
Preserving Inter-gene Relations During Test Case Generation
using Intelligent Evolutionary Operators

Dimitri Michel Stallenberg
d.m.stallenberg@student.tudelft.nl
Delft University of Technology

The Netherlands

Mitchell Olsthoorn
m.j.g.olsthoorn@tudelft.nl

Delft University of Technology
The Netherlands

Annibale Panichella
a.panichella@tudelft.nl

Delft University of Technology
The Netherlands

ABSTRACT
Randomized variational operators can be very disruptive to the
search process, especially when there exist dependencies between
the variables under search. Within test-cases, these dependencies
exist as well. This makes it interesting to evaluate the benefits of
preserving these dependencies during test-case generation.

In this paper, we propose two variants of the Many-Objective
Sorting Algorithm (MOSA). The first of which is based on Agglom-
erative Clustering, ACMOSA. The second is a Gene-pool Optimal
Mixing based variant, GOMOSA. ACMOSA and GOMOSA model
the inter-gene dependencies and use that model to intelligently
perform crossover while preserving key building blocks within
individuals. These novel techniques are evaluated in an empirical
study and compared to MOSA and the Many Independent Objec-
tive algorithm (MIO). This study is composed of several benchmark
RESTful APIs for which the algorithms generate test-cases.

The results of the empirical study show that, for 40% of the tested
APIs, the novel techniques provide a significant benefit time-wise.
For another 40% of the APIs, they perform equally well, and for 20%
of the APIs under evaluation they performed worse.

KEYWORDS
Intelligent Evolutionary Operators, Search-based Software Engi-
neering, Test Case Generation

1 INTRODUCTION
Manually writing test-cases can be a labor-intensive process. Ex-
tensive research is done to automate the process of generating
test-cases. Evolutionary Algorithms (EAs) are often used to accom-
plish this goal. However, for large industry-scale applications with
millions of lines of code, the process of automatically generating
test-cases using EAs can still be slow and require a large amount
of computational power. Additionally, the quality of the generated
test-cases is often non-ideal as simple unit-level tests are often
less meaning-full than system-level tests which represent a more
realistic user interaction.

EAs rely on randomized mutation and crossover operators to
generate and evolve solutions (chromosomes) for a given problem.
In nature, this is not the case since chromosomes are recombined
such that certain patterns in the chromosome that are essential
to a species remain intact, i.e. certain genes of the chromosomes
do not function properly without certain other genes. According
to the building block hypothesis, the same inter-gene relations ex-
ist in computational problems [8]. Thus the usage of randomized
variation operators can be extremely disruptive to the search pro-
cess. More intelligent variation operators could guide the search
for an optimal solution by preserving the inter-gene relationships.

However, identifying such relationships can be very challenging
for large datasets with many unknown variables.

Various researchers have addressed the disruptiveness of ran-
domized variation operators. For example, Smith and Fogarty found
that it can be beneficial to use self-adapting mutation rates that slow
the mutation rate down when close to a solution [12]. By doing so
there is a higher chance of preserving important building blocks.
Other researchers used a more complex approach, e.g. Dioşan and
Oltean used Genetic Programming to evolve better crossover op-
erators [7]. However, these solutions lead to semi-static operators
which still use randomness as their main guide. More intelligent so-
lutions exist. According to Kim et al. the aforementioned inter-gene
dependencies in nature can be modeled by a Bayesian Network
(BN) [9]. This approach can also be used for artificial genes in com-
putational problems. To find the appropriate network a Machine
Learning (ML) approach can be effective. For example, Orphanou
et al. proposed that the Gene-pool Optimal Mixing Evolutionary
Algorithm (GOMEA) can be used effectively to model a BN [10].

The previously mentioned GOMEA method has been proven
to be very effective in finding a proper BN for the benchmark
problems mentioned by Orphanou et al. [10]. However, in these
benchmark problems, the dependencies between some variables
are obvious in the sense that they are strongly correlated. In real-
world problems, this might not be the case. The method should
be evaluated for practical problems, e.g. by modeling inter-gene
relations in solutions of EAs.

This article focuses on identifying the inter-gene relations in
generated test-cases. The test case will be generated by EvoMaster, a
tool which uses EAs to generate system-level test-cases for RESTful
API’s [1]. The research questions for this article read:

• What is the impact of intelligent evolutionary operators on
EvoMaster?
• How does this impact translate to EvoMaster’s performance in
covering test targets?

In this research, EvoMaster is extended with a model-based
crossover operator that uses ML techniques to extract a model
from a population of solutions. The first ML technique that will be
evaluated uses Agglomerative Clustering (AC) to extract the afore-
mentioned building blocks from the population. These building
blocks can then be used during crossover. The second ML tech-
nique is somewhat more complex and uses GOMEA coupled with
AC to find a BN representing the inter-gene relations. The BN is
then translated to the building blocks. The GOMEA technique is
based on the work of Orphanou et al. [10]. Both techniques will
be evaluated by comparing the effectiveness of EvoMaster in gen-
erating code coverage for RESTful APIs and the efficiency of this
process in terms of the used time.

