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Abstract “There can be no vulnerability without risk; there can be no
community without vulnerability; there can be no peace, and ultimately no life,

without community.” - [M. Scott Peck]

The open-source phenomenon has reached the point in which it is virtually impossible
to find large applications that do not rely on it. Such grand adoption may turn into a risk if
the community regulatory aspects behind open-source work (e.g., contribution guidelines or
release schemas) are left implicit and their effect untracked. We advocate the explicit study
and automated support of such aspects and propose Yoshi (Yielding Open-Source Health
Information), a tool able to map open-source communities onto community patterns, sets
of known organisational and social structure types and characteristics with measurable core
attributes. This mapping is beneficial since it allows, for example, (a) further investigation
of community health measuring established characteristics from organisations research, (b)
reuse of pattern-specific best-practices from the same literature, and (c) diagnosis of organ-
isational anti-patterns specific to open-source, if any. We evaluate the tool in a quantitative
empirical study involving 25 open-source communities from GitHub, finding that the tool
offers a valuable basis to monitor key community traits behind open-source development
and may form an effective combination with web-portals such as OpenHub or Bitergia. We
made the proposed tool open source and publicly available.
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1 Introduction

Modern software engineering heavily relies on open-source software (Raju,
2007; Crowston et al., 2012). Paraphrasing Crowston et al. (2012): “Over the
past ten years, [open-source software] has moved from an academic curiosity to
a mainstream focus [...] there are now [hundreds of] thousands of active com-
munities, spanning a wide range of applications”. Despite their high popularity,
open-source communities themselves do not commonly rely on governance in-
sights from organisations research and/or tracking their organisational status
using social networks analysis (SNA), e.g., to evaluate the current social and
organisational characteristics describing their community structure.

On one side, open-source communities mostly emerge and organise organ-
ically (Sadowski et al., 2008), following often fairly implicit governance struc-
tures (Capra et al., 2008; Tullio and Staples, 2014), and with little or no socio-
technical tracking and monitoring. On the other side, for those communities
which are big enough to care for their own emerging organisational and socio-
technical processes and structure, there is very limited support. For example,
for these big communities, there is limited support to find out the degree to
which the community is capable of engaging more actively with newcomers
or sponsoring organisations, e.g., so that external parties may engage in shep-
herding (Tamburri et al., 2016) the community with explicit and informed
organisational decision-making.

Currently, online applications such as OpenHub1 or Bitergia2 do allow
to grasp several organisational and social aspects (Gamalielsson and Lun-
dell, 2013; Schweik, 2013) behind open-source organisational structures (e.g.,
amount of member activity), however their approach would benefit from con-
sidering theories, models, types, characteristics, and best practices from or-
ganisations and social-networks research (Tamburri et al., 2013a), since these
theories and insights may prove vital to avoid abandonware or failure of entire
open-source forges (e.g., there are several conjectured effects known for the
failure of SourceForge3 but not their root-cause). Moreover, recent studies in
open-source organisations show the need to explore sustainable open-source
communities (Hata et al., 2015), that is, software communities with clear, ex-
plicit, and measurable governance structures and characteristics. Similarly,
the literature concerning open-source community failure (Tsirakidis et al.,
2009; Capiluppi et al., 2003), suggests a latent but increasing need for (semi-
)automated support of social, organisational, and socio-technical characteris-
tics of these communities.

With the aim of providing community shepherds and practitioners with
such a community-oriented dashboard, in this paper we built upon previous
research made in an industrial environment (Tamburri et al., 2013b) by propos-
ing a novel automated tool, called Yoshi (Yielding Open-Source Health

1 http://openhub.net/
2 https://bitergia.com/
3 https://www.quora.com/Is-SourceForge-dying-Why-or-why-not
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Information). Yoshi is designed to support two scenarios. First, it is able
to measure the organisational status of an open-source community using six
key open-source community characteristics previously proposed in literature
(Tamburri et al., 2013a), i.e., community structure, geodispersion, longevity,
engagement, formality, and cohesion. Second, based on the previous measure-
ments, Yoshi associates a community pattern of organisational structure types
(Tamburri et al., 2012, 2013a) matching the characteristics of the community.

On the one hand, a community pattern is associated with multiple types
since different sub-communities of the target community work in a different
way. On the other hand, knowing the pattern and the parameters behind
it, leads to diagnosing and resolving type-specific problems using mitigation
strategies from organisations research (Millen et al., 2002; Wenger, 1998; Ala-
Mutka, 2009). For example, assume the Apache Spark community features a
pattern of three types, associated to three sub-communities—if there are types
in the pattern with opposite characteristics (e.g., an informal community type,
versus a formal community type), then there may exist organisational conflicts
that need resolution. The proposed tool Yoshi would allow to diagnose such
conditions and act upon them using measurable quantities. We made the pro-
posed tool publicly available and open source on GitHub4.

1.1 Research Questions

To assess the validity of the tool and the extent to which open-source practi-
tioners may benefit from its usage, we validate Yoshi by conducting an empir-
ical investigation of 25 open-source software communities aiming at providing
insights with respect to two main objectives, i.e., accuracy and usefulness of
the tool. On the one hand, we aim at understanding the extent to which the
tool can provide developers with meaningful metrics; on the other hand, we
aim at verifying whether the patterns extracted by the tool actually provide
a factual view of the community structure of a software system. Specifically,
we answer the following research questions:

– RQ1. Does Yoshi correctly measure the community aspects characterising
different software communities?

– RQ2. Does Yoshi provide a correct indication of the community structure
of a software system?

These research questions analyse the extent to which the output of Yoshi
is reliable, evaluating the validity of (i) the metrics computed to measure the
community aspects characterising a software community and (ii) the indication
about the community structure of a software system.

Evaluation results show that (i) the measures computed by Yoshi cor-
rectly characterise a software community associating a pattern which reflects

4 The entire source code and running instructions are available online: https://github.
com/maelstromdat/YOSHI
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the community sub-structures and their way of working and (ii) Yoshi is
highly reliable when employed for understanding the structure of a commu-
nity. Moreover, in the context of our analyses we also discover how different
community design patterns correspond to different project quality parameters
such as number of stars and number of forks.

We conclude that: (1) Yoshi reliably predicts community patterns, thus
allowing further studies as well as the reuse of theories and measurable quan-
tities from organisations and social-networks research; (2) Yoshi effectively
eases finding correlations between community types and community-related
metrics of an open-source community.

Summarising, this paper offers three major contributions beyond the state
of the art:

1. Yoshi, a novel automated tool for open-source community design
pattern detection, which we built based on previously known community
types – we made the tool publicly available and open source. The tool is
designed to work jointly with web-portals such as OpenHub and Bitergia,
and reuses insights and theories from organisations and social-networks
research.

2. Results achieved on a large-scale empirical study on 25 open
source communities, where we empirically evaluated the actual validity
of the proposed tool as a decision support system for open source commu-
nities able to characterise their social aspects.

3. A comprehensive replication package, that is publicly available and
contains all the data used to evaluate the tool (Tamburri et al., 2017).

1.2 Motivations

Measuring and tracking the organisational structure type and characteristics of
an observable community is critical to achieve such quality for at least two rea-
sons. First, the state of the art in organisations research, social networks anal-
ysis, management information systems and related disciplines provide many
type-specific organisational problems that often recur in software engineering.
For example, an extraordinary number of recurrent issues reported for overly
formal organisational structures such as Formal Networks and Formal Groups
(Fredrickson, 1986), these issues vary from lack of motivation or trust across
employees at all levels (Miles et al., 2015) to institutional isomorphism (Lai
et al., 2006; DiMaggio and Powell, 1983), to name a few. As a matter of fact,
these factors are still reported as causes for several major software failures,
e.g., in the context of global software development (Jiménez and Piattini,
2008). Similarly, the lack of centralised management or leadership in Infor-
mal Networks leads to organisational stagnation (Jeppesen et al., 2011; Kim,
2007)—this is suspected by many to be a cause behind open-source developer
turnover (Homscheid and Schaarschmidt, 2016; Li et al., 2012). Moreover, sev-
eral other studies have addressed the relation between organisational structure
types and characteristics with measurable software quality outcomes focusing



Discovering Community Patterns in Open-Source 5

on factors such as organisational fit (Nielsen, 1995) or organisational culture
difference (Siakas and Georgiadou, 2002). We argue that the influence of the
above organisational circumstances has seen little or no automated support
in software engineering organisations as much as open-source forges - our re-
search conjecture in the scope of this article is that automated, transparent
means to measure and quantify these circumstances leads to avoiding some of
the connected software friction (Avgeriou et al., 2016).

Second, software engineering research still lacks reference quality models for
quantifiable organisational structures. Assuming that, as the state of the art in
software engineering research has already shown (Nagappan et al., 2008; Bird
et al., 2009; Nguyen et al., 2008; Pinzger et al., 2008), all software organisations
and their qualities are inextricably and heavily related to software qualities,
we advocate the use of organisational structure types and their measurable
characteristics as means to research community quality models, that is, sets of
metrics and stability thresholds to track software engineering organisational
health. To the best of our knowledge, these instruments are still rudimentary
(Jansen, 2014a), if not completely lacking. In pursuit of such quality models,
our previous work also defined and partially evaluated a potential community
quality model (Magnoni et al., 2017), systematically surveying software en-
gineering literature as well as experienced practitioners. In the scope of this
article we investigate if and how the state of the art in organisations research,
as represented by known organisational structure types implemented in Yoshi
can play a role in defining and predicting software community quality.

1.3 Structure of The Article

The remainder of this paper is organised as follows. Section 2 provides an
overview of the background and theoretical foundations upon which Yoshi
was built, as well as the research objectives behind this article. Section 3
provides a detailed technical overview of Yoshi and the metrics it computes,
while Section 4 reports the design and results of the empirical study conducted
to evaluate its effectiveness. Section 5 discusses the main findings of our study
and proposes new insights on the usefulness of Yoshi. Section 6 discusses the
limitation of the tool as well as the threats that might have influenced the em-
pirical study. In Section 7 we outline the related literature, before concluding
the paper in Section 8.

2 Background and Research Statement

This section outlines the background in organisational structures, providing
a general overview and definitions. Subsequently, the section discusses the
background and general objectives of organisational structure quality research
and how it relates to software engineering in general and our tool in particular.
Given that the background section is dense with concepts and definitions not
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strictly part of software engineering research but interdisciplinary in nature,
in the following we offer a nutshell summary—the interested reader can find
full details in the remainder of the section.

A software development community is a specific type of social network upon
which certain properties constantly hold (e.g., informal communication across
electronic channels of open-source projects) (Tamburri et al., 2013a; Magnoni
et al., 2017) across community members, that is, the set of people who interact
in any way, shape, or form with the practice reflected by the community (e.g.,
a software product).

Across such development social networks and their many possible proper-
ties (e.g., informality, goals, membership selection, intercommunication pro-
tocols, etc.), communities can develop sub-optimal conditions which we pre-
viously defined as community smells (Tamburri et al., 2015; Palomba et al.,
2018) in analogy to code smells—the analogy signifies that, on one hand, com-
munity smells identify unlikable circumstances (e.g., the lack of communication
across different modules of a software system) but, on the other hand, these
conditions do not necessarily stop or void the organisational behaviour across
the community, rather, they prove detrimental and cause additional project
cost in several possible ways (e.g., recurrent delays in communication, wrongful
knowledge sharing).

Finally, with the term project, we identify the goal or shared practice that
the community maintains as its central endeavour, e.g., the Apache Spark
community holds the delivery of the Apache Spark product as its key project.

Background and Goals Digest. A community type is a social net-
work where certain characteristics are constantly true, for example, an
informal community is a social network where all interactions are always
informal. Disciplines such as organisations research and social-networks
analysis study community structures and types to measure and manage
their salient characteristics to socially healthy and organisationally perfor-
mant levels. Yoshi is a tool that applies that intelligence and knowledge to
detect structural design patterns across open-source software engineering
communities, and is able to identify nine types using their unique identify-
ing characteristics. Our ultimate objective is using Yoshi and community
patterns as instruments to assess open-source organisational quality.

2.1 Organisational Structures Explained

The literature in organisational structure research resides mostly in the fol-
lowing fields:

– Organisations research—in this field organisational structure types and
characteristics represent more or less effective consequences of organisa-
tional design, i.e., the management activity of planning a strategic organ-
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isational agenda around a pre-specified organisational structure (Chatha,
2003);

– Social-Network Analysis—in this field organisational structure types and
characteristics represent measurable quantities that can augment social-
networks from any context or domain (networks of people, communities
of partners, networks of organisations, etc.) (Kilduff and Tsai, 2003; Otte
and Rousseau, 2002);

– Cognitive Ergonomics—in this field organisational structure types repre-
sent models that allow reasoning on transactive-memory processes (Nevo
and Wand, 2005) (i.e., who knows what, where, etc.), information repre-
sentation, as well as information exchange policies;

The following sections offer more precise definitions of organisational struc-
tures, their types and characteristics as well as outline their role in the context
of this study.

