
The Smart Teddy Project
Design of a data acquisition system to
monitor seniors with dementia and de-
tect dangerous situations

T. N. van der Spijk (4693817) & A. Hamo (4726960)

D
el
ft
U
ni
ve

rs
ity

of
Te
ch

no
lo
gy

The Smart Teddy Project
Design of a data acquisition system to monitor seniors with

dementia and detect dangerous situations

by

T. N. van der Spijk (4693817) & A. Hamo (4726960)

In partial fulfillment of the requirements for the graduation project of

BSc Electrical Engineering

Date of Submission:

June 18, 2021

Students: Tim N. van der Spijk 4693817
Alan Hamo 4726960

Instructors: Dr. Zaid Al-Ars Associate Professor the Delft University of Technology
Dr. Hani Al-Ers Researcher at the Hague University of Applied Sciences

Thesis Committee: Dr. Prof. Catholijn M. Jonker Full professor at the Delft University of Technology
Dr. Matthias Möller Associate Professor at the Delft University of Technology
Dr. Zaid Al-Ars Associate Professor the Delft University of Technology
Dr. Hani Al-Ers Researcher at the Hague University of Applied Sciences

Institution: Delft University of Technology
Place: Faculty of Electrical Engineering, Mathematics and Computer Science, Delft
Date: June 18, 2021
Defence: 13:30-15:00, June 29, 2021.

Preface

The amount of people dealing with dementia is rising globally. The amount of caretakers is, however, not.
Therefore, technological aids are needed to support people dealing with dementia and relieve the stress
on their caretakers. Current solutions provide tracking of people with dementia. Also, different robots
exist that provide people with companionship. However, no solution exists that combines tracking and
companionship capabilities. Therefore, the Smart Teddy is introduced. The Smart Teddy can track different
indicators that indicate the progress of dementia and simultaneously provide the user with companionship
through interaction. The goal of this thesis is to design a data acquisition system that acquires meaningful
data that can be used for the development of algorithms that will autonomously determine the progress
of dementia. To achieve this, a system with a Teddy and a Base station has been designed. The Teddy has a
sound-, a carbon monoxide-, a smoke- and a movement sensor. Also, a real-time module is implemented to
be able to assign the current time to the measurement data. Lastly, a GPS and GSMmodule is implemented
to be able to track seniors in case they wander. In the Base station, a mmWave sensor is implemented
that tracks the position, velocity, and direction of the persons present in the room. Also, a processor is
implemented that gathers and stores the data from the mmWave sensor and the data from the Teddy which
is sent via a LoRa connection. In addition, the designed system can store the collected data for more than
one week. The collected data can be used by an expert in dementia to extract meaningful information
about dementia progress, after that, an expert in digital signal processing is needed to develop algorithms
that estimate the quality of life of a senior suffering from dementia.

The Smart Teddy project is carried out by a total of six students of the Electrical Engineering Bachelor.
The project was initiated by The Hague University of Applied Sciences in September 2018. This thesis
is created by two students concluding their Bachelor in Electrical Engineering at the Delft University of
Technology. This thesis is a product of the years the authors have enjoyed studying Electrical Engineering.

We would like to thank our client Hani Al-ers for his continued support and enthusiasm. We trust that
our design is in good hands with you and look forward to the future development of the Smart Teddy. We
would also like to thank our supervisor Dr. Zaid Al-ars for being critical and helping us learn from the
process of creating this design and thesis. A big thank you to Jeroen Bastemeijer, Mathias Möller, Ezra,
and Annemieke who spent time helping us during the course of this project. Your tips were of great value
to us. Last but not least we would like to thank the rest of the team: Shea Haggerty, Laura Croes, Taha
Küçükçelebi, and Lyana Usa for their amazing work, their collaboration, and most of all their strong work
ethic.

T. N. van der Spijk (4693817) & A. Hamo (4726960)
Delft, June 2021

i

Contents

Preface i

1 Introduction 1
1.1 Situational assessment . 1
1.2 The Smart Teddy. 1
1.3 Problem definition. 2
1.4 Background . 3
1.5 State of the art . 3
1.6 Thesis outline . 5

2 Program of Requirements 6
2.1 Assumptions and context . 6
2.2 Verification methods. 6
2.3 Functional requirements . 6
2.4 Non-functional requirements . 8

3 Detailed Design 9
3.1 Selection of the types of sensors . 9
3.2 Components in the Teddy . 12
3.3 Components in the Base station. 16

4 Implementation and Verification 19
4.1 Teddy implementation. 19
4.2 Base station implementation . 23
4.3 The prototype . 24
4.4 Program of design requirements check . 24

5 Conclusion and future work 25

References 28

Appendices 29

A Previous Efforts 30

B Literature support of indicators 31

C mmWave Sensing 33
C.1 Basics of mmWave sensing . 33
C.2 Algorithm . 33
C.3 mmWave TLV data . 36

D Python Codes 37
D.1 main.py . 37
D.2 ds3231.py . 39
D.3 mpu6050.py . 40
D.4 mq9.py. 46
D.5 sdcard.py . 47
D.6 testGPS.py . 51
D.7 testSDcard.py . 52
D.8 testTimer.py . 53
D.9 Basestation.py . 55
D.10 oob parser.py . 61

E Schematic 77

ii

1
Introduction

This chapter starts with an assessment of the current situation and the main motivation of this project
in Section 1.1. In Section 1.2, an overview of the Smart Teddy project is given. Section 1.3 provides a
thorough definition of the problem at hand and concludes by giving the research question of this thesis.
To be able to provide a knowledgeable design, first, the previous work in the Smart Teddy was analyzed
in Subsection 1.4. Second, a literature study was conducted in the field of QoL and indicators of dementia
in Subsection 1.4. Using the background, research was done into the state of the art considering sensing
technologies in Section 1.5.

1.1. Situational assessment
Dementia is one of the biggest global health- and social care challenges people are facing today. The
number of people with dementia was estimated to be 46.8 million in 2015. This number will almost double
every 20 years [38]. Dementia is a collective name for syndromes in which the memory, thinking, behavior,
and the ability to perform everyday activities deteriorate. Dementia has a physical, psychological, social,
and economic impact, not only on people with dementia but also on their carers, families, and society
[54]. In 2015, the global costs were estimated to be $818 billion US globally. Currently, the global costs
are estimated to be above $1 trillion dollar US [3]. These costs are distributed between three major sub-
categories, namely, direct medical, social care, and informal care. Roughly 20% of the costs are spent on
direct care, 40% on direct social sector costs, and the remaining 40% are spent on informal care [38]. A
considerable portion of these informal costs is used in home-based care in the early stages of dementia.
Informal caregivers who include spouses, adult children, daughters- and sons-in-law, and friends. Women
are far more likely to be the caregivers in all countries. Providing care to people with dementia can result
in significant strain for those who provide most of the care [55].

The field of research in dementia is an active- and growing field of research. In the Netherlands, for
example, the senior population is growing where the amount of caregivers is not [46]. This creates an
increasing need for technological aids in the health care system and the home care system in particular.
An example of a technological aid is a social robot used to provide emotional, cognitive, and physical
support for people with dementia. Such a social robot is intended to enhance the Quality of Life or QoL
of seniors with dementia. They can be classified as pet, assistive, humanoid, and telepresence robots
according to their predominantly intended use. Pet robots are intended to enhance social interaction with
people affected by dementia, where assistive and humanoid robots are deployed to support people with
dementia in daily life activities. Telepresence robots are used to provide social connectedness, remote
support, care, and medical treatment [19].

1.2. The Smart Teddy
The Hague University of applied science aims to develop a product that can automate the measurement of
QoL in senior citizens dealing with early-stage dementia. This product is disguised as a Smart Teddy, which
aims to support patients to remain living independently in their own home and with that decrease stress
on care homes. The Smart Teddy will offer seniors companionship and will measure indicators of QoL
to track the progress of dementia, besides that, the Smart Teddy will be able to detect some dangerous

1

1.3. Problem definition 2

situations to update or alert the caregiver and/or family members. The Smart Teddy can be seen as a
combination of a pet robot and assistive robot and consists of a Teddy and a Base station.

Teddy: The Teddy is a soft and cuddly stuffed animal that will offer seniors companionship by exhibiting
interaction like moving its tail and barking. Currently, the Teddy houses several sensors such as a touch
sensor, a Global Positioning System or GPS, motion sensor, light sensor, Gyroscope, smoke sensor, and a
microphone to collect data about daily activities that can indicate progress dementia of senior citizens.
The collected data will be used to automate the estimation of the quality of life. The Teddy sends the
collected data to a Base station.

Base station: Currently, the Base station houses a receiver, a processor board, a smoke sensor, a mi-
crophone, a camera, and a wireless charger for the Teddy and connectivity for the user. The processor
processes the data received from the Teddy and the sensors.

1.3. Problem definition
As mentioned in Section 1.1, dementia has an impact on the economy and society. The Hague University
of applied science aims to contribute to mitigating this impact by introducing the Smart Teddy. This aims
to prolong the time for which seniors with dementia can live independently in their homes. This product
is unique since it combines monitoring the progress of dementia, offering companionship, and alerting
caregivers in dangerous situations. These functions combined will have a positive impact on seniors suf-
fering from dementia, their caregivers, and people closely related to the particular seniors. To the best of
our knowledge, no product exists yet that combines these three functions of the Smart Teddy.

The final goal of the Smart Teddy project is to estimate the QoL of seniors with dementia by applying
algorithms to data collected by the system. However, the current data acquisition system does not function
properly. In addition, the Teddy is not cuddly since the components inside are too large. Solving the
technical issues the device faces requires the expected knowledge from an Electrical Engineer with a
Bachelor’s degree. However, the final goal of the project requires expertise in digital signal processing to
process the collected data into useful information to be used by an expert in dementia who can extract
the interpretation of the data in terms of the QoL.

In addition to the technical challenges, ethical, legal, and social implication are considered to prevent
slow adoption, incorrect implementation and inappropriate use [23]. Important values that should be
considered in the early stages of designing a monitoring system in dementia care are identified to be:
Privacy, consent, respect, individuality, dignity, warmth, safety, and well-being [40]. Besides that, the
acceptance and perception of seniors with dementia of the Teddy are also important because, for the
Teddy to function properly, it should be in the vicinity of the senior. For example, the Teddy cannot measure
wandering if the senior wanders somewhere else where the Teddy is placed.

The current situation of COVID-19 shows the urgency of such a product. A study conducted in the
United States about the relationship between dementia and COVID-19 showed that patients with dementia
were at increased risk for COVID-19 [53]. Those findings highlighted the need to protect seniors with
dementia from COVID-19 but also pointed out the danger for caregivers and loved ones. This product will
contribute to mitigating the risk for COVID-19 and help decrease the loneliness of seniors with dementia
by offering companionship. This project will also contribute to the third goal of the SDG goals (sustainable
development goals) which is to ensure healthy lives and promote well-being for all at all ages [49].

This project aims to redesign the current prototype such that data collection is automated and the
Teddy is a stand-alone device with a battery and charging method. In addition, the project will take the
responsibility to implement interaction to offer the seniors companionship. Therefore, the project is split
into three sub-domains: Data acquisition, Human interaction & integration, and Power & charging. The
last two sub-domains will be described in two other theses.

In this thesis, the focus will be on the data acquisition system. The primary goal is to design an au-
tomated system that collects useful data for algorithms that will be applied in the future to enable the

1.4. Background 3

estimation of QoL. In addition, this thesis will address the use of sensor data to detect dangerous situa-
tions such as falling senior or high carbon monoxide concentrations. In doing so, this thesis will answer
the following question:

How to design a data acquisition system that firstly, collects data about seniors’ dementia-related activities
such as wandering, social contact, sleep rhythm, and emotions and secondly, detects dangerous situations such
as falling and the presence of high concentrations of Carbon Monoxide gas?

1.4. Background
Previous work in the Smart Teddy project
Over the course of three years, Dr. Hani Al-Ers has been the supervisor of the development of three pro-
totypes of the Smart Teddy. Throughout these years 18 students of The Hague University have worked
on the project. In Appendix A a description of the latest work is given. In Table 1.1, the indicators they
recommend in their work are given. Also, in Figure 1.1, a schematic view of the latest version of the Smart
Teddy is given.

Table 1.1: Indicators as suggested by previous work in the
Smart Teddy project.

Indicator Sensor type
Wandering Infrared sensor & Sound
Social contact Infrared sensor & Sound
Life rhythm GPS & Gyroscope
Day- & night rhythm Infrared sensor & Sound
Senior motion & location GPS & Gyroscope
Eating rhythm & Body weight Camera
Emotion Camera
Forgetting critical actions Gas sensor
Falling Sound & Camera Figure 1.1: Third prototype of the Smart Teddy

Literature study
Since the goal of the Smart Teddy - project is to estimate the QoL of seniors with dementia, it is important
for this project that the correct indicators are measured. The primary goal of this literature study is thus
to verify the indicators provided by previous efforts with literature in the field of QoL indicators. In Table
1.2, the indicators that will be measured are given. The full analysis is given in Appendix B.

Table 1.2: Indicators to be measured with references

Indicator References
Wandering [11] [12]
Social Interaction [48] [24]
Emotion [57] [30]
Daily activities [27] [16]
Sleep- and eating rhythm [15] [20]
Falling [14] [13]
Other dangerous situations [26]

1.5. State of the art
In this section, the research previously conducted in the field of sensing of the mentioned indicators will
be analyzed. The different technologies that can be used to measure an indicator will be discussed. A
summary is given in Table 1.3. This analysis will form the basis for the program of requirements in Chapter
2 and ultimately for the detailed design in Chapter 3.

Wandering
Research in automated wandering detection focuses on two regions: Outdoor and indoor detection of
wandering. Outdoor wandering can be detected using GPS sensors in a wearable to track the senior and

1.5. State of the art 4

Table 1.3: Summary of the State of the Art
Indicators:
Sensors

Wandering Social in-
teraction

Emotion Daily
activities

Sleep and
eating
rhythm

Fall de-
tection

Other
dangerous
situations

mmWave x x x x x x
PIR x x x x
RFID x
Microphone x x x
GPS x
Video x x x
Wearables x x
RGB-D x
Vibration x
Gas sens. x

use machine learning to detect whether a person is wandering or not [51] [8].
Threemethods of indoor detection of wandering will be discussed. In multi-room scenarios such as nursing
homes, tracking can be done using Radio Frequency Identification presence detection [51]. The main
downside of this method is the need for the senior to wear a tag that can be detected by the RFID sensor.
In single-room scenarios Pyro-electric Infra-Red (PIR) sensors combined with a Deep Convolutional Neural
Network Algorithm can be used to detect wandering [17]. The drawback of using PIR to track wandering
is that the tracking has to be paused when multiple occupants are in the same room since this disturbs
the detection algorithm.
For multi- or single-room scenarios, a mmWave sensor can be used [21]. The location of a user can be
determined with 0.30m accuracy, thus path tracking is possible.

Social interaction
PIR sensors can be used for occupancy detection [56] [5]. Besides room occupancy, also occupancy count,
location prediction and Human target differentiation is possible. For stationary occupants a vibrating PIR
sensor has to be used [56]. Also, a mmWave sensor can be used for occupancy detection [18] [21].

In [18], a comparison between PIR and mmWave technology for occupancy detection was made. The
conclusion was that for meeting rooms the mmWave sensor was more suitable to detect the number of
occupants. The benefits of the mmWave sensor were: higher detection accuracy, higher reliability in dif-
ferent lighting scenarios, and overall higher performance due to the deterioration in measurement by the
PIR sensor when other heat sources are present such as coffee cups or computers.

Emotion
Recording audio and video containing human activities and facial expressions can be used to estimate
emotion [39]. Emotion can also be detected using wearable devices [25] [36]. Wandering can also be
indicative of the emotional status of the senior: more wandering correlates to more negative emotions
[29]. A mmWave sensor can be used to detect the heart rate of a person [52] and heart rate can, in turn,
be used to track emotion [44].

Daily activities
Recording audio and video can be used to track precise daily activities. The number of daily activities can
be determined by tracking a person’s movements using a mmWave- or a PIR sensor [59].

Sleep- and eating rhythm
Precise, wireless sleepmonitoring can be achieved usingmmWave radar technology [58]. Breathing rhythm
and heart rate are detected to determine sleeping [60]. According to [33], prediction of sleep using heart
rate can be done using a convolutional neural network, even different stages of sleep can be classified.

Several wearable sensors can be used to track eating rhythm [10]. Examples are Accelerometer, Gy-
roscope, Microphone, EMG sensor, Piezoelectric sensor, or proximity sensors. For non-wearable sensors,

1.6. Thesis outline 5

camera-based monitoring can be used. Also, RGB-D sensors can be used to detect eating [34]. Lastly, a
mmWave sensor can be used to track skeletal posture [42]. Skeletal posture can in turn be used to detect
eating [22] [35].

Falling
Fall detection can be categorized into two kinds of devices: wearable and non-wearable [61]. For wearable
devices, an accelerometer can be used to collect useful data for fall detection.

For non-wearable devices, recording audio and/or video could be used for fall detection. Using video
for fall detection is more accurate than using sound. However, a camera is heavier and more expensive
than a microphone. In addition, cameras cannot work well in dark environments [9]. The biggest issue
with cameras is the invasiveness of a seniors’ lawful and emotional privacy [61]. The danger is that when
a senior feels they are being watched, according to the Hawthorne effect theory they might act differently
and thus disturb the measurement results of the other sensors [41]. Also, floor vibration sensors can be
used for fall detection [32]. Another option is the use of two pulse-Doppler range control radars [6]. The
advantage of the radar over the floor vibration sensor is that it can distinguish a human falling from and
other objects falling [32].

The Doppler effect can be used to detect falls using a non-stationary channel sender and receiver model
for radio frequencies [6]. A combination of sound sensors can also be used for fall detection [31]. The time
difference of arrival of 8 Circular microphones is measured to determine the location of a fall. However,
using sound to detect falls requires quiet environments [43]. In [9], a combination of infrared-ultrasonic
sensor fusion is used to collect data about location, size, and profile of the senior, of which the data can help
in detecting a fall. The infrared sensor provides thermal information and the ultrasonic sensor measures
the distance based on Time-of-Flight. In [43], a microwave Doppler sensor is used to collect data in fall
detection where the frequency distribution trajectory was the focus, which corresponds to the velocity of
the movements while falling. Recently, the advances in Millimeter Wave sensors enable a vast number of
applications [4]. Using a support vector machine (SVM) model [4], the data from Millimeter wave sensors
can be used to classify motion into five categories: resting, falling, sitting down, walking, and standing
up. The Millimeter Wave sensor is based on reflecting electromagnetic waves to determine object range,
angle, and velocity.

1.6. Thesis outline
This thesis commenced by conducting the literature study and the state-of-the-art analysis. Using that,
the program of requirements is formulated in Chapter 2. The requirements are separated into functional
and non-functional requirements. Using the requirements, the design of the data acquisition system is
documented in Chapter 3. In Chapter 4, the design will be implemented and verified to the requirements.
In Chapter 5, the conclusion and recommendations for future work are presented.

2
Program of Requirements

This chapter addresses the program of requirements for the Data acquisition sub-domain of the Smart
Teddy project. In Section 2.1, assumptions made during the project will be discussed followed by verifica-
tion methods in Section 2.2. The functional requirements and non-functional requirements are addressed
in sections 2.3, and 2.4 respectively.

2.1. Assumptions and context
To be able to create a system able to collect data and detect dangerous situations in 11 weeks during the
BAP project some assumptions that bound the scope of this project had to be made. These assumptions
are made with the knowledge that they might be of influence to the data collected in the real world. In
addition, these assumptions help to avoid unneeded complexity in the system. The assumptions are:

• The system operates in a bounded roomwhere the senior does all activities including eating, sleeping
& living.

• In the bounded room, the senior is always in range of the sensor in the base station.

• If the senior does leave, the senior always carries the Teddy with him.

All mentioned indicators in the state of art analysis in Section 1.5 are not physical quantities that can
be measured directly using a sensor. However, for all indicators, presence detection is of key importance.
Presence detection is the first step to track a person’s activities. In addition, localizing the person in a room
and determining his velocity, dimension, and direction was necessary for all indicators. Presence, position,
velocity, dimension, and direction are physical quantities that can be measured using sensors. Besides
that, sound and carbon monoxide can also be measured utilizing sensors. By translating the indicators
into physical quantities, it was possible to set design requirements.

2.2. Verification methods
To be able to verify whether the requirements are met after the implementation of the design, verification
methods are needed. According to Adams [2], verification of requirements can categorized in four methods
of verification:
Inspection The nondestructive examination of a product using one or more of the five

senses.
Demonstration The manipulation of a product as intended to be used to verify the results are

as expected.
Test The verification of a product using predefined inputs and comparing the output

with the predefined outputs specified by the requirements.
Analysis The verification of a product using models, calculations and testing equipment.

2.3. Functional requirements
In Table 2.1, the functional requirements specific to the Data Acquisition part of the Smart Teddy project
are listed. The rationale behind the requirement and the verification strategy is included.

6

2.3. Functional requirements 7

Table 2.1: Table with the functional Data Acquisition design requirements. The functional design requirements are
labeled with DA.XX

ID Requirement Rationale Verification
Method

DA.01 The system should collect data
that can be used to determine if
a person is present.

Detection if a person can be used to track
activity of a senior.

Demonstration

DA.02 The system should collect data
that can be used to detect
if more than one person is
present.

Detecting amount of occupants can be
used for Social interaction tracking.

Demonstration

DA.03 The system should collect data
that can be used to differen-
tiate between different move-
ments of parts of the body.

Distinguishing between different move-
ments can be used for tracking of physical
activities.

Demonstration

DA.04 The system should collect data
that can be used to localize peo-
ple with an accuracy of 1 cm for
a stationary person.

During sleep, high accuracy measurement
is needed to be able to track breathing
rhythm.

Test

DA.05 The system should collect data
that can be used to localize peo-
ple with an accuracy of 10 cm
for a non-stationary person.

Detection of position can be used to track
wandering and daily activities.

Test

DA.06 The system should collect data
that can be used to measure
movement velocity between >=
0 up-to free fall speed 9.6 m/s.

Measuring the velocity up to free fall
speed is required to be able to measure
falling.

Test

DA.07 The system should collect data
that can be used to detect the
height and width of a person.

Detecting the dimensions of a person help
estimating social interaction.

Demonstration

DA.08 The system should keep track of
real time.

Keeping track of real time allows the data
recorded to be labeled with a time.

Inspection

DA.09 The Teddy should be able to
store 1weekworth of data with-
out transmission to the base
station.

The storage should be designed, such that
no data is lost when the connection with
the base station is lost.

Demonstration

DA.10 The sound level should be mea-
sured in the range between
40dB (Living room, quiet class-
room) 120dB (Human voice at
its loudest, police siren).

The sound levels where chosen such that
all sounds in a mainstream living room can
be measured.

Test

DA.11 In case of detection of a dan-
gerous situation, the caregiver
should be alerted within 10 sec-
onds.

Alerting a caregiver is main priority when
a dangerous situation is detected and
should thus happen as fast as possible.

Demonstration

DA.12 The power consumption of the
teddy should be maximal 5 W.

The power used by the system determines
the on-time and should thus be limited

Analysis

DA.13 The system should be able
to measure the concentration
of carbon monoxide gas and
smoke.

Measuring the concentration of these spe-
cific gasses can be used to determine if the
situation is dangerous.

Demonstration

DA.14 The system should be able to
detect movement of the Teddy.

Detecting the movement of the Teddy is an
indication of interaction between the se-
nior and the Teddy.

Test

DA.15 The system should be able to lo-
cate the person in outdoor ac-
tivity.

Locating the senior outside can be used for
tracking of wandering, but also when the
senior wanders of.

Test

DA.16 The system should collect data
in a range of 8m from the base
station.

8mWas chosen to be appropriate for main-
stream living rooms.

Demonstration

2.4. Non-functional requirements 8

2.4. Non-functional requirements
The first set of requirements in Table 2.2 are the non-functional general design requirements. Non-
functional requirements are requirements that do not specify specific behaviours of the product, but are
more general about the operation and appearance of the product. The rationale behind the requirement
and the verification strategy is included.

Table 2.2: Table with non-functional general requirements. The non-functional requirements are labeled with G.XX.

ID Requirement Rationale Verification
Method

G.01 The dimensions of the data acquisition
system should not exceed 10x10x5cm
in the Teddy.

The dimensions of the system should
be limited so the user does not feel the
electronics inside the Teddy.

Inspection

G.02 No sensors should be placed outside
the Teddy or Base station

Placing sensors outside the Teddy or
Base station will disrupt the non-
intrusive nature of the Smart Teddy

Inspection

G.03 The Smart Teddy project should not
contain any wearable devices

A wearable will disrupt the non-
intrusive nature of the Smart Teddy

Inspection

3
Detailed Design

In this chapter, the detailed design of the data acquisition system will be discussed. This chapter com-
mences in Section 3.1, with the selection of the types of sensors needed. Then in Section 3.2, the selection
of specific components and further considerations about components in the Teddy are discussed. The final
section, Section 3.3, will discuss the selection of the specific components and further considerations about
components in the Base station.

3.1. Selection of the types of sensors
From the state of the art analysis in Section 1.5, it was found that different types of sensors can be used to
measure an indicator. In this section, the selection of what type of sensors are required for all indicators
to be measured will be elaborated. Before all else, some considerations to take into account. The use of
video to measure indicators is excluded from the design due to ethical and legal concerns such as privacy,
informed consent, and autonomy. In the following, each indicator will be discussed with the possible
sensors to be used.

Wandering
For tracking wandering, tracking the path of a senior is required. This can be done by determining the
location of a senior and storing this location repeatedly in a chronological manner. This path can then
be analyzed by a wandering detection algorithm as described in Section 1.5. In Table 3.1, a comparison
between possible sensors for tracking wandering can be seen. Tracking wandering can be done using a
mmWave sensor, a PIR sensor, RFID, and GPS.

Table 3.1: Comparison between possible sensors to track wandering

Feature Presence Speed Distance Direction Through light walls Indoor
mmWave sensor Yes Yes Yes Yes Yes Yes
PIR Yes No No No No Yes
RFID Yes Yes Yes No Yes Yes
GPS No Yes (wearable) Yes (wearable) No Yes(wearable) No (Not efficient)

Firstly, the mmWave sensor is chosen for indoor tracking, because of its ability to provide accurate
presence, speed, distance, and direction estimations without disturbances from heat sources and reflective
surfaces as the PIR sensor has. Also, a range of 10m in a field of view of 110∘is possible. The RFID is not
considered due to its intrusive nature, as the senior would always have to carry an RFID tag. Secondly, the
GPS is chosen for outside location tracking. Selecting the mmWave sensor will lead to meet the following
design requirements from Section 2.3: DA.01, DA.03, DA.04, DA.05, DA.06, DA.16

The GPS is chosen for outside tracking and will be mounted inside the Teddy. As stated in Section
2.1, it is assumed that the senior will always take the Teddy with him, so the path of the senior can be
stored. Therefore, design requirement DA.15 can be met from Section 2.3. In addition, to be able to meet
the design requirements DA.11 from Section 2.3, a GSM module will be used to communicate with the
caregiver.

9

3.1. Selection of the types of sensors 10

Social interaction
Determining the amount of social interaction a senior has, can be indicated by determining the amount
and frequency of visitors over time. Determining the number of occupants in a room can be done using
an analog, stationary PIR sensor or a mmWave sensor, the comparison between the two sensors can be
seen in Table 3.2. The downside of the PIR sensor is the inability to detect a person if he is stationary. A
solution to this would be to vibrate the sensor to still be able to detect stationary object [56]. Another
option would be to use a mmWave sensor. As found in the State of Art analysis in Section 1.5, the mmWave
sensor is suited best for occupancy detection, since the mmWave sensor has a higher detection accuracy
and a higher detection reliability in different light conditions without disturbances caused by heat sources
compared to the PIR sensor. Also, the mmWave sensor can be configured with a range between 8 and
10m, which satisfies design requirement DA.16. In addition, the mmWave sensor has a build-in algorithm
to detect occupants. Therefore, the mmWave sensor will be used for determining the amount of social
interaction a senior has. Therefore, design requirement DA.02 from Section 2.3 can be met.

Table 3.2: Comparison between possible sensors for social interaction tracking

Feature Presence of multiple persons Speed Distance Direction Need for algorithm Indoor
mmWave sensor Yes Yes Yes Yes No Yes
PIR Yes(vibrate the sensor) No No No Yes Yes

Emotion
Tracking of the emotional state of the senior can be done using a mmWave sensor, a microphone, or using
the camera to record video. The mmWave sensor is the same sensor used for tracking the indicators that
require motion detection. Only an additional algorithm has to be added to the design. Using a microphone
to track the emotional state of a senior would require continuous listening and speech recognition. This
was implemented in the previous prototype of the Smart Teddy, therefore, a microphone will be added to
the system to give the ability to use the previous algorithm and to meet design requirement DA.10 from
Section 2.3. As mentioned in the introductory section of this chapter, Section 3.1, the video recording is
excluded due to privacy and legal concerns.

Daily activities
Precise determination of the daily activities of a senior can be implemented using a camera, however,
as in previous sections, that would violate the privacy and legal rights of a senior. Besides, computing
power-intensive detection algorithms would have to be implemented. Instead, not the precise activities
of a senior will be tracked, but the amount of activity of the senior will be tracked. This in itself is not an
indicative measure, however, a change in the average activity of a senior is. Tracking the average activity
of a senior can be done using the same motion and path tracking as discussed for Wandering and Social
Interaction. Therefore, the same conclusion can be drawn that the use of the mmWave sensor is favorable
over the other options.

In addition, a gyroscope-accelerometer sensor can be used to track the amount of interaction the senior
has with the Teddy. Again, this in itself is not an indicative measure, but the change in the average activity
of use is. Therefore the gyroscope-accelerometer will be implemented in the Teddy such that the design
requirement DA.14 can be met from Section 2.3.

Sleep- and eating rhythm
As found in the literature study in Section 1.4, sleep- and eating rhythm can be indicative of the progress
of dementia in a senior. As described in Section 1.5, sleep- and eating rhythm monitoring can be done
wirelessly by using a mmWave sensor, a camera, or RGB-D. In Table 3.3, a comparison between the sensors
can be seen.

As seen in Table 3.3, The mmWave sensor can classify the state of a person. So, when a person lies down
in bed, the algorithm will define the state as lying down. When this is the case, precise measurement in the
difference of the position of the chest will commence being able to track breathing rhythm and heart rate.
Algorithms are already implemented in the mmWave sensor to measure heart rate and state detection.
Therefore, this sensor is selected because it lowers the complexity of the system and will lead to meet the
design requirement DA.04 from Section 2.3.

3.1. Selection of the types of sensors 11

Table 3.3: Comparison between possible sensors to track sleeping

Feature Presence Accuracy State detection
mmWave sensor Yes Accurate Yes
Camera Yes Accurate Algorithm needed
RGB-D Yes Accurate Algorithm needed

Current solutions of detecting when a person is eating make use of cameras pointed to the dining table
of the user. In this thesis, this is not an acceptable solution considering the violation of the ethical values
presented in Section 3.1. A solution would be to use the mmWave sensor to detect objects such as spoon
and dish since the sensor can detect the dimension of an object with mm accuracy. However, to achieve
that, a new algorithm will have to be developed.

Falling
A falling senior can be detected with different non-wearable devices. The alternatives considered are
a PIR sensor in combination with a microphone, a microwave sensor, an array of microphones, and a
mmWave sensor, a comparison between these sensors can be seen in table 3.4. As stated in Section 1.5,
fall detection using a PIR sensor is possible in combination with a microphone close to the PIR sensor.
A microwave sensor and a mmWave sensor both operate similarly. The main difference between the two
is the operating frequency and therefore their maximal accuracy. Since the mmWave sensor’s operating
frequency is higher than that of the microwave sensor, the accuracy will be notably higher. A concern of
using a higher frequency would be the reduction in range, but since the measurement will be in the house
of the senior only this will not be an issue. The mmWave sensor is also able to determine the dimension
of a person to meet design requirement DA.07 from section 2.3, and it has a pre-implemented algorithm
to detect falls using the change in the average height of a person. The use of a camera is excluded due to
privacy concerns.