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering

Dimitri Michel Stallenberg, Mitchell Olsthoorn, and Annibale Panichella

2 BACKGROUND
For this study, EvoMaster will be used as the baseline tool for gen-
erating test-cases. EvoMaster will be modified to support the novel
techniques proposed in this article. Both of these techniques will
be evaluated on white-box problems, which means that they will
have access to the number of covered targets among other statistics.
To evaluate the techniques several benchmark RESTful APIs have
been used. Namely, NCS, SCS, Features-service, Scout-API, and
Proxyprint-kitchen. These APIs are part of the EvoMaster Bench-
mark project. The techniques will be evaluated on the number of
targets they can cover in a certain amount of time and/or genera-
tions.

At the time of writing this article EvoMaster provides two al-
gorithms. The first algorithm is the Many Independent Objective
(MIO) Algorithm proposed by Arcuri [2]. The second algorithm is a
variant of the Many-Objective Sorting Algorithm (MOSA) proposed
by Panichella et al. [11]. Both of these algorithms are specifically
designed for test-suite generation. To properly evaluated and com-
pare the novel techniques ACMOSA and GOMOSA, the results of
the MIO and MOSA are also reported. These results will answer
whether preserving inter-gene relations is useful in search during
test-case generation. Finally, due to the increase in time complexity
the intelligent crossover causes, the novel techniques could turn out
to be less effective than the original MOSA technique depending
on the size of the RESTful API in terms of possible HTTP requests.

Crossover. It must be noted that the variant of MOSA implemented
in the EvoMaster tool does not use the crossover operation. This
variant of MOSA differs from the original algorithm proposed by
Panichella et al. and will be referred to as VMOSA. However, to be
able to properly evaluate the effectiveness of model-based varia-
tional operators, the original MOSA with One-Point crossover has
been added to EvoMaster. As this study revolves around building
block preservation, One-Point crossover is a logical choice as it is
often used in schema (building block) oriented EAs. Finally, it is
suspected that crossover has been removed from the algorithms in
EvoMaster due to the disruptive consequences it has on searching
for test-cases.

Gene Types. Solutions within the search algorithms of EvoMaster
contain two types of genes. These genes describe what the final
test-case will be like. The first type is the action gene which dictates
the structure and order of steps in the test-case. For example, for
RESTful API testing the action genes contain the HTTP requests
that are available according to the provided swagger API docu-
mentation, e.g. "POST /authentication". The second type of gene
is the input gene which form the inputs for the HTTP requests,
e.g. the username and password. Because string-based input genes
have way more variability than action genes, we suspect that action
genes are more likely to be dependent on each other. For example,
one API might have 20 possible actions of which 1 requires an input
of length 10. This means that there are 2610 possible input genes
(assuming alphabetic inputs only) compared to only 20 possible
action genes. So even for this simplistic example, the difference
in gene possibilities is staggering making it much more likely to
find inter-gene relations between action genes than between input

genes. For this reason, the focus of this research will be on the
action genes.

Model-based Evolutionary Algorithms (MBEAs). Traditional EAs
mostly use fixed heuristic rules for their crossover, mutation, and
selection operators. These fixed rules limit the EAs in their capa-
bility to exploit partial solutions, also known as building blocks.
MBEAs solve this problem by learning which parts of a solution are
optimal. For example, as mentioned in the introduction, Optimal
Mixing EAs like GOMEA are able to efficiently learn which parts
of the solutions are important building blocks.

One of the most studied types of MBEAs are the Estimation of
Distribution Algorithms (EDAs). EDAs try to find which parts of
solutions are important by estimating the distributions of partial
solutions. Moreover, EDAs are not very different from traditional
EAs in the sense that they only differ in their crossover andmutation
operators, which are replaced by ML models. Similarly to EDAs, the
techniques proposed in this paper also use ML to create a model
of the building blocks that fits the distribution of partial solutions
most accurately. However, in this study the model is only used by
the crossover operator, this choice was made to have a more focused
evaluation. However, for future research, it could be interesting to
also investigate the effectiveness of the proposed techniques on
the mutation operator. Additional information on MBEAs and their
variants can be found in a survey by Cheng et al. [5].

3 APPROACH
In this work, the effectiveness of preserving inter-gene dependency
structures is evaluated in a practical setting. To do this we present
two novel techniques. These techniques build upon MOSA. While
MOSA has been proven to be very effective in generating test-cases,
it does not address the disruptiveness of the variational operators.
To improve the MOSA algorithm we will extract a building block
model from a subset of the current population. This subset consists
of the first two Pareto fronts, which are sets of non-dominated
solutions i.e. a solution within one front does not dominate any
of the other solutions in that front. Finally, the extracted building
blockmodel will describe the inter-gene relations and is used during
crossover to reduce its disruptiveness. The pseudocode for these
operations is presented in Algorithm 1. The two novel techniques
are equal in usage and only differ in how they learn the model.
It must be noted that the algorithms do not always use crossover.
Instead, there is a certain probability of doing crossover.

The first technique will be called Agglomerative Clustering
MOSA (ACMOSA). ACMOSA performs clustering based on a sim-
ilarity matrix that describes the similarities between parts of the
genes of individuals in the population. These similarities can indi-
cate dependencies between those genes which means they form a
building block.

The second technique is called Gene-pool Optimal MixingMOSA
(GOMOSA) which uses the GOMEA algorithm described by Or-
phanou et al. to find the structure of a BN that represents the
inter-gene relations [10]. The GOMEA algorithm uses Agglomer-
ative Clustering internally to calculate a linkage tree for Optimal
Mixing. The most optimal BN is then converted to building blocks.