2.1.1 Organisational Types and Their Characteristics

Several seminal works address organisational types in the state of the art of
software engineering. For example, Mockus et al. (2002) investigate Mozilla
and Apache, characterising quantitatively and qualitatively their organisa-
tional structure, but without explicitly associating a type (i.e. a set of social
and organisational characteristics) from the state of the art. Conversely, for
the benefit of software engineering research and practice, in our own previ-
ous work (Tamburri et al., 2013a) we strived to summarise the insights on
organisational structures from the fields above as well as others, into common
themes or types of structures. In layman terms, a structure type is a set of
measurable or otherwise evident organisational characteristics (e.g., the pres-
ence of informal communication channels across an organisation). Based on
how organisational characteristics influence the structure, the way of working
in the structure can change radically. For example, the way of working in a
Community of Practice (collocated, tightly knit, practice-focused) is different
than that of a Formal Network (formal, distributed, protocol-based). Also, if
characteristic X has its highest manifestation in a certain type, X can be used
as an identifying indicator for that type, that is, the primary characteristic
which is a necessary condition for its identification (Tamburri et al., 2013a).
For example, Formality is a primary indicator for organisational structures
with well-defined rules and regulations, typically dictated by corporate gover-
nance. More precisely:

Organisational Structure Type:
ω = [δ(C1)+, ...,+δ(Cn)];

where ω represents the organisational structure type as a “sum”, i.e., the com-
bined effect of organisational and social characteristics (C1,..., Cn). On the one
hand, the characteristics themselves are heterogeneous, for example, some re-
fer to the community’s location (e.g., virtual, situated) and some refer to the



closeness of community interactions (e.g., cohesion, informality). On the other
hand, all these characteristics can be quantified by means of observability func-
tions (δ), i.e., sensing functions which assign a Likert-scale value based on the
level of influence that each characteristic bears on the structure according to
its members/participants. For example, an Informal Network type is strongly
indicative of informal communications and might lead to engaged members
(Tamburri et al., 2013a). Only informality is necessary for the identification
of Informal Networks, and hence, a unique indicator for such types. If indeed
in addition to informal communication a high degree of engagement has been
observed, then we consider this highly-engaged version of Informal Networks
as a distributed version of Informal Community. Fluctuation of engagement
levels in this instance, during the evolution of the organisational structure, can
reflect changes from Informal Community type to Informal Network or vice
versa.

Yoshi Analysis Lens. Yoshi focuses on detecting community design
patterns using the characteristics and types evident across an observable
community, hence determining the pattern of types that the community
exhibits across its organisational structure.

As an example of the equation above for IC see the following:

Organisational Structure Type IC:
IC = [Informality(High) + Engagement(High)...];

Figure 1 visualises the point above, using the example pattern:

IN,WG = [Informality(High) + Cohesion(High)];

in the example, a likely scenario reflects a set of globally dispersed software
practitioners working over the same open-source product (e.g., a video-game)
constitute an Informal Network which can show high cohesion (adding in the
primary characteristic of Working Groups) when practitioners meet face-to-
face (e.g., at comic conventions, “Comicons”, or gaming tournaments). Yoshi
would identify a single pattern including both types blended together for the
“Comicon” community snapshot. Nevertheless, these two types may diverge
into other types later on in the community lifetime, e.g., into a formal type dur-
ing release. Yoshi currently returns types whose identifiers remain the highest
and over a certain threshold for the entire duration of the observed 3-month
snapshot. Consequently, considering Fig. 1 Yoshi would return a pattern con-
stituted by both types only in correspondence of the point in time when both
Informality and Cohesion are highest, and Informal Networks otherwise.

In summary, a single organisation can exhibit the traits of multiple types
at once and even very different or conflicting types, over time—meaning that
multiple, sometimes even conflicting characteristics, often blend into the same
organisational structure. Addressing organisational conflict is a key objective
of organisations and social-networks research (Jeppesen et al., 2011; Fredrick-
son, 1986), and, thus, is a fundamental part of our motivation to support
automated detection of community design patterns in open-source.



Table 1 Organisational structure types, an overview from previous work. The four types
not identified by Yoshi are omitted for the sake of space.

Name Description Indicator Empirical
Threshold

Communities
of practice
(CoP)

A CoP consists of collocated groups of people who
share a concern, a set of problems, or a passion
about a practice. Interactions are frequent,
face-to-face, collaborative (to help each other) and
constructive (to increase mutual knowledge). This
set of social processes and conditions is called
situatedness Gallagher (2006). An example is the

SRII community5 which gathers multiple CoPs
(corporate and academic) into a single one, meeting
physically to informally exchange best practices in
services science.

Situatedness Global Distance
< 4926
Kilometers

Informal
Networks
(IN)

INs are loose networks of ties between individuals
that happen to come informally in contact in the
same context. Primary indicator is the high strength
of informal member ties. Finally, IN do not use
governance practices Cross et al. (2005). An example
in academia, is the informal and loosely coupled set
of research communities around a single topic (e.g.,
computer science) is a world-wide informal network.

Informality Formality Levels
< 0.1; Global
Distance >>
4926

Formal
Networks
(FN)

FNs rigorously select and prescribe memberships,
which are created and acknowledged by FN
management. Direction is carried out according to
corporate strategy and its mission is to follow this
strategy Tamburri et al. (2013a). An example in
software engineering is the OMG (Object
Management Group): it is a formal network, since
the interaction dynamics and status of the members
(i.e. the organizations which are part of OMG) are
formal; also, the meeting participants (i.e. the
people that corporations send as representatives) are
acknowledged formally by their corporate sponsors.

Formality Formality Levels
> 20; Global
Distance >>
4926

Informal
Communities
(IC)

ICs reflect sets of people part of highly-dispersed
organisation, with a common interest, often closely
dependent on their practice. They interact
informally across unbound distances, frequently over
a common history or culture (e.g. shared ideas,
experience etc). The main difference they have with
all communities (with the exception of NoPs) is that
their localisation is necessarily dispersed (e.g.,
contrarily to INs where networked interactions can
also be in the same timezone or physical location) so
that the community can reach a wider audience
Tamburri et al. (2013a). Loosely-affiliated political
movements (such as green-peace) are examples of
ICs: their members disseminate their vision (based
on a common idea, which is the goal of the IC).

Engagement Engagement
Levels > 3.5

Networks of
Practice
(NoP)

A NoP is a networked system of communication and
collaboration that connects CoPs (which are
localised). In principle anyone can join it without
selection of candidates (e.g. Open-Source forges are
an instance of NoP). NoPs have the highest
geodispersion. An unspoken requirement is expected
IT literacy Ruikar et al. (2009). For example,
previous literature Bird et al. (2009) discusses
Socio-technical Networks in software engineering
using the exact terms with which NoPs are defined
in literature.

Geodispersion Global Distance
>> 4926

Workgroups
(WG)

WG are made of technical experts whose goals span
a specific business area. WGs are always
accompanied by a number of organisational sponsors
and are expected to generate tangible assets and
benefits (i.e., Return-On-Investment). Fundamental
attributes of WGs are collocation and the highest
cohesion of their members (e.g., long-time
collaborators). For example, in software engineering,

the IFIP WG 2.10 on software architecture6 is
obviously a WG, since its effort is planned and
steady, with highly cohesive action of its members,
as well as focused on pursuing the benefits of certain
organisational sponsors (e.g. UNESCO for IFIP).

Cohesion Cohesion Levels
> 11; Global
Distance < 4926
Kilometers

Project-
Teams
(PT)

PTs are fixed-term, problem-specific aggregations of
people with complementary skills who work together
to achieve a common purpose for which they are
accountable. They are enforced by their organisation
and follow specific strategies or organisational
guidelines (e.g. time-to-market, effectiveness,
low-cost, etc.). Their final goal is delivery of a
product or service Tamburri et al. (2013a).

Time-Boxed
Longevity

Longevity < 93
Full-time
Equivalent
Man-days; Global
Distance < 4926
Kilometers

Formal
Groups (FG)

FGs are comprised of people which are explicitly
grouped by corporations to act on (or by means of)
them (e.g. governing employees or ease their job or
practice by grouping them in areas of interest). Each
group has a single organisational goal, called mission
(governing boards are groups of executives whose
mission is to devise and apply governance practices
successfully). In comparison to Formal Networks,
they seldom rely on networking technologies, on the
contrary, they are local in nature and are less formal
since there are no explicit governance protocols
employed other than the grouping mechanism and
the common goal. Examples of formal groups in
software engineering are software taskforces, e.g.

IEEE Open-Source Software Task Force7.

Explicit
Governance
Structure

Formality Levels
> 0.1 and <20;
Global Distance
< 4926
Kilometers

Social
Networks
(SN)

SNs represent the emergent network of social ties
spontaneously arising between individuals who
share, either willingly or not, a practice or common
interest. Conversely, an unstructured network is
(often by-design) not constrained by any design or
structural tie (e.g., a common social practice) Zich
et al. (2008). SNs act as a gateway to
communicating communities Cross et al. (2005).

Community
Structure

Structured
Network = True
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Fig. 1 An overview of the nature of organisational and social characteristics behind commu-
nities - our tool predicts community design patterns by evaluating the trend of the perception
curves for primary community type indicators. The figure also reports (right-hand side) the
“Comicon” event in correspondence to two identified types, from our example.

2.1.2 A Methodology to Discover Organisational Patterns in Software
Engineering

In the recent past, a number of studies were aimed at understanding commu-
nity types and their role in software engineering as well as at finding ways to
use community types as reference patterns during software processes. Litera-
ture review reveals a total of more than 70 organisational and social structure
characteristics (Tamburri et al., 2013a) to be measured for fully describing
community structure types. Out of these characteristics a total of 13 charac-
teristics were distilled, each individually reflecting a single type. In the scope
of this paper, we focus on detecting community design patterns which feature
the six characteristics that we were able to operationalise for open-source com-
munities, namely, (1) community structure8, (2) formality, (3) engagement, (4)
cohesion, (5) longevity and (6) geodispersion. These aforementioned character-
istics were operationalised in Yoshi as an original contribution of this paper
(see Section 3.3).

In fact, contrarily to literature in organisations research (Prandy, 2000;
Mislove et al., 2007; Ryynnen, 2012) where organisational types and char-
acteristics are studied qualitatively, as an original contribution of this pa-
per, we measure the quantitative manifestations of community characteristics,
namely, we use quantitative, automatically measurable indicators of the per-
ception functions introduced previously. For example, to measure engagement,

8 The first characteristic, structure, is a necessary pre-condition to all of them; in fact,
all communities are social-networks (SNs) that exhibit a community structure across which
certain characteristics remain constant.



we evaluate together the amount, frequency, and kinds of contributions of an
open-source community member with respect to its peers.

In our early exploratory experiments with community types and patterns
while designing Yoshi automations, we observed that (1) different levels of
the same characteristics correspond to different types and (2) measuring open-
source communities reveals at least two co-existing types. From this early
experimentation, we made two observations. First, Yoshi must be designed
to detect design patterns composed of recurrent community characteristics and
their corrresponding types. Second, it is not sufficient to only measure the six
characteristics above. Automated detection of organisational design patterns
demands a way to identify the level of their highest manifestations above all
remaining characteristics such that the most prominent community types can
be revealed and distilled into a pattern.

Consequently, we engaged in and contributed to a highly active open-source
community along a 15-month ethnographical study of its organisational struc-
ture (di Nitto et al., 2013), for the purpose of determining empirical thresholds
to all our primary community indicators.

Table 1 provides an overview of the above results, briefly describing com-
munity types, their indicators, as well as highlighting the empirical thresholds
elicited as part of our ethnographical research (di Nitto et al., 2013). The
thresholds allow determining high or low values for community indicators,
thus allowing identification9.

In what remains of this subsection, we provide an overview of the thresh-
olds that we mention in Table 1. In particular, in previous work (di Nitto
et al., 2013), we were interested in ways to measurably increase the awareness
of open-source developers over known organisational and socio-technical char-
acteristics of communities from organisations and social-networks research (see
Table 1). For this reason, one of the co-authors of this study along with two
master students started contributing to Apache Allura, an open source com-
munity building the infrastructure behind SourceForge, a widely known open-
source forge. In this process of contribution, the following data was gathered for
the first interaction by the three observers: (a) guidelines of contribution; (b)
code of conduct across the community; (c) expected contribution. Moreover,
for the rest of our 15-month involvement, every other interaction with the com-
munity was documented as follows: (a) type of interaction (direct/indirect);
(b) involved actors (presence of communication intermediaries); (c) means
of communication (e.g., formal/informal means); (d) perception of “tone” of
communication (formal/informal); (e) location of the involved participants and
organisations; (f) explicit/implicit guidelines for contribution in question; (g)
previous members’ relation with observers or amongst themselves; (h) delay
in response. Finally, the following data was elaborated in a conclusive sum-
mary of the community: (a) skills profile of community members; (b) roles

9 The interested reader can find detailed information and full characterisation of each
type in our previous work (Tamburri et al., 2013a, 2016, 2013b)



and responsibilities; (c) organisational structure sociogram (Kilduff and Tsai,
2003).

