rsiteit Delft

Technische Unive

SImplitying state machine models
WIth sequence alignment for anomaly
detection

SuUo Xian Zhang

Simplifying state machine models with
sequence alignment for anomaly detection

by

Suo Xian Zhang

to obtain the degree of Master of Science
at the Delft University of Technology,
to be defended publicly on Friday August 30, 2024 at 12:30 PM.

Student number: 4660129

Project duration: September 1, 2023 — August 30, 2024
Thesis committee: Prof. dr. ir. S. Verwer, TU Delft, supervisor
Prof. dr. ir. A. Panichella, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

]
TUDelft

http://repository.tudelft.nl/

Preface

This thesis is the result of my academic journey, building upon the knowledge and experiences | have
gained during my Master’s in Computer Science. It reflects many months of researching, exploring
relating topics, and carefully determining the direction | wanted to pursue for this research. Much time
was devoted to studying and understanding state machine learning, Flexfringe, the characteristics of
software logs and sequence alignment, along with extensive trial and error in during the implementation
of the Needleman-Wunsch algorithm.

| would like to express my sincere gratitude to my supervisor, Sicco Verwer, for his fast reply when
| expressed my interest on this topic on Project Forum and for introducing the idea of this thesis to me.
His enthusiasm and insights sparked my interest in a topic that | was initially unfamiliar with. Writing this
thesis was not an easy task for me, and | am thankful for his encouragement and patience throughout
the entire process, especially for his willingness to explain concepts multiple times when | struggled
to understand them. | also wish to thank my fellow master’s students who participated in the weekly
meetings, for sharing laughs, engaging in interesting discussions and providing mutual support.

Lastly, | would like to thank my parents for their trust and patience, and my friends for encouraging
me and believing in me.

Throughout this research, | have gained not only a deeper understanding of state machine learning
and its incredible possibilities, but also valuable insights into my own capabilities and work ethic.

I hope this thesis sparks the same interest in you that it did in me and provides you with valuable
insights into the world of state machine learning.

Suo Xian Zhang
Delft, August 2024

1

Contents

Introduction 1
1.1 ResearchQuestions 2
1.2 Contributions 2
1.3 Outline e 3
Background 5
2.1 Sequentialdata. e 5
211 Parallelism e e 6
22 Transitionsystems 6
23 Petri-nets L 7
24 State MachineModels L 8
25 State MachineLearning L 10
2.5.1 Identifying Regular Languages o 11
2.6 State merging algorithms. 11
2.6.1 Evidence driven-state merging (EDSM). 12
2.6.2 ALERGIA e 12
27 Flexfringe e e 13
2.7.1 Red-blueframework 13
2.7.2 Evaluationfunctions 14
273 Parameters 15
274 InputFormat e 15
275 Outputformat. 16
27.6 Prediction. 17
2.8 Comparing state machinemodels., 17
2.8.1 Labelled Transition System 18
2.8.2 Structure comparison of LTS. 18
2.8.3 Language comparisonof LTS 19
29 Sequencealignment 20
291 Distancemeasureo 21
2.9.2 Needleman-Wunsch algorithm. oo oo 22
2.9.3 Smith-Waterman algorithm. 24
2.9.4 Tree-Sequence Alignment. 24
210 Evaluationmetrics L e e 25
Related Work 29
3.1 Anomaly detectioninlogs 29
3.2 Log-based behavioural differencingo oo 30

Vi Contents
4 Methodology 33
41 Data Exploration 33
411 Datapreprocessing. 33

4.1.2 Hadoop Distributed File System Lo Lo 33

4.2 Modellingdatawith FSA e 35
421 Heuristicselection e 35

422 Sinkcount. L 36

4.3 Sequencealignment L e 36
4.3.1 Evaluation. e 38

4.3.2 Classification e 38

5 Experiments 39
51 DFAmModel e 39
5.2 Experiment1: Scoring e e 39
5.2.1 Staticscoring e 40

522 Linearscoring. o e 40

52.3 DynamiCsSCOMNG o o e 40

524 Results 40

5.3 Experiment 2: Parallelism 44
5.3.1 Ignore-skiprule. 45

532 Results e 45

5.4 Experiment 3: Modifying the originalmodel. 46
541 Results L 48

6 Discussion 51
7 Conclusion 53
A Appendix A 55
A1 Learned FSA e 56
A.1.1 HDFSwith AIC and sinkcount=5 56

A.1.2 HDFS with AIC and sinkcount=10 57

A.1.3 HDFSwith AICandsinkcount=50 58

A.1.4 HDFS with AIC andsinkcount=100. 59

A.1.5 HDFS with AIC and sinkcount=300. 60

A1.6 HDFSwith AIC.ini e 61

A.1.7 HDFSwithedsm.ini 62

B Appendix B 63
B.1 Confusion Matrices forpredict. 63
B.2 Confusion Matrices for predictalign oL Lo 66
B.3 Confusion matrices for Needleman-Wunsch alignment 68
B.3.1 AICmodel,sinks=50 68

B.3.2 AIC model, sinks=100 e 70

B.3.3 AIC model, sinks=300 71

B.4

ROC curves. e e e 71

Introduction

Current software systems have become increasingly complex. Software logs are generated and stored
by computer systems, operating systems, applications, and other software components to track chrono-
logical records of activities, events, and behavior. Logs are crucial for system debugging, error di-
agnosis, system health monitoring, performance monitoring, problem troubleshooting, and security
maintenance, often performed by experts in security operation centers. Logs can also detect poten-
tial abnormal behavior and help identify the timing and cause of such behavior by providing insights
into when the issue first occurred, what caused it, and the differences between normal and abnormal
behavior.

While logs are very useful, they come with certain drawbacks. First, logs can be very large, and
they can be produced in large volumes. Second, logs often vary in format, increasing their complexity.
As systems scale, the amount of information increases, making it more difficult for human experts to
manually understand, analyze, and debug these systems and their logs. This increases time consump-
tion and leads to a condition known as alert fatigue, where experts fail to respond to alerts due to the
overwhelming volume they receive [1].

Several solutions have been proposed to combat this issue: (1) experts create ad hoc scripts to
search for keywords such as "error” or "critical” to reduce workload, (2) use a method called alert triaging
to prioritize alerts, or (3) enhance individual detectors to reduce generated security events [2]. However,
these methods have proven insufficient for anomaly detection [3]. They are mainly effective in detecting
point anomalies, where individual instances are considered anomalous compared to the rest of the data.
Complex attacks involving combinations of events often go unnoticed while singular suspicious events
are emphasized. Contextual anomalies, which occur when an instance is not anomalous on its own
but is in a specific context, fail to be recognized. Another type of anomaly, more complex to find, is
collective anomalies which are collections of related data that are anomalous concerning the rest of
the data. The individual instances may not be anomalies, but their occurrence together makes them
anomalous [4]. Therefore, a more effective approach for identifying an attack would involve analyzing
a "sequence” of events.

In many cases, one is also interested in multiple logs rather than a single log. The combination
of logs originating from a different set of runs of the system at hand give insight into the context of
evolution, malware analysis and testing and deployment, as these cases require comparative analysis
rather than individual log analysis [5].

Research has been conducted on extracting various models from software logs to capture con-

1

2 1. Introduction

textual and collective anomalies, with most using deep learning models [2][3][6][7]. However, these
models are black boxes that provide no insight into the execution paths or decision-making processes.
There lack in techniques that can extract underlying structures and significant patterns from log data for
use in security management [8]. It is important that these techniques and models are unsupervised, as
anomaly labels are often unavailable in practice. One approach that can effectively model behavior is
the use of state machine models or Finite State Automata (FSA). These models use unlabeled data to
represent system behavior and can visualize execution paths and context from large amounts of data,
giving experts greater insight into understanding and identifying anomalous events.

There are two types of state machine models: Deterministic Finite Automaton (DFA) and Non-
deterministic Finite Automaton (NFA). DFAs need a source state and input symbol to transition into
one particular next state and allow only one state transition per event. NFAs on the other hand, allow
transitions into multiple next states, hence the name 'non-deterministic’. NFAs are more compact, but
introduce an overhead associated with maintaining several states for one execution. DFAs allow faster
executions due to their requirement of one state per traversal, making them better suited for anomaly
detection.

However, modeling an automaton that captures all execution paths from large datasets often results
in a model that is difficult to interpret. When attempting to model all available data, FSAs commonly
suffer from a phenomenon known as state explosion, where the automaton becomes very large. Typ-
ically, a large automaton features (1) a few initial states that are frequently encountered and match
many logs, with tails that are rarely visited, and (2) many parallel sequences.

To address the aforementioned issues and mitigate the risk of state explosion, this thesis will explore
behavioral differencing of software logs involving sequence alignment on a compact representation of
the system while identifying its the dominant and persistent behaviors.

This brings us to the research questions:

1.1. Research Questions
This brings us to the following research questions:

1. How effective is sequence alignment on a compact model of behavior in detecting flows that
deviate from expected behavior?

2. What are the characteristics of parallel processes in Finite State Automata (FSA) and what rules
can be added to the sequence alignment to effectively recognize these?

3. How effective are these rules in combination with sequence alignment on recognizing parallel
processes in a compact model of behavior?

4. Can sequence alignment improve the learning process on a compact model?

1.2. Contributions
The main contributions of this thesis are:

1. Describing sequential data with an introduction of several models that capture sequential data.

2. Explanation on state machine learning, specifically, on state machine learning, merging algo-
rithms for learning state machines, its use cases, the Flexfringe tool for automaton learning and
comparing state machines.

3. Introduction on sequence alignment with background information and topic explanation of se-
quence alignment.

1.3. Outline 3

4.

5.

1.3.

The implementation of the Needleman-Wunsch algorithm, modified for sequence to state
machine model alignment. The algorithm is integrated into the Flexfringe codebase, along with
documentation.

Evaluation on a large dataset demonstrating the capability to perform behavioral differencing
effectively.

Outline

This thesis is outlined as followed:

Chapter 2 provides an overview of the background topics necessary for understanding the prob-
lem statement and the approach taken in this thesis. It defines sequential data and parallelism,
and introduces the the models used to describe behavior. Additionally, this chapter explores state
machine learning and offers a detailed explanation of sequence alignment.

Chapter 3 reviews related work on anomaly detection on log data and the use of Finite State
Automata for anomaly detection.

Chapter 4 explores the dataset used in this thesis and explains the Needleman-Wunsch sequence
alignment algorithm and the evaluation methods employed.

Chapter 5 presents three experiments designed to answer the research questions.
Chapter 6 presents a discussion on the findings, their implications and limitations.

Chapter 7 presents the final concluding remarks.

Background

This section begins with a detailed explanation of sequential data. It then introduces three models
commonly used to describe behavior: Transition Systems, Petri Nets, and State Machine Models, with
a specific focus on Finite State Automata (FSA). Since this thesis employs FSA, the concept of State
Machine Learning will be explained, followed by an introduction to FlexFringe, a tool for automaton
learning. Subsequently, the concept of sequence alignment will be introduced and two alignment al-
gorithms are defined. Finally, relevant evaluation metrics will be discussed.

2.1. Sequential data

Software logs typically contain data with entries containing events, actions or behavior from a system
in a chronological order. Each log entry includes details such as timestamps, event types, user actions,
system states, error messages, and other relevant information. This sequential data is vital for mon-
itoring, debugging, and analyzing system behavior. Every sequence of events in a log is also known
as a trace.

Looking at individual events allows the detection of point anomalies, which are isolated anomalous
events. However, contextual, events that are anomalous given their context, and collective anomalies,
groups of events that are anomalous in relation to the rest of the data, can only be detected when
the sequence of events is investigated. Therefore, a sequence of messages often provides a better
indication of anomalies than individual messages [3]. Investigating sequences allow for:

» Contextual Information: Sequences provide context that individual messages lack. For instance,
the absence of a commit message in the sequence indicates an issue that individual messages
do not reveal.

» Anomaly Detection: Some anomalies, such as silent failures or incomplete operations, are only
detectable when considering the entire sequence of events.

» Causal Relationships: Understanding the cause and effect between different events is crucial for
diagnosing problems, which is only possible by analyzing sequences.

» Pattern Recognition: Certain issues manifest as specific patterns of events, which can only be
identified by looking at the sequence as a whole.

5

6 2. Background

2.1.1. Parallelism

In complex systems, many components and services operate concurrently, interacting independently
while performing different tasks, this is known as parallelism. Parallelism is a common occurrence in
modern computing systems, arising from multi-threading or simultaneous execution of multiple pro-
cesses. Some examples of parallelism are:

1. Concurrent Processes: Multiple processes executing at the same time, often on separate pro-
Cessors.

2. Multithreading: Multiple threads within a single process running in parallel, sharing the same
resources but executing independently.

These complex systems record logs, which contain the events that occurred concurrently. While
logs are recorded sequentially, parallelism can cause events to appear out of order. Parallelism in
software logs can look like:

1. Interleaved events: Log entries appear interleaved or interwoven, based on when the events are
recorded while processes or threads execute concurrently.

2. Simultaneous operations: Log entries with the same timestamp, indicating parallelism, as the
events are occurring concurrently.

3. Fork and Join patterns: Log entries of a single process may be interrupted by the log entries from
another process and continue afterwards.

4. Repeated or Overlapping entries: Several instances of the same log entries appear, but are
executed by different processes.

5. Out of order logs: Operations from parallel processes might appear out of order without clear
sequence.

When analyzing software logs for anomaly detection or behavioral differencing, parallelism can in-
troduce complexity. Learning behavior that involves parallelism with state machine models can be
challenging. New software logs may contain log entries in varying order due to parallelism, while es-
sentially representing behavior that the model actually already knows but cannot recognize. Parallelism
can also cause state machines to become overly complex, or "blow up”, which makes analysis diffi-
cult. Effectively modeling and detecting parallelism can be of great use in behavioral differencing and
identifying anomalies.

Next, three systems designed to translate sequential data into models that model their behavior are
introduced and defined.

2.2. Transition systems
A transition system is the most basic mathematical model used to describe the behavior of systems.
The formal definition of a transition system is as follows:

Definition 1. Definition of a Transition system, as defined in [9]
A transition system is a quadruple TS = (S, -, sq, F), where:
1. Sis a set of states.

2. - S X A x S is the transition relation, written s 5 s' for (s,s") e-.

2.3. Petri-nets 7

3. 5o € S is the initial state.
4. F is the set of final states, where F € S.

It is particularly useful for modeling concurrent and distributed systems. The key components of a
transition system are:

 States: These represent the different configurations or conditions of the system.
 Transitions: These are the changes from one state to another, often triggered by events or actions.

» Labels: Transitions can be labeled with actions or events that cause the transition. In this case
the model is a Labelled transition system.

Transitions starts in the initial state s,. An execution sequence is the path taken in the transition
system, from the initial state to any other state. A path only terminates successfully ifitends in s’ € F.
Otherwise, if the path ends in s € F with no outgoing transitions, the system has reached a deadlock.
Livelock happens when some transitions are still enabled but it is impossible to reach a s € F. Higher-
level models can often be transformed to transition systems.

While transition systems are simple and effective for modeling processes, they have limitations in
expressing concurrency as transition systems typically represent processes as sequences of discrete
states and transitions between them, which may not capture the simultaneous occurrence of similar
actions or events. For instance, in system logs, actions like file writes or database accesses by different
processes may appear very similar and be seen as occurring in parallel. However, transition systems
may struggle to differentiate and model these parallel actions distinctly, potentially oversimplifying the
behavior of the system. This limitation highlights the need for more expressive models, such as Petri
nets or state machine models, which can better handle and represent parallelism in system behavior.
This brings us to the next model: Petri nets.

2.3. Petri-nets

A Petri-net, or place/transition net (PT) net, is a mathematical model for languages, capable of modelling
concurrent systems. Petri-nets can be treated as automata when considered as formal automata or as
generators of formal languages. The formal definition of a Petri-net is as follows:

Definition 2. Definition of a Petri-net
A Petri-net is a tree-tuple N = (P, T,F), where:
1. Pis afinite set of places.
2. T is a finite set of transitions, such that PN T = @.
3. FS (Px T)uU (T x P) is a set of directed arcs, also known as flow relation.

The network structure remains static, while tokens have the capability to traverse through the network.
These tokens serve as markers for movement and can reside in places, often depicted by black circles
within the place. For instance, observe the token residing in the start place depicted in Figure 2.1. The
tokens can be moved by firing a transition within the net. The following rules exist for firing a transition
[10]:

1. Transitions can be fired only if they are enabled, which is the case when all of its input places
have a token in it. In Figure 2.1, the ‘decide’ transition can only be fired if both input places ¢3
and c4 are marked.

8 2. Background

2. An enabled transition may also not fire depending whether or not the event takes place.

3. Upon activation, the transition consumes the tokens from the input places and produces new
tokens in the output places associated of the transition, see Figure 2.2. When firing two transitions
disables the other, they are said to be in conflict.

A transition lacking any input place is referred to as a source transition, an example is the start place in
Figure 2.1. This type of transition remains enabled under all conditions. Conversely, a transition without
an output place is called a sink transition, exemplified by the end place in Figure 2.1. Despite its ability
to consume tokens, a sink transition does not produce new tokens. Additionally, when a place serves
as both the input and output of a transition, it is referred to as a self-loop. Notably, a pure Petri-net is
devoid of self-loops.

Transitions model concurrency with multiple outgoing arcs. An example of this is the ’register re-
quest’ transition in Figure 2.1; after firing the ’register request’ transition, tokens are produced in ¢ and
c2 which allows the execution of the sequences [start, register request, examine thoroughly], [start, reg-
ister request, examine casually] and [start, register request, check ticket].

Choice is modelled with a place with multiple outgoing arcs, see ¢5 in Figure 2.1, it means either
transitions ‘pay compensation’ and ’reject request’ can be fired.

The state of a marked Petri-net is determined by the distribution of tokens within it, which is referred
to as its marking. A marked Petri-net is a pair (N,M), where N = (P,T,F) is a Petri-net and where
M € B(P) is a multi-set over P denoting the marking of the net. The set of all marked Petri-nets is
denoted IV

While Petri nets provide a structured approach for modeling concurrent systems, state machine
models focus on discrete, sequential behavior and transitions and will be further explained in the next
section.

2.4. State Machine Models

State machine models are abstract computational models used to describe systems that transition
between a finite number of states based on inputs or events. These models consist of states, tran-
sitions between states, an initial state, a set of final or accepting states. State machine models are
employed to represent and analyze the behavior of both software and hardware systems, making them
fundamental in fields like computer science, engineering, and control systems. As mentioned in the
introduction, they can be deterministic, where each state has a unique transition for a given input, or

xamine
thoroughly

c3 pay
compensation

examing
casually/.o/jeude c5 end

c4 reject
check ticket request

start register
request

reinibiate
request

Figure 2.1: A Petri-net for compensation requests. From [9].