Preserving Inter-gene Relations During Test Case Generation using Intelligent Evolutionary Operators

Algorithm 1: ACMOSA/GOMOSA
input :
𝑃 = {𝑝1, ..., 𝑝𝑚} the population
output :
A test suite 𝑇
begin

𝑡 ←− 0
𝑃𝑡 ←−RANDOM-POPULATION(𝑀)
while 𝑛𝑜𝑡 (𝑠𝑒𝑎𝑟𝑐ℎ_𝑏𝑢𝑑𝑔𝑒𝑡_𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑) do

if 𝑡 modulo 𝑟𝑒𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 0 then
model←−EXTRACT-MODEL(𝑃𝑡)

𝑃𝑡+1 ←− ∅
while |𝑃𝑡+1 | ≤ 𝑀 do

𝑆𝑡 ←− FILTER(𝑃𝑡)
𝑝𝑎 ←− TOURNAMENT-SELECT(𝑆𝑡)
𝑝𝑏 ←− TOURNAMENT-SELECT(𝑆𝑡)
𝑐ℎ𝑖𝑙𝑑 ←− 𝑝𝑎

if 𝑟𝑎𝑛𝑑𝑜𝑚 < 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟_𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 then
𝑐ℎ𝑖𝑙𝑑 ←−MODEL-CROSSOVER(𝑝𝑎 , 𝑝𝑏 ,
model)

𝑃𝑡+1.append(𝑐ℎ𝑖𝑙𝑑)
𝑚𝑢𝑡𝑎𝑛𝑡 ←−MUTATE(𝑐ℎ𝑖𝑙𝑑)
𝑃𝑡+1.append(𝑚𝑢𝑡𝑎𝑛𝑡)

𝐹 ←− PREFERENCE-SORTING(𝑃𝑡+1)
𝑃𝑡+1 ←− SELECT-USING-FRONTS(𝐹)
archive←− UPDATE-ARCHIVE(𝑃)
𝑡 ←− 𝑡 + 1

𝑇 ←− archive

3.1 Learning Inter-gene Dependency Structures
To learn dependencies between parts of test-cases several algo-
rithms and techniques had to implemented in EvoMaster.

3.1.1 Agglomerative Hierarchical Clustering (AC). The AC algo-
rithm is a clustering algorithm used to learn dependencies between
variables. It is for example used by the Linkage Tree Genetic Algo-
rithm to learn the linkage tree from the population [13]. ACMOSA
uses AC in a very similar manner. The AC algorithm clusters vari-
ables together based on similar value expressions within data. This
means that AC calculates a similarity matrix of all variables in terms
of value expression and then uses that matrix to cluster genes to-
gether which are most similar, i.e. the variable groups with the
highest correlation. By repeating the clustering process the algo-
rithm eventually ends up with a single cluster containing all the
variables. This final cluster is the root of a Linkage Tree, the leaves
of the tree are the single variable clusters. However, the most inter-
esting clusters are the internal nodes of the tree, i.e. clusters with
1 < 𝑠 < 𝑚 where 𝑠 is the size of the cluster and𝑚 the total amount
of variables.

3.1.2 Bayesian Networks (BN). BNs have been proven to give ex-
cellent insights into the relationship between variables. In this
research, BNs are used by the GOMOSA technique to model the de-
pendencies between parts of test-cases. To learn the structure of the

BN, several methods can be applied. GOMOSA uses the Genepool
Optimal Mixing Evolutionary Algorithm (GOMEA) to find the BN.
As shown by Orphanou et al. GOMEA can be very effective in
learning the structure of a BN [10].

3.1.3 Fitting criteria. First of all, it is important to understand that
there are 2 different search processes at work when using the GO-
MOSA technique, the main search process which is the original
MOSA implementation, and the model fitting process which is the
GOMEA technique. These 2 processes use completely different fit-
ness functions as they optimize different types of problems. The
fitness function used by MOSA evaluates a test-case by the num-
ber of targets it can cover. However, GOMEA does not search for
test-cases, instead it searches for a BN that explains the relations
between parts of test-cases. In other words, the BN needs to be
evaluated on howwell it explains the population of test-cases. To do
this evaluation the Bayesian Dirichlet equivalent uniform (BDeu)
scoring function will be used, which is shown in Equation 1 [4].
The BDeu scoring function computes the posterior probability of
the data given a model. In our case, the data is equal to a population
of test-cases.

𝐵𝐷𝑒𝑢 (𝐵,𝑇) =
𝑛∑
𝑖=1

𝑞𝑖∑
𝑗=1

(
𝑙𝑜𝑔

(
Γ(1𝑞𝑖)

Γ(𝑁𝑖 𝑗 + 1
𝑞𝑖
)

)
+

𝑟𝑖∑
𝑘=1

𝑙𝑜𝑔

(
Γ(𝑁𝑖 𝑗𝑘 + 1

𝑟𝑖𝑞𝑖
)

Γ(1
𝑟𝑖𝑞𝑖
)

))
(1)

where:
• 𝑛 is the number of variables.
• 𝑞𝑖 is the number of parent configurations of variable 𝑖 .
• 𝑟𝑖 is the number of values the 𝑖-th variable can be.
• 𝑁𝑖 𝑗 is the number of instances in the data where the parent
variables of the 𝑖-th variable take their 𝑗-th configuration.
• 𝑁𝑖 𝑗𝑘 is the number of instances in the data where the parent
variables of the 𝑖-th variable take their 𝑗-th configuration
and the 𝑖-th variable takes its 𝑘-th value.
• Γ() is the gamma function [3].