Subsequently, we sought to associate a ground-truth set of community
types and characteristics corresponding to the data thus obtained. Hence, at
the end of the 15-month study, we asked 7 top-level contributors to Allura their
perceived values over the characteristics from Table 1 and their perceived open-
source community type(s), if any. Through this process, Allura was determined
to be a Formal Network type blended with a Network of Practice—this empir-
ically defines two thresholds for the two primary characteristics that manifest
for those types: (1) Formality - the highest primary characteristics reflecting
formality in Allura would define our Formality threshold; (2) Geodispersion -
the average geographical and cultural distance between Allura members would
define our Geodispersion threshold.

Concerning the remaining characteristics, we analysed our data on devel-
oper interactions. First, we observed Informality manifesting itself among the
four core Allura maintainers. Focusing on the interactions among the four
developers in question, we isolated their commonalities (e.g., they all shared
previous relations on other projects, they all shared at least three background
skills, etc.) and evaluated thresholds for resulting factors. Similarly, we ob-
served that Engagement and Cohesion of Allura developers were very high
when the community was closing in on a release of its platform. Consequently,
we measured Cohesion (represented by the well known social-network analy-
sis metric (Kilduff and Tsai, 2003)) and Engagement levels (represented by
summing all possible contributions that members would make to the release
of Allura and computing an average).

In the same study, to strengthen the validity of our thresholds, we measured
and empirically evaluated the metrics and thresholds for an additional four
communities hosted on SourceForge, seeking and successfully evaluating the
agreement of those communities’ members with our type predictions.

In the scope of this article, we sought to operationalise the metrics defined
and evaluated in our previous work (di Nitto et al., 2013) offering three tool-
specific contributions beyond previous work:

1. a tool designed for large-scale use: in our previous study the measure-
ments and empirical analysis was conducted by hand, using crude statis-
tical analysis and focused on distilling the type of four communities only,
while in this article we focus on offering an automated tool designed for
large scale use and using GitHub data. Moreover, the empirical evaluation
in the scope of this article encompasses 25 randomly-sampled open-source
communities.

2. a tool designed for precision: in order to be actionable, a type prediction
needs to be accurate; in our previous study we used a single quantita-
tive metric per every primary characteristic, while with Yoshi we provide
between 1 and 3 non-overlapping metrics in the detection pattern of charac-
teristics for which our prediction in previous work was imprecise. Moreover,
we offer an evaluation of Yoshi precision using null-model analysis.



3. a tool intended for further replication and open-source release; our study
of community design patterns in open-source reflects the fundamental re-
search of open-source organisational structures and we want to encourage
others to pursue the research path we are currently exploring. In this study
we offer a completely free and open-source replication package to call for,
and encourage verifiability.

As a result, the study reported in this article offers a more precise, scalable,
replicable, and verifiable tool along with its empirical evaluation results.

2.2 Organisational Structure Quality

Despite the fact that previous work on open- and closed-source software com-
munities does in fact offer relevant insights into the characteristics of the differ-
ent organisational structure types, it is important to note that: (i) there is still
a lack of tools that provide automatic identification of community character-
istics and type; (ii) previous work has been mainly oriented toward industrial
environments, thus missing a detailed analysis in the context of open-source
teams, which are becoming ever more important for the development of both
academic and industrial software (Raju, 2007; Crowston et al., 2012).

Such an analysis is of paramount importance to highlight commonalities
and differences among the different organisational structures in different de-
velopment contexts, and to understand to what extent the management and
evolution of open-source systems may benefit from the usage of community-
related information. Moreover, some organisational types may work better
than others for the purpose of software engineering and evolution; this line
of inquiry reflects organisational structure quality and can be assisted by the
use of tools such as Yoshi which map open-source communities onto known
organisational types and characteristics and their quality.

The quality of an organisational structure generally refers to the organi-
sational structure’s fitness for purpose, i.e., the measurable degree to which
the structure is fitting with its objective (Espejo, 1993; Afsar and Badir, 2015;
Oreja-Rodriguez and Yanes-Estevez, 2006). In our domain of software engi-
neering, a quality organisational structure refers to better software, which is
of more sustainable and measurable technical qualities (Nielsen, 1995). For
example, the Jet-Propulsion Laboratory at NASA can be said to have a high-
quality organisational structure since it produces and maintains software which
is virtually error-free10 through a combination of organisational as much as
technical tools and approaches.

3 YOSHI: An Automatic Tool for Discovering Community Types

This section reports the implementation details behind Yoshi, as well as the
details on the architecture and the functionalities currently implemented in the

10 https://www.fastcompany.com/28121/they-write-right-stuff
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Fig. 2 A decision-tree for organisational structures - dotted nodes identify types not cur-
rently implemented in Yoshi .

tool. As previously introduced in Sec. 2, all operationalisations and detection
patterns follow the Goal-Question-Metric approach (Basili et al., 1994) and
use empirically-defined thresholds from previous work (di Nitto et al., 2013).

3.1 The Yoshi Approach to Open-Source Community Design Patterns
Detection: General Overview

Yoshi is a social-networks analysis tool specifically designed for detecting
open-source community types. The tool focuses on determining the levels
of the previously-mentioned identifying characteristics, and combines specific
version-control and committer activity data implemented in an information
retrieval component (see bottom of Fig. 5). For example, to determine how
formal a community is, Yoshi looks at how many levels of control are assigned
across repository contributors. Similarly, to evaluate engagement Yoshi looks
both at the technical (e.g., commits, pull requests) and social or organisational
(e.g., comments, new watchers) activities.

Once all characteristics are determined, Yoshi runs Algorithm 1 to de-
termine the community type a given repository refers to. It is important to
remark again that the tool allows to identify the existence of community types
by looking at the existence of key community characteristics as well as their
combination. For this reason, Yoshi identifies a community design pattern
featuring multiple types within a certain repository ; several possible scenarios
may exemplify this, e.g., multiple sub-teams working as different community



Fig. 3 A decision-tree for organisational structures - Yoshi ’s visit to identify FNs.

types or the community works with different types at different phases in its
organisational activity.

To precisely distinguish the types existing in the observed organisation,
Yoshi iteratively uses an algorithmic representation (see Sec. 3.2) of the
decision-tree we previously evaluated in industry (Tamburri et al., 2013b).
The decision-tree in question (reported in Fig. 2) encodes the set of relations
(e.g., implication or mutual-exclusion) across primary indicators for commu-
nity types from Table 1. This set of relations forms, by definition, a partial-
order function, i.e., a function that associates an ordering or sequencing to
the elements of a set. The decision-tree (see Figure 2) is a representation of
this partial-order function and is to be visited top-to-bottom (most generic
to most specific type) and right-to-left (most collocated to most dispersed
type)11. Yoshi iterates on the decision-tree until no new community types are
discovered over available data. To exemplify the workings of the decision-tree,
consider the tree-visit reflecting the identification of FNs in Fig. 3.

Finally, Yoshi is able to visualise the software development network and its
statistics over a world map, reporting statistics in *.csv format—this feature
is implemented in Yoshi ’s own visualisation component.

Yoshi does not offer any insights over the technical qualities of the arte-
facts worked on by open-source communities under observation (e.g., software
architecture, code, etc.), since these aspects are covered by several other state-
of-the-art tools, e.g., SonarQube, CAST Software, or Titan (Xiao et al., 2014).

11 All relations and decision-tree functional demonstration by construction can be found
online at http://tinyurl.com/mzojyp2



The above approach, can be easily replicated, generalised or further spe-
cialised at will. For example, the key organisational and socio-technical char-
acteristics from the state-of-the-art (Tamburri et al., 2013a) may be observed
through other, possibly more precise means (e.g., Natural-Language Process-
ing (Manning and Schütze, 1999), Neuro-Linguistic Programming (Molzberger,
1986)). Similarly, specific tools (or Yoshi forks) can be designed to address a
more precise identification of one or two specific community types, e.g., focus-
ing on Communities and Networks of Practice.

3.2 Yoshi : Algorithmic Representation

Algorithm 1 shows Yoshi’s measurement function measure() as applied to
observable open-source communities. To extract community types from ob-
servable data, Algorithm 1 is executed as follows.

– Yoshi establishes that there is in fact a high degree of community struc-
ture: measure(structure) == high;

– Yoshi measures the indicators for the remaining five community charac-
teristics:
m[ ]←measure(GEO, LON, ENG, FOR, COH);

– Yoshi ascertains that characteristics are not null:
Assume(m ! = ∅);

– Yoshi applies empirical thresholds (di Nitto et al., 2013) and returns a
certain community type if and only if its identifier has been found as “High-
est”:
Tx ← True ⇐⇒ Value(mx) = Highest ∧Attribute(mx) = Tidentifier;

The 5 characteristics (besides community structure) computed by Yoshi
(GEO, LON, ENG, FOR, COH in Algorithm 1) are, intuitively: (GEO) geodis-
persion; (LON) longevity; (ENG) engagement; (FOR) formality; (COH) co-
hesion. The characteristics are operationalised in the tool as detailed in the
following subsections.

Algorithm 1 Yoshi algorithm for community type detection using thresholds
from previous work.

if measure(structure) == high then
m[ ]←measure(GEO, LON, ENG, FOR, COH)
if m ! = ∅ then Commtype ← [T1...Tn]

where:
forall x = 1..8 :
Tx ← True ⇐⇒ Value(mx) = Highest ∧Attribute(mx) = Tidentifier

end if
end if
return Commtype



3.2.1 Community Structure

As operationalised within Yoshi, this characteristic represents the ability to
distinguish a non-trivial organisational and social structure within the ob-
served set of people working on a project. Establishing this characteristic is
paramount to identify any community type, since, by definition, organisa-
tional structures are sets of constant properties acting across social networks
exhibiting community structure (Tamburri et al., 2013a; Newman and Girvan,
2004; Newman, 2003). The success of open-source projects crucially depends
on the voluntary contributions of a sufficiently large community of users. Apart
from the size of the community, Structure can be identified by looking at the
evolution of structural features (e.g., connection density) of collaborations be-
tween community members. To analyse the social structure of communities,
we collected data regarding user collaborations using API requests to each
analysed repository. A definition of “community” in the context of social net-
works analysis is a subnetwork whose intra-community edges are denser than
the inter-community edges (Kilduff and Tsai, 2003). Yoshi computes a net-
work of nodes representing community members and edges representing any
particular social or organisational interaction between any two members.

Detection Strategy. Two nodes are connected if at least one of the
following conditions holds:

1. Common projects: two community members have at least one common
repository to which they are contributing, except for the currently
analysed repository;

2. List of followers: between the considered community members exists
either a “is following” or “follows” relation;

3. Pull request interaction: we consider the connection between the pull
request author and other community members that are participating
on the pull request.

Consequently, a structure exists if at least one of the above parame-
ters is met within the standard analysis window of 3 months considered
by Yoshi: the 3-month window is a common practice in organisations
research (Traag et al., 2013) to observe organisational activity. Structure
is therefore a binary characteristic, to be possibly refined into a ratio or
degree in the scope of future work around the tool.

3.2.2 Community Geodispersion

As operationalised within Yoshi, this characteristic represents the cultural
and geographical dispersion between community members. Establishing this
characteristic is key to identifying either a Network of Practice (high geodisper-
sion) or a Community of Practice (geodispersion low or none). For geographical



Formality and informality and the next two investigated attributes from the community attributes 
decision tree. The Adoocs Preprocessing and Visualization Module provides data and graphs on the 
members' permission level - collaborator or contributor, statistics on the duration and content of  
milestones, in which are the projects are community members involved, subgroups of user which are 
members of the same company. The preprocessing module also provides a class which extracts the 
content  of  messages  exchanged  between  community  members:  the  commit  messages  and  pull 
requests messages and determines the most frequently used words. The current implementation 
supports only displaying this list,  but it  can be further extended to include sentiment analysis 
extraction from these communication messages. We used this data to provide a binary reposonse to 
the Question: Do community members require a formal status evaluation?

The  next  step  of  the  analysis  process  was  to 
investigate  the  duration  attribute,  answering 
whether  community  members  exhibit  longevity 
bound to a project. We used the computed longevity 
value  for  each  repository  contributors  and  the 
project lifetime value to investigate this attribute. 
Figure 5 represents the relation between commiter 
longevity  and  the  number  of  users  who  remain 
active  for  different  periods  of  time;  [18] is  the 
repository used to compute the graph data. A large 
percentage of  repositories members are active only 
for  periods  shorter  than 10 days  and the  project 
lifetime  is  shorter  than  3  years.  We focused  our 

research on community types most representative for open-source development and the duration 
attribute was later removed as its contribution to the creation of the community snapshot is not 
relevant for the detected community type.

