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Abstract

In this thesis, a test device is designed for the company Momo Medical. Momo Medical is developing a
system that can be used to prevent pressure ulcers and adding more functionality is being investigated. For
this system they need a device to test the functionality of the six piezoelectric sensors that are used in their
product. The sensors’ response to a known pulse needs to be tested in order to give a pass/fail indication of
the sensor quality.

First, different ways of testing the sensors are investigated. Based on the results of the investigation, a
final test setup is chosen and characterized.

The test system developed in this thesis is based on a pneumatic setup, using a solenoid valve to con-
trol well-defined air pulses directed towards the sensors. Due to the addition of a reference load cell with
custom designed read-out electronics, the device is able to test all six sensors one at the time and provides
detailed feedback about the individual sensor quality. The test is performed using GUI-based software writ-
ten in MATLAB, connected to a microcontroller. The software offers a broad variety of settings and can be
configured according to Momo Medical’s wishes. After configuration, the test can be performed at the click
of a button.

The standard deviation of the device precision over three hours is o = 4.16, which equals a variation of
¢y = 0.82% of the mean p = 504.8. This easily satisfies the requirements set by Momo Medical.
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Introduction

In this chapter, an introduction will be given about Momo Medical, the product they are developing and what
problem they are facing.

1.1. Pressure ulcers and Momo Medical

Pressure ulcers are localized damages to the skin and/or underlying tissue. They are caused by pressure to
the skin over an extended period of time. This affects the upper skin and underlying tissue. These wounds are
painful and take a long time to heal [1]. Pressure ulcers cause patient suffering, high expenses and increased
workload for health care staff [2].

Momo Medical (hereafter also called Momo) strives to prevent these wounds from occurring. They de-
veloped a smart technology that provides continuous insight in the posture and movements of the patient.
Their solution consists of a sensor plate and matching control unit (seen in figure 1.1), providing feedback to
nurses and other staff. If a patient has not repositioned him/herself after a set amount of time, a nurse can be
alerted.

The sensor plate is a thin plate (approximately 65x12x1 cm) placed underneath the mattress. It is covered
by a sleeve to protect it against moisture and dust (not shown in the figure). The sensor plate provides a
non-intrusive way to detect the position of the patient using a variety of sensors.

The control unit is a small box attached to the wall or the bed frame and reads the signals from the sensor
plate. The signals are analyzed to determine the position of the patient. A circle of RGB LEDs indicates how
long the patient has been in his/her current position (see figure 1.1). As soon as a patient lies down in the bed,
a timer starts in the control unit. When a patient repositions him/herself, or a nurse repositions the patient,
the timer is reset. If a repositioning has not occurred after a set time (e.g. 3 hours), a nurse is notified.

In future versions they would also like to be able to detect heart rate and breathing patterns with the same
device [3].

1.2. The sensor plate in detail

In this thesis version 5 of Momo’s sensor plate is considered. The sensor plate contains 6 dynamic force
sensors and 8 static force sensors, as well as an accelerometer to detect the bed angle. Piezoelectric (PE)
sensors are used as the dynamic force sensors, and force-sensing resistors (FSRs) are used as the static force
sensors. All sensors are connected to conditioning circuits, after which the signal passes through to analog-
to-digital converters (ADCs). The ADCs are then connected to the control unit using I2C.
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Figure 1.1: Sensor plate (left) and control unit (right). Pictures provided by Momo Medical

1.2.1. Domes and pucks

Momo refers to the ‘triangle’ shaped parts (seen in figure 1.2) as domes. The PE sensors are taped to the
bottom of the six middle domes. On the narrow end there is a so called ‘puck’ (see figure 1.3), where the dome
rests on the FSRs, on the opposite side the puck rests on the frame. The PE sensor thus measures how much
the dome deforms.

Figure 1.2: Sensor plate "exploded view". Picture provided by Momo Medical

1.2.2. PE sensor used by Momo Medical
Momo uses piezoelectric sensors to detect small vibrations through the mattress.

A piezoelectric sensor is based on the piezoelectric effect, found by Pierre and Jacques Curie in 1890. A
piezoelectric material consists of a crystal lattice with electric dipole moments. These dipoles are generally
oriented randomly throughout the material, so no net polarization is exhibited [4]. When a strong electric
field is applied, the dipoles orient themselves according to the applied field.
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Figure 1.3: Dome with puck. Picture provided by Momo Medical and edited by the authors
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Figure 1.5: AC analysis in LTspice of the conditioning circuit shown in figure
1.4

When an external mechanical stress is induced, the dipoles change orientation. To the outside, this ap-
pears as a variation of surface charge density upon the different faces of the lattice [5].

The PE sensors used by Momo are piezoelectric diaphragms manufactured by Murata, type 7BB-20-6L0.
Even though these diaphragms are designed to be used as buzzers, they can be used in reverse as pressure
sensors. The diaphragms belong to the family of lead zirconate titanate (PZT) ceramics. PZT ceramics “exhibit
very high dielectric and piezoelectric properties and find wide applications as sensor and actuator devices"
[6]. The specific diaphragms used by Momo are 20 mm in diameter, have a resonance frequency f;s = 6.3 +
0.6kHz and a capacitance of 10nF +30% [7].

1.2.3. Schematic of the PE sensor conditioning circuit

In order to properly read the data coming from the sensor, Momo Medical uses a conditioning circuit as seen
in figure 1.4. As a model for the piezoelectric sensor a charge source is used in parallel with a resistor R =
10GQ (see [8]) and a capacitor C = 10nF. A simulation in LTspice is performed and the frequency response
can be seen in figure 1.5. The entire circuit can be viewed as having a first order high-pass filter with a cut-off
frequency f,;,f = 4Hz and a second order low-pass filter with a cut-off frequency of fj, r = 18.4Hz.

1.2.4. Analog-to-digital conversion

After the conditioning circuit, the signals are fed to an ADC. The ADCs used in Momo’s current system are the
ADS1015 made by Texas Instruments. These ADCs are 12-bit with a programmable gain amplifier (PGA) of
1, 2, 4, 8 or 16x. This PGA can amplify the signal before it enters the A/D converter itself. With a gain of 1,
the full-scale range of the ADS1015 is £6.144V since it has an internal voltage reference. This means the least
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significant bit size equals
. 6.144

o =0.125mV (L.1)

The smallest output voltage of the conditioning circuit as can be measured by the ADC s therefore 0.125 mV[9].
On the other hand we have the maximum value of the supply voltage (5V).

1.3. Problem overview

At this moment, the data from the piezoelectric sensors is unusable for a proper algorithm. The difference
in sensitivity is more than 100% from sensor to sensor, even in a single sensor plate. As Momo’s product will
be put into production in the next few months, there is an urgency to address this problem. The goal of this
thesis is to design a device which tests the sensors before they are shipped out, to make sure they are able to
detect a heart rate and breathing pattern whilst placed under a mattress. After this, they would like to be able
extract some values so the data can then be trimmed when data is read from the sensor plate.

1.3.1. Problem definition

Momo Medical wishes to have their piezoelectric sensors in their sensor plate tested before they are shipped
out. For a sensor plate to be usable in the field, it is necessary that every sensor can be considered as equally
sensitive. This means that every sensor must respond in a similar manner to a certain applied pressure.
Sensor plates that pass can be shipped to the end users, plates that fail go back to the production area to be
fixed. This test is done at the production facility and should be done in the same time it takes the production
company to build one sensor plate (30 min). The test ensures that faulty sensors are replaced before the
sensor plate is shipped out to the customers. Momo Medical would like to make use of the piezoelectric
sensors to accurately measure heart rate and breathing pattern, as well as improving patient detection and to
offer extra functionality to the customer. The sensor plate is the device-under-test (DUT).

1.3.2. System requirements

Momo Medical has provided certain requirements for the proposed testing device. These requirements are
classified using the MoSCoW method [10] into Must haves, Should haves, Could haves and Won't haves tables
(see table 1.1, 1.2, 1.3 and 1.4, respectively). The requirements placed in each section are numbered arbitrary
and do not reflect their priority.
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Table 1.1: Must-have requirements. Requirements from both the resources provided by Momo and the system design requirements.
These requirements have a high priority and must be fulfilled in order to achieve the goal; designing a testing machine for the sensor

plate.
Must Haves
Requirement Description
M1 The testing must be done on the assembled sensor plate without protecting sleeve
M2 The maximum weight on the single sensor is 5 kg
M3 The minimum sampling frequency used for reading out the sensors is 50 Hz
M4 The dimensions of the testing system must be smaller than 2x2x2m (Ix wx h)
M5 A production worker with moderate technical knowledge must know how to use the
testing device at the production location, after a maximum of 8 hours of instructions
M6 All calculations must be done in software (external PC or embedded firmware) with a
pass/fail indication per sensor
M7 All measurements must be stored in an external device
M8 The testing system must use 230 VAC as input (<16 A, 50 Hz)
M9 User documentation must be provided for operating and testing the system
M10 The sensor plate values must be read-out via the existing I°C interface
M11 The total price of the materials used for the testing system must be lower than €10,000
(ex. VAT)
M12 The testing of a single sensor plate must be done within 30 minutes

Table 1.2: Should-have requirements. Requirements that would make the system better, but are not needed to achieve the goal

Should Haves
Requirement Description

S1 When starting the software, the user should only have to press one start button in order
to start testing a sensor plate

S2 The reference sensor should give equal responses within a +5% margin in amplitude,
3 hours after testing

S3 The testing device should test all 6 sensors without manually repositioning the system

S4 Compensation coefficients should be exported from the software

Table 1.3: Could-have requirements. Requirements would be desirable for the system, but will only be touched upon if there is enough

available time.

Could Haves
Requirement Description
C1 The force-sensing resistors could be calibrated absolute with a 5% error margin
C2 The static and dynamic testing systems could be integrated into a single system
C3 The system could be made portable and simple so it is usable for Momo clients (e.g.
hospitals, nursing homes) to have a test unit in-house
C4 The testing device could have a self-test option
C5 The testing device could meet CE and RoHS requirements

Table 1.4: Won't-have requirements. Requirements that will not be part of the current schedule, but may be interesting in the future to
work on by another team

Won’t Haves

Requirement

Description

W1

Calibration data is stored in the Cloud




Design Concepts

In this chapter different solutions to the problem described previously are put to the test and a final setup is
chosen.

2.1. State-of-the-art analysis

The state-of-the-art analysis focuses on comparing similar solutions for a certain problem. Applications that
use dynamic pressure sensors are looked into to get a better understanding of the currently used methods for
calibrating dynamic forces.

2.1.1. Calibration systems

Calibration is a fundamental process for instruments that require high accuracy. During the calibration pro-
cess, measurements are done on the instrument which are compared to values from a standard reference
device. In case the measurements differ from each other, the instrument can be adjusted to ensure the re-
sults comply with the standard reference.

In modern processes, the standard reference is based on the SI units and some of their derived units. As
the characteristics of devices change over time due to material property or the different environments it is
used in, it is necessary to calibrate devices frequently to ensure they are still accurate.

Different kinds of sensors are used to perform measurements. Force can be measured using a wide variety
of sensors [11]. For each of these sensors, calibration is necessary if accurate measurements are needed.
Calibration systems are used to perform these calibrations and must comply to the standard reference for
that quantity. The standard reference in the case of calibrating a force sensor is a known applied force. For
each known force, the sensor read out should result in the same value as the calibrated system. If this is not
the case, the instrument is not accurate and should not be used for applications which require high accuracy.

2.1.2. Dynamically calibrating force sensors

Systems which calibrate force sensors are common. However, the amount of force applied to an instrument
is different. Tekscan makes force-sensing resistors called FlexiForce sensors [12]. These sensors have a range
between 0N and 111 N (0 - 25 1b). One of the possible ways of calibrating these sensors is written by Somer
et al. [13]. In this paper, static calibration is done with the use of static weights and dynamic calibration is
done through the inertial force of the mass. In order to transfer static force to the sensor, a lever mechanism is
used in combination with a digital weighing device. Dynamic force is transferred through an oscillating mass.
Different masses are used for this calibration process. In order to determine the amount of pressure applied

11
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to the sensor, a relation between the pressure applied to the sensor and the inertial force is made. As the mass
is known and the acceleration is measured through an accelerometer, the inertial force can be calculated.

Unfortunately, the calibration system used to measure these FlexiForce sensors cannot be used to cali-
brate Momo’s sensor plate, since the sensors should be calibrated while they are in the sensor plate. This
method to mount these sensors to the plate can affect the sensitivity. Finally, the surface contact of the mass
to the domes on the sensor plate may affect the measurement. In order to solve the issue with the surface
contact, a medium must be chosen which is able to transfer the force from the mass onto the dome.

Another commonly used method for calibrating force sensors is by means of shock tubes. A shock tube
consists of a closed tube with two compartments separated by a diaphragm. One compartment is filled with
a low pressure gas (driven gas) with the force transducer on the end of the tube. The other compartment is
filled with a high pressure gas (driver gas). When the pressure of the driver gas is increased, the diaphragm
will rupture at a predetermined pressure. The high pressure of the driver gas expands in the direction of the
low pressure size and increases the temperature of the driven gas as a result of the shock wave. The shock can
be measured to calibrate the force transducer [14].

The frequency range of interest for the piezoelectric sensors is below 20 Hz. Since the shock tube pro-
duces an impulse (the rise time of the produced shock is in the order of nanoseconds, see [15]), frequency
components from DC to the MHz-range are present.

The main disadvantages for using a shock tube is that the piezoelectric sensors Momo uses, have to be
tested in the complete sensor plate after production. This means that it is not possible to use a shock tube,
since that requires a single sensor to be mounted on the end of the tube. Mounting a complete sensor plate
in the tube won't be a feasible solution.

2.2. Morphological chart

In order to make a selection out of the possible options for a dynamic force measurement, a morphological
chart is created. In table 2.1 it can be seen that several options are compared with each other. The best
concepts will be put to the test in this thesis. This chart is based on assumptions and only the chosen options
will be investigated in detail.

From this table the following options are chosen: steel beam, dome-on-dome and the pneumatic setup.
The first two options can be easily tested, as many of the parts necessary are readily available. At the same
time the last option is being investigated, and all parts needed are ordered.
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2.2. Morphological chart
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Figure 2.1: Schematic overview of the steel beam setup

2.3. Setup

The setup used for measuring the piezoelectric sensors consists of a microcontroller connected to the DUT
through an [2C interface. The microcontroller (LPC1768, made by NXP) uses Mbed as its software platform.
The microcontroller reads out values from the ADC and can modify the ADC’s PGA. Values received from the
ADC are sent through a UART connection to a program made in MATLAB App Designer. The values received
by MATLAB are processed and plotted in the GUIL. By means of the program, measurement options can be
selected which are sent to the microcontroller. These measurement options include which sensor is read out,
the duration of the measurement and the gain factor of the PGA.

2.4. Steel beam with stepper motor setup

Since a stepper motor with driver is available at Momo Medical, this setup is considered first. This stepper
motor is attached to a steel beam. The aim is to get a general idea of the problem at hand and to see if this
setup proves to be a good candidate to be used in a final design.

2.4.1. Test Setup

A stepper motor with a small eccentric weight (mass m = 50g, radius axis to weight r = 1cm) is attached to
a steel beam (60mm x 60mm x 1m, 5.1kg). To ensure proper contact between the steel and the domes, soft
plastic adhesive pads are carefully stuck on the steel to ensure that each pad is equally spaced. The steel
beam is positioned on top of the DUT. An overview of the setup can be seen in figure 2.1. A microcontroller
is used to generate a square wave with variable frequency, which controls a stepper motor driver (DRV8825)
[16]. When the motor is spinning at a certain frequency (i.e. rotations per second) the unbalanced weight
creates a vibration on the beam. The measurements are performed with test frequencies of 1, 2, 3, 4, 5, 6, 7,
8,9 and 10 Hz.

