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Quantitative Assessment of System Response during
Disruptions: An Application to Water Distribution Systems

Beatrice Cassottana1; Nazli Yonca Aydin2; and Loon Ching Tang3

Abstract: The resilience of water distribution systems (WDSs) has gained increasing attention in recent years. Various performance loss and
recovery behaviors have been observed for WDSs subject to disruptions. However, a model for their characterization, which could provide
further insight for resilience assessment and enhancement, is still lacking. Here, the authors develop a recovery function to model WDS
performance over time following a disruption. This function is useful to compare system responses under different disruption and recovery
scenarios and supports the identification of areas for improvement within various aspects of the resilience of a WDS. The proposed model was
applied to two benchmark networks. Different scenarios were analyzed in which one node at a time was disrupted and two recovery strategies
were implemented. It was found that the developed model supports the implementation of tailored strategies to improve WDS resilience
according to the location of the disruption, therefore enhancing the efficient allocation of resources. DOI: 10.1061/(ASCE)WR.1943-
5452.0001334. © 2021 American Society of Civil Engineers.

Introduction

The resilience of water distribution systems (WDSs) has gained in-
creasing attention in recent years, as the impact of climate change,
urbanization, cascading failures, and uncertainty due to the growing
interdependence among critical infrastructures has escalated to an
alarming level. Currently, a standard model for assessing WDS resil-
ience in various disruption and recovery scenarios is still lacking,
thus hampering its application to real case studies. In the literature,
resilience metrics for WDSs have been classified into two groups:
attribute-based and performance-based (Diao et al. 2016).

Attribute-based resilience metrics (also referred to as graph-
based resilience metrics) are defined using the tools of network
theory. Algebraic connectivity, clustering coefficient, average path
length, and other topological metrics have been used as proxies for
WDS resilience (Yazdani et al. 2011; Porse and Lund 2015; Meng
et al. 2018). Hybrid metrics also have been developed to simulta-
neously account for topology and hydraulic variables, where
weights were given to the nodes or the links of the graph (Herrera
et al. 2015; Yazdani and Jeffrey 2012). Although those metrics re-
present an effort to broaden the scope of topological metrics by
including hydraulic variables, they addressed resilience from a
structural perspective and ignored the complex dynamics governing
the behavior of WDSs.

Performance-based metrics have relied on the performance
observed in the output of hydraulic models, i.e., pressure inside
the system, satisfied demand, and water quality (Aydin 2018;

Cimellaro et al. 2015; Diao et al. 2016). Resilience was then quan-
tified in terms of performance loss (Amarasinghe et al. 2016), time
to recovery (Mabrouk et al. 2010; Khatavkar and Mays 2019), or
both (Mugume et al. 2015; Diao et al. 2016; Klise et al. 2017;
Butler et al. 2017). Additionally, Cimellaro et al. (2015) computed
the expected performance loss over time using the well-known
resilience triangle (Bruneau et al. 2003). Overall, performance-
based metrics provide a comprehensive evaluation of resilience
for WDSs, because these metrics result from the complex inter-
actions between structural and hydraulic variables, as modeled by
the simulation software. However, most metrics have quantified
system states only at certain points of time, typically at the time
of maximum performance loss and at the moment of recovery.
This did not enable comparison among systems presenting similar
performance loss and time to recovery, but which express different
behaviors.

In order to conduct comparative studies, recovery functions are
used to model the time-continuous system response during the
entire duration of a disruption, including periods of loss and resto-
ration of performance. Existing recovery functions were either de-
veloped according to some parametric and time-dependent models
or were empirically based on available data. In the former case,
different functional forms were assumed, and the parameters were
estimated through curve-fitting techniques, such as minimizing
the sum of squares. Exponential recovery functions were found
to fit well to the recovering performance of critical infrastructures,
including power (Chang 1998; Reed et al. 2010), transport (Comes
and Van de Walle 2014), and health care (Cimellaro et al. 2010)
systems. However, those functions ignored the performance loss
process. Therefore, in order to represent both performance loss
and recovery, Todman et al. (2016) developed a recovery function
in analogy with a mechanical spring damper system, while
Cassottana et al. (2019) proposed families of recovery functions
with parameters capable of representing key characteristics of re-
covery processes. Although these models have proven useful for
assessing and comparing resilience, they could only model fast
performance losses followed by relatively slower recoveries.
However, there is still a need for modeling various performance
loss and recovery behaviors, including slow performance losses
followed by relatively faster recoveries.
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With application to WDSs, those behaviors were simply repre-
sented using empirical data. Specifically, previous literature shows
that, for WDSs subject to certain types of disruptions, slow perfor-
mance losses and fast recoveries are observed. Brentan et al.
(2018), for example, observed slow pressure losses for a WDS sub-
ject to nodal leaks at certain locations. Tarani et al. (2019) found
that the loss of performance, measured in terms of demand defi-
ciency over time, was delayed with respect to the start of a flood
wave, and that it was quickly recovered following system restora-
tion. Similarly, Cimellaro et al. (2015) assumed a two-step response
for a WDS subject to pipe bursts, characterized by a delayed loss of
performance, i.e., number of households with water, and a sudden
recovery following complete restoration. Davis (2014) analyzed the
restoration of the Los Angeles WDS following the 1994 Northridge
earthquake. In that case, the water delivery service was quickly re-
stored to 80% of its target level soon after the end of the earthquake.
Finally, Meng et al. (2018) found strong correlation between failure
magnitude and recovery rate, possibly due to the fact that recovery
shortly followed pipe restoration. Overall, empirical evidence from
previous studies show that WDS behavior is determined by many
factors, such as the type of disruption and the monitored measure of
performance. Currently, these behaviors have been simply evalu-
ated using empirical data (Shen et al. 2020), and a model for their
characterization, which could provide further insight for resilience
assessment and enhancement, is still lacking.