To evaluate community members’ engagement, we used statistics for each member’s participation 
levels.  The  Preprocessing  and  Visualization  Module  can  provide  the  following  data  about 
community members: monthly distribution of number of posted commit comments and pull requests 
comments, number and list of repository active members, repository members watch subscriptions, 
distribution of commits for each user, distribution of collaborations on files.
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Figure 8: Geographical distribution of users 
contributing to a repository

Figure 9: Commiter longevity

Fig. 4 A geographical distribution map in Yoshi.

dispersion (GeoDispersion class) Yoshi retrieves community members’ spec-
ified location form their own profile and uses it to compute the median and
standard deviation of the distance between them and to create a geographical
distribution map (Li et al., 2010) and, for cultural dispersion, Yoshi com-
putes (CulturalDispersion class) Hofstede cultural distance metrics (Hofst-
ede et al., 2010) and their standard deviation.

Detection Strategy. Because the location values do not provide geo-
graphical coordinates, Yoshi first uses location values to calculate Hof-
stede metrics and their standard deviation per-member and then exploits
the Google Geocoding API to convert member addresses into geographic
coordinates to compute the spherical distance between any two commu-
nity members. Figure 4 shows an example geographical distribution map.
The red dots on Figure 4 represent developers which are currently mem-
bers of the targeted development community. As defined in our previous
work (di Nitto et al., 2013), Geodispersion is computed as the sum of
standard deviations of geographical and cultural difference (i.e., the sum
of standard deviation of geographical distance across members and of all
Hofstede metrics between all pairs of members across the community).
From a mathematical perspective, Yoshi averages the variances of the
two quantities and then takes the square root to get the average stan-
dard deviation; the tool also provides an option to choose for the Wolfram
Alpha compute engine as an alternative to local JVM computations.

3.2.3 Community Longevity

As operationalised within Yoshi, this characteristic represents the commit-
ter’s longevity as a member of the observed community. Establishing this
characteristic is essential to identifying Project Teams and Problem-Solving



Communities (low or time-bound longevity) or Workgroups (high longevity).
Committer longevity is a measure of how long one author remains part of the
community.

Detection Strategy. Yoshi iterates through the list of commits and
extracts: (a) committing member; (b) creation date. These are then used
for updating the data from commiterStartDate and commiterStopDate

for every member. After all commits have been preprocessed, Yoshi com-
putes the Longevity value for each member as the difference between the
two previously determined values.

3.2.4 Community Engagement

As operationalised within Yoshi, this characteristic represents the participa-
tion levels across the analysed community, intended as the amount of time
the member is actively participating with community-related actions. Estab-
lishing this characteristic is essential to identifying Informal Communities or
Informal Networks (high engagement). Also, evaluating this characteristic is
essential for several community health reasons, for example, the case study
presented by Kujala et al. (2005) shows that developer engagement in their
software projects is key in successful project development and has positive
effects on user satisfaction.

Detection Strategy. To establish engagement, Yoshi computes the fol-
lowing data about each community member:

1. Total number of pull-request comments;
2. Monthly distribution of total posted pull/commit comments—Yoshi

extracts pull-request and commit comments posted by community
members;

3. Number and list of repository active members (i.e., the members who
committed at least once in the last 30 days)—Yoshi uses attributes
values to measure the number of commit events initiated by users;

4. Repository watcher members, i.e., third-parties who receive notifica-
tions of the activity across the community;

5. Subscriptions, i.e., third-parties who get digests of commit activity
across the community;

6. Distribution of commits for each user;
7. Distribution of collaborations on files—Yoshi examines the develop-

ment activities of repository contributors to see if they were working to-
gether on common issues opened in the standard GitHub issue-tracker.

Finally, Engagement levels across the community are established as
the member medians of the measurements above.



As an illustrative example, we focus on the value which indicates how
tightly project members collaborate on repository artefacts, that is, the num-
ber of community members that commit on common repository artefacts.
Yoshi uses the ContentsService and DataService GitHub API classes to
retrieve the repository file structure and associated commits. Yoshi then uses
the CommitService GitHub API class that provides the pageCommits method
for retrieving the history of commits for each file. In summary, Yoshi extracts
authors for each commit and adds them to the set of file contributors. The
result of these preprocessing operations is a HashMap which stores the sets
of contributors for each repository artefact. This map allows us to determine
the number of community members that commit on common repository arte-
facts. Each entry from this collection represents the set of connections that a
repository user has established by common collaboration on repository items.

3.2.5 Community Formality

As operationalised within Yoshi, this characteristic represents the level of con-
trol (access privileges, milestones scheduling and regularity of contribution)
exercised or self-imposed on the community. Establishing this characteristic is
essential to identifying Formal Groups or Formal Networks (high formality).
Also, evaluating this is essential for several reasons. For example, as reported
by Crowston et al. (2012), open-source communities’ approach to project mile-
stones does not follow a common pattern. The results show that some projects
have quite informal release schedules, following the pattern of releasing early
and releasing often, whilst in other projects releases are more informal and
come at an irregular rate (Glance, 2004). Depending on the formality type,
different governance support schemes might apply (e.g., formal community
types as opposed to informal ones (Tamburri et al., 2013a)).

Detection Strategy. Yoshi uses three measurements for formality:

1. Membership types—in general, Contributor and Collaborator are typ-
ical GitHub membership types and therefore, the levels of control as-
signed to repository members are +1 for contributors and +2 for col-
laborators (which have more privileges);

2. Project milestones—we used the Milestones GitHub API to extract
the list of milestones associated to a project;

3. Project lifetime—this value is computed using the earliest and lat-
est commits for a project, which are obtained using the API class
CommitService.

Formality is then determined as the mean membership type divided
by the milestones per project-lifetime ratio.

The division above is mathematically grounded as follows. Since GitHub
only allows contributor and collaborator as membership types, Yoshi asso-



ciates a 1 to a contributor membership type and a 0 to collaborator member-
ship type. Hence, the average number of contributors (i.e., the 1’s) divided by
the amount of work they have been able to carry out gives an indication of
how well-structured their collaboration, co-location, co-operation works and
hence, an indication of the formality. Conversely, the more external collabo-
rators (i.e., the 0’s) there are, the less formal (i.e., closer to 0 formality) the
structure will be.

For the sake of completeness, we only elaborate on how Yoshi detects
member contributions and evaluates membership type, as well as defining the
contributor & collaborator subset. First, for each community member, Yoshi
retrieves the set of repositories to which he/she has contributed. One of the fol-
lowing actions is considered a contribution: (a) a commit to a project’s default
branch or the gh-pages branch; (b) opening/closing an issue; (c) proposing a
pull request. Second, Yoshi defines the set of repository members as the union
of repository collaborators and repository contributors. The Collaborator-

Service GitHub API class allows retrieving the sets of collaborator-users for
each of the considered repositories, whilst the RepositoryService GitHub
API class that provides us with set of contributor-users.

3.2.6 Community Cohesion

As operationalised within Yoshi, this characteristic represents the level to
which there are tight social or organisational or technical relations among
members of the community. It is worth noting that we inherit the term “com-
munity cohesion”, its definition, and rationale from the state of the art in
working-groups (Moody and White, 2003; Hung and Gatica-Perez, 2010; Gi-
raldo and Passino, 2016); the definition in question includes a strong connota-
tion of community cohesion (Moody and White, 2003; Hung and Gatica-Perez,
2010) which is associated to low cognitive distance among members and hence,
high expertise overlap (Nooteboom et al., 2006).

Detection Strategy. For each community member Yoshi determines
the number of followed or following users, which are also members of the
same community and share significant expertise overlap (i.e., common
programming language skills). Using the UserService API class Yoshi
extracts the list of users that a repository member is following and the list
of users that are following his activity. From these two lists Yoshi excludes
the users that were not members of the currently analysed repository.
Applying the same preprocessing operations for all repository members,
the result is a Map<User, Integer> representing a mapping between
users and their number of team-followers. Cohesion is computed as the
community median of the composite measurements above.

For the sake of completeness, we elaborate on how Yoshi detects common
skills. In general, GitHub user profile attributes do not include their techni-
cal skills. In substitution, Yoshi uses the RepositoryService API class to
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Fig. 5 Yoshi high-level architecture.

retrieve the repositories to which a user has made contributions. Repository
entities include the main programming language attribute value which allows
us to compute a set of programming languages from the list of repositories. For
each repository, we obtain a map Map<Contributor, Set<String>> repre-
senting the mapping between repository members and a crude list of their
acquired technical skills. These values are used as a basis for determining fol-
lowers with common skills. Using this data for each repository member we
compute the list of projects to which they have contributed and determine the
number of projects to which members of the current project community have
collaborated. Finally, the WordFrequency class in Yoshi uses the content of
messages exchanged between community members including the commit mes-
sages and pull requests messages to determine the most frequently used words
and categorise them into skills using a taxonomy of software engineering skills
of our own design (Tamburri and Casale, 2017).

3.3 Yoshi—Architecture

Figure 5 shows a basic view of Yoshi’s software architecture using a basic
input-output control flow diagram (Bass et al., 1998). Yoshi has a modular
architecture arranged in three components.

First, an information retrieval component (bottom part of Fig. 5) is re-
sponsible for retrieving data with which Yoshi can perform its functions. The
component automates the retrieval of data from public repositories of projects
hosted on Github, using GET requests from GitHub Archive to obtain publicly
available data. The retrieval component extracts data from two data sources:
source code management systems and issue trackers. First, GitHub Archive
records the public GitHub timeline, archives it, and makes it easily accessi-
ble for further analysis; the archive dataset can be accessed via Google Big-
Query. This data is used to compute attributes’ values related to the software



Table 2 Characteristics of the Software Projects Considered in the Study, as extracted
from GitHub on April 2017 - Domain Taxonomy tailored from literature.

Name # Rel. # Commits # Members # Language #KLOC Domain

Netty 164 8,123 258 JavaScript 438 Software Tools
Android 3 132 14 Java 382 Library
Arduino 74 6,516 210 C 192 Rapid prototyping
Bootstrap 55 2,067 389 JavaScript 378 Web libraries and fw.
Boto 86 7,111 495 Python 56 Web libraries and fw.
Bundler 251 8,464 549 Java 112 Web libraries and fw.
Cloud9 97 9,485 64 ShellScript 293 Application software
Composer 35 7,363 629 PHP 254 Software Tools
Cucumber 8 566 15 Java 382 Software Tools
Ember-JS 129 5,151 407 JavaScript 272 Web libraries and fw.
Gollum 76 1,921 143 Gollum 182 App. fw.
Hammer 25 1,193 84 C# 199 Web libraries and fw.
BoilerPlate 12 469 48 PHP 266 Web libraries and fw.
Heroku 52 353 10 Ruby 292 Software Tools
Modernizr 27 2,392 220 JavaScript 382 Web libraries and fw.
Mongoid 253 6,223 317 Ruby 187 App. fw.
Monodroid 2 1,462 61 C# 391 App. fw.
PDF-JS 43 9,663 228 JavaScript 398 Web libraries and fw.
Scrapy 78 6,315 242 Python 287 App. fw.
Refinery 162 9,886 385 JavaScript 188 Software Tools
Salt 146 81,143 1,781 Python 278 Software Tools
Scikit-Learn 2 4,456 17 Python 344 App. and fw.
SimpleCV 5 2,625 69 Python 389 App. and fw.
Hawkthorne 116 5,537 62 Lua 211 Software Tools
SocketRocket 10 494 67 Obj-C 198 App. fw.

development process and study targeted open-source software development
communities.

Second, the processing component is responsible for evaluating metrics
using data available from the retrieval component and to enable commu-
nity detection (see Algorithm 1). The component uses: (a) Gephi—a Java li-
brary which provides useful and efficient network visualisation and exploration
techniques; (b) Google Geocoding API—used for converting the addresses of
repositories members into geographic coordinates, which is used to calculate
distances; (c) a direct way to access services via an HTTP request; (d) an
implementation of Algorithm 1.

Third, the visualisation component uses data computed by the processing
component to create graphical representations of community members’ geo-
graphical distribution. This component is able to export images and Comma-
Separated Values (CSV) files for the produced representations. Finally, the
current implementation of Yoshi also supports reporting of computed char-
acteristics, their composing metrics, their values and the resulting community
design patterns. Furthermore, Yoshi was designed in a modular, service-based
architecture, so as to be easily extended with third-party tools (e.g., sentiment
analysis (Novielli et al., 2014; Jongeling et al., 2017), natural-language pro-
cessing (Arnaoudova et al., 2015)).

