
Delft University of Technology
Faculty of Electrical Engineering, Mathematics & Computer Science

Delft Institute of Applied Mathematics

Machine learning to support cutting plane selection
in two-stage robust optimization problems using a

column-and-constraint-generation algorithm

Bachelor thesis project report
to obtain the degree of

BACHELOR OF SCIENCE
in

APPLIED MATHEMATICS

by

BOAZ WILLEM VAN DER VLUGT

Delft, Netherlands
July 2021

Copyright © 2021 by Boaz Willem van der Vlugt. All rights reserved.

BSc Thesis - Applied Mathematics

Machine learning to support cutting plane selection in two-stage robust
optimization problems using a column-and-constraint-generation algorithm

BOAZ WILLEM VAN DER VLUGT

Delft University of Technology

Supervisor

Dr. K.S. (Krzysztof) Postek

Thesis committee

Dr. J.L.A. (Johan) Dubbeldam

July, 2021 Delft

Abstract

The field of robust optimization deals with problems where uncertainty influences the optimal
decision. Some of these problems can be formulated in a ‘two-stage’ formulation, such as the
location transportation problem. To solve such a problem, a column-and-constraint-generation
algorithm has been introduced in which constraints are iteratively added to mixed-integer pro-
gram based on different uncertain scenarios. However, if these scenarios are randomly chosen,
this problem can grow too large to efficiently solve for. For most problems, there is some mini-
mal set of scenarios needed to find the optimal solution, and it is important to find the ‘right’
scenarios early.

In this study, we attempt to predict these scenarios for a location transportation using machine
learning. Using customer demand data for different instances of the problem, we train a logistic
regression classifier, a neural network and a random forest classifier to predict important scenarios
for newly generated problems. We find that when applying these machine learning tools, we reach
an average reduction of scenarios added to the problem ranging from 8% to 24%. Even though
we do not spend much effort on training perfect models, we see that there is a strong indication
that machine learning can be used to increase the efficiency of the algorithm.

iv

Contents

1 Introduction 1

2 Mathematical Background 3
2.1 Two-stage robust optimization . 3

2.1.1 Linear programming . 3
2.1.2 Robust counterparts to LP problems . 3
2.1.3 Two-stage optimization formulation . 4

2.2 Column & constraint generation algorithm . 5
2.2.1 Algorithm . 6
2.2.2 Master problem . 6
2.2.3 Subproblem . 7

3 Location Transportation Problem 8
3.1 Variables of the problem . 8
3.2 Problem formulation . 9
3.3 Application of the C&CG algorithm . 10

3.3.1 Master problem . 10
3.3.2 Subproblem . 10
3.3.3 Identification of important scenarios . 11

4 Machine Learning and the C&CG Algorithm 12
4.1 Machine learning techniques . 12
4.2 Application to C&CG algorithm . 15

4.2.1 Implementations . 16
4.2.2 Model training . 17
4.2.3 Model testing . 20

5 Results 21
5.1 Model performance . 21
5.2 Results of applying ML to C&CG . 23
5.3 Discussion of results . 24

5.3.1 Model coefficients . 25
5.3.2 Improvements to model . 27

6 Conclusion 29

A Python Code 31

v

1 | Introduction

We are often confronted with the problem of determining the ‘best’ decision or course of action
to take in a certain situation. The field of mathematical optimization provides us with a broad
set of tools to help us determine this desired optimal result, taking into account constraints
of the problem and the various factors that may influence the final decision. The method of
linear programming, for instance, is a very straightforward method of modelling a problem in
which we want to find a maximum or minimum value of some objective function, subject to a
set of constraints (given that the problem can be represented by linear relationships). Various
algorithms have been developed to solve this type of problem, providing great advances in fields
such as operations research and decision theory.

One drawback to simple methods like linear programming is that most real-life situations are
more complex than what can be represented using such a model. One of the most important
factors in this complexity is the presence of uncertainty. In most practical problems that we
encounter in the field of optimization, the outcome of the problem is affected to some degree by
factors of which we are not completely certain what their final value/outcome will be. In some
cases we can make safe assumptions about the outcome of some variable, but most of the time
we will deal with variables that could take on a wide range of values, and the actual values will
only be known to us after we have made (part of) a decision.

To deal with the presence of uncertainty, there exists a specific field of optimization known as
robust optimization. Robust optimization methods, as the name suggests, are focused around
finding an optimal solution that will work even in the ‘worst case’ scenario that might occur; we
seek a certain level of robustness against the uncertainty. However, in many problems this can
lead to a solution that is overly conservative; the potential worst-case scenario could be very far
from the actual realization of the uncertainty. To combat this, methods have been developed in
a specific field of robust optimization known as ‘multi-stage optimization’, where certain parts of
the decision-making process are left until after the realization of uncertainty has been revealed.

One type of algorithm that can be applied to two-stage optimization problems is the ‘column-
and-constraint generation’ (C&CG) algorithm, in which we search for an optimal solution by
gradually building up a set of potential scenarios for which we can find a working solution until
we have a solution that is robust against all realizations of uncertainty. A weakness of this
algorithm is that, when dealing with more elaborate problems, this set of scenarios can grow so
large that the solution cannot be efficiently computed if the set is built up randomly. Thus, it
can be beneficial to find a way of identifying the ‘important’ scenarios for a certain problem.

One way in which we might be able to identify these scenarios is using machine learning (ML), a
field of study that encompasses the use of certain algorithms to make predictions based on past

1

data. A key feature of most machine learning algorithms is that they grow more accurate through
experience; feeding more data into the algorithm improves the predictions that it makes. By
training different ML models to identify important scenarios in existing two-stage optimization
problems, we might be able to improve the efficiency of the C&CG algorithm.

To make the idea of two-stage optimization more concrete, we will introduce a real-life problem
to which we can apply the C&CG procedure, namely the location transportation problem. In
this problem, we examine a number of facilities and a number of customers in a certain area. We
make two decisions: firstly, we must decide which facilities to open and the level of production
at each facility. Then, once we have more information about the customer demand, we can
decide how many products to transport from each facility to each customer to meet the demand,
minimizing the fixed, variable and transport costs.

In this thesis, we will introduce the mathematical background behind robust and two-stage
optimization problems (in Chapter 2). We will explain the C&CG algorithm in-depth, and show
how it can be applied to the location transportation problem (introduced in Chapter 3). Then,
in Chapter 4, we will examine several machine learning methods and apply them to the C&CG
algorithm in a fashion as described above. Finally, we will present the results obtained in Chapter
5 and discuss the efficiency of the algorithm when supported by ML. The main research question
that we aim to answer is: ‘How can machine learning models be used to improve the efficiency
of the C&CG algorithm?’.

2

2 | Mathematical Background

In this chapter, we introduce various concepts and terms related to robust and two-stage opti-
mization problems, giving a thorough mathematical background for the problems discussed in
this thesis. Furthermore, we give an explanation of the C&CG algorithm that can be applied to
solve such problems.

2.1 Two-stage robust optimization

2.1.1 Linear programming

We first shortly mention the general formulation of a linear programming (LP) problem. For
c ∈ Rn, b ∈ Rm and A ∈ Rn×m, we formulate an LP problem in the following way:

min cTx

s.t. Ax ≥ b
x ≥ 0

Here, cTx is the objective function (with x ∈ Rn the solution vector), i.e. the function to be
minimized (or maximized). Ax ≥ b represents the constraints of the problem (with A and b
given data about the problem), i.e. the restrictions that the final solution vector x must satisfy
[1]. In general, solutions to LP problems can be efficiently computed using a solver.