This paper develops a new recovery function that is capable of
modeling various performance loss and recovery behaviors, includ-
ing slow/fast losses of performance followed by faster/slower re-
coveries, and whose parameters are capable of representing key
characteristics of recovery processes. The function developed is
therefore selected to model the behavior of a WDS subject to pipe
bursts, which is characterized by slow performance losses followed
by relatively faster recoveries. With further analysis of the function
parameters, groups of scenarios are identified, in which the system
exhibits similar response behaviors and which can be easily labeled
to support decisions to improveWDS resilience before and during a
disruption. To the best of the authors’ knowledge, this is the first
study to assess WDS resilience and corresponding recovery strat-
egies using recovery functions. We apply the developed model to
analyze the resilience of two benchmark networks, i.e., Net3 and
C-Town, and different disruption scenarios are simulated as water
leakages due to pipe bursts at different locations. We find that
the developed model supports the identification of characteristic

system behaviors as well as the development of tailored resilience
strategies to improve WDS performance, thereby enhancing the ef-
ficient allocation of resources.

Methods

Time-Continuous System Response

The time-continuous system response during a disruption is repre-
sented in Fig. 1. System response is determined by different var-
iables, including the external disruption process and the intrinsic
capabilities of the system (Shen et al. 2020). These include absorp-
tive capability (i.e., the ability to minimize the impacts of disrup-
tions), adaptive capability (i.e., the ability to self-organize for
recovery of performance), and recovery capability (i.e., the ability
of a system to be repaired) (Vugrin et al. 2011).

Initially, the system functions at its target performance (TP)
level and is perturbed by an external shock at time t ¼ 0. If the
system is able to adapt to the shock, the performance is maintained
within the robustness range and performance loss (or strain) is de-
layed until t ¼ Tstr, when the performance reaches the lower bound
of the robustness range (TP − η). Consequently, the system perfor-
mance drops until it reaches the minimum performance level
MOPmin at t ¼ tmin. The magnitude of the maximum incurred per-
formance loss (PL), which is equal to TP −MOPðtminÞ, depends
upon the severity of the disruption as well as the absorptive capabil-
ity of the system (Vugrin et al. 2011; Meng et al. 2018). However,
the time to strain (Tstr) and the rate of performance loss, i.e., the
amount of MOP lost per unit of time, are determined by the adap-
tive capability of the system, according to the concept of graceful
degradation (Woods 2015). When the effects of the recovery efforts
take place to reduce the consequences of the disruption, system
performance begins to recover and is eventually restored to the ini-
tial level TP at t ¼ Trec. Therefore, the recovery rate, i.e., the
amount of MOP restored per unit of time, and the time to recovery
(Trec) will be determined by the recovery capabilities of the system
(Vugrin et al. 2011). In a nutshell, the system response to a disrup-
tion depends upon the extent to which the system can absorb, adapt
to, and recover from it.

Moreover, the total performance lossΔ, which is the cumulative
performance loss over the entire duration of the disruption, has
been often used to provide a summary information of the overall

Fig. 1. Time-continuous system response during a disruption.
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system resilience (the lower the Δ, the higher the resilience of the
system) (Bruneau et al. 2003):

Δ ¼
Z

Trec

0

½TPðtÞ −MOPðtÞ�dt ð1Þ

Recovery Functions for Response Modeling

In order to model the time-continuous system response, we fit re-
covery functions to the measure of performance. A recovery func-
tion is a parametric function that maps t to MOP, i.e., MOPðtÞ∶
t ↦ MOP. Here, the beta family of recovery functions is developed
to model the time-continuous system response:

MOPðtÞ ¼

8><
>:

TP − a
ðbþ cÞbþc

bbcc

�
t
ν

�
b
�
1 − t

ν

�
c

if 0 ≤ t ≤ ν

TP otherwise

ð2Þ
where TP is the target performance level and a, b, c and ν are
parameters to be estimated, with 0 ≤ a ≤ 1 and b; c; ν ≥ 0. The ex-
pression of the recovery function in Eq. (2) is motivated by the need
to represent various recovery processes, which differ in terms of
maximum performance loss, rate of performance loss, rate of resto-
ration, and time to recovery. The term ðbþ cÞbþc=ðbbccÞ is a nor-
malization factor that enables a better physical interpretation of the
function parameters. Closed-form solutions exist for the maximum
performance loss, TP −MOPðtminÞ ¼ 1 − a, and for the time to
recovery, Trec ¼ ν.

Versatility of the Beta Family of Recovery Functions
The beta family of recovery functions in Eq. (2) is versatile in rep-
resenting different system responses. Various performance losses
can be modeled according to location parameter a, and different
rates of loss/restoration can be modeled according to shape param-
eters b, c and time scale parameter ν. In Fig. S1, the characteristic
behaviors of the beta family of recovery functions based on various
combinations of the parameters b and c are identified. Although
this family can only represent a return to the predisruption perfor-
mance level, it can model both symmetric and asymmetric recovery
processes, including fast performance losses followed by a rela-
tively slower recovery and slow performance losses followed by
a relatively faster recovery. Specifically, the case b ¼ c corresponds
to symmetric recovery processes, b > c corresponds to slow per-
formance losses followed by a relatively faster recovery, and b < c
corresponds to fast performance losses followed by a relatively
slower recovery.