3.1.4 Repair operator. The structure of a BN represents a Directed
Acyclic Graph (DAG) which means that variables cannot have cyclic
dependencies in the model. Using GOMEA or other EAs to find the
structure does not give any assurance that the resulting graph is
acyclic. To solve this each path in the graph is iterated over while
keeping track of the visited nodes. If for a certain path an already
visited node is found again, then the connection to that node is
removed to make the path acyclic. This operation is performed on
each new solution before it is evaluated.

3.1.5 Parents. A limitation of the BDeu scoring method is that
𝑞𝑖 grows exponentially with the number of parents, e.g. if every
variable can take 2 values then for each parent of variable 𝑖 , 𝑞𝑖
doubles. In other words, if variables are allowed to have many
parents the BDeu scoring function becomes infeasible to compute.
To solve this problem the amount of parents per variable is curbed
by randomly removing parents until the given thresh-hold is met.
Additionally, curbing the number of parents reduces the maximum
complexity of the graphs. For this research, themaximum amount of
parents has been set to 2. This value was chosen because EvoMaster
seems to mostly generate tests with only one action when running
VMOSA. Meaning that actions are not very likely to have many

Dimitri Michel Stallenberg, Mitchell Olsthoorn, and Annibale Panichella

0

3 4

1

6 7

2

5

8

{0, 3, 1, 4}, {2},
{8, 5}, {7, 6}

Figure 1: BN to Building Block conversion

dependencies. However, in future research, it would be interesting
to explore different values.

3.1.6 Building Blocks. After learning the BN structure from the
population it is converted to a building block model that is usable by
the crossover operator. The conversion puts variables that depend
on each other in the same block, as can be seen in Figure 1. In this
case, the numbers in the building blocks represent the indices of
actions that are dependent on each other.

3.1.7 Selection. To find a model for the inter-gene dependencies
a population of solutions is used. However, the choice of this pop-
ulation has a major impact on the accuracy of the model. Several
methods have been tried, e.g. filtering the population based on the
length of test-cases or using the elitist archive. Taking the first two
Pareto fronts of the current population up being the most effective
method. This conclusion is based on the number of targets covered
by the algorithm within a certain timeframe.

3.1.8 Overhead. Computing the model turns out to be a very time-
consuming process, especially for the GOMOSA technique. Recom-
puting the model every generation makes GOMOSA perform the
worst of all techniques. Recomputing once every so many genera-
tions did improve the performance time-wise. However, by doing
so the model becomes outdated for several generations making
the model less accurate. So there is a trade-off between having
an up-to-date model and dedicating the least amount of time to
recalculating the model. If the model stays outdated for too many
generations it will no longer provide a benefit. If the model is up-
dated every generation a lot of time will be lost which results in
lower achieved coverage. This trade-off heavily depends on the
size of the API. Smaller APIs can recalculate the model more often
since fewer possible actions result in faster model calculation. This
is the case because the Agglomerative Clustering Algorithm per-
formed by both ACMOSA and GOMOSA grows quadratically with
the number of possible actions.

3.1.9 Encoding. The techniques used to extract a dependencymodel
from data require the data to be of a fixed size. To accomplish fixed-
size data the solutions in the population need to be encoded. There
are multiple ways to do the encoding, some more difficult than
others. For this research, the solutions were encoded by the pres-
ence of the possible action genes. This means that for each of the 𝑘
solutions in the population a vector will be created of size𝑚 where
𝑚 is the total amount of possible actions. If a solution contains the
𝑖-th action, with 0 < 𝑖 < 𝑚, then the 𝑖-th position in the vector will

be a 1, otherwise a 0. This way we can measure whether certain
actions appear together often (positive correlation), or that actions
never occur together (negative correlation). While this method of
encoding is fairly simple and works well it causes the data to lose
the positional information of the actions, i.e. a certain request may
appear in front of another request but never behind it. Future re-
search could investigate whether different encoding techniques
without information loss benefit the effectiveness of the proposed
techniques.

3.2 Building Block based Crossover
One-point crossover can be easily modified to use the building
block model. Similar to One-point crossover, the child of the two
parents will be a copy of the first parent with parts of the second
parent. However, instead of using a random crossover point, it
uses the indices of a random building block from the model to
crossover certain actions from the second parent. By using this
type of crossover the building blocks stay intact, thus reducing the
disruptiveness of the crossover operator. The pseudocode for this
type of crossover can be found in Algorithm 2.

Algorithm 2:MODEL-CROSSOVER
input :
𝑝𝑎 the first parent solution
𝑝𝑏 the second parent solution
model = {𝑏1, ..., 𝑏𝑛} the model containing building blocks
output :
A child solution 𝑐
begin

𝑏𝑟 ←− PICK-RANDOM(model)
𝑐 ←− COPY(𝑝𝑎)
for 𝑖 ∈ 𝑏𝑟 do

𝑐𝑖 ←− 𝑝𝑏𝑖

3.2.1 Filtering. After closer inspection of the search process of Evo-
Master, it has been noted that in its current state EvoMaster tends
to prefer solutions with a small number of actions over solutions
with more action genes. This preference results in a population
where most solutions contain a single action. This means that do-
ing crossover does not make sense as it would result in copying
one of the parents. To overcome this problem the population used
for crossover is filtered to make sure it only contains multi-action
solutions.