For simplicity, we will denote the above formulation with the following (more compact) notation:

min
{
cTx|Ax ≥ b, x ≥ 0

}
2.1.2 Robust counterparts to LP problems

In the LP formulation presented in the previous section, we have that the matrix A and the
vector b contain data about the circumstances of our problem. In most real world problems, this
data is uncertain to some degree, meaning we do not know what the exact value of this data
will be. There are several different approaches to dealing with this uncertainty. We could choose
to ignore the uncertainty altogether and simply use the most likely or expected value. This
simplifies the optimization problem, but it also means that we ignore a great deal of knowledge
we have about our problem. Another approach is to use stochastic programming methods, in
which we assume the uncertainty follows a probability distribution and take this into account in
the optimization of our problem.

3

The approach we will focus on in this thesis lies in the field of robust optimization. Such methods
aim to find a solution to the optimization problem such that the constraints of the problem are
satisfied for any possible final realization of (A, b). To define the possible realizations of (A, b),
we introduce the concept of an uncertainty set.

We denote the uncertainty set with Z and define it to be the set of all possible values that
(A, b) have a positive probability of taking on. The size of Z differs per problem, and may
be either a finite set of discrete values or a continuous range. Whether we are dealing with a
finite discrete set plays an important role in the approach to solving the optimization problem;
for finite uncertainty sets, each scenario simply adds a constraint to the problem. This is not
possible when the uncertainty set is infinite.

We now introduce the robust counterpart of the uncertain LP problem from the previous section.
We formulate a robust LP problem in the following way:

min cTx

s.t. Ax ≥ b ∀(A, b) ∈ Z
x ≥ 0

Again, we can denote this using a more compact notation:

min
{
cTx|Ax ≥ b ∀(A, b) ∈ Z, x ≥ 0

}
The solution vector x∗ to the above problem is referred to as a robust solution of the uncertain
problem [2].

2.1.3 Two-stage optimization formulation

Clearly, finding a robust solution to an uncertain linear programming problem provides us with
a rather ‘safe’ solution; it is likely that the realization of the uncertain data is not quite the worst
case that we have optimized for. In some cases this cannot be avoided, as the smallest violation
of the problem’s constraints can have significant consequences. For instance, when designing
large structures in engineering, we have a certain margin of security that we must adhere to
when dealing with the various forces applied the material.

However, there are situations in which we can be more flexible when we make certain decisions,
and we can delay some decisions until we know more about the uncertain data. In this case, it
is useful to split the decision-making process into multiple parts. This is known as multi-stage
optimization; in this thesis, we will focus specifically on dividing the decision in two stages, i.e.
two-stage optimization. The key difference between the two stages is that the realization of
uncertainty is revealed after the first-stage decision is made. Thus, we make a robust decision
about some variables in the first stage, and once we have more exact knowledge about the
circumstances of our problem, we can make our second-stage decision for the remaining variables
(taking into account the fact that the first-stage decision cannot be modified anymore).

4

In general, we formulate such a two-stage optimization problem in the following manner:

min
x

cTx+ max
z∈Z

min
y∈F (x,z)

bT y

s.t. Ax ≥ b
x ≥ 0, y ≥ 0

where F (x, z) = {y : Gy ≥ h− Ex−Mz}

We see that in this formulation, we have two decision vectors; x is the first-stage decision, and
y is the second-stage decision. The first component of the objective function is the same as
in the previously presented formulations of (robust) LP problems. We see that in the second
component, we minimize an objective function of the second-stage decision vector subject to
constraints that take into account the first-stage decision as well as the possible realizations of
uncertainty. This function is maximized over all realizations of uncertainty to take into account
the worst-case uncertain scenario.

As previously mentioned, there is a significant difference in solving the multi-stage optimization
problem depending on whether the uncertainty set is finite and discrete. If this is indeed the
case, i.e. if Z = {z1, . . . , zn}, we define the corresponding recourse decision variables

{
y1, . . . , yn

}
to be the optimal decision given this realization of uncertainty. We can then reformulate the
two-stage optimization problem as follows:

min
x

cTx+ η

s.t. Ax ≥ b
η ≥ bT yi, i = 1, . . . , n

Ex+Gyi ≥ h−Mzi, i = 1, . . . , n

The second constraint ensures that the objective function of the second-stage decision is mini-
mized. Thus, when the uncertainty is a finite discrete set, the problem is simply a mixed integer
program. Depending on the number of scenarios in the uncertainty set, this MIP can quickly
grow to be quite a large-scale problem. It can clearly be seen that, for an uncertain two-stage
minimization problem, solving the problem for a subset of the uncertainty set provides an ob-
jective value that will in any case not exceed the objective value of the original problem. This
is due to the fact that removing scenarios (and thus constraints) makes the problem easier to
solve, allowing for a lower minimum value, providing a lower bound to the true objective value
[3].

2.2 Column & constraint generation algorithm

In the previous section, we discussed the procedure of finding a lower bound for the objective value
of a minimization problem by solving the problem for a (finite discrete) subset of the uncertainty
set. This method is an important component of the column-and-constraint generation (C&CG)
algorithm [3] for solving two-stage optimization problems. Such an algorithm is especially useful
in cases where the uncertainty set is not finite or discrete, or when the uncertainty set is very
large.

The essential idea behind the C&CG algorithm is to start with a small discrete initial subset of the
entire uncertainty set, and to find an optimal solution that satisfies the constraints corresponding

5

to these scenarios. This provides us with a lower bound for the true objective value. Using this
decision, we then search for an upper bound to the objective value, or identify a new scenario
for which our current decision is infeasible. We add this scenario to our problem and continue
iterating until the difference between the upper and lower bound is sufficiently small.

The algorithm works with a master-subproblem framework to generate bounds and scenarios.
The implementation of the algorithm and the exact formulation of these problems is given in the
next sections.

2.2.1 Algorithm

The C&CG algorithm can be implemented in the following way: [3]

Algorithm 1: Column-and-Constraint Generation Algorithm
1 LB = −∞
2 UB = +∞
3 k = 0
4 U = ∅
5

6 Solve the MP to obtain an optimal solution (x∗k+1, η
∗
k+1, y

1∗, . . . , yk∗)

7 LB = cTx∗k+1 + η∗k+1

8

9 Solve the SP to obtain an optimal solution yk+1, optimal value Q(x∗k+1) and scenario z∗k+1

10 UB = min
{
UB, cTx∗k+1 +Q(x∗k+1)

}
11

12 if UB− LB ≤ ε then
13 Return x∗k+1 and terminate
14 else
15 if Q(x∗k+1) < +∞ then
16 Create variables yk+1

17 Add the following constraint to the MP: η ≥ bT yk+1

18 Add the following constraint to the MP: Ex+Gyk+1 ≥ h−Mz∗k+1

19

20 k = k + 1
21 U = U ∪ {k + 1}
22 else
23 Create variables yk+1

24 Add the following constraint to the MP: Ex+Gyk+1 ≥ h−Mz∗k+1

25

26 k = k + 1

In the implementation of the algorithm above, ‘MP’ and ‘SP’ refer to the master problem and
subproblem (which are explained in the next sections).