Physical Interpretation of the Beta Family of Recovery
Functions
The physical interpretation of the function parameters helps to as-
sess the extent to which the system is able to absorb, adapt to, and
recover from a disruption. The parameters of the beta family char-
acterize performance and time quantities. The two effects are sep-
arated, with a characterizing performance quantities, and b, c and
ν characterizing time quantities. Location parameter a equals the
magnitude of the maximum incurred performance loss, as shown in
Fig. 2(a), which depends upon the severity of the adverse event and
the extent to which the system absorbs the disruption. Time scale
parameter ν equals the time to recovery, as shown in Fig. 2(b),
which depends upon the duration of the disruptive event and the
extent to which the system is able to timely recover. Shape param-
eters b and c determine the shape of the system behavior during
periods of performance loss and restoration.

Shape parameters are of utmost importance, because they con-
trol the performance rate and the convexity of the curve, which pro-
vide further insight for resilience assessment. Existing resilience
metrics quantify the average rates of performance loss and restora-
tion as the ratio of maximum performance loss to a certain time
quantity, i.e., PL=tmin or PL=Trec (Meng et al. 2018). However, rate
is a time-dependent variable, which is not easily captured using
empirical data alone (its value should be computed at each time
point). Shape parameters b and c solve this problem by character-
izing different shapes and providing summary information on how
the performance loss rate changes over time.

Specifically, parameter b characterizes the performance loss
behavior, as shown in Fig. 2(b): b ≤ 1 characterizes behaviors with
short time to strain and sudden loss of performance; b > 1 charac-
terizes behaviors with long time to strain and delayed loss of per-
formance. A long time to strain and a low performance loss rate
(b > 1) correspond to high-performing adaptive capabilities.

Parameter c characterizes the recovery behavior, as shown in
Fig. 2(c): c ≤ 1 characterizes behaviors with delayed recovery
and performance suddenly approaching TP later in time; c > 1
characterizes behaviors with timely recovery and performance ap-
proaching TP asymptotically. The earlier performance starts to re-
cover and approaches TP (c > 1), the earlier the system recovers its
functionalities. Therefore, high values of c correspond to enhanced
recovery capabilities.

Overall, the physical interpretation of the beta function brings
further insight into the resilience of the system by associating the
function parameters to different response behaviors, therefore sup-
porting the identification of areas for improvement within various
aspects of resilience.

Simulated Disruption and WDS Performance

Disruptions to the network are here simulated as pipe bursts. To
model a pipe burst, a sudden leakage flow is added to the demand
nodes (Brentan et al. 2018). In order to identify the critical nodes of
the network without relying on predisruption hypotheses related to
their locations, an n − 1 analysis is conducted: given a network
with n demand nodes, we consecutively disrupt the ith node, with
i ¼ 1; : : : ; n, and we study the behavior of the system relying on
the n − 1 remaining nodes. During the disruption, the nodal leak
demand (dleaki ) is proportional to the magnitude of the disruption,
i.e., the area of the hole (A), and the nodal pressure pi, as modeled
by Crowl and Louvar (2001):

dleaki ðtÞ ¼ CdA

ffiffiffiffiffiffiffiffiffiffiffiffi
2piðtÞ

ρ

s
ð3Þ

where Cd is the discharge coefficient assumed to be 0.75 (turbulent
flow), and ρ is the density of the water. As a consequence of the
additional flow due to the leak demand, the nodal pressure de-
creases, with a detrimental effect on the demand served (di), as
modeled by the pressure-demand relationship:

diðtÞ ¼

8>>>>><
>>>>>:

0 piðtÞ ≤ P0

DiðtÞ
�
piðtÞ − P0

Pf − P0

�
0.5

P0 ≤ piðtÞ ≤ Pf

DiðtÞ piðtÞ ≥ Pf

ð4Þ

where Di is the desired demand at node i (m3=s), Pf is the nominal
pressure assumed to be 20 m, and P0 is the lower pressure threshold
assumed to be 0 m, below which the consumer cannot receive any
water. Because the WDS is designed to operate at a pressure greater
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than or equal to the nominal pressure Pf, according to Eq. (4) in
normal conditions the served demand equals the desired demand.
However, if a disruption occurs, then part of the desired demand
might remain unsatisfied not only at the disrupted node, but
also at the nodes connected to it, which might also suffer pressure
losses to compensate for the additional flow. Therefore, the time-
dependent demand served di is a direct consequence of the intrinsic
capacities of the WDS in terms of pressure built up and damage
sustained (pressure loss) (Shen et al. 2020). Accordingly, here
the average satisfied demand is used as a proxy for the demand
delivery service to monitor the overall system performance when
node i is disrupted:

MOPðiÞd ðtÞ ¼ 1

n

Xn
i¼1

diðtÞ
DiðtÞ

ð5Þ

Note that in Eq. (5), i is used as superscript to denote the overall
system performance following the disruption of node i and as a
subscript to denote the demand of each node i; i ¼ 1; : : : ; n in
the network. Because by design the served demand equals the

desired demand in normal conditions, TP equals 1. In order to com-
pute performance under different disruption scenarios, pressure-
dependent demand hydraulic simulations are run using the Water
Network Tool for Resilience (WNTR) (Klise et al. 2017) imple-
mented in Python 3.7.