4 EVALUATION
The main goal of this article is to evaluate the effectiveness of using
inter-gene dependency structures, also known as building blocks,
during crossover in a practical setting such as test case generation.
In this section, the evaluations of the novel methods are described.
Several plots and tables are included. However, to keep a clear
overview within this section all plots are from the NCS benchmark
problem, all relevant plots of the other benchmark problems can be
found in the Appendix.

Preserving Inter-gene Relations During Test Case Generation using Intelligent Evolutionary Operators

Table 1: Benchmark problem size & parameter

Problem No. Actions Recalculation interval
ncs 6 4
scs 11 16
features-service 18 16
scout-api 49 64
proxyprint-kitchen 74 64

Table 2: Experimental setup system specifications

Part Info
CPU Intel Core i7-7700HQ 2.80GHz
RAM 16GB DDR4 2400MHz
OS Ubuntu 18.04

To evaluate the effectiveness of ACMOSA and GOMOSA, we
tested several benchmark RESTful APIs made available by the Evo-
Master benchmark project (EMB) [1]. These APIs are of varying
sizes to ensure that the results are not problem-specific. The chosen
benchmark APIs are:
• NCS: an artificial API
• SCS: an artificial API
• Features-service: a MicroService for managing products
Feature Models
• Scout-API: an API created by MIT
• Proxyprint-kitchen: a platform for printshops.

The size of the benchmark problem is defined by the number of
possible actions the API provides. The number of actions per API
can be found in Table 1 together with the recalculation interval that
was used for that benchmark problem. The values for the recalcula-
tion interval are based on the size of the API. For this evaluation
the embedded EvoMaster controllers of these APIs are used, these
controllers are supplied by the EMB project. The controllers pro-
vide EvoMaster with API documentation from which EvoMaster
extracts what HTTP requests can be made. Additionally, the con-
trollers allow EvoMaster to use a white-box approach by providing
an interface that retrieves the line and target coverage achieved by
certain test-cases, in contrast to the black-box approach where the
only feedback is the status code in the response of the API.

Specifications. All of the experiments of this research have been
conducted on the same system, namely a Dell Inspiron 15 laptop.
Additionally, all the experiments used a local connection to make
sure that internet latency does not impact the results. During the
experiments, other processes were kept to a minimum. In Table 2
the relevant specifications of the system can be found.

Results. Each algorithm ran 20 times for 300 seconds for each bench-
mark problem. Table 3 reports the average target coverage achieved
by VMOSA, MIO, MOSA, and the novel techniques ACMOSA and
GOMOSA. The table also reports the median target coverage and
the inter-quartile range (IQR) to give a sense of the spread of the
results. To measure the statistical significance of the difference be-
tween the results of the VMOSA baseline and the technique under
evaluation, the non-parametric Wilcoxon signed-rank test has been

60

70

80

0 100 200 300
Time (s)

Li
ne

Co
ve
ra
ge

ACMOSA
GOMOSA
MIO
MOSA
VMOSA

Figure 2: NCS: Average line coverage over time

used [6]. The 𝑝-values resulting from the Wilcoxon signed-rank
tests are reported in the table. Significant 𝑝-values, i.e. 𝑝 < 0.05
show that the results of the algorithm are unlikely to be sampled
from the same distribution. Finally, the Vargha-Delaney 𝐴12 statis-
tic is provided which describes the magnitude of difference between
the VMOSA baseline and the technique under evaluation [14].

The Wilcoxon test indicated that ACMOSA (Mdn = 617) and
GOMOSA (Mdn = 617) have a significantly higher amount of cov-
ered targets than the VMOSA baseline (Mdn = 609.5) for the NCS
benchmark, (𝑝 < 0.01). Both ACMOSA and GOMOSA have a large
effect size for the NCS problem. Although MIO (Mdn = 614) also
has a significantly higher target coverage (𝑝 < 0.02), ACMOSA
and GOMOSA perform slightly better for NCS. Meanwhile, MOSA
(Mdn = 611) performed roughly equal to the baseline. For the SCS
problem MIO (Mdn = 780.5) is the best performing algorithm while
both ACMOSA (731) and GOMOSA (Mdn = 746) are performing sig-
nificantly worse than the VMOSA baseline (Mdn = 763), (𝑝 < 0.01).
MOSA (Mdn = 709.5) also performed significantly worse than the
baseline (𝑝 < 0.01). The FEATURES benchmark seems to leave little
room for improvement as none of the algorithms did significantly
better than the baseline (Mdn = 394). ACMOSA (393) and GOMOSA
(Mdn = 394) performed mostly equal to the baseline while both
MIO (Mdn = 394) and MOSA (Mdn = 395) performed slightly better
but with a larger inter-quartile-range. The SCOUT API is another
example where ACMOSA (Mdn = 1578) and GOMOSA (Mdn =
1582) perform significantly better than the VMOSA baseline (Mdn
= 1544), (𝑝 < 0.01). Both also perform better than MIO (Mdn =
1496). However, for this benchmark, it seems that crossover in
general provides a significant benefit as MOSA (1583) performs
roughly equal to ACMOSA and GOMOSA (𝑝 < 0.01). Finally, for
the PROXYPRINT benchmark only MIO (Mdn = 1433) provided
a significantly higher coverage than the baseline (Mdn = 1197),
(𝑝 < 0.01). ACMOSA (Mdn = 1262), GOMOSA (Mdn = 1234), and
MOSA (1185) all performed roughly equal to the baseline without
significant differences in the distributions.