2.2.2 Master problem

The master problem (MP) of the C&CG algorithm is a mixed-integer program where we solve
the two-stage optimization problem for an enumerated subset of the uncertainty set. Given a

6

finite discrete set U ⊂ N and a positive integer k ∈ N such that |U| ≤ k, we formulate the
following master problem:

min
x,η

cTx+ η

s.t. Ax ≥ b
η ≥ bT yi, ∀i ∈ U
Ex+Gyi ≥ h−Mzi, ∀i ≤ k

Here, zi are enumerated scenarios from the uncertainty set that have been identified using the
subproblem (which will be explained in the next section), and yi are second-stage decisions
corresponding to scenarios from the uncertainty set.

2.2.3 Subproblem

The subproblem (SP) of the C&CG algorithm is solved following the master problem in every
iteration. The master problem gives us an optimal first-stage decision x∗ for the currently
examined scenarios from the uncertainty set. Given this first-stage decision, we formulate the
following subproblem:

Q(x∗) = max
z∈Z

min
y

bT y

s.t. Ex∗ +Gy ≥ h−Mz

The subproblem searches for a scenario z∗ in the full uncertainty set and a corresponding second-
stage decision y∗ that minimizes the second-stage cost of the problem Q(x∗) given the first-stage
decision.

It is also possible that we find a scenario for which no second-stage decision is feasible given the
first-stage decision; in this case, we set Q(x∗) = +∞.

It is important to note that we need some oracle to be able to solve this subproblem. This will
be elaborated on at a later moment in this thesis, when we discuss the application of the C&CG
algorithm to the location transportation problem.

7

3 | Location Transportation Problem

In order to make the idea behind two-stage optimization problems and the application of the
C&CG algorithm more concrete, we introduce a real-life problem that can be solved using such
an approach: the location transportation problem [3]. For the remainder of this thesis, we will
refer to this problem when discussing the algorithm and results.

3.1 Variables of the problem

The location transportation problem deals with the optimization of a given distribution network
in an area for a certain product. There are two main questions we attempt to answer:

1. Given S production facilities located at various different locations in the area, which of
the facilities should be open or closed, and how much of the product should each facility
produce?

2. Given C customers in the area, how many products should we transport from each facility
s = 1, . . . , S to each customer c = 1, . . . , C in order to satisfy (uncertain) customer demand?

This already gives an indication of how we can formulate the problem as a two-stage optimization
problem. The first question encompasses the first-stage decision to be made, and the second
question is our second-stage decision that we make after the uncertainty (i.e. the customer
demand) has been revealed. We can encode these decisions in the following decision variables:

• x ∈ {0, 1}S : Binary variable indicating whether facility s is open.

• p ∈ RS+: Continuous variable indicating production level at facility s.

• y ∈ RS×C+ : Continuous variable indicating number of products transported from facility s
to customer c.

Next, to further formulate our optimization problem, we examine the objective function. In
location transportation problems, we usually aim to minimize our total costs. Naturally, we deal
with fixed costs and variable costs, which we can formulate in the following parameters:

• fs: Fixed cost of opening facility s.

• vs: Variable cost producing one unit of the product at facility s.

• ts,c: Variable cost of transporting one unit of the product from facility s to customer c.

8

Finally, we introduce the uncertainty. As mentioned previously, customer demand is usually
the uncertain factor in location transportation problems. Although we can make a reasonably
accurate prediction regarding the demand distribution, we accept that the exact demand is only
known after we make our first-stage decision. We assume some ‘nominal’ demand for customer c,
denoted with dc, and take some value δc to be the maximum deviation from the nominal value.
We then express customer demand as the following:

dc = dc + zcδc,

where z = (z1, . . . , zC) ∈ Z, with

Z =

{
z ∈ RC+ : 0 ≤ z ≤ 1,

C∑
c=1

zc ≤ Γ

}
.

The uncertainty set Z has a certain ‘budget’, Γ ≤ C, which indicates the proportion of values
of z that are allowed to be maximum. If Γ = C, for instance, the uncertainty set will contain
the scenario in which the customer demand deviates maximally from the nominal value for all
customers.

3.2 Problem formulation

Now that we have defined the necessary variables, we can formulate the complete optimization
problem with constraints. The problem is defined as follows:

min
x∈{0,1}S ,p∈RS

+

S∑
s=1

(xsfs + psvs) + max
z∈Z

min
η,y∈F (x,p,z)

η (3.1)

s.t. ps ≤Mxs ∀s = 1, . . . , S (3.2)

where F (x,p, z) =
{
η ∈ R, y ∈ RS×C+

}
such that:

η ≥
S∑
s=1

C∑
c=1

ys,cts,c (3.3)

C∑
c=1

ys,c ≤ ps ∀s = 1, . . . , S (3.4)

S∑
s=1

ys,c ≥ dc + zcδc ∀c = 1, . . . , C, ∀z ∈ Z (3.5)

Here, (3.1) is the objective function of our problem; we seek the first-stage decision (x,p) that
minimizes the fixed costs of opening facilities and the variable costs of production, and the second
stage-decision y that minimizes η (which is equal to the second-stage cost due constraint (3.3)).
We maximize this minimum second-stage cost over the uncertainty set to obtain the ‘worst-case’
total cost.

Constraint (3.2) ensures that if a facility is closed, the production level is zero for that facility.
If the facility is open there is no restriction on the production level, indicated by the ‘big M ’.

9

In theory, we could let this M be ∞; however, computation-wise it is better to avoid M being
too large. We know that no facility will ever need to produce more than the total sum of the
maximum possible customer demand, so we let M =

∑C
c=1 dc + 1 · δc for our problem, using the

fact that zc ≤ 1.

Constraint (3.4) ensures that the total amount of product that we transport from any facility
doesn’t exceed the production level at the facility.

Finally, constraint (3.5) is the uncertainty constraint. We ensure that the total amount of
product that we supply to a certain customer meets the customer demand for any scenario in
the uncertainty set.

3.3 Application of the C&CG algorithm

3.3.1 Master problem

When the C&CG algorithm is applied to the location transportation problem, the master problem
is formulated as follows:

min
x,p,y1,...,yN

S∑
s=1

(xsfs + psvs) + η

s.t. η ≥
S∑
s=1

C∑
c=1

yis,cts,c ∀i = 1, . . . , N

ps ≤Mxs ∀s = 1, . . . , S

C∑
c=1

yis,c ≤ ps ∀s = 1, . . . , S, ∀i = 1, . . . , N

S∑
s=1

yis,c ≥ dc + zcδc ∀c = 1, . . . , C, ∀i = 1, . . . , N

Here, we have a finite set of scenarios Ẑ ⊆ Z as an input, with z1, . . . , zN ∈ Z. For every
scenario in the ‘current’ uncertainty set, we look for an optimal second-stage decision yi.

3.3.2 Subproblem

As mentioned previously, the subproblem of the C&CG algorithm requires some oracle to find
a scenario in the uncertainty set for which the currently found solutions are infeasible. For the
location transportation problem, we can formulate the optimization problem for this oracle as:

max
z,b,ζ

ζ

s.t. z ∈ Z, b ∈ {0, 1}N×C , ζ ∈ R
C∑
c=1

bic = 1 ∀i = 1, . . . , N

ζ + bcMs ≤ −
S∑
s=1

yis,c + (dc + zcδc) +M ∀c = 1, . . . , C, ∀i = 1, . . . , N

10

Again, Ms is a ‘big M ’ just as in the problem constraints. For computations, we can take the
value of this M to be the same as before.