2.4. State Machine Models 9

(b) A marked Petri-net resulting from the transition in 2.2a.
Tokens were added to p, and p; and the token in p, was
removed. No tokens were produced in p, and ps because the
transitions were not enabled; only one of the two required input

(a) A marked Petri-net. From [11] places was marked. From [11]

Figure 2.2: Two markings presenting two different states in a Petri-net

nondeterministic, where multiple transitions for a given input are possible. Overall, state machine mod-
els provide a structured way to model dynamic system behavior, assisting in the design, verification,
and understanding of complex systems.

Variants of state machine models include Mealy and Moore machines, which generate outputs
based on state transitions, and finite state automata (FSA), which are used for pattern recognition and
language processing. FSA are computational models used to design and describe the behavior of
systems that can be in different states and undergo state transitions, see Definition 3 [12]. An FSA can
be represented by a state transition diagram, a directed graph whose vertices represent the states Q
and whose edges represent the state transitions 6. Each edge is labelled with the input and output
related to the transition, see Figure 2.3.

card inserted eat card

enter PIN PIN not OK

PIN not OK

PIN not OK

Figure 2.3: State transition diagram example for an ATM, taken from [13].

An FSA processes an input sequence symbol by symbol, transitioning to the next state based on
the defined transition function 6. Upon completing the parsing of the entire input sequence, the FSA
accepts the sequence if it is in an accepting state; otherwise, it rejects it.

Definition 3. Defintion of a FSA

A FSA is a quintuple M = (Q, qq, Z, F, §), where:

10 2. Background

1. Qis afinite set of states.

2. X is afinite set of input symbols, known as the alphabet.
3. qq is the starting state, where q, € Q.

4. F is the set of accepting or final states, where F < Q.

5. § is the state transition function: Q X £ — Q. &(q, a) gives the next state when the automaton is
in state q and receives input symbol a.

FSAs can be divided into Deterministic Finite Automaton (DFA) and Non-deterministic Finite Au-
tomaton (NFA).

Deterministic Finite Automaton (DFA) In a DFA, at any given time, there is only one possible transi-
tion from a state for each possible input. The transition is determined uniquely by the current state and
the input. The definition of DFAs is similar to FSAs, but the crucial distinction here is that for any state
g and input symbol a, there is at most one possible next state §(q,a). In other words, it is deterministic.

Non-deterministic Finite Automata (NFA) Inan NFA, there can be multiple possible transitions from
a state for a given input. The machine may be in multiple states simultaneously, and the transition is
not uniquely determined by the current state and input. Due to the overhead involved in maintaining
multiple states for a single execution in NFAs, and considering that DFAs demonstrate faster execution
rates by requiring only one state traversal per character, this thesis will utilize DFAs.

2.5. State Machine Learning

State machine learning is a machine learning method that abstracts models in the form of state machine
models from data. These state machine models are generally in the form of DFA. This problem is also
known as the problem of identifying or learning a DFA.

The goal of state machine learning is to identify the most compact DFA that aligns with a provided
set of labelled examples [14]. The size of the DFA is determined by its number of states. This pursuit
of minimalism is driven by Occam’s razor principle, which states that among competing explanations,
the simplest one is typically the most preferable. Thus, a smaller DFA is favoured as it offers a more
straightforward and concise explanation.

State machine learning generally follows three steps as illustrated in 2.4. In the first step, data is
collected. In the second step, the Prefix Tree Acceptor (PTA), which is the initial DFA is constructed
from the input samples S collected in the first step. Formally, the constructed PTA is consistent with the
input sample S, meaning S, < L(A) and S_ N L(A) = @ In the final step, the underlying automata are
learned by merging compatible pairs of PTA states [15]. Two states q and q' can be merged into a new
state ¢" with the incoming and outgoing transitions from g and ¢’ if both states are consistent, meaning
they are both accepting and rejecting the same transitions [16]. Furthermore, the determination process
is applied during every merge. During this process, when q” is the source of two transitions with the
same symbol, the states are known to be non-deterministic, in which case, the target states of these
transitions are also merged. This process continues until there are no more non-deterministic choices
left and no more consistent merges. This reduces the size of the automaton. For this step, different
algorithms can be used.

2.6. State merging algorithms 11

% % T g

SYSTEM STEP 2:
Prefix Detection

STEP 3:
State Merging

LEARNED MODEL PREFIX TREE

Figure 2.4: State merging approach for learning automata [15]

2.5.1. Identifying Regular Languages

Regular languages are a class of formal language defined by a set of rules known as regular expres-
sions. These languages are used to describe patterns or sequences of characters within a larger text
or input stream. Languages can be represented by FSA.

A FSA M can describe a language as follows: let w be a string, M is said to accept string w if M
starts from the starting state, follows transitions corresponding to the symbols in w, and ends up in an
accepting or final state. In other words, M recognizes language L if M accepts all strings w that are
in L. A language is regular if there is an FSA that recognizes it. The language of an automaton 4 is
represented as L(4).

Let £* be the set of all finite strings over an alphabet L < X. Given a regular language L < X,
S* C L are strings in L (positive examples) and S~ C L are strings not in L (negative examples). The
combination of S* and S~ form a complete set S. As elucidated in [17], to identify the regular language,
the limit L must be found, where new examples to S only result in a finite number of changes. Examples
from S~ are significant for rejecting a language L' that differs from L only in the strings it in includes
L' — L. There may exist languages where the only distinction between them lies in the strings they
contain. Nonetheless, it is common for negative examples to be lacking. A set S containing only S* is
known as a positive sample or text.

Given a language L, the minimum DFA generating L is called the canonical acceptor M(L). If the
PTA T is defined for a finite complete set S of L, the problem of identifying L is then simplified to finding
a partition of the nodes in T. The language L, accepted by T is the positive part of S, so L0) = S*. The
goal is to find a partition that does not include negative examples from S, ensuring that the language
of the partition remains unchanged even with the addition of new examples to S. To find the partition,
a merging process can be deployed. When S~ is large enough to reject any incorrect merges, M(L)
will be the final output. In other words, once S* and S~ reach a certain size, the hypothesis automaton
remains unchanged, giving a successful identification of L.

2.6. State merging algorithms

The issue of finding the smallest consistent DFA can be very complicated. The optimization variant of

the problem of finding a consistent DFA of fixed size has been shown to be NP-complete [14].
Nevertheless, there are multiple state machine learning algorithms available for obtaining these

DFA models. These algorithms can operate either online, where additional examples can be requested

during the learning process, or offline, where only a given dataset is utilized. The algorithm leverages

both positive and negative examples.

12 2. Background

2.6.1. Evidence driven-state merging (EDSM)

EDSM [18] starts with a PTA for the training data and merges compatible states. States are defined as
compatible when no suffix leads from them to different labels. Itis critical for the algorithm’s early merge
decisions to be correct, as a merge introduces new constraints on future merges. Incorrect decisions
at the beginning will create wrong constraints leading to incorrect decisions later.

When a state merging algorithm is applied to sparse training data, each merge is often based on
an optimistic guess. Therefore, a good strategy is to first perform the merges that are supported by the
most evidence, which is why the term 'evidence’ is included in the algorithm’s name. This will minimize
the snowballing effect.

The initial hypothesis is the PTA that represents the training set. The algorithm computes the score
for every pair of nodes in the hypothesis. While the merges are valid, it performs the highest scoring
one, otherwise, it stops. It proceeds this process until there are no valid merges left.

To merge nodes, the partition of hypothesis nodes into equivalence classes must be determined.
Two candidate nodes are of equivalent class if they are: 1) equivalent, with regards to their transition
function, and 2) conform to the determinization rule, which states that children of equivalent nodes must
also be equivalent. A find/union data structure keeps track of sets that are known to be equivalent.
During every equivalence check, the structure of the two nodes is used to determine whether they can
be merged. The two nodes also have to be consistent, which can be determined with a statistical test
or distance computation based on their future sequences. If two nodes can be merged, it merges the
equivalence classes linked to every member of the input set, then recursively invokes itself on each of
the sets of children of the newly unified equivalence class. Otherwise, the procedure returns.

With the equivalence classes and the labels, a merge score can be computed. The merge score is
—oo if there are conflicting labels in the class, O if there are no labels in the class, otherwise, it is the
number of labels minus one.

If the merge is also valid by a non-negative score, a new hypothesis is constructed reflecting the
merge. The new hypothesis will have one state per equivalence class. The merging process stops
when there are no valid merges left.

2.6.2. ALERGIA

Alergia [17] merges states based on the probability of symbols. It takes advantage of the fact that the
probability of appearance of every string follows a well-defined distribution and learns a PTA from a set
of positive data and compensates for the absence of negative data. The algorithm merges states if the
resulting automaton is in line with the observed frequencies of the data.

The algorithm creates a PTA from the input data and evaluates at every state the relative frequencies
of the outgoing edges. The probabilities for ending in every state or transitioning to another state are
computed based on 1) the number of strings that arrive at that state, whether it is termination or passing
through, 2) the number of strings that end in that state, and 3) for each symbol the number of strings
that pass through and then transition to another state using that particular symbol.

Two states are said to be equivalent if their outgoing transition probabilities for every symbol are
the same as well as their final states. Due to statistical fluctuations in data, the equivalence between
states is accepted within a confidence range a«. Compatibility between two states are evaluated with
the Hoeffding bound [19], see 2.1, which gives a confidence range for a Bernoulli variable where p is
the probability, f is the observed frequency out of n tries:

} 1 2
! < ﬁlogawith probability larger than(1 — a) (2.1)

-

2.7. Flexfringe 13

Two states will be different if the two estimated probabilities are more than the sum of confidence
ranges, see 2.2, where n and n’ are the number of strings arriving at each state and f and f' are the
number of strings ending in each state. Compatible and equivalent states are checked recursively.

Fof 1,21 1 -
‘__F< ﬁoga(ﬁ+ﬁ) (2.2)

Alergia ensures that the order of states is preserved during the merging process as well as the
deterministic nature of the automaton. Furthermore, the frequencies and numbers are recalculated at
every merge.

2.7. Flexfringe
Flexfringe is an automaton learning tool capable of learning non-probabilistic DFA and probabilistic DFA
(PDFA). It is originally known as the DFASAT algorithm [14]. The algorithm is based on the red-blue
framework [18].

The goal is to find the smallest DFA A that is consistent with S = S, ,S_ such that S, =< L(4) and
S_ c L x\L(A), where X2« is the set of all strings. It starts with a PTA and iteratively combines similar
states until no similar states can be found. The similarity of their future behavior is determined using
a Markov property or a Myhill-Nerode congruence. To find the smallest consistent (P)DFA, Flexfringe
uses the Red-Blue framework (EDSM).

2.7.1. Red-blue framework
The algorithm [18], like most, starts with a PTA. The root is coloured red, its children blue and all other
nodes white. The following cases apply:

1. An arbitrary connected graph of red nodes that cannot be merged.
2. All non-red children of red nodes are blue.
3. Blue nodes are the roots of isolated trees.

The algorithm assumes the red core is correctly identified and the blue states are merge candidates.
Three actions can be performed:

1. Compute the score for merging a blue/red pair.
2. Color a blue node to red if it cannot be merged with any red node.
3. Merge a red node with a blue node.

These three cases and three actions can be used in different algorithms. One of those follows the
following steps:

1. Evaluate all red/blue merges.

2. If there exists a blue node that cannot be merged with any red node, the lowest blue node will be
colored red and continue from step 1.

3. Otherwise, the highest red/blue merge will be performed and then continue from step 1.

The algorithm is complete as it produces a DFA that is smaller than the starting PTA and it is con-
sistent with the input data [20].

14 2. Background

2.7.2. Evaluation functions

As mentioned before, a statistical test or distance computation is required during every merge to check
whether it is consistent, this is known as a consistency check. Consistency checks are implemented
in the evaluation function. An evaluation function also implements a score, which provides means to
determine which merge from a set of potential merges should be performed first. Flexfringe has several
evaluation functions already implemented:

1. Alergia [17] relies on the Hoeffding bound for the consistency checks. For each potential merge,
it checks for significant differences in the outgoing symbol distributions, preferring merges that
combine the most states during determinization. Greater differences indicate greater similarity in
distributions.

2. Likelihoodratio [21] computes a single test for the entire merge procedure, including deter-
minization. It aims to address a possible pitfall Alergia may have. In Alergia, when large numbers
of states have to be merged in the determinization, the possibility of a small number tests failing
is high since each pair of states is tested individually. This prevents merging and results in a
larger PDFA. The likelihoods and number of transitions of the PDFA before and after the merge
are computed and evaluated [20]. The ratio is used to determine if the merged model outweighs
the decrease in likelihood. A higher score means the decrease in likelihood is less important,
indicating that the model before and after merging are more similar with regards to their distribu-
tions.

3. MDI [22] computes the likelihood and number of transitions of the models before and after merg-
ing, similar to likelihoodratio, and calculates the Kullback-Leibler divergence from the difference
to the distribution in the original data sample. A merge is considered inconsistent if the distance
is too large. MDI aims to address another potential pitfall of Alergia by providing the ability to
bound the distance of the learned PDFA from the data sample.

4. Akaike’s Information Criterion (AIC) makes a trade-off between the number of transitions and
likelihood in a model [23]. It aims to minimize the number of parameters minus the loglikelihood.
All merges that decrease the AIC are considered consistent. Essentially, it measures whether
the reduction in transitions after the merge is greater than the decrease in loglikelihood. It is
commonly used for probabilistic models.

5. EDSM uses positive and negative data to determine equivalence classes and merges these
based on a score: the sum of the number of non-conflicting labels of the equivalence classes
of the states to be merged [18].

6. Overlap driven is based on EDSM with a a modified heuristic [16] and is the winner of the
StaMInA competition [24]. It is derived from DFASAT with two key changes: 1) it considers that
pairs of states with outgoing transitions labeled with identical symbols are more likely to be equiv-
alent than in smaller alphabets, and 2) it includes stochastic elements in the selection process of
states to be merged, rather than always following a fixed rule or pattern. The heuristic favours
the merging of states with a high degree of overlap in the symbols of their outgoing transitions,
which can be measured by counting the amount of merged between states that can be reached
by positive examples. This evaluation method is useful for large alphabets and sparse data sets.

Several .ini files are provided with commonly used settings': aic.ini,alergia.ini, edsm.ini,
g

likelihood.ini, markov_chain.ini, overlap.ini, rti.ini, spdfa.ini.

"https://github.com/tudelft-cda-lab/FlexFringe/tree/main/ini

https://github.com/tudelft-cda-lab/FlexFringe/tree/main/ini

2.7. Flexfringe 15

2.7.3. Parameters

Flexfringe requires the user to set the heuristic name and data name. Moreover, it has several
parameters available allowing the user to optimize the tool according the requirements of the users.
Some relevant parameters are defined in Table 2.1. These parameters are essential for fine-tuning

Parameter

Definition

heuristic name

The name of the merge heuristic to use. Several heuristics are imple-
mented in Flexfringe and can be used; default: count_driven.

data name

The name of the merge data class to use; default count_data.

state count

The minimum number of positive occurrences of a state for it to be in-

cluded in overlap/statistical checks. Used to ignore parts of the tree for
which very few arrivals are available; default=25.

The minimum number of traces required to trigger a transition in a state
for it to be considered for state merging; default=10;

Determines whether sinks are allowed in the model or not. Sinks are
used to represent the model in a more compact manner by grouping
states with a low count, count can be determined by the parameter
sinkcount, into a single sink node; default=0;

The minimum count a states should have to before being merged into a
sink state. If the number of arrivals to a state is less than sinkcount, it
is merged into a sink; otherwise, it remains a normal state; default=10;
Determines whether only the most frequent candidate (blue) states with
any target (red) state, rather than all candidate states; default=0.
Determines whether only local merges up to APTA distance k are per-
formed; default=0;

Determines whether a minimum value is used for the heuristic function.
The minimum value is determined with 1owerboundval. When turned
on the merger can prefer coloring a state red rather than performing a
bad merge; default=0.

Determines the minimum value is used for the heuristic function; de-
fault=0.

Prints the white states (states not considered for merging) in the .dot file;
default=0;

Prints the blue states (candidate states) in the .dot file; default=1;

symbol count

sinkson

sinkcount

largestblue

mergelocal

lowerbound

lowerboundval

printwhite

printblue

Table 2.1: Flexfringe parameters and their definition

the learner’s outcome. The most frequently used parameters are symbol count and state count
parameters. It's important to note that the choice of algorithm for learning depends on the available
input data.

2.7.4. Input Format
Flexfringe takes a .txt file as input. The input is required to be formatted following the Abbadingo
formatting[18]:

1. The first line contains the number of traces and the alphabet size.

2. The following lines are the traces.

16

2. Background

3. All traces start with the type and trace length.

See Figure 2.5 for an example of an input file according the Abbadingo format.

10

[S

Wooo ~ dvou

4855 14
19 5 55 22
13 22
21 22
13 22
31 22
31 22
19 5 22
23 225
19 5 22

wownownownoun

I s e
L R B By B B W ¥]
L T B B B B s I W Wy

11 9 11 9 11 9 26 26 26
11 9 11 9 11 9 26 26 26
26 26 26 11 9 11 9 11 9
11 9 11 9 11 9 26 26 26
26 26 26 11 9 11 9 11 9
26 26 26 11 9 11 9 11 9
26 26 11 9 11 9 11 9 26
26 26 26 11 9 11 9 11 9
11 9 11 9 11 9 26 26 26

23 23 23 21 21 21

2 323 23 23 21 21 21

433343433433 232323212121
334343334433 23232321 2121
23 23 23 21 21 21

4.4 3 22323 23 21 21 21

23 23 23 21 21 21

Figure 2.5: First few lines of the HDFS training data in Abbadingo format. The first line contains the number of entries and
alphabet size, the lines beneath are all log entries start starting with the message type, in this case it is ’1’, followed by the
sequence of events.

2.7.5. Output format
Flexfringe outputs the model as JSON file. The JSON file contains four properties: types, alphabet,
nodes and edges. Nodes presents individual states in a graph or network. Each item in nodes contains
various attributes that describe its properties, see Table 2.2.

Field Value

id 0

source -1

label fin: 0:0 , path: 0:4855 ,
size 4855

level 0

style e

isred 1

issink 0

isblue 0

trace 00

data.final counts { ”70”:0 }

data.path counts { 707:4855 }

data.symbol counts null

data.total final 0

data.total paths 4855

data.trans counts { 7117707, ”18”:"0", 7270, 7217707,

"22”:"1258", 112311:110", 112511:11011, ”26":"2",

11311:11011, 11411:”0//,

11511:11359511, 11911:11011 }

Table 2.2: Node Item

Some of the properties are explained in more depth:

1. id: unique identifier for every node.

2. source: source of the edge that node is the destination of.

2.8. Comparing state machine models 17

3. label: the label presented in the node.

4. size: amount of edges that the node is the destination of.
5. level: level of the node.

6. frace: trace that leads to the node.

7. data:

« total final: how many traces end in the node.
« fotal paths: how many traces pass the node.
* trans counts: counts for every symbol in the alphabet how often an edge leaves the node

with the symbol.