Table 3.4: Compression between possible sensors for fall detection

Feature Presence Speed Need for algorithm Indoor Person dimensions
mmWave sensor Yes Yes No Yes Yes
PIR Yes No Yes yes No
Microwave sensor Yes Yes Yes Yes No
microphone Yes Not applicable Yes Yes Not applicable
Camera Yes Yes Yes Yes Yes

Other dangerous situations
Besides falling, other dangerous situations involving gas concentrations are considered. Firstly, the con-
centration of the potentially lethal gas carbon monoxide will be measured. This gas is chosen since it can
be produced by a malfunctioning boiler present in most homes. Also, the gas has no smell and can thus
not be detected by humans without the aid of technology. Secondly, smoke is measured in the room to
be able to notify the caregiver in case of fire. Using gas and smoke sensor will lead to meet the design
requirement DA.13 from Section 2.3.

Final selection
The selected sensors can be seen in Figure 3.1. To meet the design requirements AD.08, and AD.09 from
Section 2.3, a real-time module and SD card were added to the system. In the following sections, the
detailed design of the sensors will be discussed.

3.2. Components in the Teddy 12

Figure 3.1: Data acquisition system components

3.2. Components in the Teddy
This section will discuss the different components that are housed inside the Teddy itself. First, in Subsec-
tion 3.2.1, the processor is discussed. Following, the sensors connected to the analog to digital converter
will be discussed in Subsection 3.2.2. Then, the sensors connected via I2C will be discussed in Subsection
3.2.3. After that, the sensors connected via UART will be discussed in Subsection 3.2.4. Concluding, the
storage and system flowchart will be discussed in Subsection 3.2.5 and 3.2.6 respectively.

3.2.1. The processor
The processor is the brain of the data acquisition system. Here, data processing and control of the me-
chanical part of the Teddy is done. What processor will be used is determined by the Human Interaction
and Integration sub-group to be a Raspberry Pi Pico. However, it is important to highlight features needed
for the data acquisition system here and compare it with other processors to give some background and
overview of the design to verify that this processor is suitable. The Raspberry Pi Pico uses the RP2040
processor. In Table 3.5, a comparison between the RP2040 and three competitors is made.

Table 3.5: Features of RP2040 compared with three different processors

Feature RP2040 ESP32 ESP32-s2 STM32F411
Chip size QFN-56 QFN-48 QFN-56 QFN-48
CPU 2xCortex M0+, up to 125 MHz 2xLX6, 240 MHz 1xLX7, 240 MHz Cortex-M4, 100 MHz
Co-processor PIO ULP RISC-V ULP none
RAM 264 KB 520 KB 320 KB 128 KB
Flash External/ 2MB External/ 4MB External/ 4MB 512 KB
GPIO 30 26 30 32
ADC 12 bits 12 bits 12 bits 12 bits
UART 2 3 2 3
I2C 2 2 2 3
SPI 2 4 4 5
Current consumption 18 mA 53 mA 30 mA 26 mA

The size of the RP2040 chip is 7x7 mm. The central processing unit has a clock frequency up to 125
MHz and two M0+ cores which do not have a floating-point unit. The PIO is a co-processor that runs at full
speed, however, it has only 9 instructions. This co-processor needs to be programmed in an assembler and
is mainly used to output fast signals. The flash memory is where the program is stored, the RP2040 has 2
MB. The RAM is where the program is compiled and variables are temporarily stored, the RP2040 has 264
KB of RAM. The RP2040 has 30 General purpose in- output pins (GPIO), however, 3 of these pins are used
for ADC and all communication peripherals use GPIO pins. The ADC is 12 bit. The RP2040 also supports
communication peripherals such as UART, I2C, and SPI like the other processors. A remarkable feature of
the RP2040 is the current consumption, which is 18 mA when running a simple blinking program.

3.2.2. Sensors connected to ADC
The sound sensor and the gas sensor in the data acquisition system have an analog output. Therefore,
these sensors are connected to the ADC of the RP2040 processor. For the data acquisition system, it is
enough to measure the sound intensity to meet the design requirements. However, the Human Interaction
and Integration sub-group will implement a voice recognition, therefore, the MAX9814-microphone is

3.2. Components in the Teddy 13

selected. This sound sensor can measure sounds in the frequency range 20 Hz-20 kHz, has an automatic
gain control, built-in amplifier, and has total harmonic distortion (THD) of 0.04%.

To measure carbon monoxide, the MQ-9 gas sensor is used. The sensor is also able to measure smoke
and other gasses.

The ADC of the RP2040 processor of the Raspberry Pi Pico has 12 bits Successive Approximation Register
Analogue to Digital converter (SAR). Capturing a sample takes 96 clock cycles and requires a 48 MHz clock
cycle. Using that, the sample rate is calculated:

𝑆𝑎𝑚𝑝𝑙𝑒 𝑟𝑎𝑡𝑒 = 𝐶𝑙𝑜𝑐𝑘𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
𝑁𝑜.𝐶𝑙𝑜𝑐𝑘𝑐𝑦𝑐𝑙𝑒/𝑠𝑎𝑚𝑝𝑙𝑒 =

48𝑀𝐻𝑧
96 = 500𝑘𝑖𝑙𝑜𝑠𝑎𝑚𝑝𝑙𝑒𝑠/𝑠 (3.1)

The RP2040 has three analog inputs, for each of these inputs, the effective number of bits (ENOB) is 9
from the 12 bits. That is the number of bits of each measure that are on average not noise. The resolution
of the ADC is calculated as followed:

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 2𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑡𝑠 = 212 = 4096 𝑞𝑢𝑎𝑛𝑡𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙𝑠 (3.2)

The ADC has 4096 quantization levels. The voltage reference of the RP2040 is generated from the
power supply, which is 3.3 Volt. The resolution of the ADC in terms of voltage is:

𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 𝑚𝑎𝑥.𝑉𝑜𝑙𝑡𝑎𝑔𝑒
𝑄𝑢𝑎𝑛𝑡𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙𝑠 =

3.3 𝑉
4096 = 0.8 𝑚𝑉 (3.3)

However, the useful resolution is limited by the signal-to-noise rate (SNR) and ENOB. The quantization
error of this ADC is calculated as followed:

𝑆𝑄𝑁𝑅 = 20 log(2𝑄) = 72𝑄 𝑑𝐵 (3.4)

Where Q is the number of quantization bits. The quantization error is 72 dB below the maximum level.
The quantization error may occur from DC 0 Hz to the Nyquist frequency. Frequencies above the Nyquist
frequencies will be mapped to lower frequency and therefore, incorrect detection. This is called aliasing,
however, the selected sensors have integrated circuits IC’s that perform an anti-aliasing filter.

Problems with the ADC:

• The reference voltage of the ADC is generated from a Switched Mode Power Supply (SMPS) at 3.3V
by using an R-C filter. The output accuracy of the 3.3V SMPS is noisy. In addition, the ADC draws
about 150 uA current which will lead to an offset of approximately 30 mV. It is suggested in the
datasheet of the RP2040 that this offset may be reduced by tying an ADC channel to the ground and
using this zero-measurement as an approximation to the offset. This solution reduces the number of
available analog pins. This problem is solved by using a 74ch4051 multiplexer. The needed analog
inputs for the Data acquisition system are 2 pins, therefore, a multiplexer with two channels would
be sufficient. However, this 74ch4051 has eight channels, this was intentionally chosen to provide
access to analog pins for the other two sub-groups and any other additional sensor in the future.

• The number of effective bits is 9 bits which means that the last lower bits are unreliable and noisy.
To reduce the noise without impacting the signal, a simple averaging of samples will be applied to
form a low pass Finite impulse response (FIR) digital filter. The simple moving average (SMA) will
be used to smooth the data and reduce the noise. Where n samples are averaged, when calculating
the next average, a new value comes into the sum and the oldest value drops out. The average of k
data-points is given by the equation:

𝑆𝑀𝐴𝑘 =
1
𝑘

𝑛

∑
𝑖=𝑛−𝑘+1

𝑃𝑖 (3.5)

When new value comes in:

𝑆𝑀𝐴𝑘 , 𝑛𝑒𝑥𝑡 = 𝑆𝑀𝐴𝑘 , 𝑝𝑟𝑒𝑣 +
1
𝑘 (𝑃𝑛+1 − 𝑃𝑛−𝑘+1) (3.6)

3.2. Components in the Teddy 14

3.2.3. Sensors connected to I2C
The I2C is a synchronous serial communication bus and uses bidirectional lines, Serial Data Line (SDA),
and Serial Clock Line (SCL), both lines are pulled up with internal resistors in the RP2040 chip. Also, the
chip provides the possibility to connect two I2C buses, each has three operation modes:

• Standard mode with data rates from 0 to 100 kb/s.

• Fast mode with data rates less than or equal to 400 kb/s.

• Fast mode plus with data rates less than or equal to 1000 kb/s.

The data acquisition system has two sensors connected to an I2C bus. The first one is a DS3231 real-time
module that keeps track of time and date which is important to know when an event occurs and to make
the distinction between day and night. The module operates in either the 24-hour or 12-hour format with
AM/PM indicators. The module has by default 0x68 address in hexadecimal, however, this address can be
changed by soldering some pins with each other leading to 8 different possible addresses. To read the
information from the buffer of the module, 7 bytes must be transmitted via the I2C. The datasheet stated
that the I2C timing should be 400 Kb/s. For each byte to be transmitted, 9 clock cycles are needed. The
data rate of the real-time module is:

𝐷𝑎𝑡𝑎 𝑅𝑎𝑡𝑒 𝐷𝑆3231 = 𝐷𝑎𝑡𝑎 𝑅𝑎𝑡𝑒 𝐼2𝐶
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑦𝑡𝑒𝑠 ∗ 9 𝑏𝑖𝑡𝑠 =

400𝑘𝐻𝑧
7 ∗ 9 = 6.35𝐾𝐻𝑧 = 0.157𝑚𝑠 (3.7)

The second sensor connected to the I2C bus is the MPU6050 gyroscope and accelerometer. This sensor
measures the movement of the Teddy in all directions and provides acceleration information of the move-
ments. It is used to detect when the Teddy is moved. The movement of the Teddy is interpreted as an
interaction between the Teddy and the senior. In the datasheet of the gyroscope+accelerometer, the I2C
timing was given to be 400 Kb/s. Each byte will require a 9 clock cycle, 8 clock cycle for one word, and
1 clock cycle for acknowledging the signal. To read out all values from the sensor, 15 bytes over the I2C
need to be transmitted. The data rate will be then:

𝐷𝑎𝑡𝑎 𝑅𝑎𝑡𝑒 𝑀𝑃𝑈6050 = 𝐷𝑎𝑡𝑎 𝑅𝑎𝑡𝑒 𝐼2𝐶
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑦𝑡𝑒𝑠 ∗ 9 𝑏𝑖𝑡𝑠 =

400𝑘𝐻𝑧
15 ∗ 9 = 2.96𝑘𝐻𝑧 = 0.3𝑚𝑠 (3.8)

Therefore, one reading of the MPU6050 will last 0.3 ms to transmit 15 bytes and one reading of DS3231
will last 0.157 ms to transmit 7 bytes.

For the data acquisition system, the second operation mode of the RP2040 will be used, since both
sensors require 400 kb/s.

3.2.4. Sensors connected to UART
The data acquisition system in the Teddy has one sensor connected via UART which is the SIM808 board.
The board contains a GPS engine, a GSMmodule to make calls or send & receive SMS, a Bluetooth module,
the ability to access the internet via GSM, and a Li-Ion battery charger, all integrated into one chip. The
choice was intentionally made such that other sub-group can also use the chip for communication or
charging. Using the GSM, the Teddy can send an SMS to alert the caregiver about dangerous situations.
The module is ultra-low power consumption where 1 mA is drawn in sleep mode and 24 mA in continuous
tracking mode. The GPS receiver is sensitive with 22 tracking and 66 acquisition channels. The default
baud rate of the module is 9600 Bd, since it is a digital output, the baud rate is the same as bits per
second. The SIM808 is programmed via the ”AT” commands which are a set of short text strings that can
be combined to produce commands for operations.

3.2.5. Data logging & storage
According to design requirement DA.9, one week’s worth of collected data must be able to be stored in the
Teddy such that no data is lost when there is no transmission of data possible between the Teddy and the
Base station. Therefore the needed storage space will be calculated. Since the three peripherals can not
operate in parallel, the average data rate 𝑅𝑎𝑣𝑔 is calculated using Equation 3.9. Then, using the average
data rate, the length of a week in seconds, and Equation 3.10 the total storage space required is calculated.

𝑅𝑎𝑣𝑔 =
(𝑅𝐴𝐷𝐶 + 𝑅𝐼2𝐶 + 𝑅𝑈𝐴𝑅𝑇)

3 = 500𝑘𝑏/𝑠 + 400𝑘𝑏/𝑠 + 9, 6𝑘𝑏/𝑠
3 = 303, 2𝑘𝑏/𝑠 (3.9)

3.2. Components in the Teddy 15

𝑆𝑡𝑜𝑟𝑎𝑔𝑒 𝑠𝑝𝑎𝑐𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 = 𝑅𝑎𝑣𝑔 ∗ 𝑡 = 303.2𝑘𝑏/𝑠 ∗ 604.800𝑠 = 183.375.360𝑘𝑏 = 22.9𝐺𝐵 (3.10)

The first remark is that the RP2040 can not store the data required to meet design requirement DA.9,
even when considering both flash and RAM. As calculated in Equation 3.10, the system will collect 22.9GB
of data per week at its maximum.

The second remark is that when a failure occurs in the wireless transmission between the Teddy and the
Base station, the data will be lost. In addition, wireless communication encounters some delays during
transmission. The wireless communication is done by the Human Interaction & Integration sub-group.
Lora is used as a wireless communication bus. Lora has a long-range, extremely low bandwidth of 7.8 to
500 kHz, with a link budget up to 154 dBm. The effective bit rate of the module is 0.018-37.5 kb/s which
depends on the used spreading factor 6-12. LoRa-based network encounters two types of delay, the first
one caused due to the transmission time of the data packet (time-on-air). The time-on-air depends on
the spreading factor (SF), the channel bandwidth, and payload size. For example, 50 bytes and a channel
bandwidth of 125 kHz will need 10 ms and 2.3s for SF 7 and SF 12, respectively. This time increase to
3.94s for a payload of 100 bytes for the same SF [62]. The second delay was caused due to the radio
duty cycle regulations. A typical duty cycle in Europa is 1%, which means that the nodes need to wait for
99% of the total time [62]. Per 10 ms, the data acquisition system will collect 379 bytes, and the wireless
communication can transmit 50 bytes. To solve these problems, multiple solutions can be used:

Reducing the sample rate
A solution to the problem of the shortage in storage space inside the Teddy would be to reduce the rate at
which each sensor samples the data. Since human-related activities do not change rapidly for seniors with
dementia, the sampling rate may be reduced. This would reduce 𝑅𝑎𝑣𝑔 and therefore the storage space
required. This is however not acceptable for all sensors. According to the datasheet, the microphone
can detect frequencies up to 20kHz. To be able to detect human voice, which has its peaks at 8kHz,
according to the Nyquist theorem, a sample rate of 16kHz is required. This means the sampling rate of the
microphone can be reduced to 16kHz. Also, when the Teddy moves, the accelerometer will output data
with 𝑅𝐼2𝐶 = 400𝑘𝑏/𝑠 data rate as mentioned in Section 3.2.3. This is a property of the module and can
not be altered. The frequency at which the Teddy will be moved is determined by the user and should thus
be expected to be all the time for abundance.

The idea of this solution is to sample at 5 Hz for gas and smoke detection. For acceleration and sound,
sampling at the highest rate and storing only differential values. This solution may solve the problem but
it has ambiguity since it is unknown for how long the Teddy will be moving or how long a sound will be
generated in the room.

Using an external SD card memory
As mentioned in Subsection 3.2.5, the wireless communication may encounter difficulties in handling the
amount of collected data and there is ambiguity with lowering the sample rate. An alternative solution
could be to store the data on an external SD card and give wireless communication more freedom on
transmission slots time. Using a 32 GB SD card will give the system the ability to collect data with no loss
for more than one week. Therefore, no intervention for more than one week as mentioned in the design
requirements DA.09 from section 2.3. This solution will be used since it meets this design requirement
and reduces the ambiguity in the system.

The SD card is connected to the RP204 via the SPI protocol. The SPI protocol has a default baud rate of
9600 Bd similar to the UART. Each transmission requires 10 bits (1 bit for start, 1 bit for end, and 8 bits for
a word or byte). The LoRa network is also connected to the SPI protocol, therefore, the SPI should use the
slave selector pins where two bits are needed for this application.

3.2.6. System flowchart
In Figure 3.2, the flowchart of the system can be seen. The data acquisition system has the following
events: measurements, storing, Acquire GPS, and sending location. Since the data acquisition system and
Human Interaction & integration will operate on the same microprocessor, it is important to take their
system into account when designing the flowchart. Human Interaction & Integration system has two
events, namely, interaction (Breathing and moving tail), and data transmission.

3.3. Components in the Base station 16

The acknowledgment signal from the communication system could be used as an indication for when
the location should be acquired. Losing the connection could mean that the teddy is outside. In the
measurement event, one measurement will be performed (sound, gas, smoke, accelerometer, or time) and
then stored during the store event such that the interaction event is checked fast and regularly. In the
Transmit event, the data are transmitted from the Teddy to the Base station, the decision on whether the
transmission is ready or not is done by the Human Interaction and Integration sub-group.

Figure 3.2: The Teddy flowchart system

3.3. Components in the Base station
This section will describe the components of the Base station of the Smart Teddy system. First, the sensor
that acquires the data will be discussed in Subsection 3.3.1, following by the processor where the data is
processed in Subsection 3.3.2. Lastly, the storage solution will be elaborated on in Subsection 3.3.3.

3.3.1. mmWave sensor
The mmWave sensor owes its name to the wavelength used, achieved by operating in a frequency range
ranging from 60 up to 64 GHz. The main advantage of such a short wavelength, between 4.6 and 5.0mm,
is the ability to do the distance, velocity, and angle measurement with millimeter accuracy. The basics of
the principles used to implement measurements with the mmWave sensor are elaborated on in Appendix
C.1.

The selected mmWave sensor is an IWR6843AOP antenna on the package (AOP) from Texas Instruments.
This sensor is selected because it has advantages over the alternatives also provided by Texas Instruments.
The comparison between possible sensors can be seen in table 3.6. Using the AOP simplifies the design
and requires minimal RF expertise. The sensor has 4 receivers (RX), and 3 transmitters (TX) with 120
azimuth field of view (FoV) and 120 elevation FoV integrated into one chip. In addition to that, the sensor
has a build-in DSP (C674c) for advanced signal processing, a hardware accelerator for FFT (Fast Fourier
Transform), filtering, and CFAR (constant false alarm rate) processing.

3.3. Components in the Base station 17

Table 3.6: Features of IWR6843AOP compared with three different mmWave sensors

Feature IWR6843AOP IWR6843 IWR1843 IWR1642 IWR1443
Antenna on Package (AOP) yes - - - -
Number of receiver 4 4 4 4 4
Number of transmitter 3 3 3 2 3
RF frequency range 60 to 64 GHz 60 to 64 GHz 76 to 81 GHz 76 to 81 GHz 76 to 81 GHz
On-chip memory 1.75 MB 1.74MB 2 MB 576 KB
Max real sampling rate (Msps) 25 25 25 12.5 12.5
Micro-controller (R4F) yes yes yes yes yes
Digital signal processing (C674x) yes yes yes yes No
Access to point cloud via USB mmWaveBoost mmWaveBoost mmWaveBoost mmWaveBoost

The sensor can process the data from front-end radar and provide positional data about targets (people),
such as position, velocity, and angle. The processing chain starts with the analog output of front-end (FE)
radar, these points are digitized utilizing an ADC. The ADC samples are used as an input for the detection
process, in this phase, the range, azimuth angle, elevation angle, radial velocity, and SNR (Signal-to-noise
ratio) values are detected. A collection of these measurement points is called point cloud data. The sensor
uses the point cloud data to localize targets (people) in the localization phase which uses a 3D contact
acceleration model. The algorithm of processing the data to track people consists of the following steps
prediction, association, updating, and maintenance. A detailed explanation of the algorithm can be found
in Appendix C.

The data acquired from the sensor has TLV (Type, Length, Value) protocol. Each TLV-packet has a fixed
header (8 bytes) followed by a TLV-specific payload. The header has information about the type and the
length. Each TLV can be one of three possible types:

• Point Cloud TLV where information about range, azimuth, Doppler, and SNR ratio are provided.

• Target List TLV where information about the number of detected targets is provided.

• Target structure TLV where 3D positional information about the target are provided (position, veloc-
ity, and acceleration)

Collecting the TLV data will be sufficient to meet design requirements DA.01, DA.02, DA.03, DA.04,
DA.05, DA.06, and DA.07. The next paragraphs will describe the two possible options to collect the data.

Using pre-made solution
Texas Instruments, the manufacturer of the chosen mmWave sensor, provided a graphical user interface
or GUI supported with Python and C codes with the sensor. However, this GUI is meant to operate on a
Windows-based PC, while the operating system of the mini PC in the Base station is Linux-based. These
two operating systems have different architectures since Windows has 86x architecture and Linux has ARM
architecture. This solution will be used for verification of the capabilities of the sensor, however, storing
the measured data is not possible.

Developing the code
Another way to collect the data is establishing a UART communication between the mmWave sensor and
the mini PC. First, the sensor needs to be configured via the UART port, before the sensor starts mea-
suring and sending the data. Then, a code should be written to receive the TLV data and store the data
appropriately.

Since the first solution provides no way to log and store the data, a combination of the pre-made solution
and the development of code is used. The basic algorithms and working principles of the delivered GUI
will be implemented in a self-written code that supports the saving of the data. This will be discussed in
Section 3.3.3.

3.3.2. The processor
The mmWave sensor has a powerful micro-controller (R4F) that has up to 6 ADC, 2 SPI ports, 2 UARTs,
1 CAN-FD interface, I2C, and GPIO. This micro-controller is used to process the data in the sensor and is
programmed in C. However, the previous prototypes used a Raspberry Pi 3B+ processor and implemented

3.3. Components in the Base station 18

algorithms in Python3 language. Comparing in Table 3.7, it is evident that newer and revised Raspberry
Pi 4 is an improvement over the previous Pi 3B+ with a faster CPU, more RAM, and better connectivity.
Therefore, the updated Raspberry Pi 4 will be used as the processor in the Base station. In doing so, the
design is such, that the previously developed algorithms can still be implemented in the Base station.

Table 3.7: Features of Raspberry Pi 4 compared with the Raspberry Pi 3B+

Feature Raspberry Pi 4 Raspberry Pi 3B+
CPU Broadcom BCM2711 at 1.5 GHz Broadcom BCM 2837Bo, , at 1.4GHz

Quad-core Cortex-A72 (ARMv8) Quad-core Cortex-A53 (ARMv8)
GPU Broadcom VideoCore VI Broadcom VideoCore VI
RAM 1, 2 or 4Gb 1GB
Flash micro SD micro SD
GPIO 40 40
USB 2x USB 3.0 2x USB 2.0 4x USB 2.0
Ethernet Gigabit Gigabit over USB 2.0
Bluetooth 5.0 4.2
Current consumption 3 A 2.5 A

3.3.3. Storage
The mmWave sensor is connected via UART to the processor with a minimal baud rate of 921600 Bd. This
means that the sensor outputs data with a rate of 921600 bits/s since the signal is digital and thus one
data unit is one bit. The amount of data storage required per day is calculated using Equation 3.12. When
a decision is made for the required amount of time the system must be able to capture data, this value
can be used to determine the required storage space. Also, in the following two paragraphs, two storage
solutions are provided that can be implemented for storage.

𝑅 = 921600𝐵𝑑
1 = 921.6 𝑘𝑏/𝑠 (3.11)

𝑆𝑡𝑜𝑟𝑎𝑔𝑒 𝑠𝑝𝑎𝑐𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑/𝑑𝑎𝑦 = 𝑅 ∗ 𝑡 = 921.6𝑘𝑏/𝑠 ∗ 86400𝑠 = 79.626.240𝑘𝑏/𝑑𝑎𝑦 = 9, 95𝐺𝐵/𝑑𝑎𝑦
(3.12)

Cloud storage
The first storage solution considered is cloud storage. Cloud storage is a way of storing data on a server
managed by a service company. A reoccurring fee is paid to make use of such storage and should be
accessed via an internet connection. The amount of data that can be stored on such a server is practically
endless, as much as the user is willing to pay. The downside of this solution is the burden it has on data
security and thus the privacy of the senior. The cloud server has to be accessed via an internet connection,
which creates the possibility of unauthorized access by third parties. In previous prototypes, the WiFi
module of the Raspberry Pi was even disabled because of this risk.

Local storage
A solution that greatly reduced the risk of unauthorized access is local storage. Local storage can only
be accessed via a physical connection to the device or removal of the storage device. For the Smart
Teddy system, a USB Flash drive is the most suitable option considering the connectivity provided by the
Raspberry Pi as seen in Table 3.7. A USB 3.0 connection will be used to connect a USB flash drive where the
data acquired by the sensors in the Teddy and by the mmWave sensor in the Base station will be stored.

4
Implementation and Verification

In this chapter, the implementation of the design presented in Chapter 3 will be discussed. The sensors
implemented in the Teddy and the Base station will be discussed in Section 4.1 and Section 4.2 respectively.
The code used is found in Appendix D.

4.1. Teddy implementation
In the Teddy, all sensors are connected to the RP2040 processor. An overview of the system is given in
Figure 4.1. This processor can be programmed in C/C++, Micro-python, Circuit-python, or Arduino IDE
languages. The selection of the language is done by the Human Interaction and Integration subgroup.
The chosen language is Micro-python. However, for the sensors used in the Data Acquisition system, no
libraries were found to support the selected sensors. A library is a collection of code that can be used to
control a sensor using functions. Libraries for other languages were however found and translated to work
in Micro-python. In the following subsections, the implementation of each component will be discussed
per communication protocol. First, the sensors connected to the analog to digital converter are discussed
in Subsection 4.1.1. Following, the sensors connected to the I2C bus will be discussed in Subsection 4.1.2.
Then, the GPS and GSM connected via UART will be discussed in 4.1.3. The storage, flowchart and filter
implementation will be discussed in Subsection 4.1.4 and 4.1.5. Lastly, the power consumption will be
discussed in Subsection 4.1.6.

Figure 4.1: Overview of the data acquisition system inside the Teddy.

4.1.1. Implementation of sensors connected to ADC
As mentioned in the detailed design chapter, Chapter 3.2.2, two sensors are connected to the ADC, namely,
sound, and gas sensors. During the implementation, it was observed that the amount of quantization
levels of the ADC is 65536 instead of the expected 4096, even though the ADC has 12 bits and not 16. The
74ch4051 multiplexer uses a selection digital signal to select one of the two sensors. The implementation

19

4.1. Teddy implementation 20

results can be seen in Figure 4.2. The green line is the sound measurement result when playing a song in
the room. The sound module output is biased to 1.2 V. The smoke sensor output fluctuated between 0.038
- 0.039 ppm (Parts per Million) in a normal environment. When burning a paper next to the gas sensor,
the sensor output increased to 0.062 ppm. The CO measurement was stable at around 0.01 ppm. Testing
the change in CO measurements was not achieved due to safety reasons.

Figure 4.2: Test results of the sound- and gas sensor

Concluding, the sensors connected to the ADC work as expected and can provide the data required
to meet design requirements DA.13 & DA.10. The multiplexer switches between the two ADC channels
without difficulty. The CO sensor could not be verifiedwith high concentrations of CO, but themeasurement
succeeded in normal conditions.

4.1.2. Implementation of sensors connected to I2C
The Data Acquisition system has two sensors connected to the I2C bus. The first one being the Gyroscope
+ Accelerometer, the second one being the Real-Time module. The two modules have the same address
which is 0x68 in hexadecimal. Fortunately, the Gyroscope has an option to change the address to 0x69 by
grounding one of the pins. As stated in 3.2.3, the used I2C frequency is 400 kHz. The test result can be seen
in Figure 4.3 where the sensor is connected and randomly moved. The blue, red, and green lines represent
x, y, and z directions respectively. It turns out that the sensor is also able to measure the temperature in
the room. The result of temperature measurements can be also seen in Figure 4.3 the purple line.

Figure 4.3: Results of testing the Gyroscope while moving the sensor in random directions. The blue, red, brown
lines are the x,y, and z respectively. The purple line is the temperature in the room 29.2 degree

The real-time module is also connected to the I2C bus and works as expected. The module accepts an
external battery such that it keeps track of the time when the main power supply is interrupted. In addition,
the current time should be written to the start register 0x00 in the first time of using the module. In Figure
4.4, the result of implementing the module can be seen. The blue line represents the year. Orange, green,
and red lines represent seconds, minutes, and hours respectively.

4.1. Teddy implementation 21

Figure 4.4: Results of testing real-time module while the Gyroscope is operating. The blue line is the year we are
now 2021. Orange, green, and red colors are seconds, minutes, and hours respectively

To conclude, both the gyroscope + accelerometer and real-time module work properly with the real-
time is tracked and Teddy’s movements are detected. Therefore, design requirements DA.08 and DA.14 are
met.

4.1.3. Implementation of sensors connected to UART
The SIM808 module of the Data Acquisition system is connected to the RP2040 via UART. The module is
programmed via AT commands as mentioned in Section 3.2.4. For this module, no libraries were found
to program the chip. Therefore, a code was written to acquire the location. In short, the code sends
the required commands via the UART port and receives the results. To acquire the location, two steps
should be done according to the datasheet. First, turning the engine on by sending the command ”AT +
CGPSPWR = 1”, and second, acquire the information via the command ”AT+CGNSINF”. The last command
will return longitude, latitude, altitude, UTC, time to first fix, satellites in view of fix, speed over ground,
and course over ground. However, for Google map localization, only latitude and longitude are needed.
These two are extracted from the received message by converting the received bytes into a string and
then searching for the third, fourth, and fifth commas. Where longitude is between the third and fourth
comma, and latitude is between the fourth and fifth comma. The result of implementing the GPS can
be seen in Figure 4.5. Where the longitude and latitude are inserted in a readable link for the browser:
”http://www,google.com/maps/place/longitude+ ”/ ” + latitude”. The accuracy with respect to Google’s
estimation of the location is 26 m. In the datasheet of SIM808, it is given that the accuracy is between
< 5 m. However, when comparing to the actual location in the building, the GPS shows a location more
accurate than the Google estimation.

Figure 4.5: Results of testing the GPS. The red pointer is the location
obtained from SIM808, and blue dot point is the google estimation of
the location. The difference between the two is 26 m according to

google maps.

The GSM module of the SIM808 was
tested by sending an SMS from the mod-
ule to another phone number with the
location as an content of the message.
The test is done also by sending AT
commands to the chip. The results of
sending the location via SMS can be
seen in Figure 4.5, where a screenshot
is made from the Mobile-phone that re-
ceived the message, the message was
received in less than three seconds.

To conclude, both the GPS and the
GSM module work properly with the
ability to get the location of the Teddy
and the ability to send the location via SMS. Therefore, design requirements DA.11 and DA.15 are met.

4.1.4. Storage and data logging implementation
An SD card of 32 GB was used to store the collected data in the Teddy, where only differential data was
stored. In Figure 4.6, the result of the implementation can be seen. The data was stored on the SD card,

4.1. Teddy implementation 22

the SD card was plugged into a PC to plot the data in MATLAB. The collected data were the concentration
of carbon monoxide, movement (position and acceleration), temperature, sound, and some percentage in
the room. During the test, a song was played in the room in different time slots, the board was moved
randomly, and a paper was burned in the room. The test was performed for 7 minutes. In the mentioned
figure, it can be seen that the temperature, shown with the blue line, was constant at around 30∘ during
the recording time, which was 7 minutes. The four segments in Figure 4.6 represent the randommovement
of the board. The sound is not clear to see because the song was played while moving the board.