2.4.2. Results

The unfiltered output for four different frequencies (1 Hz, 2 Hz, 3 Hz and 4 Hz) is plotted in figure 2.3. In figure
2.4 the frequency response for an input frequency of 5 Hz is shown to give an indication of the individual
sensor responses. A clear difference between sensor responses can be seen. Appendix D.1

To see if standing waves in the steel beam play a role in the deflection of the beam, a simple calculation is
made. If the standing waves in the beam turn out to have a significant impact, it would render the measure-
ments useless, since the beam itself would move differently at every location along the beam. The speed of
sound in steel is 4880 to 5050 ms~! [17]. The maximum used test frequency is 10 Hz. This results in a wave-
length of minimally 1 = ]—’i = % = 488m. This is much larger than the 1 meter beam used in this experiment
and therefor any deflection due to standing waves is negligible.
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Figure 2.2: Actual steel beam setup

ADC output values

Figure 2.3: Sensor output with a 1 Hz (1-3.5s), 2Hz (3.5-6.5 s), 3Hz (6.5 - 9.5 s) and 4 Hz stepped input
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Figure 2.4: Frequency response of six PE sensors at a frequency of 5 Hz using the steel beam setup

2.4.3. Conclusion

The results shown confirm the expectation by Momo that the sensors’ sensitivity varies greatly. When testing
using the current setup, it is difficult to determine the amount of force the motor with its weight induces on
the six sensors. Even when this force is known, it cannot be said with certainty that each sensor is exerted
with 1/6th of the total force. Since all domes are not at the exact same height, no proper conclusions can be
drawn from the sensor responses.

In a production environment this setup also has some flaws, as the motor used is not made for an eccen-
tric load this could cause the motor to fail quickly.
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2.5. Dome-on-dome

In order to get some information on the possibility of using a PE sensor as a sort of actuator, one dome is
placed upside down on another dome. The bottom dome is excited with a function generator with a fre-
quencyof1, 2, 4, 8 and 16Hz. As an additional advantage, this setup allows for an easy comparison of different
binding materials of the PE sensor to the dome. This is an import aspect, since Momo raised questions about
the currently used double sides tape.

The tests are performed with 6 domes, pairs of two, with the PE sensors fixated with the following binding
materials:

* Super glue (cyanoacrylate)

¢ Epoxy
¢ Double sided tape

2.5.1. Test Setup

The test setup consists of two domes placed back-to-back, with one being driven by a function generator
(Vpp = 20V and the other being read out by Momo’s sensor plate PCB. The same conditioning circuit is used
for all dome-on-dome tests. In order to minimize the influence of external electromagnetic fields, both domes
are placed in a shielded container, with all ground connections made to mains earth. See figure 2.5 for a
schematic overview of the used system.

Function

generator
H Adhesive ) Puck
H —I \ Piezo I— !
: Dome
: Dome
Q ) / Piezo I_ .
' Adhesive Puck
H Sensor plate

read out PCB

L ==

Figure 2.5: Schematic overview of the dome-on-dome setup. The gap between the two domes is only drawn for clarity. In practice the
two domes are place on top of each other. The whole system is placed in a shielded environment to eliminate any interference

2.5.2. Results

The results of the test are shown in figure 2.6. In every measurement the excitation frequency can be distin-
guished, however the variation in adhesive materials seem to have a large impact on the results. Note that
these results are not conclusive, but at least give a hint about the best of these three adhesive options.

2.5.3. Conclusion

The results are consistent with the expectation from a material standpoint, tape being the least rigid, then
(still curing) epoxy and lastly the super glue. The sensor fixated with super glue shows the largest amplitude
and the best consistency over various drive frequencies. Momo Medical was informed about these results
and from this data, Momo determined that new versions will be fixated with super glue.

The main problem with using this setup for a testing device is that the surfaces need to be completely
flat for a proper pressure transfer from one dome to another. Momo’s current generation of sensor plates is
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Figure 2.6: Frequency response for three different materials: Epoxy, Super glue and Tape. Each material is tested with 5 frequencies: 1, 2,
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Figure 2.7: Schematic overview of the compressed air setup Figure 2.8: Setup with compressor connected to orange tube

made out of lasercut Polymethylmethacrylate (PMMA), which is not perfectly flat. If the upper dome does
not contact the lower dome fully, proper testing cannot be done. Furthermore, using the piezo as a speaker
as well as a sensor, it is unknown if the differences in response are the result of the speaker or the sensor.
Therefore this method will not be developed further.

2.6. Compressed air

To deal with the repeating problem of a proper force transfer from an actuator to the dome, compressed air
is considered next.

2.6.1. Test Setup

Using a test setup that can be seen in figure 2.8 pulses of air are shot towards a dome, and the output is shown
in MATLAB. The compressor (Gamma CP-6 [18]) is connected to the orange tube (top right). The steady state
pressure of the output pressure regulator is set to 3 bar. This output is then connected to a solenoid valve
(Festo VUVS-LK25-M32C-AD-G14-1B2-S [19]). The valve has an opening time of 16 ms and closing time of
20ms. In order to have a thin jet of air, an end cap with a 2.5 mm drilled hole in the middle, is screwed into
the valve output connection. The valve is mounted on a rod, with an extra rod for support. For now, the valve
is in a fixed position, above one sensor.

Schematically this setup is depicted in figure 2.10. The left part of the schematic shows the electrical
system, consisting of the 24V power input, the solenoid valve S1 between points 1 and 3, and the switch
between points 3 an 4 for turning on and off the valve. The right part of the schematic shows the pneumatic
system. From bottom to top one can see: pressure ‘ground’ (i.e. atmospheric pressure), the air compressor,
the external pressure regulator with pressure gauge, the solenoid valve S1 and on top the air output nozzle.

The before mentioned microcontroller and MATLAB software is modified so it can open and close the
valve from the microcontroller. In order to drive the 24 V solenoid a PCB was soldered containing a PN2222A
NPN transistor connected to a MOSFET (IRFZ44N). A fly-back diode is added across the solenoid to eliminate
induced voltage spikes when the circuit is switched, which could otherwise damage the MOSFET. A schematic
of the circuit can be found in figure 2.9. The circuit is powered from a lab power supply set to 24 V. The test
starts by the user pressing the run button, the parameters are sent to the microcontroller which controls the
valve with the use of a digital output pin. The microcontroller waits one second before the valve is toggled.
For all tests we used 5 Hz as the valve frequency with a total of 20 pulses.

2.6.2. Results

Multiple measurements were performed with this setup, many of them performed very well, yet some did not.
This is different from the expected result, as it is expected that the air pulse and sensor do not vary greatly
over time. In figure 2.11 three interesting results can be found, first a measurement that looks as expected. All
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Figure 2.10: Electric (left); pneumatic (right) schematic.

Figure 2.9: Schematic of 24 V solenoid valve driver, controlled from a Picture provided by Roel van der Plas

microcontroller

periods are more or less equal and in the corresponding FFT the test frequency can be detected clearly. In the
second measurement shown, a problem occurs at ¢ = 3.5s: suddenly many higher frequency components
start to arise and the FFT becomes less clear. In the third measurement this problem persists, even when
the measurements are performed multiple times and the FFT no longer shows its highest peak at the test
frequency.

It has to be stated that the first and last results in figure 2.11 are repeatable (n = 10), whereas the second
measurement was only observed one time. After this, we moved the valve and nozzle to another sensor in
the same DUT, and the results are very similar to the first measurement in figure 2.11, only with a different
amplitude. It is assumed that the tape holding the PE speaker in place has loosened or something similar, but
the test setup seems to perform consistently.

2.6.3. Conclusion

The square wave frequency can clearly be seen from the FFT of the good measurements in figure 2.11. How-
ever, when the measurement shows a result similar to the bad measurement in figure 2.11, higher harmonics
are present with higher amplitudes, so determining the test frequency is more difficult. The source of this
problem has to be pinpointed exactly in order to do proper testing on the DUT. The repeatability of the good
measurements however do seem to provide enough reliable data for a proper testing system.

2.7. Chosen concept

As mentioned in chapter 2, the steel beam and dome-on-dome setup have major drawbacks regarding the
surface contact and the ability to use a reference. The compressed air setup however does not have this issue
to the same extend. With this setup it is possible to place a different reference sensor under the nozzle in
order to determine the consistency of the air exiting the system. The problems found using the setup are most
likely problems with the sensor plate itself, but this will have the first priority for further testing. Therefor the
compressed air setup is developed further for the final system.
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Final Design

In this chapter the development of the final design will be explained.

3.1. Needed improvements

As mentioned in chapter 2, a pneumatic setup is chosen as the basis for the final design. The concept version
had some major flaws, that lead to many needed improvements.

A general idea of the fluid dynamics involved is needed in order to determine if the system is stable from a
mechanical standpoint. It should be determined if the data shown from the measurements is consistent with
its theory.

When performing tests, the compressor sometimes switches on in order to provide enough air pressure
for the system. This causes a slight ripple in the air pressure going to the valve. In order to reduce this issue,
an extra pressure regulator (Festo LR-1/4-D-7-MINI) is connected to the system.

Before developing this idea further, the consistency of the generated air pulses has to be determined. For
this reason a load cell will be placed underneath the valve nozzle and a 3 hour long test will be performed.

When it turns out these air pulses are consistent, it is possible to conclude that the DUT in itself causes
the issue. Momo has called back their sensor plates in order to glue the PE sensors instead of using tape.
Therefor it is more accurate to start testing with a sensor plate with glued sensors. As these sensor plates are a
factor 10 more sensitive (according to Momo), the nozzle diameter is reduced to 0.7 mm and the air pressure
to 1.5 bar. This version of the DUT is still considered version 5.

Lastly some major modifications have to be made to the structure of the test setup. All six sensors have to
be tested, so either the DUT has to be moved, or the valve. Our colleague Roel van de Plas, a Mechatronics
engineering student, will consider different concepts and together a final design will be chosen.

Testing can be done at any frequency between 0.5 and 10Hz, but the actual test frequency could be a single
frequency. The frequency characteristics need to be determined for all sensors of the DUT in order to test the
frequency characteristics of the sensors used by Momao. A test frequency or range can then be selected.

3.2. Theory

In order to get a better understanding of the amount of force applied to the DUT by the air pulse, fluid me-
chanics theory from [20] and [21] is applied to the system.

22
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As afirst approach, the nozzle on the output of the solenoid valve is modelled as a minimal Laval nozzle.
The diameter of the nozzle is 0.7 mm. To see if the air escaping the nozzle is choked, the downstream pressure
p*, which is the normal atmospheric pressure of 0.1 MPa, should be no less than the critical ratio seen in
equation 3.1. The pressure Py equals the upstream pressure, which is the 2.5 bar (0.25 MPa) pressure applied
to the valve. For dry air, the heat capacity ratio y = 1.4.

.

p* ( 2 )Y*l
“—=|—| =0528 6.1
Py Y+ 1

Since p* < 0.528Py, choked flow occurs when the air escapes the nozzle of the valve. This means the air is
choked at Mach 1. Equation 3.2 is used to determine an approximated air velocity. In this equation, Ty equals
room temperature (293K) and the gas constant R = 287Jkg ' K~!.

v=+\/YRTy=V1.4-287-293 =343ms"! (3.2)

For the mass flow rate of the air escaping the nozzle, equation 3.3 is used, where the discharge coeffi-
cient Cyz = 0.8 is chosen to compensate for any irregularities in the nozzle hole. The nozzle area A = r? =
3.85 x 107" m?, air pressure Py = 0.25MPa and compressed air density pg = v/Po/(RT) = 3kgm 3.

Y

2
hn=C4zA Py|—— 3.3
m=CgA\|YPo 0(Y+1) (3.3)

y+1
-1

This results in a mass flow rate 7z = 1.83 x 10~ *kgs ™.

To calculate the force, we use the relationship F4;. = v = 1.83 x 107%-343 = 62.6 x 1073N. To compare
this calculated force against the used setup, a digital weighing scale is placed underneath the air nozzle and
a constant air flow is released. The scale measured a constant 6.6 g, which equals a force of Fy,eq5s = mg =
0.0066-9.81 = 64.7 x 1073 N. The air pressure will not be changed during the rest of the measurements in this
thesis. This also means that system requirement M2 is satisfied (see table 1.1).

3.3. Reference measurements

3.3.1. Reference setup

As mentioned in section 3.1 a load cell is added to the system in order to obtain a good reference measure-
ment. A load cell based scale is constructed out of PMMA and 4mm MDF and can be seen in figure 3.2. The
load cell used is the TAL221 made by HTC-Sensor [22]. It is bolted together using M3 screws and bolts. The
relevant specifications for the load cell can be found in table 3.1.

Table 3.1: TAL221 load cell specifications

Capacity 500¢g
Rated output 0.7+£0.15mV/V
Combined error +0.05%FS
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Figure 3.1: Schematic of load cell, read-out with the AD620 instrumentation amplifier and connected to the ADS1015 analog-to-digital
converter. The I2C lines from the ADC are connected to the microcontroller (not shown in this schematic)

Figure 3.2: Load cell sensor mounted on a PMMA base and with an MDF and PMMA top in the same shape as a single dome on the DUT.
The brass nozzle with the 0.7mm air hole can be seen underneath the Festo valve

3.3.2. Load cell linearity

In order to use the load cell as a reference for the final setup, it is necessary to determine the linearity of the
load cell. To test this, different weights are placed on the load cell and the ADC values are read out. Weight
from 5g to 100g are used, and with Newton’s second law F = mg, where the standard gravitation acceleration
g = 9.81ms2. Figure 3.3 shows the output ADC values for the different applied weights. It can be seen that
the load cell acts very linear. This means the load cell can be used to convert the ADC values to a force.
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Figure 3.3: Mean ADC output values versus static force on the load cell. The measured values are shown as crosses

3.3.3. First measurements with the load cell

A first measurement is shown in figure 3.4 (top left). The result has many higher frequency components and
does not seem to be the an approximated square wave.
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Figure 3.4: Results of the load cell test. Upper left: raw load cell measurement with a 5 Hz input. Upper right: deconvoluted measurement
using the curve fitted impulse response from figure 3.5. Lower left: FFT taken from the deconvoluted measurement. Lower right: filtered
deconvoluted measurement taken with the same filter used in the DUT
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When looking closely at these higher frequency components, ringing can be seen at ¢ = 5s. This ringing
could come from the mechanical system of the load cell and/or the air pulse itself. The ringing frequency
is determined at f; = 99Hz. The load cell system can be modelled as a damped mass-spring system. This
is a damped oscillator with a frequency determined by the spring constant k [N m~1], its mass m [kg] and

the damping ratio {. The damped natural frequency w, can be calculated via wg = 1/ k(lT_(z) The impulse
response of an ideal damped oscillator is of the form

U7 sin (wy 1) (3.4)

y=Ae"

To test if this load cell mass-spring system is responsible for the ringing seen in the data, a weight of 50 g

is placed on the load cell and removed very quickly when a measurement is running. The resulting ringing

is multiplied by -1 to obtain an approximated step response, so it can be differentiated in order to find the

impulse response. This ringing can be curve fitted using equation 3.4. In figure 3.5 the measured ringing and

the curve fitted damped sine are plotted (script in appendix D.2). The used parameters for equation 3.4 are
A =2000, 7 =0.05s and w; = 27 -99 = 622rads~!
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Figure 3.5: Curve fitting the ringing. The blue line represents the calculated impulse response from the measured step response. The
orange line is the curve fitted damped sine used for the deconvolution

The measured signal can be seen as the result of a convolution between the load cell system and the air
pulse system. Mathematically this is described by equation 3.5.

() = hy (1) * f(2) (3.5)

In this equation, y() is the measured output from the load cell, /;.(¢) is the impulse response of the load
cell mass-spring system and f () of the air pulse system.

It is now possible to deconvolute the measurement of the load cell with the impulse response of the load
cell to obtain data without the ringing of the load cell. Since a deconvolution is very sensitive to noise ([23]),
the curve fitted sine wave is an ideal approximation of the load cell system impulse response. The result of
this deconvolution can be seen in figure 3.4 on the top right. When looking at the FFT of this deconvoluted
signal, a peak at 294.8 Hz can be detected (script in appendix D.6). It turns out higher frequency components
are still present, which can originate from either the air or inaccuracies in the modeling of the mass-spring
system.
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Fortunately, as mentioned in section 1.2.3, the DUT has internal filtering. When modeling the piezo
speaker and its signal conditioning circuit, it was determined that the system has a first order high-pass filter
around 4 Hz and a second order low-pass filter around 18 Hz. When filtering the deconvoluted data using
these conditions, the bottom right plot in figure 3.4 can be shown.