Recovery Function Selection

For WDSs subject to individual component failures, i.e., water
leakages, relatively slower losses in the demand delivery service
followed by sudden recoveries are observed. Other disruptions,
such as multiple pipe failures, would result in a sudden loss of per-
formance and could be modeled using the recovery functions de-
veloped in Cassottana et al. (2019) as discussed in the Introduction.
During water leakages, however, WDSs can still meet a certain
level of water demand thanks to their distributed water tanks
and stand-by pumping capacity (Diao et al. 2016). Valves can also
be installed to isolate failed components, in order to prevent cas-
cading failures in the network (Cimellaro et al. 2015). The more
redundancies and buffer capacity the WDS has, the more it can

Fig. 2. Effect of parameter (a) a; (b) ν; (c) b; and (d) c on the beta family of recovery functions.
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adapt to a disruption, resulting in delayed losses of service. Follow-
ing losses, the full service is restored at the time instant following
the end of the disruption. In fact, no lags are observed between the
restoration of the disrupted component and the recovery of the
entire system.

While existing recovery functions only model fast losses of
performance followed by slower recoveries, the beta family of re-
covery functions is versatile in representing slow/fast losses of per-
formance followed by faster/slower recoveries, and it is therefore
employed in this study. Specifically, the case of slow performance
losses followed by a faster recovery is characterized by the param-
eters relationship b > c. Because recovery to TP occurs suddenly
and late in time, the shape of the recovery behavior is characterized
by c ≤ 1. Therefore, the two characteristic behaviors that will be
observed in this study correspond to (1) b; c ≤ 1; with b > c and
(2) b > 1; c ≤ 1. Behavior (2) corresponds to higher adaptive capa-
bilities (b > 1), since performance loss is delayed in time, and it is
therefore preferred to enhance system resilience.

Because recovery to TP immediately follows the end of the
disruption, Trec is known in advance according to the simulated
disruption duration. As a result, the restoration rate is linearly cor-
related with the maximum performance loss (Meng et al. 2018).
In view of the above considerations, the parameter of the beta fam-
ily ν is set to ν ¼ Trec. The recovery capabilities of the system are
therefore not analyzed further, since they are fully determined by
the simulation inputs.

Node Clustering

The parameters a and b of the beta recovery function characterize
the extent to which the WDS is able to absorb and adapt to a
water leakage (since the recovery capabilities are fixed given the
simulation inputs, parameters c and ν are not considered for the
analysis). In order to prioritize the efforts in recovery, we select
q nodes, which are the most critical based on the total performance
loss in Eq. (1). We then characterize the ith node based on the
system response following its disruption as modeled by the beta
recovery function, i.e., based on the estimated parameters ai and bi,
with i ¼ 1; : : : ; q. We cluster the q nodes using the well-known
k-means algorithm. Given the set of estimated parameters
fða1; b1Þ; : : : ; ðaq; bqÞg, the algorithm aims at partitioning the q
nodes into K < q clusters fC1; : : : ;CKg by minimizing the sum
of the squared distances:

min
fC1; : : : ;CKg

XK
k¼1

X
i∈Ck

ðai − ak; bi − bkÞ2 ð6Þ

where (ak; bk) is the average position of cluster k, i.e., centroid:

ðak; bkÞ ¼
�

1

jCkj
X
i∈Ck

ai;
1

jCkj
X
i∈Ck

bi

�
ð7Þ

The resulting clusters fC1; : : : ;CKg denote groups of nodes
whose disruption results in a similar response behavior and could
therefore be used by system operators to create tailored emergency
plans and guide investment to improve resilience.

When deciding on the number of clusters K, a trade-off exists
between the accuracy with which the clusters represent the nodes
and the amount of resources that can be effectively managed and
deployed to address the disruptions in each clusters. While a higher
number of clusters accurately represents the nodes, a lower number
of clusters can be effectively labeled and used to develop tailored
resilience strategies (Brentan et al. 2018). Ultimately, the system
operators will decide on the optimal number of clusters based

on the results of the clustering algorithm and on the available re-
sources. Here, in order to evaluate the performance of the clustering
algorithm, the sum of the squared distances of the nodes to their
assigned centroid (intra-distance criterion) is plotted against in-
creasing values of K and the optimal number of clusters is selected
according to the so-called elbow of the curve. The elbow of the
curve is the value after which improvements in the objective func-
tion become smaller. Other indices could be used to evaluate the
performance of the clustering algorithm, e.g., the Calinski-Harabaz
index used by Brentan et al. (2018), which increases with the dis-
tance among clusters (interdistance criterion) and decreases with
the sum of the squared distances. However, since overlaps among
clusters increase WDS resilience, here we only use the intradistance
criterion.

Case Studies

Benchmark WDSs and Disruption Scenarios

Two benchmark WDSs were analyzed in this study, Net3 and
C-Town. Net3 is relatively smaller, with 97 nodes and 119 links,
compared to C-Town, with 396 nodes and 444 links. Net3 has two
reservoirs, one of which operates only part of the day, and three
water tanks with a total capacity of 28,633 m3, which serve an aver-
age daily demand of 62,576 m3. C-Town has one reservoir and
seven water tanks with a total capacity of 9,501 m3, which are op-
erated through 11 water pumps and serve an average daily demand
of 15,452 m3. While Net3 represents a large-scale WDS at a low
resolution, C-Town represents a WDS at a local scale and high res-
olution. This is also evident in the network topology metrics
[see Yazdani et al. (2011) for a definition of average path length
and clustering coefficient]. The high average path length (lT) of
Net3 (lT ¼ 2.45) reveals long routes for traversing this network
(i.e., large scale), whereas C-Town is characterized by short routes
(lT ¼ 0.13). Moreover, the clustering coefficient (cc) suggests that
C-Town is less connected than Net3 (cc ¼ 0.03 and 0.04, respec-
tively), showing a more distributed and localized distribution.