4 Evaluation

4.1 Study Design

The goal of the study is to evaluate the ability of Yoshi to discriminate the
different community types in open source, with the purpose of understanding



to what extent the proposed method can be adopted to analyse the social rela-
tionships occurring among the developers of a software system. To achieve this
goal, we explore two main research questions aimed at (i) evaluating the accu-
racy of the measurements provided by Yoshi and (ii) evaluating the potential
usefulness of the tool in practice:

– RQ1. Does Yoshi correctly measure the community aspects characterising
different software communities?

– RQ2. Does Yoshi provide a correct indication of the community structure
of a software system?

The context of the study consists of 25 open source software communities
coming from the GitHub repository, sampled according to guidelines from the
state of the art (Falessi et al., 2017) and refining our results using best-practice
sampling criteria (Kalliamvakou et al., 2016). Table 2 reports the character-
istics of the subject projects12 in terms of (i) their size measured as number
of public releases issued and number of commits performed over their history,
(ii) number of contributors who committed at least once to the repository, and
(iii) their application domain according to the taxonomy proposed by Borges
et al. (2016). To select this dataset, we first ranked the GitHub projects based
on number of commits, to control for project activity; in this respect, a fixed
boundary of no less than 100 commits was adopted. Then, projects were fil-
tered based on number of members (at least 10) and number of LOCs (at
least 50k): in this way, we allowed the selection of non-trivial communities
that have to deal with large codebases. Moreover, we also based our selection
on diversity: in cases where two projects had the same scope, we randomly
excluded one of them in order to pick a population that was as different as
possible (note that the domain might still be the same, as it refers to the
general objective of a certain project (Borges et al., 2016)). Finally, we have
manually inspected the selected projects and made sure that all of them are
real projects (rather than student projects, assignments, etc.), as suggested
by recent work (Munaiah et al., 2017). The specific query employed for the
selection of the subject projects was done on April 2017 and can be found in
our on-line appendix (Tamburri et al., 2017).

To answer our first research question, we evaluated whether the metrics
computed by our approach actually represent valid community measurements:
indeed, a necessary condition to provide automated support for community
steering and governance is that Yoshi delivers reliable insights into key com-
munity characteristics and type. To this aim, it is necessary and sufficient that
the metrics coded within Yoshi satisfy the representation condition (Fenton,
1991), given that the decision-tree algorithm within YOSHI only represents
a partial-order function among said community characteristics identified by
the metrics. According to Fenton (1991), the representation condition for a
metric holds “if and only if a measurement mapping maps the entities into

12 Characteristics extracted on April 2017



numbers, and empirical relations into numerical relations in such a way that
the empirical relations are preserved by the numerical relations”. This means
that, for instance, paraphrasing from Fenton (1991): “if we have an intuitive
understanding that A is taller than B, then also the measurement mapping
M must give that M(A) > M (B). The other way around, if M(A) > M (B)
then it must be that A is intuitively understood to be taller than B”. In our
work, we ran Yoshi on the subject systems in our dataset and then, for each
metric computed by the approach, we evaluated the representation condition
using the guidelines provided by Fenton (1991).

In order to answer RQ2, we conducted a validation aimed at verifying
the quality of the community structure extracted by Yoshi. As explained in
Section 3.2.1, this is the main characteristic that leads to the identification
of a community type, and its validation provides insights into the meaning-
fulness of the operations performed by our tool (di Nitto et al., 2013). To
evaluate this aspect, we firstly extracted the information about the actual
community structure of the communities considered. As ground truth we ex-
ploited the OpenHub community13, which reports data about different aspects
of software communities, including a community structure modularity indica-
tor comprised in the set {LOW,MEDIUM,HIGH}. It is worth noting that
such data is not computed automatically but rather manually retrieved by the
owners of OpenHub without the usage of proxy metrics, as directly reported
in the OpenHub blog (Sands, 2018) as well as previous literature in the field
(Che lkowski et al., 2016; Druskat, 2016). While we cannot speculate on how
the owners of OpenHub manually classify communities based on their commu-
nity structure, it is important to note that this data is constantly validated by
the community around the platform, thus allowing us to be confident about
its actual validity.

In the second place, we compared the social interactions detected by Yoshi
with the ones identified by a null-model (Cohen, 1988), i.e., a network which
matches the original network in some of its topological features, but which does
not display community structure. Using this strategy, we were able to verify
whether the graph built by Yoshi actually displays a community structure
or whether it is no better than a randomly created graph. More specifically,
in our context we compared our approach with the null-model proposed by
Newman and Girvan (2004), i.e., a randomized version of the original graph,
where edges are rewired at random, under the constraint that the expected
degree of each vertex matches the degree of the vertex in the original graph.
The comparison was made in terms of modularity coefficients (Newman, 2006),
i.e., an indicator that measures how well a network can be divided into clearly
defined subsets of nodes. The higher the value of the metric the higher the
community structure is supposed to be. Similarly, the lower the value, the
lower the estimated community structure.

It is important to note that to adequately compare the modularity struc-
ture output by both Yoshi and the null model with the actual community

13 https://www.openhub.net/



structure of a certain community, we needed to transform the numeric indexes
in a nominal scale comprised in the set {LOW,MEDIUM,HIGH}. To this
aim, we followed the guidelines by Newman (2006): the community structure
is low when modularity < 0.30, medium when 0.30 ≤ modularity < 0.41, and
high when modularity ≥ 0.41.Thus, if the modularity coefficient estimated
by one (or both) of the experimented approaches is in accordance with the
actual community structure modularity, then the approach correctly provides
the indication.

To statistically verify the results, we applied the paired Mann-Whitney
test (Conover, 1998) comparing the distribution of the modularity coefficients
computed by our approach with the ones computed by a randomly created one
over the 25 considered systems. This is a non-parametric test used to evaluate
the null hypothesis stating that it is equally likely that a randomly selected
value from one sample will be less than or greater than a randomly selected
value from a second sample. The results are intended as statistically significant
at α = 0.05. Note that in this case we relied on the numeric modularity
values because we were interested in evaluating whether the indexed outputs by
Yoshi were statistically different from those extracted by the random model.

While the analysis of how Yoshi performs when compared with a null
model might provide insightful hints on the value of the information extracted
by the proposed approach, it is also important to note that such information
should effectively assist the members of a certain community. In other words,
the fact that Yoshi provides better information than a random model does
not directly imply that it is actually useful for community members. Thus,
we needed an additional validation that was designed to gather opinions on
the quality of the information provided by Yoshi from the members of the
considered communities.

To this aim, we contacted the developers of the 25 open source communities
considered: we limited our analyses to those developers having the highest
number of commits (i.e., the most active ones), as they might have a more
comprehensive knowledge of the development activities within the community
and, therefore, a better overview of the underlying community structure that
allow us to gather authoritative responses. On the contrary, we filtered out
developers having a low number of commits and that are likely not so much
involved in the community. Therefore, we contacted via e-mail the developers
having a number of commits higher than the third quartile of all commits
performed on each of the considered systems, i.e., those contributing the most
to each repository, and we asked them to comment about the community
structure that was in place in the specific time period analyzed in our paper:
to ease the task, we provided them with a spreadsheet containing three tabs:
(i) the first reporting detailed information on the commits performed on the
repository; (ii) the second with the developers taking part in the development
process in the considered time window, and (iii) the list of all communications
between developers during the time period. In this way, the developers could
better remember the project status in the period, and provide us with more
careful observations of the community structure taking place in that period.



To further ease the task, we allowed developers to give us open answers, i.e., we
did not provide them with fixed check-boxes reporting the possible community
structures. We decided to go for this solution as developers might be not aware
of the formal definition of the underlying community structure of their project.

When analyzing the developers’ answers, we proceeded with a manual
match of their opinions to the automatic community structure assigned by
Yoshi to the community a certain developer corresponded to. To avoid any
kind of confirmation bias, we recruited two independent external developers
having more than 5 years of programming experience (from now on, we refer to
them as the inspectors) and asked them to independently perform such a map-
ping. Specifically, we provided the two inspectors with the developers’ answers
and a list composed of the community types extractable using Yoshi. The task
was to analyze each answer and tag it with one or more community types. For
instance, if a developer replied by saying that “in the considered time period,
all communications passed from the mediation of one member, who had the role
of disseminating it to other developers”, the inspectors mapped this answer to
the definition of formal community. This process required approximately 1.5
hours. At the end, we first computed the inter-rater agreement between the
two inspectors using the Krippendorffs alpha Krα (Krippendorff, 2004). Agree-
ment measures to 0.90, considerably higher than the 0.80 standard reference
score for Krα (Antoine et al., 2014) . In cases of disagreement, the inspectors
opened a discussion in order to find a joint solution. In the second place, we
verified how many times Yoshi was able to properly identify the community
structure perceived by the developers of the considered project.

It is worth remarking that all the data and scripts used to evaluate Yoshi
are publicly available in the form of a replication package in our on-line ap-
pendix (Tamburri et al., 2017).

4.2 Study Results

Before discussing the results for the two research questions formulated in the
previous section, Table 3 reports for each system in the dataset the associated
community types as inferred by Yoshi. All the projects exhibit characteristics
attributable to more than one community type. Interestingly, about 60% of
the communities have been typified as formal groups (FG) or formal networks
(FN). This contrasts our expectation that open source projects are generally
considered poorly formal, because of the contributions originating from volun-
teers. Yet, this evidence suggests to confirm theories reporting that a formal
organisation is often needed to coordinate the activities among developers of
a projects (Kraut and Streeter, 1995; Elkins and Keller, 2003). This finding is
also confirmed by anecdotal evidence we found around several of the commu-
nities in our sample. For instance, the Netty project provides a formal guide14

newcomers have to follow to be considered part of the community, thus estab-
lishing a formal structure and specific rules that community members must

14 https://netty.io/community.html



Table 3 Community types inferred by Yoshi for the considered software projects. As ex-
plained in Section 3, more community types can be associated to a single project.

Project Community Type(s)

Netty IC, FN, FG
Android IC, FN, FG
Arduino IC, FN, FG
Bootstrap IN, NOP
Boto IC, IN
Bundler NOP, FG
Cloud9 IC, FN, FG
Composer IC, FN, FG
Cucumber IN, IC, NOP
Ember-JS FN, FG, WG
Gollum IC, FN, FG
Hammer IN, NOP
BoilerPlate IN,NOP
Heroku NOP, IN, FG
Modernizr IN, NOP, WG
Mongoid FN, FG, WG
Monodroid IC, IN, FG
PDF-JS IN, NOP
Scrapy FN, FG, WG
RefineryCMS FG, WG
Salt FN, FG, WG
Scikit-Learn NOP, IN, FG
SimpleCV IC, NOP, IN, FG
Hawkthorne IC, IN, FG
SocketRocket NOP, IN, FG

adhere to. More in line with the typical notion associated with open-source
communities is the evident presence of Networks of Practice (around 40% of
our sample) followed by working-groups, which, by their tightly-knit nature,
are associated with collocated communities such as Modernizr (a tight com-
munity project with devoted maintainers: https://modernizr.com/).

4.2.1 Does Yoshi correctly measure the community aspects characterising
different software communities?

The first step in establishing if a metric provides a correct value is the satis-
faction of its representation condition (Fenton, 1991). Essentially, the repre-
sentation condition states that a valid metric must prove that the observed
empirical relation between the measured attributes is preserved by their associ-
ated numerical relations. To provide an objective validation for Yoshi metrics
we analysed them individually, evaluating whether their representation condi-
tion hold by means of our own visual inspection. In particular, for each metric
considered by Yoshi we performed the following steps:

1. We compute the values of the metric m for two communities Ci and Cj in
our dataset;

2. If m(Ci) > m(Cj), then we verified that the metric value computed on the
community Ci was actually higher than the metric value computed on Cj .

In this paper, we focus on showing the evaluation of the representation
condition of the Geodispersion, Engagement and Formality metrics. The proofs
for remaining metrics refer to literature, that is, Longevity and Cohesion are
well-established social-networks analysis metrics (Egghe and Rousseau, 2003;
Tikhonov, 2016; Kozdoba and Mannor, 2015).
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Figure 10: Bootstrap community members geographical distribution

Figure 9: Dotcloud community members geographical distribution

Fig. 6 A geodistribution map for Twitter Bootstrap, the representation condition holds.

Geodispersion. Let us consider that the members of the community C1 are
more dispersed (e.g., according to manual visual inspection) than the members
of the community C2 if the average geo-dispersion across all the members of
C1 is higher than the geo-dispersion across the members of C2. Considering
the function average distance AD which maps average distances between com-
munity members, we can say that C1 is more dispersed than C2 if and only
if:

AD(C1) > AD(C2) (1)

where the average distance AD is computed as follows:

Let A be a member of the community, and let Ma be the average for ge-
ographical and cultural distances between A and the rest of the community
members. The distance between two members is defined by the spherical dis-
tance between the geographical coordinates of the two users, determined using
the same measuring unit, i.e., kilometers. Similarly, the cultural distance can
be obtained following the Hofstede metrics (Hofstede et al., 2010). This op-
eration is then applied for each member of the community, obtaining a set
M = {Ma,Mb, ...,Mi, ...,Mn} composed of the average geographical and cul-
tural distances between each member i and the rest of the community. Thus,
the average distance AD between community members is given by the average
of the Mi ∈M .