Comparing this to the upper measurement in figure 2.11, it is very similar. It is therefor assumed that air
pulses are consistent enough to be able to do proper testing.

Lastly, the damped natural frequency f; = 99Hz and the used test frequency is f;es; = 5Hz. Since % =
0.05 <« 1, we can neglect the frequency behaviour of the load cell.

3.3.4. Load cell repeatability

For approximately 3 hours, every 90 seconds a test is performed to determine the repeatability of the load cell,
128 measurements in total. From every measurement, the peak FFT value at 5 Hz test frequency is taken and
plotted in figure 3.6. In this figure the mean value and the standard deviation are shown to give an indication
about the consistency of the FFT amplitude. The used script can be found in D.4.
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Figure 3.6: FFT peak values at 5 Hz during a +3h test

3.3.5. Load cell frequency response

For testing purposes it is convenient to use a single test frequency. In order to be able to tell if a sensor is
‘good’ or ‘bad’ based on one test frequency, a test is performed on all sensors of the DUT.

First the frequency characteristics of the air pulse are examined using the load cell. Each test consists of
a measurement with 20 pulses of a certain frequency. The frequencies used go from 0.5 Hz to 12Hz. Lower
frequencies might take too much time during production and higher frequencies are not reachable with the
current pneumatic valve. As the pulse is not a perfect square wave, not all frequency components are present
at the same amplitude. In table A.1 the peak FFT values for every test frequency are shown. The test is
repeated 5 times and the measurements are averaged for further analysis. These averages can also be seen in
table A.1 together with the percent deviation of the single measurements. All deviations are within 2% of the
average. It can be seen that there are large differences in the response for the different test frequencies. The
FFT peak at 12Hzis (% —1)-100% = 79% higher than the peak at 7 Hz. To compensate for these differences,
a scaling factor is calculated where all averages are scaled relative to the FFT value at 0.5 Hz. These scaling
factors can be seen in table 3.2.
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Table 3.2: Frequency scaling factors used to compensate for the frequency characteristics of the air pulse

Frequency (Hz) | Scale factor
0.5 1.000
1.016
1.029
1.560
1.042
1.361
1.577
0.949
1.063
1.408
1.453
1.531
1.695
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3.4. DUT measurements

3.4.1. Schematic setup

In figure 3.7 the setup used for the final testing system can be seen. In awooden beam, holes are drilled exactly
above each sensor. Since only the inner 6 domes contain piezoelectric sensors, no holes are drilled above the
first and the last dome. An extra hole is drilled above the load cell, so the reference measurements can be
incorporated in the same system. The DUT can be placed underneath the wooden frame and its position is
fixed by a raised edge. To have the least amount of variables, the protecting sleeve which is normally fitted
around the DUT when used in the field will be removed. This also satisfies requirement M1.

The pneumatic solenoid valve is attached to a wooden rail where a hole with the same diameter is drilled
on the top side. With bolts the rail with the valve can be positioned above each sensor or above the load cell.
The darker yellow wooden slats are used to fix the position of the valve, so the air won't be blowing on the
domes under an angle. The nozzle height is 1.4 cm and this distance is the same for all PE sensors and for the
load cell. The load cell is fixed to the base plate to ensure no extra vibrations are induced in this system.

The control unit forms the core of the system. In the control unit, the load cell amplifier circuit (shown
in figure 3.1), the solenoid valve driver (shown in figure 2.9) and the LPC1768 microcontroller are placed. A
bench power supply is used to supply the +5V and —5V to power the load cell and load cell amplifier, and
a power adapter provides the 24 V which is used to drive the solenoid valve. MATLAB is used to control the
microcontroller via USB.

The air compressor has an internal pressure regulator, and the air hose is connected from this pressure
regulator to a second pressure regulator to remove any pressure fluctuations when the pressure of the com-
pressor drops.

The complete setup could be placed in an area of 1.1x0.5x0.5m. This is excluding the air compressor, since
compressed air is usually available at production sites where the system will be placed. Requirement M4 is
satisfied with this area. Since the setup is a concept, no care is taken to meet CE and RoHS requirements (C5).

A small calculation is done to provide some information about the amount of power used by the complete
setup. The solenoid valve in on-state consumes 3.3 W according to the datasheet. The microcontroller and
ADCs only use a couple of milliampeéres at 5V, so the consumed power is in the order of tens of milliwatts.
The same holds for the load cell and its amplifier circuitry. The used laptop has a rated maximum power
of 90 W. The biggest power consumer is the air compressor when turned on, which has 1100 W as its rated
maximum power. Even with the air compressor taken as a part of the setup, the total power still falls below
the maximum requirement given by M8.
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Figure 3.7: Complete overview of the setup used

3.4.2. Measurement software

The measurement software has as its main tasks to regulate the amount of air to the sensors, reading out the
sensor values from the DUT and to determine if a sensor is deemed to be unsuitable for use. The software
allows the user to change certain parameters through an interface. Based on the measurement type, results
are shown in graphs or tables, or both.

The software used to measure the sensors are MATLAB App Designer and Mbed as aforementioned in
section 2.3. The program (using MATLAB App Designer) controls certain configurations inside the microcon-
troller and processes the data which it receives from the microcontroller. The microcontroller (using Mbed
platform) communicates with the PC to receive the user configuration settings. These configuration settings
will be used to control the valve and the DUT. The code of the MATLAB program can be found in E, the code
used for the microcontroller is found in F. A Nassi-Shneiderman diagram is made of the MATLAB program
and shown in figure 3.8.

The microcontroller communicates through 12C with three ADCs. Two ADCs are from the DUT and one
is used to read out the load cell. Furthermore a pin is used to control the valve circuit. For each ADC, the
gain factor of the PGA is set at the start of a measurement based on the user configuration. The sample
frequency argument is used to set the frequency to which the ADC is reading out. The sensor number is used
to determine which ADC and its channel is read out. The duration parameter is used to determine for how
long the microcontroller is reading the ADC for the sensor values. The valve frequency and the amount of
times it should open and close is used to determine when the pin out to the valve circuit should be high or
low. At last the choice can be made to have a pulse or a step as output signal, which is useful for the load cell.

The main program has three measurement types. A single test is used to measure a single sensor once. The
‘continuously’ test is used to continuously measure a certain sensor for the purpose of consistency testing.
The last measurement type is the full test, which will be the main test used by Momo Medical.

The full test starts with measuring a sensor once to determine a suitable gain factor, after which the pro-
gram will start a measurement with the determined gain factor. Once the measurement is done, the next
sensor is read out. As a reference, the load cell is measured at the start and at the end of a session. A constant
amount of air is applied to the load cell, whereas pulses are applied to the piezoelectric sensors based on the
valve frequency and the amount of times it should open and close. The result between the measurement of
the load cell at the start and at the end should result in a similar plot if the air is indeed constant. If there
are any differences in these two measurements, it means the sensor values from the measurement session
are inaccurate and the measurements should be redone. If the results of the two load cell measurements are
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similar, the program will analyze the data based on the frequency response of the signal. The dominant fre-
quency and its value of each sensor is determined and placed in a table. The value at the dominant frequency
is compared to a certain threshold value to determine if a sensor is acceptable or should be replaced. The
threshold value is adjustable by Momo Medical. Along with a pass/fail indication, scaling factors are deter-
mined to compensate for the differences in sensitivity. Using these scaling factors, the ADC value of each
sensor will be brought closer to each, but the accuracy will drop when the scale factor is too high.

In the final design of the program, only the full test is of importance. A separate panel in the program
accessible by Momo Medical, contains the other two tests in case additional measurements are needed, along
with the configuration settings and a log system to follow each major step inside the program. Depending on
Momo Medical’s wishes, they can decide to include this into the version used by the production worker.

In order to comply with the system requirements, several features are added into the program. The sam-
pling frequency is adjustable by the user, with a range between 50 to 2500Hz (thus M3 is satisfied). The main
program only consists of three buttons, for ease of use. As the production worker must understand what the
buttons do, additional information will be provided in the user manual of the program, which can be found
in appendix C (thus satisfying M5 and M9). Pressing the ‘Run Full Test’ button starts the test, the user is not
required to change configuration settings (satisfying S1). Besides buttons, visual items are included in the
program such as colored circles and a status bar, to follow the progress of the test. Data is received from the
microcontroller and processed in the program. At the end of a full test a pass/fail indication is shown for each
sensor through a red colored circle if a sensor is rejected, or a green colored circle in the case it passed the
test (satisfying M6). The measurement data and scaling factors are saved after each full test in a specified
location, such as an external USB storage device (satisfying M7 and S4). Data is not saved to a cloud based
solution (satisfying W1).

The duration of a full test depends on the duration of each measurement. The minimum amount of
measurements in one session is sixteen, as each sensor is measured once to determine the gain factor, and
once to measure the signal with the determined gain. As it may happen that the maximum value of the signal
is close to the full scale range of the ADC with the used gain factor. A higher gain factor is chosen in that
situation. On average a full session requires eighteen measurement. Moving the valve to the next sensor
takes around fifteen seconds with seven movements, resulting in 105 seconds in total for moving the valve.
The duration for each measurement depends on the default value. Accounting for the data processing and
pressing the buttons, a total average of eight seconds (six seconds for the measurement itself, two seconds
for the data processing and pressing on buttons if necessary) results in 144 seconds for the program to run
a session. Combining these two results in 249 seconds, in other words four minutes and nine seconds. This
amount is less than the required thirty minutes, making it satisfy M12.
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Figure 3.8: Nassi-Shneiderman Diagram of the MATLAB program

3.4.3. DUT frequency response

As the frequency characteristics of the air pulse are known, a complete DUT can be tested over the frequency
range of interest. The results are plotted in figure 3.9 using D.5. Apart from a difference in amplitude, the
frequency response looks very similar for all 6 sensors. Because of the band-pass filter in the conditioning
circuit of the piezoelectric sensors (shown in figure 1.4), the high-pass characteristic seen in the results are to
be expected. A zoomed-in version of figure 1.5 is shown in figure 3.10.

As all sensors respond very similar to all frequencies, 5 Hz is chosen as the testing frequency for the sys-

tem.
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Figure 3.11: FFT peaks from sensor 3 of the DUT at the test frequency fresr = 5Hz measured every 5 minutes for 3 hours

3.4.4. DUT repeatability

A long term test is performed to determine the repeatability of testing the DUT. It makes no sense if the
DUT has passed the test but reacts very differently a few moments later. A single sensor of the DUT is tested
every 5 minutes for 3 hours to see if the output drifts over time. Sensor 3 is chosen for this test since that
sensor has the highest output for the same test frequencies (as can be seen in figure 3.9). To compare every
measurement, the FFT peak at the 5 Hz test frequency is taken and plotted in figure 3.11.

A small downward drift can be seen over the complete time span. The mean value y = 2594 is also drawn
in the figure, together with the standard deviation o = 13.2 to give a good indication of the maximum devia-

tion from the mean to the measured peak values. The maximum deviation from the mean is with measure-

ment 3. The percent deviation in this case is % -100% = 1.4%.



Results

In this chapter the device precision is derived and a full test is performed on the DUT.

4.1. Device precision

To determine the precision of the the total system, first the precision of the air pulse on the load cell is taken.
From figure 3.6 the mean and the standard deviation can be calculated. The mean u = 504.8 with a standard

deviation o = 4.16. This results in a coefficient of variation of ¢, = % -100% = % -100% = 0.82%.

The maximum deviation from the mean is during measurement 27, where the measured FFT peak is at

493.8. This results in a percent deviation IWI -100% = 2.2%. This means requirement S2 is met.

4.2, Full DUT test

On December 13th at 22:43, a full system test is performed using the DUT.

The result can be seen in figure 4.1. Through individual sensor tests, the response of each sensor to an
applied force is clearly observable; there are large differences in amplitude between the sensors. In order to
get an idea of the sensitivity of each sensor, the measurement of each sensor is plotted next to the other in
order to make a good comparison. Sensor 5 is rejected because of poor performance using the arbitrary FFT
peak threshold (set at 800).

The data collected during the measurement is used to analyze the DUT. The results are then shown in the
analyze panel in the program depicted in figure 4.2.

4.3. Device costs

The costs for the device are approximately €3186,92. An overview of the different costs can be found in table
B.1. If the production company has an available laptop and/or MATLAB license, the costs of these can be
omitted. The same goes for the air compressor if a compressed air line is available at the production facility.
Any way, the cost is less than €10.000 and thus M11 is satisfied.
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Conclusion

From the three concepts seen in chapter 2, the compressed air method is chosen to be developed in detail in
chapter 3. This method does not have the issue regarding surface contact between the actuator and the DUT,
and can be used with a reference.

From the measurements in chapter 4 it is concluded that the device is able to properly measure the DUT.
The precision of the measurement device has a coefficient of variation ¢, = 0.82% which is well within the
system limits.

The test devices performs as intended, and all parts work together nicely. Testing is performed on the
sensor plate without its protecting sleeve as intended, no weight limits are exceeded, and the test does not
exceed the testing time of 30 minutes. The sampling rate is set to F; = 2500Hz and is therefor more than
enough for proper testing. The devices stayed within its size and cost limit, and is operable by a production
worker. Testing starts by pressing one button, all calculations are performed in software and a pass/fail in-
dicator is displayed on the screen. Raw data is exported for Momo to be able to do a more detailed analysis
later on. The device is powered from one power cord and does not draw too much (>16 A) current. User doc-
umentation is provided for users who wish to know more about the software. All tests were performed using
version 5 of Momo’s sensor plate using the existing I°C connection, although the piezo sensor fixation was
altered in chapter 3. The device performs a self-test when the first measurement is started. In short, most
important requirements have been met.
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Discussion and Recommendation

Nothing is perfect, and discussion and improvements are always possible. This is also the case with this
project and its limited time span. In this chapter some possible improvements are discussed.

6.1. Discussion

As the air pulse is noisy, measurements at frequencies much higher than 10 Hz could result in an inaccurate
system. Moreover, at these frequencies the rise and fall time of the valve become a major part of the total
period, so frequencies higher than 12 Hz cannot be tested at all. If the system should be able to test using
higher frequencies, more investigation is needed into the air characteristics of the pulse and a faster valve is
needed.

For our current setup, it is assumed the production worker plugs in the DUT to the microcontroller before
starting any tests. The software is written based on reading out the ADC values from the sensor plate. If no
sensor plate is connected to the microcontroller, the ‘read’ action still happens. Of course the microcontroller
is not able to read any data, but this is not known by the MATLAB program. This issue can be resolved by
implementing a check function in the microcontroller, by not allowing any connection to MATLAB before the
sensor plate is connected.

The main program has an abort button, used to terminate the current running process. However, this
abort button only terminates the processes within MATLAB. The valve control inside the microcontroller still
operates whenever this button is pressed. During our tests, the workaround used for this issue is unplugging
the USB cable of the microcontroller and plugging it back into the laptop if the test should be stopped. The
software can be improved by sending a stop signal to the microcontroller if the abort button is pressed. The
stop signal should halt any actions until the system is reset.

6.2. Recommendations

Currently, MATLAB is used for the testing program. This requires a MATLAB license and a dedicated PC.
These items are expensive and do not provide a neat embedded solution. In order to realize this, the software
that is currently written in MATLAB, could be programmed into a microcontroller. In addition to this, the
buttons currently used inside the program could be replaced by physical buttons.

The device could be modified in order to simplify the operation. A linear movement system could move
the valve in one direction (impression in figure 6.1), or multiple valves could be connected. The first option
has more moving parts, the second option requires a movement of the load cell between each nozzle. This
last problem could be solved if the load cell (or other sensor) is integrated into the valve suspension. Thus, at
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this point in time, requirement S3 is not satisfied. In both cases, the software needs to be updated to support
these new features.

Figure 6.1: Device with linear movement system. Picture provided by Roel van der Plas

If the FSRs also need basic testing, multiple pressures could be selected when using a configurable pres-
sure regulator. As long as the averages are taken over a longer period of time, the calibration should be able
to reach a 5% error margin. This would mean the system can calibrate both types of sensors, and only one
calibration device is needed. As this is not yet implemented, requirement C1 and C2 are not satisfied.