The disruptions were assumed to start at the time of the peak
demand and to last 24 h. This assumption was aligned with pre-
vious literature, which assumed a time to recovery of 1–2 days,
and was justified by the fact that major water leakages are typically
easily detected few hours after their occurrence (Cimellaro et al.
2010; Klise et al. 2017). The 24-h period allowed analysis of
WDS resilience on different demand periods based on the daily
demand pattern. Additionally, it was assumed that repairs to leaking
components were conducted without interrupting service. In prac-
tice, this could be achieved through local isolation, if this is pos-
sible without disrupting the entire network, or using hot tapping
and welding (McReynolds and Peng 2012; Herckis 2018). For
the two networks, the magnitude of the disruption A was set to
0.06 m2 for Net3 and to 0.02 m2 for C-Town. These values pro-
duced similar performance losses for the two networks after nor-
malizing the leak demand based on their respective average water
demand. For each network, an n − 1 analysis was conducted,
where one node at a time was disrupted, with t0, Trec, and A fixed.
The n − 1 analysis produced a total of n scenarios for each net-
work, which differed according to the location of the disruption.

In order to validate the robustness of the results, a design of
experiment was conducted for Net3 in which t0;Trec;A and the lo-
cation of the disruption varied (see Table S1). The analysis of the
variance showed that the disruption location was the only disrup-
tion variable that had a significant effect on all parameters a, b, and
c (see Fig. S3; Table S2). We concluded that the behavior of a WDS
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subject to a water leakage, as described by the beta recovery func-
tion, was mostly dependent on the location of the disruption, which
therefore had the highest discriminatory power for node clustering.

Recovery Function Fitting and Node Clustering

In order to individualize the most critical nodes and prioritize the
efforts in allocating recovery resources, the total performance loss
under the disruption of node i was computed by substituting MOP
in Eq. (1) with MOPðiÞd :

ΔðiÞ ¼
Z

Trec

0

�
1 − 1

n

Xn
i¼1

diðtÞ
DiðtÞ

�
dt ð8Þ

Based on Eq. (8), the q most critical nodes were identified
as those associated with total performance losses in the upper
quartile, i.e., fi∶ΔðiÞ ≥ Q3g, where Q3 was the upper quartile of
fΔð1Þ; : : : ;ΔðnÞg.

In order to study the behavior of the system following a disrup-
tion, the beta recovery function in Eq. (2) was fitted to the average
satisfied demand MOPðiÞd simulated under the disruption of node i
by minimizing the residual sum of squares:

min
a;b;c

X
t

�
MOPðiÞd ðtÞ−

�
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ðbþcÞbþc

bbcc

�
t

TðiÞ
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�
b
�
1− t

TðiÞ
rec

�
c
��

2

ð9aÞ

s:t: 0 ≤ a ≤ 1; b; c ≥ 0 ð9bÞ
where t was the time of observation and TðiÞ

rec was the time to re-
covery observed when node i was disrupted. We used the limited-
memory Broyden-Fletcher-Goldfarb-Shanno algorithm with bound
constraints (L-BFGS-B) to solve the optimization problem. The
goodness of fit was assessed by the R2. By solving the problem
in Eq. (9) for the performance MOPðiÞd simulated under the disrup-
tion of each node, a set of parameters (ai; bi; ci) could be associated
to each critical node i; i ¼ 1; : : : ; q.

The set of the estimated parameters fða1; b1Þ; : : : ; ðaq; bqÞg
was normalized and used as features for clustering the most critical
nodes. The resulting classification represented clusters of nodes
fC1; : : : ;CKg whose disruptions caused similar WDS behaviors,
according to the extent to which the system could absorb and adapt
to their disruption.

Results and Discussion

Evaluation of the Fit of the Beta Model

Figs. 3(a and e) show the distribution of the R2 statistic computed in
the qmost critical scenarios for Net3 and C-Town, respectively. The
beta model shows a better fit for the responses related to Net3 than
to C-Town. The goodness of fit improves in cases of severe perfor-
mance losses (high a), due to the fact that the variance of the ob-
served performance increases with the amount of performance lost.
In fact, not only does the R2 statistic penalizes low total variation,
but the beta model is also best suited to represent severe disrup-
tions, for which the variance of the observed performance is high.
Specifically, the outliers for the case of C-Town are associated with
responses characterized by a delayed but limited loss of perfor-
mance. In these cases, the beta recovery function underestimates
the observed MOP in the early stage of the disruption, but helps
nevertheless to model the subsequent performance loss and recov-
ery behavior.

The values ai, bi, and ΔðiÞ associated with the critical scenario
in which node i is disrupted, with i ¼ 1; : : : ; q, are shown in
Figs. 3(b–d and f–h) for Net3 and C-Town, respectively. Interest-
ingly, the nodes connecting the main water source to the rest of the
network are not critical, because their demand is low and the water
supply provided by the nearby water source and pumps helps to
compensate for water loss.

The figures suggest some common response behaviors among
the disruptions at the nodes. Specifically, some degree of correla-
tion is observed between the parameters. Overall, high values of a,
which characterize low absorptive capability, correspond to high
values of b, which characterize high adaptive capability, suggesting
a trade-off between different resilience objectives.