The variable ζ indicates how much the demand constraint is violated for the found scenario z.
If ζ > 0, we know that for all currently found second-stage decisions y1, . . . ,yN at least one
demand constraint is violated. In this case, we add the found scenario to the master problem in
order to find a new decision that works for this scenario. If ζ < 0, our current solution is feasible
for all scenarios in the uncertainty set so it is robust, meaning we can terminate the algorithm.

3.3.3 Identification of important scenarios

As mentioned previously, every iteration of the C&CG algorithm adds a new violating scenario
to the problem until we have a set of scenarios that ‘covers’ the entire uncertainty set Z (i.e. our
first-stage decision (x,p) and at least one second-stage decision yi are feasible for all realizations
z ∈ Z). For every problem, there is a certain smallest set of scenarios such that the entire
uncertainty set is covered; however, the C&CG algorithm doesn’t necessarily look for these
‘most important’ scenarios which may cause the set (and subsequently the master problem) to
grow too large to efficiently solve for.

In this thesis, we aim to improve the C&CG algorithm by finding a way to identify/predict these
important scenarios. For this, it is important to mention a few properties of the uncertainty set.

Firstly, we have that if the uncertainty set is a polytope (which is the case for our problem) and
ext(Z) denotes the set of extreme points of the polytope, then:

S∑
s=1

yis,c ≥ dc + zcδc ∀z ∈ Z

⇐⇒
S∑
s=1

yis,c ≥ dc + zcδc ∀z ∈ ext(Z)

This already reduces our uncertainty set to a finite set. However, the set may still be very large
which can make computations difficult. We note another useful property. In our problem we
are dealing with a budgeted uncertainty set. In finding an optimal decision for our problem, we
only need to take into account scenarios for which the maximum budget Γ is used. Thus, we can
reduce our uncertainty set to:

Ż =

{
z ∈ ext(Z) :

C∑
c=1

zc = Γ

}

When implementing the C&CG, we will make use of a Python package named Pypoman [4]
to find Ż. Using a halfspace representation of the entire uncertainty polytope, the package
calculates the vertices for us. However, for high-dimensional uncertainty sets (depending on the
number of customers C), computation times can become very high. This is an important factor
in our choice for C in our implementation, which we discuss in the next section.

11

4 | Machine Learning and the C&CG
Algorithm

The field of machine learning focuses on the development of techniques to identify potential
underlying patterns in a set of data, and to make predictions using these patterns based on new
data. This can be achieved using some existing model, which in essence is a (usually mathe-
matical) process for generating output data based on a given input, using variable parameters.
Such a model must be ‘trained’, which means that we (automatically) optimize the parameters
of the model such that the output of the model is as close as we desire (based on a performance
indication function of our own choosing) to some target value.

In this thesis, we study the application of machine learning techniques to the C&CG algorithm
with the aim of predicting the ‘important’ scenarios for location transportation problems as
introduced in Section 3.3.2. More specifically, we aim to predict solutions to the subproblem
such that we need to solve as few subproblems as possible in the end. This section will provide
some background information on the techniques applied, as well as an explanation on how exactly
we alter the C&CG to incorporate ML-predictions into the algorithm.

4.1 Machine learning techniques

We will briefly provide some context regarding a few different machine learning techniques in
order to be able to discuss the results obtained from applying them to the C&CG. Note that
in this thesis, we are not aiming to train/tune a model to make perfect predictions; rather, we
investigate if there is some indication that important scenarios can be predicted by training a
ML-tool on existing data from location transportation problems.

Linear regression

A regression problem focuses on mapping some input vector x to a real-valued output f(x). A
set of training inputs xn is given with corresponding outputs yn = f(x) + ε, where ε describes
‘noise’ in the output values. Various models can be assumed for this noise. The function f must
be inferred, usually according to some given function class (e.g. linear functions, polynomials,
etc.) with parameters that can be varied to find a best fit for the training data.

In linear regression (as the name suggests), the function f is assumed to be linear in the pa-
rameters a = (a1, . . . , ak). This means that the function is a linear combination of the ‘input
features’. A feature in this case refers to a function of the input, φ(x). Thus, we can for example

12

assume that f has the following form:

y = f(x) + ε = xTa + ε = a1 · x1 + a2 · x2 + . . .+ ak · xk + ε,

where ε follows a certain probability distribution. However, if we want to perhaps model inter-
action effects of the input, the following would also be a valid function for a linear regression
model:

y = f(x) + ε = a1 · x1x2 + a2 · x3x4 + ε

There are various approaches to choosing the optimal parameters a; one of the most widely
used methods is by maximum likelihood estimation. Given a set D = {(x1, y1), . . . , (xk, yk)} of
input-output pairs (usually known as training data), we maximize the likelihood function of the
parameters a. How we maximize this function depends on the class of our function f . For this
thesis, the exact technique of parameter estimation is not so relevant as we mostly use standard
functions built into Python libraries to train our models [5].

Logistic regression

Logistic regression differs from classic regression models in that the output of the model is
binary (0 or 1); it is more often seen as a classification algorithm than a regression algorithm. A
classification algorithm, as the name suggests, gives an output in the form of a predicted ‘class’
from a discrete set of predetermined outcomes as opposed to a predicted value in a continuous
range. Binary classification problems involve just two classes.

We seek a function f in a manner similar to linear regression, and subsequently pass it through
the logistic sigmoid function defined as:

σ(f) =
1

1 + exp(−f)
,

where σ(f) ∈ [0, 1]. The class is then determined by comparing the output to a certain threshold.
This output can be seen as a probability of observing an outcome of 1 [5].

Neural network

Neural networks are somewhat more complicated than the regression models discussed previously.
A neural network is comprised of layers, with each layer containing a number of so-called acti-
vations. We briefly sketch the structure of a neural network with two layers; for input variables
x1, . . . , xD we construct M so-called ‘activations’ aj with j = 1, . . . ,M of the form:

aj =
D∑
i=1

w
(1)
ji xi + b

(1)
j

Here, (1) corresponds to the first so-called ‘hidden layer’ of the neural network. The values wji
are known as weights, and bj as the biases. We transform these activations using an ‘activation
function’ h, yielding input variables for the next layer of the network:

zj = h(aj)

For the variables z1, . . . , zJ we then construct K activations ak with k = 1, . . . ,K of the form:

ak =

M∑
j=1

w
(2)
kj zj + b

(2)
k0

13

These activations are found in the second layer of the neural network. Again, we use an activation
function to determine the model outputs yk.

Figure 4.1: A visual representation of a neural network. [6]

There are many different possibilities for activation functions, amount of layers, and number
of activations in each layer. Usually this depends on the nature of the input data. Neural
network performance can be improved by tuning these parameters. However, as mentioned
before, optimizing model performance is not the primary focus of this thesis and thus we will
not spend too much time trying to determine the ‘perfect’ neural network. [7]

Random forest

A decision tree, or a classification tree, is a classification method in which the input is put
through a set sequence of binary true/false ‘tests’. Through every test, a number of classes is
rejected until a leaf node of the tree is reached, associated with a single class which the algorithm
returns as an output. The tests are also known as ‘splitting criteria’; when we train a decision
tree, splitting criteria are generated automatically. However, we do have control over parameters
such as the ‘depth’ of the tree, (number of edges from the root node to the furthest leaf).

Figure 4.2: A visual representation of a decision tree. [8]

14

A random forest is a classification algorithm which makes use of multiple decision trees. Multiple
training sets are generated from the original data by uniformly sampling with replacement (i.e.
bootstrapping), and a decision tree is trained using each set. The class predicted by a ‘majority
vote’ of these decision trees is the output class of the random forest [8].