In order to provide real-time feedback of the air pulse to the system, a sensor could be mounted to a
new valve mount to sense the air as it is protruded from the nozzle (schematically shown in figure 6.2). The
difficulty with this is the fact that the valve switching also produces a relatively large amount of force that is
measured as well. A first attempt at this was made, as can be seen in figure 6.3. Unfortunately the results
showed a large peak from the mechanical switching of the valve, but no significant output of the force of the
air pulse.

In the final setup in this thesis, no static force is exerted on the sensors (i.e. a preload). When a small
preload is present on a PZT PE sensor, the sensors’ sensitivity could improve and the impact of this change
could be investigated [5].
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LLoad cell measurement data

| F(Hz) | average [ t1 | %dev [ 2 [ %dev [ 3 [ %dev [ t4 | %dev [ t5 [ %dev |
0.5 697.7 699.1 0.2 696.3 0.2 688.6 1.3 705.8 1.2 698.8 0.2
1 686.5 685.1 0.2 682.4 0.6 679.8 1.0 695.6 1.3 689.5 0.4
2 678.3 677 0.2 672.3 0.9 674.7 0.5 685.3 1.0 682.1 0.6
3 447.4 445.6 0.4 442 1.2 443.3 0.9 455.1 1.7 450.9 0.8
4 669.9 670 0.0 663.8 0.9 668.9 0.1 675.9 0.9 670.9 0.1
5 512.5 511 0.3 508.4 0.8 516.4 0.8 514.5 0.4 512.2 0.1
6 442.5 442 0.1 4442 0.4 435.4 1.6 443 0.1 447.7 1.2
7 735.1 729.6 0.8 733.9 0.2 741.9 0.9 727.1 1.1 743.1 1.1
8 656.2 661 0.7 651.1 0.8 657.9 0.3 653.4 0.4 657.4 0.2
9 495.6 495.5 0.0 491 0.9 503 1.5 489.8 1.2 498.5 0.6
10 480.1 470.6 2.0 479.5 0.1 477.8 0.5 488.3 1.7 484.5 0.9
11 455.7 453.8 0.4 456.5 0.2 456.2 0.1 455.4 0.1 456.4 0.2
12 411.6 412.5 0.2 412.7 0.3 406.1 1.3 414.4 0.7 412.2 0.2
Table A.1: Average FFT peak values for different frequencies. The measured values (t1, t2, ...) are shown together with the percent

deviation between the average and the measured result.
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Total system costs

Brand Type Type number Unit price | Amount | Total price
Pneumatics
Festo Pressure regulator LR-1/4-D-7-MINI 42,06 1 42,06
Festo Valve VUVS-LK25-M32C-AD-G14-1B2-S 50,22 1 50,22
Stanley | Airtube Spiral hose 6x8mm , 5m 10,70 2 21,40
Stanley Quick Connector (F) <> 1/4" (M) UNI 1/4M 5,37 2 10,74
Stanley Quick Connector (M) <> 1/4" (M) 1/4M 3,72 2 7,44
”””” Optional |~~~ T T T e
Gamma Air compressor CP-6 81,82 1 81,82
7777 Electronics | T
Temna Power supply 72-10500 138,72 1 138,72
NXP Microcontroller MBED NXP LPC1768 49,95 1 49,95
TI | ADC EVAL BOARD ADS1015 12-BIT ADC 8,72 1 8,72
POWERPAX Power supply SW4309 15,72 1 15,72
Infinion MOSFET IRFZ44NPBF 0,70 1 0,70
Analog Devices Instrumentation amplifier AD620ANZ 9,55 1 9,55
Connectors ODU 5PF 6,00 1 6,00
Case Case MB6W 18,03 1 18,03
Various | Wires - 2,00 1 2,00
Various | Various passives (diodes/caps/resistors) - 2,00 1 2,00
""" Construction | T T T e
Konsta Board MDF 122x61 12mm 4,29 1 4,29
Konsta Beam 210x60x40mm 3,30 1 3,30
Konsta Beam 210x44x18mm 2,70 1 2,70
Konsta Beam 210x12x12mm 2,29 1 2,29
Gamma | Bolts M10x120mm 4pcs 5,78 1 5,78
Gamma Nuts M10 4pcs 2,14 1 2,14
Gamma Screws Various 3,00 1 3,00
Laserbeest PMMA 3mm clear 53,94 1 53,94
““Controlsystem | T e
MATLAB | License 2018b 2000,00 1 2000,00
HP Computer EliteBook 745 G3 PAT40EA 698,35 1 698,35
T TMotal (ex. VAT) | T T e T T T T T T T T T T T 186,92

Table B.1: Total system cost (date of creation: 12-12-2018)
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C.1.

User Manual

Before Starting

Ensure the following cables are plugged into the right position before attempting to start a measurement. The
connector position are labeled on the case of the microcontroller:

C.2.

Sensor plate connection
Load cell connector
Valve connector
Mini-USB connector
24V power connector

-5V, +5V power connector

Quick Start Guide

Start the program Momo_PESP_Tester.mlapp

Make sure the workspace circle is green before continuing. In the case the circle remains red, refer to
the troubleshooting page

Make sure the valve is positioned on the load cell position, using the lower of the two holes in the mount
Press the Run Full Test button

Once the status bar states that the measurement is done for a sensor, the valve should be repositioned
to the next sensor. Use the upper hole in the mount for the piezoelectric sensors.

Press the continue button to continue the full test

At the end of the full test, each pass/fail indicator will light up either green or red along with the scaling
factor

The measurement data and its scaling factor are automatically saved by the program
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C. User Manual

C.3. Program Overview

Momo PESP Tester

Description:

Single Test  Continuous Test  Full Test

Sensor. |1 v Gain: 16x

Autosave

= O X
Momo PE Sensor Plate Tester
Status: Program is in idle mode Testing Sensor Plate
1 2 3 4 5 6
Run Full Test Progress
Workspace: () Connection MCU: Measurement: Atioet
Cor tion
Configuration Panel
General Settings Connection Configuration Test Machine
Duration: | 6 Sample frequency: | 2500 Select serial port: | COM1 v || Search | Type: | FullTest v| Frequency: |5 | Times:|20 ai’; 5:“‘133;‘5
Save e
Location C:\Users\Home-PC\Google D 10:50:32 Program started

Figure C.1: The configuration panel inside the MATLAB program

« Main window

Three buttons:

Run Full Test: Run the full test
Continue: Continue the full test after the valve is put on the right position

Abort: Abort all actions and close the connection

Progress indicators:

Workspace: If the default save location is found, the circle will be green, else it will be red

— Connection MCU: If the connection is being made with the microcontroller, the circle is orange. If
the connection is successfully made , the circle will be green. If the connection is failed, the circle

will be red

— Measurement: If the program is busy doing the data processing, the circle will be orange. If the
data is successfully processed, the circle will be green

— Testing Sensor Plate: After the full test, each circle (representing the piezoelectric sensors on the
DUT), will be either green if the sensor passed the test, or red if the sensor failed the test

— Status bar: The current status of the program is shown in the status bar

. Tabs

— Measuring: There are three plots which can be used to look at the current measurement. A plot
of the raw data, a plot of the filtered data and the frequency response of the raw data.

— Analyzing: This tab is used to analyze a full test. The tab is automatically opened after a full test
or a data set can be imported manually after which a plot is shown with all the measurements.
The autoscale button can be pressed to automatically scale all the sensors. This can be undone by
resetting the autoscale. Resetting the axis results in a zoomed out plot of the data, in case the user
has zoomed into the measurement.

— Configuration Panel This tab is used to modify the default settings. The duration of each mea-
surement and the sampling frequency used can be changed in the general settings field. In the
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case multiple UART connections are made, the right serial connection to the microcontroller must
be chosen. The save location and the description can be set in the save field. Additional config-
uration to the test system is made by selecting the type of test, the valve frequency, amount of
times the valve needs to open and close and the option to change the input signal to the loadcell
to either a step or a pulse. The single or continues test can be run, its parameters can be changed
in their respective window. The log window can be used to detect any errors or follow the progress
of the program.

C.4. Troubleshoot

¢ E101: No serial port found in the list
Open the configuration panel. If there is no serial port selected, try to remove the USB cable to the mi-
crocontroller and plug it into another USB port. Click on the Search button to look for new serial ports.
In case no serial ports are found, consider installing the newest serial port drivers for your operating
system

¢ E102: Could not start the connection
Remove the USB cable to the microcontroller and close the program. Reconnect the USB cable and
start the program

¢ E103: Error with communication with the MCU
Remove the USB cable to the microcontroller and close the program. Reconnect the USB cable and
start the program

¢ E105: Error with saving data
Open the configuration panel. Change the save directory by clicking on the Open button found in the
save field

¢ E107: Error with reading data from the MCU
Remove the USB cable to the microcontroller and close the program. Reconnect the USB cable and
start the program

If any of the problems persists or if other errors are showing up, please contact the developer of the software
in order to solve the problem.



D.1. Steel beam FFT plots

MATLAB code

% Plot FFT's of 6 sensors using steel beam setup

close all;
Fs = 100;

% Sampling frequency

% Create new arrays containing only the 5Hz part

sensor_F_1_part =

sensor_F_2_part
sensor_F_3_part
sensor_F_4_part
sensor_F_5_part
sensor_F_6_part

sensor_NF_1(1290:
sensor_NF_2(1290:
sensor_NF_3(1290:
sensor_NF_4(1290:
sensor_NF_5(1290:
sensor_NF_6(1290:

Np = numel(sensor_F_1 part);
zeropad = 2™ (nextpow2(Np)); % Zero—pad to

% Calculate FFT of all 6 sensors

fFtF_1 =
fFtF_1 =

1572);
1572);
1572);
1572);
1572);
1572);

fftF_1(2:end-1) = 2xfftF_1(2:end-1);

fFtF2 =
fFtF 2 =
FFEF_2(2:

fFtF_3 =
fFtF_3 =
FFLF_3(2:

FFtF 4 =
FFLF_4 =
FFLF_4(2:

fFtF5 =
fFtF.5 =

fftF_5(2:end-1) = 2xfftF_5(2:end-1);

nearest power of 2

abs(fft(sensor_F_1_part, zeropad)/zeropad);
fftF_1(1:zeropad/2);

abs(fft(sensor_F_2_part, zeropad)/zeropad);
fftF_2(1:zeropad/2);
end-1) = 2xfftF_2(2:end-1);

abs(fft(sensor_F_3_part, zeropad)/zeropad);
fftF_3(1l:zeropad/2);
end-1) = 2xfftF_3(2:end-1);

abs(fft(sensor_F_4_part, zeropad)/zeropad);
fftF_4(1:zeropad/2);
end-1) = 2xfftF_4(2:end-1);

abs(fft(sensor_F_5_part, zeropad)/zeropad);
fftF_5(1:zeropad/2);
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fftF_6 = abs(fft(sensor_F_6_part, zeropad)/zeropad);
fftF_6 fftF_6(1l:zeropad/2);
fftF_6(2:end-1) = 2xfftF_6(2:end-1);

% Create frequency axis
f_axis = linspace(0, Fs/2, zeropad/2);

figure;

subplot(321)

plot(f_axis, 20xloglO(fftF_1));
title('Sensor 1')
xlabel('Frequency [Hz]')
ylabel('FFT amplitude [dB]"')
xlim([0 257)

grid minor

subplot(322)

plot(f_axis, 20xlogl@(fftF_2));
title('Sensor 2')
xlabel('Frequency [Hz]"')
ylabel('FFT amplitude [dB]"')
xlim([0 251)

grid minor

subplot(323)

plot(f_axis, 20xloglO(fftF_3));
title('Sensor 3")
xlabel('Frequency [Hz]")
ylabel('FFT amplitude [dB]")
xlim([0 257)

grid minor

subplot(324)

plot(f_axis, 20xloglO(fftF_4));
title('Sensor 4'")
xlabel('Frequency [Hz]')
ylabel('FFT amplitude [dB]"')
xlim([0 2517)

grid minor

subplot(325)

plot(f_axis, 20xlogl@(fftF_5));
title('Sensor 5')
xlabel('Frequency [Hz]')
ylabel('FFT amplitude [dB]"')
xlim([0 2517)

grid minor

subplot(326)

plot(f_axis, 20xlogl@(fftF_6));
title('Sensor 6")
xlabel('Frequency [Hz]")
ylabel('FFT amplitude [dB]")
xlim([0 257)

grid minor

D.2. Curve fitting

%% Curve fitting
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clear all;
close all;
clc;

load('deconvolutieunitl2_50gram.mat"');

deconv_raw = diff(sensor_NF);
% manualy set sample values with visible ringing
deconv_raw = —deconv_raw(1614:2200);

% manually determine f and tau from raw data plot
dt = 1/2500;

N = length(deconv_raw);

t = (0:N-1)*dt;

N1 = N;

tau = 0.05;

f = 99;

figure();
plot(t, deconv_raw)
hold on;

impulse_fit = 2000*xsin(2xpixfx*t).xexp(—t/tau);
plot(t, impulse_fit);

grid minor

xlabel('Time (s)"')

ylabel('ADC value')

title('Ringing curve—fit'")

D.3. Dome on dome result

clear;

close all;

% Create arrays of measurements per type fixation

epoxy = [load('epoxy_lhz.mat', 'sensor_NF_1'); load('epoxy_2hz.mat',...
'sensor_NF_1"); load('epoxy_4hz.mat', 'sensor_NF_1');
load('epoxy_8hz.mat', 'sensor NF_1");
load('epoxy_1l6hz.mat', 'sensor_NF_1')];

1lijm = [load('lijm_lhz.mat', 'sensor_NF_1"); load('lijm_2hz.mat',...
'sensor_NF_1"); load('lijm_4hz.mat', 'sensor_NF_1');
load('lijm_8hz.mat', 'sensor_NF_1");
load('lijm_16hz.mat', 'sensor_NF_1')];

tape = [load('tape_lhz.mat', 'sensor_NF_1'); load('tape_2hz.mat',...
'sensor_NF_1"); load('tape_4hz.mat', 'sensor_NF_1');
load('tape_8hz.mat', 'sensor_NF_1");
load('tape_16hz.mat', 'sensor NF_1')];

% Array with fixation names
materials = [epoxy lijm tape];
mats_str = ["Epoxy" "Super glue" "Tape"];

% Test frequencies
freqs = [1 2 4 8 16];
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x = linspace(0, 2.125, 255);
padding = 1000;
Fs = 120;

ticks = —25:5:25;
for 1 = 1:3
for j = 1:5
% Remove DC bias from data
materials(j, 1i).dcbias = mean(materials(j, i).sensor_NF_1);

% Zeropad data to obtain better FFT resolution

sensor_padded = [materials(j, 1i).sensor_NF_1 — materials(j, 1i).dcbias; zeros(

padding,1)1;

Np = numel(sensor_padded);
if mod(Np, 2) ==
Np = Np+1;
end
% Take single sided FFT of measurements
fftl = abs(fft(sensor_padded)/Np);
fftl = fftl(1:Np/2);
fftl(2:end-1) 2xfftl(2:end-1);

% Put FFTs in a single array
materials(j, 1i).ffts = fftl;

end
end
% Initialize array to hold subplot handle
h = zeros(15,1);
% Frequency axis
f = linspace(0, Fs/2, Np/2);

o°

Hard way to determine the order in the subplots

k=10147101325811 14 36 9 12 15];
m=1;
figure
for i = 1:3
for j = 1:5

s Create multiple subplots
h(m) = subplot(5, 3, k(m));
plot(f, materials(j, 1i).ffts)
xlim([0 20])

grid minor;

title(['Material: ', num2str(mats_str(i)),'; Frequency: ', num2str(freqs(j)),

Hz'1);
xlabel('Frequency (Hz)")
ylabel('FFT magnitude')
m=m+ 1;

end
end
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D.4. FFT peak finder

clear all;

close all;

clc;

% Load measurement files

[filename, folder] = uigetfile('x.mat',...
'Select One or More Files',
'MultiSelect', 'on');

filename = char(filename);
[row, col] = size(filename);

% Put all measurements in one matrix
data = [];
for n=1:row
load([folder filename(n, :)1);
data = [data, fourier_NF];
end