For sake of clarity, let’s consider a practical case where the geo-dispersion
of Twitter bootstrap15 and dotcloud16 are compared. As reported on-line on
the websites of projects, we know that (a) Twitter bootstrap has contribu-
tors from all over the world; (b) dotcloud has contributors that are mostly
grouped around the company offices in California (USA). Figures 6 and 7
present the actual geographical distribution of members collaborating on the

15 https://github.com/twbs/bootstrap
16 https://github.com/dotcloud/gitosis-on-dotcloud
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Figure 10: Bootstrap community members geographical distribution

Figure 9: Dotcloud community members geographical distribution

Fig. 7 A geodistribution map for Dotcloud.

Twitter bootstrap and dotcloud projects, respectively, as evaluated by Yoshi.
The red circles represent the location of community members17.

From a visual inspection, it is clear that the representation condition of
the metric holds. From a numerical one, the geo-dispersion among the Twit-
ter bootstrap community members computed by Yoshi is 6,221, while the
one of dotcloud community members is 380. Based on the data computed by
the application we visually confirmed that AD(bootstrap) >> AD(dotcloud),
which means that members of the Twitter bootstrap community are more dis-
persed than the members of the dotcloud project. Thus, we conclude that the
representation condition for the Geodispersion metric is proven.

Engagement. For the ENG property, consider, for the sake of simplicity,
that community C1 displays a higher degree of member engagement than
community C2 if the number of project subscriptions (i.e., item 5 from the
enumeration in 3.2.4, but any other item may have been used just as well) made
by the members of C1 is higher than the number of project subscriptions within
community C2. Considering the function number of project subscriptions (PS),
we can say that C1 has a higher degree of member engagement if PS(C1) >
PS(C2).

To evaluate the representation condition for engagement, it is sufficient
to prove that the mechanism which Yoshi uses to determine PS is consis-
tent, meaning that it determines a higher PS if the actual PS is effectively
higher. Yoshi determines the list of projects-watch subscriptions using the
specific GitHub API made for it and uses it to compute the number of project
subscriptions. As an example, consider Arduino and Hammer-js projects.

Inspecting visually the project-watch number for both, the numbers for
the Hammer-js project is 5438 while the number for Arduino is 2071. An

17 edges representing connections between users are not included in this figure, but a
connection graph is available as part of the structural analysis



analysis provided by Yoshi uses the same numbers and therefore would yield
the same result. Note that the remaining points 1 to 7 in the enumeration at
Sec. 3.2.4 are added in means, which mathematically does not alter in any way
the representation condition for the metric in question.

Formality. Formality is determined as the mean membership type in GitHub
(+1 for contributors and +2 for collaborators) divided by the milestones per
project-lifetime ratio. More formally, ā

ML
, where ā is the mean membership

type in GitHub and ML is the milestones per project-lifetime ratio (i.e., the
amounts of dates of the total project lifetime which are considered as mile-
stone delivery dates or releases). This quantity increases at the increase of
both metric quantities involved (which are both always positive and always
different than 0, or the project would have no reason to exist). For the sake of
simplicity we focus on showing that, by increasing ā for a certain project C1
which is higher than another project C2, the quantity reflected by the equa-
tion above is proportionally higher. For example, consider that interactions
between the members of community Android are more formal than the inter-
actions between the members of community Cloud9 (we know this because
of the strict collaboration and participation guidelines behind Android); this
means that their relative value ā must reflect as follows: C1 > C2. According
to Yoshi measurements, Android community members collaborate at 0.65
formality and the equivalent value for the Cloud9 project members is 0.43.
Applying a similar analysis to the rest of our dataset, we observed that more
formal projects include core developers (i.e., collaborators) in projects that
are hosted by the organization in which they are actively involved, meaning
that they dedicate to that project no less than 20% of their working-hours. For
example, core developers that contribute to the Pdf-js project (and that are
in fact Mozilla employees) — this further reinforces the more formal nature of
such communities.

Summary. Stemming from the above demonstrations, we can answer our re-
search question in a positive manner since the community characteristic mea-
surement coded in Yoshi are correctly measured by the proposed approach.

Summary of RQ1. The representation condition is valid for all
the metrics computed by Yoshi. Therefore, the proposed approach
correctly measures the different organisational aspects character-
ising a software community.

4.2.2 Does Yoshi provide a meaningful view of the community structure of a
software system?

Table 4 reports for each project (i) the actual value for its community struc-
ture, and (ii) the modularity coefficients achieved by Yoshi and by the ran-
domly created null models over the 25 considered systems. As it is possible to



Table 4 Modularity Coefficients achieved by the Experimented Approaches - indexes refer
to April 2017.

Project Actual Community Structure Yoshi Null Model

Android LOW 0.27 (low) 0.44 (high)
Arduino LOW 0.25 (low) 0.33 (medium)
BoilerPlate MEDIUM 0.31 (medium) 0.13 (low)
Bootstrap LOW 0.23 (low) 0.28 (low)
Boto LOW 0.28 (low) 0.29 (low)
Bundler MEDIUM 0.34 (medium) 0.31 (medium)
Cloud9 MEDIUM 0.35 (medium) 0.23 (low)
Composer HIGH 0.42 (high) 0.25 (low)
Cucumber MEDIUM 0.37 (medium) 0.33 (medium)
Ember-JS MEDIUM 0.38 (medium) 0.15 (low)
Gollum HIGH 0.44 (high) 0.21 (low)
Hammer MEDIUM 0.37 (medium) 0.26 (low)
Heroku HIGH 0.49 (high) 0.37 (medium)
Modernizr HIGH 0.42 (high) 0.19 (low)
Mongoid MEDIUM 0.33 (medium) 0.24 (low)
Monodroid HIGH 0.45 (high) 0.22 (low)
Netty LOW 0.24 (low) 0.46 (high)
PDF-JS MEDIUM 0.31 (medium) 0.33 (medium)
RefineryCMS MEDIUM 0.39 (medium) 0.19 (low)
Salt HIGH 0.43 (high) 0.21 (low)
Scikit-Learn HIGH 0.44 (high) 0.18 (low)
Scrapy HIGH 0.45 (high) 0.15 (low)
SimpleCV MEDIUM 0.36 (medium) 0.31 (medium)
SocketRocket HIGH 0.48 (high) 0.21 (low)
Hawkthorne HIGH 0.42 (high) 0.25 (low)

see, in 100% the cases the nominal value associated to the coefficients com-
puted by our approach are in accord to the actual community structure: this
means that Yoshi provided correct indications over all the 25 subject systems.
On the other hand, the baseline adequately estimated the modularity of the
structure only in six cases, thus being often not able to provide meaningful
results. As a consequence, we can claim that our approach not only can poten-
tially accurately assists in understanding the structure of a community, but it
is also able to perform better than the baseline. This result is also supported
by the statistical tests. Indeed, when comparing the two distributions using
the Mann-Whitney paired test, we found that the differences are statistically
significant (ρ < 0.001); moreover, the magnitude of such differences is large
(δ=0.74), according to the results achieved when running the Cliff’s δ effect
size test (Romano et al., 2006).

Interesting is the case of the Scrapy community, which has a high modu-
larity as indicated by the OpenHub data. Yoshi is able to provide a correct
indication, since the coefficient computed is equal to 0.45, while the baseline
estimates the modularity of the community structure as low. Looking more in
depth into the characteristics of this project, we found that this is the one in
our dataset having the higher level of interaction among the members, and this
is clearly visible looking at the number of pull requests of the project (1,472,



of which 154 are still open), and the number of average comments per pull re-
quest (5.4). In this case, the detection pattern used by Yoshi is quite effective
in the identification of the structure, since it mainly relies on the information
captured by pull requests. Conversely, the randomly created baseline wrongly
approximated the relationship between the members of the community, thus
providing an unreliable result.

The lower modularity coefficient (0.23) was assigned by Yoshi to the Boot-
strap community. Manually investigating this case, we found evidence of the
low structure behind this project. For instance, of the 389 contributors in-
volved in it only a small subset of them heavily participate in the activities of
the community. Indeed, there are only five core committers. Moreover, in most
of the cases (i) pull requests are reviewed and commented by these five devel-
opers and (ii) discussions about bugs and improvements on the issue tracker
only involve them. As a result, our approach correctly marked this community
as having a low structure, being able to provide an accurate indication.

The results for the other projects are consistent with the mentioned cases.
As a consequence, we can claim that the measures applied by our approach can
be potentially effective when employed to understand the underlying structure
of the community. As explained before, to further verify this claim we directly
involved the most active members of the considered communities, asking them
to verify the information provided by our approach. Overall, we obtained 36
answers (1.44 answers per project) out of the 95 invitations sent: therefore,
the response rate was 38%, that is almost twice than what has been achieved
by previous papers (e.g., (Palomba et al., 2015, 2017; Vasilescu et al., 2015b)).
The response rate was likely pretty satisfactory because of the methodology
used to contact developers (direct e-mails): indeed, as done in previous work
(Silva et al., 2016), this strategy is generally a good one to obtain quick and
effective answers from developers.

Looking at the actual results, we found that 92% of the times there was a
correspondence between the Yoshi output and what reported by developers,
meaning that 33 community members fully agreed with the output community
structure given by our approach. We believe that this result further reinforces
the quantitative findings: indeed, not only is Yoshi able to mine developers’
communication and coordination information to discover the corresponding
community structure, but it also provides data that reflects the developers’
perception of the community. An interesting example regards the RefineryCMS
project, where a developer reported:

“We were dislocated across several countries and for a long while we had
communication issues because of that. As a solution, we then decided
to start being more selective when accepting members in the community
and all the communications passed through our mailing list. This had
some benefits, and indeed from that moment we were able to do things
in a more cohesive and natural manner.”

This answer clearly refers to the definitions of Formal Networks and Work-
groups, as it indicates the presence of both member selection strategies and



formal communications—which are typical of FN—but also some degree of
cohesiveness between team members, that highlights the presence of a work-
group. In the cases where the developers’ answers were not in line with the
output of Yoshi, we discovered that it was due to false positive cases in which
a Formal Network was interpreted as a Formal Group. Nevertheless, also in
those cases we can argue that our approach successfully identified the formality
of the communities, thus potentially providing good hints.

Summary of RQ2. In 100% of the cases Yoshi correctly es-
timated the modularity of the community structures analysed.
Moreover, Yoshi ’s results are much more accurate than the ex-
perimented baseline and, more importantly, 92% of the develop-
ers confirmed the correctness of the output presented. Thus, we
conclude that our approach can factually support the activities of
project managers in the understanding of the community structure
behind a software project.

5 Discussion and Further Insights

The results of our research questions highlight some relevant findings, as they
showed how the proposed automated solution is able to properly identify and
characterise community design patterns in open source. Besides that, we also
found that the members of the considered communities actually agree with
the output of Yoshi: this is, likely, one of the most important outcomes of our
analyses. Indeed, it seems that developers can exploit our approach to moni-
tor and gather information about the status of the community, thus possibly
taking informed decisions on how to improve communications and/or coordi-
nations as well as reasoning on how a certain community structure influences
external qualities of the developed project.

To reinforce our claims, in this section we discuss a key use case scenario,
namely how Yoshi can help practitioners when assessing the health status of
a community. In particular, we computed four repository-related metrics for
the 25 communities considered in the study. They include (i) the mean num-
ber of commits per month, (ii) the mean number of contributors per month,
(iii) the number of stars, and (iv) the number and forks the repository has
on Github. It is important to note that these metrics were defined by Crow-
ston and Howison (2006) and Jansen (2014b) as meaningful indicators of the
health of open source software ecosystems. For this reason, we were interested
in understanding if the community patterns proposed by Yoshi can somehow
indicate a more or less healthy condition of the repository, thus allowing com-
munity shepherds to monitor how healthy the underlying community is and
plan preventive actions, where needed. Of course, it is important to note that
all the observations made in this section may be a reflection of other factors,
i.e., the health status of a community can be not only (or not at all) influenced
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Fig. 8 Violin Plots reporting the repository health metrics for each community type inferred
by Yoshi

by the presence of a certain community pattern. Nevertheless, our goal is to
simply outline some potential scenarios where the use of Yoshi can assist
practitioners when taking decisions on how to evolve the community.