Every item in edges represents connections between the nodes, see Table 2.3. The id of an edge
is structured such that it is source node_target node. Name is the symbol that the edge takes.

Field Value
id 70 1”7
source "o
target 1
name 75"
appearances "

Table 2.3: Edge Item

2.7.6. Prediction

Flexfringe includes two options for prediction: predict and predict_align. Predict checks whether the
data conforms to the learned model, whereas predict_align allows tracing model alignment by jumping
to any state in the model necessary when a mismatch is encountered.

To run predict_align, an APTA file with the learned automaton has to be provided. The function
returns a ‘.result’ file that contains all the traces with their aligned state sequence, score sequence,
alignment, number of misaligned states, sum score, mean score and min score. State sequence is an
array with at each index the unique ID of the associated state corresponding to the index in the trace.
If alignment is not possible, the trace will have an empty aligned state sequence and a sum score of
either ’0’ or ’-inf’.

2.8. Comparing state machine models

Instead of stating whether one model is equivalent to another model, the ability to compare two models,
i.e. quantify the difference and equivalence, is important for a range of scenarios. Two FSAs can be
compared quantitatively with regard to their structure and their language.

 Structure - states and transitions that the FSA constitutes of

» Language - sequences of symbols that are accepted by the FSA i.e. what is accepted by their
languages

18 2. Background

2.8.1. Labelled Transition System

As introduced in Section 2.2, the simplest interpretation of a state machine is a transition system. A
labeled transition system (LTS) extends the transition system by adding labels to the transitions. ALTS
reduces an FSA to a set of states and transitions, where each transition is labelled by a symbol, see
Definition 4. Using a LTS, an FSA can be compared with regards to their structure and language as
mentioned previously.

Definition 4. Definition of a LTS
A labelled transition system is a quintuple tuple (S, %, =, so, F), where
1. Sis a set of states.
2. X is afinite set of labels (actions or events).
3. »C S x X x S is a transition relation, written s % s' for (s,a,s") >
4. sq € S is the initial state.

5. F is the set of accepting or final states, where F € S. Foreach s € F thereisnoa € Xands' € S
such that s — s’

Similar to a FSA, a LTS can be deterministic and non-deterministic. However, the difference be-
tween the two lies in their formal definitions and applications. FSAs model machines while LTSs model
behavior. Moreover, in LTSs the set of states Q does not need to be finite and final states must have
no outgoing transitions [25]. The latter requirement indicates that a final state represents a successful
termination of the process.

2.8.2. Structure comparison of LTS
To compare the structure of two models, one model will be compared to the reference model. Added
and removed states have to be identified.

LTSDiff
LTSDiff is an algorithm proposed in [26] that finds the exact difference, i.e. states and transitions,
between two LTSs using the computation scores that measure the similarity of individual pairs of states.
The score is computed by matching up the surrounding states and transitions, which is a recursive
process.

In the first step of the computation, the local similarity, i.e. overlap of immediate surrounding transi-
tions, is calculated. The local similarity of two states is computed by dividing the number of overlapping
adjacent transitions by the total number of adjacent transitions. Given an LTS A and B, for each label
o € (Z4 U Zp) the number of matching transitions from states a € @4, b € Qp is counted in terms of the
number of individual pairs of target states that can be reached by matching transitions, the similarity
score can be calculated as follows:

Succg, = {(c,d,0) € Qu X Qg X (54 UZp)|a - c Ab <& d} (2.3)

For outgoing transitions, see 2.4 , where L stands for local. This function calculates the set of all
matching pairs of target states and transition labels in relation to outgoing transitions.

|Succyp|
257 (@) — 23 (D)] + 23" (a) — 23" ()] + [Succq,

Séucc (a,b) = (2.4)

2.8. Comparing state machine models 19

The expression |2§%¢ (a) — Z3* (b)| + |29%¢ (a) — =% (b)| calculates the number of outgoing transitions
from both states that are mismatched.
The set of matching incoming transitions is defined as follows:

Prevy, = {(c,d,0) € Q4 X Qp X (5, UZp)|c > and > b} (2.5)

|Prevyp|
|21 (@) = 2 (D) + |2 (b) — Z(a)| + |Prevyy|

The pairs of states with the highest scores are chosen to be key pairs, which serve as reference
points to calculate the differences between the two models.

In the second step the global similarity, i.e. similarity of target and source state of these transitions,
is calculated. For every pair of adjacent transitions that match, the similarity of the source and target
states of these transitions has to be incorporated in the final similarity score; if they are similar, the score
should be higher and vice versa. The following equation extends the local similarity scoring algorithm
in 2.8 by aggregating the similarity score for every successive matched pair of transitions and takes
into account the distance of source/target pairs:

Shrev(a,b) = (2.6)

1 Z(c,d,a)eSucca_b (1 + ksgulcc(c' d)
21%4(a) — Zp(D)| + [Z4(b) — Zp(@)| + [Succq|

This formula is used to create a set of linear equations where each variable corresponds to a 2.7
for a specific pair of states (a,b) € Q4 X Qg. This system can be solved for the forward and inverse
direction, producing S¢,..(a, b) + S$,.,,(a, b) for every pair of states forming:

Sg&cc(a: b) =

2.7)

S%1cc(a,b) + SErey(a,b)
2

This system of linear equations is used to select pairs that are most likely to be equivalent. Only the
pairs above a threshold t and pairs where the best match is at least r time as good as any other match
are added to the set of key pairs. Afterwards, it links each feature in one model to its counterpart in the
other, beginning with landmarks and then examining the surrounding vicinity. The algorithm continues
this process until no more pairs of states or transitions can be found, leaving behind only the remaining
differences. See ?? for the formal algorithm.

S(a,b) = (2.8)

2.8.3. Language comparison of LTS

In the domain of model-based testing, it is assumed that both the model and the system under test
are hidden, with only inputs and outputs being observable. The objective is to verify that the system’s
inputs yield the expected outputs within the range of inputs and outputs defined by the model. If the
outputs are the same, one can be moderately assured that the system is correct. For this, a test set
has to be generated. A finite set of tests can be created that can be used for equivalence testing if the
maximum number of states in the system is known and the system and model are both minimal and
deterministic.

Traditionally, random sampling, i.e. taking random samples that represent the language, is per-
formed to obtain samples that represent the language when comparing LTSs. However, it is unreliable
as the samples often do not accurately represent the underlying language. While comparing two sets
of sequences is straightforward if they are finite, the structure of an LTS tends to be cyclic, resulting
in an infinite number of different sequences. If the LTSs are infinite, an implicit comparison becomes
impossible. An alternative approach is introduced in [26] using methods from the model-based testing
domain.

20 2. Background

W-Method
The W-method [27] systematically generates a finite set of sequences that are representative of a given
LTS. The test set ensures

* It reaches every state.
» There are no unexpected outgoing transitions from the states
» The correct state has been reached.

Given a reference LTS A and a model assumed to be a hidden LTS S, the W-Method constructs a
set of sequences that should be classified as equivalent by both LTSs. The set Y € X« ensures that
(LLA)NY =L(B)UY) = L(A) = L(B) and is called the test set of A. The test set is essentially a cross
product of three sets [26]:

1. State cover: A state cover C is a prefixed-closed set consisting of all sequences of inputs required
to reach every state of an LTS A from the start state. C < L(A4) such that € € C and for all states
g € Q q, there exists a ¢ € € such that §(q,,¢) = ¢

2. Characterisation set. For a subset W < X* the states q1,q2 € Q are called W-distinguishable if
(L(A,q)nW) # (L(A4,q,) nW). W is a characterisation set of A if any two distinct states of A are
W-distinguishable.

3. a set of symbols in X

A positive integer k, which estimates the number of extra states that may be required to account for
faulty states, is also needed to compute the test set Y. In our case, both models are visible to us so k
does not have to be guessed. The test set Y is computed as follows: Y = C({e}uZ U --- U ZFtHIW:

 C contains sequences that ensure every state is reached.

* {e}UZU---UZ" are permutations of X up to a length k that try every possible combination of
inputs from each state in an attempt to enter unexpected states in the model.

* W ensures the state reached by preceding operations is as intended.

The language of two LTSs A and B can be compared by generating a test set from A using the
W-method and measuring the ratio of test sequences classified identically by A and B. k can be found
by subtracting the number of states of B from the number of states in A. k can be 0 if B has fewer states.

2.9. Sequence alignment
Sequence alignment is a technique originally developed for computational biology, signal processing
and text retrieval. In the bioinformatics and computational biology field, its purpose is to compare and
analyze biological sequences, such as DNA, RNA or protein sequences. In the signal processing field,
it is mostly used for speech recognition, but also for error correction. Within the domain of text retrieval,
its application involves finding relevant information within large text collections. Some examples of
sequence alignment are recovering original signals after transmission over noisy channels, finding
DNA subsequences after possible mutations, and text searching with typing or spelling errors [28].
Beyond its origins, sequence alignment has found applications in various computer science do-
mains. Sequence alignment algorithms have been adapted to address challenges in text comparison,
natural language processing, and virus and intrusion detection. This demonstrates the broad appli-
cability of sequence alignment techniques, showcasing their significance across diverse areas within
computer science.

2.9. Sequence alignment 21

The goal is to identify similarities and differences between two or more sequences by arranging them
in a way that maximizes matching characters. This is often done by minimizing the cost to transform
the first sequence to the other sequence.

In our application, the possible operations are limited to the ones in Table 2.4.

Operation Definition
Insertion Inserting a symbol a at index i of sequence y and index i in sequence x is €
Deletion Deleting a symbol a at index i of sequence y.

Substitution Replacing symbol a for symbol b at index i of sequence y, where a # b.
Transposition | Replacing ab for ba.

Table 2.4: Possible operations in sequence alignment

Various algorithms exist that perform sequence alignment. The Needleman-Wunsch and Smith-
Waterman algorithms are two well-known dynamic programming based sequence alignment algo-
rithms.

Three different types of sequence alignment exist:

1. Global alignment: aligns two entire sequences. Best for sequences of roughly the same length
and highly similar over their entire length, e.g.:

SIMILARITY
PI-LLAR—-

Figure 2.6: Global alignment of 'similarity’ and ’pillar’. From [29]

2. Local alignment: aligns parts of two sequences, shorter than the entire sequence, possibly more
than one. Suitable for finding regions of similarity within sequences that might differ significantly
in other regions, e.g.:

MILAR
ILLAR

Figure 2.7: Local alignment of 'similarity’ and ’pillar’. From [29]

3. Multiple sequence alignment. more than two sequences need to be aligned, e.g.:

SIMILARITY
PI-LLAR—-
——-MOLARITY

Figure 2.8: Multiple alignment of ’similarity’, ‘immolarity’ and ’pillar’. From [29]

In this thesis it is of importance that the whole sequence of events should fit in the model, thus this
thesis will perform global alignment: the input sequence will be aligned to the learned DFA.

2.9.1. Distance measure
During sequence alignment, to assess the similarity of two sequences, a cost is calculated for trans-
forming one sequence into the other. For this, a distance measure can be used.

22 2. Background

In this thesis, the distance §(x, y) between two sequences x and y is the minimal cost of a sequence
of operations that transforms string x into string y. The total cost of transforming x into y will be the
sum of the cost of individual operations. The operations are a finite set of rules of the form §(z,w) = t,
where z and w are different strings and t is a non-negative real number. Only one operation can be
performed on a symbol, so if z has been changed into w, no further changes can be done on w[28]. If
for an operation §(w, z), the opposite operation §(z, w) exists at the same cost, so §(z,w) = §(w, z),
the distance is symmetric. Some of the most common distance measures are:

1. Levenshtein distance, also known as edit distance, which allows delete, insert and substitute
operations in both strings. Generally, the cost of one transform operation is 1. If different costs are
assigned, perhaps based on the type of change involved, we speak of the general edit distance.
An extension of the edit distance is when transpositions are allowed (i.e. a substitution of the form
ab—ba). While the edit distance is simple, it is powerful enough for a wide range of applications
[28]. The edit distance is symmetric and the distance will always be less than the length of the
longest string: 0 < d(x,y) < max(|x|, |y]).

2. Hamming distance which allows substitutions only at the cost of 1 per operation and is also sym-
metric. If |x| = |y| then the distance is finite and 0 < d(x,y) < |x|.

3. Episode distance allows only insertions at the cost of 1 per operation. This distance is not sym-
metric. d(x,y) is either |y| - |X| or co.

4. Longest common subsequence distance allows only insertions and deletions at the cost of 1
per operation. This distance reflects the longest pairing of symbols that is possible between
two strings. In other words, the distance is the number of dissimilar symbols. The distance is
symmetric and 0 < d(x,y) < |x| + |y| holds.

2.9.2. Needleman-Wunsch algorithm

The Needleman-Wunsch algorithm [30] is a global sequence alignment algorithm originally designed
to identify similarities in the amino acid sequences between two proteins. The algorithm uses dynamic
programming, which employs a divide-and-conquer strategy, breaking down the problem into smaller
sub-problems. These sub-problems are solved and their solutions are utilized to solve the original
problem. Sequences can differ as follows:

* match: two symbols at the same index are the same.
* mismatch: two symbols at the same index are different.
» gap: sequence B is aligned to A at an index i if the symbol has to be skipped at index i in B.

A scoring scheme is needed which assigns a score to the different actions that can be taken.

In the simplest method, the index at (i, j) in the matrix is assigned a value of 1 if the symbol at index
i of sequence x and index j of y are the same, otherwise, -1 is assigned, see Figure 2.9a. It is possible
to add a penalty factor or gap penalty, a number subtracted for every gap made, if gaps are allowed.
It can be a function prohibiting certain gaps if the penalty exceeds a certain barrier. Conventionally,
the penalty for a gap must be several times larger than the penalty for a mismatch. This is relevant in
the biomedical field because a gap in the polymer chain can disrupt the entire structure, and in DNA, it
can cause a shift in the reading frame [29]. However, if chunks are inserted/deleted, it should be less
expensive, as it occurs more often.

2.9. Sequence alignment 23

It then calculates the best alignment; the alignment that maximizes the alignment score, which is
the total score of the alignment.

The sequences to be aligned are represented in a two-dimensional array. Given sequence x and y
of size m and n, the two-dimensional array will be of size (m + 1) x (n + 1).

Needleman-Wunsch
match = 1 mismatch = -1 gap=-1
G Cc A T G c G

0 1 2 3 -4 5 6 7

G 1 1 +0 -1 2 3 4 5
®
A 2 0 0 1 0 1 2 3
1+
A G c T T 3 1 1 0 2 1 0 1
<
T 4 -2 2 1 1 1 0 1
A 1 _1 _1 _1 L
A 5 3 -3 1 0 Q 0 1
G| -1 1(-1]-1 ,
c] 4 -2 2 1 1 1 0
Cl-1|-1| 1|1 '
A 7 5 3 -1 2 2 0 a
T|(-1|-1]-1] 1
(b) Needleman-Wunsch pairwise sequence alignment. From
(a) Simple similarity matrix. From Wikipedia? Wikipedia?

Figure 2.9: Calulating different similarity matrices with Needleman-Wunsch

The algorithm proceeds through the following steps:

1. Initialize, see line 3-8 of Algorithm 1, the alignment

matrix:
G(i-1,j-1) Cii-1j)
dagonal | “i'“ (@) For x=0 to m assign j - gapPenalty to index
i b MIil[0].
it | (b) For y=0 to n assign i - gapPenalty to index

MIO](i].
Figure 2.10: Calculation of cell score. From [29]
2. Fill, see Algorithm 1, in the alignment matrix: at every
cell (i,j), pick the best score from left: M[i][j-1] ,up:
MT[i-1][j] or diagonal: M[i-1][j-1], see Figure 2.10.

3. Backtrace the alignment matrix to find the best align-
ment.

The best match will be the path obtained with backtracing that has the maximum score, starting from
the bottom right corner of the matrix (i = m, j = n), to the origin and following the path of the maximum
score, see Figure 2.9b. Moving diagonally represents a match, while moving horizontally or vertically
represents a GAP.

2From Wikipedia: https://en.wikipedia. org/wiki/Needleman%E2%80%93Wunsch algorithm

https://en.wikipedia.org/wiki/Needleman%E2%80%93Wunsch_algorithm

24 2. Background

Algorithm 1 Needleman-Wunsch algorithm

Input: size of sequences: m,n
Output: matrix: M

1: for i « 0 to m do

2: M{[i][0] « gapPenalty xi

3: end for

4; forj < 0tondo

5: M[0][j] < gapPenalty xj

6: end for

7. for i «1tomdo

8: forj «1tondo

9: match « M[i — 1][j — 1] + MatchScore(x;, y;)
10: delete « M[i — 1][j]+ gapPenalty
1: insert < M[i][j — 1]+ gapPenalty
12: M{[i][j] « max(match,delete,insert)

13: end for
14: end forreturn M

2.9.3. Smith-Waterman algorithm
The Smith-Waterman algorithm [31] is a local sequence alignment algorithm. In contrast to the Needleman—
Wunsch algorithm, the Smith—Waterman algorithm resets negative scoring matrix cells to zero. To align
two sequences x and y of length m and n a matrix H of size m x n is created. The algorithm starts with
setting H[k][0]=H[O][Il] = 0, for 0 < k < m and 0 < [< n. Afterwards it fills the matrix using the equation
below:

H[i = 1] — 1] + s(x, ¥5)

HI[] = max {0 U= W (2.9)
max;> H[{][j — 1] =W,
0

where
* H[i-1][-1] + s(x;, y;) is the score assigned when x; and y; are aligned.
 H[i-k][j] - W is the score assigned when x; is at the end of a gap of length k.
» H[i][-] - W, is the score assigned when y; is at the end of a gap of length k.

The backtrace procedure begins at the matrix cell with the highest score and continues until a cell
with a score of zero is reached. This approach identifies the highest scoring local alignment between
the sequences.

2.9.4. Tree-Sequence Alignment

The Needleman-Wunsch algorithm was originally created for sequence to sequence alignment. Tsoni
[32] has modified the Needleman-Wunsch algorithm to work for sequence to state machine model
alignment, where the state machine model is represented as a tree. The goal is to be able to align the
sequence with all the sequences that the learned model can generate. First, a level is defined for all
nodes. The level of the root node is 1, and after every transition, the level of the destination node is the
level of the source node + 1. The following modifications have been made to the Needleman-Wunsch
algorithm:

2.10. Evaluation metrics 25

©

a
@ symbol transition lewel a b d

b 0 2 4 6

a 0->1 1 -2 1 1 -3

N a 0->2 1 -2 1 1 -3

b ® 1->3 2 -4 -1 1 -3

b 2->4 2 -4 -1 2 0

@ b 4->3 3 -6 -3 0 0
d 3->5 3 -6 -3 3 -3

d e e 3->6 3) -3 3 -3
d 3->5 4 -8 -5 2 2

ole I

(b) Similarity matrix for the abd and the tree, where the match
(a) Tree that models the sequences acd, ace, abbd, and abbe penalty is 1, mismatch penalty is -1 and gap penalty is -2.