Dimitri Michel Stallenberg, Mitchell Olsthoorn, and Annibale Panichella

Table 3: Average target coverage after 20 runs of 300 seconds along with the median, the IQR, the 𝑝-values resulting from
the Wilcoxon test, and the Vargha-Delaney 𝐴12 value together with the Verbal effect size. All techniques except MIO were
compared against the VMOSA baseline without crossover.𝐴12 < 0.5means that VMOSA performs better while𝐴12 > 0.5means
that the algorithm under evaluation performs better. Significant differences compared to the baseline are marked in bold.

NCS average standard deviation median IQR 𝑝-value 𝐴12 Magnitude
VMOSA (baseline) 605.95 11.33 609.5 11.75 – – –
MIO 613.90 5.29 614 7.25 0.02 0.77 large
MOSA 609.95 8.02 611 11.75 0.47 0.60 small
ACMOSA 617.85 2.81 617 3.50 < 0.01 0.92 large
GOMOSA 617.50 2.40 617 3.00 < 0.01 0.91 large
SCS
VMOSA (baseline) 758.35 21.59 763 21.50 – – –
MIO 785.50 33.89 780.5 41.75 < 0.01 0.77 large
MOSA 710.95 33.78 709.5 52.50 < 0.01 0.10 large
ACMOSA 725.45 26.02 731 25.50 < 0.01 0.14 large
GOMOSA 737.30 29.47 746 41.75 0.02 0.28 medium
FEATURES
VMOSA (baseline) 393.82 3.83 394 2 – – –
MIO 409.82 33.09 394 11 0.1693 0.57 negligible
MOSA 396.06 5.31 395 7 0.2552 0.65 small
ACMOSA 393.35 2.79 393 3 0.6775 0.43 negligible
GOMOSA 394.35 2.06 394 3 0.8356 0.51 negligible
SCOUT
VMOSA (baseline) 1543.66 34.49 1544 37.50 – – –
MIO 1506.26 49.26 1496 60.50 0.12 0.31 medium
MOSA 1579.33 26.14 1583 29.00 < 0.01 0.87 large
ACMOSA 1584.53 37.61 1578 20.50 < 0.01 0.92 large
GOMOSA 1585.20 40.28 1582 17.00 < 0.01 0.90 large
PROXYPRINT
VMOSA (baseline) 1196.95 108.00 1197 164.50 – – –
MIO 1431.35 9.90 1433 17.50 < 0.01 1 large
MOSA 1185.30 134.83 1185 127.25 0.64 0.47 negligible
ACMOSA 1222.95 141.44 1262 216.25 0.57 0.56 negligible
GOMOSA 1193.30 139.38 1234 167.75 0.65 0.52 negligible

450

500

550

600

0 100 200 300
Time (s)

Co
ve
re
d
Ta

rg
et
s

ACMOSA
GOMOSA
MIO
MOSA
VMOSA

Figure 3: NCS: Average covered targets over time

Table 3 shows that the novel techniques perform differently for
each problem, for SCS they perform worse than the other tech-
niques, for FEATURES and PROXYPRINT they perform equally
good, and for NCS and SCOUT, ACMOSA and GOMOSA perform
significantly better. This discrepancy can be due to multiple factors.
For example, the size of the benchmark APIs has a major impact
on the speed at which the model can be calculated, which in turn
means that the novel techniques waste precious search time reduc-
ing the chance of covering new targets. Another, very important
factor, maybe even the most important factor is the dependence be-
tween parts of the API i.e. there can only be dependencies between
parts of test-cases if there are dependencies between parts of the
API. If for example an API has been written in such a way that the
HTTP request can never influence the outcome of another HTTP
request then the novel techniques logically do not provide any ben-
efit. Furthermore, there possibly is a maximum on the number of
targets that can be covered per API. This also seems to be the case
when looking at any of the figures that show the covered targets
over time. However, this maximum is not the actual maximum
necessarily as the number of covered lines is not 100% at the end of

Preserving Inter-gene Relations During Test Case Generation using Intelligent Evolutionary Operators

the 300 seconds. This becomes clear when comparing Figures 2 and
3. Anyhow, this maximum creates a boundary for all algorithms
which makes it more difficult for an algorithm to do significantly
better than others.

Another factor is that the algorithms in EvoMaster start their
search with a population that already has a high target coverage.
This is due to the sampling EvoMaster does based on the API docu-
mentation. In other words, the starting population of the algorithms
has such a high coverage that there isn’t much room for improve-
ment anymore, which again makes it more difficult for an algorithm
to do significantly better than other algorithms.

Finally, there is a large difference in the amount of time a test
evaluation costs between the benchmark problems. For example,
the proxy-print problem takes an average of 250 ms per test-case
evaluation, while the NCS problem only has an average of 2 ms
per test-case. Of course, this depends on the number of actions
within the test-case, however, it seems that PROXYPRINT is a lot
slower in handling the requests. Moreover, a more time-consuming
test evaluation means that fewer generations can be processed.
This becomes apparent when comparing the NCS benchmark to
the PROXYPRINT benchmark as the VMOSA baseline can process
around 1500 generations for the NCS benchmark while only pro-
cessing around 40 generations for the PROXYPRINT benchmark.
Doing fewer generations coupled with a large overhead due to the
size of the PROXYPRINT API could be the cause of ACMOSA and
GOMOSA performing less effective than on the NCS problem.

