to be different for every (N,N + 1)-pair), A2 is not locally ℝd-monotonic for 
any N ≥ 14 . As such, A2 is also not weakly monotonic for any n ∈ ℕ , as there is always 
an N ≥ n and a corresponding distribution for which ΔN+1

N
< 0.

The distributions that we construct for this consist simply of three point masses in 
one-dimensional feature space ℝ . Because we can always embed this one-dimensional 
problem in ℝd for any d ∈ ℕ , we can limit ourselves to this specific problem in our 
proof.

The complication in proving Theorem 2 stems mainly from the fact that we cannot 
explicitly evaluate the difference ΔN+1

N
 between two consecutive points on the learning 

curve in full. We therefore demonstrate that the curve goes up by showing that the dif-
ference is strictly negative by bounding it away from zero.

We start the preparations for the proof in the next subsection where we introduce 
our parameterized three-point problem. In Sect. 4.2, we then formulate and prove six 
lemmas, which give us different handles on parts of the behavior of the true expected 
risks. Sect. 4.3 brings it all together and finalizes the proof of Theorem 2.

(7)�

�‖x − mN‖2
�
= �

�‖x − � + � − mN‖2
�
= �

�‖x − �‖2� + �

�‖mN − �‖2�.

(8)

�

�‖mN − �‖2� = �

������
1

N

n�
i=1

xi − �

�����

2�
= �

������
1

N

n�
i=1

xi

�����

2�
− ‖�‖2

=�

�
1

N2

n�
i=1

‖xi‖2 + 1

N2

�
j≠k

xT
j
xk

�
− ‖�‖2

=�

�
N

N2
‖x‖2 + N2−N

N2
‖�‖2

�
− ‖�‖2 = �

�
1

N
‖x‖2

�
−

1

N
‖�‖2

=
1

N
�

�‖x − �‖2�.

(9)ΔN+1
N

=
1

N
�

�‖x − �‖2� − 1

N+1
�

�‖x − �‖2� ≥ 0
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4.1  A parameterized three‑point problem and its risk

Definition 6 (three-point problem) This clustering problem, which depends on two param-
eters c and p, both in the open interval (0, 1), considers three locations in one-dimensional 
Euclidean space with associated probability mass function P. The specific points are A at 
−1 , B at the origin, and C at c, while the associated probability masses are P(A) = p and 
P(B) = P(C) =

1

2
(1 − p).

In addition, let us now introduce the following notation and definitions. Firstly, let the 
number of training samples from A, B, and C, equal i, j, and k, respectively. Secondly, 
let �X(i, j, k) equal the true loss incurred at point X ∈ {A,B,C} . It is important to note 
that these three losses are, of course, dependent on the precise counts for i, j, and k, as 
those determine the hypothesis for that training set. We denote its associated hypothesis 
from Mk by m(i, j, k). A further definition we use is

which denotes the true risk given the counts (i, j, k) for the three points A, B, and C.
Finally, for a training set of size N, the expected risk for the three-point clustering 

problem, which we simply denote by E(N) from now on, is equal to

where the count for point C equals k = N − i − j.

4.2  Six preparatory lemmas

The six lemmas presented in this section provide four different types of results. To start 
with, Lemma 1 describes a specific situation in which a minimizer for our three-point 
problem can be identified easily and uniquely. Lemmas 2 and 3 provide simplifications 
of some of the expressions involving binomials an risks that we will encounter. Lemmas 
4 and 5 provide bounds for some of the expressions that appear in the proof of Theo-
rem 2 when considering the difference in expected risk ΔN+1

N
 at training sample size N 

and N + 1 under the three-point distribution parameterized by the same c and p. Our 
ultimate lemma shows a specific one-dimensional function to be negative beyond a cer-
tain point. This is merely a technical result, that will ultimately be used to lower-bound 
the increase in the risk.