Figure 2.11: Tree representation of a FSA and the calculated similarity matrix

» During the initialization, the matrix will be of the size #transitions in the tree x #length of the
sequence, where every transition is of the form (source node, destination node), see Figure 2.11a.

+ During the filling of the matrix, for every cell the maximum value between left, upper and diagonal
neighbour of the cell has to be taken. However, to find the diagonal and upper values the table
has to be searched for the cells with destination node equal to the source node and the level
being one less than the current cell, see Figure 2.11b.

» State machine models contain the event as a label on the transition, thus every index of the
sequence is compared to an edge in the model.

After the matrix has been initialized and filled, the best alignment can be found with backtracing.
Similar to Needleman-Wunsch, backtracing starts at the bottom right corner of the matrix (i = m,j = n),
to the origin and following the path of the maximum score. During every move, it has to be checked
whether previous _node == source_node. There are two possible options:

1. If the source node of transition of the current index in the trace is not equivalent to the previous
node, it means there is a mismatch edges in the model have been skipped.

2. If the transition is the same as the transition at the previous index, there is an added edge for the
current index.

The result of the Tree-Sequence alignment algorithm will return the aligned sequence with a + if
an event was added and — if an event was removed. To elucidate an example is presented in Figure
2.11. Given the model in Figure 2.11a, the alignment algorithm will compute the matrix in Figure 2.11b
for the sequence ’abd’. Given the matrix, the aligned sequence will be a,b,d/+|e/+.

2.10. Evaluation metrics

A fundamental part of any Machine Learning method is evaluating the classification. Classic evaluation
metrics include Classification Accuracy, Precision, Recall, Confusion Matrix, Receiver Operating Char-
acteristic (ROC) curve, Area Under the Curve (AUC), F1-score, Mean Absolute Error (MSE), Mean
Squared Error (MSE) and Logarithmic loss. These metrics allow for judgements about the system and
indicate the quality of a method.

26 2. Background

Algorithm 2 Tree-Sequence Alignment matrix computation

Input: edges: E, sequence: S
Output: alignment matrix: M
1: function getThreeNeighbouringCells(i, j, edge, transition)
2: uplndex « FindUpIndex(edge, i, j)
3: left « M[i,j — 1] + GAP
4 up < M[uplindex, j] + GAP
5 diagonal < M[upindex,j — 1] + MatchScore(edge.label, transition)
6: return [left, up, diagonal]
7: end function
8: function computeMatrix(matrix, incoming_trace)

9: for each fransition in incoming_trace do
10: for each row_key in matrix do
1: value, position < max(getThreeNeighbouringCells())
12: if position == 0 || position==2 then
13: else if position==1 then
14: if transition == transition of the row_key then
15: writeMatrix(row_key, transition, value+MATCH)
16: else
17: writeMatrix(row_key, transition, value+MISMATCH)
18: end if
19: end if
20: end for
21: end for

22: end function

2.10. Evaluation metrics 27

True Class
Positive Negative

(] [}

() =

S 3 ™ FP
o ¢

T

()

ey

O

L o

T 3

0 3 FN ™™
S

a 2

Figure 2.12: Layout of a confusion matrix, from [33]

Before defining the evaluation metrics, the basic building blocks need to be defined. A true positive
(TP) is an instance that is positive and has been correctly predicted to be positive. Similarly, a true
negative (TN) is an instance that is negative and has been correctly predicted to be negative. A false
positive (FP) is an instance that is negative, but has been falsely predicted to be positive. Similarly, a
false negative (FN) is an instance that is positive and has been falsely predicted to be positive.

» Accuracy is defined as number of correct predictions out of the total number of predictions.

* Precision represents the proportion of positive predictions that were actually correct:

Precision = e 2.10
recision = TP T FP (2.10)

Recall represents the proportion of actual positives were correctly predicted:

Recall = i 2.1
et = TP Y FN @11)
» Confusion matrix is a matrix containing the TP, FP, TN, FN counts for every class, see Figure

2.12. It also works for multi-class classification.

* ROC curve shows the TP and FP rates at different thresholds. Typically ,the TP rate is on the
y-axis and the FP rate on the x-axis. The top left corner represents the optimal point, where the
TP rate is one and FP rate is zero. A threshold defines the value at which the classes are spilit.
For example, if logistic regression has been used, a probability will be returned. If the threshold
is 0.6, the values above 0.6 will belong to one class and the values above 0.6 will belong to the
other class.

AUC curve measures the area under the entire ROC curve and provides an aggregate measure
of the performance across all possible threshold values. It is scale-invariant and classification-
threshold-invariant.

F1-score computes the average precision and recall:

precision X recall TP
x —

F,=2 (2.12)

1

precision +recall Tpy4y L
2(FP+FN)

28

2. Background

* MAE takes the mean of the differences of each predicted and actual value:

N
Zieq Vi —x

MAE =
N

» MSE takes the square of the differences of each predicted and actual value:

1w .
MSE = = > (% - 1)

i=1

(2.13)

(2.14)

* Logarithmic loss, also known as log loss, is an evaluation metric for binary classification. It mea-
sures the difference between the actual binary value and predicted probability. The uncertainty
of predictions is taken into account by penalizing models more for confident incorrect predictions.

The lower the log loss, the better the model performance.

N
1
LogLoss = N Z(yi “log(pi) + (1 —y) - log(1 —py))

=1

(2.15)

where N is the number of observations, y; is the actual binary outcome for the i-th observations

and p; is the predicted probability that the i-th observation belongs to class 1.

It is important to select an evaluation metrics tailored to the data used as some evaluation metrics
can be misleading when there is class imbalance. Class imbalance occurs when one class occurs a

lot less than the other class(es) causing an disproportionate ratio of instances.

Related Work

3.1. Anomaly detection in logs

Anomaly detection in software logs is a well-researched area, using a range of methodologies from
machine learning. Various techniques have been applied, including deep learning methods and state
machine learning methods.

Fu [34] explores system anomaly detection using FSA, with a focus on performance issues with
unstructured log data. A FSA is modeled using the normal system behavior logs. From the unstructured
logs, the log messages are extracted without the parameters and clustered into groups based on their
similarity, which is measured with an edit distance. A common part in their messages used log key
for the group. Afterwards, the unstructured logs are transformed into a structured format, represented
by their log key and associated parameters. A sequence of these log keys can then represent the
execution path of the program. Once the log data is structured, Fu trains an FSA where each transition
corresponds to a log key. For anomaly detection, the log message sequence input is first parsed into
a sequence of log keys, which is then checked against the learned FSA. If the sequence does not
conform to the FSA, it is raised as a workflow error. The model then proceeds to detect performance
anomalies. It compares the execution time of the input sequence to the learned transition times in the
FSA. If the execution time exceeds a predefined threshold, it is considered a performance anomaly.
Additionally, the model checks for low performance within loop structures using defined thresholds. Fu
primarily targets execution anomalies, focusing on workflow issues and performance-related errors.
Any sequence that deviates from the learned FSA is flagged as an anomaly, with no insights into the
difference in behaviour. Additionally, extreme values in the time taken to transition between states were
used to indicate slowdowns in the system.

Anomaly detection has more often been explored using deep learning techniques. One example is
DeepLog [6], a model proposed for anomaly detection in large volumes of system log data. At its core
is a deep neural network employing Long Short-Term Memory (LSTM). Deeplog treats log entries as
sequences that follow determined grammar rules and structured patterns, similar to natural language
processing. The architecture comprises of three main components: a log key anomaly detection model,
a parameter value anomaly detection model, and a workflow model to diagnose detected anomalies.
First, each unstructured log entry is parsed into log key and parameter value vector. The parsed se-
quence is used to train a log key anomaly detection model and system execution workflow models.
For each key k, a system performance anomaly detection model is also learned. Anomaly detection

29

30 3. Related Work

is performed at per log entry level, identifying deviations from the learned model. DeeplLog detects
performance anomalies by calculating the mean square error (MSE) between prediction and observed
parameter value vector. New log entries are first parsed and then go through the log key anomaly
detection model, followed by the parameter value anomaly detection model. If an entry is anomalous,
the workflow model provides additional information to the expert for in depth diagnosis on the anomaly.
A great feature of DeepLog is that it allows the learned model to incrementally adapt and update over
time to new log patterns. While DeepLog is able to detect workflow errors and identify which sequences
deviate from normal behavior, it gives no insight into the decision-making processes or execution paths
in the model. This limitation prevents a direct comparison with normal behavior, as normal behavior is
stored implicitly within the LSTM model.

3.2. Log-based behavioural differencing
An extension of anomaly detection in software logs involves gaining insight into the differences between
logs. Several tools have been developed for behavioral differencing.

Goldstein [35] developed a tool that detects anomalies and visualizes behavioral differences be-
tween normal and abnormal executions by learning a behavioral model with FSA from both types of
behavior. It is similar to Fu [34], with the addition of difference computation and visualization. Addi-
tionally, the tool does not limit transitions that do not fit the normal model. The tool operates in four
steps:

1. Log normalization by extracting log keys and transforming the log data into normalized or struc-
tured log data.

2. Behavioral model extraction in the form of a FSA using the kTails [36] algorithm.

3. Difference computation of the two models by comparison of FSA models with a difference model.
The difference model has all nodes from both models: common nodes are nodes in both models,
nodes only in the second model are depicted as added nodes and nodes that are only in the first
model are depicted as removed nodes.

4. Visualization of the extracted differences, automatically pointing out: execution flow outliers and
transition time performance degradations with bold and dashed lines and colors.

The tool is able to analyze millions of lines of logs, reducing the effort required by experts during log
data investigation. However, the tool’s effectiveness is limited to models with a relatively small number
of nodes, not more than a couple of dozens. Otherwise the tool may generate all possible differences,
leading to long run times. It is possible to limit the number differences that the tool adds to the visual-
ization, but this limits the exhaustiveness and accuracy of the tool. Furthermore, the tool approximates
the logs, causing the comparison to contain more differences that may not necessarily be evident in
the logs. Lastly, the tool only allows the comparison of two models.

De Knop optimized the visualization tool created by Goldstein [35] for log-based behavioral differ-
encing, specifically addressing the challenges of visualizing logs before and after software refactoring.
Graphs produced during refactoring tend to be very linear with long chains of nodes with few changes
and transition probabilities of 1. This linearity makes it difficult to distinguish meaningful patterns and
differences. Additionally, changes often occur in clusters. To address these issues, De Knop introduced
an enhancement to the visualization tool with a merge algorithm to be applied after the original differ-
encing algorithm by Goldstein [35]. The merge algorithm ensures no key insights are lost. By collapsing
long chains into single nodes, the algorithm significantly improves readability. De Knop manages to

3.2. Log-based behavioural differencing 31

reduce the output size of the original algorithm while not hiding important information, allowing for more
accessible analysis.

Similar to Goldstein [35], Amar [5] presents two algorithms: 2KDiff and nKDiff, both based on the
classic kTails algorithms. 2KDiff highlights the specific traces that show the differences between two
logs, while nKDiff highlights no specific traces but detects differences across many logs at once. 2KDiff
takes two logs as input and creates a k-FSM for each log, where k is a positive integer. It computes
the set of k-sequences in each log and identifies the k-differences, which are the k-sequences unique
to each log. Using a greedy approach, 2KDiff selects a minimal set of traces in each log that covers
all k-differences. These traces are then replayed over the k-FSMs, with the transitions corresponding
to k-differences represented as highlighted paths on the output FSM. nKDiff takes a number of input
logs L,, ..., Ly, labels each log, and computes the alphabet of all input logs. It starts with the creation
of a labeled FSM (LFSM), where each trace’s sequence of events is represented as a linear sub-
FSM. Each of the sub-FSMs is labeled with an index corresponding to the log it originated from. All
states in the LFSM are merged into equivalence classes, based on the states’ futures, which define
the states of the output k-DifflLFSM. Differences are highlighted as transitions that do not appear in any
overlapping sub-FSMs. It outputs a single labeled FSM representing the differences. 2Kdiff and nKDiff
help experts with in comparing execution logs. However, the approach is limited to k-differences and
reports all differences with equal importance, highlighting entire traces even if only a small part differs.

Methodology

4.1. Data Exploration

This section introduces the datasets used for training the models and evaluating the sequence align-
ment against the learned models. In practice, software log data is raw, unstructured, and often un-
labeled. The data used in this work will reflect this nature. The training set consists of positive data,
which represents normal traces and the expected behavior of the system. During the evaluation of the
sequence alignment, both positive (normal) and negative (anomalous) data will be aligned to the model
and evaluated as normal or anomalous.

4.1.1. Data preprocessing
The data is processed to be compatible with Flexfringe. The following preprocessing steps are required
to transform the data into Abbadingo format:

1. Parsing the logs by extracting event templates from unstructured logs and converting raw log
messages into a sequence of structured events.

2. Reconstructing the traces.
3. Count number of traces and alphabet size.

To parse the log events into distinct keys, Logparser! by Logpai is used. Logparser extracts event
templates from unstructured logs and converts the raw log events into a sequence of structured events.
This process is also known as message template extraction, log key extraction, or message clustering.

The traces are then reconstructed by grouping execution sequences of related events. For example,
the events for opening, reading or modifying and closing a file would constitute an event trace for that
file. These events can often be grouped by some key identifier that distinguishes different objects. All
events with the same identifier constitute a trace.

4.1.2. Hadoop Distributed File System
he Hadoop Distributed File System (HDFS) dataset? collected by [3], is a distributed file system de-
signed to run on commodity/low-cost hardware. It is a popular system and has thus been widely studied

"https://github.com/logpai/logparser
2HDFS data: https://github.com/Thijsvanede/DeepLog/tree/master/examples/data

33

https://github.com/logpai/logparser
https://github.com/Thijsvanede/DeepLog/tree/master/examples/data

34 4. Methodology

in literature. The dataset yields 24 million lines of logs from a Hadoop cluster running on over 200 EC2
nodes. The data is split into a training set (4.855 lines), a test set with positive traces (553.366 lines)
and a test set with abnormal traces (16.838 lines), where each line is one log trace and every number
represents an event.

The HDFS dataset® used has been processed such that the unstructured log entries are parsed
into log keys and grouped by their unique identifiers. Each line in the dataset represents the execution
sequence of a process. For details on the data collection and parsing, one may refer to [37] and [38].

While the dataset is no longer unstructured, it is not in Abbadingo format yet. Step 3 from the
preprocessing steps mentioned in Section 4.1.1 needs to be executed, such that the dataset starts
with a line containing the number of traces and alphabet size, and each trace starts with the type and
length of trace. After preprocessing, the dataset should resemble the format shown in Figure 2.5.

Data exploration

The training data consists of various log keys (events) that occur a varying number of times within a
trace. A log key may occur frequently or not at all. The occurrences of different log keys in the entire
training dataset are shown in Figure 4.1a. The most common log keys are 26, 5, 11, 9, 21, and 23,

while the rarest log keys are 25, 18, 6, and 16. The lengths of the traces are most often 19, as shown
in Figure 4.1b

TRAIN DATA: Count per Log Key (event) TRAIN DATA: Occurences of each trace Length

14000 2500

12000
2000

10000

1500
3 8000

#Occurence

S
6000 1000

4000

2000

(a) Occurrence count of each log key in the training data (b) Occurence counts of trace lengths in the training data

Figure 4.1: Comparison of occurrence counts and trace lengths in the training data

When manually inspecting the training data, several characteristics are noted:

» Most traces begin with a sequence of 5’s, 22’s or a combination of 5’s and 22’s.
+ Are followed by alternating 11 and 9’s or a sequence of 26’s.

» Can be followed by 2’s, 3’s and 4’s, which can also occur interchangeably.

» Most often end with a sequence of 23’s and a sequence of 3 times 21’s.

» Sometimes end with 26.

From Figure 4.2, it is apparent that the log key counts and trace lengths in the normal test data are
similar to the log key counts and trace of the training data, see Figure 4.1.

In the abnormal test data, certain log keys appear that are not present in the positive examples
(training data and normal test data), as shown in Figure 4.3a. However, the top six most frequent log
keys are the same as those in the positive examples. The most significant difference between the
abnormal and normal data lies in the trace lengths. Figure 4.3b clearly shows that many traces have
lengths of 2 and 3, which never occur in the positive examples.

Shttps://github.com/Thijsvanede/Deeplog/tree/master/examples/data

https://github.com/Thijsvanede/DeepLog/tree/master/examples/data

4.2. Modelling data with FSA 35

NORMAL TEST SET: Average Count per Log Key (event)

NORMAL TEST SET: Occurences of each trace Length

7000
1200
6000

5000 1000

Average Occurence Count

#Occurence

3000

2000 400

1000

o
g] & 8 =] 8 s] 19 13 25 22 23 20 28 31 24 26 14 21 29 32 35 30 36 27 37 3B 15
index Length

(a) Occurrence count of each log key in the normal test data (b) Occurence counts of trace lengths in the normal test data
Figure 4.2: Comparison of occurrence counts and trace lengths in normal test data

ABNORMAL TEST SET: Average Count per Log Key (event)

8000

ABNORMAL TEST SET: Occurences of each trace Length

7000

6000

5000

#0ccurence

3000

Average Occurence Count

2000

1000 100

)
9 08K EREA} 588 20 3 2 2726212922284130 2423 2533 32 42 31 38 1439 16 34 4043 37 36 35 44 17 15 19 6 1115
X Length

(a) Occurrence count of each log key in the abnormal test data (b) Occurence counts of trace lengths in the abnormal test data

Figure 4.3: Comparison of occurrence counts and trace lengths in abnormal test data

Due to the large size of the normal test data, the runtime for running the sequence alignment on the
dataset exceeds half an hour. To address this, the normal test data are split into sets of 20,000 lines
each, resulting in 28 subsets of the normal data.

4.2. Modelling data with FSA

To model the behavior of software logs using a FSA, more specifically a DFA, the state machine learning
tool Flexfringe is employed.

The HDFS dataset is large and sparse, containing events that may occur hundreds of times as well
as events that may occur only once. Consequently, the FSA learned from this dataset will be large and
potentially difficult to interpret. To make the model more concise and easier to visualize, two parameters
will be set: -sinkson and -sinkcount. Itis important to select an appropriate sink count to ensure
that the model does not overfit or underfit the data. This section will discuss the heuristics and settings
selected in Flexfringe for the HDFS dataset.

4.2.1. Heuristic selection

As mentioned previously, Flexfringe has implemented the following evaluation functions: Alergia, Like-
lihoodratio, MDI and AIC, EDSM, and overlap driven.

HDFS dataset

The HDFS dataset is very large, which can cause many of the tests performed by Alergia on each pair
of states to fail, resulting in a larger and sub-optimal DFA. Likelhoodratio aims to solve this issue by

36 4. Methodology

computing a single test for the entire merge procedure. MDI uses the Kullback-Leibler divergence to
ensure that the distribution of the original data and the learned model are similar; however, it is very
computationally expensive. In fact, running Flexfringe with the MDI evaluation function on the training
data was halted after 36 hours. AIC focuses on balancing the model complexity and the goodness of
fit, considering both the likelihood and the number of parameters. EDSM requires both positive and
negative data, whereas the HDFS dataset only contains positive data, resulitng in a model with only
one state, see Appendinx A.1.7. Overlap Driven’s approach of favoring states with overlapping symbols
and its success in the StaMInA competition suggest it could be highly effective for the HDFS dataset,
which may have a large alphabet and sparse data.