4.2 Application to C&CG algorithm

Now that we have given some brief mathematical intuition behind a few widely-used machine
learning models, we will illustrate how we can implement these models into the C&CG algorithm.
In this thesis, we focus on two different ways of implementing a machine learning predictor into
the C&CG. The most intuitive way to explain these implementations is through a flowchart
diagram. We first summarize the C&CG as presented in Section 2.2 using such a diagram:

Figure 4.3: A visual representation of the C&CG algorithm.

The motivation behind our attempt to improve the algorithm using ML lies in the step of
solving the subproblem. We have mentioned previously that for every instance of the location
transportation problem that we examine in this thesis, there is some ‘minimal set of important
scenarios’. We will denote this by:

ZI ⊂ Ż =

{
z ∈ ext(Z) :

C∑
c=1

zc = Γ

}

The following properties hold for this set:

• Solving the master problem for ZI gives us a feasible optimal solution for all realizations
of uncertainty, i.e. ∀z ∈ Z.

• For zj /∈ ZI , solving the master problem for ZI ∪ zi gives the same first-stage decision as
when we solve for ZI .

15

• For zi ∈ ZI , the first-stage decision obtained by solving the master problem for ZI \ {zi}
is infeasible for some z ∈ Z.

Essentially, we have that ZI is the minimum-size set covering the uncertainty set Z. Clearly,
the C&CG algorithm would be most efficient if every violating scenario we find would belong to
ZI , as this would require the algorithm to run for a minimal number of iterations. Furthermore,
as we add more violating scenarios to the current uncertainty set in the algorithm, we are also
adding more constraints to the master problem and looking for more second-stage solutions,
requiring more computations. Thus, it is clear that identifying the important solutions early on
is beneficial for the computational efficiency of the C&CG algorithm.

4.2.1 Implementations

In this thesis, we examine two slightly different methods of implementing the ML predictions into
the original C&CG algorithm. In both implementations, we run Ż through a machine learning
classifier to obtain a prediction of whether each scenario is important for the problem or not
(i.e. if zi ∈ ZI or not). This classification is binary (i.e. each scenario is either important or
unimportant); there is no ranking in importance in our implementation.

Implementation A

In the first method (which we will refer to as ‘Implementation A’), we firstly determine the set
of important scenarios for our problem using a machine learning tool. We then iteratively add
these scenarios to our problem until we find a solution that is feasible for the entire uncertainty
set. In the case that we do not find a feasible solution using the predicted important scenarios
we continue with the ‘regular’ C&CG algorithm, iteratively solving the master problem and
subproblem searching for a violating scenario until a robust solution is found. Note that if our
ML model could predict the important scenarios with 100% accuracy, we would never reach this
case in this implementation. The process is shown in Figure 4.4:

Figure 4.4: Implementation A of our adapted C&CG algorithm with machine learning.

16

Implementation B

Our second implementation (Implementation B) uses the predicted set of important scenarios in
a similar manner. Here, we also look for a robust solution using the predicted set; if this fails, we
continue the C&CG as normal. However, there is a small difference in how we select scenarios
to add to the problem: in the first stage, instead of just randomly choosing a scenario from the
predicted set every iteration, we make use of the subproblem to look for a violating scenario in
the predicted set. The implementation is shown in Figure 4.5:

Figure 4.5: Implementation B of our adapted C&CG algorithm with machine learning.

4.2.2 Model training

For a machine learning model to be able to make predictions of important scenarios for our
problem, we must first train the model on existing data. In most cases of training ML models,
the more data a model has ‘seen’ the better it will perform in identifying underlying patterns.
In this thesis, we build up our set of training data by solving many different instances of the
location transportation problem and identifying the important scenarios for each problem by
inspection.

In this section, we will explain how we generate our training data and discuss the features of the
problem that can be incorporated in our models to predict whether a given scenario is important
for a problem.

Data generation

For a given instance of a location transportation problem, our model must take certain features
of the problem as an input, and for every scenario in the set Ż =

{
z ∈ ext(Z) :

∑C
c=1 zc = Γ

}
it

must return some indication of whether the scenario is in ZI for our problem as an output. As
mentioned previously, in our implementation we choose to make scenario importance a binary
variable (i.e. a scenario is either important or not important to the problem).

Thus, for a problem instance i, we want to generate training data (xi, yi) where xi = [xi1, . . . , x
i
n]

17

is a vector of n input features for the problem instance (which we will discuss in the next section)
and yi ∈ {0, 1}.

A single problem instance is defined by the variables and parameters that make up the objective
function and constraints. In building up our training set, there are certain parameters that we
keep constant (in order to generate the same type of problem), and some that we vary (in order
to create different instances of the same type). These parameters are listed below:

Variable Description Range

S Number of facilities in the problem {5}
C Number of customers in the problem {10}
dc Nominal demand of customer c [10, 500]

δc Max. demand deviation of customer c a · dc, with a ∈ [0.1, 0.5]
fs Fixed cost of opening facility s [1, 10]
vs Variable unit cost of production at facility s [0.1, 1]
ts,c Unit transport cost from facility s to customer c [0, 10]

Γ Max. budget for the uncertainty set γ% · C, with γ% ∈ {0.8, 0.9}

Table 4.1: Variables used to generate an instance of the location transportation problem.

We keep the number of customers C and facilities S constant throughout all our problem in-
stances. Variables with values in a certain range (i.e. customer demand/deviation and costs) are
uniformly sampled within the range. Furthermore, we examine 2 cases for values of γ% in this
thesis. This value influences the size of Ż, so it is interesting to investigate how the number of
important scenarios differs as we vary this parameter.

Using the data above, we can randomly generate a large number of instances of the location
transportation problem. For each instance, we must identify the minimal set of important sce-
narios. This can be done by solving the master problem using all scenarios in Ż and checking
one-by-one whether the scenario is important for the problem. This is done by comparing the
objective values before and after removing the scenario from the master problem. If the value
is unchanged after removing the scenario, this implies that the first stage decision is feasible for
both sets and the scenario is thus not important to the problem as a whole (and can be removed).
We describe this process of identifying important scenarios in Algorithm 2:

Algorithm 2: Identification of important scenarios for a given problem.
1 ZI = ∅
2

3 Solve the MP using Ż =
{
z ∈ ext(Z) :

∑C
c=1 zc = Γ

}
4 Set Oinit to be the objective value of the MP
5

6 for z ∈ Ż do
7 Solve the MP using Ż \ {z}
8 Set Onew to be the objective value of the MP
9 if Onew < Oinit then

10 Add z to ZI

18

Model input

In the manner described in the previous section, we can generate arbitrarily many ‘problem-to-
important-scenario’ pairs to build up our training dataset. For every problem, we can label the
scenarios in the set Ż as important/not important. All that remains to build our training set,
is to extract certain features of the problem instances to use as input variables for the machine
learning model.