We graphically report these further analyses by means of violin plots
(Hintze and Nelson, 1998) depicting the health metrics distributions for each
community pattern inferred by Yoshi. Besides showing how the data is dis-
tributed, this graphical representation also shows the probability density of
the data at different values allowing a more detailed overview of the differ-
ences among the different community types taken into account. In addition to
the analysis of the metrics computed on the exploited dataset, we also pro-
vide practical examples aimed at explaining in which situations the usage of
Yoshi can provide benefits within a software community. As our tool identi-
fied more than one community type for each considered project, an analysis of
the community types in isolation would not have provided insights due to the
high overlap between the data points. For this reason, we decided to analyse
the behavior of the four most frequent patterns (i.e., co-occurring community
types) coming from Table 3, i.e., {IC, FN,FG} (6 projects), {FN,FG,WG}
(4 projects), {IN,NOP} (4 projects), and {NOP, IN, FG} (3 projects).

Figure 8 reports the results of these additional analyses. In the first place,
we found relevant differences in terms of both number of commits and con-



tributors per month among the frequently co-occurring community types. In
particular, the results revealed that communities having a strong level of for-
mality (typified by Yoshi as both FN and FG) have lower turnover (i.e., a
constant number of contributors). This result somehow confirms the media-
tory governance role of formal participatory guidelines typical of that com-
munity type (Antunes et al., 1995). An interesting case regards the Arduino
project: it was typified by Yoshi as a mixture of formal network, formal group
and informal communities. Such characteristics allow the project to be more
continuous in terms of both contributors and commits, as reported in Fig-
ure 8. However, looking deeply into such community through the last-month
statistics—reported by the Openhub repository18—we discovered that the cur-
rent situation reports that the number of commits is going to decrease while
the number of team members is increasing: this might mean that the intro-
duction of new members within the community might change the nature of
socio-technical relationships among the team members, possibly leading to a
new community type in the near future. Nevertheless, such a change within
a community is something that a community shepherd might desire or not,
even because different community design patterns might be associated with
some negative manifestations or lead to different characteristics: for instance,
as reported in Figure 8 a change towards an informal community might de-
crease the overall contributors continuity and increasing the number of forks
of the project. To account and manage such compromises, a tool like the one
proposed in this paper can be adopted by community shepherds during their
decision making process.

At the same time, the usage of Yoshi can be useful for community shep-
herds to take decisions with respect to their own or their community’s organ-
isational reference. For example, consider a situation in which a certain com-
munity is undergoing organisational distress (e.g., after adopting new tools
for their own community work or changing process model); in this scenario,
community shepherds need to make decisions aimed at reorganizing the overall
structure of the community. In the same scenario, Yoshi acts as a community
monitoring system and can be used in such a circumstance to understand what
are the characteristics of an external community that the community shepherd
wants to replicate in its own context. For instance, the Salt project19—typified
by our tool as a mixture of formal group, formal network, and working group—
has a high contributor continuity and is well-known to be successfully used by
several other open- and closed-source organizations. Thus, it might represent
the example-to-follow for another community whose shepherd might try to
transplant community-related characteristics in her own context. In this case,
Yoshi might provide this community shepherd with useful information aimed
at replicating some external practices in her community.

When considering the remaining two repository health metrics, i.e., num-
ber of stars and forks achieved by the repository, the violin plots in Fig. 8

18 https://www.openhub.net/p/arduino
19 http://www.saltproject.org



revealed important, almost specular differences due to the different nature of
the community types. On the one hand, the relatively low number of stargaz-
ers and forkers of formal groups may be connected to their rather closed and
static organisational structure, an established negative pattern typical of for-
mal organisations (Zhu et al., 2012). Known mitigations for that pattern re-
flect simplified organisations, with increased outreach activities (e.g., increased
participation to mentoring forums such as StackOverflow or YCombinator).
Interestingly, on the other hand we also found that the number of stars and
forks scores are higher for informal and open, highly diverse and geographically
distributed types such as Informal Networks and Networks of Practice. This
empirically confirms the conjecture by Crowston and Howison (2006) that in-
formality is a key health target for open-source, since it is in fact informality
which drives the engagement and popularity of open-source communities to
success and organisational sustainability—this very same observation, how-
ever, is in contrast to the evident community types discovered by Yoshi (see
Tab. 3). This suggests that developers, forges, and community platforms such
as GitHub should be further supported in achieving and maintaining healthy
values of informality across their communities—Yoshi can serve as a basis
toolkit to diagnose this condition and aid in its resolution.

In conclusion, we argue that the usage of Yoshi can aid in understanding
and shepherding the key characteristics of open source communities such as
contributor-continuity and popularity.

6 Tool Limitations and Threats to Validity

In this section we discuss the main limitations of the tool proposed, as well as
the factors that might have influenced the findings achieved in our case study.

6.1 Tool Limitations

Although a relevant contribution in its own accord, YOSHI shows many limi-
tations that inhibit its effectiveness and usability.

For Yoshi’s ability to provide computer-assisted governance support to
open-source communities, our first concern is generalisability. In our analysis
we presented an evaluation of 25 projects consisting of popular open-source
software projects hosted on Github. Based on this limited scope, our results
might not easily generalise to other domains (e.g., closed-source). Second, our
analysis relies on the validity of metrics detection and thresholds values iden-
tification provided in previous work (di Nitto et al., 2013), hence suffering
from potential construct validity (Wohlin et al., 2000). Third, finally, in its
current version Yoshi is limited to establishing the presence of 8 our of 13
possible community types from organizations and social networks research lit-
erature (Tamburri et al., 2013a). Although these types were found (di Nitto
et al., 2013) to be the most compatible with open-source organisational forms,



this poses a limitation since Yoshi is not able to ascertain the presence of
observed types while discriminating the presence of the remaining five types.
This means that Yoshi is only partially effective in types that intermix char-
acteristics from unsupported communities - we recognise this implementation
problem as the major technical limitation of the tool and are working to ad-
dress the limitation for its next version.

For Yoshi’s ability to support researchers in finding correlations analysing
open-source communities, Yoshi currently relies solely on Github’s publicly
available data sources, including its own issue-tracking system. Some projects
(especially closed-source ones) use a different issue tracking system such as Jira
or Bugzilla and we should add support for collecting data from more sources
of data. Finally, it might become necessary to extend the framework such that
it can be accessed by a web browser. This feature would allow: (1) users to
define their own sets of projects that they want to analyse further; (2) add
support for more complex visualisation features.

Moreover, as we mentioned, Yoshi is currently limited to supporting the
detection of 9 out of 13 possible community types emerging in open-source.
Although in previous work (di Nitto et al., 2013) we showed that the commu-
nity types implemented by Yoshi are the most recurrent in open-source, but
this does not mean that other features do not play a role. For example, Yoshi
does not allow measurement of artefacts and/or software architecture visibility
(intended as the ability for people to quickly retrieve information about com-
munity artefacts) in open-source. Conversely, the Apache Software Foundation
fosters the creation of strong and fully engaged communities wherefore the or-
ganisational visibility and tracking mechanisms need to be made clear and are
controlled monthly by a specific ASF authority and tracked via compiled and
templated reports (Severance, 2012). Similarly, there is a wealth of organisa-
tional and socio-technical characteristics from the state of the art in organ-
isations research and social-networks analysis (e.g., community de-coupling,
reciprocity levels, etc.) that Yoshi cannot currently take into account and an
equal number of interesting principles (the organisational self-similarity prin-
ciple and the consequent institutional isomorphism (Lai et al., 2006)) to be
further explored. We are currently in the process of operationalising these fea-
tures for further empirical assessment in the scope of software engineering, to
determine their mediating role, if any.

In addition, Yoshi is also limited to reusing empirical thresholds evaluated
in previous ethnomethodological research. However, the thresholds in question
may be biased too much against the same community in which they were
observed. Also, several studies indicate that the very use of clear-cut thresholds
may not be as straightforward as we assume, at least for some of the dimensions
we consider, e.g., geographical distance (Prikladnicki, 2012). While we are
indeed considering replicating the 15-month study that led to the definition of
the thresholds, we found it impossible with our current means. Nevertheless, we
are aware of the limitations and threats to validity of that previous study and
of reusing thresholds. Consequently, we chose to: (a) design the tool to make
the thresholds application and evaluation very highly-modularised into the



Yoshi architecture such that substituting thresholds and detection patterns
is a non-invasive improvement to Yoshi ’s capabilities; (b) release a fully-
fledged replication package to call for, and encourage replication of our work.

Finally, detection and identification of community types is itself still a mat-
ter of research in organisations and social networks literature. On one hand,
we researched, evaluated, and replicated the evaluation of our detection Al-
gorithm 1 multiple industrial organisations in previous research (Tamburri
et al., 2015, 2016). Our experimentation in the scope of this article revealed
also that there are types which are most common in open-source. For exam-
ple, we noticed that Yoshi did not reveal any presence of Project-Teams nor
Communities of Practice across our sample—this could either indicate an un-
controlled variable in our random sampling strategy or a specific flavour of
communities which are more common in open-source. In either case, more re-
search is in order to further investigate this circumstance. Furthermore, there
are other community structure approaches that may be used for community
detection, e.g., those proposed by Lancichinetti et al. (2008) or Medus et al.
(2005). Other approaches are focused more on using graph- and motif-analysis
over organisational networks and we cannot be certain that our own commu-
nity typing approach is “better” than others. Further research is needed into
the community analyses in Yoshi , possibly through mixed-methods research
(Di Penta and Tamburri, 2017) triangulated with industrial studies.

6.2 Industry vs. Open-Source, insights from Yoshi

Reflecting on Yoshi design and features, as well as the decision-tree imple-
mented in its core, we also operated a comparison of previous research results
with respect to Yoshi ’s findings in the scope of this article. More in particu-
lar, in our previous work (Tamburri et al., 2013b) we conjectured that software
teams exhibit latent social community types that need uncovering to under-
stand vital socio-technical community characteristics. In the same work, we
confirmed, using the decision-tree at the root of Yoshi detection algorithm,
the complex organisational and social structure nature by means of qualitative
analysis in a single, large industrial case-study of distributed software develop-
ment. Our industrial data analysis confirmed the presence of at least 3 types
(FN,CoP,IN) blended together, two of which were revealed to be in latent
conflict (FN and IN) by our own analysis. Our conclusions where that: (a)
latent community types did play a role for better software and different types
reflected different activity latency in our case-study object, i.e., different de-
velopment, issue-solving, or task-allocation times; (b) organisational changes
such as agile adoption changes the type of communities.

In the scope of the present article, Yoshi allowed us to clearly observe
quantitative confirmation of finding (a) while also providing a basis for further
confirming finding (b).

With respect to finding (a), Yoshi reveals several insights, such as that
formal community design patterns seem to show higher expectancy of life



while retaining the advantage of “trust”—these features could be a valuable
asset especially for “liability of foreignness” organisational barriers, i.e., the
inability of a company to enter a localised and closed market (Zimmermann,
2008). Companies experiencing liability may enter or participate into trusted
open-source communities rather than directly entering those closed markets.
This issue is frequent and heavily impactful in software offshoring exercises
such as the one we studied in our previous industrial work (Tamburri et al.,
2013b).

With respect to finding (b), Yoshi has not been applied in instances where-
fore open-source communities forcibly changed their structures, e.g., as part
of community forking. This not withstanding, Yoshi does in fact provide the
means to study phenomena such as community forks to further understand and
characterise their complex organisational and socio-technical nature—this line
of inquiry is currently under planning and is part of our future work.

6.3 Threats to Validity

The study conducted when evaluating Yoshi might have been influenced by
a number of factors.

Threats to construct validity. As for factors threatening the relation
between theory and observation, in our context they are mainly concerned
with the measurements we performed. Above all, the metrics on which the
proposed approach relies, i.e., community structure, geodispersion, longevity,
engagement, formality, and cohesion, were validated with respect to their rep-
resentation conditions (RQ1). Moreover, we further evaluated the community
structure in terms of modularity coefficient (RQ2), comparing the results of
Yoshi with the ones of a baseline approach and supporting the findings with
appropriate statistical tests. Conversely, one of our operationalisations does
indeed suffer heavily from this threat, namely the way we measure levels of
informality across communities. On one hand, in organisations research infor-
mality is not the opposite of formality (Tamburri et al., 2013a). On the other
hand, for the sake of its operationalisation, Yoshi actually assumes this to
be the case and measures informality as {1 - formality}; although this oper-
ationalisation does offer values which are indicative of informality levels, it
cannot currently match the actual definition from literature, which indicates
more the degree of openness, reciprocity, and un-mediated interaction across
the community (Fuks et al., 2005). Furthermore, because Yoshi focuses on the
collaboration structure existing across developers and on typing its informal-
ity, the tool currently ignores comments, their structure, contents, and possible
contribution towards informality—this is currently a known limitation of the
tool and must be further understood and addressed in future work. Further
research must be invested to refine these measurements to achieve further pre-
cision. For example, further understanding the tone, contents, and structure
of comments exerted by software developers and operators during their work



might reveal ways in which formality can be identified and mediated more
precisely.