Based on these factors, Alergia, MDI, and EDSM are not suitable for this thesis. While Likelhoodra-
tio and overlap driven are also viable options, AIC is a widely used heuristic and is thus selected as
evaluation function.

The following command is used to model the DFA with Flexfringe:

Nout\build\x64-Release\ flexfringe .exe ..\hdfs train_abbadingo.txt —-
heuristic -name aic --data-name aic_data —--sinkson=1 —--sinkcount=n

The commands are specified in the following order: build, train data file, heuristic-name,
data-name, toggle sinks, sinkcount, where n>0.

4.2.2. Sink count

The goal is to select a model that represents the data in an understandable DFA, avoiding many parallel
lines and fork constructs. Different DFAs will be learned with sink counts of 5, 10, 50, 100 and 300.
The model with the largest sink count that still captures the behavior accurately and reduces the signs
of parallelism will be used for the subsequent experiments.

4.3. Sequence alignment

After the DFA is learned, both normal and anomalous test cases need verification within against the
model. If a sequence does not conform to the model, sequence alignment is performed to attempt to
align it to the model. The sequence alignment algorithm is be integrated into the Flexfringe codebase.

The Tree-Sequence Alignment algorithm presented in Section 2.9.4 aligns a sequence to a state
machine model represented as a tree. It uses the levels of nodes to match source nodes with desti-
nation nodes, where the source node is one level lower than the destination node, in order to find the
previous state in the model.

The most significant modification between the sequence alignment implemented in this thesis and
the Tree-Sequence Alignment algorithm occurs during the matrix calculation. In our approach, the
alignment process allows skipping to any other state in the model when a mismatch is encountered,
regardless of the level of the states. As a result, the requirement for the nodes to be at a specific level
is discarded. Instead of restricting nodes to those that are 1) source nodes of the current transition and
2) one level below the current transition level, we now apply only the first criterion during the diagonal
and upper value calculations. This adjustment expands the pool of nodes considered, providing more
opportunities to skip and align transitions.

The alignment that is implemented in this thesis consists of three steps:

1. Initialize the matrix of size #edges in the automaton x #length of the sequence.

The matrix contains every (source_node, transition_node) pair of the automaton at each index of
the sequence.

4.3. Sequence alignment 37

Look up in the matrix is performed on destination_node of the transition, then the symbol_index
in the trace and lastly on the source _node

. Fill the matrix, see Algorithm 2.

At every index of the sequence, starting from the first, the symbol at that index is checked against
all edges in the entire automaton using breath first search starting from the root of the automaton,
filling each cell in the matrix.

Breath first search is chosen to ensure the diagonal, left and upper cells have already been filled
in from the previous calculation, avoiding empty cells, causing errors in the cell calculation of the
current state.

As in the Needleman-Wunsch algorithm, the maximal value of the diagonal cell value plus either
match or mismatch score, left cell value plus gap penalty, and upper cell value plus gap penalty
is selected.

However, multiple diagonal and upper cell values are possible, each of which are taken into
consideration and stored in the matrix.

Backtrace to acquire the best alignment. Starting at the last column of the matrix, which is the
last index in the sequence, select the transitions with the highest score. Proceed until the first
index of the sequence. This can result in more than one possible alignment. Therefore, at every
transition it has to be checked whether source node equals transition_node. For the sake of this
thesis, we only output one possible alignment.

The algorithm will return the aligned sequence and an alignment score. A’+’ represents an added
edge and a '’ represents a skipped symbol in the trace or a skipped edge in the model. It is possible
that there are more ways to align a sequence if for an index in the trace, there are several transitions
with the same score, other possible transitions are indicated with a’|’.

Three types of scoring are experimented with: static, linear and dynamic scoring. To allow the
user to easily select one of these scoring types with the Needleman-Wunsch sequence alignment, the
following parameters are implemented:

1.

2.

--predictalignnw, toggle for the implemented Needleman-Wunsch sequence alignment.

--nwscoring, scoring mechanism for predict align with Needleman-Wunsch sequence align-
ment, options: ’static’, ’linear’ or ’dynamic’. Default=static.

To run the prediction, the following command is used:

Nout\build\x64-Debug\ flexfringe .exe ..\ hdfs_test _normal.txt ——ini inil\aic

.ini -—-mode=predict ——predictalign=1 —--predictalignnw=1 —-—nwscoring=
linear ——aptafile =..\\ hdfs_train_abbadingo. txt. ff.final.json

The commands are specified in the following order:

1.

2.

build, path to the build file
path to the test data file

either an .ini file or the heuristic-name and data-name.

. predictalign, toggle for original predictalign already implemented in Flexfringe.

predictalignnw, toggle for prediction with Needleman-Wunsch sequence alignment.

38 4. Methodology

6. nwscoring, set scoring mechanism for predict align with Needleman-Wunsch.
7. aptafile, file path containing learned model by Flexfringe

It is required that the evaluation function used for the learned model from the APTA file matches the
selected evaluation function, in this case it will be the AIC evaluation function.

4.3.1. Evaluation
To evaluate the performance of an alignment produced by the alignment algorithm, the final score of
the aligned sequence, derived from the alignment matrix, is normalized to ensure that the sequence
length does not affect the evaluation. When referring to the alignment score, it always denotes the
normalized alignment score. The score can be calculated as:

alignment score — (length of trace x #mismatches)

score = . 4.1
r length of trace x #matches — length of trace x #mismatches (4.1)

Sequences that contain event keys that are not in the model alphabet and sequences that end in a
non-final state, automatically are assigned an alignment score of 0. Sequences that have a score of 1
fit perfectly in the automaton and required no alignment.

4.3.2. Classification
The sequence alignment algorithm returns the aligned sequences along with a normalized alignment
score ranging from 0 to 1. To classify the aligned sequences, a threshold needs to be set, which
determines whether the traces are labeled as normal (1) or anomalous (0).

The thresholds are selected as follows:

» The first threshold is the minimum alignment score achieved in the training set, that is larger than
0.

» The second threshold is the first quartile of the alignment scores of the training set.

Experiments

This section presents three experiments that aim to answer the research questions 1, 2, 3, and 4.

5.1. DFA model

To select the appropriate sink count, DFA models with different sink counts were learned. The DFA
model without any sinks had a size of 3653 nodes. This size makes the model too large and difficult
to interpret visually, also rendering it impossible to include the entire model in the Appendix. To reduce
the model in size, models with different sink counts were learned resulting in DFAs of different sizes,
see Figure 5.1.

Table 5.1: DFA sizes with different sink counts

] Model \ Sinks \ Size (in nodes) ‘
AIC none | 3653
AIC 5 444
AIC 10 189
AIC 20 94
AIC 50 75
AIC 100 55
AIC 300 37

The most significant improvement in the model’s ability to learn the unique patterns occurs when the
sink count is set to 50, see Appendix A. The model with sinkcount=300 captures the overall behavior
and is much more readable and simple compared to the models with a sink count of 50 and less. For
details, refer to Appendix A.1.1 and A.1.5. Therefore, Experiment 1 is performed on three models with
sink count of 50, 100 and 300. Experiments 2 and 3 will only run on the model with sinkcount=300.

5.2. Experiment 1: Scoring
This section aims to answer research question 1: "How effective is sequence alignment on a compact
model of behavior in detecting flows that deviate from expected behavior?”.

For Experiment 1, three models are selected with sink count 50, 100 and 300, see Appendix A;

39

40 5. Experiments

5.2.1. Static scoring

In the first experiment, sequence alignment uses static scoring. Where the match, mismatch and gap
penalties are static values. To find the optimal scoring, arbitrary values between a range are tried on
the train dataset. For the match score, values between 1 and 10 are considered. For the gap penalty,
values between -1 and -7 are considered. Lastly, for the mismatch penalty values between -1 and -12
are considered. It should be noted that the match score is always be positive as matches should be
rewarded. The gap penalty is smaller than the mismatch penalty as a gap equals a jump and we want
to motivate the model to perform jumps such that an alignment can be found. The best performing
combination is chosen for static scoring, and also used for the subsequent experiments.

5.2.2. Linear scoring

The linear scoring takes into consideration how large the current gap in the sequence already is. The
gap penalty scales with the length of the existing gap. The motivation behind this is that a larger gap
generally indicates a larger deviation from normal behavior. Therefore, a larger gap should be penalized
more. To illustrate this, consider the sequence aeee, where the bold part represents a gap. During the
alignment of this sequence to the automaton shown in Figure 2.11a, the gap penalty will be at the first
gap -1, and 2*-1=-2.

5.2.3. Dynamic scoring

Dynamic scoring penalizes jumps to parts in the automaton that are further away more than jumps to
parts of the automaton that are closer. This is because a jump to a more distant part of the automaton
represents a greater difference from the state of the previous index. It is important to reflect this in the
gap penalty. To take the distance into consideration the function merged_apta_distance from Flexfringe
is used. This distance metric is based on the distance between the two states under consideration and
their mutual ancestor node. The gap score is calculated by multiplying the distance with the gap penalty.

5.2.4. Results

Several match, mismatch and gap penalty scores were tested, as shown in 5.2. These values were
selected at random within the following ranges: match scores between 1 and 10, mismatch scores
between -2 and -12, and gap scores between -1 and -7. The best scoring combination was a match
score of 2, mismatch penalty of -10 and gap penalty of -1.

The average alignment scores for each model, with sink counts 50, 100 and 300 and each scoring
type, are presented in Table 5.3 for the training set, in Table 5.4 for the normal test set, and in Table 5.5
for the abnormal test set. The scores for the normal data are consistently above 0.9 across most scoring
types, except for dynamic scoring on the model with sinkcount=300. Performance on the train and
normal test set appears to be similar across all scoring types. In contrast, the scores for the abnormal
data are consistently below 0.16, highlighting a distinct difference between normal and abnormal data.

As the sink count increases, the average alignment scores decrease across all models with static
and linear scoring on all datasets. This outcome is expected, as traces will fit the model less well.
Dynamic scoring on the model with a sinkcount=300 performs worse compared to other models and
scoring types for the training set and normal test set. A higher sink count can reduce the closer states
available for the algorithm to jump to, resulting in jumps to more further parts in the automaton. This
increases the distance of jump operation, resulting in a higher gap penalty and lower alignment score.
Furthermore, the algorithm is more inclined to jump to closer states, even if jumping to a further state
could result in the sequence ending in a final state.

Table 5.6 presents the calculated thresholds for every model, derived from the minimum and first

5.2. Experiment 1: Scoring 41

Table 5.2: Different scoring tested on training data and a model learned with AIC and sinks=300

’ match ‘ mismatch | gap penalty | alignment score

1 -2 -1 0.920656

2 -3 -2 0.911173

2 -4 -3 0.904356

2 -9 -1 0.969516

2 -10 -1 0.972057

2 -10 -3 0.949932

2 -10 -6 0.916325

3 -10 -1 0.966415

4 -11 -1 0.969516

4 -12 -2 0.955291

5 -10 -7 0.908949

6 -10 -7 0.908309

10 -6 -4 0.905693

Models Static scoring | Linear scoring | Dynamic scoring

AIC, sinks=50 0.987714 0.985216 0.920497
AIC, sinks=100 0.985193 0.982254 0.958306
AIC, sinks=300 0.95499 0.932214 0.794599

Table 5.3: Average alignment scores with different scoring for three AIC models on the training set

Models Static scoring | Linear scoring | Dynamic scoring
AIC, sinks=50 0.987259 0.984359 0.919734
AIC, sinks=100 0.983361 0.979874 0.955431
AIC, sinks=300 0.953033 0.929921 0.791148

Table 5.4: Average alignment scores with different scoring for three AIC models on the normal test set

Models Static scoring | Linear scoring | Dynamic scoring
AIC, sinks=50 0.150035 0.139909 0.111026
AIC, sinks=100 0.149369 0.139693 0.124971
AIC, sinks=300 0.147658 0.134126 0.136654

Table 5.5: Average alignment scores with different scoring for three AIC models on abnormal test set

quartile scores of the training data. Using these thresholds, the confusion matrices were plotted, see
Appendix B.3, and the F1-scores were calculated for the Needleman-Wunsch (NW) alignment on the
training, normal and abnormal test sets. Additionally, the F1-scores for predict without alignment,
predictalign from Flexfringe were computed for comparison, see Table 5.7. For the corresponding
confusion matrices and ROC curves, refer to Appendix B.

From the F1-scores, it is apparent that the minimum alignment score as threshold always out-
performs first quartile score as threshold. Moreover, when comparing the NW-alignment with predict
and predictalign from Flexfringe, predictalign shows the best performance for models with a
lower sink count (<300). However, when the sink count increases from 100 to 300, the F1-score from

42 5. Experiments

Models Scoring | Min value (>0) \ First quartile

AIC, sinks=50 Static 0.842342 1.0

AIC, sinks=50 Linear 0.691441 1.0
AIC, sinks=50 | Dynamic 0.891892 1.0
AIC, sinks=100 Static 0.842342 0.9875
AIC, sinks=100 | Linear 0.691441 0.9875
AIC, sinks=100 | Dynamic 0.8875 0.991667
AIC, sinks=300 Static 0.842342 0.947368
AIC, sinks=300 | Linear 0.361111 0.929825
AIC, sinks=300 | Dynamic 0.878378 0.95614

Table 5.6: Average alignment scores with different scoring for three AIC models on abnormal test set

predictalign drops significantly and the NW-alignment with both static and linear scoring perform
better.

Upon examining the confusion matrices, it is apparent that with NW-alignment, using the minimum
score as a threshold, most errors are FP, with few FN. In contrast, when using the first quartile score
as a threshold for NW-alignment, the majority of errors are FN with very few FP. The predictalign
method shows a similar pattern to NW-alignment with the first quartile threshold, but with less errors
overall, exhibiting mostly FN and very few FP.

Flexfringe NW NW NW
Models Predict PredictAlign PredictAlign | PredictAlign | PredictAlign
(Static) (Linear) (Dynamic)
AIC, Sinks=50, min | 0.9288 0.9830 0.9449 0.9446 0.9576
AIC, Sinks=50, fq 0.9288 0.9830 0.8866 0.8866 0.8877
AIC, Sinks=100, min | 0.9086 0.9664 0.9442 0.9440 0.9536
AIC, Sinks=100, fq | 0.9086 0.9664 0.8639 0.8631 0.8511
AIC, Sinks=300, min | 0.8959 0.9073 0.9373 0.9378 0.8427
AIC, Sinks=300, fq | 0.8959 0.9073 0.8688 0.8624 0.8497

Table 5.7: F1-scores of no alignment, Flexfringe predictalign and NW-predictalign.

Based on the ROC curve and AUC score for all scoring methods, see Figure 5.1, sequence align-
ment performs similarly for models using static and linear scoring. Models with sinkcount=300 performs
slightly worse across all scoring types and the performance of dynamic scoring is worse across different
sink counts compared to static and linear scoring.

The ROC curves from predict, predictal ign from Flexfringe and NW-alignment for sinkcount=300,
see Figure 5.2, support the earlier result that NW-alignment outperforms prediction and predictalign
when the sink count is 300. A model with sinkcount=300 with NW-alignment scores identical AUC
scores with a predictalign with sink count 5, 10, 100 with predictalign and always scores bet-
ter than predict, see Appendix B.4. Showing its improvement on regular prediction and its effectiveness
in behavioral differencing when sinks are turned on.

To demonstrate the impact of sequence alignment, we will analyze the specific trace "5 5 5 22 11
911911926262634334323232321 21 21” from the normal test set, see Table 5.8 for the
aligned state sequence. This trace fits the model with sinkcount=50, but for the models with a higher
sink count, the trace needs to be aligned. To review the aligned state sequence, refer to the models

5.2. Experiment 1: Scoring 43

ROC Curve Comparison for Models with Different Sink Counts and Static Scoring ROC Curve Comparison for Models with Different Sink Counts and Linear Scoring

1.0+ T 1.0 /__, R

0.8 0.8
£ £
g 0.6 E 0.6
=) =
o o
] T
g g
] s
2 04 2 04
3 3
4 4
B H
4 2
= =

0.2 0.2

—— Static 50 (AUC = 0.99) —— Linear 50 (AUC = 0.99)
Static 100 (AUC = 0.99) Linear 100 (AUC = 0.99)
0.0 —— static 300 (AUC = 0.97) 00 —— Linear 300 (AUC = 0.97)
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10
False Positive Rate (Positive label: 1) False Positive Rate (Positive label: 1)
(a) ROC curve for model AIC with static scoring. (b) ROC curve for model AIC with linear scoring.
ROC Curve Comparison for Models with Different Sink Counts and Dynamic Scoring
Lo
0.8

True Positive Rate (Positive label: 1)

—— Dynamic 50 (AUC = 0.35)
Dynamic 100 (AUC = 0.97)
—— Dynamic 300 (AUC = 0.88)

0.0 02 0.4 0.6 0.8 1.0
False Positive Rate (Positive label: 1)

(c) ROC curve for model AIC with dynamic scoring.

Figure 5.1: ROC curves for model AIC with different sink counts and scoring methods.

ROC Curve Comparison for Predict, Predictalign with Sink Count = 300 and Predictalign NW with Sink Count = 300 and static scoring ROC Curve Comparison for Predict, Predictalign with Sink Count = 300 and Predictalign NW with Sink Count = 300 and linear scoring

10 10
02 02
— static 300 (AU = 097) — Linear 300 (AUC = 087}
redicalgn 300 (AUC = 0.92 redictaign 300 (AUC = 0.92)
o0 —— Predict 300 (AUC = 0.83) oo — Predict 300 (AUC = 0.83)
Fals Posiv Rate (Positive labe 1) Fals Posive Rate (Postve labek 1
(a) ROC curves for predict, predictalign and NW-alignment with (b) ROC curves for predict, predictalign and NW-alignment with
sinks=300 with static scoring. sinks=300 with linear scoring.

Figure 5.2: ROC curves for model AIC with different sink counts and scoring methods.

in Appendix A. The aligned sequences are given in Table 5.9, where symbols followed by /- indicate
symbols that were skipped in the automaton or skipped in the sequence, and those with /+ indicate
jumps made by the model to read the symbol.