In order to further explore these relationships, the critical nodes
are plotted in the parameter space, as shown in Figs. 4(a and e) for
Net3 and C-Town, respectively. Net3 is characterized by higher a
and b values than C-Town. The higher adaptive capability (higher
b) displayed by Net3 might be due to its higher reserve capacity to
average demand ratio. Conversely, the lower adaptive capability
(lower b) displayed by C-Town shows that the distributed water
tanks do not help to compensate for the water lost during disrupted
conditions. The lower absorptive capabilities (higher a) displayed
by Net3 could be related to its lower level of detail (Net3 is a large-
scale WDS at a low resolution, while C-Town is a small-scale WDS
at a high resolution). In fact, while the effects of a disruption in
C-Town are limited to the end-customer demand, a failure of a com-
ponent of Net3 may compromise the entire supply path (Diao et al.
2014) and consequently limit the effectiveness of recovery efforts.

Given these comparisons, the results show that a WDS can
be more resilient than another with respect to one resilience objec-
tive, i.e., adaptive capability, and less resilient with respect to an-
other, i.e., absorptive capability. Furthermore, the proposed n − 1
analysis supports the study of the distribution of the resilience capa-
bilities at a network component level. In both networks, high Δ
values are associated with nodes characterized by either high a val-
ues or low b values, suggesting that severe total performance losses
are due to the demand delivery service either dropping to critically
low levels at some point of time, or suddenly dropping to the mini-
mum level shortly after the start of the disruption.

Classification of Demand Nodes

In order to validate these observations, the critical nodes are clus-
tered according to their associated parameters a and b. The results
are reported in Figs. 4(b, c, f, and g) for Net3 and C-Town, respec-
tively. In the case of Net3, two clusters are enough to represent the
nodes, as shown by the elbow of the sum of the squared distances of
the nodes to their assigned centroid in Fig. 4(b). The two clusters
differ in terms of PL, Tstr and performance loss rate, as indicated by
the parameters a and b, respectively. Therefore one cluster, labeled
delayed-but-severe, represents nodes associated with high PL and
long Tstr. The other cluster, labeled sudden-but-limited, represents
nodes associated with short Tstr but limited PL.

In the case of C-Town, three clusters are used to represent the
nodes. In fact, while the higher number of nodes of C-Town is re-
flected in a higher sum of the squared distances compared to Net3,
the higher complexity and the diversified demand that characterize
this network (Pagano et al. 2019) result in mainly three types of
response behaviors. Therefore, in addition to the cluster labels iden-
tified for Net3, a third cluster, labeled delayed-and-limited, repre-
sents nodes associated with long Tstr and limited PL.

Figs. 4(d and h) show the topologies of Net3 and C-Town, re-
spectively, where the nodes are colored according to their clusters.
Previous studies partition water networks based on topological
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information (Perelman and Ostfeld 2011; Diao et al. 2014; Di
Nardo et al. 2018) or based on hydraulic behavior (Brentan
et al. 2018), without reporting the results on the network topology.
In contrast, in this paper the explanation of the results and the new
findings are supported by two hybrid metrics, namely the connec-
tivity to the source index (Herrera et al. 2015) and the demand
adjusted entropic degree (Yazdani and Jeffrey 2012), which were
computed for each node in the network (see Fig. S4). The connec-
tivity to source index is inversely proportional to the energy loss
associated with the supply of a node, and it is therefore a measure
of its ease of supply. The demand adjusted entropic degree is pro-
portional to the flow passing through a node, and it is therefore
a measure of its criticality in satisfying the water demand of the
connected nodes.

In both networks, the nodes labeled delayed-but-severe are
located along the main path, connecting the primary water source
to the demand nodes and consisting of pipes with large diameters
(thick edges in the figures). In these cases, the high adaptive capa-
bility (long Tstr) displayed by the WDSs suggests that the nominal
demand delivery service can still be guaranteed thanks to the con-
tinuous water flow supplied by the water source. These nodes are in
fact characterized by high connectivity to the source values, indi-
cating that their ease of supply ensures their reliable operations.
Accordingly, Wang and Au (2009) found that these nodes are the
most reliable, since the chance of a disruption occurring on the path
connecting them to the water source is relatively low. However,

differing from other studies that simulated short disruptions (Diao
et al. 2014; Meng et al. 2018), we find that the absorptive capability
of the WDS associated with prolonged disruptions of these nodes is
relatively low, since the depletion of the supply capacity of the
water source leads to sudden drops of the demand delivery service
until the point of reaching critically low levels. Accordingly,
Herrera et al. (2015) showed that, for the case of C-Town, these
nodes are dependent on the water reservoir, since there are no
tanks in their proximity. The amount of performance loss is there-
fore proportional to the high flow passing though these nodes, as
shown by their high demand adjusted entropic degree.

Conversely, the nodes labeled sudden-but-limited are located
further away from the primary water source, but are critical to sup-
plying water to peripheral nodes. In these cases, the low adaptive
capability (short Tstr) displayed by the WDSs suggests that the de-
mand delivery service drops immediately following their disrup-
tion, since the peripheral nodes remain without supply of water.
However, the loss of service is limited to the demand of the periph-
eral nodes, resulting in small PL.

For the case of Net3, nodes labeled sudden-but-limited are not
identifiable through topology-based or hybrid metrics, as shown by
the low values of the connectivity to the source index and demand
adjusted entropic degree. The difficulty of supply associated with
these nodes (low connectivity to the source index), which are fur-
ther from the water sources and the water tanks, causes a sudden
drop in performance following their disruption.