Especially the sampling makes it hard to compare the results of
the different algorithms. It would have been fairer to compare the
algorithms starting from nothing. The MIO algorithm in particular
uses the sampling a lot giving it a significant advantage for certain
benchmark problems. However, this paper focuses on the real-world
application of these algorithms so the most time-efficient algorithm
wins. Anyhow, as the newly proposed algorithms are for most
benchmark problems at least equal in terms of efficiency they still
are a beneficial contribution to the EvoMaster tool and can in some
cases provide a significant speedup.

From the flattening of the curve in Figure 3 it can be speculated
that there is a limit on themaximum amount of covered targets. This
maximum creates the issue that given sufficient time all algorithms
could reach this maximum. However, ACMOSA and GOMOSA
reach this maximum earlier in time. To properly compare these
results a boxplot of the covered targets after 100 seconds is supplied
in Figure 4. At this point, ACMOSA and GOMOSA seem to reach
the maximum while the other approaches are not quite there yet.
It becomes clear that for the NCS API the model-based crossover
can find more targets in a shorter amount of time than the other
approaches.

5 RESPONSIBLE RESEARCH
To ensure reproducibility we used the publicly available benchmark
APIs of the EvoMaster benchmark project. The implementation of
the two proposed algorithms is also made public through a pull
request to the original EvoMaster project. Additionally, the modifi-
cations to the EvoMaster project have been fully documented and
sufficiently tested to minimize the likelihood of erroneous code.

560

580

600

620

ACMOSA GOMOSA MIO MOSA VMOSA
Algorithm

Co
ve
re
d
Ta

rg
et
s

Figure 4: NCS: Boxplot comparison covered targets after 100
seconds

To overcome the randomness of the outcomes of the EAs, we
executed each algorithmic variant 20 times for 300 seconds and
reported the average performance over time. Additionally, we pro-
vided the results of statistical tests as evidence for the significance
of the difference between the performances of the algorithms. To
ensure a controlled environment that provides a fair evaluation of
the algorithms, all experiments have been conducted on the same
system and interfering processes were kept to a minimum. Finally,
and this goes without saying, the results have not been modified or
cherry-picked. -

6 DISCUSSION
In summary, the two proposed techniques, ACMOSA and GOMOSA
can for some problems provide significant improvement to the effi-
ciency in covering targets. From the results, it can be deduced that
preserving inter-gene relations is beneficial in the search process
of generating test-cases in some cases. In this study, ACMOSA and
GOMOSA turned out to be particularly beneficial to the NCS bench-
mark API. They also performed well on the SCOUT benchmark,
however, as MOSA performed almost equally well, it cannot be con-
cluded that the inter-gene relations play a huge role. Furthermore,
the FEATURES benchmark seems to suffer most from the hypo-
thetical maximum coverage boundary as none of the algorithms
performed significantly better than the others. This conclusion
can also be made when we look at Figure 7 which shows that this
boundary is reached relatively early in the search process i.e. after
around 100 seconds while the entire search is 300 seconds. The
PROXYPRINT benchmark did not provide a clear winner between
the MOSA variants while MIO outperformed them all. However, as
mentioned before the PROXYPRINT benchmark has a significantly
longer test-case evaluation time than for example the NCS bench-
mark. The longer evaluation time together with the size of the API
curbed the number of generations that could be processed in the
300-second time-frame, so much so that the model calculation only
happened once or twice during the search process. The impact of
the size of the API on the GOMOSA algorithm is especially visible

Dimitri Michel Stallenberg, Mitchell Olsthoorn, and Annibale Panichella

in Figure 8 on the PROXYPRINT benchmark. In this figure, it is
clear that calculating the model at the beginning of the search takes
a lot of time which is a likely explanation as to why GOMOSA starts
with the worst performance but catches up after a while. Finally,
the SCS problem did not benefit from any type of crossover as MIO
and VMOSA were the most effective.

Overhead. As mentioned before computing the Bayesian net-
work model gives GOMOSA a large overhead in time complexity.
Improving the complexity in finding this model can potentially
boost the effectiveness of the algorithm even more. The same ap-
plies to the ACMOSA technique which has less overhead.

Recommendations. The current implementation of both AC-
MOSA and GOMOSA makes use of the current population to cal-
culate a model from, this population consists of test-cases which
cover certain targets. It could be interesting to instead use man-
ually written tests and learn the model from those. By doing so
the techniques also lose the overhead as they will not have to re-
compute the model anymore, i.e. the manually written tests do not
change, and recomputing is thus less use-full. Additionally, future
research should investigate other less computationally expensive
ML methods to improve the benefit of the techniques for large APIs.

For future research, it could also be interesting to evaluate the
novel techniques for longer periods of time. This allows investi-
gating the exploratory capabilities of the techniques. That is, are
they able to find more coverage than other techniques in general or
do they only converge faster? Additionally, it would be interesting
to evaluate the techniques on a more diverse set of benchmark
problems including more complex and larger APIs.

7 CONCLUSIONS
In this article two novel techniques, ACMOSA and GOMOSAwhich
build upon the MOSA algorithm have been proposed. These tech-
niques use previously found solutions to extract dependencymodels
that explain relations between parts of the solutions. Themodels are
then used during the crossover operation to preserve the inter-gene
relations, reducing the disruptiveness of the crossover operation to
the search process.