% Find peaks of measuments

pks = [1;

for n=1:row
[pks_tmp, locs_tmp] = findpeaks(data(:,n), 'MinPeakHeight', 300);
pks = [pks, pks_tmp];

end

figure;

plot(pks)

ax = gca;

title('FFT peaks at 5 Hertz, 90 seconds apart, 3 hour load cell test')
ax.XGrid = 'on';

ax.YGrid = 'on';

ax.YMinorGrid = 'on';

xlabel('Measurements')

ylabel('FFT peak at 5 Hertz')

ylim([475 5251); x1lim([0 130]); xticks([0:5:row])

hold on

% Find mean and standard deviation

y = mean(pks);

sd = std(pks);

upper_sd = y+sd; lower_sd = y—sd;

% Plot horizontal lines of mean and std. dev.

line([1, row],[y,yl, 'Color', 'r'")

line([1, row], [upper_sd, upper_sd], 'Color', 'g', 'LineWidth', 0.9);
line([1, row], [lower_sd, lower_sd], 'Color', 'g', 'LineWidth', 0.9);
legend('Measured FFT peaks', 'Mean', [char(177) 'l standard deviation'l])

D.5. Sensor plate frequency response

close all;

% Test frequencies
freqs = [0.51234567 89 10 11 12];
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% Sensor plate result corrected with the calculated ratios
dl = sensors_freqs_dl .*x ratios;

figure;

hold on

set(gca, 'XScale', 'log');
xlabel('Frequency (Hz)')

ylabel('FFT value [dB]"')

xlim([0.5 20])

% Plot result in dB on a logarithmic axis

for 1 = 1:6
semilogx(freqs, 20xlogl@(dl(:,1i)));

end

grid minor

legend('Sensor 1', 'Sensor 2', 'Sensor 3', 'Sensor 4', 'Sensor 5', 'Sensor 6', '
Location', 'SouthEast')

D.6. Deconvolution

%% Manual deconvolution

% load measurement
load('C:\Users\tlefe\Google Drive\BAP\Code en Metingen\Matlab\Metingen\Loadcell/1211
_093728_Loadcell_fs2500_Sloadcell_G8x_f5_n20.mat")

% plot raw measurement
figure();

N length(sensor_NF);
t = (0:N-1)xdt;
subplot(221);

plot(t, sensor_NF);
ylim([-750 2750])

grid minor

hold on;

xlabel('Time (s)"')
ylabel('ADC value')
title('Raw load cell measurement')

% deconvolve via fft

impulse_fit = cos(2xpix99xt).*exp(—t/0.05);
deconv = ifft(fft(sensor_NF) ./ fft(impulse_fit'));
N = length(deconv);

t = (0:N-1)xdt;

subplot(222);

plot(t, real(deconv));

ylim([—-250 3500])

grid minor

xlabel('Time (s)')

ylabel('ADC value')

title('Load cell measurement deconvoluted')

% fft of deconvolved signal
dN = length(deconv);
f_res = 1/max(Nxdt);
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f = (0:N-1) x f_res — 1250;

subplot(223);

plot(f, 20xloglo(abs(fftshift(fft(deconv)))));
xlim([0 500]);

grid minor

xlabel('Frequency (Hz)')

ylabel('Amplitude (dB)"')

title('FFT of deconvoluted signal')

% Filter deconvoluted signal
fs = 2500;
fc = [4, 18]; %from LTSpice simulation
[B1,Al] = butter(2, fc(2)/(fs/2), 'low');
[B2,A2] = butter(1l, fc(1l)/(fs/2), 'high'");

data_filtered = filter(B2,A2, (filter(B1,Al,deconv)));
subplot(224)

plot(t,data_filtered, 'linewidth',1);

grid minor

title('Filtered with 2nd—order 20Hz LPF and 1lst—order 4Hz HPF')
xlabel('Time (s)"')

ylabel('ADC value')
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%% Global properties to be used and to be part of the struct 'app’
properties (Access = public)
% Properties for connection
S % Serial Object
nDatabits = 8; % 2+(n*6) with n the amount of sensors reading
simultaneously

% Properties for storing measurement data

tempData % Temporary place to store data, which will be put in
incomingData

incomingData % Data that is coming in from the serial USB port

rawData % Used for doing a full test to store each sensor
measurement

allMeasurements % Used for doing a full test to store all sensor
measurement

sensor_NF % Used to store all the data processed non filtered data

sensor_F % Used to store all the data processed filtered data

fourier_NF % Used to store all the FFT of the non filtered data

x_scale % Time axis for the data plots

f_scale % Frequency axis for Fourier plots

% Properties to handle stops/continues between each function
sensorReady % If the nozzle is aligned with the dome
stopContinuousTest % Stops the continuous test
emergencyStop s Stop full test

g

o

% Temporary struct to load the .mat into, so won't lose the last measurement
temp

% Properties to save all data from analyzing into seperate properties to avoid
overwrite issues

a_enableSensor = '"1111111"' % 0On/0ff for each sensor, default is all on

a_incomingData

a_description

a_x_scale

a_f_scale
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a_scaleFactor
a_sensor_NF
a_sensor_F
a_fourier_NF
a_Fvalve
a_Nvalve
a_fs
a_date
a_folder

end

% Private Functions
methods (Access = private)

%% Initializes the basic parameters for a connection:
— buffersize based on the sample frequency and the duration
% — baudrate at 921600 to ensure a sample frequency of 2500 is possible
function bufferSize = initializeConnection(app, Fs, duration)
bufferSize = ceil(duration * Fs * app.nDatabits);

o°

app.s = serial(app.SelectserialportDropDown.Value);
app.s.BaudRate = 921600;
app.s.InputBuffersize = bufferSizex8;

end

%% Initializes all basic properties and indicators
function initializeVariables(app, bufferSize)
app.stopContinuousTest = 0;
app.sensorReady = 0;
app.emergencyStop = 0;
app.incomingData = [];
app.rawbData = zeros(bufferSize, 8);
app.sensor_NF = [];
app.sensor_F = [];
app.fourier_NF = [];
app.f_scale = [];
app.x_scale = [];
app.allMeasurements = [];
app.a_scaleFactor = [1, 1, 1, 1, 1, 1];
app.ConnectionMCULamp.Color = [1 0.65 0];
LampArray = [app.Test_Lampl, app.Test_Lamp2, app.Test_Lamp3,
app.Test_Lamp4, app.Test_Lamp5, app.Test_Lamp6];
for i = 1:6
set(LampArray(i), 'Color', [0.94 0.94 0.94]);
end
app.MeasurementLamp.Color = [1 0.65 0];
end

%% Determines the gain parameter based on user input [based on MCU]
function gain = determineGain(app, gainValue)
if(strcmp(gainvValue, '16x'))

gain = 0;
elseif(strcmp(gainValue, '8x'))
gain = 1;

elseif(strcmp(gainValue, '4x'))
gain = 2;
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elseif(strcmp(gainValue, '2x'))

gain = 3;
elseif(strcmp(gainValue, '1x'))

gain = 4;
else

gain = 10; % If there were any errors with the user input
end

end

o°
o°

Before starting a connection, all the necessary parameters/settings need to

be valid

Gain parameter to ensure a valid gain factor in the MCU

A valid serial port connected before attempting to start a connection

A valid save location in the case autosave is selected (full test and

continuous are true by default)

% Abort measurement in the case the gain could not be determined, or if no
serial port was selected

function userConfigStatus = checkUserConfig(app, determinedGain,

selectedAutoSave, selectedFolder)

userConfigStatus = true;

o° o°

o°

if(determinedGain == 10)
updateLog(app, '[E100]|Measurement has been aborted: Gain could not be
determined');
app.StatusLabel.Text = 'Status: [E100]|Measurement has been aborted:
Gain could not be determined';
userConfigStatus = false;
enableRunButtons (app);
end

if(isempty(app.SelectserialportDropDown.Value))
updateLog(app, '[E101]|Measurement has been aborted: Serial port not
found');
app.StatusLabel.Text = 'Status: [E101]|Measurement has been aborted:
Serial port not found';
userConfigStatus = false;
enableRunButtons (app);

end
if(selectedAutoSave == true && selectedFolder == "")
updateLog(app, '[E105]|Error with save variables to the selected folder
")
app.StatusLabel.Text = 'Status: [E105]|Error with save variables to the
selected folder';
app.WorkspaceLamp.Color = 'red';
userConfigStatus = false;
enableRunButtons (app);
end

if(~exist(selectedFolder, 'dir'))
updateLog(app, '[E106]|Measurement has been aborted: Could not find
save location');
app.StatusLabel.Text = 'Status: [E106]|Measurement has been aborted:
Could not find save location';
app.WorkspaceLamp.Color = 'red';
userConfigStatus = false;
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end

[X)
66

enableRunButtons(app);
end

Tries to open the serial port

function serialOpenStatus = openSerialPort(app)

end

o°
o°

oP
o°

of
o°

try
fopen(app.s);
serialOpenStatus = true;
app.ConnectionMCULamp.Color = 'green';
catch e
updatelLog(app, '[E102]|Measurement has been aborted: Could not connect
to serial port, try again');
updatelLog(app, e.message);
enableRunButtons (app);
serialOpenStatus = false;
instrreset;
p = instrhwinfo('serial');
app.SelectserialportDropDown.Items = p.AvailableSerialPorts;
app.ConnectionMCULamp.Color = [1 0.65 0];
end

Once the connection with the serial port is made, the input buffer is being
emptied

after which the parameters are send to the MCU and the MCU will start
reading the ADC values

the values are then send to MATLAB and stored

function communicateMCU(app, bufferSize, fs, sensor, duration, gain,

valveFrequency, valveTimes, loadcellPulse)
app.MeasurementLamp.Color = [1 0.65 0];

updateLog(app, ['MCU: Sensor: ', num2str(sensor), ', Duration: ', num2str(
duration),
', Gain: ' num2str(2~(4—gain)) ' (', num2str(gain), '), Frequency: ',
num2str(valveFrequency), ', Times: ', num2str(valveTimes)]);

updatelLog(app, ['MATLAB: inputData size is: ' num2str(bufferSize) ', buffer
size: ' num2str(bufferSizex8) ' bytes, pulse: ' num2str(loadcellPulse)

1;
updatelLog(app, 'Write variables:');

% Flush input buffer before reading again
while(app.s.BytesAvailable ~=0)
bytesAvailablel = app.s.BytesAvailable;
flushinput(app.s);
bytesAvailable2 = app.s.BytesAvailable;
updateLog(app, [num2str(bytesAvailablel) 'bytes still in input buffer,
buffer flush, still ' num2str(bytesAvailable2) ' in the input
buffer']l);
end

% Writing arguments

data = [fs str2num(sensor) duration gain valveFrequency valveTimes
loadcellPulse];

fprintf(app.s, '%d %d %f %d %f %d %d\n', data, 'async');
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end

%)
‘676

fun

end

[X)
66

fun

% Reading data (Current maxDataStream value is arbitrary chosen, based on
max values of 2000/3000Hz)

maxDataStream = 30000; % Amount of data the buffer needs to hold

nMaxTimes = floor(bufferSize/maxDataStream);

remainderBufferSize = bufferSize—nMaxTimesxmaxDataStream;

app.incomingData = [];

updatelLog(app, ['maxDataStream is: ' num2str(maxDataStream) ', ' num2str(
ceil(bufferSize/maxDataStream)) 'x, remainder ' num2str(
remainderBufferSize)])

updatelLog(app, 'Read variables:')

for m = 1:nMaxTimes
tempData = fread(app.s, maxDataStream);
app.incomingData = [app.incomingData;tempDatal;
updateLog(app, ['Amount of data in iteration ' num2str(m) ' is: '
num2str(numel(tempData))])
end

if(remainderBufferSize ~= 0)
tempData = fread(app.s, remainderBufferSize);
app.incomingData = [app.incomingData;tempDatal;
updateLog(app, ['Amount of data in iteration ' num2str(m+l) ' is: '
num2str(numel(tempData))])
end

updatelLog(app, 'Done with reading data MCU")

If an error occurs during any communication with the MCU, status information
will be given

ction errorCommunication(app, €)

disp(e.message);

updatelLog(app, '[E103]|Error with communication with the MCU');
updatelog(app, e.message);

app.StatusLabel.Text = 'Status: [E102]|Check log for more details';
fclose(app.s);

enableRunButtons(app);

app.ConnectionMCULamp.Color = 'red';

Processes all the data [ASCII] to [NUM], applies a low pass filter and FFT
ction processData(app, measurementType, sampleFrequency, incomingData,
iteration, Fvalve, Nvalve)
app.rawData(:,iteration) = incomingData;
% Each datastream starts with a 10 (defined newline '\n'), look for the
first index of the data stream
% Take second data stream as the first one still contains the value stored
in the ADC register from previous time
for startIndex = 1:10
if incomingData(startIndex) == 10
break
end
end
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% Determine how many datastreams there are by dividing the amount of data
in the array, by the amount of data per datastream

% Two edge cases: datastream suddenly starts and datastream suddenly ends

% Deal with these two cases by subtracting 2 datastreams (or use a floor
and subtract 1)

nDataRange = floor(numel(incomingData)/app.nDatabits)—-1;

sensor_NF = zeros(nDataRange,1);

% ASCII to numbers, base of ASCII is 48 (ASCII 48 = NUM 0), check ASCII
table for more information
% Datastream always ends with |13|10| —> used as reference
% Index 0: '10', Index 1: sign +/—, Index 2—-6: data, Index 7: carrier
return
for dataStream = 1:(numel(sensor_NF))
% First sensor
sensor_NF(dataStream) = (incomingData(startIndex+2)—48)*10000+ (
incomingData(startIndex+3)—48)*1000+(incomingData(startIndex+4)—48)
*100+(incomingData(startIndex+5)—48)*10+(incomingData(startIndex+6)
—48)1;
if incomingData(startIndex+l) == '-'
sensor_NF(dataStream) = sensor_NF(dataStream) * —1;
end

%Go to the next data stream
startIndex = startIndex + app.nDatabits;
end

% Creating the x—axis for the graph
x_scale = linspace(0, (nDataRange/sampleFrequency),nDataRange);

% Applying a filter to each sensor, with passband frequency 25Hz
sensor_F = lowpass(sensor_NF,25,sampleFrequency);

% Display the peak of the sample frequency in the FFT
startSample = lxsampleFrequency;
endSample = min((Nvalve/Fvalve+l)x*sampleFrequency, size(sensor_NF,1));

o°

Applying FFT on the non filtered signal
1/sampleFrequency; % Sampling period
numel (sensor_NF(startSample:endSample)); % Length of signal

— -
I

o°

FFT function gives the double sides spectrum, convert it into single
spectrum

DSFourierData = fft(sensor_NF(startSample:endSample), 2”nextpow2(L)); %
Double sided FFT

DSFourierData = abs(DSFourierData/numel(DSFourierData)); %Normalized,
positive

fourier_NF = DSFourierData(l:numel(DSFourierData)/2+1); %Single sided FFT

fourier_NF(2:end-1) = 2xfourier_NF(2:end-1);

f_scale = sampleFrequencyx*(0: (numel(DSFourierData)/2))/numel (DSFourierData)

’

% Determines the most dominant frequency and its peak, and the second most
dominant frequency and its peak

maxValue = zeros(2,1);

indexMaxValue = maxValue;
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temp = fourier_NF;

for i=1:2
[maxValue(i) indexMaxValue(i)] = max(temp);
temp(indexMaxValue(i)) = 0;

end

updatelLog(app, ['Frequency with highest peak ' num2str(f_scale(
indexMaxValue(l))) 'Hz, with a peak of '
num2str(maxValue(1l))]1);

updatelLog(app, ['Frequency with second highest peak ' num2str(f_scale(
indexMaxValue(2))) 'Hz, with a peak of '
num2str(maxValue(2))]);

% Assign variables based on type of measurement
if(strcmp(measurementType, 'Single'))
assignSingleVariablest(app, x_scale, sensor_NF, sensor_F, f_scale,
fourier_NF);
elseif(strcmp(measurementType, 'Full'))
assignMultipleVariables(app, iteration, x_scale, sensor_NF, sensor_F,
f_scale, fourier_NF);
else
updatelLog(app, '[E104]|Could not save variables, error in assigning
variables');
end