The storage of the system works as expected and is able to store data from all sensors in the system. The
used SD card gives the ability to store data for more than one week. Therefore design requirement DA.09 is
met. During the integration with other subsystems, attention should be paid to the selection pin. Because
the wireless communication LoRa also uses the same SPI protocol. In addition, there are no available pins
left in the system to be used for two modules, therefore, the selection pin of the analog sensors will be
used as a selector for the SPI protocol. When the pin is digitally low, the slave will be selected.

13:49 13:50 13:51 13:52 13:53 13:54 13:55 13:56

Real-Time Jun 08, 2021

-100

-50

0

50

100

150

V
a
lu

e
s

Plot of collected data from SD card

Co

Gx

Gy

Gz

Gyrox

Gyroy

Gyroz

Temperature

Sound

CO

Smoke

Figure 4.6: Results of testing the storage and data logging implementation where the collected data are plotted in
MATLAB. The x-axis is the real-time axes where data were collected for 7 minutes. The y-axis is the value of each
sensor. During the 7 minutes, music were played, the board was randomly moved, and a paper was burned in the

room

4.1.5. Flowchart and filter implementation
The flowchart is implemented as explained in Figure 3.2. The interaction and transmission states are
replaced by a delay. The working of the flowchart is verified by printing the state in the serial plotter, and
as a result, the flowchart function properly.

The filter was not implemented because some data may be lost during filtering which may be important
for the processing in the next prototype. This decision was also based on an interview with an engineer
from the TU-Delft: Jeroen Bastemeijer. Where he stated that a data acquisition system should only collect
data and filtering should be done in the processing stage.

4.1.6. Power consumption
In Table 4.1, the power consumption of components in the Teddy can be seen. The design requirement
DA.12 from Section 2.3 states that the maximal power consumption should be 5 W. However, the designed
system consumes approximately 2.3 W. Therefore, the design requirement DA.12 is met.

4.2. Base station implementation 23

Table 4.1: Power consumption of the data acquisition system inside the Teddy

Component average current(mA) operating voltage(V) average power (mW)
Raspberry Pi Pico 300 5.0 1500
gas MQ9 70 5.0 350
sd-card module 80 3.3 264
GPS GSM SIM808 24 4.0 96
Microphone 3 5.0 15
accelero + gyro MPU-600 3.9 3.3 12.9
real time module 0.3 5.0 1.5
total 2239.4

4.2. Base station implementation
The Base station consists of a mini-computer and the mmWave sensor. The mini-computer is a Raspberry
Pi 4 which is programmed in Python3 language, the code can be found in Appendix D. The Raspberry
Pi will be used for processing the data and applying algorithms in the next prototype. In the following
sections, the implementation of the Base-station will be discussed. First the test of the mmWave sensor
on windows operating system in section 4.2.1. Second, the communication between Raspberry Pi 4 and
mmWave sensor in section 4.2.2. Finally, the implementation of storage and data logging in the Base-
station in section 4.2.3.

4.2.1. Testing the mmWave sensor
Before starting with the implementation of the Base station, it was important to test the mmWave sensor
to understand how the sensor works. The Texas Instruments provides a GUI (Graphical user interface) to
visualize the collected data from the sensor with build-in algorithms to count people in the room and
detect falls. The results of testing the sensor on a Windows operating system can be seen in Figure 4.7.
The sensor can detect if a person is sitting, standing, or falling. On the up right side of the figure, it
can be seen that the sensor detects one standing person. The sensor also provides information about
instantaneous, average, and Delta heights. These heights are plotted in Figure 4.7 on the right-hand side.
The position, velocity, and acceleration of the person are plotted in the GUI, these are the green points
in the middle of Figure 4.7. The GUI also provides information about the number of frames, average plot
time, and the number of points. The sensor functions properly and collects the needed data to meet design
requirements DA.01, DA.02, DA.03, DA.04, DA.05, DA.06, DA.07. Also, the maximum detection range was
10m, which is satisfactory to meet design requirement DA.16. To implement the Base station, transmitting
the data from the mmWave sensor to Raspberry Pi 4 is needed. The storage of this data is discussed in the
following sections.

Figure 4.7: Results of testing the mmWave sensor using the provided GUI from Texas Instruments.

4.2.2. Communication between mmWave sensor and Raspberry Pi 4
The first challenge of establishing communication between the mmWave sensor and the Raspberry Pi
was the operating systems used. The operating system the GUI from Texas Instruments was made for is
Windows, where the Raspberry Pi 4 works on a Linux-based operating system called Raspberry Pi OS. The

4.3. The prototype 24

second challenge was using the QT-5 creator. This is a GUI software that can generate binary code that
works on ARM architecture generated from 86x code.

The communication between the mmWave sensor and the Raspberry Pi 4 was achieved using the Uni-
versal Serial Bus or USB of the Raspberry Pi 4. Using the UART protocol, a configuration- and a data bus
can be opened. The configuration bus is used to configure the board such that variables such as chirp time
are set according to the desired measurements. The data bus is opened when measurements are being
done. A code was written in Python3 that implements this protocol. The data was received correctly and
was stored in a CSV file format. An example of the received data in hex TLV format can be seen in Appendix
C.3

4.2.3. Storage implementation
Due to time- and budget constraints, a 4GB USB flash drive was used to store the collected data in the Base
station. The TLV data was stored including the current time to every sample collected. The data will not
be processed any further, as Jeroen Bastemeijer suggested, there is a risk that in processing some crucial
data might get lost. The raw data can be used in the Texas Instrument software to generate the location,
height, velocity, and angle of the detected object.

4.3. The prototype
During the implementation, the system was tested on a breadboard using jumper wires. For the prototype,
a PCB seen in Figure 4.8 was designed, however, this PCB was not ordered due to time- and budget limita-
tions. The PCB was electrically checked to have no connection errors and all units are designed according
to the datasheets of the components. The schematic of the PCB can be found in Appendix E. However, to
reduce the probability of connection errors during testing, a Breadboard PCB was used as seen in Figure
4.9. With this solution, design requirements G.01 and G.02 were met.

For integration with the other sub-groups, the Human Interaction & Integration designed and ordered a
PCB where the modules can be mounted. This was however not finished at the time of writing this thesis.

Figure 4.8: The PCB of the Data acquisition system in the
Teddy

Figure 4.9: Implementation of the Data acquisition
system in the Teddy

4.4. Program of design requirements check
After implementing the design from Chapter 3, the functional and non-functional design requirements
that were met are listed in Table 4.2.

Table 4.2: Functional and non-functional design requirements that were met.

Requirement DA.01 DA.02 DA.03 DA.04 DA.05 DA.06 DA.07 DA.08 DA.09 DA.10 DA.11 DA.12 DA.13 DA.14 DA.15 DA.16 G.01 G.02 G.03
Check ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

5
Conclusion and future work

This thesis aimed to design a data acquisition system that firstly, collects data about seniors’ dementia-
related activities such as wandering, social contact, sleep rhythm, and emotion, and secondly, detects
dangerous situations such as falling, and the presence of a high concentration of Carbon monoxide gas.

In this thesis, we were able to design the data acquisition system by following the following procedure.
Firstly, a literature study was conducted in the field of dementia to understand the indicators of dementia
and to select what indicators should be measured. After that, the state of art was analyzed in Chapter 1 to
know what has been done before regarding the measurement of indicators. Having done that, the design
requirements were set in Chapter 2. In Chapter 3, the system was designed according to the requirements.
Finally, the system was implemented and verified to meet all design requirements in Chapter 4.

Recommendations
• After integration with other sub-groups, the sound data did not achieve the desired sample rate due
to the increase of complexity in the system. As a solution, the sound module could operate on the
second core of the micro-processor in parallel to the system. This was not implemented due to time
constraints. In addition, for efficient storage of the sound data, the data can be compressed in MP3
format.

• Acquiring the GPS location when the communication is lost between the Teddy and Base station
raises an ethical question about the privacy and autonomy of the senior. When a senior with dementia
leaves the house, this is not always wandering. Therefore, this also should be included in the ethical
study of the next prototype.

• After integrating all sub-systems, a state machine was needed to automate the system reliably. In
addition, an error detection algorithm should be included in the state machine such that the system
can solve issues automatically and report them. Finally, a watchdog timer can be used to reset the
system in case of a crashed program.

Future work
First, an expert in dementia and an expert in digital signal processing are needed for further development
of the product. Where the dementia expert will be able to interpret the collected data concerning dementia
progress, the expert in digital signal processing can design and implement algorithms from the collected
data based on the result from the dementia expert.

Second, an ethical study is needed regarding human values and a deception concerns. Besides the
technical and economical approaches, a human values approach regarding privacy, informed consent, au-
tonomy, and psychological & physical well-being of seniors should be studied. This ensures a responsible
innovation and avoids slow adoption, legal, and ethical issues. The deception concern originates from the
fact that seniors could be led to believe that the Teddy is a real pet which is false.

25

References

[1] “A model for quality of life measures in patients with dementia: Lawron’s next step”. English. In: Dementia and
Geriatric Cognitive Disorders 18.2 (2004), pp. 159–164. ISSN: 1420-8008. DOI: 10.1159/000079196.

[2] Chris Adams. URL: https://www.modernanalyst.com/Careers/InterviewQuestions/tabid/
128/ID/1168/What­are­the­four­fundamental­methods­of­requirement­verification.
aspx#:~:text=The%5C%20four%5C%20fundamental%5C%20methods%5C%20of%5C%20verification%
5C%20are%5C%20Inspection%5C%2C%5C%20Demonstration%5C%2C%5C%20Test, or%5C%
20system%5C%20with%5C%20increasing%5C%20rigor..

[3] ADI - Dementia statistics. URL: https://www.alzint.org/about/dementia­ facts­ figures/
dementia­statistics.

[4] Mubarak A. Alanazi et al. “Machine Learning Models for Human Fall Detection using Millimeter Wave Sensor”.
In: 2021 55th Annual Conference on Information Sciences and Systems (CISS). 2021, pp. 1–5. DOI: 10.1109/
CISS50987.2021.9400259.

[5] Jack Andrews et al. “A Motion Induced Passive Infrared (PIR) Sensor for Stationary Human Occupancy Detec-
tion”. In: 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS). IEEE, Apr. 2020. DOI: 10.1109/
plans46316.2020.9109909. URL: https://doi.org/10.1109/plans46316.2020.9109909.

[6] Alireza Borhani and Matthias Pätzold. “A Non-Stationary Channel Model for the Development of Non-Wearable
Radio Fall Detection Systems”. In: IEEE Transactions on Wireless Communications 17.11 (2018), pp. 7718–7730.
DOI: 10.1109/TWC.2018.2869782.

[7] M. Brod et al. “Conceptualization and Measurement of Quality of Life in Dementia: The Dementia Quality of Life
Instrument (DQoL)”. In: The Gerontologist 39.1 (1999), pp. 25–36. ISSN: 0016-9013. DOI: 10.1093/geront/
39.1.25. URL: https://doi.org/10.1093/geront/39.1.25.

[8] Atul Chaudhary et al. “Sensor Signals-Based Early Dementia Detection System Using Travel Pattern Classifica-
tion”. In: IEEE Sensors Journal 20.23 (Dec. 2020), pp. 14474–14481. DOI: 10.1109/jsen.2020.3008063.
URL: https://doi.org/10.1109/jsen.2020.3008063.

[9] Zhangjie Chen and Ya Wang. “Infrared–ultrasonic sensor fusion for support vector machine–based fall detec-
tion”. In: Journal of Intelligent Material Systems and Structures 29.9 (2018), pp. 2027–2039. ISSN: 1045-389X. DOI:
10.1177/1045389x18758183. URL: https://doi.org/10.1177/1045389x18758183.

[10] Keum San Chun, Sarnab Bhattacharya, and Edison Thomaz. “Detecting Eating Episodes by Tracking Jawbone
Movements with a Non-Contact Wearable Sensor”. In: 2.1 (Mar. 2018). DOI: 10.1145/3191736. URL: https:
//doi.org/10.1145/3191736.

[11] Gabriele Cipriani et al. “Wandering and dementia”. In: Psychogeriatrics 14.2 (2014), pp. 135–142. ISSN: 1346-
3500. DOI: 10.1111/psyg.12044. URL: https://dx.doi.org/10.1111/psyg.12044.

[12] James K. Cooper and Dan Mungas. “Risk Factor and Behavioral Differences Between Vascular and Alzheimer’s
Dementias: The Pathway to End-Stage Disease”. In: Journal of Geriatric Psychiatry and Neurology 6.1 (Jan. 1993),
pp. 29–33. DOI:10.1177/002383099300600105. URL:https://doi.org/10.1177/002383099300600105.

[13] P. T. M. van Dijk et al. “Falls in Dementia Patients”. In: The Gerontologist 33.2 (Apr. 1993), pp. 200–204. DOI:
10.1093/geront/33.2.200. URL: https://doi.org/10.1093/geront/33.2.200.

[14] Carol Van Doorn et al. “Dementia as a Risk Factor for Falls and Fall Injuries Among Nursing Home Residents”.
In: Journal of the American Geriatrics Society 51.9 (Sept. 2003), pp. 1213–1218. DOI: 10.1046/j.1532­
5415.2003.51404.x. URL: https://doi.org/10.1046/j.1532­5415.2003.51404.x.

[15] Phil Gehrman et al. “The relationship between dementia severity and rest/activity circadian rhythms”. eng. In:
Neuropsychiatric disease and treatment 1.2 (June 2005). PMC2413196[pmcid], pp. 155–163. ISSN: 1176-6328.
DOI: 10.2147/nedt.1.2.155.61043. URL: https://doi.org/10.2147/nedt.1.2.155.61043.

[16] Clarissa M Giebel, Caroline Sutcliffe, and David Challis. “Activities of daily living and quality of life across dif-
ferent stages of dementia: a UK study”. In: Aging & Mental Health 19.1 (2015), pp. 63–71.

[17] Munkhjargal Gochoo et al. “Device-Free Non-Privacy Invasive Classification of Elderly Travel Patterns in A Smart
House Using PIR Sensors and DCNN”. In: IEEE Sensors Journal (2017), pp. 1–1. DOI: 10.1109/jsen.2017.
2771287. URL: https://doi.org/10.1109/jsen.2017.2771287.

[18] Christian Gross et al. “Towards an Occupancy Count Functionality for Smart Buildings - An Industrial Perspec-
tive”. In: 2020 2nd IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES).
IEEE, Sept. 2020. DOI: 10.1109/ieses45645.2020.9210641. URL: https://doi.org/10.1109/
ieses45645.2020.9210641.

26

https://doi.org/10.1159/000079196
https://www.modernanalyst.com/Careers/InterviewQuestions/tabid/128/ID/1168/What-are-the-four-fundamental-methods-of-requirement-verification.aspx#:~:text=The%5C%20four%5C%20fundamental%5C%20methods%5C%20of%5C%20verification%5C%20are%5C%20Inspection%5C%2C%5C%20Demonstration%5C%2C%5C%20Test,or%5C%20system%5C%20with%5C%20increasing%5C%20rigor.
https://www.modernanalyst.com/Careers/InterviewQuestions/tabid/128/ID/1168/What-are-the-four-fundamental-methods-of-requirement-verification.aspx#:~:text=The%5C%20four%5C%20fundamental%5C%20methods%5C%20of%5C%20verification%5C%20are%5C%20Inspection%5C%2C%5C%20Demonstration%5C%2C%5C%20Test,or%5C%20system%5C%20with%5C%20increasing%5C%20rigor.
https://www.modernanalyst.com/Careers/InterviewQuestions/tabid/128/ID/1168/What-are-the-four-fundamental-methods-of-requirement-verification.aspx#:~:text=The%5C%20four%5C%20fundamental%5C%20methods%5C%20of%5C%20verification%5C%20are%5C%20Inspection%5C%2C%5C%20Demonstration%5C%2C%5C%20Test,or%5C%20system%5C%20with%5C%20increasing%5C%20rigor.
https://www.modernanalyst.com/Careers/InterviewQuestions/tabid/128/ID/1168/What-are-the-four-fundamental-methods-of-requirement-verification.aspx#:~:text=The%5C%20four%5C%20fundamental%5C%20methods%5C%20of%5C%20verification%5C%20are%5C%20Inspection%5C%2C%5C%20Demonstration%5C%2C%5C%20Test,or%5C%20system%5C%20with%5C%20increasing%5C%20rigor.
https://www.modernanalyst.com/Careers/InterviewQuestions/tabid/128/ID/1168/What-are-the-four-fundamental-methods-of-requirement-verification.aspx#:~:text=The%5C%20four%5C%20fundamental%5C%20methods%5C%20of%5C%20verification%5C%20are%5C%20Inspection%5C%2C%5C%20Demonstration%5C%2C%5C%20Test,or%5C%20system%5C%20with%5C%20increasing%5C%20rigor.
https://www.alzint.org/about/dementia-facts-figures/dementia-statistics
https://www.alzint.org/about/dementia-facts-figures/dementia-statistics
https://doi.org/10.1109/CISS50987.2021.9400259
https://doi.org/10.1109/CISS50987.2021.9400259
https://doi.org/10.1109/plans46316.2020.9109909
https://doi.org/10.1109/plans46316.2020.9109909
https://doi.org/10.1109/plans46316.2020.9109909
https://doi.org/10.1109/TWC.2018.2869782
https://doi.org/10.1093/geront/39.1.25
https://doi.org/10.1093/geront/39.1.25
https://doi.org/10.1093/geront/39.1.25
https://doi.org/10.1109/jsen.2020.3008063
https://doi.org/10.1109/jsen.2020.3008063
https://doi.org/10.1177/1045389x18758183
https://doi.org/10.1177/1045389x18758183
https://doi.org/10.1145/3191736
https://doi.org/10.1145/3191736
https://doi.org/10.1145/3191736
https://doi.org/10.1111/psyg.12044
https://dx.doi.org/10.1111/psyg.12044
https://doi.org/10.1177/002383099300600105
https://doi.org/10.1177/002383099300600105
https://doi.org/10.1093/geront/33.2.200
https://doi.org/10.1093/geront/33.2.200
https://doi.org/10.1046/j.1532-5415.2003.51404.x
https://doi.org/10.1046/j.1532-5415.2003.51404.x
https://doi.org/10.1046/j.1532-5415.2003.51404.x
https://doi.org/10.2147/nedt.1.2.155.61043
https://doi.org/10.2147/nedt.1.2.155.61043
https://doi.org/10.1109/jsen.2017.2771287
https://doi.org/10.1109/jsen.2017.2771287
https://doi.org/10.1109/jsen.2017.2771287
https://doi.org/10.1109/ieses45645.2020.9210641
https://doi.org/10.1109/ieses45645.2020.9210641
https://doi.org/10.1109/ieses45645.2020.9210641

REFERENCES 27

[19] Julian Hirt et al. “Social Robot Interventions for People with Dementia: A Systematic Review on Effects and
Quality of Reporting”. In: Journal of Alzheimer’s Disease 79 (2021). 2, pp. 773–792. ISSN: 1875-8908. DOI: 10.
3233/JAD­200347. URL: https://doi.org/10.3233/JAD­200347.

[20] Jan Homolak et al. “Circadian Rhythm and Alzheimer’s Disease”. eng. In: Medical sciences (Basel, Switzerland) 6.3
(June 2018). medsci6030052[PII], p. 52. ISSN: 2076-3271. DOI: 10.3390/medsci6030052. URL: https:
//doi.org/10.3390/medsci6030052.

[21] Xu Huang et al. “Indoor Detection and Tracking of People Using mmWave Sensor”. In: Journal of Sensors 2021
(Feb. 2021). Ed. by Bin Gao, pp. 1–14. DOI: 10.1155/2021/6657709. URL: https://doi.org/10.
1155/2021/6657709.

[22] Thien Huynh-The et al. “Hierarchical topic modeling with pose-transition feature for action recognition using
3D skeleton data”. In: Information Sciences 444 (May 2018), pp. 20–35. DOI: 10.1016/j.ins.2018.02.042.
URL: https://doi.org/10.1016/j.ins.2018.02.042.

[23] Marcello Ienca et al. “Social and Assistive Robotics in Dementia Care: Ethical Recommendations for Research
and Practice”. In: International Journal of Social Robotics 8.4 (Aug. 2016), pp. 565–573. ISSN: 1875-4805. DOI:
10.1007/s12369­016­0366­7. URL: https://doi.org/10.1007/s12369­016­0366­7.

[24] Ying-Ling Jao et al. “Association between social interaction and affect in nursing home residents with dementia”.
In: Aging & Mental Health 22.6 (Mar. 2017), pp. 778–783. DOI: 10.1080/13607863.2017.1304526. URL:
https://doi.org/10.1080/13607863.2017.1304526.

[25] Hyunbum Kim et al. “A Virtual Emotion Detection Architecture with Two-way Enabled Delay Bound toward
Evolutional Emotion-based IoT Services”. In: IEEE Transactions on Mobile Computing (2020), pp. 1–1. ISSN: 1536-
1233. DOI: 10.1109/tmc.2020.3024059. URL: https://doi.org/10.1109/tmc.2020.3024059.

[26] Michael D. Kopelman. “Rates of forgetting in Alzheimer-type dementia and Korsakoff’s syndrome”. In: Neu-
ropsychologia 23.5 (Jan. 1985), pp. 623–638. DOI: 10.1016/0028­ 3932(85)90064­ 8. URL: https:
//doi.org/10.1016/0028­3932(85)90064­8.

[27] M Powell Lawton and Elaine M Brody. “Assessment of older people: self-maintaining and instrumental activities
of daily living”. In: The gerontologist 9.3_Part_1 (1969), pp. 179–186.

[28] M. Powell Lawton. “Quality of Life in Alzheimer Disease”. In: Alzheimer Disease & amp; Associated Disorders 8
(1994). DOI: 10.1097/00002093­199424004­00015.

[29] Kyung Hee Lee, Donna L. Algase, and Eleanor S. Mcconnell. “Relationship between observable emotional expres-
sion andwandering behavior of people with dementia”. In: International Journal of Geriatric Psychiatry 29.1 (2014),
pp. 85–92. ISSN: 0885-6230. DOI: 10.1002/gps.3977. URL: https://doi.org/10.1002/gps.3977.

[30] Kyung Hee Lee et al. “Pain and Psychological Well-Being Among People with Dementia in Long-Term Care”. In:
Pain Medicine 16.6 (June 2015), pp. 1083–1089. DOI: 10.1111/pme.12739. URL: https://doi.org/10.
1111/pme.12739.

[31] Yun Li et al. “Acoustic fall detection using a circular microphone array”. In: 2010 Annual International Conference of
the IEEE Engineering in Medicine and Biology. 2010, pp. 2242–2245. DOI: 10.1109/IEMBS.2010.5627368.

[32] Liang Liu et al. “Automatic fall detection based on Doppler radar motion signature”. In: 2011 5th International
Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops. 2011, pp. 222–
225. DOI: 10.4108/icst.pervasivehealth.2011.245993.

[33] John Malik, Yu-Lun Lo, and Hau-tieng Wu. “Sleep-wake classification via quantifying heart rate variability by
convolutional neural network”. In: Physiological Measurement 39.8 (Aug. 2018), p. 085004. DOI: 10.1088/
1361­6579/aad5a9. URL: https://doi.org/10.1088/1361­6579/aad5a9.

[34] Lars Meinel et al. “OPDEMIVA: An integrated assistance and information system for elderly with dementia”. In:
2015 IEEE International Conference on Consumer Electronics (ICCE). 2015, pp. 76–77. DOI: 10.1109/ICCE.
2015.7066325.

[35] Armando Nava, Leonardo Garrido, and Ramon F. Brena. “Recognizing Activities Using a Kinect Skeleton Tracking
and Hidden Markov Models”. In: 2014 13th Mexican International Conference on Artificial Intelligence. IEEE, Nov.
2014. DOI: 10.1109/micai.2014.18. URL: https://doi.org/10.1109/micai.2014.18.

[36] Jingping Nie et al. “SPIDERS: Low-Cost Wireless Glasses for Continuous In-Situ Bio-Signal Acquisition and Emo-
tion Recognition”. In: 2020 IEEE/ACM Fifth International Conference on Internet-of-Things Design and Implementa-
tion (IoTDI). 2020, pp. 27–39. DOI: 10.1109/IoTDI49375.2020.00011.

[37] J. Oostrom, R.J. Schlingmann, and H. Alers. “Using a Robot Companion to Detect and Visualize the Indicators of
Dementia Progression and Quality of Life of People Aged 65 and Older”. In: (2019), pp. 1–6.

[38] Martin Prince et al. World Alzheimer Report 2015. The Global Impact of Dementia. An Analysis of Prevalence, Inci-
dence, Cost and Trends. Aug. 2015.

[39] Munaf Rashid, S. A. R. Abu-Bakar, and Musa Mokji. “Human emotion recognition from videos using spatio-
temporal and audio features”. In: The Visual Computer 29.12 (Dec. 2012), pp. 1269–1275. DOI: 10.1007/
s00371­012­0768­y. URL: https://doi.org/10.1007/s00371­012­0768­y.

[40] Yvonne Schikhof, Ingrid Mulder, and Sunil Choenni. “Who will watch (over) me? Humanemonitoring in dementia
care”. In: International Journal of Human-Computer Studies 68.6 (June 2010), pp. 410–422. ISSN: 1071-5819. URL:
https://www.sciencedirect.com/science/article/pii/S1071581910000169.

https://doi.org/10.3233/JAD-200347
https://doi.org/10.3233/JAD-200347
https://doi.org/10.3233/JAD-200347
https://doi.org/10.3390/medsci6030052
https://doi.org/10.3390/medsci6030052
https://doi.org/10.3390/medsci6030052
https://doi.org/10.1155/2021/6657709
https://doi.org/10.1155/2021/6657709
https://doi.org/10.1155/2021/6657709
https://doi.org/10.1016/j.ins.2018.02.042
https://doi.org/10.1016/j.ins.2018.02.042
https://doi.org/10.1007/s12369-016-0366-7
https://doi.org/10.1007/s12369-016-0366-7
https://doi.org/10.1080/13607863.2017.1304526
https://doi.org/10.1080/13607863.2017.1304526
https://doi.org/10.1109/tmc.2020.3024059
https://doi.org/10.1109/tmc.2020.3024059
https://doi.org/10.1016/0028-3932(85)90064-8
https://doi.org/10.1016/0028-3932(85)90064-8
https://doi.org/10.1016/0028-3932(85)90064-8
https://doi.org/10.1097/00002093-199424004-00015
https://doi.org/10.1002/gps.3977
https://doi.org/10.1002/gps.3977
https://doi.org/10.1111/pme.12739
https://doi.org/10.1111/pme.12739
https://doi.org/10.1111/pme.12739
https://doi.org/10.1109/IEMBS.2010.5627368
https://doi.org/10.4108/icst.pervasivehealth.2011.245993
https://doi.org/10.1088/1361-6579/aad5a9
https://doi.org/10.1088/1361-6579/aad5a9
https://doi.org/10.1088/1361-6579/aad5a9
https://doi.org/10.1109/ICCE.2015.7066325
https://doi.org/10.1109/ICCE.2015.7066325
https://doi.org/10.1109/micai.2014.18
https://doi.org/10.1109/micai.2014.18
https://doi.org/10.1109/IoTDI49375.2020.00011
https://doi.org/10.1007/s00371-012-0768-y
https://doi.org/10.1007/s00371-012-0768-y
https://doi.org/10.1007/s00371-012-0768-y
https://www.sciencedirect.com/science/article/pii/S1071581910000169

REFERENCES 28

[41] Philip Sedgwick and Nan Greenwood. “Understanding the Hawthorne effect”. In: BMJ (Sept. 2015), h4672. DOI:
10.1136/bmj.h4672. URL: https://doi.org/10.1136/bmj.h4672.

[42] Arindam Sengupta et al. “mm-Pose: Real-Time Human Skeletal Posture Estimation Using mmWave Radars and
CNNs”. In: IEEE Sensors Journal 20.17 (Sept. 2020), pp. 10032–10044. DOI: 10.1109/jsen.2020.2991741.
URL: https://doi.org/10.1109/jsen.2020.2991741.

[43] Kazuaki Shiba, Takashi Kaburagi, and Yosuke Kurihara. “Fall Detection Utilizing Frequency Distribution Trajec-
tory by Microwave Doppler Sensor”. In: IEEE Sensors Journal 17.22 (2017), pp. 7561–7568. DOI: 10.1109/
JSEN.2017.2760911.

[44] Lin Shu et al. “Wearable Emotion Recognition Using Heart Rate Data from a Smart Bracelet”. In: Sensors 20.3
(Jan. 2020), p. 718. DOI: 10.3390/s20030718. URL: https://doi.org/10.3390/s20030718.

[45] S Smith et al. “Measurement of health-related quality of life for people with dementia: development of a new
instrument (DEMQOL) and an evaluation of current methodology”. In: Health Technology Assessment 9.10 (2005).
ISSN: 1366-5278. DOI: 10.3310/hta9100.

[46] Sociaal en Cultureel Planbureau. Rijksoverheid.nl. 2018. URL:https://digitaal.scp.nl/ouderenzorg/
tekort­aan­mantelzorgers­en­professionals (visited on 04/27/2021).

[47] TI Developers. TI DevTools. 2021. URL: https : / / dev . ti . com / tirex / explore / node ? node =
AJoMGA2ID9pCPWEKPi16wg__VLyFKFf__LATEST (visited on 05/25/2021).

[48] Understanding Social Interaction. Feb. 2021. URL: https://socialsci.libretexts.org/@go/page/
8023.

[49] United Nation. Sustainable Development Goals: Goal 3: Ensure healthy lives and promote well-being for all at all
ages. 2021. URL: https://www.un.org/sustainabledevelopment/health/ (visited on 05/14/2021).

[50] Ladislav Volicer and Lisa Bloom-Charette. Enhancing the quality of life in advanced dementia. Psychology Press,
1999.

[51] N.K. Vuong, S. Chan, and C.T. Lau. “Automated detection of wandering patterns in people with dementia”. In:
Gerontechnology 12.3 (June 2014). DOI: 10.4017/gt.2014.12.3.001.00. URL: https://doi.org/
10.4017/gt.2014.12.3.001.00.

[52] Fengyu Wang et al. “Radio Frequency Based Heart Rate Variability Monitoring”. In: ICASSP 2021 - 2021 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, June 2021. DOI: 10.1109/
icassp39728.2021.9413465. URL: https://doi.org/10.1109/icassp39728.2021.9413465.

[53] Quanqiu Wang et al. “COVID 19 and dementia: Analyses of risk, disparity, and outcomes from electronic health
records in the US”. In: Alzheimer’s & Dementia (2021). ISSN: 1552-5260. DOI: 10.1002/alz.12296. URL:
https://doi.org/10.1002/alz.12296.

[54] WHO. Dementia. URL: https://www.who.int/news­room/fact­sheets/detail/dementia (visited
on 05/30/2021).

[55] WHO. SUPPORTING INFORMAL CAREGIVERS OF PEOPLE LIVING WITH DEMENTIA. URL: https://www.who.
int/mental_health/neurology/dementia/dementia_thematicbrief_informal_care.pdf
(visited on 05/12/2021).

[56] Libo Wu and Ya Wang. “A Low-Power Electric-Mechanical Driving Approach for True Occupancy Detection Using
a Shuttered Passive Infrared Sensor”. In: IEEE Sensors Journal 19.1 (Jan. 2019), pp. 47–57. DOI: 10.1109/jsen.
2018.2875659. URL: https://doi.org/10.1109/jsen.2018.2875659.

[57] Yu-Tzu Wu, Linda Clare, and Fiona E. Matthews. “Relationship between depressive symptoms and capability to
live well in people with mild to moderate dementia and their carers: results from the Improving the experience
of Dementia and Enhancing Active Life (IDEAL) programme”. In: Aging &Mental Health 25.1 (Sept. 2019), pp. 38–
45. DOI: 10.1080/13607863.2019.1671316. URL: https://doi.org/10.1080/13607863.2019.
1671316.

[58] Zhicheng Yang et al. “Vital Sign and Sleep Monitoring Using Millimeter Wave”. In: ACM Transactions on Sensor
Networks 13.2 (June 2017), pp. 1–32. DOI: 10.1145/3051124. URL: https://doi.org/10.1145/
3051124.