44 5. Experiments

Model States Alignment
score

Sinks=50 | [1,4,10,18,29,50,88,147,232,345,482,645,820,1004,1322,1727,2189, 1
2746,3365,1002,1314,1715,1715,1715,1715]

Sinks=100 | [1,4,10,18,29,50,88,147,232,345,482,645,820,1004,1727/+,1321/+ 0.97
,1321/-,1727,1727/-,1002/+,1314,1715,1715,1715,1715]

Sinks=300 | [1,4,10,18,29,50,88,147,232,345,482,645,820,820/-,820/-,820/-,820/- 0.94
,820/-,820/-,1002,1314,1715,1715,1715,1715]

Table 5.8: States of aligned sequence of trace: 65522 119119119262626343343232323212121”

Model States
Sinks=50 55522119119119262626343343232323212121
Sinks=100 5552211911 9119 26 26 26 3 4/+ 3/+ 3/+ 3/- 4 4/- 23/+ 23 23 21 21 21
Sinks=300 | 55522119119 119 26 26 26 26/- 26/- 26/- 26/- 26/- 26/- 23 23 23 21 21 21

Table 5.9: States of aligned sequence of trace: 55522 119119119262626343343232323212121”

5.3. Experiment 2: Parallelism
This experiments aims to answer research question 2: "What are the characteristics of parallel pro-
cesses in FSA and what rules can be added to the sequence alignment to effectively recognize these?”
and 3: "How effective are these rules in combination with sequence alignment on recognizing parallel
processes in a compact model of behavior?”.

As explained in Section 2, parallelism causes log entries to be out of order or have different orders
every time. Some examples of parallelism in logs are:

Example 1: Interleaved events
This occurs when events happen in an interleaved manner, for example:

1.5225511911 9119 26 26 26 23 23 23 21 21 21
2.55522911911926261126232323212121

The bold part represents a sequence of interleaved events.
It is also possible that sub-sequences occur in an interleaved manner. For example:

1.22555119(26 26 26) (119119) 24 4 323 23232121 21
2.52255119(119119) (26 26 26) 2 23 23 23 21 21 21

Where the sub-sequences are indicated with brackets.

Example 2: Swapped events
This occurs when when traces are almost identical but some events have been swapped, for example:

1.556522119119119262626343433232323212121
2.52255119119119262626434 232323212121

The bold part indicates the swapped events.

5.3. Experiment 2: Parallelism 45

5.3.1. Ignore-skip rule

To enhance the detection of parallelism, a rule allowing the recurrence of a skipped event is imple-
mented. This means that the algorithm is allowed to temporarily ignore one event in order to detect
potential parallel structures, and when that event reappears later in the sequence, it can be processed
without any cost. However, only events that occurred within a certain distance of the current event
should be allowed to be skipped. This ensures that only recent events are considered relevant. This
prevents an event ignored at the beginning of a sequence from being allowed to be skipped at the
end of a long sequence. In this case, an arbitrary distance of 3 is chosen. This approach introduces
an additional step during the cost calculation in each matrix cell, as it requires checking the skipped
symbols from the previous three indices against the current symbol.

5.3.2. Results

From Table 5.10, it appears alignment scores show only a slight increase. The F1-score stays the same
with 0.9373 for the model with sinkcount=300 and static scoring and 0.9373 for the same model with
ignore-skip rule when threshold is the minimum score. However, the F1-score decreases to 0.8688 for
the same model with ignore-skip rule when threshold is the first quartile score. The distribution of the
confusion matrices, see Figure 5.4, is similar as without the ignore-skip rule and ROC curves appears
similar as well, see 5.3. However, the AUC of the model with the ignore-skip rule is 0.01 higher.

Dataset Regular model | Model with skip
Training set 0.95499 0.956451
Normal test set 0.953033 0.954555
Abnormal test set 0.147658 0.147785

Table 5.10: Average alignment scores for model with sinkcount=300 and same model with skip rule.

ROC Curve Comparison for normal model and model with skip rule

4

|
—

101

0.8 1

0.6

0.4

True Positive Rate (Positive label: 1)

0.2 1

—— Static 300 (AUC = 0.97)

0.0 7 Static with skip rule 300 (AUC = 0.98)

T T T T T T
0.0 0.2 0.4 0.6 0.8 10
False Positive Rate {Positive label: 1)

Figure 5.3: ROC curves for model with a sinkcount=300 and same model with skip rule.

46 5. Experiments

Confusion Matrix for Static Scoring with skip rule, sinks=300 with Threshold=0.848684 Confusion Matrix for Static Scoring with skip rule, sinks=300 with Threshold= 0.947368

17500
20000
15000

12500
15000

10000

True label
True label

10000 7500

5000
5000
2500

Predicted label predicted label

(a) Confusion matrix for model with skip rule with threshold = 0.848684 (b) Confusion matrix for model with skip rule with threshold = 0.947368
(minimum). (first quartile).
Confusion Matrix for Static Scoring, sinks=300 with Threshold=0.842342 Confusion Matrix for Static Scoring, sinks=300 with Threshold=0.947368

17500
20000
15000
12500
15000

10000

True label
True label

10000 7500
5000
5000
2500

Predicted label Predicted label

(c) Confusion matrix for model with threshold = 0.842342 (minimum). (d) Confusion matrix for model with threshold = 0.947368 (first quartile).

Figure 5.4: Confusion matrices for two different thresholds of the modified and static models with static scoring and sinks = 300.

To further investigate, the example traces mentioned in the cases are explored:

1.5225511 911911926 26 26 23 23 23 21 21 21 has a alignment score of 1.0 in the normal
and model with skip rule.

2.55522911911 926 26 11 26 23 23 23 21 21 21 has a alignment score of 0.982456 in the
normal and model with skip rule.

3.22555119262626119119244 3232323212121 increases from 0.913043 in the normal
model to 0.92029 in the model with skip rule

4. 5225511911 911926 26 26 2 23 23 23 21 21 21 has a alignment score of 0.9875 in the
original normal and model with skip rule.

5.555221191191192626263434 332323232121 21 has a alignment score of 0.94 in
the original normal and model with skip rule.

6. 52255119119 1192626264 3423 2323212121 has a alignment score of 0.965909 in
the original model and model with skip rule.

The results of these traces support the observation that the ignore-skip rule has a minimal effect.

5.4. Experiment 3: Modifying the original model

This experiment aims to answer research question 4: "Can sequence alignment improve the learning
process on a compact model?”

5.4. Experiment 3: Modifying the original model 47

Sequence alignment is run on the model with sinkcount=300 on the training data. Flexfringe returns
a “.result’ file with all aligned sequences along with their alignment scores. The traces with an align-
ment score of 1 are removed, leaving only traces with alignment scores less than 1. These remaining
sequences are aligned using various operations, including:

» Jumping from one state to another
+ Staying in the current state

+ Skipping a state

» Skipping a symbol

These are traces from the training data, so ideally, the model should take into account the edges that are
often added with sequence alignment. These operations are added as edges to the model, enhancing
its accuracy and expressiveness and improving its ability to recognize normal behavior.

When adding multiple operations to a node in the model, each symbol can have at most one outgoing
edge from the node, in other words, from a node there can be only one unique and unambiguous
transition given a symbol. This constraint is necessary to maintain determinism in the model. Some
considerations to maintain determinisim:

» One outgoing edge per symbol: Each symbol should map to a single, outgoing edge from a node.
This ensures that the model behaves in a deterministic manner, where for any given symbol, there
is a clear, unambiguous transition from the node.

+ Existing edges with the same symbol: If the node already has an outgoing edge with a particular
symbol that leads to a specific state, you cannot add another outgoing edge with the same symbol,
even if it leads to a different state.

» Multiple edges with the same symbol: If multiple operations involve the same symbol, meaning
multiple edges with that symbol need to be added, the edge corresponding to the most frequent
transition is chosen. Only the edge representing the most common operation for that symbol is
added.

To create new edges, the JSON file containing the learned model output by Flexfringe is modified
by adding a new item to the edges field as follows:

1. id: set this to a string combining the source and target node IDs, formatted as: "source node
id_target node id”

2. source: unique ID of the source node
3. target: unique ID of the target node
4. name: set to the symbol associated with the edge.

The source node of the newly added edge is also modified in the nodes field. This ensures compat-
ibility with existing code, such as the alignment in Flexfringe. The number of times the edge has been
followed is then updated in the node as follows:

1. label is edited, specifically "path:” in the string is modified to reflect the new occurrences of the
edge.

2. size is updated by adding the new occurrences.

48 5. Experiments

3. path_counts is updated by adding the new occurrences.
4. total _paths is updated by adding the new occurrences.
5. trans_counts updated by adding the new occurrences for the symbol of the edge.

5.4.1. Results

The average alignment scores for the modified model appears to be slightly higher than the and regular
model with sinks=300, see Table 5.11.

] Dataset Regular model | Modified model
Training set 0.95499 0.967844
Normal test set 0.953033 0.96367
Abnormal test set 0.147658 0.159398

Table 5.11: Average alignment scores with different scoring for three AIC models, normal and modified, on the training set

Based on the ROC curves, the modified model shows improved sensitivity and specificity, as indi-
cated by its closer proximity to the top left corner in Figure 5.5. However, the overall performance of
the two models is similar, as both have identical AUC scores of 0.97.

ROC Curves for Modified and Static Model AIC (sink_count=300)

g

osd |

1.0 4

0.6

0.4

True Positive Rate (Positive label: 1)

0.2 1

—— Modified Model AIC (AUC = 0.97)
Static Model AIC (AUC = 0.97)

0.0 1

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (Positive label: 1)

Figure 5.5: ROC curve for modified model AIC with static scoring and sinks=300.

Based on the confusion matrices, see Figure 5.6, results are similar to the results of experiment 1,
see Figure 5.4c and Figure 5.4d.
Upon further inspection of the aligned sequences, it appears that modifying the model by adding the

most frequently followed edges only slightly increases the alignment score of some traces. To illustrate
this, we will examine some examples:

1.555221191192626 119264 3422232323 2121 21 from the normal test set has a
alignment score of 0.947917 in the normal and 0.996528 in the modified mode.

5.4. Experiment 3: Modifying the original model 49

Confusion Matrix for the modified model with Static Scoring, sinks=300 with Threshold=0.960145

20000
2723
15000
10000
24104
5000
1

Predicted label

Confusion Matrix for the medified model with Static Scoring, sinks=300 with Threshold=0.988095

i

True label
True label

0

0
Predicted label

(a) Confusion matrix for modified model with threshold = 0.960145 (b) Confusion matrix for modified model with threshold = 0.988095 (first

(minimum). quartile).

Figure 5.6: Confusion matrices for two different thresholds of the modified models with static scoring and sinks = 300.

2.225552626261191191193222323 232121 21 from the fraining set has a alignment
score of 0.920455 in the normal and 0.977273 in the modified mode.

3.2255526261191191192633433433433432323232121 21 from the training set
has a alignment score of 0.88172 in the normal and 0.989247 in the modified mode.

Upon manual inspection, it appears that most traces increase their alignment score significantly, but
some traces receive an alignment score of 0 in the modified model, despite achieving a good score in
the normal model. For example, 55522119 119 26 26 11 9 26 2” decreases from 0.982143 (normal)

to 0 (modified). This is due to traces not ending in a final state as a consequence of the addition of new
edges, for example:

1.55225119119262611926522
state sequence modified model: [1,4,12,18,29,50,88,147,234,348,485,645,820,645/+,645]

state sequence normal model: [1,4,12,18,29,50,88,147,234,348,485,645,820,820/-,820/-]
,where 645 is a non-final state.

2.145552211911911926 26 26 2
state sequence modified model: [1,4,10,18,29,50,88,147,232,345,482,645,820,482/+]

state sequence normal model: [1,4,10,18,29,50,88,147,232,345,482,645,820,820/-]
,where 482 is a non-final state.

Discussion

Results show most models with different sink counts across different scoring types achieve average
alignment scores higher than 0.9 on normal data and all models achieve scores lower than 0.16 on
abnormal data. ROC curves and AUC scores indicate an almost perfect classifier. Across the different
scoring types, static and linear scoring methods appear to perform similar with regards to their average
alignment scores on the dataset, F1-scores, ROC curves and AUC scores. Dynamic scoring obtains
the best F1-scores out of all three scoring types for models with sink counts < 300, but significantly
drops performance when sinkcount=300. However, given the ROC curves and AUC scores, dynamic
scoring performs worse than static and linear scoring.

When comparing the implemented NW-alignment with normal predict and predictalign from
Flexfringe. NW-alignment outperforms regular predict when ran on sinks 5, 10, 50, 100 and 300
based on ROC curves and AUC scores. However, predictalign still performs better given F1-
scores for models with lower sink counts, specifically up until sinkcount=300. With regards to ROC
curves and AUC scores, see Appendix B.4, predictalign and NW-alignment perform similar, un-
til sinkcount=300. NW-alignment outperforms both predict and predictalign when sinkcount=300.
These findings address the first research question, showing that sequence alignment with the NW-
algorithm is effective in distinguishing normal and abnormal behavior in comparison to predict, but only
outperforms predictalign when sink counts are larger.

The implementation of the ignore-skip rule to aid in the detection of parallelism does not significantly
improve the behavioral differentiation that sequence alignment is able to achieve on its own given the
alignment scores, F1-score and ROC curves, answering the second and third research question. While
it may slightly increase alignment scores for certain traces, the improvement is minimal. The distance
within which events are allowed to be ignored was arbitrarily chosen. Exhaustively searching for an
optimal distance, tailored to the use case of the data, might yield better results given that the alignment
scores slightly increases and the AUC score increased with 0.01.

Modifying the original learned DFA with operations often taken in sequence alignment, increases
alignment scores slightly. It can most likely be improved more if the issue of traces ending in a non-final
state after model modification due to the addition of new edges can be solved.

A limitation of this study is that the experiments were conducted using only a single dataset. In the
HDFS dataset, many traces in the abnormal set can be easily filtered out because they either end in
a non-final state or contain unknown symbols. It would be ideal to evaluate how the NW-alignment
performs without these traces. Additionally, the anomalous test set includes many short traces, as

51

52 6. Discussion

noted during data exploration, and this factor was not considered. Consequently, these short traces
may achieve unusually high alignment scores.

Future research could address these limitations by considering the length of traces and evaluat-
ing the performance of the NW-alignment on traces that do not contain unknown symbols or end in a
non-final state. Assessing the sequence alignment algorithm on diverse datasets could demonstrate
its robustness. Additionally, tuning various parameters—such as penalties, sink counts, and distances
for the ignore-skip rule could potentially enhance the model’s performance. The current model modi-
fications did not include visualizing the modified graph, which could provide valuable insights into the
behavior and performance of the model. Further exploration of the ignore-skip rule and model modifi-
cations is recommended.

A great addition would be to incorporate visualization of the aligned state sequences output by the
algorithm. This can aid experts in identifying and differentiating behavioral patterns more effectively in
practice, similar to [32] and [5].

Conclusion

The primary goal of this thesis was to investigate behavioral differencing in software logs using Finite
State Automata (FSA). Anomaly detection can be approached with state machine learning by learning
a model from data and then assessing whether new data fits the learned model. However, as system
logs contain enormous amounts of data, among which parallel behavior, the size and complexity of the
learned model can make it difficult to interpret, making it challenging for experts to analyze the model’s
behavior. The option to allow for sinks can enhance readability, but compromises on the model’s be-
haviour to differentiate normal and anomalous behavior as normal data now does not conform with the
model anymore.

To address these issues and allow for more nuanced behavioral differencing, where deviations in
sequences are expected and allowed, the concept of sequence alignment was applied. A sequence to
sequence alignment algorithm performing global alignment known as Needleman-Wunsch was adapted
to perform alignment between an input sequence and state machine model. This had previously also
been expored [32].

For automaton learning, the popular tool Flexfringe was used. Several Deterministic Finite Au-
tomata (DFA) with the AIC heuristic and varying sink counts were learned from the Hadoop Distributed
File System (HDFS) dataset, which was processed into the Abbadingo format. The Needleman-
Wunsch alignment algorithm was integrated into the Flexfringe codebas along with the parameters
--predictalignnwand --nwscoring to toggle the Needleman-Wunsch (NW) alignment algorithm
and scoring types.

Three scoring methods were explored: static, linear, and dynamic. Static scoring applies fixed
penalties for matches, mismatches, and gaps. Linear scoring adjusts the penalty according to the
size of the gap in the aligned sequence, and dynamic scoring takes into account the distance between
nodes. To improve the detection of parallel behaviors, an ignore-skip rule was introduced, which allows
events to reoccur at no cost if they had been previously skipped within a distance of 3 events ago. Lastly,
model modifications were made by incorporating frequently performed operations during sequence
alignment.

Results show sequence alignment effectively detects flows that deviate from the expected behavior
given average alignment scores per dataset, normal traces achieved an average alignment score above
0.9 across all models with static and linear scoring and abnormal traces received an average alignment
score below 0.16 across all models and scoring types. Among the scoring methods, static scoring and
linear scoring performed similar given their F1-scores (>0.93). Dynamic scoring obtained high F1-score

53

54 7. Conclusion

(>0.95) for sinkcount=50 and sinkcount=100, but performance dropped at sink count=300.

Adding the ignore-skip rule was not able to recognize parallel processes and improve performance.
However, NW-alignment is able to outperform regular prediction with models with sink counts larger
than 5. Nevertheless, predictalign from Flexfringe outperforms NW-alignment and predict given
the F1-score, for models with sink counts up to 100. Based on results, we can conclude that NW-
alignment can improve results when used on models with larger sink counts.

Lastly, modifying the model with operations commonly used in NW-alignment did not enhance the
learning process. However, these modifications, along with the ignore-skip rule, can be refined and
further explored in future work.

The code used in this research is available for review and replication. It can be accessed on GitHub
1. The repository includes the NW-alignment algorithm, datasets, results, and documentation needed
to reproduce the results presented in this thesis.

In summary, this thesis shows that incorporating sequence alignment techniques into FSA-based
models can enhance the detection of behavioral differences in software logs, especially when models
are learnt with larger sinks. The findings suggest that further refinement of penalty selection, scoring
methods and alignment operations could yield even more insights for software behavior analysis.

1https ://github.com/Mirijaml/NW-sequence-alignment

https://github.com/Mirijam1/NW-sequence-alignment

55

A

Appendix A

A.1. Learned FSA

58 A. Appendix A

A.1.3. HDFS with AIC and sink count=50

A.1. Learned FSA

59

A.1.4. HDFS with AIC and sink count=100

60 A. Appendix A

A.1.5. HDFS with AIC and sink count=300

A.1.6. HDFS with AlC.ini

62 A. Appendix A

A.1.7. HDFS with edsm.ini

B.1. Confusion Matrices for predict

Confusion Matrix for Predict, sinks=5

Appendix B

— Classifier (AUC = 0.93)

1.0
20000 o
2107 = 0.8 1
0 2107 K
=
]
=
. 15000 Z 06
] g
:
= 10000 ~ 0.4
=
o
7
&£
1 24520 s 02
5000 2
0.0
0 1

Predicted label

(a) Confusion matrix for predict with model with sinks=5.

T T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (Positive label: 1)

(b) ROC curve for predict with model with sink=5.

Figure B.1: Confusion matrix and ROC curve for predict with model with sinks=5

63

64

B. Appendix B
Confusion Matrix for Predict, sinks=10
1.0
20000 =
+ 0.8 1
-]
©
L
2
]
- 15000 G 06 |
G [
o
3
= 10000 = 0.4
2
=1
@
o
a.
1] 4
5000 3 02
]
0.0 1 — Classifier (AUC = 0.92)
0 . T T : T :
0.0 0.2 0.4 0.6 0.8 1.0

Predicted label

(a) Confusion matrix for predict with model with sinks=10.