% Plot the variables
plotVariablesMeasurement(app, x_scale, sensor_NF, sensor_F, f_scale,
fourier_NF)
app.ConnectionMCULamp.Color = 'green';
end

%% When a new .mat full test file is loaded, all sensor checkboxes are checked

function enableSensorCheckboxes (app)
app.SensorlCheckBox.Enable = true;
app.Sensor2CheckBox.Enable = true;
app.Sensor3CheckBox.Enable = true;
app.Sensor4CheckBox.Enable = true;
app.Sensor5CheckBox.Enable = true;
app.Sensor6CheckBox.Enable = true;
app.LoadcelllCheckBox.Enable = true;
app.Loadcell2CheckBox.Enable = true;
app.GraphDropDown.Enable = true;
app.PeriodsCheckBox.Enable = true;

end

%% Assigns variables from single and continuous test
function assignSingleVariablest(app, x_scale, sensor_NF, sensor_F, f_scale,
fourier_NF)
% Put the variables in the struct so it can be used across functions
app.x_scale = x_scale;
app.sensor_NF = sensor_NF;
app.sensor_F = sensor_F;
app.f_scale = f_scale;
app.fourier_NF = fourier_NF;
app.allMeasurements = [app.allMeasurements, sensor_NF];
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% Assigning a variable for each property in the struct so it can be read
out in the workspace

assignin('base', 'incomingData', app.incomingData);
assignin('base', 'allMeasurements', app.allMeasurements);
assignin('base', 'x_scale', app.x_scale);
assignin('base', 'sensor_NF', app.sensor_NF);
assignin('base', 'sensor_F', app.sensor_F);
assignin('base', 'fourier_NF', app.fourier_NF);
assignin('base', 'f_scale', app.f_scale);

end

%% Assigns variables from full test
function assignMultipleVariables(app, iteration, x_scale, sensor_NF, sensor_F,
f_scale, fourier_NF)
% Put the variables in the struct so it can be used across functions
app.x_scale = x_scale;
app.sensor_NF(:,iteration) = sensor_NF;
app.sensor_F(:,iteration) = sensor_F;
app.f_scale = f_scale;
app.fourier_NF(:,iteration) = fourier_NF;

% Assigning a variable for each property in the struct so it can be read
out in the workspace

assignin('base', 'incomingData', app.rawData);
assignin('base', 'x_scale', app.x_scale);
assignin('base', 'sensor_NF', app.sensor_NF);
assignin('base', 'sensor_F', app.sensor_F);
assignin('base', 'fourier_NF', app.fourier_NF);
assignin('base', 'f_scale', app.f_scale);

end

%% Assigns variables from analyzing
function assignAnalyzeVariables (app)
% Put the variables in the struct so it can be used across functions

assignin('base', 'a_x_scale', app.a_x_scale);
assignin('base', 'a_f_scale', app.a_f_scale);
assignin('base', 'a_sensor_NF', app.a_sensor_NF);
assignin('base', 'a_sensor_F', app.a_sensor_F);
assignin('base', 'a_fourier_NF', app.a_fourier_NF);

end

%% Plot the data from each measurement to the GUI

function plotVariablesMeasurement(app, x_scale, sensor_NF, sensor_F, f_scale,
fourier_NF)
% Plotting all the graphs
plot(app.UIAxes_NF,x_scale,sensor_NF)

xlim(app.
ylim(app.
plot(app.
xlim(app.
ylim(app.
plot(app.
xlim(app.
ylim(app.

UIAxes_NF, 'auto')

UIAxes_NF, 'auto')
UIAxes_F,x_scale,sensor_F)
UIAxes_F, 'auto')

UIAxes_F, 'auto')

UIAxes_FFT, f_scale, fourier_NF)
UIAxes_FFT, [0 20])

UIAxes_FFT, 'auto')

app.MeasurementLamp.Color = 'green';

end
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%% Determines the best gain based on the highest value from the last
measurement
function gain = determineBestGain(app, data)
factor = 1.1;
bits = ceil(log(max(data)*factor)/log(2));
gain = bits — 11;
if(gain<0)
gain = 0;
end
updatelLog(app, ['Highest peak has value ' num2str(max(data)) ', based on
this and factor 1.1, the best gain is ' num2str(2”(4—gain))]);
end

%% Analyzes the full data, either after finishing the full test or when the
user loads a full test .mat file
function analyzeFullTestData(app, sampleFrequency, sensorNumber, gain, Fvalve,

Nvalve, folder, type, today)
maxFFTValue = ones(6,1);

% Process data to put into table
for 1 = 1:6
[maxFFTValue(i), indexMaxFFTValue] = max(app.a_fourier_NF(:,i));
frequencyFFTMaxValue = app.a_f_scale(indexMaxFFTValue);
if(i == 1)
app.UITable2.Data = [{sprintf('%0.4f', frequencyFFTMaxValue) .
sprintf('%0.2f', maxFFTValue(i)) sprintf('%0.2f', mean(app.
a_sensor_NF(:,i))) '1'}];
else
app.UITable2.Data = [app.UITable2.Data;{sprintf('%0.4f",
frequencyFFTMaxValue)
sprintf('%0.2f', maxFFTValue(i)) sprintf('%0.2f', mean(app.
a_sensor_NF(:,1))) '1'}1;
end
end

% Assign data
assignAnalyzeVariables(app);

% Process data into graph
updateAnalyzeAxes (app);

% Peak value of the FFT normalised to the amount of times the valve opens
normalizedFFTMaxValue = maxFFTValue/app.a_Nvalve;
testSensorsIndicators(app, normalizedFFTMaxValue);

app.TabGroup2.SelectedTab = app.AnalyzingTab;
enableSensorCheckboxes (app);

% If no scale factor has been determined, it will be determined now
if(app.a_scaleFactor == [1, 1, 1, 1, 1, 1])
updatelLog(app, 'Scale factor will be determined now');
maxFFTValue = ones(6,1);
app.a_scaleFactor = ones(6,1);
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for i = 1:6
[maxFFTValue(i), ~] = max(app.a_fourier_NF(:,1));
end

referenceValue = max(maxFFTValue);

for i = 1:6
app.a_scaleFactor(i) = referenceValue/maxFFTValue(i);
end

scaleFactor = app.a_scaleFactor;
incomingData = app.a_incomingData;
x_scale = app.a_x_scale;

sensor_NF = app.a_sensor_NF;
sensor_F = app.a_sensor_F;

f_scale = app.a_f_scale;
fourier_NF = app.a_fourier_NF;
description = app.a_description;

% Filename

fileName = [today ' ' type '_fs' num2str(sampleFrequency) '_S'
sensorNumber ' G' gain '_f' num2str(Fvalve) '_n' num2str(Nvalve) '
_cmp.mat'];

% Foldername
if ~exist(folder, 'dir'")
app.stopContinuousTest = 1;
enableRunButtons(app);
disp(folder);
updateLog(app, '[E105]|Error with auto saving variables to the
selected folder, no variables are saved');
app.StatusLabel.Text = 'Status: [E105]|Error with auto saving
variables to the selected folder, no variables are saved';

return;
end
if(path ~= 0)
save(strcat(folder, '/',6fileName), 'description', 'incomingData', '
x_scale', 'sensor_NF', 'sensor_F', 'f_scale', 'fourier_NF', '
scaleFactor');
updateLog(app, '— — — Measurement saved — — =');
end

end
end

%% Saves all the important variables to a .mat file
function autoSaveVariables(app, sampleFrequency, sensorNumber, gain, Fvalve,

Nvalve, folder, type, today)
% Assigning
incomingData = app.incomingData;
x_scale = app.x_scale;
sensor_NF = app.sensor_NF;
sensor_F = app.sensor_F;
f_scale = app.f_scale;
fourier_NF = app.fourier_NF;
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description = app.DescriptionEditField.Value;

% Filename
fileName = [today ' ' type '_fs' num2str(sampleFrequency) '_S' sensorNumber
'_G' gain '_f' num2str(Fvalve) '_n' num2str(Nvalve) '.mat'];

% Foldername
if ~exist(folder, 'dir')
app.stopContinuousTest = 1;
enableRunButtons (app);
disp(folder);
updatelLog(app, '[E105]|Error with auto saving variables to the selected
folder, no variables are saved');
app.StatusLabel.Text = 'Status: [E105]|Error with auto saving variables
to the selected folder, no variables are saved';

return;
end
if(path ~= 0)
save(strcat(folder, '/',fileName), 'description', 'incomingData', '
x_scale', 'sensor_NF', 'sensor_F', 'f_scale', 'fourier_NF');
updatelLog(app, '— — — Measurement saved — — —');
end

end

%% Creates a plot when the continuous test is finished each time and saves the
plot as .png
function savePlotContinuous(app, sensorNumber, Fvalve,
Nvalve, type, Fs, gain, folder, today)
% Make a figure of the plots and upload it
% Raw data
plotFigure = figure('units', 'normalized', 'outerposition',[0 0 1 1]);
subplot(1,2,1)
plot(app.x_scale, app.sensor_NF);
title(['Raw data: sensor ' sensorNumber ', valve Frequency ' num2str(Fvalve
) ', times ' num2str(Nvalve)])
xlabel('Time (s)"')
ylabel('ADC Qutput Value')
grid on;
grid minor;

subplot(1,2,2)

plot(app.f_scale, app.fourier_NF)
title('FFT of non filtered data')
xlabel('Frequency (Hz)"')
ylabel('[Y(f)[")

xlim([0 5071);

grid on;

grid minor;

% Save figure

fileName = [today ' ' type '_fs' num2str(Fs) '_S' sensorNumber '_G' gain '
_f' num2str(Fvalve) '_n' num2str(Nvalve)];

saveas(plotFigure, [strcat(folder,'/', fileName) '.png'l);

close(plotFigure);

end
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%% Diable the following buttons if a test is started

function disableRunButtons(app)
app.Single_Run.Enable = false;
app.Full_Run.Enable = false;
app.Continuous_Run.Enable = false;
app.Continuous_Stop.Enable = false;
app.Full_Continue.Enable = false;

end

%% Enable/disable the following buttons when a test is finished
function enableRunButtons(app)
app.Single_Run.Enable = true;
app.Full_Run.Enable = true;
app.Continuous_Run.Enable = true;
app.Continuous_Stop.Enable = false;
app.Full_Continue.Enable = false;
end

%% Updates the log window
function updatelLog(app, message)
try
app.UITable.Data = [{datestr(now, 'HH:MM:SS') message}; app.UITable.
Data;];
catch e
disp(e.message);
end
end

% Updates the analyze axes depending on various settings
function updateAnalyzeAxes (app)
checkBoxes = [app.SensorlCheckBox.Value app.Sensor2CheckBox.Value app.
Sensor3CheckBox.Value app.Sensor4CheckBox.Value ...
app.Sensor5CheckBox.Value app.Sensor6CheckBox.Value app.
LoadcelllCheckBox.Value app.Loadcell2CheckBox.Value app.
PeriodsCheckBox.Valuel;

TableData = app.UITable2.Data;
scaleFactor = ones(8,1);

for i = 1:6

scaleFactor(i) = str2double(TableData(i,4));
end
if (app.GraphDropDown.Value == "Raw")

data = app.a_sensor_NF;
Xaxis = app.a_x_scale;
xlim(app.UIAxes, 'auto')

title(app.UIAxes, strcat(app.a_date, " | fs: ", num2str(app.a_fs), "Hz
| valve freq.: ", num2str(app.a_Fvalve),
"Hz | Valve times open: ", num2str(app.a_Nvalve), "x | Raw data"),
"Interpreter', 'none')

maxLine = max(app.a_sensor_NF(:));
xlabel(app.UIAxes, 'Time (s)')
ylabel(app.UIAxes, 'ADC Output Value');

elseif(app.GraphDropDown.Value == "Filtered");
data = app.a_sensor_F;
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xaxis = app.a_x_scale;
xlim(app.UIAxes, 'auto')

title(app.UIAxes, strcat(app.a_date, " | fs: ", num2str(app.a_fs), "Hz
| Valve freq.: ", num2str(app.a_Fvalve),
"Hz | Valve times open: ", num2str(app.a_Nvalve), "x | Filtered
data"), 'Interpreter', 'none')

maxLine = max(app.a_sensor_F(:));

Xxlabel(app.UIAxes, 'Time (s)')

ylabel(app.UIAxes, 'ADC Output Value');
elseif(app.GraphDropDown.Value == "FFT");

data = app.a_fourier_NF;

Xaxis = app.a_f_scale;

xlim(app.UIAxes, [0 20])

title(app.UIAxes, strcat(app.a_date, " | fs: ", num2str(app.a_fs), "Hz
| valve freq.: ", num2str(app.a_Fvalve),
"Hz | Valve times open: ", num2str(app.a_Nvalve), "x | FFT raw data
"), 'Interpreter', 'none')

maxLine = 0;
xlabel(app.UIAxes, 'Frequency (Hz)');
ylabel(app.UIAxes, '|Y(f)]|');

end

cla(app.UIAxes);

for i = 1:9
if(checkBoxes(i) == 1)
if(i == 9)
peakPeriod = 1/app.a_Fvalve;
line(app.UIAxes, [1 1],[maxLinex1l.1 —maxLinex1.1], 'Color',’
black');
hold(app.UIAxes, 'on');
for k = 1l:app.a_Nvalve
try
line(app.UIAxes, [l+peakPeriodxk l+peakPeriodxk], [
maxLinex1.1 —maxLinex1.1], 'Color', 'black');
catch e
disp(e.message);
end
end
else
plot(app.UIAxes, xaxis, data(:,i)*scaleFactor(i));
hold(app.UIAxes, 'on');
end
end
end

hold(app.UIAxes, 'off');

Calculate the mean from 3 intervals, when it is 0, when it is 1 (first part
and second part)

Difference between 0 and 1 must be substantial, and first part/second part
should result in same mean

function statusPass = verifyMeasurementLC(app, sampleFrequency, duration,

rawData)

xStart = 0; % [sec]

xSwitch = 1; % [sec] switch from off to on
XEnd = duration; % [sec]
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end

[X)
66

LX)
676

xMid = (xEnd—xSwitch)/2+xSwitch; % [sec]
varRange = 0.1; % [sec]

indexl = ceil((xStart+varRange)x*sampleFrequency); % Start of the
measurement

index2 = ceil((xSwitch—varRange)+*sampleFrequency); % Time the valve
switches, min delta time

index3 = ceil((xSwitch+varRange)*sampleFrequency); % Time the valve
switches, plus delta time

index4 = ceil((xMid)x*sampleFrequency);
valve is on

of

o°

Mid period when the

index5 = ceil((xEnd—varRange)x*sampleFrequency); % End of the
measurement

updateLog(app, ['Index1:5 : ' num2str(indexl) ' ' num2str(index2) "' '
num2str(index3) ' ' num2str(index4) ' ' num2str(index5)]);

meanTl = mean(rawData(index1l:index2));

meanT2 = mean(rawData(index3:index4));

meanT3 = mean(rawData(index4:index5));

updateLog(app, ['Means: ' num2str(meanTl) ' ' num2str(meanT2) ' ' num2str(
meanT3)1);

conditionLimitl = 100; % Difference between meanT2 and meanT3

conditionLimit2 = 100; % Difference between meanTl and av(meanT2,meanT3)

if(abs(meanT2—meanT3)<conditionLimitl && abs(meanT2—meanTl)>conditionLimit2
)
statusPass = true;
updatelLog(app, 'Both conditions are met, measurement will go on');
else
statusPass = false;
updatelLog(app, 'One of the conditions is not met, measurement will be
redone');
end

Look if the FFT is 'good' enough, else redo the measurement
The dominant frequency should be close to the valve frequency

function statusPass = verifyMeasurementPE(app, valveFrequency, f_scale,

end

o°
o°

rawDataFFT)

[maxFFTValue indexMaxFFTValue] = max(rawDataFFT);
frequencyFFTMaxValue = f_scale(indexMaxFFTValue);
varRange = 0.1; % [Hz]

% If measurement is wrong, redo the measurement, else save the data and
go on
if (abs(frequencyFFTMaxValue—valveFrequency)<varRange)
statusPass = true;
updateLog(app, 'Condition is met, measurement will go on');
else
statusPass = false;
updatelLog(app, 'Condition not met, measurement will be redone');
end