[59] Yunze Zeng et al. “Poster Abstract: Human Tracking and Activity Monitoring Using 60 GHz mmWave”. In: 2016
15th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN). 2016, pp. 1–2. DOI:
10.1109/IPSN.2016.7460704.

[60] Peijun Zhao et al. “Heart Rate Sensing with a Robot Mounted mmWave Radar”. In: 2020 IEEE International Con-
ference on Robotics and Automation (ICRA). IEEE, May 2020. DOI: 10.1109/icra40945.2020.9197437.
URL: https://doi.org/10.1109/icra40945.2020.9197437.

[61] Liyang Zhu et al. “A Survey of Fall Detection Algorithm for Elderly Health Monitoring”. In: 2015 IEEE Fifth Inter-
national Conference on Big Data and Cloud Computing. 2015, pp. 270–274. DOI: 10.1109/BDCloud.2015.35.

[62] Dimitrios Zorbas et al. “TS-LoRa: Time-slotted LoRaWAN for the Industrial Internet of Things”. In: Computer Com-
munications 153 (2020), pp. 1–10. ISSN: 0140-3664. DOI: https://doi.org/10.1016/j.comcom.2020.
01.056. URL: https://www.sciencedirect.com/science/article/pii/S0140366419314677.

https://doi.org/10.1136/bmj.h4672
https://doi.org/10.1136/bmj.h4672
https://doi.org/10.1109/jsen.2020.2991741
https://doi.org/10.1109/jsen.2020.2991741
https://doi.org/10.1109/JSEN.2017.2760911
https://doi.org/10.1109/JSEN.2017.2760911
https://doi.org/10.3390/s20030718
https://doi.org/10.3390/s20030718
https://doi.org/10.3310/hta9100
https://digitaal.scp.nl/ouderenzorg/tekort-aan-mantelzorgers-en-professionals
https://digitaal.scp.nl/ouderenzorg/tekort-aan-mantelzorgers-en-professionals
https://dev.ti.com/tirex/explore/node?node=AJoMGA2ID9pCPWEKPi16wg__VLyFKFf__LATEST
https://dev.ti.com/tirex/explore/node?node=AJoMGA2ID9pCPWEKPi16wg__VLyFKFf__LATEST
https://socialsci.libretexts.org/@go/page/8023
https://socialsci.libretexts.org/@go/page/8023
https://www.un.org/sustainabledevelopment/health/
https://doi.org/10.4017/gt.2014.12.3.001.00
https://doi.org/10.4017/gt.2014.12.3.001.00
https://doi.org/10.4017/gt.2014.12.3.001.00
https://doi.org/10.1109/icassp39728.2021.9413465
https://doi.org/10.1109/icassp39728.2021.9413465
https://doi.org/10.1109/icassp39728.2021.9413465
https://doi.org/10.1002/alz.12296
https://doi.org/10.1002/alz.12296
https://www.who.int/news-room/fact-sheets/detail/dementia
https://www.who.int/mental_health/neurology/dementia/dementia_thematicbrief_informal_care.pdf
https://www.who.int/mental_health/neurology/dementia/dementia_thematicbrief_informal_care.pdf
https://doi.org/10.1109/jsen.2018.2875659
https://doi.org/10.1109/jsen.2018.2875659
https://doi.org/10.1109/jsen.2018.2875659
https://doi.org/10.1080/13607863.2019.1671316
https://doi.org/10.1080/13607863.2019.1671316
https://doi.org/10.1080/13607863.2019.1671316
https://doi.org/10.1145/3051124
https://doi.org/10.1145/3051124
https://doi.org/10.1145/3051124
https://doi.org/10.1109/IPSN.2016.7460704
https://doi.org/10.1109/icra40945.2020.9197437
https://doi.org/10.1109/icra40945.2020.9197437
https://doi.org/10.1109/BDCloud.2015.35
https://doi.org/https://doi.org/10.1016/j.comcom.2020.01.056
https://doi.org/https://doi.org/10.1016/j.comcom.2020.01.056
https://www.sciencedirect.com/science/article/pii/S0140366419314677

Appendices

29

A
Previous Efforts

According to the work of Oostrom, Schlingmann & Alers [37] indicators can be found that can be used to
calculate a Quality of Life score which in itself is an indication of the progress of dementia. The indicators
they suggest can be seen in Table 1.1. Their focus was on trying to determine a QoL score using part of the
DEMQOL standard [45]. According to their paper it is recommended to expand their work by being able
to detect emotion of a patient using a form of speech recognition which recognizes words and classifies
them to a corresponding emotion. Another recommendation is the tracking of physical health by tracking
activities during the day, but also keeping track of sleep- and eating rhythm.

Following work was done by Caleb Quame. The goal of his work was to implement the suggestions
done by Oostrom, Schlingmann & Alers. His work does not contain any literature research. His report
does however describe practical experiences and issues he came across while building the system. These
will be taken into account during implementation.

According to Kumar even more indicators that indicate progress of dementia exist. It should be noted
that her work was based on interviews with Dutch healthcare workers. Which is why, in Section 1.4, the
indicators given will be verified with literature. It should also be noted that her work was done with the
focus on practical implementation of the Smart Teddy product, where she aimed to serve caretakers with
data gathered by the Smart Teddy. The indicators she recommended are given in Table A.1.

Table A.1: Indicators as suggested by previous work in the Smart Teddy project.

Indicator Sensor type
Wandering Infrared sensor & Sound
Social contact Infrared sensor & Sound
Life rhythm GPS & Gyroscope
Day- & night rhythm Infrared sensor & Sound
Senior motion & location GPS & Gyroscope
Eating rhythm & Body weight Camera
Emotion Camera
Forgetting critical actions Gas sensor
Falling Sound & Camera

30

B
Literature support of indicators

Quality of Life
In [1], a model for QoL measurement is provided by discussing relevant literature on QoL research. The
core dimension of QoL of patients with dementia is identified to be the psychological well-being. The
paper presents a hierarchical model of QoL which is listed below.

• personal aspects not related to dementia such as religion,work, material possessions, coping style,
living accommodation, and income [7].

• personal aspects related to dementia: cognitive functioning, physical health[15], eating, infections,
and chronic physical disease, psychiatric symptoms [50].

• environmental factors: Daily activities, recreational activities, social behavior [50], social support,
network [28],

Wandering
According to Dr. G. Cipriana [11], wandering is a physical and emotional problem of dementia for both the
patient and the caregiver. Since the cause of wandering is yet to be discovered, it can only be said that a
strong correlation between dementia and wandering exists. It should also be noted that not all forms of
dementia cohere with wandering. For example, in people who suffer from vascular dementia only 18% of
the patients in the sample of 502 people would be considered a wanderer [12]. Therefore, when wandering
occurs this is quite a good indication that someone suffers from a form of dementia, while the reverse is
not true.

Social Interaction
”A social interaction is a social exchange between two or more individuals. These interactions form the
basis for social structure and therefore are a key object of basic social inquiry and analysis.” [48]. Accord-
ing to [24], social interaction can work two ways in the progress of dementia. More social interaction
results in less progression of the disease while less social interaction indicates that the disease is actually
progressing.

Emotion
According to [57], depression is a common condition in dementia. In [30] it is shown that negative emotion
is related to the decline of cognitive functions and therefore the progress of dementia. Therefore, it can
be concluded that a more negative emotions over a period of time can indicate dementia progress.

Daily Activities
Losing the ability to perform daily life activities is one of the most prevalent characteristics of dementia.
An example of instrumental activities of daily life (IADLs) are: finances, household tasks, laundry, meal
preparation, medication management, shopping, telephoning and transport [27], and basic activities of
daily living (ADLs), including bathing, continence, dressing, feeding and toileting [16].

31

32

In [16], a study was conducted in the UK on 122 PWD (65 years or older) with their carers in different
dementia stages, either living at home or recently admitted to long-term care. The study monitored the
daily ADLs of the PWD and the results show that there is deterioration in early-stages dementia in ADL,
including dressing, bathing, and continence.

Sleep- and eating Rhythm
Rhythm is a key factor in the health of a person. Key components of rhythm are the time at which a person
goes to sleep and the time at which a user eats. It was found that not the day to day rhythm indicates
progress of severity of dementia, but more the robustness of the rhythm is the indicator. Those with more
robust rhythm had less severe dementia. [15] [20]

Falling
As suggested in [14] & [13], the risk of falling for seniors with dementia is far greater than that of healthy
seniors. Both papers also suggest that in the beginning and moderate stages of the disease the risk of
falling increases with the progress of dementia. When dementia is far progressed the falling rates drop,
since seniors lose their mobility overall.

Other dangerous situations
Dangerous situations considered are the presence of flammable methane gas and toxic carbon monoxide
gas. An increase in frequency of forgetting such critical action is considered to be part of the decrease in
short term memory. As shown in [26], deterioration of the short term memory is however not only related
only to dementia. This indicator can thus be used to track progress of dementia, but not prove it to begin
with.

C
mmWave Sensing

C.1. Basics of mmWave sensing
Distance measurement in mmWave sensing technology is done by using frequency modulated continuous
wave (FMCW). Distance is measured by sending out a chirp and determining the time it takes for the
reflection to arrive. This is done by mixing the received signal with the transmitted signal. The mixed
signal is called the beat signal. The frequency and phase of this signal are given by Equation C.1 and
Equation C.2 subsequently where 𝑅 is the distance to the object measured, 𝐵 the bandwidth of the chirp,
𝑇 the length of the chirp and 𝑐 the speed of light in vacuum. From Equation C.1 the range can thus be
calculated. Then Equation C.2 can be used for a more precise estimation of the range.

𝑓𝑏 =
2𝐵𝑅
𝑐𝑇 (C.1)

𝜙𝑏 =
4𝜋𝑓𝑚𝑖𝑛𝑅

𝑐 (C.2)

Velocity v is determined by sending out a second chirp after a specified time 𝑡 and determining the
difference in range after this time.

𝑣 = Δ𝑅
𝑡 (C.3)

One might wonder what happens when the velocity is in the direction perpendicular to the measure-
ment direction. This case is the reason angle estimation was introduced. Estimation of the angle is done
by using 2 transceivers and determining the difference in distance measured from both transceivers. It
should however be noted that this measurement can be ambiguous, since the difference between for ex-
ample 130∘ and 310∘ can not be determined. This means a shield should be made on the sensor to ensure
only measurement in the direction of measurement.

When distance and angle can be measured a continuous localization of points is possible. When a
large number of points is measured, detection of certain objects, such as humans is possible. Since the
measurement can be as accurate as micrometers, this measurement can also be used to determine for
example heart rate and other health related properties. Also, the size of a point cloud can be used to
recognize a person based on previous measurements.

C.2. Algorithm
The processing chain starts with the analog output of front-end (FE) radar, these points are digitized by
means of an ADC. The ADC samples are used as an input for the detection process, in this phase, the range,
azimuth angle, elevation angle, radial velocity, and Signal-to-noise ratio or SNR values are detected. A
collection of these measurement points is called point cloud data. The sensor uses the point cloud data to
localize targets (people) in the localization phasewhich uses a 3D contact accelerationmodel characterized
by 9 elements state vector

𝑠3𝐷𝐴(𝑛) = [𝑥𝑛 , 𝑦𝑛 , 𝑧𝑛 , �̇�𝑛 , �̇�𝑛 , �̇�𝑛 , �̈�𝑛 , �̈�𝑛 , �̈�𝑛]. (C.4)

33

C.2. Algorithm 34

C.2.1. People Tracking Algorithm from Texas Instruments
The algorithm consists of the following steps prediction, association, updating, and maintenance. The
steps will be elaborated on in this subsection. The tracking is implemented in Cartesian coordinates and
can operate in either 2D or 3D Cartesian space. An constant acceleration model is used where for each
discrete time step T, the position and velocity of an target can potentially change.

Figure C.1: Radar Processing Layers [47]

To specify the the dynamics of the motion model, TI has used the state transition matrix, which given
by:

𝐹3𝐷𝐴 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1 0 0 𝑇 0 0 0.5𝑇2 0 0
0 1 0 0 𝑇 0 0 0.5𝑇2 0
0 0 1 0 0 𝑇 0 0 0.5𝑇2
0 0 0 1 0 0 𝑇 0 0
0 0 0 0 1 0 0 𝑇 0
0 0 0 0 0 1 0 0 𝑇
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟

⎠
The state of the Kalman filter at time instant n is given as:

𝑠(𝑛) = 𝐹𝑠(𝑛 − 1) + 𝑤(𝑛) (C.5)

Where 𝑠(𝑛) is the state vector given by C.4, 𝐹 is the transition state matrix given by C.2.1, and 𝑤(𝑛) is
the vector of process noise.

C.2. Algorithm 35

The input measurements vector 𝑢(𝑛) from the radar sensor is in spherical co-ordinates and includes range
(𝑟), azimuth (𝜑), elevation (𝜃), and radial velocity (�̇�)

𝑢(𝑛) = [𝑟(𝑛) 𝜑(𝑛) 𝜃(𝑛) �̇�(𝑛)]𝑇 (C.6)

The relation between the state 𝑠(𝑛) of the Kalman filter and measurement vector 𝑢(𝑛) is given by:

𝑢(𝑛) = 𝐻(𝑠(𝑛)) + 𝑣(𝑛) (C.7)

Where 𝑣(𝑛) is vector of measurement noise with co variance matrix 𝑅(𝑛) of size 4x4, and 𝐻 is a measure-
ment matrix given by:

𝐻(𝑠(𝑛)) = ⎛⎜

⎝

√𝑥2 + 𝑦2 + 𝑧2
tan−1(𝑥, 𝑦)

tan−1(𝑧, √𝑥2 + 𝑦2)
𝑥�̇�+𝑦�̇�+𝑧�̇�
√𝑥2+𝑦2+𝑧2

⎞
⎟

⎠
The function tan−1(𝑎, 𝑏) is defined as:

tan−1(𝑎, 𝑏) = {
tan−1(𝑎𝑏) 𝑏>0
𝜋
2 𝑏 = 0
tan−1(𝑎𝑏) + 𝜋 𝑏<0

Prediction Step:
In equation C.7, the measurement vector 𝑢(𝑛) is related tot he state vector 𝑠(𝑛) via a non-linear relation,
therefore, in this step, extended kalman filter (EKF) is used that linearizes the non-linear function using
derivative of the non-linear function around current state. After linearization, the relation between the
state 𝑠(𝑛) and measurement vector 𝑢(𝑛) is:

𝑢(𝑛) = 𝐻(𝑠𝑎𝑝𝑟(𝑛) + 𝐽𝐻(𝑠𝑎𝑝𝑟(𝑛))[𝑠(𝑛) − 𝑠𝑎𝑝𝑟(𝑛)] + 𝑣(𝑛) (C.8)

Where 𝑠𝑎𝑝𝑟(𝑛) is a-priori (predicted) estimates of tracking state at time 𝑛, and 𝐽𝐻 is the Jacobian matrix
given by:

𝐽𝐻(𝑠3𝐷𝐴) =
⎛
⎜⎜

⎝

𝑥
𝑟

𝑦
𝑟

𝑧
𝑟 0 0 0 0 0 0

𝑦
𝑥2+𝑦2

−𝑥
𝑥2+𝑦2 0 0 0 0 0 0 0

−𝑥
𝑟2

𝑧
√𝑥2+𝑦2

−𝑦
𝑟2

𝑧
√𝑥2+𝑦2

√𝑥2+𝑦2
𝑟2 0 0 0 0 0 0

𝑦(�̇�𝑦−�̇�𝑥)+𝑧(�̇�𝑧−�̇�𝑥)
𝑟3

𝑥(�̇�𝑥−�̇�𝑦)+𝑧(�̇�𝑧−�̇�𝑦)
𝑟3

𝑥(�̇�𝑥−�̇�𝑧)+𝑦(�̇�𝑦−�̇�𝑧)
𝑟3

𝑥
𝑟

𝑦
𝑟

𝑧
𝑟 0 0 0

⎞
⎟⎟

⎠

Association Step
The association step consists of associating radar measurements to a unique existing track. This is accom-
plished by 3 main steps namely Gating, Scoring and Allocate. Gating is the selection of points based on
their proximity to each other. If a point is close enough to the neighbouring, the point is included. When a
point is included, the scoring step determines what point has the highest power. The measurement point
with the highest power is assigned to that point. Points that are not assigned yet, go through the allocate
function. There, points are first grouped based on their distance. If the groups of points satisfy several
tests, the group is converted to a new track.

Updating and maintenance
fEach track goes through a life cycle of events. At the maintenance step the state is changed or the track is
deleted that is not active any more. Tracks are updated using the set of associated points from the previous
step.

C.3. mmWave TLV data 36

C.3. mmWave TLV data

Figure C.2: Collected data from mmWave sensor in TLV protocol

10:36:35 b''

10:36:35 b'\x02\x01\x04\x03\x06\x05\x08\x07\x04\x00\x05\x03d\x00\x00\x00Ch\n'

10:36:35

b'\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xdd\x1d\x00\x00\x00\x00\x00\x00\x00\x00\x00\x

00\x01\x00Rf\x06\x00\x00\x004\x00\x00\x00\n'

10:36:35 b'\xd7#<\n'

10:36:35 b'\xd7#<\xf7\xcc\x929o\x12\x839\n'

10:36:35

b'\xd7#=\xff1\x07\xff\xd8\x0c\x03\x01\x021\x07\xff\xd5\r\xe7\x00\xfaZ\x07\xff\xe1\t\x8d\x00\x02\x01\x04\

x03\x06\x05\x08\x07\x04\x00\x05\x03\\\x00\x00\x00Ch\n'

10:36:35

b'\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00w\x1d\x00\x00\x0c\x00\x00\x00:\x05\x00\x00\x0

1\x00ya\x06\x00\x00\x00,\x00\x00\x00\n'

10:36:36 b'\xd7#<\n'

10:36:36 b'\xd7#<\xf7\xcc\x929o\x12\x839\n'

10:36:36 b'\xd7#=\xfd[\x07\xff\xe1\t\x9f\x00\xff_\x07\xff\xde\n'

10:36:36 b'\x8d\x00\x02\x01\x04\x03\x06\x05\x08\x07\x04\x00\x05\x03T\x00\x00\x00Ch\n'

10:36:36

b'\x00\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf9\x1c\x00\x00\x07\x00\x00\x00\xa5\x05\x00\x

00\x01\x00\x98a\x06\x00\x00\x00$\x00\x00\x00\n'

10:36:36 b'\xd7#<\n'

10:36:36 b'\xd7#<\xf7\xcc\x929o\x12\x839\n'

10:36:36

10:36:36

b'\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x9f\x1c\x00\x00\x05\x00\x00\x00(\x06\x00\x00\x

00\x00\x95a\x02\x01\x04\x03\x06\x05\x08\x07\x04\x00\x05\x030\x00\x00\x00Ch\n'

10:36:36

"b'\x00\x05\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x9f\x1c\x00\x00\x03\x00\x00\x00\x9e\x02\x00\

10:36:36

b'\x00\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x9f\x1c\x00\x00\x03\x00\x00\x00\x9e\x02\x00\x

00\x00\x00\x1fe\x02\x01\x04\x03\x06\x05\x08\x07\x04\x00\x05\x030\x00\x00\x00Ch\n'

10:36:36

b'\x00\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x9f\x1c\x00\x00\x03\x00\x00\x00\x9e\x02\x00\x

00\x00\x00\x1ee\x02\x01\x04\x03\x06\x05\x08\x07\x04\x00\x05\x030\x00\x00\x00Ch\n'

10:36:36

b'\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x9f\x1c\x00\x00\x03\x00\x00\x00\x9e\x02\x00\x

00\x00\x00\x1de\x02\x01\x04\x03\x06\x05\x08\x07\x04\x00\x05\x030\x00\x00\x00Ch\n'

10:36:36

b'\x00\t\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x9f\x1c\x00\x00\x03\x00\x00\x00\x9e\x02\x00\x00\

x00\x00\x1ce\x02\x01\x04\x03\x06\x05\x08\x07\x04\x00\x05\x030\x00\x00\x00Ch\n'

10:36:36 b'\x00\n'

10:36:36

b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x9f\x1c\x00\x00\x03\x00\x00\x00\x9e\x02\x00\x00\x00\x

00\x1be\x02\x01\x04\x03\x06\x05\x08\x07\x04\x00\x05\x030\x00\x00\x00Ch\n'

10:36:36

b'\x00\x0b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x9f\x1c\x00\x00\x03\x00\x00\x00\x9e\x02\x00\x

00\x00\x00\x1ae\x02\x01\x04\x03\x06\x05\x08\x07\x04\x00\x05\x030\x00\x00\x00Ch\n'

D
Python Codes

D.1. main.py
1 ###
2 # Data Acquisition system #
3 # Authors: Alan, Tim #
4 # Discription: In this code, sound sensor, gas sensor, gyroscope, #
5 # and real­time module are connected. Gas sensor and sound are analog #
6 # and are connected to pin A2 (GP28). A multiplexer is used to alternate #
7 # between the two sensors using a selector (Sel). Gyroscope and real­time #
8 # module are connected via an I2C bus (1), the gyroscope’s address is changed #
9 # from 0x68 to 0x69 by connecting the AD0 pin to 3.3 v. The real­time module #

10 # has an address of 0x68. #
11 ###
12 # NOTE: The real­time needs to be calibrated each time you disconnect the power
13 # Unless you connect an external battery. However, to recalibrate the module
14 # use the following code in the sell:
15 # bus = I2C(1,scl=Pin(15),sda=Pin(14), freq=400000)
16 # sec min hour week day month year
17 # NowTime = b’\x00\x44\x18\x02\x27\x05\x21’
18 # bus.writeto_mem(int(0x68),int(0x00),NowTime)
19 from machine import Pin, ADC # Import Pins and ADCs
20 import os, sdcard
21 import mpu6050 # Import library for gyroscope and accelerometer
22 from mq9 import MQ # Import library for gas sensor
23 import time # Import time library
24 from ds3231 import ds3231 # Import real time module library
25

26 # Declare objects
27 mpu = mpu6050.MPU6050() # Define gyroscope object. Connected to i2c1 with address 0x69
28 mq = MQ() # Define gas sensor object.
29 real_time = ds3231(1,15,14) # Define real time object connected to i2c1 with address 0x68
30 # Define pins
31 sel = machine.Pin (2, machine.Pin.OUT) # use pin 2 as slector to select between gas and sound
32 sound = ADC(28)
33 # SPI SDcard
34 spi = machine.SPI(1)
35 spi.init() # Ensure right baudrate
36 sd_spi = machine.SPI(1, sck = machine.Pin(10, machine.Pin.OUT), mosi = machine.Pin(11,

machine.Pin.OUT), miso = machine.Pin(12, machine.Pin.OUT))
37 sd = sdcard.SDCard(sd_spi, machine.Pin(9))
38 vfs = os.VfsFat(sd)
39 os.mount(vfs, ”/fc”)
40 print(”Filesystem check”)
41 print(os.listdir(”/fc”))
42 fn = ”/sd/teddy.txt”
43

44 # Define Varaibles
45 conversion_factor = 3.3/(65536) # To read the correct value from the ADC
46 gyroData=[]
47 gasData=[]
48 soundData=[]
49 timeData=[]

37

D.1. main.py 38

50 iteration = 10
51 cnt=0
52 # define a function to store data
53 def store_with_space(value):
54 with open(fn, ”a”) as f:
55 n = f.write(value+”,”)
56 #print(n, ”bytes written”)
57 def store_with_enter(value):
58 with open(fn, ”a”) as f:
59 n = f.write(value+”\n”)
60 def store_time(value):
61 with open(fn, ”a”) as f:
62 n = f.write(value+”:”)
63 def store(value):
64 with open(fn, ”a”) as f:
65 n = f.write(value)
66

67 # Loop
68 while (cnt<5):
69 tt = real_time.read_time()
70 store_time(str(”%02x” %(tt[2])))
71 time.sleep(0.001)
72 store_time(str(”%02x” %(tt[1])))
73 time.sleep(0.001)
74 store_with_space(str(”%02x” %(tt[0])))
75 time.sleep(0.001)
76 # store(str(”%02x” %(tt[3])))
77 # time.sleep(0.01)
78 # store(str(”%02x” %(tt[4])))
79 # time.sleep(0.01)
80 # store(str(”%02x” %(tt[5])))
81 # time.sleep(0.01)
82 # store(str(”20%x” %(tt[6])))
83 # time.sleep(0.01)
84 g=mpu.readData()
85 store_with_space(str(g.Gx))
86 time.sleep(0.001)
87 store_with_space(str(g.Gy))
88 time.sleep(0.001)
89 store_with_space(str(g.Gz))
90 time.sleep(0.001)
91 store_with_space(str(g.Gyrox))
92 time.sleep(0.001)
93 store_with_space(str(g.Gyroy))
94 time.sleep(0.001)
95 store_with_space(str(g.Gyroz))
96 time.sleep(0.001)
97 store_with_space(str(g.Temperature))
98 #print(”X:{:.2f} Y:{:.2f} Z:{:.2f} Gyrox:{:.2f} Gyroy:{:.2f} Gyroz:{:.2f} tem:{:.2f

}”.format(g.Gx,g.Gy,g.Gz,g.Gyrox,g.Gyroy,g.Gyroz,g.Temperature))
99 time.sleep(0.001)

100 sel.value(0)
101 perc = mq.MQPercentage()
102 time.sleep(0.001)
103 store_with_space(str(perc[”CO”]))
104 time.sleep(0.001)
105 store_with_space(str(perc[”SMOKE”]))
106 time.sleep(0.001)
107 sel.value(1)
108 #print(”CO: %g ppm, Smoke: %g ppm %g sound” % (perc[”CO”], perc[”SMOKE”], sound.

read_u16() *conversion_factor))
109

110 #print(sound.read_u16()*conversion_factor)
111 #utime.sleep(0.1)
112

113 s = sound.read_u16()*conversion_factor
114 store_with_enter(str(s))
115 time.sleep(0.001)
116 cnt=cnt+1
117 #store(str(tt))
118 #print(t)
119 # print(g.Gx,g.Gy,g.Gz,g.Gyrox,g.Gyroy,g.Gyroz,perc[”CO”], perc[”SMOKE”], sound.

read_u16()*conversion_factor)

D.2. ds3231.py 39

120 #print(g.Gx,g.Gy,g.Gz,g.Gyrox,g.Gyroy,g.Gyroz, s)

D.2. ds3231.py
1 #!/usr/bin/python
2 # ­*­ coding: utf­8 ­*­
3 from machine import Pin, I2C
4 import time
5 import binascii
6

7 # the first version use i2c1
8 #I2C_PORT = 1
9 #I2C_SDA = 6

10 #I2C_SCL = 7
11

12 # the new version use i2c0,if it dont work,try to uncomment the line 14 and comment line
17

13 # it should solder the R3 with 0R resistor if want to use alarm function,please refer to
the Sch file on waveshare Pico­RTC­DS3231 wiki

14 # https://www.waveshare.net/w/upload/0/08/Pico­RTC­DS3231_Sch.pdf
15 I2C_PORT = 0
16 I2C_SDA = 20
17 I2C_SCL = 21
18

19 ALARM_PIN = 3
20

21

22 class ds3231(object):
23 # 13:45:00 Mon 24 May 2021
24 # the register value is the binary­coded decimal (BCD) format
25 # sec min hour week day month year
26 NowTime = b’\x00\x44\x18\x02\x27\x05\x21’
27 w = [”Sunday”,”Monday”,”Tuesday”,”Wednesday”,”Thursday”,”Friday”,”Saturday”];
28 address = 0x68
29 start_reg = 0x00
30 alarm1_reg = 0x07
31 control_reg = 0x0e
32 status_reg = 0x0f
33

34 def __init__(self,i2c_port,i2c_scl,i2c_sda):
35 self.bus = I2C(1,scl=Pin(15),sda=Pin(14), freq=400000)
36

37 def set_time(self,new_time):
38 hour = new_time[0] + new_time[1]
39 minute = new_time[3] + new_time[4]
40 second = new_time[6] + new_time[7]
41 week = ”0” + str(self.w.index(new_time.split(”,”,2)[1])+1)
42 year = new_time.split(”,”,2)[2][2] + new_time.split(”,”,2)[2][3]
43 month = new_time.split(”,”,2)[2][5] + new_time.split(”,”,2)[2][6]
44 day = new_time.split(”,”,2)[2][8] + new_time.split(”,”,2)[2][9]
45 now_time = binascii.unhexlify((second + ” ” + minute + ” ” + hour + ” ” + week + ” ”

+ day + ” ” + month + ” ” + year).replace(’ ’,’’))
46 #print(binascii.unhexlify((second + ” ” + minute + ” ” + hour + ” ” + week + ” ” +

day + ” ” + month + ” ” + year).replace(’ ’,’’)))
47 #print(self.NowTime)
48 self.bus.writeto_mem(int(self.address),int(self.start_reg),now_time)
49

50 def read_time(self):
51 t = self.bus.readfrom_mem(int(self.address),int(self.start_reg),7)
52 a = t[0]&0x7F #second
53 b = t[1]&0x7F #minute
54 c = t[2]&0x3F #hour
55 d = t[3]&0x07 #week
56 e = t[4]&0x3F #day
57 f = t[5]&0x1F #month
58 print(”20%x/%02x/%02x %02x:%02x:%02x %s” %(t[6],t[5],t[4],t[2],t[1],t[0],self.w[t

[3]­1]))
59

60 def set_alarm_time(self,alarm_time):
61 # init the alarm pin
62 self.alarm_pin = Pin(ALARM_PIN,Pin.IN,Pin.PULL_UP)
63 # set alarm irq
64 self.alarm_pin.irq(lambda pin: print(”alarm1 time is up”), Pin.IRQ_FALLING)

D.3. mpu6050.py 40

65 # enable the alarm1 reg
66 self.bus.writeto_mem(int(self.address),int(self.control_reg),b’\x05’)
67 # convert to the BCD format
68 hour = alarm_time[0] + alarm_time[1]
69 minute = alarm_time[3] + alarm_time[4]
70 second = alarm_time[6] + alarm_time[7]
71 date = alarm_time.split(”,”,2)[2][8] + alarm_time.split(”,”,2)[2][9]
72 now_time = binascii.unhexlify((second + ” ” + minute + ” ” + hour + ” ” + date).

replace(’ ’,’’))
73 # write alarm time to alarm1 reg
74 self.bus.writeto_mem(int(self.address),int(self.alarm1_reg),now_time)
75

76 if __name__ == ’__main__’:
77 rtc = ds3231(I2C_PORT,I2C_SCL,I2C_SDA)
78 rtc.set_time(’13:45:50,Monday,2021­05­24’)
79 rtc.read_time()
80 rtc.set_alarm_time(’13:45:55,Monday,2021­05­24’)

D.3. mpu6050.py
1 import struct
2 import math
3 import utime
4 from machine import Pin, I2C
5

6 #https://www.raspberrypi.org/forums/viewtopic.php?t=302363
7

8 class MPU6050Data:
9

10 def __init__(self):
11 self.Gx=0
12 self.Gy=0
13 self.Gz=0
14 self.Temperature=0
15 self.Gyrox=0
16 self.Gyroy=0
17 self.Gyroz=0
18

19 class MPU6050:
20

21 AccelerationFactor= 2.0/32768.0; #assuming +/­ 16G
22 GyroFactor=500.0 / 32768.0; #assuming 500 degree / sec
23

24 # Temperature in degrees C = (TEMP_OUT Register Value as a signed quantity)/340 + 36.53
25 TemperatureGain = 1.0 / 340.0
26 TemperatureOffset = 36.53
27

28 #converted from Jeff Rowberg code https://github.com/jrowberg/i2cdevlib/blob/master/
Arduino/MPU6050/MPU6050.h