Lemma 1 With i ≥ 1 and j + k ≥ 1,

is the unique minimizer of the empirical risk for the three-point problem if and only if

(10)R(i, j, k) ∶= p�A(i, j, k) +
1

2
(1 − p)

(
�B(i, j, k) + �C(i, j, k)

)
,

(11)E(N) ∶=

N∑
i=0

N−i∑
j=0

N!

i!j!(N − i − j)!
pi
(
1 − p

2

)N−i

R(i, j,N − i − j),

(12)m(i, j, k) =

{
−1, c

k

j + k

}

(13)c2k(i + j) < i(j + k).
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Proof First observe that using two rather than one mean, will always improve the 
empirical risk in the setting considered. Secondly, assigning points observed at the 
same location to two different means can never reduce the minimum risk. Thirdly, 
associating one mean with the middle location B and the other with the observations 
on both sides at A and C cannot be optimal. All in all, the optimal solution should 
either associate the one mean with A and the other with B and C or the one with A and 
B and the other with C. The mean associated with one point should, of course, be 
exactly that point. The other mean, in order to minimize the squared loss, is the 
weighted average of the two observed locations. As a result, either the hypothesis as 
specified in Eq. (12) is the optimizer or 

{
−

i

i+j
, c
}

 is.

Now, with N = i + j + k , the respective empirical risks for these two hypotheses are

and

One therefore uniquely chooses the first hypothesis in case the value in Eq. (14) is (strictly) 
smaller than that in Eq. (15), as these are the only two hypotheses that we need to consider. 
It is easy to see that this holds if and only if c2k(i + j) < i(j + k) .   ◻

Lemma 2 For the three-point problem from Definition 6 and any N ≥ 1,

which is the contribution to the expected risk of all training sets that do not contain sam-
ples at A.

Proof When j = 0 or j = N , the hypotheses minimizing the empirical risk are in fact single 
means at c and 0, respectively. In these cases, we have

For 1 ≤ j ≤ N − 1 , both B and C are in the training set and the minimizer equals 
m(0, j, k) = {0, c} . The associated true risk is therefore R(0, j, k) = p . Working out the sum-
mation now leads to

(14)
j

N

(
c

k

j + k

)2

+
k

N

(
c − c

k

j + k

)2

=
c2jk

N(j + k)

(15)i

N

(
−1 +

i

i + j

)2

+
j

N

(
i

i + j

)2

=
ij

N(i + j)
.

(16)
N∑
j=0

N!

j!(N − j)!

(
1 − p

2

)N

R(0, j,N − j) =

(
c(c + 2p)

2N
+ p

)
(1 − p)N ,

(17)R(0,N, 0) = p +
1

2
(1 − p)c2

(18)R(0, 0,N) = p(1 + c)2 +
1

2
(1 − p)c2.
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Lemma 3 Consider the three-point problem from Definition 6 and assume c2 < 4(N−1)

N2
 . If 

N ≥ 2 and 1 ≤ i ≤ N − 1 , then

Proof According to Lemma 1, with k = N − i − j , the hypothesis from Eq. (12) is the 
unique optimum, if c2(N − i − j)(i + j) ≤ i(N − i) . The left-hand side is quadratic in i and 
j and takes its maximum for any i + j =

N

2
 . The right-hand side is quadratic and takes its 

minimum in i = 1 and i = N − 1 . Therefore, under the assumptions that c2 < 4(N−1)

N2
 , we 

indeed have that

Now, the optimal hypothesis 
{
−1, c

k

j+k

}
 has corresponding true risk

and we find the desired identity by working the sum on the left-hand side of Eq. (20).

(19)

N∑
j=0

N!

j!(N − j)!

(
1 − p

2

)N

R(0, j,N − j) =

(
1 − p

2

)N
(
p +

1

2
(1 − p)c2 + p(1 + c)2 +

1

2
(1 − p)c2 +

N−1∑
j=1

N!

j!(N − j)!
p

)
=

(
1 − p

2

)N(
p + p(1 + c)2 + (1 − p)c2 + (2N − 2)p

)
=

(
c(c + 2p)

2N
+ p

)
(1 − p)N .

(20)

N−i∑
j=0

N!

i!j!(N − i − j)!
pi
(
1 − p

2

)N−i

R(i, j,N − i − j) =

(
N

i

)
c2(N − i + 1)(1 − p)N−i+1pi

4(N − i)
.