Color the sensor indicators either red or green
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function testSensorsIndicators(app, normalizedMaxFFTValue)
LampArray = [app.Test_Lampl, app.Test_Lamp2, app.Test_Lamp3,
app.Test_Lamp4, app.Test_Lamp5, app.Test_Lamp6];
minimumValueFFT = 40;
for i = 1:6
if(normalizedMaxFFTValue(i) > minimumValueFFT)
set(LampArray(i), 'Color', 'green');
else
set(LampArray(i), 'Color', 'red');
end
end
end
end

methods (Access = private)

% Code that executes after component creation
function startupFcn(app)
%% This callback is executed at the program startup
%% Disconnect and delete all instrument objects, looks for all available
serial ports
%% Determines if the workspace exists

% Clean up the command window, workspace is not cleared to prevent any loss
of data
clc;

% Disconnect and delete all instrument objects
instrreset;

% Status updates
app.UITable.Data = [{datestr(now, 'HH:MM:SS') 'Program started'}];
app.StatusLabel.Text = 'Status: Program is in idle mode';

% Initializations

% Instrument Control Toolbox and serial port drivers required
warning off MATLAB:subscripting:noSubscriptsSpecified

p = instrhwinfo('serial');

app.SelectserialportDropDown.Items = p.AvailableSerialPorts;

% Checks if the default save location is present, default save location is
the 'Metingen' folder
folder = ['Metingen'];
if ~exist(folder, 'dir')
updatelLog(app, 'Default save location is not found, consider changing
your workspace');

app.WorkspaceLamp.Color = 'red';

else
app.LocationEditField.Value = [pwd '\' folder];
app.WorkspacelLamp.Color = 'green';

end

end

% Button pushed function: Single_Run
function Single_RunPushed(app, event)
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o°

% This callback is executed when the user presses on the Single run button
%% Does one test with the parameters in the configuration panel

% Clean up the command window

clc;

% User configuration parameters
selectedSensor = app.Single_Sensor.Value;
selectedDuration = app.General_Duration.Value;
selectedGain = app.Single_Gain.Value;
selectedFs = app.General_SampleFrequency.Value;
selectedFvalve = app.ValveFrequency.Value;
selectedNvalve = app.ValveTimes.Value;
selectedAutoSave = app.Single_AutoSave.Value;
selectedType = app.TypeDropDown.Value;
selectedFolder = app.LocationEditField.Value;
if(app.PulseonloadcellSwitch.Value == "0On")
selectedLoadcellPulse = 1;
else
selectedLoadcellPulse = 0;
end

% Standard initialisations

updatelLog(app, '— — — Running single measurement now — — —');

app.StatusLabel.Text = 'Status: Running single measurement now';

disableRunButtons(app);

determinedBufferSize = initializeConnection(app, selectedFs,
selectedDuration);

initializeVariables(app, determinedBufferSize);

determinedGain = determineGain(app, selectedGain);

connectionStatus = openSerialPort(app);

today = datestr(now, 'mmdd_HHMMSS');

% Checks if all the configuration parameters are correct and if the
connection with the MCU could be made
if(checkUserConfig(app, determinedGain, selectedAutoSave, selectedFolder)
== false ...
|| connectionStatus == false)
return;
end

% First part of the code is about the communication with the MCU and data
transfer
% Asynchronous writing arguments, synchronous reading data
ry
communicateMCU(app, determinedBufferSize, selectedFs, selectedSensor,
selectedDuration,
determinedGain, selectedFvalve, selectedNvalve,
selectedLoadcellPulse);
fclose(app.s);
catch e
errorCommunication(app, e);
return;

~+

end

% Second part of the code is about processing the data
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end

% First checks if data was sent to the program before processing it

if(size(app.incomingData) == 0)
updatelLog(app, '[E107]|Error receiving data from the MCU, received no
data');

app.StatusLabel.Text = 'Status: [E107]|Error receiving data from the
MCU, received no data';
enableRunButtons(app);
app.MeasurementLamp.Color = 'red';
return;
end

% Processing the raw data [ASCII] into values [NUM]
processData(app, 'Single', selectedFs, app.incomingData, 1, selectedFvalve,

selectedNvalve);

% Autosave if selected, check if the directory is right

if(selectedAutoSave == true)
try
autoSaveVariables(app, selectedFs, selectedSensor, selectedGain,
selectedFvalve,
selectedNvalve, selectedFolder, selectedType, today);

catch e
updatelLog(app, e.message);
enableRunButtons(app);
app.WorkspaceLamp.Color = 'red';
return;
end
end

% End of measurement

enableRunButtons (app);

updateLog(app, '— — — Single test has finished — — —');
app.StatusLabel.Text = 'Status: Single test has finished';

% Button pushed function: Full_Run
function Full_RunPushed(app, event)

%% This callback is executed when the user presses on the Full run button
%% Does a test on all seven sensors (1LC, PE) with the parameters in the
configuration panel

% Clean up the command window
clc;

% User configuration parameters
selectedDuration = app.General_Duration.Value;
selectedFs = app.General_SampleFrequency.Value;
selectedFvalve = app.ValveFrequency.Value;
selectedNvalve = app.ValveTimes.Value;
selectedType = app.TypeDropDown.Value;
selectedFolder = app.LocationEditField.Value;
selectedLoadcellPulse = 0;

% Standard initialisations
updateLog(app, '— — — Running full measurement now — — —');
app.StatusLabel.Text = 'Status: Running full measurement now';
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disableRunButtons(app);

determinedBufferSize = initializeConnection(app, selectedFs,
selectedDuration);

initializeVariables(app, determinedBufferSize);

connectionStatus = openSerialPort(app);

today = datestr(now, 'mmdd_HHMMSS');

% Checks if all the configuration parameters are correct and if the
connection with the MCU could be made
if(checkUserConfig(app, 1, true, selectedFolder) == false ...
|| connectionStatus == false)
return;
end

% First part of the code is about the communication with the MCU and data
transfer

% Predefined arrays to quickly determine settings for each iteration

sensors = [app.Full_Loadcell.Value app.Full_Sensorl.Value app.Full_Sensor2.
Value app.Full_Sensor3.Value ...
app.Full_Sensor4.Value app.Full_Sensor5.Value app.Full_Sensor6.Value

app.Full_Loadcell.Value];
orderSensor = ['7', '1', '2', '3', '4', '5', '6', '7'];
orderPlots = [7, 1, 2, 3, 4, 5, 6, 8];

% Asynchronous writing arguments, synchronous reading data
% Between each measurement, the sensor values are being processed and saved
in the local workspace
try
% Goes through 8 possible iterations
for i = 1:8
statusPass = false;
determinedGain = 4; % Start with a gain of 1, then look for the
appropriate gain

% If the sensor is selected, it will go through this if statement

if (sensors(i) == true)
app.Full_Continue.Enable = true;
if(orderSensor(i) == '7")

updatelLog(app, ['Press continue to start measuring the
loadcell']);
else
updatelLog(app, ['Press continue to start measuring sensor
orderSensor(i)]);

end

% Waiting for the continue button to be pressed
% In the future the button will be replaced by a signal that
the nozzle is on top of the dome
while(app.sensorReady ~= 1)
pause(1);
if(app.emergencyStop == 1)
enableRunButtons(app);
fclose(app.s);
updateLog(app, '— — — Full test has been aborted — — —'
);

return;
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end
end

% Start measuring, will continue to do so until all
requirements have been met
while(statusPass ~= true && app.emergencyStop ~= 1)
% Information about the arguments and data
communicateMCU(app, determinedBufferSize, selectedFs,
orderSensor(i), selectedDuration, determinedGain,
selectedFvalve, selectedNvalve, selectedLoadcellPulse);

% Data processing of the incoming information
if(size(app.incomingData) == 0)
updateLog(app, '[E107]|Error receiving data from the
MCU, received no data');
app.StatusLabel.Text = 'Status: [E107]|Error receiving
data from the MCU, received no data';
enableRunButtons(app);
fclose(app.s);
app.MeasurementLamp.Color = 'red';
return;
end

processData(app, 'Full', selectedFs, app.incomingData,
orderPlots(i), selectedFvalve, selectedNvalve);

% Check if the data received has a good shape and is not
distorted, loadcell: check step function, PE: check FFT
if(orderSensor(i) == '7")
statusPass = verifyMeasurementLC(app, selectedFs,
selectedDuration, app.sensor_NF(:,orderPlots(i)));
else
statusPass = verifyMeasurementPE(app, selectedFvalve,
app.f_scale, app.fourier_NF(:,orderPlots(i)));
end

% Check if the selected gain is too high/too low, adjust if
needed
bestGain = determineBestGain(app, app.sensor_NF(:,
orderPlots(1i)));
if(determinedGain == bestGain && statusPass == true)
% Done with reading, waiting for a signal to read the
next sensor
app.sensorReady = 0;
if(orderSensor(i) == '7")
updateLog(app, ['Done reading loadcell']);
else
updateLog(app, ['Done reading sensor ' orderSensor(
i)l);
end
else
statusPass = false;
determinedGain = bestGain;
updatelLog(app, ['Redoing the measurement, trying now
with gain: ' num2str(2”(4—determinedGain))]);
end
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% To make it interruptable to make a emergency stop
pause(1);
if(app.emergencyStop == 1)

enableRunButtons (app);

fclose(app.s);

updateLog(app, '— — — Full test has been aborted — — —'

);
return;
end
end
end
end

% Information about stopping the connection
fclose(app.s);
catch e
errorCommunication(app, e);
return;
end

% End of measurement

enableRunButtons(app);

updatelLog(app, '— — — Full test has finished — — —"');
app.StatusLabel.Text = 'Status: Full test has finished';

% Switches to the analyze tab and shows all the measurements
% Saves all current variables as different ones to avoid overwriting
% Uses these variables to do analyzing

app.a_description = app.DescriptionEditField.Value;
app.a_incomingData = app.incomingData;

app.a_x_scale = app.x_scale;

app.a_f_scale = app.f_scale;

app.a_sensor_NF = app.sensor_NF;

app.a_sensor_F = app.sensor_F;

app.a_fourier_NF = app.fourier_NF;

app.a_date = today;

app.a_folder = selectedFolder;

app.a_fs = selectedFs;

app.a_Fvalve = selectedFvalve;

app.a_Nvalve = selectedNvalve;

app.a_scaleFactor = [1,1,1,1,1,1];

assignin('base', 'scaleFactor', app.a_scaleFactor);

% After the measurement and data processing is done, the data is being
analyzed by the program
analyzeFullTestData(app, selectedFs, '1234567', 'lx', selectedFvalve,
selectedNvalve, selectedFolder, selectedType, today);
end

% Button pushed function: Full_Continue

function Full_ContinuePushed(app, event)
%% This emulates a ready signal when nozzle is on top of the dome
app.sensorReady = 1;
app.Full_Continue.Enable = false;

end




73

% Button pushed function: Continuous_Run
function Continuous_RunPushed(app, event)
%% This callback is executed when the user presses on the Continuous run
button
%% Keeps doing a test with the parameters in the configuration panel

% Clean up the command window
clc;

% User configuration parameters
selectedSensor = app.Continuous_Sensor.Value;
selectedDuration = app.General_Duration.Value;
selectedInterval = app.Continuous_Interval.Value;
selectedGain = app.Continuous_Gain.Value;
selectedFs = app.General_SampleFrequency.Value;
selectedFvalve = app.ValveFrequency.Value;
selectedNvalve = app.ValveTimes.Value;
selectedType = app.TypeDropDown.Value;
selectedFolder = app.LocationEditField.Value;
if(app.PulseonloadcellSwitch.Value == "0On")
selectedLoadcellPulse = 1;
else
selectedLoadcellPulse = 0;
end

% Standard initialisations

updateLog(app, '— — — Running continuous measurement now — — —');

app.StatusLabel.Text = 'Status: Running continuous measurement now';

disableRunButtons(app);

app.Continuous_Stop.Enable = true;

determinedBufferSize = initializeConnection(app, selectedFs,
selectedDuration);

initializeVariables(app, determinedBufferSize);

determinedGain = determineGain(app, selectedGain);

connectionStatus = openSerialPort(app);

runtimeAmount = 0;

% Checks if all the configuration parameters are correct and if the
connection with the MCU could be made
if(checkUserConfig(app, determinedGain, true, selectedFolder) == false ...
|| connectionStatus == false)
return;
end

% First part of the code is about the communication with the MCU and data
transfer
% Asynchronous writing arguments, synchronous reading data
while(app.stopContinuousTest ~= 1)
% Initialisations for each measurement
initializeVariables(app, determinedBufferSize);
today = datestr(now, 'mmdd_HHMMSS');
runtimeAmount = runtimeAmount + 1;
updateLog(app, ['— — — Continuous measurement ' num2str(runtimeAmount)

RNV
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communicateMCU(app, determinedBufferSize, selectedFs,
selectedSensor, selectedDuration,
determinedGain, selectedFvalve, selectedNvalve,
selectedLoadcellPulse);

% Second part of the code is about processing the data
% First checks if data was sent to the program before processing it
if(size(app.incomingData) == 0)
updateLog(app, '[E107]|Error receiving data from the MCU,
received no data');
app.StatusLabel.Text = 'Status: [E107]|Error receiving data
from the MCU, received no data';
enableRunButtons(app);
fclose(app.s);
app.MeasurementLamp.Color = 'red';
return;
end

% Processing the raw data [ASCII] into values [NUM]
processData(app, 'Single', selectedFs, app.incomingData, 1,
selectedFvalve, selectedNvalve);

% Autosave if selected, check if the directory is right
autoSaveVariables(app, selectedFs, selectedSensor, selectedGain,
selectedFvalve,
selectedNvalve, selectedFolder, selectedType, today);
savePlotContinuous (app, selectedSensor, selectedFvalve,
selectedNvalve, selectedType, selectedFs, selectedGain,
selectedFolder, today)

% Wait for the given interval, unless the stop button is pressed

logHistory = app.UITable.Data;

app.UITable.Data = [{datestr(now, 'HH:MM:SS') ['— — — Waiting for '
num2str(selectedInterval) ' seconds — — —']};app.UITable.Data
1;

for i = 1l:ceil(selectedInterval)
if(app.stopContinuousTest~=1)
pause(1);
app.UITable.Data = [{datestr(now, 'HH:MM:SS') ['— — —
Waiting for ' num2str(selectedInterval-i) ' seconds -
— —'1};logHistoryl;

catch e

else
break;
end
end
errorCommunication(app, €);
instrreset;
initializeConnection(app, selectedFs, selectedDuration);
app.UITable.Data = [{datestr(now, 'HH:MM:SS') '— — — Attempting to
restart — — —'}; app.UITable.Data];

fopen(app.s);
disableRunButtons(app);
app.Continuous_Stop.Enable = true;
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end
end

% End of measurement

fclose(app.s);

enableRunButtons(app);

updatelLog(app, '— — — Continuous test has finished — — =');

app.StatusLabel.Text = 'Status: Continuous test has finished';
end

% Button pushed function: Continuous_Stop
function Continuous_StopPushed(app, event)
%% When the user presses on the stop button, the continuous test will stop
as soon as possible
app.stopContinuousTest = 1;
disableRunButtons(app);
updatelLog(app, 'Stop button is pressed, measuring will stop soon');
end

% Button pushed function: OpendataButton

function OpendataButtonPushed(app, event)
%% This callback is executed when the user presses on the Open data button
%% This is used to manually analyze full tests by opening the .mat file

% Clean up the command window
clc;

% The user needs to select a .mat file
app.MomoPESPTesterUIFigure.Visible = 'off';
selectedFolder = app.LocationEditField.Value;
if(selectedFolder == "")
selectedFolder = pwd;
end
[filename, folder] = uigetfile([selectedFolder '\x.mat'l],...
'Select a full test');
app.MomoPESPTesterUIFigure.Visible = 'on';

% The program tries to read the .mat file and extracts all the necesssary
information
filename = char(filename);
try
app.temp = load([folder filename(1,:)]);
[~, column] = size(app.temp.sensor_NF);
if(column < 7)
updateLog(app, 'Error opening file, possibly not a full test');
return;
end

dateIndexl = 1;

dateIndex2 = 11;