There are many possibilities and combinations of problem features to incorporate in our model.
In this thesis, we will focus on the customer demand data for a given problem. Intuitively,
the nominal customer demand dc and the maximum demand deviation δc may be related to
the importance of scenarios in the uncertainty set, since the uncertainty set Z contains data
regarding the customer demand:

dc = dc + zcδc,

where z = (z1, . . . , zC) ∈ Z. As seen in the previous section, dc and δc are randomly sampled in
every problem instance. Thus, for every problem instance we generate, we extract these values
for every customer. For |Ż| = K, our training data for one problem instance will have the
following form (using example values for demand):

Scenario d1 δ1 ... dC δC Important

1 236.71 108.78 . . . 240.73 110.43 0
2 236.71 108.78 . . . 240.73 110.43 1
3 236.71 108.78 . . . 240.73 110.43 0
... 236.71 108.78 . . . 240.73 110.43

...
K − 1 236.71 108.78 . . . 240.73 110.43 1
K 236.71 108.78 . . . 240.73 110.43 0

Table 4.2: Training data for an instance of the location transportation problem.

Note that Scenario is a categorical variable, not a numerical variable. The di and δi variables
are numerical, and Important is a binary/boolean variable.

Training phase

By extracting data in the manner above for many (N = 5000, in our case) randomly generated
instances of the location transportation problem, we obtain a useful training set for fitting a
classification model (in our case, we make use of logistic regression, a neural network and a
random forest). We use the Python library Scikit-Learn for training the models, which has
built-in methods for optimizing the model parameters.

We first split the training data into a training set (80% of the data) and a test set (20% of the
data), and fit the model using the training set. We obtain a model that, when given a scenario
from Ż and a set of input variables, returns a probability p ∈ [0, 1] that the scenario is important
(according to the model).

In this thesis, our model is technically built up from ‘smaller’ classifiers, one for each scenario
in Ż. We obtain this by separating the data by scenario and training a model for each scenario.
Then, depending on the input scenario, the corresponding classifier is used.

19

In order to be able to use the model to actually classify scenarios, we must choose a threshold
t such that the scenario is only classified as important if p > t. We determine this threshold
using the test set that we obtained from the training data, and some commonly-used metrics in
machine learning. Consider the following matrix (known as a ‘confusion matrix’) [8]:

Predicted Class = True Predicted Class = False
Actual Class = True True Positive (TP) False Negative (FN)
Actual Class = False False Positive (FP) True Negative (TN)

Table 4.3: Confusion matrix for a classification model.

Two commonly used metrics for classification models are precision and recall. These are defined
as follows [8]:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

There is a slight difference between these metrics. Suppose we run our scenario classification
model on a set of input data. Precision is the ratio of scenarios that we correctly classified as
important to the total number of scenarios that we classified as important. Recall is the ratio of
scenarios that we correctly classified as important to the total number of important scenarios.
A good precision score (close to 1) indicates that we can be confident that a scenario in our
predicted important set is actually important. A good recall score indicates that we can be
confident that if a scenario is actually important, it is in our predicted important set.

Note that we could technically obtain a recall score of 1 by simply labelling all scenarios as
important. This would, however, negatively impact our precision score due to the number of
false positives. We often have some trade-off in precision and recall, which motivates a weighted
average of these two metrics, known as the F1-score [8]:

F1-score =
2 · Recall · Precision
Recall + Precision

Once we have trained our scenario classifier using the training set, we run the input variables
from the test set through the model and compare the model prediction to the true output in the
test set. By calculating the F1-score for different thresholds, we look for t ∈ [0, 1] such that the
F1-score is maximised and take this to be our model’s threshold parameter.

4.2.3 Model testing

Once our models have been trained and thresholds have been calculated, it remains to investigate
whether the ‘adapted’ C&CG algorithm using ML performs better than the ‘regular’ C&CG
algorithm. We do this by generating many (N = 1000) instances of the location transportation
problem and running both algorithms on the problem. We can then extract the number of
scenarios that have been added to the uncertainty set once the algorithm terminates and examine
whether the ML-C&CG algorithm indeed needs fewer scenarios on average.

The results are presented and discussed in the next chapter.

20

5 | Results

In this section, we present the results obtained from training various machine learning models
to predict important scenarios for the C&CG algorithm applied to the location transportation
problem with 5 facilities (S) and 10 customers (C), for both γ% = 0.9 and γ% = 0.8. We
examine the following models:

• Logistic regression classifier (LR)

• Neural network (NN)

• Random forest (RF)

We test each model in the two different implementations described in the previous section.

5.1 Model performance

Before going into the results of our ‘adapted’ C&CG algorithm, we briefly present the models
that we use for making predictions. We provide some performance metrics obtained from test
datasets and discuss how we expect the models to perform in practice.

The performance metrics are presented in a so-called ‘classification report’ obtained from the
Scikit-Learn package [9], which contains various metrics regarding the performance of our models
on the test set. We have already defined precision, recall and F1-score; aside from these, it is
useful to define the following terms [8]:

• Support of a class is the number of samples in the test set that lie in that class.

• Accuracy is the proportion of correctly classified instances over all instances, i.e.:

Accuracy =
TP + TN

TP + TN + FP + FN

• Macro average is the average of multiple scores.

• Weighted average is the average of multiple scores weighted according to their support.

For our models, the metrics related to the 1 (Important) class are the most important; ideally,
we want every important scenario to be classified as such by our model (high recall) whilst
minimizing the number of false positives. Looking at the F1-score for this class will give a good
idea of the model performance for our purposes.

21

The following metrics are obtained for the logistic regression classifier:

Precision Recall F1-Score Support
0 (Unimportant) 0.89 0.84 0.86 7976
1 (Important) 0.49 0.61 0.54 2024

Accuracy 0.79 10000
Macro Average 0.69 0.72 0.70 10000

Weighted Average 0.81 0.79 0.80 10000

Table 5.1: Classification report for LR model with γ% = 0.9.

Precision Recall F1-Score Support
0 (Unimportant) 0.97 0.94 0.95 42426
1 (Important) 0.32 0.46 0.38 2574

Accuracy 0.91 45000
Macro Average 0.64 0.70 0.67 45000

Weighted Average 0.93 0.91 0.92 45000

Table 5.2: Classification report for LR model with γ% = 0.8.

The following metrics are obtained for the neural network (with 2 hidden layers of size 50 and
200 epochs):

Precision Recall F1-Score Support
0 (Unimportant) 0.88 0.74 0.80 7976
1 (Important) 0.37 0.60 0.45 2024

Accuracy 0.71 10000
Macro Average 0.62 0.67 0.63 10000

Weighted Average 0.77 0.71 0.73 10000

Table 5.3: Classification report for NN model with γ% = 0.9.

Precision Recall F1-Score Support
0 (Unimportant) 0.96 0.91 0.93 42426
1 (Important) 0.21 0.39 0.27 2592

Accuracy 0.88 45000
Macro Average 0.58 0.65 0.60 45000

Weighted Average 0.92 0.88 0.90 45000

Table 5.4: Classification report for NN model with γ% = 0.8.

22

The following metrics are obtained for the random forest classifier:

Precision Recall F1-Score Support
0 (Unimportant) 0.89 0.87 0.88 7976
1 (Important) 0.54 0.58 0.56 2024

Accuracy 0.81 10000
Macro Average 0.71 0.73 0.72 10000

Weighted Average 0.82 0.81 0.82 10000

Table 5.5: Classification report for RF model with γ% = 0.9.

Precision Recall F1-Score Support
0 (Unimportant) 0.96 0.95 0.96 42426
1 (Important) 0.34 0.39 0.37 2574

Accuracy 0.92 45000
Macro Average 0.65 0.67 0.66 45000

Weighted Average 0.93 0.92 0.92 45000

Table 5.6: Classification report for RF model with γ% = 0.8.