29

30

31 #register definition
32

33 MPU6050_RA_XG_OFFS_TC = 0x00 # [7] PWR_MODE, [6:1] XG_OFFS_TC, [0] OTP_BNK_VLD
34 MPU6050_RA_YG_OFFS_TC = 0x01 # [7] PWR_MODE, [6:1] YG_OFFS_TC, [0] OTP_BNK_VLD
35 MPU6050_RA_ZG_OFFS_TC = 0x02 # [7] PWR_MODE, [6:1] ZG_OFFS_TC, [0] OTP_BNK_VLD
36 MPU6050_RA_X_FINE_GAIN = 0x03 # [7:0] X_FINE_GAIN
37 MPU6050_RA_Y_FINE_GAIN = 0x04 # [7:0] Y_FINE_GAIN
38 MPU6050_RA_Z_FINE_GAIN = 0x05 # [7:0] Z_FINE_GAIN
39 MPU6050_RA_XA_OFFS_H = 0x06 # [15:0] XA_OFFS
40 MPU6050_RA_XA_OFFS_L_TC = 0x07
41 MPU6050_RA_YA_OFFS_H = 0x08 #[15:0] YA_OFFS
42 MPU6050_RA_YA_OFFS_L_TC = 0x09
43 MPU6050_RA_ZA_OFFS_H = 0x0A #[15:0] ZA_OFFS
44 MPU6050_RA_ZA_OFFS_L_TC = 0x0B
45 MPU6050_RA_XG_OFFS_USRH = 0x13 #[15:0] XG_OFFS_USR
46 MPU6050_RA_XG_OFFS_USRL = 0x14
47 MPU6050_RA_YG_OFFS_USRH = 0x15 #[15:0] YG_OFFS_USR
48 MPU6050_RA_YG_OFFS_USRL = 0x16
49 MPU6050_RA_ZG_OFFS_USRH = 0x17 #[15:0] ZG_OFFS_USR
50 MPU6050_RA_ZG_OFFS_USRL = 0x18
51 MPU6050_RA_SMPLRT_DIV = 0x19
52 MPU6050_RA_CONFIG = 0x1A

D.3. mpu6050.py 41

53 MPU6050_RA_GYRO_CONFIG = 0x1B
54 MPU6050_RA_ACCEL_CONFIG = 0x1C
55 MPU6050_RA_FF_THR = 0x1D
56 MPU6050_RA_FF_DUR = 0x1E
57 MPU6050_RA_MOT_THR = 0x1F
58 MPU6050_RA_MOT_DUR = 0x20
59 MPU6050_RA_ZRMOT_THR = 0x21
60 MPU6050_RA_ZRMOT_DUR = 0x22
61 MPU6050_RA_FIFO_EN = 0x23
62 MPU6050_RA_I2C_MST_CTRL = 0x24
63 MPU6050_RA_I2C_SLV0_ADDR = 0x25
64 MPU6050_RA_I2C_SLV0_REG = 0x26
65 MPU6050_RA_I2C_SLV0_CTRL = 0x27
66 MPU6050_RA_I2C_SLV1_ADDR = 0x28
67 MPU6050_RA_I2C_SLV1_REG = 0x29
68 MPU6050_RA_I2C_SLV1_CTRL = 0x2A
69 MPU6050_RA_I2C_SLV2_ADDR = 0x2B
70 MPU6050_RA_I2C_SLV2_REG = 0x2C
71 MPU6050_RA_I2C_SLV2_CTRL = 0x2D
72 MPU6050_RA_I2C_SLV3_ADDR = 0x2E
73 MPU6050_RA_I2C_SLV3_REG = 0x2F
74 MPU6050_RA_I2C_SLV3_CTRL = 0x30
75 MPU6050_RA_I2C_SLV4_ADDR = 0x31
76 MPU6050_RA_I2C_SLV4_REG = 0x32
77 MPU6050_RA_I2C_SLV4_DO = 0x33
78 MPU6050_RA_I2C_SLV4_CTRL = 0x34
79 MPU6050_RA_I2C_SLV4_DI = 0x35
80 MPU6050_RA_I2C_MST_STATUS = 0x36
81 MPU6050_RA_INT_PIN_CFG = 0x37
82 MPU6050_RA_INT_ENABLE = 0x38
83 MPU6050_RA_DMP_INT_STATUS = 0x39
84 MPU6050_RA_INT_STATUS = 0x3A
85 MPU6050_RA_ACCEL_XOUT_H = 0x3B
86 MPU6050_RA_ACCEL_XOUT_L = 0x3C
87 MPU6050_RA_ACCEL_YOUT_H = 0x3D
88 MPU6050_RA_ACCEL_YOUT_L = 0x3E
89 MPU6050_RA_ACCEL_ZOUT_H = 0x3F
90 MPU6050_RA_ACCEL_ZOUT_L = 0x40
91 MPU6050_RA_TEMP_OUT_H = 0x41
92 MPU6050_RA_TEMP_OUT_L = 0x42
93 MPU6050_RA_GYRO_XOUT_H = 0x43
94 MPU6050_RA_GYRO_XOUT_L = 0x44
95 MPU6050_RA_GYRO_YOUT_H = 0x45
96 MPU6050_RA_GYRO_YOUT_L = 0x46
97 MPU6050_RA_GYRO_ZOUT_H = 0x47
98 MPU6050_RA_GYRO_ZOUT_L = 0x48
99 MPU6050_RA_EXT_SENS_DATA_00 = 0x49

100 MPU6050_RA_EXT_SENS_DATA_01 = 0x4A
101 MPU6050_RA_EXT_SENS_DATA_02 = 0x4B
102 MPU6050_RA_EXT_SENS_DATA_03 = 0x4C
103 MPU6050_RA_EXT_SENS_DATA_04 = 0x4D
104 MPU6050_RA_EXT_SENS_DATA_05 = 0x4E
105 MPU6050_RA_EXT_SENS_DATA_06 = 0x4F
106 MPU6050_RA_EXT_SENS_DATA_07 = 0x50
107 MPU6050_RA_EXT_SENS_DATA_08 = 0x51
108 MPU6050_RA_EXT_SENS_DATA_09 = 0x52
109 MPU6050_RA_EXT_SENS_DATA_10 = 0x53
110 MPU6050_RA_EXT_SENS_DATA_11 = 0x54
111 MPU6050_RA_EXT_SENS_DATA_12 = 0x55
112 MPU6050_RA_EXT_SENS_DATA_13 = 0x56
113 MPU6050_RA_EXT_SENS_DATA_14 = 0x57
114 MPU6050_RA_EXT_SENS_DATA_15 = 0x58
115 MPU6050_RA_EXT_SENS_DATA_16 = 0x59
116 MPU6050_RA_EXT_SENS_DATA_17 = 0x5A
117 MPU6050_RA_EXT_SENS_DATA_18 = 0x5B
118 MPU6050_RA_EXT_SENS_DATA_19 = 0x5C
119 MPU6050_RA_EXT_SENS_DATA_20 = 0x5D
120 MPU6050_RA_EXT_SENS_DATA_21 = 0x5E
121 MPU6050_RA_EXT_SENS_DATA_22 = 0x5F
122 MPU6050_RA_EXT_SENS_DATA_23 = 0x60
123 MPU6050_RA_MOT_DETECT_STATUS = 0x61
124 MPU6050_RA_I2C_SLV0_DO = 0x63
125 MPU6050_RA_I2C_SLV1_DO = 0x64

D.3. mpu6050.py 42

126 MPU6050_RA_I2C_SLV2_DO = 0x65
127 MPU6050_RA_I2C_SLV3_DO = 0x66
128 MPU6050_RA_I2C_MST_DELAY_CTRL = 0x67
129 MPU6050_RA_SIGNAL_PATH_RESET = 0x68
130 MPU6050_RA_MOT_DETECT_CTRL = 0x69
131 MPU6050_RA_USER_CTRL = 0x6A
132 MPU6050_RA_PWR_MGMT_1 = 0x6B
133 MPU6050_RA_PWR_MGMT_2 = 0x6C
134 MPU6050_RA_BANK_SEL = 0x6D
135 MPU6050_RA_MEM_START_ADDR = 0x6E
136 MPU6050_RA_MEM_R_W = 0x6F
137 MPU6050_RA_DMP_CFG_1 = 0x70
138 MPU6050_RA_DMP_CFG_2 = 0x71
139 MPU6050_RA_FIFO_COUNTH = 0x72
140 MPU6050_RA_FIFO_COUNTL = 0x73
141 MPU6050_RA_FIFO_R_W = 0x74
142 MPU6050_RA_WHO_AM_I = 0x75
143

144 ZeroRegister = [
145 MPU6050_RA_FF_THR, #Freefall threshold of |0mg| LDByteWriteI2C(MPU6050_ADDRESS,

MPU6050_RA_FF_THR, 0x00);
146 MPU6050_RA_FF_DUR, #Freefall duration limit of 0 LDByteWriteI2C(MPU6050_ADDRESS,

MPU6050_RA_FF_DUR, 0x00);
147 MPU6050_RA_MOT_THR, #Motion threshold of 0mg LDByteWriteI2C(MPU6050_ADDRESS,

MPU6050_RA_MOT_THR, 0x00);
148 MPU6050_RA_MOT_DUR, #Motion duration of 0s LDByteWriteI2C(MPU6050_ADDRESS,

MPU6050_RA_MOT_DUR, 0x00);
149 MPU6050_RA_ZRMOT_THR, #Zero motion threshold LDByteWriteI2C(MPU6050_ADDRESS,

MPU6050_RA_ZRMOT_THR, 0x00);
150 MPU6050_RA_ZRMOT_DUR, #Zero motion duration threshold LDByteWriteI2C(

MPU6050_ADDRESS, MPU6050_RA_ZRMOT_DUR, 0x00);
151 MPU6050_RA_FIFO_EN, #Disable sensor output to FIFO buffer LDByteWriteI2C(

MPU6050_ADDRESS, MPU6050_RA_FIFO_EN, 0x00);
152 MPU6050_RA_I2C_MST_CTRL, #AUX I2C setup //Sets AUX I2C to single master control,

plus other config LDByteWriteI2C(MPU6050_ADDRESS, MPU6050_RA_I2C_MST_CTRL, 0x00);
153 MPU6050_RA_I2C_SLV0_ADDR, #Setup AUX I2C slaves LDByteWriteI2C(MPU6050_ADDRESS,

MPU6050_RA_I2C_SLV0_ADDR, 0x00);
154 MPU6050_RA_I2C_SLV0_REG, #LDByteWriteI2C(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV0_REG, 0

x00);
155 MPU6050_RA_I2C_SLV0_CTRL, #LDByteWriteI2C(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV0_CTRL,

0x00);
156 MPU6050_RA_I2C_SLV1_ADDR, #LDByteWriteI2C(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV1_ADDR,

0x00);
157 MPU6050_RA_I2C_SLV1_REG, #LDByteWriteI2C(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV1_REG, 0

x00);
158 MPU6050_RA_I2C_SLV1_CTRL, #LDByteWriteI2C(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV1_CTRL,

0x00);
159 MPU6050_RA_I2C_SLV2_ADDR, #LDByteWriteI2C(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV2_ADDR,

0x00);
160 MPU6050_RA_I2C_SLV2_REG, #LDByteWriteI2C(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV2_REG, 0

x00);
161 MPU6050_RA_I2C_SLV2_CTRL, #LDByteWriteI2C(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV2_CTRL,

0x00);
162 MPU6050_RA_I2C_SLV3_ADDR, #LDByteWriteI2C(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV3_ADDR,

0x00);
163 MPU6050_RA_I2C_SLV3_REG, #LDByteWriteI2C(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV3_REG, 0

x00);
164 MPU6050_RA_I2C_SLV3_CTRL, #LDByteWriteI2C(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV3_CTRL,

0x00);
165 MPU6050_RA_I2C_SLV4_ADDR, #LDByteWriteI2C(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV4_ADDR,

0x00);
166 MPU6050_RA_I2C_SLV4_REG, #LDByteWriteI2C(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV4_REG, 0

x00);
167 MPU6050_RA_I2C_SLV4_DO, #LDByteWriteI2C(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV4_DO, 0x00

);
168 MPU6050_RA_I2C_SLV4_CTRL, #LDByteWriteI2C(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV4_CTRL,

0x00);
169 MPU6050_RA_I2C_SLV4_DI, #LDByteWriteI2C(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV4_DI, 0x00

);
170 MPU6050_RA_INT_PIN_CFG, #MPU6050_RA_I2C_MST_STATUS //Read­only //Setup INT pin and

AUX I2C pass through LDByteWriteI2C(MPU6050_ADDRESS, MPU6050_RA_INT_PIN_CFG, 0x00);
171 MPU6050_RA_INT_ENABLE, #Enable data ready interrupt LDByteWriteI2C(

MPU6050_ADDRESS, MPU6050_RA_INT_ENABLE, 0x00);

D.3. mpu6050.py 43

172 MPU6050_RA_I2C_SLV0_DO, #Slave out, dont care LDByteWriteI2C(MPU6050_ADDRESS,
MPU6050_RA_I2C_SLV0_DO, 0x00);

173 MPU6050_RA_I2C_SLV1_DO, #LDByteWriteI2C(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV1_DO, 0x00
);

174 MPU6050_RA_I2C_SLV2_DO, #LDByteWriteI2C(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV2_DO, 0x00
);

175 MPU6050_RA_I2C_SLV3_DO, #LDByteWriteI2C(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV3_DO, 0x00
);

176 MPU6050_RA_I2C_MST_DELAY_CTRL, #More slave config LDByteWriteI2C(MPU6050_ADDRESS
, MPU6050_RA_I2C_MST_DELAY_CTRL, 0x00);

177 MPU6050_RA_SIGNAL_PATH_RESET, #Reset sensor signal paths LDByteWriteI2C(
MPU6050_ADDRESS, MPU6050_RA_SIGNAL_PATH_RESET, 0x00);

178 MPU6050_RA_MOT_DETECT_CTRL, #Motion detection control LDByteWriteI2C(
MPU6050_ADDRESS, MPU6050_RA_MOT_DETECT_CTRL, 0x00);

179 MPU6050_RA_USER_CTRL, #Disables FIFO, AUX I2C, FIFO and I2C reset bits to 0
LDByteWriteI2C(MPU6050_ADDRESS, MPU6050_RA_USER_CTRL, 0x00);

180 MPU6050_RA_CONFIG, #Disable FSync, 256Hz DLPF LDByteWriteI2C(MPU6050_ADDRESS,
MPU6050_RA_CONFIG, 0x00);

181 MPU6050_RA_FF_THR, #Freefall threshold of |0mg| LDByteWriteI2C(MPU6050_ADDRESS,
MPU6050_RA_FF_THR, 0x00);

182 MPU6050_RA_FF_DUR, #Freefall duration limit of 0 LDByteWriteI2C(MPU6050_ADDRESS,
MPU6050_RA_FF_DUR, 0x00);

183 MPU6050_RA_MOT_THR, #Motion threshold of 0mg LDByteWriteI2C(MPU6050_ADDRESS,
MPU6050_RA_MOT_THR, 0x00);

184 MPU6050_RA_MOT_DUR, #Motion duration of 0s LDByteWriteI2C(MPU6050_ADDRESS,
MPU6050_RA_MOT_DUR, 0x00);

185 MPU6050_RA_ZRMOT_THR, #Zero motion threshold LDByteWriteI2C(MPU6050_ADDRESS,
MPU6050_RA_ZRMOT_THR, 0x00);

186 MPU6050_RA_ZRMOT_DUR, #Zero motion duration threshold LDByteWriteI2C(
MPU6050_ADDRESS, MPU6050_RA_ZRMOT_DUR, 0x00);

187 MPU6050_RA_FIFO_EN, #Disable sensor output to FIFO buffer LDByteWriteI2C(
MPU6050_ADDRESS, MPU6050_RA_FIFO_EN, 0x00);

188 MPU6050_RA_I2C_MST_CTRL, #AUX I2C setup //Sets AUX I2C to single master control,
plus other config LDByteWriteI2C(MPU6050_ADDRESS, MPU6050_RA_I2C_MST_CTRL, 0x00);

189 MPU6050_RA_I2C_SLV0_ADDR, #Setup AUX I2C slaves LDByteWriteI2C(MPU6050_ADDRESS,
MPU6050_RA_I2C_SLV0_ADDR, 0x00);

190 MPU6050_RA_I2C_SLV0_REG, #LDByteWriteI2C(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV0_REG, 0
x00);

191 MPU6050_RA_I2C_SLV0_CTRL, #LDByteWriteI2C(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV0_CTRL,
0x00);

192 MPU6050_RA_I2C_SLV1_ADDR, #LDByteWriteI2C(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV1_ADDR,
0x00);

193 MPU6050_RA_I2C_SLV1_REG, #LDByteWriteI2C(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV1_REG, 0
x00);

194 MPU6050_RA_I2C_SLV1_CTRL, #LDByteWriteI2C(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV1_CTRL,
0x00);

195 MPU6050_RA_I2C_SLV2_ADDR, #LDByteWriteI2C(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV2_ADDR,
0x00);

196 MPU6050_RA_I2C_SLV2_REG, #LDByteWriteI2C(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV2_REG, 0
x00);

197 MPU6050_RA_I2C_SLV2_CTRL, #LDByteWriteI2C(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV2_CTRL,
0x00);

198 MPU6050_RA_I2C_SLV3_ADDR, #LDByteWriteI2C(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV3_ADDR,
0x00);

199 MPU6050_RA_I2C_SLV3_REG, #LDByteWriteI2C(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV3_REG, 0
x00);

200 MPU6050_RA_I2C_SLV3_CTRL, #LDByteWriteI2C(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV3_CTRL,
0x00);

201 MPU6050_RA_I2C_SLV4_ADDR, #LDByteWriteI2C(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV4_ADDR,
0x00);

202 MPU6050_RA_I2C_SLV4_REG, #LDByteWriteI2C(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV4_REG, 0
x00);

203 MPU6050_RA_I2C_SLV4_DO, #LDByteWriteI2C(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV4_DO, 0x00
);

204 MPU6050_RA_I2C_SLV4_CTRL, #LDByteWriteI2C(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV4_CTRL,
0x00);

205 MPU6050_RA_I2C_SLV4_DI, #LDByteWriteI2C(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV4_DI, 0x00
);

206 MPU6050_RA_I2C_SLV0_DO, #Slave out, dont care LDByteWriteI2C(MPU6050_ADDRESS,
MPU6050_RA_I2C_SLV0_DO, 0x00);

207 MPU6050_RA_I2C_SLV1_DO, #LDByteWriteI2C(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV1_DO, 0x00
);

208 MPU6050_RA_I2C_SLV2_DO, #LDByteWriteI2C(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV2_DO, 0x00

D.3. mpu6050.py 44

);
209 MPU6050_RA_I2C_SLV3_DO, #LDByteWriteI2C(MPU6050_ADDRESS, MPU6050_RA_I2C_SLV3_DO, 0x00

);
210 MPU6050_RA_I2C_MST_DELAY_CTRL, #More slave config LDByteWriteI2C(MPU6050_ADDRESS,

MPU6050_RA_I2C_MST_DELAY_CTRL, 0x00);
211 MPU6050_RA_SIGNAL_PATH_RESET, #Reset sensor signal paths LDByteWriteI2C(

MPU6050_ADDRESS, MPU6050_RA_SIGNAL_PATH_RESET, 0x00);
212 MPU6050_RA_MOT_DETECT_CTRL, #Motion detection control LDByteWriteI2C(

MPU6050_ADDRESS, MPU6050_RA_MOT_DETECT_CTRL, 0x00);
213 MPU6050_RA_USER_CTRL, #Disables FIFO, AUX I2C, FIFO and I2C reset bits to 0

LDByteWriteI2C(MPU6050_ADDRESS, MPU6050_RA_USER_CTRL, 0x00);
214 MPU6050_RA_INT_PIN_CFG, #MPU6050_RA_I2C_MST_STATUS //Read­only //Setup INT pin and

AUX I2C pass through LDByteWriteI2C(MPU6050_ADDRESS, MPU6050_RA_INT_PIN_CFG, 0x00);
215 MPU6050_RA_INT_ENABLE, #Enable data ready interrupt LDByteWriteI2C(MPU6050_ADDRESS

, MPU6050_RA_INT_ENABLE, 0x00);
216 MPU6050_RA_FIFO_R_W] #LDByteWriteI2C(MPU6050_ADDRESS, MPU6050_RA_FIFO_R_W, 0x00);
217

218

219 def reg_write(self,reg_addr,value):
220 self.i2c.writeto_mem(self.MPU6050_ADDRESS,reg_addr,value)
221

222 def reg_writeByte(self,reg_addr,value):
223 self.reg_write(reg_addr,bytearray(value))
224

225 def reg_read(self,reg_addr, count):
226 return self.i2c.readfrom_mem(self.MPU6050_ADDRESS,reg_addr,count)
227

228 def __init__(self, bus=1, address=0x69, scl=Pin(15), sda=Pin(14), freq=400000):
229 self.i2c = I2C(bus,scl=scl,sda=sda,freq=freq)
230 self.MPU6050_ADDRESS = address
231 self.setSampleRate(100)
232 self.setGResolution(2)
233 self.setGyroResolution(250)
234 # Disable gyro self tests, scale of 500 degrees/s
235 self.reg_writeByte(self.MPU6050_RA_GYRO_CONFIG, 0b00001000)
236

237 for loop in self.ZeroRegister:
238 self.reg_writeByte(loop,0)
239

240 # Sets clock source to gyro reference w/ PLL
241 self.reg_writeByte(self.MPU6050_RA_PWR_MGMT_1, 0b00000010)
242

243 #Controls frequency of wakeups in accel low power mode plus the sensor standby modes
244 self.reg_writeByte(self.MPU6050_RA_PWR_MGMT_2, 0x00)
245

246 self.reg_writeByte(self.MPU6050_RA_INT_ENABLE, 0x01)
247 self.readStatus()
248 self.fifoCount =0
249

250 def readDataFromFifo(self):
251 # first check how many bytes in temporary fifo counter
252 if self.fifoCount == 0 :
253 self.fifoCount = self.readFifoCount()
254

255 #max block transfer in i2c is 32 bytes including the address
256 # accelerometer, gyro and temperature data=> 7 short = 14 bytes => 31 bytes / 14 =

2
257 # then it will be 28
258 if (self.fifoCount > 28) :
259 nCount = 28
260 else:
261 nCount = self.fifoCount
262 GData = self.reg_read(self.MPU6050_RA_FIFO_R_W, nCount)
263 self.fifoCount = self.fifoCount ­ nCount
264 return GData
265

266 def readData(self):
267 #read accelerometers , temperature and gyro
268 GData = self.reg_read(self.MPU6050_RA_ACCEL_XOUT_H,14)
269 #convert list of 14 values bytes into MPU6050Data struct in engineering units
270 return self.convertData(GData)
271

272 def convertData(self,ListData):

D.3. mpu6050.py 45

273 ShortData = struct.unpack(”>hhhhhhh”, bytearray(ListData))
274 #lets create the Data Class
275 AccData = MPU6050Data()
276

277 # first 3 short value are Accelerometer
278

279 AccData.Gx = ShortData[0] * self.AccelerationFactor
280 AccData.Gy = ShortData[1] * self.AccelerationFactor
281 AccData.Gz = ShortData[2] * self.AccelerationFactor
282

283 #temperature
284 AccData.Temperature = ShortData[3] * self.TemperatureGain + self.TemperatureOffset
285

286 #and the 3 last ar’e the gyro data
287

288 AccData.Gyrox = ShortData[4] * self.GyroFactor
289 AccData.Gyroy = ShortData[5] * self.GyroFactor
290 AccData.Gyroz = ShortData[6] * self.GyroFactor
291

292 return AccData
293

294 def setGyroResolution(self, value):
295 #use dictionary to get correct G resolution 2,4,8 or 16G
296 self.reg_writeByte(self.MPU6050_RA_GYRO_CONFIG,{250 : 0 , 500 : 8 , 1000 : 16 , 2000

: 24}[value])
297 self.GyroFactor= value/32768.0;
298

299

300 def setGResolution(self, value):
301 #use dictionary to get correct G resolution 2,4,8 or 16G
302 self.reg_writeByte(self.MPU6050_RA_ACCEL_CONFIG,{2 : 0 , 4 : 8 , 8 : 16 , 16 : 24}[

value])
303 self.AccelerationFactor= value/32768.0;
304

305

306 def setSampleRate(self, Rate):
307 SampleReg = int((8000 / Rate) ­1)
308 self.SampleRate = 8000.0 / (SampleReg + 1.0)
309 self.reg_writeByte(self.MPU6050_RA_SMPLRT_DIV,SampleReg)
310

311

312 def readStatus(self):
313 return self.reg_read(self.MPU6050_RA_INT_STATUS,1
314)
315

316 def readFifoCount(self):
317 GData=self.reg_read(self.MPU6050_RA_FIFO_COUNTH,2)
318 self.fifoCount = (GData[0] * 256 + GData[1])
319 return self.fifoCount
320

321 def readFifo(self, ByteCount):
322 GData = self.reg_read(self.MPU6050_RA_FIFO_R_W ,ByteCount)
323 return GData
324

325 def resetFifo(self):
326 self.reg_writeByte(self.MPU6050_RA_USER_CTRL,0b00000000)
327 pass
328 self.reg_writeByte(self.MPU6050_RA_USER_CTRL,0b00000100)
329 pass
330 self.reg_writeByte(self.MPU6050_RA_USER_CTRL,0b01000000)
331

332 def enableFifo(self,flag):
333 self.reg_writeByte(self.MPU6050_RA_FIFO_EN,0)
334 if flag:
335 self.resetFifo()
336 self.reg_writeByte(self.MPU6050_RA_FIFO_EN,0b11111000)
337

338

339 if __name__ == ”__main__”:
340 mpu = MPU6050()
341 while True:
342 g=mpu.readData()
343 print(”X:{:.2f} Y:{:.2f} Z:{:.2f}”.format(g.Gx,g.Gy,g.Gz))

D.4. mq9.py 46

344 utime.sleep_ms(100)

D.4. mq9.py
1 # adapted from https://github.com/tutRPi/Raspberry­Pi­Gas­Sensor­MQ
2 ##https://github.com/leech001/MQ9
3 import time
4 import math
5 from machine import ADC
6

7

8 class MQ:
9 # Hardware Related Macros

10 RL_VALUE = 10 # define the load resistance on the board, in kilo ohms
11 RO_CLEAN_AIR_FACTOR = 9.83 # RO_CLEAR_AIR_FACTOR=(Sensor resistance in clean air)/RO,
12 # which is derived from the chart in datasheet
13

14 # Software Related Macros
15 CALIBARAION_SAMPLE_TIMES = 50 # define how many samples you are going to take in the

calibration phase
16 CALIBRATION_SAMPLE_INTERVAL = 500 # define the time interal(in milisecond) between each

samples in the
17 # cablibration phase
18 READ_SAMPLE_INTERVAL = 50 # define how many samples you are going to take in normal

operation
19 READ_SAMPLE_TIMES = 5 # define the time interal(in milisecond) between each samples in
20 # normal operation
21

22 # Application Related Macros
23 GAS_LPG = 0
24 GAS_CO = 1
25 GAS_SMOKE = 2
26

27 def __init__(self, ro=10):
28 self.ro = ro
29 self.adc = ADC(2)
30

31 self.LPGCurve = [2.3, 0.21, ­0.47] # two points are taken from the curve.
32 # with these two points, a line is formed which is ”approximately equivalent”
33 # to the original curve.
34 # data format:{ x, y, slope}; point1: (lg200, 0.21), point2: (lg10000, ­0.59)
35 self.COCurve = [2.3, 0.72, ­0.34] # two points are taken from the curve.
36 # with these two points, a line is formed which is ”approximately equivalent”
37 # to the original curve.
38 # data format:[x, y, slope]; point1: (lg200, 0.72), point2: (lg10000, 0.15)
39 self.SmokeCurve = [2.3, 0.53, ­0.44] # two points are taken from the curve.
40 # with these two points, a line is formed which is ”approximately equivalent”
41 # to the original curve.
42 # data format:[x, y, slope]; point1: (lg200, 0.53), point2: (lg10000, ­0.22)
43

44 print(”Calibrating...”)
45 self.ro = self.MQCalibration()
46 print(”Calibration is done...\n”)
47 print(”Ro=%f kohm” % self.ro)
48

49 def MQPercentage(self):
50 val = {}
51 read = self.MQRead()
52 val[”GAS_LPG”] = self.MQGetGasPercentage(read / self.ro, self.GAS_LPG)
53 val[”CO”] = self.MQGetGasPercentage(read / self.ro, self.GAS_CO)
54 val[”SMOKE”] = self.MQGetGasPercentage(read / self.ro, self.GAS_SMOKE)
55 return val
56

57 # MQResistanceCalculation
58 # Input: raw_adc ­ raw value read from adc, which represents the voltage
59 # Output: the calculated sensor resistance
60 # Remarks: The sensor and the load resistor forms a voltage divider. Given the voltage
61 # across the load resistor and its resistance, the resistance of the sensor
62 # could be derived.
63 def MQResistanceCalculation(self, raw_adc):
64 return float(self.RL_VALUE * (1023.0 ­ raw_adc) / float(raw_adc))
65

66 # MQCalibration

D.5. sdcard.py 47

67 # Output: Ro of the sensor
68 # Remarks: This function assumes that the sensor is in clean air. It use
69 # MQResistanceCalculation to calculates the sensor resistance in clean air
70 # and then divides it with RO_CLEAN_AIR_FACTOR. RO_CLEAN_AIR_FACTOR is about
71 # 10, which differs slightly between different sensors.
72 def MQCalibration(self):
73 val = 0.0
74 for i in range(self.CALIBARAION_SAMPLE_TIMES): # take multiple samples
75 val += self.MQResistanceCalculation(self.adc.read_u16()*3.3/(65536))
76 time.sleep(self.CALIBRATION_SAMPLE_INTERVAL / 1000.0)
77

78 val = val / self.CALIBARAION_SAMPLE_TIMES # calculate the average value
79

80 val = val / self.RO_CLEAN_AIR_FACTOR # divided by RO_CLEAN_AIR_FACTOR yields the Ro
81 # according to the chart in the datasheet
82 return val
83

84 # MQRead
85 # Output: Rs of the sensor
86 # Remarks: This function use MQResistanceCalculation to caculate the sensor resistenc (Rs

).
87 # The Rs changes as the sensor is in the different consentration of the target
88 # gas. The sample times and the time interval between samples could be

configured
89 # by changing the definition of the macros.
90 def MQRead(self):
91 rs = 0.0
92

93 for i in range(self.READ_SAMPLE_TIMES):
94 rs += self.MQResistanceCalculation(self.adc.read_u16()*3.3/(65536))
95 time.sleep(self.READ_SAMPLE_INTERVAL / 1000.0)
96

97 rs = rs / self.READ_SAMPLE_TIMES
98

99 return rs
100

101 # MQGetGasPercentage
102 # Input: rs_ro_ratio ­ Rs divided by Ro
103 # gas_id ­ target gas type
104 # Output: ppm of the target gas
105 # Remarks: This function passes different curves to the MQGetPercentage function which
106 # calculates the ppm (parts per million) of the target gas.
107 def MQGetGasPercentage(self, rs_ro_ratio, gas_id):
108 if gas_id == self.GAS_LPG:
109 return self.MQGetPercentage(rs_ro_ratio, self.LPGCurve)
110 elif gas_id == self.GAS_CO:
111 return self.MQGetPercentage(rs_ro_ratio, self.COCurve)
112 elif gas_id == self.GAS_SMOKE:
113 return self.MQGetPercentage(rs_ro_ratio, self.SmokeCurve)
114 return 0
115

116 # MQGetPercentage
117 # Input: rs_ro_ratio ­ Rs divided by Ro
118 # pcurve ­ pointer to the curve of the target gas
119 # Output: ppm of the target gas
120 # Remarks: By using the slope and a point of the line. The x(logarithmic value of ppm)
121 # of the line could be derived if y(rs_ro_ratio) is provided. As it is a
122 # logarithmic coordinate, power of 10 is used to convert the result to non­

logarithmic
123 # value.
124 def MQGetPercentage(self, rs_ro_ratio, pcurve):
125 return math.pow(10, (((math.log(rs_ro_ratio) ­ pcurve[1]) / pcurve[2]) + pcurve[0]))

D.5. sdcard.py
1 ”””
2 MicroPython driver for SD cards using SPI bus.
3 Requires an SPI bus and a CS pin. Provides readblocks and writeblocks
4 methods so the device can be mounted as a filesystem.
5 Example usage on pyboard:
6 import pyb, sdcard, os
7 sd = sdcard.SDCard(pyb.SPI(1), pyb.Pin.board.X5)
8 pyb.mount(sd, ’/sd2’)