(21)c2(N − i − j)(i + j) ≤ c2
N

2

N

2
< (N − 1) ≤ i(N − i).

(22)R(i, j, k) =
1

2
(1 − p)

((
c

k

j + k

)2

+

(
c − c

k

j + k

)2
)

=
1

2
c2(1 − p)

j2 + k2

(j + k)2

(23)

N−i∑
j=0

N!

i!j!(N − i − j)!
pi
(
1 − p

2

)N−i

R(i, j,N − i − j) =

N−i∑
j=0

N!

i!j!(N − i − j)!
pi
(
1 − p

2

)N−i
1

2
c2(1 − p)

j2 + (N − i − j)2

(N − i)2
=

N!

i!(N − i)!

c2pi(1 − p)N−i+1

2N−i+1(N − i)2
×

N−i∑
j=0

(N − i)!

j!(N − i − j)!

(
2j2 − 2(N − i)j + (N − i)2

)
= (⋆)

◻
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The next equality is established with the use of the identities 
∑n

k=0

�
n

k

�
= 2n , 

∑n

k=0

�
n

k

�
k = n2n−1 , and 

∑n

k=0

�
n

k

�
k2 = (n2 + n)2n−2 . All of these can be readily 

derived from the binomial theorem: the first sum is standard, the other two identities are 
reported in Gould (2010) as Eq.s (1.70) and (1.67), respectively.

  

◻

Lemma 4 Given N ≥ 2 , if p <
1

N+7
 , then

for all 1 ≤ i ≤ N − 1.

Proof To start with, observe that the term 1 − N+7

N+6
(1 − p) equals 0 when p takes on its 

supremum 1

N+7
 . As soon as p becomes smaller than 1

N+7
 , the term becomes strictly negative 

and we have the second, strict inequality.
To show the first inequality, note initially that we can rewrite it into the equivalent 

requirement that

Demonstrating this for i = 1 comes down to showing that

To see that this holds, multiply left and right by N3(N + 6) and reorganize terms to come to 
5N2 − 7N − 6 ≥ 0 . Equality is attained for N = −

3

5
 and N = 2 , and so the inequality indeed 

holds for all N ≥ 2 , as we are dealing with a convex quadratic equation.

(24)

(⋆) =

(
N

i

)
c2pi(1 − p)N−i+1

2N−i+1(N − i)2
×

(
((N − i)2 + N − i)2N−i−1 − (N − i)22N−i + (N − i)22N−i

)

=

(
N

i

)
c2(N − i + 1)pi(1 − p)N−i+1

4(N − i)
.

(25)

(
N

i

)
c2(N − i + 1)(1 − p)N−i+1pi

4(N − i)
+

−

(
N + 1

i

)
c2(N − i + 2)(1 − p)N−i+2pi

4(N − i + 1)
≤

(
1 −

N + 7

N + 6
(1 − p)

)(
N

i

)
c2(N − i + 1)(1 − p)N−i+1pi

4(N − i)
< 0

(26)

(
N + 1

i

)
c2(N−i+2)(1−p)N−i+2pi

4(N−i+1)

(
N

i

)
c2(N−i+1)(1−p)N−i+1pi

4(N−i)

=
(N − i + 2)(N + 1)(N − i)(1 − p)

(N − i + 1)3
≥

N + 7

N + 6
(1 − p).

(27)
(N + 1)2(N − 1)

N3
≥

N + 7

N + 6
.
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To show now that the inequality holds for any 1 ≤ i ≤ N − 1 , consider the derivative to 
i:

This only becomes zero, when i2 − 2(N + 1)i + N2 + 2N − 2 = 0 , which only happens 
when i = N + 1 ±

√
3 . Both these solutions are larger than N − 1 . Therefore, on the whole 

interval [1,N − 1] , the derivative is positive, (N−i+2)(N+1)(N−i)
(N−i+1)3

 is strictly increasing over that 
same domain, and we have that

for all i ∈ [1,N − 1] in general and for 1 ≤ i ≤ N − 1 in particular.   ◻

Lemma 5 For the three-point problem from Definition 6, any N ≥ 2 , and any p ≤
1

2
:

Proof The term R(N, 0, 0) gives the risk in case the training set only contains samples from 
location A, which means we have one mean at −1 and therefore

Using this term together with Eq. (16) from Lemma 2, we can rewrite the part of Eq. (29) 
on the left-hand side of the inequality, as

For the first term in the sum of the right-hand side, as p+1
2

≤ 1 , we have the following upper 
bound.