Fig. 3. Box plot of the goodness of fit statistic (R2) for (a) Net3; and (e) C-Town. Topology of (b–d) Net3; and (f–h) C-Town, where each node is
colored according to the estimated parameters a and b, and the total performance loss Δ.
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For the case of C-Town, nodes labeled sudden-but-limited parti-
ally overlap with nodes characterized by a relatively higher connec-
tivity to the source index and demand adjusted entropic degree. A
possible explanation for the sudden-but-limited behavior observed
following their disruption might be found in the insufficient reserve
capacity provided by the distributed water tanks. In fact, while the
distributed water tanks are designed to meet the demand for water
during normal operating conditions, their capacity might be inad-
equate to meet demand in the face of unexpected disruptions.

Hence, the proposed performance-based resilience assessment,
although associated with a higher computational cost for solving
the n hydraulic simulations, has proven effective in identifying dis-
ruptions scenarios with unusual recovery behaviors, i.e., slow per-
formance losses followed by a sudden recovery, which could not be
identified by topology-based metrics. These scenarios involve sig-
nificant cumulative losses and therefore represent a fundamental
lever to improve the resilience of a system.

Finally, for the case of C-Town, the nodes labeled delayed-and-
limited include nodes with lower Tstr and PL values, and for this
reason characterized by lower Δ values. The response behavior of
the WDS following their disruptions shares similarities with the

cluster labeled delayed-but-severe, and strategies aimed at enhanc-
ing its resilience are expected to be effective also in this case.

Resilience Strategies

Node labels suggest areas for the improvement of the resilience of
WDSs. For example, based on the expected time to strain Tstr and
the subsequent performance loss PL in the two clusters, system
managers may prioritize and schedule repair sooner or later accord-
ing to the criticality of the disrupted node. Strategies aimed at im-
proving the absorptive capability of the WDS are to be put in place
to address disruptions at the nodes labeled delayed-but-severe in
order to limit performance loss. Conversely, strategies aimed at im-
proving the adaptive capability of the WDS are to be put in place to
address disruptions at the nodes labeled sudden-but-limited in order
to delay the time to strain.

In the literature, various strategies were proposed to enhance
WDS resilience, including increasing pipe diameter (Klise et al.
2017), pumping capacity (Chang and Shinozuka 2004; Cimellaro
et al. 2015; Diao et al. 2016), and reserve capacity (Mugume et al.
2015). While optimization models were developed to find the best

Fig. 4. Results for (a–d) Net3; and (e–h) C-Town. (a and e) Scatter plot displaying the nodes in the parameter space a and b. The size and the color of
each node are proportional to the relative performance loss Δ. (b and f) Performance of the k-means algorithm. (c and g) Scatter plot displaying the
nodes in the parameter space a and b. The size of each node is proportional to the relative performance loss Δ. The nodes causing the greatest
performance losses (Δ ≥ Q3) are colored according to their cluster. (d and h) Network topology where the nodes causing the greatest performance
losses are colored according to their clusters. The thickness of the edges is proportional to the pipe diameter {diameter in [0.20 m, 2.51 m] (d) and in
[0.05 m, 0.61 m] (h)}.
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strategies to improve system resilience under different disruption
scenarios (Todini 2000; Jayaram and Srinivasan 2008; Creaco et al.
2016), the focus of this paper is to show how the proposed resil-
ience assessment and n − 1 analysis can inform the development
of tailored strategies for improving distinct resilience objectives,
i.e., absorptive and adaptive capabilities, under different disruption
scenarios, i.e., disruption location.

For this purpose, the following two strategies are considered
here: (1) using the maximum available flow from the water sources
and (2) using the maximum available flow from the (increased-
capacity) water tanks. For both networks, Strategy 1 is achieved by
activating the pumps that operate the water sources during the en-
tire duration of the disruption. For Net3, Strategy 2 is achieved by
setting the minimum tank level, under which the tank stops the
water supply, to zero. For C-Town, since the minimum tank level
is zero in nominal conditions, Strategy 2 is achieved by increasing
the diameter of the tanks by 20% and then activating the relative
pumps during the entire duration of the disruption. The effects of
the two resilience strategies are shown in Figs. 5 and 6 for the two

networks. The values and associated statistics of the estimated pa-
rameters for the recovery functions fitted to the mean MOPd under
the different scenarios are reported in Tables 1 and 2. The esti-
mated parameters are representative of the average behavior of
the WDS according to the node cluster and implemented strategy
and are therefore used for comparing the different scenarios.

For both networks, using the maximum flow from the water
sources improves the absorptive capability, and it is therefore
mostly beneficial when disruptions occur at the nodes labeled
delayed-but-severe [Figs. 5(a) and 6(a)] or delayed-and-limited
[Fig. 6(b)]. This is shown by the reduced values of the location
parameter a, which characterizes absorptive capability, and the con-
sequent reduction of the total performance lossΔ, which has maxi-
mum improvement for the nodes labeled delayed-but-severe (and
delayed-and-limited) when this strategy is used (see values denoted
with a and b in Tables 1 and 2).

Conversely, using the maximum flow from the water tanks im-
proves the adaptive capability, and it is therefore mostly beneficial
when disruptions occur at the nodes labeled sudden-but-limited

Fig. 5. Recovery strategies implemented on Net3: (a and b) response curve of the WDS when the maximum flow from the water sources is used and
the nodes labeled delayed-but-severe (a) and sudden-but-limited (b) are disrupted. (c and d) Response curve of the WDS when the maximum flow
from the water tanks is used and the nodes labeled delayed-but-severe (c) and sudden-but-limited (d) are disrupted.
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Fig. 6. Recovery strategies implemented on C-Town: (a–c) response curve of the WDS when the maximum flow from the water sources is used and
the nodes labeled delayed-but-severe (a), delayed-and-limited (b), and sudden-but-limited (c) are disrupted; and (d–f) response curve of the WDS
when the maximum flow from the water tanks is used and the nodes labeled delayed-but-severe (d), delayed-and-limited (e), and sudden-but-limited
(f) are disrupted.