D.5. sdcard.py 48

9 os.listdir(’/’)
10 Example usage on ESP8266:
11 import machine, sdcard, os
12 sd = sdcard.SDCard(machine.SPI(1), machine.Pin(15))
13 os.mount(sd, ’/sd’)
14 os.listdir(’/’)
15 ”””
16

17 from micropython import const
18 import time
19

20

21 _CMD_TIMEOUT = const(100)
22

23 _R1_IDLE_STATE = const(1 << 0)
24 # R1_ERASE_RESET = const(1 << 1)
25 _R1_ILLEGAL_COMMAND = const(1 << 2)
26 # R1_COM_CRC_ERROR = const(1 << 3)
27 # R1_ERASE_SEQUENCE_ERROR = const(1 << 4)
28 # R1_ADDRESS_ERROR = const(1 << 5)
29 # R1_PARAMETER_ERROR = const(1 << 6)
30 _TOKEN_CMD25 = const(0xFC)
31 _TOKEN_STOP_TRAN = const(0xFD)
32 _TOKEN_DATA = const(0xFE)
33

34

35 class SDCard:
36 def __init__(self, spi, cs):
37 self.spi = spi
38 self.cs = cs
39

40 self.cmdbuf = bytearray(6)
41 self.dummybuf = bytearray(512)
42 self.tokenbuf = bytearray(1)
43 for i in range(512):
44 self.dummybuf[i] = 0xFF
45 self.dummybuf_memoryview = memoryview(self.dummybuf)
46

47 # initialise the card
48 self.init_card()
49

50 def init_spi(self, baudrate):
51 try:
52 master = self.spi.MASTER
53 except AttributeError:
54 # on ESP8266
55 self.spi.init(baudrate=baudrate, phase=0, polarity=0)
56 else:
57 # on pyboard
58 self.spi.init(master, baudrate=baudrate, phase=0, polarity=0)
59

60 def init_card(self):
61 # init CS pin
62 self.cs.init(self.cs.OUT, value=1)
63

64 # init SPI bus; use low data rate for initialisation
65 self.init_spi(100000)
66

67 # clock card at least 100 cycles with cs high
68 for i in range(16):
69 self.spi.write(b”\xff”)
70

71 # CMD0: init card; should return _R1_IDLE_STATE (allow 5 attempts)
72 for _ in range(5):
73 if self.cmd(0, 0, 0x95) == _R1_IDLE_STATE:
74 break
75 else:
76 raise OSError(”no SD card”)
77

78 # CMD8: determine card version
79 r = self.cmd(8, 0x01AA, 0x87, 4)
80 if r == _R1_IDLE_STATE:
81 self.init_card_v2()

D.5. sdcard.py 49

82 elif r == (_R1_IDLE_STATE | _R1_ILLEGAL_COMMAND):
83 self.init_card_v1()
84 else:
85 raise OSError(”couldn’t determine SD card version”)
86

87 # get the number of sectors
88 # CMD9: response R2 (R1 byte + 16­byte block read)
89 if self.cmd(9, 0, 0, 0, False) != 0:
90 raise OSError(”no response from SD card”)
91 csd = bytearray(16)
92 self.readinto(csd)
93 if csd[0] & 0xC0 == 0x40: # CSD version 2.0
94 self.sectors = ((csd[8] << 8 | csd[9]) + 1) * 1024
95 elif csd[0] & 0xC0 == 0x00: # CSD version 1.0 (old, <=2GB)
96 c_size = csd[6] & 0b11 | csd[7] << 2 | (csd[8] & 0b11000000) << 4
97 c_size_mult = ((csd[9] & 0b11) << 1) | csd[10] >> 7
98 self.sectors = (c_size + 1) * (2 ** (c_size_mult + 2))
99 else:

100 raise OSError(”SD card CSD format not supported”)
101 # print(’sectors’, self.sectors)
102

103 # CMD16: set block length to 512 bytes
104 if self.cmd(16, 512, 0) != 0:
105 raise OSError(”can’t set 512 block size”)
106

107 # set to high data rate now that it’s initialised
108 self.init_spi(1320000)
109

110 def init_card_v1(self):
111 for i in range(_CMD_TIMEOUT):
112 self.cmd(55, 0, 0)
113 if self.cmd(41, 0, 0) == 0:
114 self.cdv = 512
115 # print(”[SDCard] v1 card”)
116 return
117 raise OSError(”timeout waiting for v1 card”)
118

119 def init_card_v2(self):
120 for i in range(_CMD_TIMEOUT):
121 time.sleep_ms(50)
122 self.cmd(58, 0, 0, 4)
123 self.cmd(55, 0, 0)
124 if self.cmd(41, 0x40000000, 0) == 0:
125 self.cmd(58, 0, 0, 4)
126 self.cdv = 1
127 # print(”[SDCard] v2 card”)
128 return
129 raise OSError(”timeout waiting for v2 card”)
130

131 def cmd(self, cmd, arg, crc, final=0, release=True, skip1=False):
132 self.cs(0)
133

134 # create and send the command
135 buf = self.cmdbuf
136 buf[0] = 0x40 | cmd
137 buf[1] = arg >> 24
138 buf[2] = arg >> 16
139 buf[3] = arg >> 8
140 buf[4] = arg
141 buf[5] = crc
142 self.spi.write(buf)
143

144 if skip1:
145 self.spi.readinto(self.tokenbuf, 0xFF)
146

147 # wait for the response (response[7] == 0)
148 for i in range(_CMD_TIMEOUT):
149 self.spi.readinto(self.tokenbuf, 0xFF)
150 response = self.tokenbuf[0]
151 if not (response & 0x80):
152 # this could be a big­endian integer that we are getting here
153 for j in range(final):
154 self.spi.write(b”\xff”)

D.5. sdcard.py 50

155 if release:
156 self.cs(1)
157 self.spi.write(b”\xff”)
158 return response
159

160 # timeout
161 self.cs(1)
162 self.spi.write(b”\xff”)
163 return ­1
164

165 def readinto(self, buf):
166 self.cs(0)
167

168 # read until start byte (0xff)
169 for i in range(_CMD_TIMEOUT):
170 self.spi.readinto(self.tokenbuf, 0xFF)
171 if self.tokenbuf[0] == _TOKEN_DATA:
172 break
173 time.sleep_ms(1)
174 else:
175 self.cs(1)
176 raise OSError(”timeout waiting for response”)
177

178 # read data
179 mv = self.dummybuf_memoryview
180 if len(buf) != len(mv):
181 mv = mv[: len(buf)]
182 self.spi.write_readinto(mv, buf)
183

184 # read checksum
185 self.spi.write(b”\xff”)
186 self.spi.write(b”\xff”)
187

188 self.cs(1)
189 self.spi.write(b”\xff”)
190

191 def write(self, token, buf):
192 self.cs(0)
193

194 # send: start of block, data, checksum
195 self.spi.read(1, token)
196 self.spi.write(buf)
197 self.spi.write(b”\xff”)
198 self.spi.write(b”\xff”)
199

200 # check the response
201 if (self.spi.read(1, 0xFF)[0] & 0x1F) != 0x05:
202 self.cs(1)
203 self.spi.write(b”\xff”)
204 return
205

206 # wait for write to finish
207 while self.spi.read(1, 0xFF)[0] == 0:
208 pass
209

210 self.cs(1)
211 self.spi.write(b”\xff”)
212

213 def write_token(self, token):
214 self.cs(0)
215 self.spi.read(1, token)
216 self.spi.write(b”\xff”)
217 # wait for write to finish
218 while self.spi.read(1, 0xFF)[0] == 0x00:
219 pass
220

221 self.cs(1)
222 self.spi.write(b”\xff”)
223

224 def readblocks(self, block_num, buf):
225 nblocks = len(buf) // 512
226 assert nblocks and not len(buf) % 512, ”Buffer length is invalid”
227 if nblocks == 1:

D.6. testGPS.py 51

228 # CMD17: set read address for single block
229 if self.cmd(17, block_num * self.cdv, 0, release=False) != 0:
230 # release the card
231 self.cs(1)
232 raise OSError(5) # EIO
233 # receive the data and release card
234 self.readinto(buf)
235 else:
236 # CMD18: set read address for multiple blocks
237 if self.cmd(18, block_num * self.cdv, 0, release=False) != 0:
238 # release the card
239 self.cs(1)
240 raise OSError(5) # EIO
241 offset = 0
242 mv = memoryview(buf)
243 while nblocks:
244 # receive the data and release card
245 self.readinto(mv[offset : offset + 512])
246 offset += 512
247 nblocks ­= 1
248 if self.cmd(12, 0, 0xFF, skip1=True):
249 raise OSError(5) # EIO
250

251 def writeblocks(self, block_num, buf):
252 nblocks, err = divmod(len(buf), 512)
253 assert nblocks and not err, ”Buffer length is invalid”
254 if nblocks == 1:
255 # CMD24: set write address for single block
256 if self.cmd(24, block_num * self.cdv, 0) != 0:
257 raise OSError(5) # EIO
258

259 # send the data
260 self.write(_TOKEN_DATA, buf)
261 else:
262 # CMD25: set write address for first block
263 if self.cmd(25, block_num * self.cdv, 0) != 0:
264 raise OSError(5) # EIO
265 # send the data
266 offset = 0
267 mv = memoryview(buf)
268 while nblocks:
269 self.write(_TOKEN_CMD25, mv[offset : offset + 512])
270 offset += 512
271 nblocks ­= 1
272 self.write_token(_TOKEN_STOP_TRAN)
273

274 def ioctl(self, op, arg):
275 if op == 4: # get number of blocks
276 return self.sectors

D.6. testGPS.py
1 from machine import UART, Pin
2 import utime
3 Link = ”http://www.google.com/maps/place/”
4 loc = ””
5

6 def update_serial():
7 while gps.any()>0:
8 response = gps.read(1)
9 print(response)

10

11

12

13 gps = UART(1, baudrate = 9600, tx=Pin(8), rx=Pin(9))
14 location = bytes()
15 gps.write(b’AT+CGPSPWR=1\r’)
16 utime.sleep(0.1)
17 update_serial()
18 # gps.write(b’AT+CGPSSTATUS?\r’)
19 # utime.sleep(0.1)
20 # update_serial()
21 # gps.write(b’AT+CGPSINF=0\r’)

D.7. testSDcard.py 52

22 # utime.sleep(0.1)
23 # update_serial()
24 # gps.write(b’AT+CGPSINF=32\r’)
25 # utime.sleep(0.1)
26 # update_serial()
27

28

29

30

31

32 def prepare_message(location):
33 first_comma = location.index(’,’)
34 second_comma = location.index(’,’, first_comma + 1)
35 third_comma = location.index(’,’, second_comma+1)
36 fourth_comma = location.index(’,’, third_comma+1)
37 fifth_comma = location.index(’,’, fourth_comma+1)
38 Longitude = ’’
39 iterator = third_comma;
40 while iterator < fourth_comma:
41 iterator = iterator + 1
42 Longitude = Longitude + location[iterator];
43 iterator = fourth_comma;
44 Latitude = ’’
45 while iterator < fifth_comma­1:
46 iterator = iterator + 1
47 Latitude = Latitude + location[iterator]
48 print(’Latitude = ’, Latitude)
49 print(’Longitude = ’,Longitude)
50 Link = ”http://www.google.com/maps/place/” + Longitude+ Latitude
51 print(Link)
52

53

54

55

56 gps.write(b’AT+CGNSINF\r’)
57 utime.sleep(0.1)
58 while gps.any()>0:
59 location += gps.read(1)
60

61 loc = location.decode(’utf­8’)
62 print(’location = ’, loc)
63 # loc = loc + str(location)
64 prepare_message(loc)
65

66 print(loc)

D.7. testSDcard.py
1 # import sdcard
2 # import machine
3 # import uos
4 # sd_spi = machine.SPI(1, sck = machine.Pin(10, machine.Pin.OUT), mosi = machine.Pin(11,

machine.Pin.OUT), miso = machine.Pin(12, machine.Pin.OUT))
5 # sd = sdcard.SDCard(sd_spi, machine.Pin(9))
6 # uos.mount(sd, ”/sd”)
7 #
8 # print(”Size: {} MB” .format(sd.sectors/2048))
9 # print(uos.listdir(”/sd”))

10

11 # Test for sdcard block protocol
12 # Peter hinch 30th Jan 2016
13 import os, sdcard, machine
14 import time
15

16 def sdtest():
17 spi = machine.SPI(1)
18 spi.init() # Ensure right baudrate
19 sd_spi = machine.SPI(1, sck = machine.Pin(10, machine.Pin.OUT), mosi = machine.Pin(11,

machine.Pin.OUT), miso = machine.Pin(12, machine.Pin.OUT))
20 #sd = sdcard.SDCard(spi, machine.Pin.board.X21) # Compatible with PCB
21 sd = sdcard.SDCard(sd_spi, machine.Pin(9))
22 vfs = os.VfsFat(sd)
23 os.mount(vfs, ”/fc”)

D.8. testTimer.py 53

24 print(”Filesystem check”)
25 print(os.listdir(”/fc”))
26

27 line = ”abcdefghijklmnopqrstuvwxyz\n”
28 lines = line * 200 # 5400 chars
29 short = ”1234567890\n”
30

31 fn = ”/sd/rats.txt”
32 print()
33 print(”Multiple block read/write”)
34 with open(fn, ”w”) as f:
35 n = f.write(lines)
36 print(n, ”bytes written”)
37 # n = f.write(short)
38 # print(n, ”bytes written”)
39 # n = f.write(lines)
40 # print(n, ”bytes written”)
41

42 with open(fn, ”r”) as f:
43 result1 = f.read()
44 print(len(result1), ”bytes read”)
45 #
46 # fn = ”/fc/rats1.txt”
47 # print()
48 # print(”Single block read/write”)
49 # with open(fn, ”w”) as f:
50 # n = f.write(short) # one block
51 # print(n, ”bytes written”)
52 #
53 # with open(fn, ”r”) as f:
54 # result2 = f.read()
55 # print(len(result2), ”bytes read”)
56 #
57 # os.umount(”/fc”)
58 #
59 # print()
60 # print(”Verifying data read back”)
61 # success = True
62 # if result1 == ””.join((lines, short, lines)):
63 # print(”Large file Pass”)
64 # else:
65 # print(”Large file Fail”)
66 # success = False
67 # if result2 == short:
68 # print(”Small file Pass”)
69 # else:
70 # print(”Small file Fail”)
71 # success = False
72 # print()
73 # print(”Tests”, ”passed” if success else ”failed”)
74

75 sdtest()

D.8. testTimer.py
1 # from machine import Pin, Timer
2 #
3 # led = Pin(25, Pin.OUT)
4 # tim = Timer()
5 # def tick(timer):
6 # global led
7 # led.toggle()
8 # print(”lala”)
9 # print(”baba”)

10 # tim.init(freq=1, mode=Timer.PERIODIC, callback=tick)
11 #
12 # while True:
13 # count = 100000
14 from rp2 import PIO, StateMachine, asm_pio
15 from machine import Pin, Timer
16 from machine import Pin
17 #import time
18 from machine import Pin, ADC # Import Pins and ADCs

D.8. testTimer.py 54

19 import mpu6050 # Import library for gyroscope and accelerometer
20 from mq9 import MQ # Import library for gas sensor
21 import utime # Import time library
22 from ds3231 import ds3231 # Import real time module library
23 #mq = MQ() # Define gas sensor object.
24 time = ds3231(1,15,14) # Define real time object connected to i2c1 with address 0x68
25 tim = Timer()
26 mpu = mpu6050.MPU6050() # Define gyroscope object. Connected to i2c1 with address 0x69
27

28 # Define pins
29 sel = machine.Pin (2, machine.Pin.OUT) # use pin 2 as slector to select between gas and sound
30 sound = ADC(28)
31 # Define Varaibles
32 conversion_factor = 3.3/(65536) # To read the correct value from the ADC
33

34 gyroData=[]
35 gasData=[]
36 soundData=[]
37 timeData=[]
38 Data = []
39 Data_to_send = []
40 iteration = 10
41 start_measurement = False
42 send = False
43 gx_previous = 0
44 gy_previous = 0
45 gz_previous = 0
46 gyrox_previous = 0
47 gyroy_previous = 0
48 gyroz_previous = 0
49 previous_time = 0
50 counter =0
51 sound = ADC(28)
52 # Define Varaibles
53 conversion_factor = 3.3/(65536) # To read the correct value from the ADC
54 def tick(timer):
55 global start_measurement
56 global counter
57 global send
58 counter = counter +1
59 if counter == 10:
60 send = True
61 counter = 0
62 else:
63 send = False
64

65 start_measurement = True
66 tim.init(freq=1, mode=Timer.PERIODIC, callback=tick)
67

68 # @asm_pio(set_init=PIO.OUT_LOW)
69 # def measure():
70 # global start_measurement
71 # start_measurement = True
72 # print(start_measurement)
73 #
74 # sm1 = StateMachine(1, measure, freq=10000, set_base=Pin(2))
75 # sm1.active(1)
76

77 while True:
78 if start_measurement == True:
79 t = time.read_time()
80 current_time = str(”%02x” %t[0])
81 print(current_time)
82 start_measurement = False
83 g=mpu.readData()
84 gx_current = g.Gx
85 gy_current = g.Gy
86 gz_current = g.Gz
87 gyrox_current = g.Gyrox
88 gyroy_current = g.Gyroy
89 gyroz_current = g.Gyroz
90 if ((­0.5 <= gx_current ­ gx_previous >= 0.5) or (­0.5 <= gy_current ­ gy_previous >=

0.5) or (­0.5 <= gz_current ­ gz_previous >= 0.5)):

D.9. Basestation.py 55

91 Data.append(str(”%02x” %t[2])+”/”+str(”%02x” %t[1]) + ”/” + str(”%02x” %t[0]) + ”
M”)

92 if ((­0.5 <= gyrox_current ­ gyrox_previous >= 0.5) or (­0.5 <= gyroy_current ­
gyroy_previous >= 0.5) or (­0.5 <= gyroz_current ­ gyroz_previous >= 0.5)):

93 Data.append(str(”%02x” %t[2])+”/”+str(”%02x” %t[1]) + ”/” + str(”%02x” %t[0]) + ”
M”)

94 #print(Data)
95 if ((send == True) and ((current_time) != (previous_time))):
96 Data_to_send.append(str(”%02x” %t[0]) +”/” + str(”%x” %len(Data)) + ”M”)
97

98 gx_previous = gx_current
99 gy_previous = gy_current

100 gz_previous = gz_current
101 gyrox_previous = gyrox_current
102 gyroy_previous = gyroy_current
103 gyroz_previous = gyroz_current
104 previous_time = current_time
105 print(previous_time)
106 print(send)
107 print(counter)
108 print(Data_to_send)
109 # g.Gx,g.Gy,g.Gz,g.Gyrox,g.Gyroy,g.Gyroz,g.Temperature
110

111 # utime.sleep_ms(100)
112 # sel.value(0)
113 # #perc = mq.MQPercentage()
114 # utime.sleep_ms(100)
115 # sel.value(1)
116 # #print(”CO: %g ppm, Smoke: %g ppm %g sound” % (perc[”CO”], perc[”SMOKE”], sound.

read_u16() *conversion_factor))
117 #
118 # #print(sound.read_u16()*conversion_factor)
119 # #utime.sleep(0.1)
120 # t = time.read_time()
121 # utime.sleep(0.1)

D.9. Basestation.py
1 import sys
2 import serial
3 from oob_parser import uartParserSDK
4 from graphUtilities import *
5 from gl_classes import GLTextItem
6

7

8 import random
9 import numpy as np

10 import time
11 import math
12 import struct
13 import os
14 import csv
15 configFileNaam = ’AOP_6m_default.cfg’
16 ompileGui = 0
17

18 class BaseStation():
19 def __init__(self,s_height,az_tilt,elev_tilt, persistentFramesInput):
20

21 if (1): #set to 1 to save terminal output to logFile, set 0 to show terminal output
22 ts = time.localtime()
23 terminalFileName = str(’logData/logfile_’+ str(ts[2]) + str(ts[1]) + str(ts[0]) +

’_’ + str(ts[3]) + str(ts[4]) +’.txt’)
24 #sys.stdout = open(terminalFileName, ’w’)
25

26 print(’Python is ’, struct.calcsize(”P”)*8, ’ bit’)
27 print(’Python version: ’, sys.version_info)
28 self.frameTime = 50
29 self.graphFin = 1
30 self.hGraphFin = 1
31 self.threeD = 1
32 self.lastFramePoints = np.zeros((5,1))
33 self.plotTargets = 1
34 self.frameNum = 0

D.9. Basestation.py 56

35 self.lastTID = []
36 self.profile = {’startFreq’: 60.25, ’numLoops’: 64, ’numTx’: 3, ’sensorHeight’:3, ’

maxRange’:10, ’az_tilt’:0, ’elev_tilt’:0}
37 self.lastFrameHadTargets = False
38 self.sensorHeight = 1.5
39 self.numFrameAvg = 20
40 self.configSent = 0
41 self.previousFirstZ = ­1
42 self.yzFlip = 0
43 self.configFileName = ’AOP_6m_default.cfg’
44 #self.fallDetData()
45 self.configType = ’3D People Counting’
46 self.uart = ’/dev/ttyUSB1’
47 self.data = ’/dev/ttyUSB0’
48 self.data_recorded = []
49 def updateSensorPosition(self):
50 try:
51 float(self.s_height)
52 float(self.az_tilt)
53 float(self.elev_tilt)
54 except:
55 print(”fail to update”)
56 return
57 command = ”sensorPosition ” + self.s_height + ” ” + self.az_tilt + ” ” + self.

elev_tilt + ” \n”
58 self.cThread = sendCommandThread(self.parser,command)
59 self.cThread.start(priority=QThread.HighestPriority­2)
60 self.gz.translate(dx=0,dy=0,dz=self.profile[’sensorHeight’])
61 self.profile[’sensorHeight’] = float(self.s_height)
62 self.gz.translate(dx=0,dy=0,dz=­self.profile[’sensorHeight’])
63

64 def updateGraph(self, parsedData):
65 updateStart = int(round(time.time()*1000))
66 self.useFilter = 0
67 classifierOutput = []
68 pointCloud = parsedData[0]
69 targets = parsedData[1]
70 indexes = parsedData[2]
71 numPoints = parsedData[3]
72 numTargets = parsedData[4]
73 self.frameNum = parsedData[5]
74 fail = parsedData[6]
75 classifierOutput = parsedData[7]
76 #print(”indexes: ”, indexes)
77 fallDetEn = 0
78 indicesIn = []
79 #pass target XYZ vals and rotate due to elevation tilt angle (rotX uses Euler

rotation around X axis)
80 print(’elev_tilt = ’,self.profile[’elev_tilt’])
81 print(’targets = ’,targets)
82 rotTargetDataX,rotTargetDataY,rotTargetDataZ = rotX (targets[1],targets[2],targets

[3],­1*self.profile[’elev_tilt’])
83 print(’Rotated Data TID,X,Y = ’ +str(rotTargetDataX)+’, ’+str(rotTargetDataY)+’, ’+

str(rotTargetDataZ))
84 targets[1] = rotTargetDataX
85 targets[2] = rotTargetDataY
86 targets[3] = rotTargetDataZ
87

88 #pass pointCloud XYZ vals and rotate due to elevation tilt angle (rotX uses Euler
rotation around X axis)

89 for i in range(numPoints):
90 print(’graph point cloud pt = ’,pointCloud[:,i])
91 print(’graph point cloud Y = ’,pointCloud[1][i])
92 print(’graph point cloud Z = ’,pointCloud[2][i])
93 rotPointDataX,rotPointDataY,rotPointDataZ = rotX ([pointCloud[0,i]],[pointCloud

[1,i]],[pointCloud[2,i]],­1*self.profile[’elev_tilt’])
94 print(’graph point cloud rotated pt = ’,rotPointDataX,rotPointDataY,rotPointDataZ

)
95 print(’graph point cloud Y = ’,pointCloud[1][i])
96 print(’graph point cloud Z = ’,pointCloud[2][i])
97 pointCloud[0,i] = rotPointDataX
98 pointCloud[1,i] = rotPointDataY
99 pointCloud[2,i] = rotPointDataZ

D.9. Basestation.py 57

100 if (fail != 1):
101 #left side
102 #pointstr = ’Points: ’+str(numPoints)
103 #targetstr = ’Targets: ’+str(numTargets)
104 #self.numPointsDisplay.setText(pointstr)
105 #self.numTargetsDisplay.setText(targetstr)
106 #right side fall detection
107 peopleStr = ’Number of Detected People: ’+str(numTargets)
108 if (numTargets == 0):
109 print(’Fall Detection Disabled ­ No People Detected’)
110 elif (numTargets == 1):
111 print(’Fall Detection Enabled’)
112 fallDetEn = 1
113 elif (numTargets > 1):
114 print(’Fall Detected Disabled ­ Too Many People’)
115 #self.numDetPeople.setText(peopleStr)
116 #self.fallDetEnabled.setText(fdestr)
117 if (len(targets) < 13):
118 targets = []
119 classifierOutput = []
120 if (fail):
121 return
122 #check for mounting position
123 if (self.yzFlip == 1):
124 pointCloud[[1, 2]] = pointCloud[[2, 1]]
125 pointCloud[2,:] = ­1*pointCloud[2,:]
126 targets[[2,3]] = targets[[3,2]]
127 targets[3,:] = ­1*targets[3,:]
128

129 #remove static points
130 if (self.configType == ’3D People Counting’ or self.configType == ’Capon3DAOP’ or

self.configType == ’Sense and Detect HVAC Control’):
131 if (not self.staticclutter.isChecked()):
132 statics = np.where(pointCloud[3,:] == 0)
133 try:
134 firstZ = statics[0][0]
135 numPoints = firstZ
136 pointCloud = pointCloud[:,:firstZ]
137 indexes = indexes[:,:self.previousFirstZ]
138 self.previousFirstZ = firstZ
139 except:
140 firstZ = ­1
141 #point cloud persistence
142 fNum = self.frameNum%10
143 if (numPoints):
144 self.previousCloud[:5,:numPoints,fNum] = pointCloud[:5,:numPoints]
145 self.previousCloud[5,:len(indexes),fNum] = indexes
146 self.previousPointCount[fNum]=numPoints
147 #plotting 3D ­ get correct point cloud (persistent points and synchronize the frame)
148 if (self.configType == ’SDK3xPeopleCount’):
149 pointIn = pointCloud
150 else:
151 totalPoints = 0
152 persistentFrames = int(self.persistentFramesInput)
153 #allocate new array for all the points
154 for i in range(1,persistentFrames+1):
155 totalPoints += self.previousPointCount[fNum­i]
156 pointIn = np.zeros((5,int(totalPoints)))
157 indicesIn = np.ones((1, int(totalPoints)))*255
158 totalPoints = 0
159 #fill array for indices and points
160 for i in range(1,persistentFrames+1):
161 prevCount = int(self.previousPointCount[fNum­i])
162 pointIn[:,totalPoints:totalPoints+prevCount] = self.previousCloud[:5,:

prevCount,fNum­i]
163 if (numTargets > 0):
164 indicesIn[0,totalPoints:totalPoints+prevCount] = self.previousCloud[5,:

prevCount,fNum­i]
165 totalPoints+=prevCount
166

167 #height plotting ­ only if 3D plot is good to go
168 #first loop is instantaneous absolute height, relative height, length, and width
169 if (self.configType == ’3D People Counting’):

D.9. Basestation.py 58

170 pointIn = self.previousCloud[:,:int(self.previousPointCount[fNum­1]),fNum­1]
171 elif (self.configType == ’Long Range People Detection’):
172 pointIn = self.previousCloud[:,:int(self.previousPointCount[fNum]),fNum]
173 fNum = self.frameNum%100
174 for t in range(numTargets):
175 tid = int(targets[t,0])
176 print(”TID: ”, tid)
177 tIndices = np.where(np.array(indexes) == tid)
178 print(”Indexex: ”, np.size(indexes),” , pointIn: ”, np.size(pointIn,1))
179 if (np.size(tIndices) and np.size(pointIn,1) == np.size(indexes)):
180 #print(”indices statement”)
181 tPoints = np.take(pointIn, tIndices, 1)
182 self.targetSize[0,tid,fNum] = np.amax(tPoints[2,0,:]) + self.sensorHeight #

absolute height
183 self.targetSize[1,tid,fNum] = np.amax(tPoints[2,0,:]) ­ np.amin(tPoints[2,:])

#relative height
184 self.targetSize[2,tid,fNum] = np.amax(tPoints[1,0,:]) ­ np.amin(tPoints[1,:])

#length
185 self.targetSize[3,tid,fNum] = np.amax(tPoints[0,0,:]) ­ np.amin(tPoints[0,:])

#width
186 if tid in self.lastTID:
187 #print(”lastTID”)
188 self.targetSize[4,tid,0] = self.targetSize[4,tid,0]+1
189 age = self.targetSize[4,tid,0] #age
190 a = 1/self.numFrameAvg*self.targetSize[0,tid,fNum]
191 b = ((self.numFrameAvg­1)/self.numFrameAvg)*self.targetSize[5,tid,(fNum

­1)%100]
192 c = a + b
193 print(’a: ’,a,’ b: ’, b,’ c: ’,c)
194 self.targetSize[5,tid,fNum]= (1/self.numFrameAvg*self.targetSize[0,tid,

fNum])+((self.numFrameAvg­1)/self.numFrameAvg)*self.targetSize[5,tid,(fNum­1)%100] #avg
height over 10 frames

195 #need 2 seconds to get accurate height
196 if(age>40):
197 self.targetSize[6,tid,fNum]= self.targetSize[5,tid,fNum]­self.

targetSize[5,tid,(fNum­10)%100] #delta height after 10 frames
198 if (self.targetSize[6,tid,fNum] < self.fallThresh and fallDetEn):
199 print(’Fallen!’)
200 #self.fallPic.setPixmap(self.fallingPicture)
201 if (self.fallResetTimerOn == 0):
202 self.fallResetTimerOn = 1
203 self.fallTimer.start(5000) #5 second timer
204 else:
205 self.targetSize[6,tid,fNum] = 0
206 else:
207 self.targetSize[4,tid,0] = 1
208 self.targetSize[5,tid,fNum]= self.targetSize[0,tid,fNum]
209 self.targetSize[6,tid,fNum]=0
210 #nothing detected use values from last frame
211 else:
212 self.targetSize[0,tid,fNum]=self.targetSize[0,tid,fNum­1]
213 self.targetSize[1,tid,fNum]=self.targetSize[1,tid,fNum­1]
214 self.targetSize[2,tid,fNum]=self.targetSize[2,tid,fNum­1]
215 self.targetSize[3,tid,fNum]=self.targetSize[3,tid,fNum­1]
216 self.targetSize[4,tid,fNum]=self.targetSize[4,tid,fNum­1]
217 self.targetSize[5,tid,fNum]=self.targetSize[5,tid,fNum­1]
218 self.targetSize[6,tid,fNum]=self.targetSize[6,tid,fNum­1]
219

220 #state tracking
221 if (numTargets > 0):
222 self.lastFrameHadTargets = True
223 else:
224 self.lastFrameHadTargets = False
225 if (numTargets):
226 self.lastTID = targets[0,:]
227 else:
228 self.lastTID = []
229

230 def graphDone(self):
231 plotend = int(round(time.time()*1000))
232 plotime = plotend ­ self.plotstart
233 try:
234 if (self.frameNum > 1):

D.9. Basestation.py 59

235 self.averagePlot = (plotime*1/self.frameNum) + (self.averagePlot*(self.
frameNum­1)/(self.frameNum))

236 else:
237 self.averagePlot = plotime
238 except:
239 self.averagePlot = plotime
240 self.graphFin = 1
241 pltstr = ’Average Plot time: ’+str(plotime)[:5] + ’ ms’
242 fnstr = ’Frame: ’+str(self.frameNum)
243 print(fnstr)
244 print(pltstr)
245