For the third term, we have

d

di

(N − i + 2)(N + 1)(N − i)

(N − i + 1)3
=

(N + 1)(i2 − 2(N + 1)i + N2 + 2N − 2)

(N − i + 1)4
.

(28)
(N − i + 2)(N + 1)(N − i)

(N − i + 1)3
≥

(N + 1)2(N − 1)

N3
≥

N + 7

N + 6

(29)

pNR(N, 0, 0)+

(
c(c + 2p)

2N
+ p

)
(1 − p)N

−pN+1R(N + 1, 0, 0)−

(
c(c + 2p)

2N+1
+ p

)
(1 − p)N+1

≤

(
c(c + 2p)

2N
+ 2p2

)
(1 − p)N .

(30)R(N, 0, 0) =
1

2
(1 − p)

(
1 + (1 + c)2

)
.

(31)

pN
1

2
(1 − p)

(
1 + (1 + c)2

)
+

(
c(c + 2p)

2N
+ p

)
(1 − p)N

−pN+1
1

2
(1 − p)

(
1 + (1 + c)2

)
−

(
c(c + 2p)

2N+1
+ p

)
(1 − p)N+1 =

c(p + 1)(c + 2p)(1 − p)N

2N+1
+ p2(1 − p)N +

1

2
(c2 − 2c + 2)(1 − p)2pN .

(32)
c(p + 1)(c + 2p)(1 − p)N

2N+1
≤

c(c + 2p)(1 − p)N

2N
.

(33)
1

2
(c2 − 2c + 2) ≤

1

2
2 = 1
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because c ∈ (0, 1) and the quadratic function takes on its supremum at c = 0 . In addition, 

as 
(

p

1−p

)N

≤ (2p)N for all N ≥ 1 if p <
1

2
 , we have

  ◻

Lemma 6 For N ≥ 14,

Proof For N > 1 , the denominator 2(N + 6)(N − 1) is positive. Multiplying all terms with 
this term and simplifying leads to

The logarithm of the expression 16N(N − 1)(N + 6)(4N + 1)2−N is concave for N > 1 and 
so we can upper-bound that log-expression by a linear function. In particular, based on the 
first Taylor polynomial (or tangent) at N = 14 , we may write:

As the coefficient 45299

157092
− log(2) for the linear term in the latter part of the inequality is 

negative, we can fill in N = 14 to obtain a value that upper-bounds the expression in Eq. 
(37) for all N ≥ 13 . The exponent of this value, which equals 25935

128
 , we can then use to 

upper-bound Eq. (36) for N ≥ 14:

This last quadratic upper bound is concave and takes on its maximum value at N =
11

4
 , 

which is smaller than 14. Therefore, the value of the upper bound in Eq. (38) at 
14, provides an upper bound for 25935

128
− 2N2 + 11N − 5 for all N ≥ 14 . Its value is 

25935

128
− 2 ⋅ 42 + 11 ⋅ 4 − 5 = −

5169

128
< 0 and, as 2(N + 6)(N − 1) is positive in that case, we 

also have that the left-hand side of Eq. (35) is strictly smaller than 0 for all N ≥ 14 .   ◻

4.3  Finalizing the proof

Proof of Theorem 2 To start with, that A2 is not weakly monotonic for any n ∈ ℕ follows 
readily from the first part of the theorem. If for every integer N ≥ 14 , there exists a dis-
tribution D such that ΔN+1

N
< 0 then there is always a distribution and an N ≥ n for which 

(34)(1 − p)2pN = p2
pN−2

(1 − p)N−2
(1 − p)N ≤ p2(2p)N−2(1 − p)N ≤ p2(1 − p)N .