False Positive Rate (Positive label: 1)

(b) ROC curve for predict with model with sink=10.

Figure B.2: Confusion matrix and ROC curve for predict with model with sinks=10

Confusion Matrix for Predict, sinks=50

20000

15000

True label

10000

5000

Predicted label

(a) Confusion matrix for predict with model with sinks=50.

True Positive Rate (Positive label: 1)

1.0 1

0.8

0.6

0.4 1

0.2

0.0 — Classifier (AUC = 0.89)

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (Positive label: 1)

(b) ROC curve for predict with model with sink=50.

Figure B.3: Confusion matrix and ROC curve for predict with model with sinks=50

Confusion Matrix for Predict, sinks=100

20000
0 5001
_ 15000
[
=)
o
o
2
= 10000
1 0 24855
5000
0
0 1

Predicted label

(a) Confusion matrix for predict with model with sinks=100.

True Positive Rate (Positive label: 1)

1.0

o
@
L

o
o
L

o
S
L

o
[N}
L

0.0 q — Classifier (AUC = 0.85)

T T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (Positive label: 1)

(b) ROC curve for predict with model with sink=100.

Figure B.4: Confusion matrix and ROC curve for predict with model with sinks=100

B.1. Confusion Matrices for predict

65

Confusion Matrix for Predict, sinks=300

1.0
20000 =
3 08
&
o
2
. 15000 5 06
o o
8 3
:
= 10000 % 0.4 7
2
a.
v 0.2
5000 2
0.0 4 — Classifier (AUC = 0.83)
o] T T T T T T
0.0 0.2 0.4 0.6 0.8 10
Predicted label False Positive Rate (Positive label: 1)
(a) Confusion matrix for predict with model with sinks=300. (b) ROC curve for predict with model with sink=300.

Figure B.5: Confusion matrix and ROC curve for predict with model with sinks=300

66 B. Appendix B

B.2. Confusion Matrices for predictalign

Confusion Matrix for Predictalign, sinks=5

L
20000 _
-
o 3§ 08
15000 g
% § 0.6 1
F o
= 10000 % 041
2
1 Y02
5000 <7
2
0.0 — Classifier (AUC = 0.97)
0 1 0.0 02 04 06 08 10
Predicted label False Positive Rate (Positive label: 1)
(a) Confusion matrix for predictalign with model with sinks=5. (b) ROC curve for predictalign with model with sink=5.
Figure B.6: Confusion matrix and ROC curve for predictalign with model with sinks=5
Confusion Matrix for Predictalign, sinks=10
1.0 -
20000
=
o 3 0.8 1
=
15000 g
g E 0.6 1
) o
2 10000 % 0zl
2
@
1 £
5000 g 0.2
g
0.0 q — Classifier (AUC = 0.97)
0 1 0.0 02 04 06 08 10
Predicted label False Positive Rate (Positive label: 1)
(a) Confusion matrix for predictalign with model with sinks=10. (b) ROC curve for predictalign with model with sink=10.

Figure B.7: Confusion matrix and ROC curve for predictalign with model with sinks=10

Confusion Matrix for Predictalign, sinks=50

1.0

20000

o
@
L

15000

4
o
L

True label

10000

I~
S
L

o
[N
L

5000

True Positive Rate (Positive label: 1)

0.0 — Classifier (AUC = 0.98)
0.0 02 04 06 08 10
Predicted label False Positive Rate (Positive label: 1)
(a) Confusion matrix for predictalign with model with sinks=50. (b) ROC curve for predictalign with model with sink=50.

Figure B.8: Confusion matrix and ROC curve for predictalign with model with sinks=50

B.2. Confusion Matrices for predictalign

67

Confusion Matrix for Predictalign, sinks=100

1.0 -
20000
o 3 0.8 1
=
15000 g
_ F 0.6
§ 4
v o
=]]
= 10000
= = 0.4
2
8
1 3
5000 g 0.2
=
0.0 q — Classifier (AUC = 0.97)
0 1 0.0 02 04 06 08 10
Predicted label False Positive Rate (Positive label: 1)
(a) Confusion matrix for predictalign with model with sinks=100. (b) ROC curve for predictalign with model with sink=100.
Figure B.9: Confusion matrix and ROC curve for predictalign with model with sinks=100
Confusion Matrix for Predictalign, sinks=300
20000 104
17500 _ ///
=
= 0.8
0 15000 2
]
o
12500 E 0.6 1
2 £
v 10000 3
= &
= 0.4 1
7500 .g
E
1 5000 g 0.2 1
=
2500
0.0 — Classifier (AUC = 0.92)
o] T T T T T T
0 1 0.0 0.2 0.4 0.6 0.8 10
Predicted label False Positive Rate (Positive label: 1)
(a) Confusion matrix for predictalign with model with sinks=300. (b) ROC curve for predictalign with model with sink=300.

Figure B.10: Confusion matrix and ROC curve for predictalign with model with sinks=300

68 B. Appendix B

B.3. Confusion matrices for Needleman-Wunsch alignment
B.3.1. AIC model, sinks=50

Confusion Matrix for Static Scoring, sinks=50 with Threshold=0.842342 Confusion Matrix for Static Scoring, sinks=50 with Threshold=1

17500
20000
0 4] 15000
_ 15000 _ 12500
3 [
= Qo
= = 10000
@ W
2 2
= =
10000 7500
1 5062 2e+04 5000
5000
2500
0
0 1

Predicted label Predicted label

(a) Confusion matrix for model with threshold=0.842342 (minimum). (b) Confusion matrix for model with threshold=1.0 (first quartile).
Figure B.11: Confusion matrices for model with sinks=50 and static scoring with two thresholds

Confusion Matrix for Linear Scoring, sinks=50 with Threshold=0.691441 Confusion Matrix for Linear Scoring, sinks=50 with Threshold=1

17500
20000
15000
B 15000 B 12500
[@
2 £
= = 10000
L @
2 2
= =
10000 7500
5000
5000
2500
0

Predicted label

Predicted label

(a) Confusion matrix for model with threshold=0.691441 (minimum). (b) Confusion matrix for model with threshold=1.0 (first quartile).

Figure B.12: Confusion matrices for model with sinks=50 and linear scoring with two thresholds

B.3. Confusion matrices for Needleman-Wunsch alignment

69

Confusion Matrix for Dynamic Scoring, sinks=50 with Threshold=0.891892
22500

20000
17500
15000

12500

True label

10000

7500

5000

2500

Predicted label

(a) Confusion matrix for model with threshold=0.891892 (minimum).

Confusion Matrix for Dynamic Scoring, sinks=50 with Threshold=1.0

17500
15000
12500

10000

True label

7500
5062 5000

2500

Predicted label

(b) Confusion matrix for model with threshold=1.0 (first quartile).

Figure B.13: Confusion matrices for model with sinks=50 and dynamic scoring with two thresholds

70 B. Appendix B

B.3.2. AIC model, sinks=100

Confusion Matrix for Static Scoring, sinks=100 with Threshold=0.842342 Confusion Matrix for Static Scoring, sinks=100 with Threshold=0.9875

17500

20000 15000

12500
15000

10000

True label
True label

10000 7500

5000
5000

2500

Predicted label Predicted label

(a) Confusion matrix for model with threshold=0.842342 (minimum). (b) Confusion matrix for model with threshold=0.9875 (first quartile).

Figure B.14: Confusion matrices for model with sinks=100 and static scoring with two thresholds

Confusion Matrix for Linear Scoring, sinks=100 with Threshold=0.691441 Confusion Matrix for Linear Scoring, sinks=100 with Threshold=0.9875

17500
20000 15000
12500
_ 15000 _
[[
5 E 10000
[[
2 2
= 10000 = 7500
5000
5000

2500

Predicted label

Predicted label

(a) Confusion matrix for model with threshold=0.691441 (minimum). (b) Confusion matrix for model with threshold=0.9875 (first quartile).

Figure B.15: Confusion matrices for model with sinks=100 and linear scoring with two thresholds

Confusion Matrix for Dynamic Scoring, sinks=100 with Threshold=0.8875 Confusion Matrix for Dynamic Scoring, sinks=100 with Threshold=0.991667

17500
20000
15000
0 0
12500
15000
I} @
K 8 10000
[} [
2 2
= 10000 = 7500
1 6011 18844 5000
5000
2500
0
0 1

Predicted label Predicted label

(a) Confusion matrix for model with threshold=0.8875 (minimum). (b) Confusion matrix for model with threshold=0.991667 (first quartile).

Figure B.16: Confusion matrices for model with sinks=100 and dynamic scoring with two thresholds

B.4. ROC curves 71

B.3.3. AIC model, sinks=300

Confusion Matrix for Static Scoring, sinks=300 with Threshold=0.842342 Confusion Matrix for Static Scoring, sinks=300 with Threshold=0.947368

17500
20000
15000
12500
_ 15000 _
2 2
® ® 10000
w w
2 2
= 10000 = 7500
5000
5000

2500

predicted label

Predicted label

(a) Confusion matrix for model with threshold=0.842342 (minimum). (b) Confusion matrix for model with threshold=0.947368 (first quartile).

Figure B.17: Confusion matrices for model with sinks=300 and static scoring with two thresholds

Confusion Matrix for Linear Scoring, sinks=300 with Threshold=0.361111 Confusion Matrix for Linear Scoring, sinks=300 with Threshold=0.929825

17500
15000
12500
10000
7500
5000
2500

(b) Confusion matrix for model with threshold=0.929825 (first quartile).

20000

15000

10000
1 6007 18848
5000
1

Predicted label

True label
True label

Predicted label

(a) Confusion matrix for model with threshold=0.361111 (minimum).

Figure B.18: Confusion matrices for model with sinks=300 and linear scoring with two thresholds

Confusion Matrix for Dynamic Scoring, sinks=300 with Threshold=0.878378 Confusion Matrix for Dynamic Scoring, sinks=300 with Threshold=0.95614

17500
18000
16000 15000
14000 12500
o o
E 12000 E 10000
3 H
2 10000 2
= =
7500
8000
5000
6000
2500
4000

Predicted label Predicted label

(a) Confusion matrix for model with threshold=0.878378 (first quartile). (b) Confusion matrix for model with threshold=0.95614 (first quartile).

Figure B.19: Confusion matrices for model with sinks=300 and dynamic scoring with two thresholds

B.4. ROC curves

72 B. Appendix B

ROC Curve Comparison for Predict, Predictalign with Sink Count = 5 and Predictalign NW with Sink Count = 300 and static scoring

1.0 A
0.8
=
T
-]
=
2 06
=
i
=3
1=
3z
[}
a
[
2 0.4+
i
=3
o
w
2
2
0.2
—— Static 300 (AUC = 0.97)
Predictalign 5 (AUC = 0.97)
0.0 —— Predict 5 (AUC = 0.93)
. !

T T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (Positive label: 1)

Figure B.20: ROC curves for model with sinks=5 with predict, predictalign and a model with sinks=300 with NW-alignment and
static scoring

ROC Curve Comparison for Predictalign with Sink Count = 5 and Predictalign NW with Sink Count = 300 and linear scoring

1.01
—

0.8 1
=
T
-
o
5 0.6
=]
i
=]
<
£
]
o«
w
£ 0.4
i
=]
o
o
c
E

0.2 4

—— Linear 300 (AUC = 0.97)
Predictalign 5 (AUC = 0.97)
0.0 —— Predict 5 (AUC = 0.93)
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate (Positive label: 1)

Figure B.21: ROC curves for model with sinks=5 with predict, predictalign and a model with sinks=300 with NW-alignment and
linear scoring

B.4. ROC curves

73

ROC Curve Comparison for Predict, Predictalign with Sink Count = 10 and Predictalign NW with Sink Count = 300 and static scoring

1.0 4
0.8
=5
T
-]
=
2 061
£
&
o
5
]
]
-3
[
2 0.4
&
o
[=8
w
2
2
02
—— Sstatic 300 (AUC = 0.97)
— Predictalign 10 (AUC = 0.97)
001 —— Predict 10 (AUC = 0.92)

T T
0.0 02 0.4 0.6
False Positive Rate (Positive label: 1)

0.8 10

Figure B.22: ROC curves for model with a sinks=10 with predict, predictalign and a model with a sinks=300 with NW-alignment

and static scoring

ROC Curve Comparison for Predict, Predictalign with Sink Count = 10 and Predictalign NW with Sink Count = 300 and linear scoring

104

0.8 4

0.6

0.4 4

True Positive Rate (Positive label: 1)

0.2

0.0 4

—— Linear 300 (AUC = 0.97)
—— Predictalign 10 (AUC = 0.97)
—— Predict 10 (AUC = 0.92)

T T
0.0 0.2 0.4 0.6
False Positive Rate (Positive label: 1)

0.8 1.0

Figure B.23: ROC curves for model with a sinks=10 with predict, predictalign and a model with a sinks=300 with NW-alignment

and linear scoring

74

B. Appendix B

ROC Curve Comparison for Predict, Predictalign with Sink Count = 50 and Predictalign NW with Sink Count = 300 and static scoring

1.0 4 r

0.8
=5
T
-]
=
2 061
=
&
o
5
]
]
-3
[
2 0.4
&
o
[=8
w
2
2

02

—— Sstatic 300 (AUC = 0.97)
— Predictalign 50 (AUC = 0.98)
001 —— Predict 50 (AUC = 0.89)
; ; ; ; ; ;
0.0 02 0.4 0.6 0.8 1.0

False Positive Rate (Positive label: 1)

Figure B.24: ROC curves for model with a sinks=50 with predict, predictalign and a model with a sinks=300 with NW-alignment

and static scoring

ROC Curve Comparison for Predictalign with Sink Count = 50 and Predictalign NW with Sink Count = 300 and linear scoring

1.0 A /

0.8
=
T
-]
o
.g 0.6
=]
7
o
3
2
T
@
[
£ 0.4
7
o
=8
[}
2
E

0.2

—— Linear 300 (AUC = 0.97)
—— Predictalign 50 (AUC = 0.98)
0.0 —— Predict 50 (AUC = 0.89)
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate (Positive label: 1)

Figure B.25: ROC curves for model with a sinks=50 with predict, predictalign and a model with a sinks=300 with NW-alignment

and linear scoring

B.4. ROC curves

75

ROC Curve Comparison for Predictalign with Sink Count = 100 and Predictalign NW with Sink Count = 300 and static scoring

1.0
0.8
=5
T
-]
=
2 061
=
&
o
5
]
]
-3
[
2 0.4
&
o
[=8
w
2
2
02
—— Static 300 (AUC = 0.97)
— Predictalign 100 (AUC = 0.97)
001 —— predict 100 (AUC = 0.85)

T T
0.0 02 0.4 0.6 0.8 1.0
False Positive Rate (Positive label: 1)

Figure B.26: ROC curves for model with a sinks=100 with predict, predictalign and a model with a sinks=300 with
NW-alignment and static scoring

ROC Curve Comparison for Predictalign with Sink Count = 100 and Predictalign NW with Sink Count = 300 and linear scoring

104

0.8 4

0.6

0.4 4

True Positive Rate (Positive label: 1)

0.2

—— Linear 300 (AUC = 0.97)
— Predictalign 100 (AUC = 0.97)
—— Predict 100 (AUC = 0.85)

0.0 4

T T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (Positive label: 1)

Figure B.27: ROC curves for model with a sinks=100 with predict, predictalign and a model with a sinks=300 with
NW-alignment and linear scoring

76

B. Appendix B

ROC Curve C

Figure B.28:

omparison for Predict, Predictalign with Sink Count = 300 and Predictalign NW with Sink Count = 300 and static scoring
1.01
0.8 1
=1
T
-]
©
L 06
<
[
=
o
o
2 0.4
g
o
w
=
=
0.2 1
—— Static 300 (AUC = 0.97)
— Predictalign 300 (AUC = 0.92)
0.0 —— Predict 300 (AUC = 0.83)

T T
0.0 02 0.4 0.6 0.8 1.0
False Positive Rate (Positive label: 1)

ROC curves for model with a sinks=300 with predict, predictalign and a model with a sinks=300 with
NW-alignment and static scoring

ROC Curve Comparison for Predict, Predictalign with Sink Count = 300 and Predictalign NW with Sink Count = 300 and linear scoring

Figure B.29:

1.0 A
0.8 A
=
@
-
k]
2 061
=
I
o
=
3z
]
o
w
£ 0.4
I
o
o
[
2
£
0.2
— Linear 300 (AUC = 0.97)
— Predictalign 300 (AUC = 0.92)
0.0 1 —— Ppredict 300 (AUC = 0.83)
: .

T T
0.0 0.2 0.4 0.6 0.8 10
False Positive Rate (Positive label: 1)

ROC curves for model with a sinks=300 with predict, predictalign and a model with a sinks=300 with
NW-alignment and linear scoring

(1]

(2]

(3]

[4]

[5]

[6]

[7]
[8]

(9]

Bibliography

W. U. Hassan, S. Guo, D. Li, et al., “NoDoze: Combatting Threat Alert Fatigue with Automated
Provenance Triage,” en, in Proceedings 2019 Network and Distributed System Security Sympo-
sium, San Diego, CA: Internet Society, 2019, isbn: 978-1-891562-55-6. doi: 10.14722/ndss.
2019.23349. [Online]. Available: https://www.ndss-symposium.org/wp-content/
uploads/2019/02/ndss2019 03B-1-3 UlHassan paper.pdf (visited on 01/18/2024).

T. V. Ede, H. Aghakhani, N. Spahn, et al., “DEEPCASE: Semi-Supervised Contextual Analysis of
Security Events,” en, in 2022 IEEE Symposium on Security and Privacy (SP), San Francisco, CA,
USA: IEEE, May 2022, pp. 522—-539, isbn: 978-1-66541-316-9. doi: 10.1109/SP46214.2022.
9833671. [Online]. Available: https://ieeexplore. ieee . org/document / 9833671/
(visited on 12/03/2023).

W. Xu, L. Huang, A. Fox, D. Patterson, and M. |. Jordan, “Detecting large-scale system problems
by mining console logs,” en, in Proceedings of the ACM SIGOPS 22nd symposium on Operating
systems principles, Big Sky Montana USA: ACM, Oct. 2009, pp. 117-132, isbn: 978-1-60558-
752-3. doi: 10.1145/1629575.1629587. [Online]. Available: https://dl.acm.org/doi/
10.1145/1629575.1629587 (visited on 09/28/2023).

V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM Computing Sur-
veys, vol. 41, no. 3, 15:1-15:58, Jul. 2009, issn: 0360-0300. doi: 10.1145/1541880.1541882.
[Online]. Available: https://doi.org/10.1145/1541880.1541882 (visited on 06/05/2023).