Judging purely by these metrics, the logistic regression and random forest classifiers are expected
to perform similarly at predicting important scenarios. The neural network is expected to perform
slightly worse than the other two models. We judge this by looking at the F1-score as discussed
previously.

Furthermore, we see that the scores for γ% = 0.9 are in general better than for γ% = 0.8 when
it comes to the 1 (Important) class, but worse for the 0 (Unimportant) class. We also see that
scores for the 0 (Unimportant) class are generally higher than for the 1 (Important) class. This
is most likely related to the support for these classes. We see that for γ% = 0.9, roughly 20% of
the test set is labeled as 1 (Important) and 80% as 0 (Unimportant). For γ% = 0.8, the split is
roughly 5%−95%. We are dealing with an unbalanced data set in favour of the 0 (Unimportant)
class, which makes it more difficult to train our models for the other class. This explains the
differences.

Note that for both values of γ%, there are on average just 2− 3 important scenarios for a given
problem instance. We have that |Ż| = 10 for γ% = 0.9, and |Ż| = 45 for γ% = 0.8. It
is interesting that, even though we observe this difference in the uncertainty set, the average
number of important scenarios for a problem is roughly equal. This leads to the imbalances in
support that we mentioned earlier.

5.2 Results of applying ML to C&CG

Now that we have seen that most of our models perform quite decently at predicting important
scenarios for unseen problems, we present the result of implementing these models into the C&CG
algorithm.

The following tables contain the results of running the algorithm ‘normally’, as well as with each
ML model (in both implementations) for two different values of γ%.

23

Implementation A Implementation B
Avg. #
scenarios
(regular)

Avg. #
scenarios
(ML)

Difference Avg. #
scenarios
(regular)

Avg. #
scenarios
(ML)

Difference

Logistic Regression 5.865 5.014 0.851
(14.51%)

5.903 4.988 0.915
(16.11%)

Neural Network 5.865 5.389 0.476
(8.12%)

5.903 5.426 0.477
(8.08%)

Random Forest 5.865 5.033 0.832
(14.19%)

5.903 5.102 0.801
(13.57%)

Table 5.7: Results of applying ML to C&CG for γ% = 0.9, with N = 1000.

Implementation A Implementation B
Avg. #
scenarios
(regular)

Avg. #
scenarios
(ML)

Difference Avg. #
scenarios
(regular)

Avg. #
scenarios
(ML)

Difference

Logistic Regression 24.041 20.281 3.76
(15.64%)

22.449 17.737 4.712
(20.99%)

Neural Network 24.041 20.786 3.255
(13.54%)

22.449 19.3 3.149
(14.03%)

Random Forest 24.041 20.949 3.092
(12.86%)

22.449 17.659 4.79
(21.33%)

Table 5.8: Results of applying ML to C&CG for γ% = 0.8, with N = 1000.

In the results presented above, we first indicate the average number of scenarios that we add
to our problem in running the C&CG algorithm on N = 1000 newly generated test instances
of the location-transportation problem. This value is found under Avg. # scenarios (regular).
In generating our results, we generated separate problems for each implementation (and γ%, of
course). We see that for γ% = 0.9, nearly 6 of the 10 scenarios in Ż are added to the problem
on average. For γ% = 0.8, this is around 24 of the 45 scenarios.

The next column, Avg. # scenarios (ML), indicates the average number of scenarios added
to our problem in the C&CG when predicting scenarios using an ML model. The Difference
column, as the name suggests, is the difference between these two values.

5.3 Discussion of results

For γ% = 0.9, we see that for both implementations the logistic regression classifier performs
best, followed closely by the random forest classifier. When applying these models to the C&CG
in the manner described in this report, we see that on average the set of scenarios we end up
with is almost a whole scenario smaller than when just running the regular C&CG. Though the
difference is not extremely significant, these results indicate that predicting the right scenarios
early can indeed improve the runtime of the algorithm. The neural network also gives positive
results, but to a lesser degree than the other two models. Furthermore, there seems to be no
significant difference in results between the two implementations.

For γ% = 0.8, we also observe positive results. We see that in Implementation A, the logistic

24

regression classifier performs best, then the neural network, closely followed by the random forest.
In Implementation B, the logistic regression classifier and random forest classifier perform roughly
equally well again, with the neural network scoring slightly lower. Furthermore, we see that in
Implementation B the average number of scenarios when using the predictors is quite a bit lower
than in Implementation A, though this may also be related to the problems generated for these
results (as the average number of scenarios in the ‘regular’ C&CG is also lower).

5.3.1 Model coefficients

In order to gain some more insight into how the models predict the important scenarios, it is
interesting to look at the parameters of the trained models. Specifically, we will examine the
coefficients of the logistic regression classifiers.

As mentioned previously, our classifier is made up of multiple ‘sub-models’; that is, for every
scenario in Ż, we train a logistic regression classifier such that when we input customer demand
data into the classifier, we receive a prediction whether the scenario corresponding to the classifier
is important to the problem. Thus, for γ% = 0.9, our model is made up of 10 different classifiers
since |Ż| = 10. Similarly, for γ% = 0.8, the model is composed of 45 classifiers since |Ż| = 45
for this problem.

To better interpret the coefficients, it is also useful to mention what the scenarios in Ż are.
Recall that for a given problem, we have an ‘uncertainty budget’ Γ = γ% ·C. Thus, for γ% = 0.9
and C = 10, we have Γ = 9. Thus, we have:

Ż =

{
z ∈ ext(Z) :

C∑
c=1

zc = 9

}

In other words, Ż is the set of extreme points of Z of which the coordinates add up to 9 (for
γ% = 0.9. This means that the uncertainty set contains the following scenarios:

Scenario 0 = [0 1 1 1 1 1 1 1 1 1]

Scenario 1 = [1 0 1 1 1 1 1 1 1 1]

Scenario 2 = [1 1 0 1 1 1 1 1 1 1]

Scenario 3 = [1 1 1 0 1 1 1 1 1 1]

Scenario 4 = [1 1 1 1 0 1 1 1 1 1]

Scenario 5 = [1 1 1 1 1 0 1 1 1 1]

Scenario 6 = [1 1 1 1 1 1 0 1 1 1]

Scenario 7 = [1 1 1 1 1 1 1 0 1 1]

Scenario 8 = [1 1 1 1 1 1 1 1 0 1]

Scenario 9 = [1 1 1 1 1 1 1 1 1 0]

We see that, in scenario i, the demand deviation zc for the corresponding customer c = i is equal
to 0. Note that Ż is technically not an ordered set, but for this purpose it is useful to enumerate
the set in this manner.

The following two plots display the coefficients of the logistic regression classifiers for two sce-
narios in Ż:

25

Figure 5.1: Coefficients of LR classifier for scenario 2, for γ% = 0.9.

Figure 5.2: Coefficients of LR classifier for scenario 8, for γ% = 0.9.

In the figures above, we have colored the coefficient corresponding to the demand data for
customer i in red. We see that, for these two classifiers, the magnitude of this coefficient is
significantly greater than that of the remaining coefficients. Furthermore, this coefficient is
negative whilst the rest are positive (or close to zero). For the other classifiers, we see a similar
pattern (though we omit the plots in this thesis). Thus, intuitively, the predicted importance of
scenario i is largely influenced by the dc and δc data for the problem, for customer c = i. The
negative sign indicates that if these values are large, the scenario is less likely to be predicted as
important.