Threats to conclusion validity. A first threat in this category is related
to the ground truth exploited in the context of RQ2: in this case, it is im-
portant to note that the OpenHub repository contains validated datasets. For
this reason, we are confident about the validity of the data exploited and used
to validate the modularity coefficients achieved by Yoshi and by the baseline
approach. Nevertheless, we cannot exclude imprecisions; an in-depth analysis
on the quality of the data coming from OpenHub would be desirable and part
of our future research agenda.

Moreover, to further verify the conclusions we contacted developers of
the analyzed communities and asked them to comment about the community
structure that was in place in the specific time period analyzed in our paper. To
gather authoritative responses, for each project we only contacted developers
having a number of commits higher than the third quartile of the distribu-
tion of all the commits in the repository. To reach a higher response rate, we
kept the survey short; therefore, we did not ask any question to developers
other than those required to verify the community structure of the considered
projects. For this reason, we do not have data on the participants professional
experience, role, etc. However, this does not represent a threat to our results:
indeed, our goal was to verify that the community structure given by Yoshi
was in line with the structure assigned by developers that actively worked for
the considered projects. As such, the only requirement needed to be part of
our study was the actual active participation to the project, independently
from other factors like, for instance, the overall programming experience of
the participants. By nature, our selection process guarantees the involvement
of people that can be considered expert of the projects analyzed and that can
actually provide authoritative opinions on the community structure of their
projects. As part of the discussion, we computed well-known repository health
metrics previously studied in literature (Crowston and Howison, 2006; Jansen,
2014b), thus focusing only on measures actually able to provide an established
overview of the status of a given repository.

Threats to external validity. The main issue concerned with the gen-
eralization of the results is the number of software communities analyzed in
the study. While a set of 25 systems is not a statistically significant sample
of the most active projects present in Github, it is important to remark that
the main goal of our paper was to evaluate Yoshi and not that of study-
ing properties of open-source systems on an ultra-large scale. Furthermore,
the size of the dataset allowed us to study the involved projects closely, thus
providing finer observations on the performance of our approach. For this rea-
son, we believe that the dataset can be considered large enough for answering
our research questions. Nevertheless, to make our findings as generalizable as
possible we took into account a variety of communities having different char-
acteristics, scope, size, and coming from different application domains. The set
of key-attributes that are frequently associated with open-source communities



and the attributes measuring the project quality can be further extended and
applied on a larger number of projects for a better understanding of the rela-
tionship among software communities, their practices and the characteristics
related to community types. We plan to extend our investigation on a larger
set of communities.

7 Related Work

There are several works related to Yoshi, mainly residing in the general areas
of open-source community governance studies and computer-aided open-source
management. In this section, we overview relevant previous papers in these
fields.

7.1 Governance and Community Aspects in Open-Source

First and foremost, works that strive to understanding and steering the specific
coordination and governance models adopted in an open-source project are
highly related to the proposed one. This is critical both for developers to assess
whether to contribute or not to the project and for final users of the resulting
application, since trust in the community can vary strongly according to the
governance mechanism underlying the development. Garzarelli and Galoppini
(2003) identified three main categories of projects:20

– Corporate projects, entirely developed within a single company and then
released as open-source.

– Voluntary projects, which are supported by volunteers only, offering
their efforts and resources without being remunerated.

– Hybrid projects, jointly developed by volunteers and employers working
for the company which runs the project itself.

An example of voluntary project is represented by Debian21, a completely free
operating system launched in 1993 by Ian Murdock. One of the most relevant
characteristics of the organization model adopted by the Debian community
consists in the adoption of the Debian Social Contract, a document listing the
moral rules and the values at the basis of the project itself. The coordination
mechanisms in place within the project are defined within another formal
document, the Debian Constitution22. The governance structure is hierarchical
and includes different roles, such as the Project Leader, annually elected by
developers, the Technical Committee, mainly responsible for technical issues
or problems related to overlapping responsibilities, and developers, managing
the packages they are in charge of (Garzarelli and Galoppini, 2003).

20 A similar categorisation has been proposed by Robles et al. (2009).
21 http://www.debian.org
22 http://www.debian.org/devel/constitution.en.html



Code of conducts in open source have been also the object of the study
by Tourani et al. (2017), who investigated role, scope and influence of codes
of conduct in practice. Key findings of their work report that thousands of
projects rely on code of conducts to manage the behavior of project’s mem-
bers and avoid unfriendly environments, and they use to stipulate contracts
targeting all collaboration spaces of the community, trying to fix strict rules
for collaborators.

Coelho and Valente (2017) investigated the causes behind the failure of
modern software systems. The described a set of nine reasons, and interestingly
five of them were related to team- or environment-related issues. For instance,
a notable amount of them failed because of conflicts between the contributors.

With respect to these papers, it is important to remark that Yoshi does
not directly identify governance models, specific coordination requirements,
or code of conducts, but it captures a snapshot of open-source communities’
current organisational and social layout by analysing their key characteristics.
Appropriate governance models should be selected after (or evaluated with)
the results achieved by Yoshi, and can be adopted to monitor how the overall
community is evolving and whether the specific pattern is follows might create
conflicts or coordination problems that potentially lead to more serious issues.

Even considering similar communities, it is still possible to identify differ-
ences in the governance practices they follow. Prattico (2012) has considered
six communities supported by active open source foundations: Apache, Eclipse,
GNOME, Plone, Python and SPI. Using computer-aided text analysis of each
foundation’s bylaws, Prattico noted that, although each foundation adopted
different terms, it was possible to identify three common main power centers:
the members of the community, the board of directors and the chairman of the
community. For example, the chairman of the community can be named by the
board of directors, as in the Eclipse foundation, or elected by the members, as
in the Debian project. The board of directors is composed of people elected
by the members. The board takes decisions about the piece of software it is in
charge of. Also, different communities showed a different distribution of power.
For example, in the Eclipse Software Foundation power is mostly managed by
the chairman, while in the Apache Software Foundation the board of directors
and the members exert the most power, with an inclination towards the board
of directors. Given the above works, it becomes critical for software engineering
theory and practice to learn as much as possible from open-source communities
and their ways of coping with GSD (Global Software Development).

Also in this case, Yoshi does not directly uncover best-practices concerning
community aspects in open-source but it does allow further reasoning such that
best practices can be developed with additional study.

Similar works have been done by Onoue et al. (2014, 2016), who studied
the population structures of open source systems: in particular, they first de-
fined a method for predicting the survival of open source community members
within a software project, and then investigated the pyramidal roles present in
such projects. With respect to these works, our paper can be seen as comple-
mentary, as it proposes an approach to compute community-related metrics



and understand what is the underlying structure of community, so that prac-
titioners can take informed decisions on how to evolve it.

7.2 Computer-Supported Cooperative Work in Open-Source

Usually, communication within a distributed team, either open-source or closed-
source, is supported by forges typically including mailing lists and Web-based
tools like forums and wikis. Contributions are shared by means of Concurrent
Versions Systems (CVSs) or Distributed Version Control Systems (DVCSs),
like Subversion or Git, which provide versioning features, allowing to easily
check or revert someone else’s contributions. Moreover, tracking systems are
used by the community itself and by external users to report bugs or other
problems and to ask for the development of new features.

Several studies have been dedicated to identifying social and technical bar-
riers for newcomers’ participation in Open Source (Steinmacher et al., 2015;
Mendez et al., 2018; Ford et al., 2016; Balali et al., 2018; Vasilescu et al.,
2015a). Going beyond identification of the barriers, some tools are explicitly
aimed at tackling one or more technical barriers often related to communica-
tion, e.g., by allowing practitioners to talk with remote colleagues in an easy
and informal way. For example, the Jazz project, sponsored by IBM, added
instant messaging features to the Eclipse Platform, together with other tools
that show which files are currently being edited by whom (Cheng et al., 2003).
Also, a number of tools focus on supporting activities such as distributed prob-
lem analysis, requirements elicitation and activity planning. For example, the
tool MasePlanner is an Eclipse plug-in with features for simple agile planning
in distributed contexts. Users can create story cards shown in a common vir-
tual workspace. Cards can be organised and modified by project members to
plan their activities.

Other tools aim at improving awareness by extracting information from
forges. For example, tools proposed by the Libresoft group mine data extracted
from code repositories, malinglists, discussions and tracking systems (Robles
et al., 2011). The SeCold portal adopts mining techniques to build a shared
knowledge base about several open-source projects, including explicit facts
like code content and statements, as well as implicit data, such as the adopted
license and the number of clones produced from a project (Keivanloo et al.,
2012). In similar studies, mining techniques are used to extract patterns to
represent and improve the decision process adopted in software development.

Finally, the ALERT23 project uses ontologies to increase awareness by
gathering and linking related information obtained from the different tools
adopted by the community, including structured and unstructured sources
(Stojanovic et al., 2011). ALERT is intended to use this information to build
personalised, real-time and context-aware notifications, to detect duplicate bug
reports and assigning bugs reports to be solved.

23 http://www.alert-project.eu



To the best of our knowledge, there is no computer-assisted tool support
for identifying and measuring the community, social and organisational aspects
behind open-source communities. Yet, studying these aspects is essential for
capturing organisational and social best-practices from the widely discussed
and studied open-source phenomenon.

8 Conclusions and Future Work

This paper introduces Yoshi, a tool for the automated organisational struc-
ture pattern detection across open-source communities. Yoshi gathers infor-
mation about open-source communities and projects and executes necessary
preprocessing operations to obtain information about community characteris-
tics. Finally, Yoshi uses community characteristics found to infer a pattern of
open-source community structures. Yoshi stores and reports results and offers
a modular design, ready for further extension and analysis. The rest of this
section recaps conclusions and future work beyond the scope of this article.

8.1 Lessons Learned

While testing Yoshi on 25 projects from GitHub, we observed that:

1. Yoshi allows the reliable prediction of community structure pat-
terns using software engineering data. The experiment conducted to
verify the accuracy of the tool revealed that it offers a valid set of met-
rics which satisfy the basic representation condition as defined in literature
(Fenton, 1991). Furthermore, Yoshi provides an accurate information with
respect to the community structure according to our null-model analysis.

2. Yoshi can be used to monitor and manage social debt within
open-source communities. The design pattern output by the proposed
tool can be used by practitioners to control the quality status of social
and organisational relationships among developers of a community: indeed,
each community type has its own peculiarities and might reflect the pres-
ence of specific social debt items (Tamburri et al., 2015; Magnoni et al.,
2017) within the community.

3. Yoshi can be used to steer repository popularity by comparison.
Our analyses revealed that informal groups and networks tend to have a
higher number of stargazers and forkers, thus having a higher likelihood to
be reused by other projects. As a consequence, the pattern detection facility
provided by the tool can be exploited to monitor the repository status and
plan specific preventive actions aimed at increasing its reuse-proneness.

From the above features we can conclude that Yoshi : (a) allows reuse of
type-specific community steering and adaptation best practices from literature;
(b) yields deeper understanding of open-source communities’ organisational
and socio-technical nature; (c) offers a valuable basis for diagnosing open-
source community structures and design patterns thereof.



8.2 Future Work and Outlook: Forming the Software Community Shepherd

Our prototyping and experimentation with Yoshi showed us that while sites
like Bitergia and OpenHub may provide vital insights into open-source com-
munities they do little to elicit and measure key community design pattern
performances. Conversely, the community shepherd is a persona whose goal
aims at: (a) measurably understanding the organisational structure require-
ments behind software, to encourage sustainability; (b) applying models, tech-
niques, and approaches from organisations research to measurably improve the
open-source community structure, to encourage continuous improvement; (c)
making the organisational structure characteristics more transparent, open,
and measurable to encourage further research.

Further experimentation is needed along the above research path. In that
respect, Yoshi offers ample opportunity for improvement and further work.
For example, Yoshi can be extended to include techniques such as more elab-
orate data-mining or sentiment analysis (Novielli et al., 2014). This refines
Yoshi even further in supporting governance and management across open-
source communities.

In addition, Yoshi may be combined with tools that detect the technical
qualities of open-source communities with the aim of eliciting and evaluating
a full-fledged community quality model complementing well-known software
product quality models (Ferenc et al., 2014)—we started researching along
this path (Magnoni et al., 2017) but we concluded that we barely scratched
the surface of a vast array of possibilities that require further research.

Moreover, further experimentation is needed to establish which patterns
elicited by Yoshi actually correspond to which community smells and in which
technical conditions. This analysis may reveal open-source organisational pat-
terns which are best fitting with specific domains, or products.

Finally, Yoshi should be extended to cope with closed-source organiza-
tions as well. This extension entails an additional set of metrics to be devised
to integrate remaining community patterns from Tamburri et al. (2013b,a).
Also, this extension calls for an additional round of validation in closed-source
software projects. In the future we plan to address the tool’s technical limita-
tions, while providing more ample empirical evaluation, possibly over multiple
software forges other than GitHub.
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