(35)(32N2 + 8N)2−N + 1 −
4N2 − N − 7

2(N + 6)(N − 1)
< 0.

(36)
2(N + 6)(N − 1)((32N2 + 8N)2−N + 1) − (4N2 − N − 7)

=16N(N − 1)(N + 6)(4N + 1)2−N − 2N2 + 11N − 5.

(37)
log(16N(N − 1)(N + 6)(4N + 1)2−N)

≤ log
(
25935

128

)
+
(
27857

103740
− log(2)

)
(N − 14).

(38)

2(N + 6)(N − 1)((32N2 + 8N)2−N + 1) − (4N2 − N − 7)

= 16N(N − 1)(N + 6)(4N + 1)2−N − 2N2 + 11N − 5

≤
25935

128
− 2N2 + 11N − 5.
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ΔN+1
N

< 0 , which means A2 cannot be weakly (
d

ℝ,�WGS, n)-monotonic. The remainder of 
the proof therefore focuses on demonstrating the first claim from the theorem.

Without loss of generality, we can limit our attention to one-dimensional ℝ , as we 
can always embed a problem from that space in ℝd . As such, nonmonotonicity of A2 
in ℝ carries over to ℝd . Let us therefore merely consider the one-dimensional problem 
from Definition 6. Moreover, take N ≥ 14 and take c = 2

N
 , in which case c2 is strictly 

smaller than 4(N−1)
N2

 . Additionally, take p =
1

4N2
 , which is strictly smaller than 1

N+7
 for 

N ≥ 14 . These choices make sure that all six lemmas hold and, in addition, determines 
a specific three-point distribution D for every N. We now show that the learning curve 
increases on this D when going from N to N + 1 training samples.

Following Lemma 2 and Lemma 3, we can write

Subsequently, let us consider the difference ΔN+1
N

= E(N) − E(N + 1) , where both expecta-
tions are taken with respect to the same underlying distribution D. This difference needs 
to be smaller than 0 to show that A2 is not monotonic on the problem defined by D when 
going from N to N + 1.

Using Lemmas 4 and 5, we find that

where the last inequality holds because all terms in the summation are smaller than 0, so 
removing those for i ∈ {2,… ,N} only increases the value.

In our next step, we fill in our choices for c and p in the above inequality and simplify-
ing the expression. This gives us the following bound on the change in expected risk on D:

(39)

E(N) = pNR(N, 0, 0) +
(

c(c + 2p)
2N

+ p
)

(1 − p)N

+
N−1
∑

i=1

(

N
i

)

c2(N − i + 1)(1 − p)N−i+1pi

4(N − i)
.

(40)

ΔN+1
N ≤

(

c(c + 2p)
2N

+ 2p2
)

(1 − p)N

+
N−1
∑

i=1

(

1 − N + 7
N + 6

(1 − p)
)

(

N
i

)

c2(N − i + 1)(1 − p)N−i+1pi

4(N − i)

≤
(

c(c + 2p)
2N

+ 2p2
)

(1 − p)N +
(

1 − N + 7
N + 6

(1 − p)
)c2N2(1 − p)Np

4(N − 1)
,

(41)

ΔN+1
N ≤

⎛

⎜

⎜

⎜

⎝

2
N

(

2
N
+ 2 1

4N2

)

2N
+ 2

( 1
4N2

)2
⎞

⎟

⎟

⎟

⎠

(

1 − 1
4N2

)N

+
(

1 − N + 7
N + 6

(

1 − 1
4N2

))

(

2
N

)2
N2

(

1 − 1
4N2

)N 1
4N2

4(N − 1)

= 1
8N4

(

(32N2 + 8N)2−N + 1 − 4N2 − N − 7
2(N + 6)(N − 1)

)

(

1 − 1
4N2

)N
.
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In this expression, both 1

8N4
 and 

(
1 −

1

4N2

)N

 are positive for all N ≥ 14 . The middle term is 
strictly negative according to Lemma 6 and, therefore, we have that Eq. (41) is upper-
bounded by 0. In particular, we have shown that for every N ≥ 14 there is a problem distri-
bution D such that ΔN+1