246 def connectCom(self):
247 #get parser
248 self.parser = uartParserSDK(type=self.configType)
249 self.parser.frameTime = self.frameTime
250 print(’Parser type: ’,self.configType)
251 #init threads and timers
252 #self.uart_thread = parseUartThread(self.parser)
253 #if (self.configType != ’Replay’):
254 #self.uart_thread.fin.connect(self.parseData)
255 #self.uart_thread.fin.connect(self.updateGraph)
256 #self.parseTimer = QTimer()
257 #self.parseTimer.setSingleShot(False)
258 #self.parseTimer.timeout.connect(self.parseData)
259 try:
260 #uart = ”COM”+ self.uartCom.text() #deb_gp
261 #data = ”COM”+ self.dataCom.text() #deb_gp
262 #TODO: find the serial ports automatically.
263 self.parser.connectComPorts(self.uart, self.data)
264 print(’Connected from main’) #deb_gp
265 #print(’Disconnect’) #deb_gp
266 #TODO: create the disconnect button action
267 except Exception as e:
268 print (e)
269 print(’Unable to Connect’)
270 if (self.configType == ”Replay”):
271 self.connectStatus = (’Replay’)
272 if (self.configType == ”Long Range People Detection”):
273 self.frameTime = 400
274 #
275 # Select and parse the configuration file
276 # TODO select the cfgfile automatically based on the profile.
277

278

279 def sendCfg(self):
280 try:
281 if (self.configType!= ”Replay”):
282 self.parser.sendCfg(self.cfg)
283 self.configSent = 1
284 self.parseTimer.start(self.frameTime)
285 except Exception as e:
286 print(e)
287 print (’No cfg file selected!’)
288

289 def serialConfig(self, configFileName):
290

291 global CLIport
292 global Dataport
293 # Open the serial ports for the configuration and the data ports
294

295 # Raspberry pi
296 CLIport = serial.Serial(’/dev/ttyUSB0’, 115200)
297 Dataport = serial.Serial(’/dev/ttyUSB1’, 921600)
298

299 # Windows
300 #CLIport = serial.Serial(’COM3’, 115200)
301 #Dataport = serial.Serial(’COM4’, 921600)
302

303 # Read the configuration file and send it to the board
304 config = [line.rstrip(’\r\n’) for line in open(configFileName)]
305 for i in config:
306 CLIport.write((i+’\n’).encode())

D.9. Basestation.py 60

307 print(i)
308 time.sleep(0.01)
309

310 return CLIport, Dataport
311

312 def parseCfg(self):
313 cfg_file = open(self.configFileName)
314 self.cfg = cfg_file.readlines()
315 counter = 0
316 chirpCount = 0
317 for line in self.cfg:
318 args = line.split()
319 if (len(args) > 0):
320 if (args[0] == ’cfarCfg’):
321 zy = 4
322 #self.cfarConfig = {args[10], args[11], ’1’}
323 elif (args[0] == ’AllocationParam’):
324 zy=3
325 #self.allocConfig = tuple(args[1:6])
326 elif (args[0] == ’GatingParam’):
327 zy=2
328 #self.gatingConfig = tuple(args[1:4])
329 elif (args[0] == ’SceneryParam’ or args[0] == ’boundaryBox’):
330 self.boundaryLine = counter
331 self.profile[’leftX’] = float(args[1])
332 self.profile[’rightX’] = float(args[2])
333 self.profile[’nearY’] = float(args[3])
334 self.profile[’farY’] = float(args[4])
335 if (self.configType== ’3D People Counting’):
336 self.profile[’bottomZ’] = float(args[5])
337 self.profile[’topZ’] = float(args[6])
338 else:
339 self.profile[’bottomZ’] = float(­3)
340 self.profile[’topZ’] = float(3)
341 #self.setBoundaryTextVals(self.profile)
342 #self.boundaryBoxes[0][’checkEnable’].setChecked(True)
343 elif (args[0] == ’staticBoundaryBox’):
344 self.staticLine = counter
345 elif (args[0] == ’profileCfg’):
346 self.profile[’startFreq’] = float(args[2])
347 self.profile[’idle’] = float(args[3])
348 self.profile[’adcStart’] = float(args[4])
349 self.profile[’rampEnd’] = float(args[5])
350 self.profile[’slope’] = float(args[8])
351 self.profile[’samples’] = float(args[10])
352 self.profile[’sampleRate’] = float(args[11])
353 print(self.profile)
354 elif (args[0] == ’frameCfg’):
355 self.profile[’numLoops’] = float(args[3])
356 self.profile[’numTx’] = float(args[2])+1
357 elif (args[0] == ’chirpCfg’):
358 chirpCount += 1
359 elif (args[0] == ’sensorPosition’):
360 self.profile[’sensorHeight’] = float(args[1])
361 self.profile[’az_tilt’] = float(args[2])
362 self.profile[’elev_tilt’] = float(args[3])
363 counter += 1
364 self.profile[’maxRange’] = self.profile[’sampleRate’]*1e3*0.9*3e8/(2*self.profile[’

slope’]*1e12)
365 #update boundary box
366 #self.drawBoundaryGrid(self.profile[’maxRange’]) #2D legacy version
367 #self.gz.translate(0, 0, 3­self.profile[’sensorHeight’]) #reposition the ground level

to be at sensor height
368 #self.changeBoundaryBox() #redraw bbox from cfg file values
369 #update chirp table values
370 bw = self.profile[’samples’]/(self.profile[’sampleRate’]*1e3)*self.profile[’slope’]*1

e12
371 rangeRes = 3e8/(2*bw)
372 Tc = (self.profile[’idle’]*1e­6 + self.profile[’rampEnd’]*1e­6)*chirpCount
373 lda = 3e8/(self.profile[’startFreq’]*1e9)
374 maxVelocity = lda/(4*Tc)
375 velocityRes = lda/(2*Tc*self.profile[’numLoops’]*self.profile[’numTx’])
376 #self.configTable.setItem(1,1,QTableWidgetItem(str(self.profile[’maxRange’])[:5]))

D.10. oob parser.py 61

377 #self.configTable.setItem(2,1,QTableWidgetItem(str(rangeRes)[:5]))
378 #self.configTable.setItem(3,1,QTableWidgetItem(str(maxVelocity)[:5]))
379 #self.configTable.setItem(4,1,QTableWidgetItem(str(velocityRes)[:5]))
380 #update sensor position
381 #print(str(self.profile[’az_tilt’]))
382 #print(str(self.profile[’elev_tilt’]))
383 #print(str(self.profile[’sensorHeight’]))
384

385 def connectBase(self):
386 self.parser = uartParserSDK(type=self.configType)
387 self.parser.frameTime = 50
388 #self.parseTimer.timeout.connect(self.parseData)
389 self.parser.connectComPorts(’/dev/ttyUSB1’,’/dev/ttyUSB0’)
390

391 def readData(self, data):
392 #data_rec = self.parser.tlvHeader(data)
393 data_read = self.parser.readAndParseUart(data)
394 return data_read [3]
395

396

397

398

399

400 test = BaseStation(1,1,1,4)
401 test.connectBase()
402 #test.connectCom()
403 test.serialConfig(configFileNaam)
404 test.parseCfg()
405

406 #test.sendCfg()
407 #test.updateGraph()
408

409 #with open(’output.csv’, ’w’) as csvfile:
410 # while True:
411 # readBuffer = Dataport.readline(Dataport.in_waiting)
412 # print(readBuffer)
413 # writer = csv.DictWriter(csvfile, readBuffer)
414

415 f = open(’output.csv’, ’w’)
416 n = 100
417 while True: #n >0:
418 readBuffer = Dataport.readline(Dataport.in_waiting)
419 t = time.localtime()
420 current_time = time.strftime(”%H:%M:%S”, t)
421 spamWriter = csv.writer(f, delimiter=’ ’)
422 print(readBuffer)
423 print(current_time)
424 spamWriter.writerow([current_time] + [readBuffer])
425 n ­= 1
426 f.close()

D.10. oob parser.py
1 import struct
2 import sys
3 import serial
4 import binascii
5 import time
6 import numpy as np
7 import math
8

9 from graphUtilities import rotX
10

11 #Initialize this Class to create a UART Parser. Initialization takes one argument:
12 # 1: String Lab_Type ­ These can be:
13 # a. 3D People Counting
14 # b. SDK Out of Box Demo
15 # c. Long Range People Detection
16 # d. Indoor False Detection Mitigation
17 # e. (Legacy): Overhead People Counting
18 # f. (Legacy) 2D People Counting
19 # Default is (f). Once initialize, call connectComPorts(self, UartComPort, DataComPort) to

connect to device com ports.

D.10. oob parser.py 62

20 # Then call readAndParseUart() to read one frame of data from the device. The gui this is
packaged with calls this every frame period.

21 # readAndParseUart() will return all radar detection and tracking information.
22 class uartParserSDK():
23 def __init__(self,type=’(Legacy) 2D People Counting’):
24 self.headerLength = 52
25 self.magicWord = 0x708050603040102
26 self.threeD = 0
27 self.ifdm = 0
28 self.replay = 0
29 self.SDK3xPointCloud = 0
30 self.SDK3xPC = 0
31 self.capon3D = 0
32 self.aop = 0
33 self.maxPoints = 1150
34 if (type==’(Legacy): Overhead People Counting’):
35 self.threeD = 1
36 elif (type==’Sense and Detect HVAC Control’):
37 self.ifdm = 1
38 elif (type==’Replay’): # unused
39 self.replay = 1
40 elif (type==”SDK Out of Box Demo”):
41 self.SDK3xPointCloud = 1
42 elif (type==”Long Range People Detection”):
43 self.SDK3xPC = 1
44 elif (type==’3D People Counting’):
45 self.capon3D = 1
46 elif (type == ’Capon3DAOP’): #unused
47 self.capon3D = 1
48 self.aop = 1
49 #data storage
50 self.pcPolar = np.zeros((5,self.maxPoints))
51 self.pcBufPing = np.zeros((5,self.maxPoints))
52 self.numDetectedObj = 0
53 self.targetBufPing = np.ones((10,20))*­1
54 self.indexBufPing = np.zeros((1,self.maxPoints))
55 self.classifierOutput = []
56 self.frameNum = 0
57 self.missedFrames = 0
58 self.byteData = bytes(1)
59 self.oldData = []
60 self.indexes = []
61 self.numDetectedTarget = 0
62 self.fail = 0
63 self.unique = []
64 self.savedData = []
65 self.saveNum = 0
66 self.saveNumTxt = 0
67 self.replayData = []
68 self.startTimeLast = 0
69 self.saveReplay = 0
70 self.savefHist = 0
71 self.saveBinary = 0
72 self.saveTextFile = 0
73 self.fHistRT = np.empty((100,1), dtype=np.object)
74 self.plotDimension = 0
75 self.getUnique = 0
76 self.CaponEC = 0
77

78 self.printVerbosity = 0 #set 0 for limited logFile printing, 1 for more logging
79

80 if (self.capon3D):
81 #3D people counting format
82 #[frame #][header,pt cloud data,target info]
83 #[][header][magic, version, packetLength, platform, frameNum, subFrameNum,

chirpMargin, frameMargin, uartSentTime, trackProcessTime, numTLVs, checksum]
84 #[][pt cloud][pt index][#elev, azim, doppler, range, snr]
85 #[][target][Target #][TID,x,y,z,vx,vy,vz,ax,ay,az]
86 self.textStructCapon3D = np.zeros(1000*3*self.maxPoints*10).reshape((1000,3,self.

maxPoints,10))#[frame #][header,pt cloud data,target info]
87

88 if (self.ifdm):
89 #Sense and direct format

D.10. oob parser.py 63

90 #[frame #][header,pt cloud data,target info]
91 #[][header][magic, version, platform, timestamp, packetLength, frameNum,

subFrameNum, chirpMargin, frameMargin, uartSentTime, trackProcessTime, numTLVs, checksum]
92 #[][pt cloud][pt index][#range, azim, doppler, snr]
93 #[][target][Target #][TID,x,y,vx,vy,ax,ay]
94 self.textStruct2D = np.zeros(1000*3*self.maxPoints*7).reshape((1000,3,self.

maxPoints,7))#[frame #][header,pt cloud data,target info]
95

96 #below funtions are used for converting output of labs that do not match SDK 3.x DPIF output
97 #convert 2D polar People Counting to 3D Cartesian
98 def polar2Cart(self):
99 self.pcBufPing = np.empty((5,self.numDetectedObj))

100 for n in range(0, self.numDetectedObj):
101 self.pcBufPing[1,n] = self.pcPolar[0,n]*math.cos(self.pcPolar[1,n]) #y
102 self.pcBufPing[0,n] = self.pcPolar[0,n]*math.sin(self.pcPolar[1,n]) #x
103 self.pcBufPing[3,:] = self.pcPolar[2,0:self.numDetectedObj] #doppler
104 self.pcBufPing[4,:] = self.pcPolar[3,0:self.numDetectedObj] #snr
105 self.pcBufPing[2,:self.numDetectedObj] = 0 #Z is zero

in 2D case
106

107 #convert 3D people counting polar to 3D cartesian
108 def polar2Cart3D(self):
109 self.pcBufPing = np.empty((5,self.numDetectedObj))
110 for n in range(0, self.numDetectedObj):
111 self.pcBufPing[2,n] = self.pcPolar[0,n]*math.sin(self.pcPolar[2,n]) #z
112 self.pcBufPing[0,n] = self.pcPolar[0,n]*math.cos(self.pcPolar[2,n])*math.sin(self

.pcPolar[1,n]) #x
113 self.pcBufPing[1,n] = self.pcPolar[0,n]*math.cos(self.pcPolar[2,n])*math.cos(self

.pcPolar[1,n]) #y
114 self.pcBufPing[3,:] = self.pcPolar[3,0:self.numDetectedObj] #doppler
115 self.pcBufPing[4,:] = self.pcPolar[4,0:self.numDetectedObj] #snr
116 #print(self.pcBufPing[:,:10])
117

118 #decode People Counting TLV Header
119 def tlvHeaderDecode(self, data):
120 #print(len(data))
121 tlvType, tlvLength = struct.unpack(’2I’, data)
122 return tlvType, tlvLength
123

124 #decode People Counting Point Cloud TLV
125 def parseDetectedObjects(self, data, tlvLength):
126 objStruct = ’4f’
127 objSize = struct.calcsize(objStruct)
128 self.numDetectedObj = int((tlvLength)/16)
129 for i in range(self.numDetectedObj):
130 try:
131 self.pcPolar[0,i], self.pcPolar[1,i], self.pcPolar[2,i], self.pcPolar[3,i] =

struct.unpack(objStruct,data[:objSize])
132 data = data[16:]
133 except:
134 self.numDectedObj = i
135 break
136 self.polar2Cart()
137

138 #decode IFDM point Cloud TLV
139 def parseDetectedObjectsIFDM(self, data, tlvLength):
140 pUnitStruct = ’4f’
141 pUnitSize = struct.calcsize(pUnitStruct)
142 pUnit = struct.unpack(pUnitStruct, data[:pUnitSize])
143 data = data[pUnitSize:]
144 objStruct = ’2B2h’
145 objSize = struct.calcsize(objStruct)
146 self.numDetectedObj = int((tlvLength­16)/objSize)
147 #print(’Parsed Points: ’, self.numDetectedObj)
148 for i in range(self.numDetectedObj):
149 try:
150 az, doppler, ran, snr = struct.unpack(objStruct, data[:objSize])
151 data = data[objSize:]
152 #get range, azimuth, doppler, snr
153 self.pcPolar[0,i] = ran*pUnit[2] #range
154 if (az >= 128):
155 az ­= 256
156 self.pcPolar[1,i] = math.radians(az*pUnit[0]) #azimuth

D.10. oob parser.py 64

157 self.pcPolar[2,i] = doppler*pUnit[1] #doppler
158 self.pcPolar[3,i] = snr*pUnit[3] #snr
159

160 #Sense and direct format
161 #[frame #][header,pt cloud data,target info]
162 #[][header][magic, version, platform, timestamp, packetLength, frameNum,

subFrameNum, chirpMargin, frameMargin, uartSentTime, trackProcessTime, numTLVs, checksum]
163 #[][pt cloud][pt index][#range, azim, doppler, snr]
164 #[][target][Target #][TID,x,y,vx,vy,ax,ay]
165 self.textStruct2D[self.frameNum%1000,1,i,0] = self.pcPolar[0,i] #range
166 self.textStruct2D[self.frameNum%1000,1,i,1] = self.pcPolar[1,i] #az
167 self.textStruct2D[self.frameNum%1000,1,i,2] = self.pcPolar[2,i] #doppler
168 self.textStruct2D[self.frameNum%1000,1,i,3] = self.pcPolar[3,i] #snr
169

170 except:
171 self.numDetectedObj = i
172 break
173 self.polar2Cart()
174

175 #decode 3D People Counting Point Cloud TLV
176 def parseDetectedObjects3D(self, data, tlvLength):
177 objStruct = ’5f’
178 objSize = struct.calcsize(objStruct)
179 self.numDetectedObj = int(tlvLength/20)
180 for i in range(self.numDetectedObj):
181 try:
182 self.pcPolar[0,i], self.pcPolar[1,i], self.pcPolar[2,i], self.pcPolar[3,i],

self.pcPolar[4,i] = struct.unpack(objStruct,data[:objSize])
183 data = data[20:]
184 except:
185 self.numDectedObj = i
186 print(’failed to get point cloud’)
187 break
188 self.polar2Cart3D()
189

190 #support for Capoin 3D point cloud
191 #decode Capon 3D point Cloud TLV
192 def parseCapon3DPolar(self, data, tlvLength):
193 pUnitStruct = ’5f’ #elev, azim, doppler, range, snr
194 pUnitSize = struct.calcsize(pUnitStruct)
195 pUnit = struct.unpack(pUnitStruct, data[:pUnitSize])
196 data = data[pUnitSize:]
197 objStruct = ’2bh2H’ #2 int8, 1 int16, 2 uint16
198 objSize = struct.calcsize(objStruct)
199 self.numDetectedObj = int((tlvLength­pUnitSize)/objSize)
200 #if (self.printVerbosity == 1):
201 #print(’Parsed Points: ’, self.numDetectedObj)
202 for i in range(self.numDetectedObj):
203 try:
204 elev, az, doppler, ran, snr = struct.unpack(objStruct, data[:objSize])
205 #print(elev, az, doppler, ran, snr)
206 data = data[objSize:]
207 #get range, azimuth, doppler, snr
208 self.pcPolar[0,i] = ran*pUnit[3] #range
209 if (az >= 128):
210 print (’Az greater than 127’)
211 az ­= 256
212 if (elev >= 128):
213 print (’Elev greater than 127’)
214 elev ­= 256
215 if (doppler >= 32768):
216 print (’Doppler greater than 32768’)
217 doppler ­= 65536
218 self.pcPolar[1,i] = az*pUnit[1] #azimuth
219 self.pcPolar[2,i] = elev*pUnit[0] #elevation
220 self.pcPolar[3,i] = doppler*pUnit[2] #doppler
221 self.pcPolar[4,i] = snr*pUnit[4] #snr
222

223 #add pt cloud data to textStructCapon3DCapon3D for text file printing
224 #self.textStructCapon3DCapon3D[,,,] = [frame #][header,pt cloud data,target

info]
225 #[][pt cloud = 0][pt index][#elev, azim, doppler, range, snr]
226 self.textStructCapon3D[self.frameNum%1000,1,i,0] = self.pcPolar[2,i] #elev

D.10. oob parser.py 65

227 self.textStructCapon3D[self.frameNum%1000,1,i,1] = self.pcPolar[1,i] #az
228 self.textStructCapon3D[self.frameNum%1000,1,i,2] = self.pcPolar[3,i] #doppler
229 self.textStructCapon3D[self.frameNum%1000,1,i,3] = self.pcPolar[0,i] #range
230 self.textStructCapon3D[self.frameNum%1000,1,i,4] = self.pcPolar[4,i] #snr
231 except:
232 self.numDetectedObj = i
233 print(’Point Cloud TLV Parser Failed’)
234 break
235 self.polar2Cart3D()
236

237 #decode 2D People Counting Target List TLV
238 def parseDetectedTracks(self, data, tlvLength):
239 if (self.plotDimension):
240 targetStruct = ’I8f9ff’
241 else:
242 targetStruct = ’I6f9ff’
243 targetSize = struct.calcsize(targetStruct)
244 self.numDetectedTarget = int(tlvLength/targetSize)
245 targets = np.empty((13,self.numDetectedTarget))
246 for i in range(self.numDetectedTarget):
247 targetData = struct.unpack(targetStruct,data[:targetSize])
248 targets[0,i]=int(targetData[0]) #TID
249 targets[1:3,i]=targetData[1:3] #X,Y
250 targets[3,i]=0 #Z=0
251 targets[4:6,i]=targetData[3:5] #vX,Vy
252 targets[6,i]=0#vZ=0
253 targets[7:9,i]=targetData[5:7] #aX,aY
254 targets[9,i]=0 #az=0
255 if (self.plotDimension):
256 targets[10:12,i]=targetData[7:9]
257 targets[12,i]=1
258 else:
259 targets[10:12,i]=[0.75,0.75]
260 targets[12,i]=1
261 data = data[targetSize:]
262

263 if (self.saveTextFile):
264 self.textStruct2D[self.frameNum%1000,2,i,0] = targets[0,i] #TID
265 self.textStruct2D[self.frameNum%1000,2,i,1] = targets[1,i] #x
266 self.textStruct2D[self.frameNum%1000,2,i,2] = targets[2,i] #y
267

268 self.textStruct2D[self.frameNum%1000,2,i,3] = targets[4,i] #vx
269 self.textStruct2D[self.frameNum%1000,2,i,4] = targets[5,i] #vy
270

271 self.textStruct2D[self.frameNum%1000,2,i,5] = targets[7,i] #ax
272 self.textStruct2D[self.frameNum%1000,2,i,6] = targets[8,i] #ay
273

274 if (self.printVerbosity == 1):
275 print(’target added to textStructCapon3D’)
276 self.targetBufPing = targets
277

278 #decode 3D People Counting Target List TLV
279 def parseDetectedTracks3D(self, data, tlvLength):
280 targetStruct = ’I9f’
281 targetSize = struct.calcsize(targetStruct)
282 self.numDetectedTarget = int(tlvLength/targetSize)
283 targets = np.empty((13,self.numDetectedTarget))
284 for i in range(self.numDetectedTarget):
285 targetData = struct.unpack(targetStruct,data[:targetSize])
286 targets[0:7,i]=targetData[0:7]
287 targets[7:10,i]=[0,0,0]
288 targets[10:13,i] = targetData[7:10]
289 data = data[targetSize:]
290 self.targetBufPing = targets
291

292 #decode Target Index TLV
293 def parseTargetAssociations(self, data):
294 targetStruct = ’B’
295 targetSize = struct.calcsize(targetStruct)
296 numIndexes = int(len(data)/targetSize)
297 self.indexes = []
298 self.unique = []
299 try:

D.10. oob parser.py 66

300 for i in range(numIndexes):
301 ind = struct.unpack(targetStruct, data[:targetSize])
302 self.indexes.append(ind[0])
303 data = data[targetSize:]
304 if (self.getUnique):
305 uTemp = self.indexes[math.ceil(numIndexes/2):]
306 self.indexes = self.indexes[:math.ceil(numIndexes/2)]
307 for i in range(math.ceil(numIndexes/8)):
308 for j in range(8):
309 self.unique.append(getBit(uTemp[i], j))
310 except:
311 print(’TLV Index Parse Fail’)
312

313 #decode Classifier output
314 def parseClassifierOutput(self, data):
315 classifierDataStruct = ’Ii’
316 clOutSize = struct.calcsize(classifierDataStruct)
317 self.classifierOutput = np.zeros((2,self.numDetectedTarget))
318 for i in range(self.numDetectedTarget):
319 self.classifierOutput[0,i], self.classifierOutput[1,i] = struct.unpack(

classifierDataStruct, data[:clOutSize])
320 data = data[clOutSize:]
321

322 #below is for labs that are compliant with SDK 3.x This code can parse the point cloud TLV
and point cloud side info TLV from the OOB demo.

323 #It can parse the SDK3.x Compliant People Counting demo ”tracker_dpc”
324 #get SDK3.x Cartesian Point Cloud
325 def parseSDK3xPoints(self, dataIn, numObj):
326 pointStruct = ’4f’
327 pointLength = struct.calcsize(pointStruct)
328 try:
329 for i in range(numObj):
330 self.pcBufPing[0,i], self.pcBufPing[1,i], self.pcBufPing[2,i], self.pcBufPing

[3,i] = struct.unpack(pointStruct, dataIn[:pointLength])
331 dataIn = dataIn[pointLength:]
332 self.pcBufPing = self.pcBufPing[:,:numObj]
333 except Exception as e:
334 print(e)
335 self.fail = 1
336

337 #get Side Info SDK 3.x
338 def parseSDK3xSideInfo(self, dataIn, numObj):
339 sideInfoStruct = ’2h’
340 sideInfoLength = struct.calcsize(sideInfoStruct)
341 try:
342 for i in range(numObj):
343 self.pcBufPing[4,i], unused = struct.unpack(sideInfoStruct, dataIn[:

sideInfoLength])
344 dataIn = dataIn[sideInfoLength:]
345 except Exception as e:
346 print(e)
347 self.fail = 1
348

349 #convert SDK compliant Polar Point Cloud to Cartesian
350 def polar2CartSDK3(self):
351 self.pcBufPing = np.empty((5,self.numDetectedObj))
352 for n in range(0, self.numDetectedObj):
353 self.pcBufPing[2,n] = self.pcPolar[0,n]*math.sin(self.pcPolar[2,n]) #z
354 self.pcBufPing[0,n] = self.pcPolar[0,n]*math.cos(self.pcPolar[2,n])*math.sin(self

.pcPolar[1,n]) #x
355 self.pcBufPing[1,n] = self.pcPolar[0,n]*math.cos(self.pcPolar[2,n])*math.cos(self

.pcPolar[1,n]) #y
356 self.pcBufPing[3,:] = self.pcPolar[3,0:self.numDetectedObj] #doppler
357

358 #decode SDK3.x Format Point Cloud in Polar Coordinates
359 def parseSDK3xPolar(self, dataIn, tlvLength):
360 pointStruct = ’4f’
361 pointLength = struct.calcsize(pointStruct)
362 self.numDetectedObj = int(tlvLength/pointLength)
363 try:
364 for i in range(self.numDetectedObj):
365 self.pcPolar[0,i], self.pcPolar[1,i], self.pcPolar[2,i], self.pcPolar[3,i] =

struct.unpack(pointStruct, dataIn[:pointLength])

D.10. oob parser.py 67

366 dataIn = dataIn[pointLength:]
367 except:
368 self.fail = 1
369 return
370 self.polar2CartSDK3()
371

372 #decode 3D People Counting Target List TLV
373

374 #3D Struct format
375

376 #uint32_t tid; /*! @brief tracking ID */
377 #float posX; /*! @brief Detected target X coordinate, in m */
378 #float posY; /*! @brief Detected target Y coordinate, in m */
379 #float posZ; /*! @brief Detected target Z coordinate, in m */
380 #float velX; /*! @brief Detected target X velocity, in m/s */
381 ##float velY; /*! @brief Detected target Y velocity, in m/s */
382 #float velZ; /*! @brief Detected target Z velocity, in m/s */
383 #float accX; /*! @brief Detected target X acceleration, in m/s2 */
384 #float accY; /*! @brief Detected target Y acceleration, in m/s2 */
385 #float accZ; /*! @brief Detected target Z acceleration, in m/s2 */
386 #float ec[16]; /*! @brief Target Error covarience matrix, [4x4 float], in row

major order, range, azimuth, elev, doppler */
387 #float g;
388 #float confidenceLevel; /*! @brief Tracker confidence metric*/
389

390 def parseDetectedTracksSDK3x(self, data, tlvLength):
391 if (self.printVerbosity == 1):
392 print(tlvLength)
393 if (self.CaponEC):
394 targetStruct = ’I27f’
395 else:
396 #targetStruct = ’I15f’
397 targetStruct = ’I27f’
398 targetSize = struct.calcsize(targetStruct)
399 if (self.printVerbosity == 1):
400 print(’TargetSize=’,targetSize)
401 self.numDetectedTarget = int(tlvLength/targetSize)
402 if (self.printVerbosity == 1):
403 print(’Num Detected Targets = ’,self.numDetectedTarget)
404 targets = np.empty((16,self.numDetectedTarget))
405 rotTarget = [0,0,0]
406 #theta = self.profile[’elev_tilt’]
407 #print(’theta = ’,theta)
408 #Rx = np.matrix([[1, 0 , 0],
409 # [0, math.cos(theta),­math.sin(theta)],
410 # [0, math.sin(theta), math.cos(theta)]])
411 try:
412 for i in range(self.numDetectedTarget):
413 targetData = struct.unpack(targetStruct,data[:targetSize])
414 if (self.printVerbosity == 1):
415 print(targetData)
416 #tid, x, y
417 if (self.CaponEC):
418 targets[0:13,i]=targetData[0:13]
419 else:
420 #tid, pos x, pos y
421 targets[0:3,i]=targetData[0:3]
422 if (self.printVerbosity == 1):
423 print(’Target Data TID,X,Y = ’,targets[0:3,i])
424 print(’i = ’,i)
425 # pos z
426 targets[3,i] = targetData[3]
427

428 #rotTargetDataX,rotTargetDataY,rotTargetDataZ = rotX (targetData[1],
targetData[2],targetData[3],self.profile[’elev_tilt’])

429

430 #print(’Target Data TID,X,Y = ’,rotTargetDataX,’, ’,rotTargetDataY,’, ’,
rotTargetDataZ)

431 #vel x, vel y
432 targets[4:6,i] = targetData[4:6]
433 #vel z
434 targets[6,i] = targetData[6]
435 # acc x, acc y

D.10. oob parser.py 68

436 targets[7:9,i] = targetData[7:9]
437 # acc z
438 targets[9,i] = targetData[9]
439 #ec[16]
440 #targets[10:14,i]=targetData[10:14]
441 targets[10:13,i]=targetData[10:13]#Chris 2020­12­18
442 if (self.printVerbosity == 1):
443 print(’ec = ’,targets[10:13,i])
444 #g
445 #targets[14,i]=targetData[14]
446 targets[14,i]=targetData[26]
447 if (self.printVerbosity == 1):
448 print(’g= ’,targets[14,i])
449 #confidenceLevel
450 #targets[15,i]=targetData[15]
451 targets[15,i]=targetData[27]
452 if (self.printVerbosity == 1):
453 print(’Confidence Level = ’,targets[15,i])
454

455

456 #self.textStructCapon3D[[frame #],[header,pt cloud data,target info],
index,data]

457 #[][header][magic, version, packetLength, platform, frameNum, subFrameNum
, chirpMargin, frameMargin, uartSentTime, trackProcessTime, numTLVs, checksum]

458 #[][pt cloud][pt index][#elev, azim, doppler, range, snr]
459 #[][target][Target #][TID,x,y,z,vx,vy,vz,ax,ay,az]
460 if (self.saveTextFile):
461 self.textStructCapon3D[self.frameNum%1000,2,i,0] = targets[0,i] #TID
462 self.textStructCapon3D[self.frameNum%1000,2,i,1] = targets[1,i] #x
463 self.textStructCapon3D[self.frameNum%1000,2,i,2] = targets[2,i] #y
464 self.textStructCapon3D[self.frameNum%1000,2,i,3] = targets[3,i] #z
465 self.textStructCapon3D[self.frameNum%1000,2,i,4] = targets[4,i] #vx
466 self.textStructCapon3D[self.frameNum%1000,2,i,5] = targets[5,i] #vy
467 self.textStructCapon3D[self.frameNum%1000,2,i,6] = targets[6,i] #vz
468 self.textStructCapon3D[self.frameNum%1000,2,i,7] = targets[7,i] #ax
469 self.textStructCapon3D[self.frameNum%1000,2,i,8] = targets[8,i] #ay
470 self.textStructCapon3D[self.frameNum%1000,2,i,9] = targets[9,i] #az
471 if (self.printVerbosity == 1):
472 print(’target added to textStructCapon3D’)
473 data = data[targetSize:]
474 except:
475 print(’Target TLV parse failed’)
476 self.targetBufPing = targets
477 if (self.printVerbosity == 1):
478 print(targets)
479