As shown in the result section both of the novel techniques
perform differently for each problem, however for some problems
the new techniques provide a significant benefit. The difference
in performance between the benchmark problems is most likely
due to a combination of the size of the problem and the level of
dependence between the API endpoints. For the software engineers
that want to use EvoMaster, it is thus advised to determine these
two properties for the API under test before a certain technique is
applied.

We can thus conclude that intelligent evolutionary operators
do for certain problems have a significant impact on EvoMaster’s
performance, and that future research should investigate whether
the application of these novel methods is beneficial in other settings.
Another topic of interest for future research is to investigate other
less time-consuming modeling techniques.

REFERENCES
[1] Andrea Arcuri. 2018. EvoMaster: Evolutionary Multi-context Automated System

Test Generation. In 2018 IEEE 11th International Conference on Software Testing,
Verification and Validation (ICST). 394–397.

[2] Andrea Arcuri. 2019. Many Independent Objective (MIO) Algorithm for Test
Suite Generation. CoRR abs/1901.01541 (2019). arXiv:1901.01541 http://arxiv.
org/abs/1901.01541

[3] Emil Artin. 2015. The gamma function. Courier Dover Publications.
[4] Wray Buntine. 1991. Theory Refinement on Bayesian Networks. In Proceedings of

the Seventh Conference on Uncertainty in Artificial Intelligence (UAI’91). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 52–60.

[5] Ran Cheng, Cheng He, Yaochu Jin, and Xin Yao. 2018. Model-based evolutionary
algorithms: a short survey. Complex & Intelligent Systems 4, 4 (2018), 283–292.

[6] William Jay Conover and William Jay Conover. 1980. Practical nonparametric
statistics. (1980).

[7] Laura Dioşan and Mihai Oltean. 2006. Evolving Crossover Operators for Function
Optimization. In Genetic Programming, Pierre Collet, Marco Tomassini, Marc
Ebner, Steven Gustafson, and Anikó Ekárt (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 97–108.

[8] David E. Goldberg. 1989. Genetic Algorithms in Search, Optimization and Machine
Learning (1st ed.). Addison-Wesley Longman Publishing Co., Inc., USA.

[9] Jong-Min Kim, Yoon-Sung Jung, Engin A Sungur, Kap-Hoon Han, Changyi Park,
and Insuk Sohn. 2008. A copula method for modeling directional dependence of
genes. BMC bioinformatics 9, 1 (2008), 225.

[10] Kalia Orphanou, Dirk Thierens, and Peter A. N. Bosman. 2018. Learning Bayesian
Network Structures with GOMEA. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO ’18). Association for Computing Machinery,
New York, NY, USA, 1007–1014. https://doi.org/10.1145/3205455.3205502

[11] Annibale Panichella, Fitsum M. Kifetew, and Paolo Tonella. 2015. Reformulating
Branch Coverage as a Many-Objective Optimization Problem. In 2015 IEEE 8th
International Conference on Software Testing, Verification and Validation (ICST).
1–10.

[12] Jim Smith and T. C. Fogarty. 1996. Self adaptation of mutation rates in a steady
state genetic algorithm. In Proceedings of IEEE International Conference on Evolu-
tionary Computation. 318–323.

[13] Dirk Thierens. 2010. The Linkage Tree Genetic Algorithm. In Parallel Problem
Solving fromNature, PPSN XI, Robert Schaefer, Carlos Cotta, Joanna Kołodziej, and
Günter Rudolph (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 264–273.

[14] András Vargha and Harold D. Delaney. 2000. A Critique and Improvement
of the "CL" Common Language Effect Size Statistics of McGraw and Wong.
Journal of Educational and Behavioral Statistics 25, 2 (2000), 101–132. http:
//www.jstor.org/stable/1165329

http://arxiv.org/abs/1901.01541
http://arxiv.org/abs/1901.01541
http://arxiv.org/abs/1901.01541
https://doi.org/10.1145/3205455.3205502
http://www.jstor.org/stable/1165329
http://www.jstor.org/stable/1165329

Preserving Inter-gene Relations During Test Case Generation using Intelligent Evolutionary Operators

A APPENDIX
A.1 SCS

600

700

0 100 200 300
Time (s)

Co
ve
re
d
Ta

rg
et
s

ACMOSA
GOMOSA
MIO
MOSA
VMOSA

Figure 5: SCS: Average covered targets over time

A.2 Features service

250

300

350

400

0 100 200 300
Time (s)

Co
ve
re
d
Ta

rg
et
s

ACMOSA
GOMOSA
MIO
MOSA
VMOSA

Figure 6: FEATURES: Average covered targets over time

A.3 Scout API

800

1000

1200

1400

1600

0 100 200 300
Time (s)

Co
ve
re
d
Ta

rg
et
s

ACMOSA
GOMOSA
MIO
MOSA
VMOSA

Figure 7: SCOUT: Average covered targets over time

A.4 Proxyprint kitchen

500

1000

0 100 200 300
Time (s)

Co
ve
re
d
Ta

rg
et
s

ACMOSA
GOMOSA
MIO
MOSA
VMOSA

Figure 8: PROXY: Average covered targets over time

	Abstract
	1 Introduction
	2 Background
	3 Approach
	3.1 Learning Inter-gene Dependency Structures
	3.2 Building Block based Crossover

	4 Evaluation
	5 Responsible Research
	6 Discussion
	7 Conclusions
	References
	A Appendix
	A.1 SCS
	A.2 Features service
	A.3 Scout API
	A.4 Proxyprint kitchen