N
< 0 , which was to be demonstrated.   ◻

5  Discussion and conclusion

Having shown that 1-means is monotonic, while 2-means is not even weakly monotonic, 
the obvious question that comes up is what we can say about k > 2 . Our current convic-
tion is that we can probably design problematic cases, similar to the one for 2-means, for 
k > 2 as well. We have, however, not been able to do so up until now. A first step could be 
to empirically show that, say, for 3-means there are at all distributions where nonmonoto-
nicity occurs. It may only then be sensible to look for a proof showing that it is not weakly 
monotonic. Incidentally, note that for 3-means, we need at least a four-point problem, 
which may point at an even more involved proof for this case.

The current proof seems to strongly hinge on the discreteness of the chosen three-point 
distributions from Definition 6. We conjecture, however, that a similar proof can be con-
structed on the basis of a class of continuous distributions, rather than discrete ones. Our 
current idea is that every one of the three discrete locations A, B, and C can probably be 
replaced by a narrow enough uniform distribution around that point such that the crucial 
steps in our proof still go through. We do admit, however, that it may be rather nontrivial 
to precisely reformulate all arguments. Nonetheless, we do believe that the distribution’s 
discreteness is not essential.

Two further research direction that, we think, are of interest are, firstly, whether k-means 
can be turned into a monotonic learner and, secondly, what we can say about the learning 
curve behavior of closely related Gaussian mixture models (Welling & Kurihara, 2006; 
McLachlan et al., 2019; Lücke & Forster, 2019). The latter are closely linked to k-means in 
particular when the covariance matrices of the mixture components are assumed to be the 
identity and the mixture priors are all equal. What we wonder especially is whether moving 
from the within-group squared loss to the (negative) log-likelihood and/or going from hard 
to soft assignments of points to clusters provides any benefits when it comes to monotonic 
behavior.

As for the former research question, there are some wrapper techniques to turn learners 
monotonic in expectation. Viering et al. (2020) and Bousquet et al. (2022) rely on the 0-1 
loss specifically and cannot be applied directly to our setting. On the other hand, Mham-
medi (2021)’s wrapper only assumes the loss to be bounded, which is readily fulfilled for 
k-means in case the support of the distribution is bounded as well. Unfortunately, the proof 
in (Mhammedi, 2021) turned out to be defective and the original result was updated in a 
correction mentioned in (Footnote 6 (Mhammedi, 2022)). It now only ensures monotonic-
ity up to an additive term with an N−1 rate. Still, assuming bounded distributional sup-
port, Mhammedi (2021) at least gives us some possibility to control the monotonicity of 
k-means.

In the context of potential wrappers, what is important to note, however, is that these 
algorithms essentially change the base algorithm. Are we still dealing with k-means now 
or is it a different learner altogether? More directly related to the idealized version that we 
consider are the k-means algorithms in practical use (Sect.  2.2 provides some pointers). 
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From a monotonicity point of view, the fact that these typically do actually not provide a 
globally optimal clustering could result in a smoother, maybe even monotonous learning 
curve. In other words, the regularizing effect from the suboptimality of practical k-means 
optimization could actually promote monotonicity. Regularization can, however, both fix 
and create nonmonotonicity (Loog et  al., 2019; Nakkiran et  al., 2020; Viering & Loog, 
2022) and it could be interesting to see how different k-means++ possibly behaves com-
pared to other lesser-optimal algorithms.

All in all, our findings add clustering to the list of potentially nonmonotonic behaving 
learners, next to some classifiers, regression techniques, and density estimators (cf. Loog 
et al, 2019). From a theoretical point of view, this is crucial as it provides us, for instance, 
with a deeper understanding of how learning curves can at all behave. The practitioner may 
object that “this does not happen on real-world problems.” Though we are, in principle, 
willing to believe this, what proof do we really have? If anything, some recent study by 
Mohr et al. (2022), on a large number of data sets in combination with various classifiers, 
showed that nonmonotonic learning curve behavior does occur. The least any practitioner 
should be is aware that nonmonotonicity can happen.
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