480

481

482 #all TLV header decoding functions are below. Each lab with a Unique header or unique TLV
set has its own header parsing function

483 #decode Header and rest of TLVs for Legacy Labs and Indoor False detection mitigation
484 def tlvHeader(self, data):
485 #search for magic word
486 self.targetBufPing = np.zeros((12,1))
487 self.pcBufPing = np.zeros((5,self.maxPoints))
488 self.indexes = []
489 frameNum = ­1
490 self.numDetectedTarget = 0
491 self.numDetectedObj = 0
492 #search until we find magic word
493 while (1):
494 try:
495 magic, version, platform, timestamp, packetLength, frameNum, subFrameNum,

chirpMargin, frameMargin, uartSentTime, trackProcessTime, numTLVs, checksum = struct.
unpack(’Q10I2H’, data[:self.headerLength])

496 except:
497 #bad data, return
498 self.fail = 1
499 return data
500 if (magic != self.magicWord):
501 #wrong magic word, increment pointer by 1 and try again
502 data = data[1:]
503 else:

D.10. oob parser.py 69

504 #we have correct magic word, proceed to parse rest of data
505 break
506

507 #Sense and direct format
508 #[][header][magic, version, platform, timestamp, packetLength, frameNum, subFrameNum,

chirpMargin, frameMargin, uartSentTime, trackProcessTime, numTLVs, checksum]
509 if (self.saveTextFile):
510 self.textStruct2D[self.frameNum%1000,0,0,0] = magic
511 self.textStruct2D[self.frameNum%1000,0,1,0] = version
512 self.textStruct2D[self.frameNum%1000,0,2,0] = platform
513 self.textStruct2D[self.frameNum%1000,0,3,0] = timestamp
514 self.textStruct2D[self.frameNum%1000,0,4,0] = packetLength
515 self.textStruct2D[self.frameNum%1000,0,5,0] = frameNum
516 self.textStruct2D[self.frameNum%1000,0,6,0] = subFrameNum
517 self.textStruct2D[self.frameNum%1000,0,7,0] = chirpMargin
518 self.textStruct2D[self.frameNum%1000,0,8,0] = frameMargin
519 self.textStruct2D[self.frameNum%1000,0,9,0] = uartSentTime
520 self.textStruct2D[self.frameNum%1000,0,10,0] = trackProcessTime
521 self.textStruct2D[self.frameNum%1000,0,11,0] = numTLVs
522 self.textStruct2D[self.frameNum%1000,0,12,0] = checksum
523 if (self.printVerbosity == 1):
524 print(’FrameNumber = ’,self.textStruct2D[self.frameNum%1000,0,5,0])
525

526 if (self.frameNum != frameNum):
527 self.missedFrames += 1
528 self.frameNum = frameNum
529 self.frameNum += 1
530 if (len(data) < packetLength):
531 ndata = self.dataCom.read(packetLength­len(data))
532 if (self.saveBinary):
533 self.oldData += ndata
534 data += ndata
535 data = data[self.headerLength:]
536 for i in range(numTLVs):
537 try:
538 tlvType, tlvLength = self.tlvHeaderDecode(data[:8])
539 except:
540 print(’read fail: not enough data’)
541 self.missedFrames += 1
542 self.fail=1
543 break
544 try:
545 data = data[8:]
546 if (tlvType == 6):
547 if(self.threeD):
548 self.parseDetectedObjects3D(data[:tlvLength], tlvLength­8)
549 elif(self.ifdm):
550 self.parseDetectedObjectsIFDM(data[:tlvLength], tlvLength­8)
551 else:
552 self.parseDetectedObjects(data[:tlvLength], tlvLength­8)
553 elif (tlvType == 7):
554 if(self.threeD):
555 self.parseDetectedTracks3D(data[:tlvLength], tlvLength­8)
556 else:
557 self.parseDetectedTracks(data[:tlvLength], tlvLength­8)
558 elif (tlvType == 8):
559 self.parseTargetAssociations(data[:tlvLength­8])
560 elif (tlvType == 9):
561 self.parseClassifierOutput(data[:tlvLength­8])
562 data = data[tlvLength­8:]
563 except:
564 print(’Not enough data’)
565 print(’Data length: ’, len(data))
566 print(’Reported Packet Length: ’, packetLength)
567 self.fail=1
568 return data
569 return data
570

571 #parsing for SDK 3.x Point Cloud
572 def sdk3xTLVHeader(self, dataIn):
573 #reset point buffers
574 self.pcBufPing = np.zeros((5,self.maxPoints))
575 headerStruct = ’Q8I’

D.10. oob parser.py 70

576 headerLength = struct.calcsize(headerStruct)
577 tlvHeaderLength = 8
578 #search until we find magic word
579 while(1):
580 try:
581 magic, version, totalPacketLen, platform, self.frameNum, timeCPUCycles, self.

numDetectedObj, numTLVs, subFrameNum = struct.unpack(headerStruct, dataIn[:headerLength])
582 except:
583 #bad data, return
584 self.fail = 1
585 return dataIn
586 if (magic != self.magicWord):
587 #wrong magic word, increment pointer by 1 and try again
588 dataIn = dataIn[1:]
589 else:
590 #we have correct magic word, proceed to parse rest of data
591 break
592 dataIn = dataIn[headerLength:]
593 remainingData = totalPacketLen ­ len(dataIn)
594 count = 0
595 #check to ensure we have all of the data
596 while (remainingData > 0 and count < 3):
597 newData = self.dataCom.read(remainingData)
598 remainingData = totalPacketLen ­ len(dataIn) ­ len(newData)
599 dataIn += newData
600 count += 1
601 if (self.saveBinary):
602 self.oldData += newData
603 #now check TLVs
604 #print (’got tlvs sdk3x’)
605 for i in range(numTLVs):
606 try:
607 tlvType, tlvLength = self.tlvHeaderDecode(dataIn[:tlvHeaderLength])
608 except Exception as e:
609 print(e)
610 print (’failed to read OOB SDK3.x TLV’)
611 dataIn = dataIn[tlvHeaderLength:]
612 if (tlvType == 1):
613 self.parseSDK3xPoints(dataIn[:tlvLength], self.numDetectedObj)
614 dataIn = dataIn[tlvLength:]
615 elif (tlvType == 7):
616 self.parseSDK3xSideInfo(dataIn[:tlvLength], self.numDetectedObj)
617 dataIn = dataIn[tlvLength:]
618 return dataIn
619

620

621 #parsing for SDK 3.x DPIF compliant People Counting
622 def sdk3xPCHeader(self, dataIn):
623 #reset point buffers
624 self.pcBufPing = np.zeros((5,self.maxPoints))
625 self.targetBufPing = np.zeros((13,20))
626 self.indexes = []
627 tlvHeaderLength = 8
628 #search until we find magic word
629 while (1):
630 try:
631 magic, version, platform, timestamp, packetLength, self.frameNum, subFrameNum

, chirpMargin, frameMargin, uartSentTime, trackProcessTime, numTLVs, checksum = struct.
unpack(’Q10I2H’, dataIn[:self.headerLength])

632 except:
633 #bad data, return
634 self.fail = 1
635 return dataIn
636 if (magic != self.magicWord):
637 #wrong magic word, increment pointer by 1 and try again
638 dataIn = dataIn[1:]
639 else:
640 #we have correct magic word, proceed to parse rest of data
641 break
642 dataIn = dataIn[self.headerLength:]
643 remainingData = packetLength ­ len(dataIn)
644 if (self.printVerbosity == 1):
645 print(’pl: ’, packetLength)

D.10. oob parser.py 71

646 print(’remainingData ’, remainingData)
647 #check to ensure we have all of the data
648 #check to ensure we have all of the data
649 count = 0
650 while (remainingData > 0 and count < 3):
651 if (self.printVerbosity == 1):
652 print(’RD Loop’)
653 newData = self.dataCom.read(remainingData)
654 remainingData = packetLength ­ len(dataIn) ­ len(newData)
655 dataIn += newData
656 count += 1
657 if (remainingData == 0):
658 if (self.saveBinary):
659 self.oldData += newData
660 #now check TLVs
661 if (self.printVerbosity == 1):
662 print(’Frame: ’, self.frameNum)
663 print(len(dataIn))
664 print(numTLVs)
665 for i in range(numTLVs):
666 try:
667 #print(”DataIn Type”, type(dataIn))
668 tlvType, tlvLength = self.tlvHeaderDecode(dataIn[:tlvHeaderLength])
669 if (self.printVerbosity == 1):
670 print(’TLV length = ’,tlvLength)
671 except Exception as e:
672 if (self.printVerbosity == 1):
673 print(e)
674 print (’failed to read OOB SDK3.x TLV’)
675 print(’TLV num: ’,i)
676 dataIn = dataIn[tlvHeaderLength:]
677 dataLength = tlvLength
678 if (tlvType == 6):
679 #DPIF Polar Coordinates
680 #print(’pointcloud lrpd’)
681 self.parseSDK3xPolar(dataIn[:dataLength], dataLength)
682 elif (tlvType == 7):
683 #target 3D
684 self.parseDetectedTracksSDK3x(dataIn[:dataLength], dataLength)
685 elif (tlvType == 8):
686 #target index
687 self.parseTargetAssociations(dataIn[:dataLength])
688 elif (tlvType == 9):
689 #side info
690 self.parseSDK3xSideInfo(dataIn[:dataLength], self.numDetectedObj)
691 dataIn = dataIn[dataLength:]
692 return dataIn
693

694 #parsing for 3D People Counting lab
695 def Capon3DHeader(self, dataIn):
696 #reset point buffers
697 self.pcBufPing = np.zeros((5,self.maxPoints))
698 self.pcPolar = np.zeros((5,self.maxPoints))
699 self.targetBufPing = np.zeros((13,20))
700 self.numDetectedTarget = 0
701 self.numDetectedObj = 0
702 self.indexes = []
703 tlvHeaderLength = 8
704 headerLength = 48
705 #stay in this loop until we find the magic word or run out of data to parse
706 while (1):
707 try:
708 magic, version, packetLength, platform, frameNum, subFrameNum, chirpMargin,

frameMargin, uartSentTime, trackProcessTime, numTLVs, checksum = struct.unpack(’Q9I2H’,
dataIn[:headerLength])

709 except Exception as e:
710 #bad data, return
711 #print(”Cannot Read Frame Header”)
712 #print(e)
713 self.fail = 1
714 return dataIn
715 if (magic != self.magicWord):
716 #wrong magic word, increment pointer by 1 and try again

D.10. oob parser.py 72

717 dataIn = dataIn[1:]
718 else:
719 #got magic word, proceed to parse
720 break
721

722

723 dataIn = dataIn[headerLength:]
724 remainingData = packetLength ­ len(dataIn) ­ headerLength
725 #check to ensure we have all of the data
726 #print(’remaining data = ’,remainingData)
727 if (remainingData > 0):
728 newData = self.dataCom.read(remainingData)
729 remainingData = packetLength ­ len(dataIn) ­ headerLength ­ len(newData)
730 dataIn += newData
731 if (self.saveBinary):
732 self.oldData += newData
733 if (self.saveTextFile):
734 self.textStructCapon3D[self.frameNum%1000,0,0,0] = magic
735 self.textStructCapon3D[self.frameNum%1000,0,1,0] = version
736 self.textStructCapon3D[self.frameNum%1000,0,2,0] = packetLength
737 self.textStructCapon3D[self.frameNum%1000,0,3,0] = platform
738 self.textStructCapon3D[self.frameNum%1000,0,4,0] = frameNum
739 self.textStructCapon3D[self.frameNum%1000,0,5,0] = subFrameNum
740 self.textStructCapon3D[self.frameNum%1000,0,6,0] = chirpMargin
741 self.textStructCapon3D[self.frameNum%1000,0,7,0] = frameMargin
742 self.textStructCapon3D[self.frameNum%1000,0,8,0] = uartSentTime
743 self.textStructCapon3D[self.frameNum%1000,0,9,0] = trackProcessTime
744 self.textStructCapon3D[self.frameNum%1000,0,10,0] = numTLVs
745 self.textStructCapon3D[self.frameNum%1000,0,11,0] = checksum
746 if (self.printVerbosity == 1):
747 print(’FrameNumber = ’,self.textStructCapon3D[self.frameNum%1000,0,4,0])
748

749 #now check TLVs
750 for i in range(numTLVs):
751 #try:
752 #print(”DataIn Type”, type(dataIn))
753 try:
754 tlvType, tlvLength = self.tlvHeaderDecode(dataIn[:tlvHeaderLength])
755 dataIn = dataIn[tlvHeaderLength:]
756 dataLength = tlvLength­tlvHeaderLength
757 except:
758 print(’TLV Header Parsing Failure’)
759 self.fail = 1
760 return dataIn
761 if (tlvType == 6):
762 #DPIF Polar Coordinates
763 self.parseCapon3DPolar(dataIn[:dataLength], dataLength)
764 elif (tlvType == 7):
765 #target 3D
766 self.parseDetectedTracksSDK3x(dataIn[:dataLength], dataLength)
767 elif (tlvType == 8):
768 #target index
769 self.parseTargetAssociations(dataIn[:dataLength])
770 elif (tlvType == 9):
771 if (self.printVerbosity == 1):
772 print(’type9’)
773 #side info
774 #self.parseSDK3xSideInfo(dataIn[:dataLength], self.numDetectedObj)
775 dataIn = dataIn[dataLength:]
776 #except Exception as e:
777 # print(e)
778 # print (’failed to read OOB SDK3.x TLV’)
779 if (self.frameNum + 1 != frameNum):
780 self.missedFrames += frameNum ­ (self.frameNum + 1)
781 self.frameNum = frameNum
782 return dataIn
783

784

785 # This function is always called ­ first read the UART, then call a function to parse the
specific demo output

786 # This will return 1 frame of data. This must be called for each frame of data that is
expected. It will return a dict containing:

787 # 1. Point Cloud

D.10. oob parser.py 73

788 # 2. Target List
789 # 3. Target Indexes
790 # 4. number of detected points in point cloud
791 # 5. number of detected targets
792 # 6. frame number
793 # 7. Fail ­ if one, data is bad
794 # 8. classifier output
795 # Point Cloud and Target structure are liable to change based on the lab. Output is

always cartesian.
796 def readAndParseUart(self, data):
797 self.fail = 0
798 if (self.replay):
799 print(’ik ben by 799’)
800 return self.replayHist()
801 numBytes = 4666
802 #data = self.dataCom.read(numBytes)
803 if (self.byteData is None):
804 print(’804’)
805 self.byteData = data
806 else:
807 self.byteData += data
808 if (self.saveBinary):
809 self.oldData += data
810 #try:
811 if (self.SDK3xPointCloud == 1):
812 self.byteData = self.sdk3xTLVHeader(self.byteData)
813 elif (self.SDK3xPC == 1):
814 self.byteData = self.sdk3xPCHeader(self.byteData)
815 elif (self.capon3D == 1):
816 self.byteData = self.Capon3DHeader(self.byteData)
817 else:
818 self.byteData = self.tlvHeader(self.byteData)
819 #except Exception as e:
820 # print(e)
821 # self.fail = 1
822 #return data after parsing and save to replay file
823 if (self.fail):
824 return self.pcBufPing, self.targetBufPing, self.indexes, self.numDetectedObj,

self.numDetectedTarget, self.frameNum, self.fail, self.classifierOutput
825 if (self.saveBinary):
826 if (self.frameNum%1000 == 0):
827 toSave = bytes(self.oldData)
828 fileName = ’binData/pHistBytes_’+str(self.saveNum)+’.bin’
829 self.saveNum += 1
830 bfile = open(fileName, ’wb’)
831 bfile.write(toSave)
832 self.oldData = []
833 print (’Missed Frames ’ + str(self.missedFrames)+’/1000’)
834 self.missedFrames = 0
835 bfile.close
836 if (self.saveTextFile):
837 if (self.frameNum%1000 == 0):
838 if (self.capon3D):
839 toSave = self.textStructCapon3D
840 elif (self.ifdm):
841 toSave = self.textStruct2D
842 print(’Saved data file ’, self.saveNumTxt)
843 fileName = ’binData/pHistText_’+str(self.saveNumTxt)+’.csv’
844 if (self.saveNumTxt < 75):
845 self.saveNumTxt += 1
846 else:
847 self.saveNumTxt = 0
848 tfile = open(fileName, ’w’)
849 tfile.write(’This file contains parsed UART data in sensor centric

coordinates\n’)
850 tfile.write(’file format version 1.0\n’)
851 #tfile.write(str(toSave))
852

853

854 if (self.capon3D):
855 #[frame #][header,pt cloud data,target info]
856 #[][header][magic, version, packetLength, platform, frameNum, subFrameNum

, chirpMargin, frameMargin, uartSentTime, trackProcessTime, numTLVs, checksum]

D.10. oob parser.py 74

857 #[][pt cloud][pt index][#elev, azim, doppler, range, snr]
858 #[][target][Target #][TID,x,y,z,vx,vy,vz,ax,ay,az]
859

860 for i in range (1000):
861 tfile.write(’magic, version, packetLength, platform, frameNum,

subFrameNum, chirpMargin, frameMargin, uartSentTime, trackProcessTime, numTLVs, checksum\
n’)

862 for j in range (0,12):
863 tfile.write(str(self.textStructCapon3D[i,0,j,0]))
864 tfile.write(’,’)
865 #print(str(self.textStructCapon3D[i,0,j,0]))
866 tfile.write(’\n’)
867 tfile.write(’elev, azim, doppler, range, snr\n’)
868 for j in range (np.count_nonzero(self.textStructCapon3D[i,1,:,0])): #

self.numDetectedObj):#len(self.textStructCapon3D[i,1,:,0]!=0)):
869 for k in range(5):
870 tfile.write(str(self.textStructCapon3D[i,1,j,k]))
871 tfile.write(’,’)
872 tfile.write(’\n’)
873

874 tfile.write(’TID,x,y,z,vx,vy,vz,ax,ay,az\n’)
875 for j in range (np.count_nonzero(self.textStructCapon3D[i,2,:,1])):
876 for k in range(10):
877 tfile.write(str(self.textStructCapon3D[i,2,j,k]))
878 tfile.write(’,’)
879 tfile.write(’\n’)
880 self.textStructCapon3D = np.zeros(1000*3*12*self.maxPoints).reshape

((1000,3,12,self.maxPoints))#[frame #][header,pt cloud data,target info]
881 tfile.close
882

883 if (self.ifdm):
884 #Sense and direct format
885 #[frame #][header,pt cloud data,target info]
886 #[][header][magic, version, platform, timestamp, packetLength, frameNum,

subFrameNum, chirpMargin, frameMargin, uartSentTime, trackProcessTime, numTLVs, checksum]
887 #[][pt cloud][pt index][#range, azim, doppler, snr]
888 #[][target][Target #][TID,x,y,vx,vy,ax,ay]
889 for i in range (1000):
890 tfile.write(’magic, version, platform, timestamp, packetLength,

frameNum, subFrameNum, chirpMargin, frameMargin, uartSentTime, trackProcessTime, numTLVs,
checksum\n’)

891 for j in range (13):
892 tfile.write(str(self.textStruct2D[i,0,j,0]))
893 tfile.write(’,’)
894 tfile.write(’\n’)
895 tfile.write(’range, azim, doppler, snr\n’)
896 for j in range (np.count_nonzero(self.textStruct2D[i,1,:,0])):
897 for k in range(4):
898 tfile.write(str(self.textStruct2D[i,1,j,k]))
899 tfile.write(’,’)
900 tfile.write(’\n’)
901 tfile.write(’TID,x,y,vx,vy,ax,ay\n’)
902 for j in range (np.count_nonzero(self.textStruct2D[i,2,:,1])):
903 for k in range(7):
904 tfile.write(str(self.textStruct2D[i,2,j,k]))
905 tfile.write(’,’)
906 tfile.write(’\n’)
907 self.textStruct2D = np.zeros(1000*3*self.maxPoints*7).reshape((1000,3,

self.maxPoints,7))#[frame #][header,pt cloud data,target info]
908 tfile.close
909

910

911

912 parseEnd = int(round(time.time()*1000))
913 print (self.pcBufPing)
914 print (self.targetBufPing)
915 print (self.indexes)
916 print (self.numDetectedObj)
917 print (self.numDetectedTarget)
918 return self.pcBufPing, self.targetBufPing, self.indexes, self.numDetectedObj, self.

numDetectedTarget, self.frameNum, self.fail, self.classifierOutput
919

920 #find various utility functions here for connecting to COM Ports, send data, etc...

D.10. oob parser.py 75

921 #connect to com ports
922 # Call this function to connect to the comport. This takes arguments self (intrinsic),

uartCom, and dataCom. No return, but sets internal variables in the parser object.
923 def connectComPorts(self, uartCom, dataCom):
924

925 self.uartCom = serial.Serial(uartCom, 115200,parity=serial.PARITY_NONE,stopbits=
serial.STOPBITS_ONE,timeout=0.3)

926 if (self.capon3D == 1 and self.aop == 0):
927 self.dataCom = serial.Serial(dataCom, 921600*1,parity=serial.PARITY_NONE,stopbits

=serial.STOPBITS_ONE,timeout=0.025)
928 else:
929 self.dataCom = serial.Serial(dataCom, 921600,parity=serial.PARITY_NONE,stopbits=

serial.STOPBITS_ONE,timeout=0.025)
930 self.dataCom.reset_output_buffer()
931 return self.dataCom
932 print(’Connected for parser’)
933

934 #send cfg over uart
935 def sendCfg(self, cfg):
936 for line in cfg:
937 time.sleep(.1)
938 self.uartCom.write(line.encode())
939 ack = self.uartCom.readline()
940 print(ack)
941 ack = self.uartCom.readline()
942 print(ack)
943 time.sleep(3)
944 self.uartCom.reset_input_buffer()
945 self.uartCom.close()
946

947 #send single command to device over UART Com.
948 def sendLine(self, line):
949 self.uartCom.write(line.encode())
950 ack = self.uartCom.readline()
951 print(ack)
952 ack = self.uartCom.readline()
953 print(ack)
954

955 def replayHist(self):
956 if (self.replayData):
957 #print(’reading data’)
958 #print(’fail: ’,self.fail)
959 #print(len(self.replayData))
960 #print(self.replayData[0:8])
961 self.replayData = self.Capon3DHeader(self.replayData)
962 #print(’fail: ’,self.fail)
963 return self.pcBufPing, self.targetBufPing, self.indexes, self.numDetectedObj,

self.numDetectedTarget, self.frameNum, self.fail, self.classifierOutput
964 #frameData = self.replayData[0]
965 #self.replayData = self.replayData[1:]
966 #return frameData[’PointCloud’], frameData[’Targets’], frameData[’Indexes’],

frameData[’Number Points’], frameData[’NumberTracks’],frameData[’frame’],0, frameData[’
ClassifierOutput’], frameData[’Uniqueness’]

967 else:
968 filename = ’overheadDebug/binData/pHistBytes_’+str(self.saveNum)+’.bin’
969 #filename = ’Replay1Person10mShort/pHistRT’+str(self.saveNum)+’.pkl’
970 self.saveNum+=1
971 try:
972 dfile = open(filename, ’rb’, 0)
973 except:
974 print(’cant open ’, filename)
975 return ­1
976 self.replayData = bytes(list(dfile.read()))
977 if (self.replayData):
978 print(’entering replay’)
979 return self.replayHist()
980 else:
981 return ­1
982

983 def getBit(byte, bitNum):
984 mask = 1 << bitNum
985 if (byte&mask):
986 return 1

D.10. oob parser.py 76

987 else:
988 return 0

E
Schematic

4051G-S16-R
MULTIPLEXER

X41
X62
X3
X74
X55
INH6
VEE7
VSS8 C 9B 10A 11X3 12X0 13X1 14X2 15VDD 16

VCC

GND

A2 gas
sound

sel

sound

sound

gas

A2

VCC_5 V

GND

1.25T-1-2A_C2324
JP1

1 12 2

+4.2 V

VCC

GND

GND
GND

GND

GND

GND

GND

VCC

VCC

VCC
VCC

VCC
VCC

VCC

VCC

VCC VCC

VCC

VCC
GND

+5V

DMG2305UX-13
Q2G1

S
2

D
3

LM2596DSADJG
POWER_GPS

V
IN

1
O

U
TP

U
T

2
G

N
D

3
FB

4
O

N
#

/O
FF

5
PA

D
6

C23

+

C22

+

D2

1
2

L1

1 2

2K
R25

1k
R24

VCC_5 V

+4.2 V

GND

GND

3.3K
R23

CARDHEADER

1 12 23 34 45 56 6

GND

+5V

MISO
MOSI
SCK
CS

THD2528-11SD-GF
CARD1

DAT21
CD/DAT32
CMD3
VDD4
CLX5
VSS6
DAT07
DAT18
CD9

SHELL 10SHELL 11SHELL 12SHELL 13

+3.3V

GND

GND

74ABT125PW,118
CARD0

1OE#1
1A2
1Y3
2OE#4
2A5
2Y6
GND7 3Y 83A 93OE# 104Y 114A 124OE# 13VCC 14

+3.3V

GND

3.3K
R22

3.3K

R21

3.3K
R20

Real-Time Module

SCL
SDA

CLOCK_32kHz

CLOCK_SQW

CLOCK_RST

SC
L

SD
A

C
L

O
C

K
_V

B
A

T

CLOCK_VBAT
CLOCK_32kHz
CLOCK_SQW
CLOCK_RST

DS3231SN#
REALTIME

32kHz 1

VCC2

INTSQW 3

RST 4

GND 13

VBAT14

SDA15 SCL16
DS3231SN#
U8.2

NC5
NC6
NC7
NC8

NC 9
NC 10
NC 11
NC 12

1K
R19

1K
R18

HDR-F-2.54_1x8
TIMEHEADER

1
2
3
4
5
6
7
8

1uF
C19

CR2032-BS-2-1
B1

12

Gas Sensor

LM393
GASCOM

1

4

2
3

5
6

7
8

MQ-2
GASSENS

H
5

H
2

A01 B0 6A13 B1 4

Header-Male-2.54_1x4
GASHEADER

1
2
3
4

10k
R17

10k
R16

1k
R15

Rp

RP1

VCC

VCC

RED
LED5

100u
C18

GND
GND

GND

VCC

GPS+GSM

Header-Female-2.54_2x2
H1

1
3 4

2 Rx
Tx

RxS
TxS

HT17-2102SURC
LED2

1K
R14

L
E

D

GND

SIM808
SIM

GND1
GND2
GND3
VBAT4
VBAT5
VBAT6
VDD_EXT7
PWRKEY8
DTR9
RI10
DCD11
CTS12
RTS13
TXD14
RXD15
RESET16
VRTC17

G
N

D
18

M
IC

1P
19

M
IC

1N
20

S
PK

1P
21

S
PK

1N
22

A
D

C
0

23
A
D

C
1

24
V
C
H

G
25

U
S
B
_D

P
26

U
S
B
_D

N
27

G
N

D
28

S
IM

_V
D

D
29

S
IM

_D
A
TA

30
S
IM

_C
LK

31
S
IM

_R
S
T

32
S
IM

_D
ET

33
G

N
D

34

GPS_ANT 35GND 361PPS 37SDA 38SCL 39GND 40PWM2 41PWM1 42GPIO19 43GPIO17 44PCM_SYNC 45PCM_CLK 46PCM_IN 47PCM_OUT 48STATUS 49NETLIGHT 50GND 51

G
N

D
52

B
T_

A
N

T
53

G
N

D
54

K
B
R
3

55
K
B
R
2

56
K
B
R
1

57
K
B
R
0

58
K
B
C
3

59
K
B
C
2

60
K
B
C
1

61
K
B
C
0

62
R
F_

S
YN

C
63

G
N

D
64

G
N

D
65

G
S
M

_A
N

T
66

G
N

D
67

G
N

D
68

SIM808

TxS
RxS

GND

GND

GND

GND

GPS

G
SM

Si
m

V
D

D
Si

m
D

at
a

Si
m

C
L

K
Si

m
R

ST

SIM-011B
CARD3

CLK C3
I/O C7

RST C2
VPP C6

VCC C1
GND C5

SimVDD

SimData
SimCLK

SimRST
22
R13

22
R8

22
R9

GND

H
T

1
7

-2
1

0
2

S
U

R
C

LED3

56
R10

ST

GND

H
T

1
7

-2
1

0
2

S
U

R
C

LED4

56
R11

L
N

GND

LN
ST

10K
R12

PK

10uF
C17

GND

button6*6*8
KEY1

1
2

3
4

GND

PK

Antenna SMA-H
U4

GND
GND
GND
GND

Antenna SMA-H
U5

GND
GND
GND
GND

GNDGND
GPSGSM

100nF
C13

Sound Module
GND

2.2uF

C12

FERRITE

FB1

FERRITE

FB2

GAIN

A/R

A/R

GAIN

INPUT

2.
2u

F C
8

0.
1u

F C
9

0.
47

uF

C
10

SOUND

M
A
X
98

14

CT
P$1

/SHDN
P$2

CG
P$3

VDD
P$5

MICOUT
P$6

GND
P$7

MICIN
P$8

A/R
P$9

GAIN
P$10

BIAS
P$12

MICBIAS
P$13

TH
P$14

NC1
P$4

NC2
P$11

EP
P$

TH
ER

M
A
L

CMA-4544PF-W

Q1

-
+

150k

R5

10
0k

R
6

2.
2K

R
7

0.1uF

C11

GyroScope

VCC_5V

SCL
SDA
XDA
XCL

AD0
INT

MPU-6050
GYRO

CLKIN1
NC2
NC3
NC4
NC5
AUX_DA6
AUX_CL7
VLOGIC8
AD09
REGOUT10
FSYNC11
INT12 VDD 13NC 14NC 15NC 16NC 17GND 18RESV 19CPOUT 20RESV 21RESV 22SCL 23SDA 24

0.01u
C4

0
.1

u
C

5

4
.7

k
R

2

4
.7

k
R

3
2

2
0

0
p

F
C

6

0
.1

u
C

7

SCL
SDA

XDA
XCL

AD0

INT

A A

B B

C C

D D

E E

F F

G G

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

TITLE:
Sheet_1 REV: 1.0

Date: 2021-05-22

Sheet: 1/1
Drawn By: Alanhamo

Company: Your Company

RASPBERRY Pi Pico TH
RASPI

S
W

D
IO

43
G

N
D

42
S
W

LC
K

41

VBUS 40

VSYS 39

GND 38

3V3_En 37

3V3_OUT 36

VRef 35

GP28 34

GND 33

GP27 32

GP26 31

RUN 30

GP22 29

GND 28

GP21 27

GP20 26

GP19 25

GP18 24

GND 23

GP17 22

GP16 21GP1520
GP1419
GND18
GP1317
GP1216
GP1115
GP1014
GND13
GP912
GP811
GP710
GP69
GND8
GP57
GP46
GP35
GP24
GND3
GP12
GP01

SDA
SCL

Rx
Tx

sel

SCK
MOSI
MISO

sel

MOSI

SCK
MISO

Female header1*5P
SOUNDHEADER

1 12 23 34 45 5

Header-Male-2.54_1x10
GYROHEADER

11
22
33
44
55
66
77
88
99
1010

Figure E.1: Schematic for Teddy components PCB

77

	Preface
	Introduction
	Situational assessment
	The Smart Teddy
	Problem definition
	Background
	State of the art
	Thesis outline

	Program of Requirements
	Assumptions and context
	Verification methods
	Functional requirements
	Non-functional requirements

	Detailed Design
	Selection of the types of sensors
	Components in the Teddy
	Components in the Base station

	Implementation and Verification
	Teddy implementation
	Base station implementation
	The prototype
	Program of design requirements check

	Conclusion and future work
	References
	Appendices
	Previous Efforts
	Literature support of indicators
	mmWave Sensing
	Basics of mmWave sensing
	Algorithm
	mmWave TLV data

	Python Codes
	main.py
	ds3231.py
	mpu6050.py
	mq9.py
	sdcard.py
	testGPS.py
	testSDcard.py
	testTimer.py
	Basestation.py
	oob parser.py

	Schematic