For γ% = 0.8, we have a similar pattern in the coefficients. We can see this by plotting the
coefficients for two scenarios; in this case, we take 20 and 27. These scenarios are given below:

Scenario 20 = [1 1 1 1 1 0 0 1 1 1]

Scenario 27 = [1 1 1 1 1 1 0 0 1 1]

The customers for which zc = 0 in these scenarios correspond to the highlighted coefficients in
the plots in Figure 5.3 and Figure 5.4.

26

Figure 5.3: Coefficients of LR classifier for scenario 20, for γ% = 0.8.

Figure 5.4: Coefficients of LR classifier for scenario 27, for γ% = 0.8.

5.3.2 Improvements to model

We have seen that our three machine learning models perform quite well at classifying important
scenarios for a given problem based on customer demand data and, when implemented into the
C&CG, improve the runtime of the algorithm. We have also shown that some logic/sense can
be found in the parameters of the trained models. Of course, there are many aspects that could
still be improved with regards to machine learning.

Firstly, as mentioned previously, the dataset that we use to train our models is rather imbalanced
(especially for problems with γ = 0.8). This is due to the fact that the minimal set of important
scenarios is quite small (on average 2-3 scenarios) compared to the complete set Ż from which we
want to predict scenarios. There are various methods that are often used to combat an imbalanced
dataset, such as resampling. This could entail removing samples from the overrepresented class
in the training set, or generating ‘synthetic’ data that resembles data from the underrepresented
class. We won’t focus on the details of these methods in this thesis, but for further research this
is definitely an aspect to look at as this would improve the support of the important scenarios in
our training set. This, in turn, can potentially improve the performance metrics of our models.

Another area on which the models could potentially be improved is by examining the training

27

parameters more closely. In this thesis, for the logistic regression and random forest classifiers, we
used the standard settings in the Scikit-Learn package [9] for these models in the training phase.
For the neural network, we only specified the hidden layer sizes. This is because the focus of this
thesis lies much more on the optimization problem than on the details of the machine learning
models. However, given more time and expertise, it could be interesting to tune the various
parameters of the models to see if the classifiers can be made to perform significantly better.
Furthermore, generating more instances of the training data than we did in this thesis could also
be a way to improve model performance. The data generation was quite time-consuming, but
given more time and possibly better computational resources this would improve performance.

One small point that could improved with regards to model complexity is the fact that we
trained multiple classifiers and ‘combined’ these into one model. Ideally, we would just train one
model using the scenario as a (categorical) input as opposed to splitting the data by scenario
and training a separate model on each dataset. This was (shortly) attempted in this thesis, but
this didn’t give very positive results. However, intuitively, it should be possible to get the same
performance as our final models using just one model (perhaps using interaction effects between
scenarios and demand data).

Lastly, it could be interesting to look at a completely different type of training data. For this
thesis, we chose to look at customer demand data for a given problem since the uncertainty in
the problem is closely related to customer demand. However, an instance of the location trans-
portation problem has many different variables that could be incorporated into our predictive
model, such as costs of production and transport. We could also look at data obtained during
the process of running the C&CG algorithm, such as the last found second-stage decision or the
current optimal first-stage decision. Intuitively, these may contain information about where the
algorithm should ‘look’ in the next iteration. It may even be possible to study interaction effects
of different variables and parameters. All in all, there are more than enough aspects that can
still be explored.

28

6 | Conclusion

The main research question that we aimed to to answer in this thesis was: ‘How can machine
learning models be used to improve the efficiency of the C&CG algorithm?’. To achieve this,
we first introduced multi-stage (and specifically two-stage) optimization problems, building up
from linear programming models and robust counterparts to such problems. We presented the
column-and-constraint generation algorithm that can be used to solve a two-stage optimization
problem and discussed some of its drawbacks. We then explained the location transportation
problem, a specific real-life problem to which the C&CG can be applied, and introduced the
concept of the ‘important scenarios’ for such a problem.

Next, we briefly covered the mathematical intuition behind a few machine learning models and
showed how applying a predictive ML classifier to the C&CG algorithm might help to improve
its runtime by reducing the number of uncertain scenarios the algorithm needs to ‘look at’.
We explained how three different models - a logistic regression classifier, a neural network and
random forest - were trained to predict these scenarios. Subsequently, the results were presented
and discussed.

Overall, as previously stated, the results obtained from incorporating machine learning into the
optimization algorithm were positive. We saw a small improvement in the average runtime of the
algorithm due to the prediction of important scenarios, indicating that there is some underlying
pattern in the customer demand data for the location transportation problem as well as a link
between this data and the right scenarios to add to the problem. We explored this relationship
by visualizing the coefficients of the logistic regression classifier, which seemed to perform best
overall out of the three models.

All in all, this thesis is an interesting demonstration of how combining two disciplines in mathe-
matics (optimization and machine learning) can produce useful results. There is, of course, still
a great deal to explore in the overlap of these two fields. In the previous section, we mentioned
just a few directions in which further research can be conducted for this project alone, but there
are of course many more possible ways in which optimization algorithms can be boosted with
machine learning.

Lastly, since we were dealing mostly with ‘small’ instances of the location transportation problem
in this project (i.e. few customers/facilities), the results aren’t too ground-breaking; however, it
would definitely be interesting to see whether applying machine learning techniques to larger op-
timization problems in industry applications could significantly save resources in large companies
and businesses where optimization techniques are heavily utilized.

29

Bibliography

[1] Jean-Michel Réveillac. Linear Programming. In Optimization Tools for Logistics, pages 209–
237. Elsevier, 2015.

[2] A. Ben-Tal and A. Nemirovski. Robust solutions of uncertain linear programs. Operations
Research Letters, 25(1):1–13, 1999.

[3] B. Zeng and L. Zhao. Solving two-stage robust optimization problems using a column-and-
constraint generation method. Operations Research Letters, 41(5):457–461, 2013.

[4] Stephane Caron. Pypoman: Python module for polyhedral geometry.

[5] Marc Deisenroth. Mathematics For Machine Learning. Cambridge University Press, Cam-
bridge, United Kingdom New York, NY, 2020.

[6] Shadab Hussain. Building a convolutional neural network: Male vs female, Apr 2020.

[7] Christopher Bishop. Pattern Recognition and Machine Learning. Springer, New York, 2006.

[8] Sergios Theodoridis. Classification: A Tour of the Classics. In Sergios Theodoridis, editor,
Machine Learning, pages 275–325. Academic Press, Oxford, 2015.

[9] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

30

A | Python Code

Most of the Python code used for this thesis can be found on GitHub:

https://github.com/boazvdv/CCG-Thesis

Note this is purely for illustrative purposes and not all files have been uploaded to GitHub (e.g.
data, results, models) which may cause errors when running the code.

31

https://github.com/boazvdv/CCG-Thesis

	Introduction
	Mathematical Background
	Two-stage robust optimization
	Linear programming
	Robust counterparts to LP problems
	Two-stage optimization formulation

	Column & constraint generation algorithm
	Algorithm
	Master problem
	Subproblem

	Location Transportation Problem
	Variables of the problem
	Problem formulation
	Application of the C&CG algorithm
	Master problem
	Subproblem
	Identification of important scenarios

	Machine Learning and the C&CG Algorithm
	Machine learning techniques
	Application to C&CG algorithm
	Implementations
	Model training
	Model testing

	Results
	Model performance
	Results of applying ML to C&CG
	Discussion of results
	Model coefficients
	Improvements to model

	Conclusion
	Python Code