[fsIndexl, fsIndex2] = regexpi(filename(l,:),' fs.*.S");
[valveFrequencyIndexl, valveFrequencyIndex2] = regexpi(filename(1l,:),

x_f.*x_n');
date = filename(1l, dateIndexl:dateIndex2);
if(contains(filename, 'cmp') == 1)

[timesIndexl, timesIndex2] = regexpi(filename(1l,:), '_n.x_cmp');
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else
[timesIndexl, timesIndex2] = regexpi(filename(l,:), '_n.x.mat');
end

app.a_incomingData = app.temp.incomingData;

app.a_x_scale = app.temp.x_scale;

app.a_f_scale = app.temp.f_scale;

app.a_sensor_NF = app.temp.sensor_NF;

app.a_sensor_F = app.temp.sensor_F;

app.a_fourier_NF = app.temp.fourier_NF;

app.a_date = date;

app.a_folder = folder;

app.a_fs = str2num(filename(l, fsIndex1l+3:fsIndex2-2));

app.a_Fvalve = str2num(filename(1l, valveFrequencyIndexl+3:
valveFrequencyIndex2-2));

app.a_Nvalve = str2num(filename(1l, timesIndex1+2:timesIndex2—4));

if(isfield(app.temp, 'scaleFactor') == 1)

app.a_scaleFactor = app.temp.scaleFactor;

updateLog(app, 'Scale factor found, it won''t be recalculated');
else

app.a_scaleFactor = [1,1,1,1,1,1];

updateLog(app, 'Scale factor not found, all scale factors are

determined now');

end

if(exist('app.temp.description') == 1)
app.a_description = app.temp.description;
else
app.a_description = '';
end

analyzeFullTestData(app, app.a_fs, '1234567', '1x', app.a_Fvalve,
app.a_Nvalve, folder, 'FullTest', date)
catch e
disp(e.message)
end
end

% Value changed function: SensorlCheckBox

function SensorlCheckBoxValueChanged(app, event)
%% If the user unchecked/checked a sensor button in the analyzing tab,
%% a new plot is made with the selected sensors
updateAnalyzeAxes (app)

end

% Value changed function: Sensor2CheckBox

function Sensor2CheckBoxValueChanged(app, event)
%% If the user unchecked/checked a sensor button in the analyzing tab,
%% a new plot is made with the selected sensors
updateAnalyzeAxes (app)

end

% Value changed function: Sensor3CheckBox
function Sensor3CheckBoxValueChanged(app, event)
%% If the user unchecked/checked a sensor button in the analyzing tab,




7

%% a new plot is made with the selected sensors
updateAnalyzeAxes (app)
end

% Value changed function: Sensor4CheckBox

function Sensor4CheckBoxValueChanged(app, event)
%% If the user unchecked/checked a sensor button in the analyzing tab,
%% a new plot is made with the selected sensors
updateAnalyzeAxes (app)

end

% Value changed function: Sensor5CheckBox

function Sensor5CheckBoxValueChanged(app, event)
%% If the user unchecked/checked a sensor button in the analyzing tab,
%% a new plot is made with the selected sensors
updateAnalyzeAxes (app)

end

% Value changed function: Sensor6CheckBox

function Sensor6CheckBoxValueChanged(app, event)
%% If the user unchecked/checked a sensor button in the analyzing tab,
%% a new plot is made with the selected sensors
updateAnalyzeAxes (app)

end

% Value changed function: LoadcelllCheckBox

function LoadcelllCheckBoxValueChanged(app, event)
%% If the user unchecked/checked a sensor button in the analyzing tab,
%% a new plot is made with the selected sensors
updateAnalyzeAxes (app)

end

% Value changed function: GraphDropDown

function GraphDropDownValueChanged(app, event)
%% If the user unchecked/checked a sensor button in the analyzing tab,
%% a new plot is made with the selected sensors
updateAnalyzeAxes (app)

end

% Value changed function: PeriodsCheckBox

function PeriodsCheckBoxValueChanged(app, event)
%% If the user unchecked/checked a sensor button in the analyzing tab,
%% a new plot is made with the selected sensors
updateAnalyzeAxes (app)

end

% Button pushed function: ResetScaleButton
function ResetScaleButtonPushed(app, event)
%% If the user clicks on the reset scale button, the scale factors will be
reset,
%% a new plot is made with scale 1
analyzeFullTestData(app, app.a_fs, '1234567', 'lx', app.a_Fvalve,
app.a_Nvalve, app.a_folder, 'FullTest',6 app.a_date)
end

% Button pushed function: AutoscaleButton
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function AutoscaleButtonPushed(app, event)
%% If the user clicks on the auto scale button, the scale factors will be
automatically calculated,
%% a new plot is made with calculated scales

% Process data to put into table
currentDataTable = app.UITable2.Data;
maxFFTValue = ones(6,1);
for i = 1:6
[maxFFTValue(i), ~] = max(app.a_fourier_NF(:,1));
end

referenceValue = max(maxFFTValue);

for i = 1:6
currentDataTable(i,4) = cellstr(num2str(referenceValue/maxFFTValue(i)))

’

end
app.UITable2.Data = currentDataTable;

% Process data into graph
updateAnalyzeAxes (app)
end

% Button pushed function: ResetAxesButton
function ResetAxesButtonPushed(app, event)
%% If the user clicks on the reset axes button, the axes limit are reset to
these values
if(app.GraphDropDown.Value == "FFT")
xlim(app.UIAxes, [0 20]);
ylim(app.UIAxes, 'auto');
else
xlim(app.UIAxes, 'auto');
ylim(app.UIAxes, 'auto');
end
end

% Button pushed function: SaveButton
function SaveButtonPushed(app, event)
%% If the user clicks on the save button, all important variables are saved
into a .mat file
%% Each property is assigned a variable so it can be read out in the
workspace

% Assigning properties to variables
incomingData = app.incomingData;

x_scale = app.x_scale;

sensor_NF = app.sensor_NF;

sensor_F = app.sensor_F;

f_scale = app.f_scale;

fourier_NF = app.fourier_NF;

selectedFs = app.General_SampleFrequency.Value;
description = app.DescriptionEditField.Value;
frequency = app.ValveFrequency.Value;
openTimes = app.ValveTimes.Value;
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selectedFolder = app.LocationEditField.Value;

% If no location is chosen or if it does not exist, the current directory
is chosen

if(selectedFolder == "" || ~exist(selectedFolder, 'dir'))
selectedFolder = pwd;

end

% Check if the single test, continuous or full test tab is active to
determine the sensors and gain
if (app.TabGroup3.SelectedTab == app.SingleTestTab)
gain = app.Single_Gain.Value;
if(app.Single_Sensor.Value == '7")
sensorNumber = 'loadcell';
else
sensorNumber = app.Single_Sensor.Value;
end
elseif(app.TabGroup3.SelectedTab == app.ContinuousTestTab)
gain = app.Continuous_Gain.Value;

if(app.Continuous_Sensor.Value == '7")
sensorNumber = 'loadcell';

else
sensorNumber = app.Continuous_Sensor.Value;

end
elseif (app.TabGroup3.SelectedTab == app.FullTestTab)
Sensors = [app.Full_Sensorl.Value app.Full_Sensor2.Value app.
Full_Sensor3.Value app.Full_Sensor4.Value app.Full_Sensor5.Value
app.Full_Sensor6.Valuel;

sensorNumber = '';
for 1 = 1:6
if (Sensors(i) == true)
sensorNumber = [sensorNumber num2str(i)];
end
end
gain = '1x';
end

% Filename

today = datestr(now, 'mmdd_HHMMSS');

type = app.TypeDropDown.Value;

fileName = [today ' ' type '_fs' num2str(selectedFs) '_S' sensorNumber '_G'
gain '_f' num2str(frequency) '_n' num2str(openTimes)];

% Opening dialog box to let the user chose their save location

app.MomoPESPTesterUIFigure.Visible = 'off';

[name, path] = uiputfile('*.mat', 'File Selection', [selectedFolder '/'
fileNamel]);

if(path ~= 0)
save(strcat(path,name), 'description', 'incomingData', 'x_scale', '
sensor_NF', 'sensor_F', 'f_scale', 'fourier_NF');
app.UITable.Data = [{datestr(now, 'HH:MM:SS') '— — — Measurement saved
— — —'};app.UITable.Datal;
if(app.LocationEditField.Value == "")

app.LocationEditField.Value = path;
app.WorkspaceLamp.Color = 'green';
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updateLog(app, 'Save location has been updated to your most recent
one');
end
end

app.-MomoPESPTesterUIFigure.Visible = 'on';
end

% Button pushed function: SearchButton
function SearchButtonPushed(app, event)
%% Button to search for serial ports in the case the MCU was disconnected
while running this app

% (Instrument Control Toolbox required and serial port drivers)

p = instrhwinfo('serial');

app.SelectserialportDropDown.Items = p.AvailableSerialPorts;
end

% Button pushed function: AbortButton
function AbortButtonPushed(app, event)
%% If the user presses on the abort button, the processes inside MATLAB
will stop as soon as possible
app.emergencyStop = 1;
updatelLog(app, 'Abort button has been pressed, measurement will stop soon')
app.stopContinuousTest = 1;
enableRunButtons (app);
return;
end

% Value changed function: Loadcell2CheckBox

function Loadcell2CheckBoxValueChanged(app, event)
%% If the user unchecked/checked a sensor button in the analyzing tab,
%% a new plot is made with the selected sensors
updateAnalyzeAxes (app)

end

% Button pushed function: OpenButton

function OpenButtonPushed(app, event)
%% If the user clicks on the open button,
%% a dialog box will open to change the default save location
app.MomoPESPTesterUIFigure.Visible = 'off';

if(app.LocationEditField.Value == "" || ~exist(app.LocationEditField.Value)
)
folder = uigetdir(pwd);

else
folder = uigetdir(app.LocationEditField.Value);

end

app.MomoPESPTesterUIFigure.Visible = 'on';
if(folder ~= 0)
app.LocationEditField.Value = folder;
app.WorkspaceLamp.Color = 'green';
updatelLog(app, 'Save directory is succesessfully changed');
end
end
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end
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Momo PE Sensor Plate Tester - Mbed code

#include
#include
#include

#define SERIAL_BAUD_RATE 921600
#define I2C_RATE 400000

DigitalOut valve(p23); // Pin to control the valve opening/closing
I2C SP(p28, p27); // Sensor Plate, SDA — SCL

I2C LC(p9, plO); // Load cell, SDA — SCL

Serial pc(USBTX, USBRX); // tx, rx

// ADC

Adafruit_ADS1015 piezo_electric_adc (&SP, 0x4B); // SP ADC 1

Adafruit_ADS1015 piezo_electric_adc2 (&SP, 0x4A); // SP ADC 2
Adafruit_ADS1015 loadcell_adc(&LC, 0x48); // LC ADC

adsGain_t pga_table[]= {GAIN_SIXTEEN,GAIN_EIGHT,GAIN_FOUR,GAIN_TWO,GAIN_ONE};
uint8_t scaleTable[] = {1, 2, 4, 8, 16};

// Sensor value and its scale factor index
int loadcellValue = 0;

int electricValue = 0;

uint8_t scaleFactor_LC = 1;

uint8_t scaleFactor_PE 1;

// Read Configuration

float sampleFrequency = 2500;
float duration = 0.0;

uint8_t channel_electric = 0;
uint8_t sensorNumber = 0;
uint8_t variableGain = 0;

// Valve Configuration
float valveFrequency = 1;
int nValveOpen = 1;
uint8_t loadcellPulse = 0;

// Variables for periodic tasks
Ticker s_PE; // Task for PE
Ticker s_LC; // Task for LC
Timer t;

bool ready = false;

// Test Variables
float tempTimer = 0;;

// Reads the ADC from the sensor
void getSingleElectric()
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// Invalid input
if (sensorNumber > 5) {
return;

}

// 6 PE sensors are split between 2 ADC’s, 3 PE sensors for each ADC
channel_electric = sensorNumber%3;

if (sensorNumber < 3) {

// It uses the first ADC

electricValue = piezo_electric_adc.readADC_Differential(channel electric)*scaleFactor_PE;
} else {

// It uses the second ADC

electricValue = piezo_electric_adc2.readADC_Differential(channel_electric)x*scaleFactor_PE;

}

// As long as the timer has not reached the duration, it will continue reading and writing data [PE]
void read_adc_PE()
{
if (t.read() > duration) {
t.stop();
ready = false;
s_PE.detach();
} else if(ready == true) {
// Get the current value in the ADC
getSingleElectric();

// Data is written through UART in ASCII
// Datastream starts with sign (+/—), then 5 data digits, then carriage return and new line
pc.printf("%s+.5d\r\n", electricValue);

}

// Reads the ADC from the load cell
void getLoadcellValue()
{
loadcellValue = loadcell_adc.readADC_Differential(0)x*scaleFactor_LC;
}

// As long as the timer has not reached the duration, it will continue reading and writing data [LC]
void read_adc_LC()
{
if (t.read() > duration) {
t.stop();
ready = false;
s_LC.detach();
} else if(ready == true) {
getLoadcellValue();

// Data is written through UART in ASCII
// Datastream starts with sign (+/—), then 5 data digits, then carriage return and new line
pc.printf("%s+.5d\r\n", loadcellValue);

}

// Basic open and closing the valve
// Opens and closes based on the valve frequency and amount of times it should open/close
void valve_open()

{
for(int i = 0; i<nValveOpen*2; i++) {
valve = lvalve;
wait(1l/(valveFrequencyx2));
}
}

// Basic open and closing the valve for load cell

// Should be a step function, the signal should be high till the end of the measurement
void loadcell_valve_open()

{
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120 valve = lvalve;
121 wait(duration—0.5);
122 valve = !valve;
123 |}
124
125 |// The main process
126 | int main()
127 | {
128 // Initializing settings
129 SP.frequency(I2C_RATE);
130 LC.frequency(I2C_RATE);
131 NVIC SetPriority(TIMER3_IRQn, 0); // Set ticker interrupt priorities as highest
132 pc.baud (SERIAL_BAUD_RATE) ;
133 valve = 1;
134
135 while (1) {
136 if(ready != true) {
137 // Waits for the MATLAB program to send the user configuration before reading out
138 pc.scanf( , &sampleFrequency, &sensorNumber, &duration, &variableGain, &
valveFrequency, &nValveOpen, &loadcellPulse);
139 sensorNumber = sensorNumber — 1; // Sensor values in MCU are from 0-6, [0-5: sensor plate, 6:
loadcell]
140
141 if(sensorNumber < 6) {
142 // Calls the function read_adc_PE (callback) periodicaly with interval provided as second
argument (in micro seconds)
143 s_PE.attach_us(&read_adc_PE, 1000000/sampleFrequency);
144
145 // Set the gain factor of the PGA
146 piezo_electric_adc.setGain(pga_table[variableGain]);
147 piezo_electric_adc2.setGain(pga_table[variableGain]);
148 scaleFactor_PE = scaleTable[variableGain];
149
150 // Parameters are read, and MCU is ready to operate
151 ready = true;
152 t.reset();
153 t.start();
154
155 // MCU already starts reading the values, but the valve will open after a delay of 1 sec (
arbitrary chosen)
156 wait(1);
157
158 // Starts opening/closing the valve
159 valve_open();
160 } else if(sensorNumber == 6) {
161 // Calls the function read_adc_LC (callback) periodicaly with interval
provided as second argument (in micro seconds)
162 s_LC.attach_us(&read_adc_LC, 1000000/sampleFrequency);
163
164 // Set the gain factor of the PGA
165 loadcell_adc.setGain(pga_table[variableGain])
166 scaleFactor_LC = scaleTable[variableGain];
167
168 // Parameters are read, and MCU is ready to operate
169 ready = true;
170 t.reset();
171 t.start();
172
173 // MCU already starts reading the values, but the valve will open after a delay of 1 sec (
arbitrary chosen)
174 wait(1);
175
176 // Based on the user settings, a pulse or a step is put on the load cell
177 if(loadcellPulse == 1){
178 valve_open();
179 } else {
180 loadcell_valve_open();
181 }
182 }
183 }
184 }




85

185

}