H. Amar, L. Bao, N. Busany, D. Lo, and S. Maoz, “Using finite-state models for log differencing,”
en, in Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, Lake Buena Vista FL
USA: ACM, Oct. 2018, pp. 49-59, isbn: 978-1-4503-5573-5. doi: 10.1145/3236024.3236069.
[Online]. Available: https://dl.acm.org/doi/10.1145/3236024.3236069 (visited on
05/29/2023).

M. Du, F. Li, G. Zheng, and V. Srikumar, “DeeplLog: Anomaly Detection and Diagnosis from Sys-
tem Logs through Deep Learning,” en, in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, Dallas Texas USA: ACM, Oct. 2017, pp. 1285—
1298, isbn: 978-1-4503-4946-8.d0i: 10.1145/3133956.3134015. [Online]. Available: https:
//dl.acm.org/doi/10.1145/3133956.3134015 (visited on 12/19/2023).

E. Lomagin, “Anomaly Detection in System Event Logs,” en, Ph.D. dissertation, 2019.

K. Xu, Z.-L. Zhang, and S. Bhattacharyya, “Profiling internet backbone traffic: Behavior models
and applications,” in Proceedings of the 2005 conference on Applications, technologies, archi-
tectures, and protocols for computer communications, ser. SIGCOMM 05, New York, NY, USA:
Association for Computing Machinery, Aug. 2005, pp. 169-180, isbn: 978-1-59593-009-5. doi:
10.1145/1080091.1080112. [Online]. Available: https://dl.acm.org/doi/10.1145/
1080091.1080112 (visited on 06/19/2024).

W. Aalst, Process Mining: Data Science in Action. Jan. 2016, isbn: 978-3-662-49850-7. doi: 10.
1007/978-3-662-49851-4.

77

https://doi.org/10.14722/ndss.2019.23349
https://doi.org/10.14722/ndss.2019.23349
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_03B-1-3_UlHassan_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_03B-1-3_UlHassan_paper.pdf
https://doi.org/10.1109/SP46214.2022.9833671
https://doi.org/10.1109/SP46214.2022.9833671
https://ieeexplore.ieee.org/document/9833671/
https://doi.org/10.1145/1629575.1629587
https://dl.acm.org/doi/10.1145/1629575.1629587
https://dl.acm.org/doi/10.1145/1629575.1629587
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/3236024.3236069
https://dl.acm.org/doi/10.1145/3236024.3236069
https://doi.org/10.1145/3133956.3134015
https://dl.acm.org/doi/10.1145/3133956.3134015
https://dl.acm.org/doi/10.1145/3133956.3134015
https://doi.org/10.1145/1080091.1080112
https://dl.acm.org/doi/10.1145/1080091.1080112
https://dl.acm.org/doi/10.1145/1080091.1080112
https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-662-49851-4

78

Bibliography

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

T. Murata, “Petri nets: Properties, analysis and applications,” Proceedings of the IEEE, vol. 77,
no. 4, pp. 541-580, Apr. 1989, Conference Name: Proceedings of the IEEE, issn: 1558-2256.
doi: 10.1109/5.24143. [Online]. Available: https://iecexplore.ieece.org/abstract/
document /24143 (visited on 04/22/2024).

J. L. Peterson, “Petri Nets,” ACM Computing Surveys, vol. 9, no. 3, pp. 223-252, Sep. 1977,
issn: 0360-0300. doi: 10.1145/356698.356702. [Online]. Available: https://dl.acm.
org/doi/10.1145/356698.356702 (visited on 04/22/2024).

D. Lee and M. Yannakakis, “Principles and methods of testing finite state machines-a survey,”
Proceedings of the IEEE, vol. 84, no. 8, pp. 1090-1123, Aug. 1996, Conference Name: Pro-
ceedings of the IEEE, issn: 1558-2256. doi: 10.1109/5.533956. [Online]. Available: https:
//ieeexplore.ieee.org/document /533956 (visited on 11/27/2023).

Graham, Dorothy, Van Veenendaal, Erik, and Evans, Isabel, Foundations of Software Testing:
ISTQB Certification, en. Cengage Learning Business Press, 2006. [Online]. Available: https:
/ /www . abebooks.com/ 9781844803552 /Foundations-Software-Testing-ISTQB-
Certification-1844803554/plp (visited on 04/22/2024).

M. J. H. Heule and S. Verwer, “Exact DFA Identification Using SAT Solvers,” en, in Grammatical
Inference: Theoretical Results and Applications, D. Hutchison, T. Kanade, J. Kittler, et al., Eds.,
vol. 6339, Series Title: Lecture Notes in Computer Science, Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 66—79, isbn: 978-3-642-15487-4 978-3-642-15488-1.doi: 10.1007/978-
3-642-15488-1_ 7. [Online]. Available: http://link.springer.com/10.1007/978-3-
642-15488-1 7 (visited on 03/15/2024).

Vodencarevic, Asmir, Alexander Maier, and Oliver, Niggemann, “Evaluating Learning Algorithms
for Stochastic Finite Automata - Comparative Empirical Analyses on Learning Models for Tech-
nical Systems:” en, in Proceedings of the 2nd International Conference on Pattern Recognition
Applications and Methods, Barcelona, Spain: SciTePress - Science, 2013, pp. 229-238, isbn:
978-989-8565-41-9. doi: 10.5220/0004255702290238. [Online]. Available: http: //www.
scitepress.org/DigitallLibrary/Link.aspx?doi=10.5220/0004255702290238
(visited on 03/16/2024).

M. J. H. Heule and S. Verwer, “Software model synthesis using satisfiability solvers,” en, Empir-
ical Software Engineering, vol. 18, no. 4, pp. 825-856, 2012, issn: 1573-7616. doi: 10.1007/
510664-012-9222-=z. [Online]. Available: https://doi.org/10.1007/s10664-012-
9222-z (visited on 04/16/2024).

R. C. Carrasco and J. Oncina, “Learning stochastic regular grammars by means of a state merg-
ing method,” en, in Grammatical Inference and Applications, R. C. Carrasco and J. Oncina, Eds.,
Berlin, Heidelberg: Springer, 1994, pp. 139-152, isbn: 978-3-540-48985-6. doi: 10.1007 /3 -
540-58473-0_144.

K. J. Lang, B. A. Pearimutter, and R. A. Price, “Results of the Abbadingo one DFA learning
competition and a new evidence-driven state merging algorithm,” en, in Grammatical Inference,
V. Honavar and G. Slutzki, Eds., ser. Lecture Notes in Computer Science, Berlin, Heidelberg:
Springer, 1998, pp. 1-12, isbn: 978-3-540-68707-8. doi: 10.1007/BFb0054059.

W. Hoeffding, “Probability Inequalities for Sums of Bounded Random Variables,” Journal of the
American Statistical Association, vol. 58, no. 301, pp. 13—-30, 1963, Publisher: [American Sta-
tistical Association, Taylor & Francis, Ltd.], issn: 0162-1459. doi: 10.2307/2282952. [Online].
Available: https://www.jstor.org/stable/2282952 (visited on 03/17/2024).

https://doi.org/10.1109/5.24143
https://ieeexplore.ieee.org/abstract/document/24143
https://ieeexplore.ieee.org/abstract/document/24143
https://doi.org/10.1145/356698.356702
https://dl.acm.org/doi/10.1145/356698.356702
https://dl.acm.org/doi/10.1145/356698.356702
https://doi.org/10.1109/5.533956
https://ieeexplore.ieee.org/document/533956
https://ieeexplore.ieee.org/document/533956
https://www.abebooks.com/9781844803552/Foundations-Software-Testing-ISTQB-Certification-1844803554/plp
https://www.abebooks.com/9781844803552/Foundations-Software-Testing-ISTQB-Certification-1844803554/plp
https://www.abebooks.com/9781844803552/Foundations-Software-Testing-ISTQB-Certification-1844803554/plp
https://doi.org/10.1007/978-3-642-15488-1_7
https://doi.org/10.1007/978-3-642-15488-1_7
http://link.springer.com/10.1007/978-3-642-15488-1_7
http://link.springer.com/10.1007/978-3-642-15488-1_7
https://doi.org/10.5220/0004255702290238
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0004255702290238
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0004255702290238
https://doi.org/10.1007/s10664-012-9222-z
https://doi.org/10.1007/s10664-012-9222-z
https://doi.org/10.1007/s10664-012-9222-z
https://doi.org/10.1007/s10664-012-9222-z
https://doi.org/10.1007/3-540-58473-0_144
https://doi.org/10.1007/3-540-58473-0_144
https://doi.org/10.1007/BFb0054059
https://doi.org/10.2307/2282952
https://www.jstor.org/stable/2282952

Bibliography 79

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

S. Verwer and C. Hammerschmidt, FlexFringe: Modeling Software Behavior by Learning Proba-
bilistic Automata, arXiv:2203.16331 [cs] version: 1, Mar. 2022. doi: 10.48550/arXiv.2203.
16331. [Online]. Available: http://arxiv.org/abs/2203.16331 (visited on 03/25/2024).

S. Verwer, M. De Weerdt, and C. Witteveen, “A Likelihood-Ratio Test for Identifying Probabilistic
Deterministic Real-Time Automata from Positive Data,” en, in Grammatical Inference: Theoret-
ical Results and Applications, D. Hutchison, T. Kanade, J. Kittler, et al., Eds., vol. 6339, Se-
ries Title: Lecture Notes in Computer Science, Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pp. 203-216, isbn: 978-3-642-15487-4 978-3-642-15488-1. doi: 10.1007/978-3-642-
15488-1 17.[Online]. Available: http://link.springer.com/10.1007/978-3-642~
15488-1 17 (visited on 04/16/2024).

F. Thollard, P. Dupont, and C. de la Higuera, “Probabilistic DFA Inference using Kullback-Leibler
Divergence and Minimality,” en, 2000. [Online]. Available: https://dial.uclouvain.be/
pr/boreal/object/boreal :109443 (visited on 04/16/2024).

S. Verwer, “Efficient Identification of Timed Automata: Theory and Practice,” Dissertation (TU
Delft), Delft, 2010. [Online]. Available: http://repository.tudelft.nl/assets/uuid:
61d9f199—7b01—45be—a6ed—04498113a212/thesis_final.pdf(WSHed0n0W070024)

N. Walkinshaw, B. Lambeau, C. Damas, K. Bogdanov, and P. Dupont, “STAMINA: A competition
to encourage the development and assessment of software model inference techniques,” en,
Empirical Software Engineering, vol. 18, no. 4, pp. 791-824, Aug. 2013, issn: 1382-3256, 1573-
7616. doi: 10.1007/s10664-012-9210-3. [Online]. Available: http://link.springer.
com/10.1007/s10664-012-9210-3 (visited on 07/07/2024).

J. A. Bergstra, A. Ponse, and S. A. Smolka, Handbook of Process Algebra, en. Elsevier, Mar.
2001, Google-Books-ID: gSH9zg5s3ygC, isbn: 978-0-08-053367-4.

N. Walkinshaw and K. Bogdanov, “Automated Comparison of State-Based Software Models in
Terms of Their Language and Structure,” en, ACM Transactions on Software Engineering and
Methodology, vol. 22, no. 2, pp. 1-37, Mar. 2013, issn: 1049-331X, 1557-7392. doi: 10.1145/
2430545.2430549. [Online]. Available: https://dl.acm.org/doi/10.1145/2430545.
2430549 (visited on 03/27/2024).

K. Bogdanov, M. Holcombe, F. Ipate, L. Seed, and S. Vanak, “Testing methods for X-machines: A
review,” en, Formal Aspects of Computing, vol. 18, no. 1, pp. 3—-30, Mar. 2006, issn: 1433-299X.
doi: 10.1007/s00165-005-0085- 6. [Online]. Available: https://doi.org/10.1007/
s00165-005-0085-6 (visited on 04/01/2024).

G. Navarro, “A guided tour to approximate string matching,” ACM Computing Surveys, vol. 33,
no. 1, pp. 31-88, Mar. 2001, issn: 0360-0300. doi; 10.1145/375360.375365. [Online]. Avail-
able: https://doi.org/10.1145/375360.375365 (visited on 10/02/2023).

V. Likic, The Needleman-Wunsch algorithm for sequence alignment, Melbourne. [Online]. Avail-
able: https://www.cs.sjsu.edu/~aid/csl152/NeedlemanWunsch.pdf.

S. B. Needleman and C. D. Wunsch, “A general method applicable to the search for similarities
in the amino acid sequence of two proteins,” eng, Journal of Molecular Biology, vol. 48, no. 3,
pp. 443—453, Mar. 1970, issn: 0022-2836. doi: 10.1016/0022-2836(70) 90057-4.

T. F. Smith and M. S. Waterman, “Identification of common molecular subsequences,” eng, Jour-
nal of Molecular Biology, vol. 147, no. 1, pp. 195-197, Mar. 1981, issn: 0022-2836. doi: 10 .
1016/0022-2836(81)90087-5.

https://doi.org/10.48550/arXiv.2203.16331
https://doi.org/10.48550/arXiv.2203.16331
http://arxiv.org/abs/2203.16331
https://doi.org/10.1007/978-3-642-15488-1_17
https://doi.org/10.1007/978-3-642-15488-1_17
http://link.springer.com/10.1007/978-3-642-15488-1_17
http://link.springer.com/10.1007/978-3-642-15488-1_17
https://dial.uclouvain.be/pr/boreal/object/boreal:109443
https://dial.uclouvain.be/pr/boreal/object/boreal:109443
http://repository.tudelft.nl/assets/uuid:61d9f199-7b01-45be-a6ed-04498113a212/thesis_final.pdf
http://repository.tudelft.nl/assets/uuid:61d9f199-7b01-45be-a6ed-04498113a212/thesis_final.pdf
https://doi.org/10.1007/s10664-012-9210-3
http://link.springer.com/10.1007/s10664-012-9210-3
http://link.springer.com/10.1007/s10664-012-9210-3
https://doi.org/10.1145/2430545.2430549
https://doi.org/10.1145/2430545.2430549
https://dl.acm.org/doi/10.1145/2430545.2430549
https://dl.acm.org/doi/10.1145/2430545.2430549
https://doi.org/10.1007/s00165-005-0085-6
https://doi.org/10.1007/s00165-005-0085-6
https://doi.org/10.1007/s00165-005-0085-6
https://doi.org/10.1145/375360.375365
https://doi.org/10.1145/375360.375365
https://www.cs.sjsu.edu/~aid/cs152/NeedlemanWunsch.pdf
https://doi.org/10.1016/0022-2836(70)90057-4
https://doi.org/10.1016/0022-2836(81)90087-5
https://doi.org/10.1016/0022-2836(81)90087-5

80

Bibliography

[32]

[33]

[34]

[35]

[36]

[37]

[38]

S. Tsoni, “Log Differencing using State Machines for Anomaly Detection,” en, Ph.D. dissertation,
2019. [Online]. Available: https : / / repository . tudelft .nl/islandora/object /
uuid%3Ab0b39832-c921-412c-b6£8-9acd4c52b57£6 (visited on 05/29/2023).

What is A Confusion Matrix in Machine Learning? The Model Evaluation Tool Explained, en.
[Online]. Available: https://www.datacamp.com/tutorial /what-is-a-confusion-
matrix-in-machine-learning (visited on 07/04/2024).

Q. Fu, J.-G. Lou, Y. Wang, and J. Li, “Execution Anomaly Detection in Distributed Systems
through Unstructured Log Analysis,” in 2009 Ninth IEEE International Conference on Data Min-
ing, ISSN: 2374-8486, Dec. 2009, pp. 149-158. doi: 10.1109/ICDM.2009.60.

M. Goldstein, D. Raz, and |. Segall, “Experience Report: Log-Based Behavioral Differencing,”
in 2017 IEEE 28th International Symposium on Software Reliability Engineering (ISSRE), ISSN:
2332-6549, Oct. 2017, pp. 282—-293. doi: 10.1109/ISSRE.2017.14.

A. W. Biermann and J. A. Feldman, “On the Synthesis of Finite-State Machines from Samples of
Their Behavior,” IEEE Transactions on Computers, vol. C-21, no. 6, pp. 592-597, Jun. 1972, Con-
ference Name: IEEE Transactions on Computers, issn: 1557-9956. doi: 10.1109/TC.1972.
5009015. [Online]. Available: https://ieeexplore.ieee.org/document/5009015 (vis-
ited on 08/25/2024).

W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan, “Online System Problem Detection by
Mining Patterns of Console Logs,” Dec. 2009, pp. 588-597. doi: 10.1109/ICDM.2009.109.

W. Xu, “System Problem Detection by Mining Console Logs,” en, 2010.

https://repository.tudelft.nl/islandora/object/uuid%3Ab0b39832-c921-412c-b6f8-9ac4c52b57f6
https://repository.tudelft.nl/islandora/object/uuid%3Ab0b39832-c921-412c-b6f8-9ac4c52b57f6
https://www.datacamp.com/tutorial/what-is-a-confusion-matrix-in-machine-learning
https://www.datacamp.com/tutorial/what-is-a-confusion-matrix-in-machine-learning
https://doi.org/10.1109/ICDM.2009.60
https://doi.org/10.1109/ISSRE.2017.14
https://doi.org/10.1109/TC.1972.5009015
https://doi.org/10.1109/TC.1972.5009015
https://ieeexplore.ieee.org/document/5009015
https://doi.org/10.1109/ICDM.2009.19

	Introduction
	Research Questions
	Contributions
	Outline

	Background
	Sequential data
	Parallelism

	Transition systems
	Petri-nets
	State Machine Models
	State Machine Learning
	Identifying Regular Languages

	State merging algorithms
	Evidence driven-state merging (EDSM)
	ALERGIA

	Flexfringe
	Red-blue framework
	Evaluation functions
	Parameters
	Input Format
	Output format
	Prediction

	Comparing state machine models
	Labelled Transition System
	Structure comparison of LTS
	Language comparison of LTS

	Sequence alignment
	Distance measure
	Needleman-Wunsch algorithm
	Smith-Waterman algorithm
	Tree-Sequence Alignment

	Evaluation metrics

	Related Work
	Anomaly detection in logs
	Log-based behavioural differencing

	Methodology
	Data Exploration
	Data preprocessing
	Hadoop Distributed File System

	Modelling data with FSA
	Heuristic selection
	Sink count

	Sequence alignment
	Evaluation
	Classification

	Experiments
	DFA model
	Experiment 1: Scoring
	Static scoring
	Linear scoring
	Dynamic scoring
	Results

	Experiment 2: Parallelism
	Ignore-skip rule
	Results

	Experiment 3: Modifying the original model
	Results

	Discussion
	Conclusion
	Appendix A
	Learned FSA
	HDFS with AIC and sink count=5
	HDFS with AIC and sink count=10
	HDFS with AIC and sink count=50
	HDFS with AIC and sink count=100
	HDFS with AIC and sink count=300
	HDFS with AIC.ini
	HDFS with edsm.ini

	Appendix B
	Confusion Matrices for predict
	Confusion Matrices for predictalign
	Confusion matrices for Needleman-Wunsch alignment
	AIC model, sinks=50
	AIC model, sinks=100
	AIC model, sinks=300

	ROC curves