Table 2. Resilience assessment for C-Town

Parameter Delayed-but-severe Delayed-and-limited Sudden-but-limited

Base-case scenario
a 0.24 0.14 0.14
b 0.66 0.73 0.49
c 0.19 0.20 0.15
R2 0.90 0.90 0.83
Δ 4.42 2.47 2.88

Use max flow from water sources
a 0.16a 0.08a 0.12
b 0.71 0.93 0.20
c 0.20 0.21 0.09
R2 0.88 0.95 0.94
Δ 2.86b 1.32b 2.66

Use max flow from (increased-capacity) water tanks
a 0.21 0.13 0.12
b 0.80c 1.13c 0.28c

c 0.22 0.30 0.09
R2 0.88 0.94 0.93
Δ 3.69 2.10 2.62b

aDenotes best improvement in parameter a.
bDenotes best improvement in Δ.
cDenotes best improvement in parameter b.

Table 1. Resilience assessment for Net3

Parameter Delayed-but-severe Sudden-but-limited

Base-case scenario
a 0.46 0.21
b 2.58 0.27
c 0.37 0.10
R2 0.96 0.86
Δ 5.00 4.52

Use max flow from water source
a 0.22a 0.21
b 1.43 0.27
c 0.16 0.12
R2 0.92 0.86
Δ 2.88b 4.45b

Use max flow from water tanks
a 0.46 0.21
b 2.92c 0.28c

c 0.38 0.10
R2 0.96 0.88
Δ 4.60 4.50
aDenotes best improvement in parameter a.
bDenotes best improvement in Δ.
cDenotes best improvement in parameter b.
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[Figs. 5(d) and 6(f)]. This is shown by the increased values of the
shape parameter b, which characterizes adaptive capability, and the
consequent reduction of the total performance loss Δ, which, for
the case of C-Town, has maximum improvement for the nodes
labeled sudden-but-limited when this strategy is used (see values
denoted with c and b in Table 2). For the case of Net3, while this
strategy does not result in the maximum improvement of the aver-
age Δ, it is nevertheless most beneficial in reducing losses under
some disruption scenarios, as shown by the upper range of MOPd in
Fig. 5(f).

Conclusions and Future Research

In this paper, we developed a model to quantify the time-
continuous system response during the entire duration of a disrup-
tion, including periods of loss and restoration of performance.
Specifically, a recovery function was formulated ad hoc to model
the water delivery service of a WDS subject to water leakages,
i.e., the beta family of recovery functions, which can fit scenarios
of slow loss of performance followed by a sudden recovery, and
whose parameters can be used to characterize the absorptive, adap-
tive, and recovery capabilities of a WDS.

Compared to other metrics that quantified WDS resilience based
on the performance observed at specific points of time, recovery
functions enable comparison amongst responses linked with vari-
ous disruptions and system configurations, since the function
parameters are associated with key resilience properties. Moreover,
different from existing recovery functions that could only model a
limited number of response behaviors, the proposed function is
suited for modeling system responses characterized by slow perfor-
mance losses followed by a relatively faster recovery. The model
was applied to two benchmark networks, Net3 and C-Town, which
differed in terms of scale and level of detail. The results showed that
the proposed recovery function well fits the performance of WDSs
under simulated disruptions, and that the estimated parameters sug-
gested clusters of nodes with similar criticality, to be addressed by
tailored resilience strategies. We therefore proposed two strategies:
maximization of the available flow from the water sources/tanks,
aimed at improving the absorptive and adaptive capability of the
WDS when disruptions occurred in the identified clusters.

Although the proposed strategies have proven useful for im-
proving the average satisfied demand when disruptions occurred
in different clusters, they present some practical limitations. For
example, by increasing water flow, the pressure inside the system
might also increase, leading to potential water losses. In future
research, other system performances should also be considered
and resilience strategies evaluated based on their associated costs
and feasibility. Furthermore, we assumed that repairs to leaking
components were conducted without interrupting service, which
might not always be possible. Therefore, in future research, other
repair techniques that consider valve closure should also be
performed.

Correlation with existing topology-based metrics showed that
the proposed resilience assessment is effective in identifying
disruptions scenarios with unusual recovery behaviors, i.e., slow
performance loss followed by a sudden recovery, which would
have not been detected using existing hybrid metrics. These re-
sults are essential for designing resilient WDSs by addressing
system criticality with effective strategies. Moreover, resources
can be efficiently allocated by developing tailored resilience strat-
egies according to the disruption location. The methodology pre-
sented in this paper is general and can be applied to different water
networks.

In future research, the proposed model will be used to assess the
resilience of various WDSs with different topologies and attributes
(e.g., node elevation, node demand, etc.). By systematically vary-
ing these variables and assessing resilience, the results presented
here could be generalized and the key factors enabling resilience
identified. For example, different scenarios will be built by using
basic topologies in order to detect the effects of topology on system
resilience. This analysis will inform the development of resilience
strategies to enhance the absorptive, adaptive, and recovery capa-
bilities of systems based on topology and unique attributes. Redun-
dant links and buffer reserve or supply capacity, for example, could
help a WDS to absorb and adapt to disruptions. Effective emer-
gency routines, such as disconnecting failed components through
the use of isolation valves, could prevent cascading failures during
disruptions and accelerate recovery (Zhang et al. 2020). Therefore,
the methodology proposed here could be used to set general guide-
lines and support decisions to improve resilience.
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