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Chapter 6 
Using Self-modeling Networks to Model 
Organisational Learning 

Gülay Canbaloğlu, Jan Treur, and Peter H. M. P. Roelofsma 

Abstract Within organisational learning literature, mental models are considered 
a vehicle for both individual learning and organisational learning. By learning indi-
vidual mental models (and making them explicit), a basis for formation of shared 
mental models for the level of the organisation is created, which after its formation 
can then be adopted by individuals. This provides mechanisms for organisational 
learning. These mechanisms have been used as a basis for an adaptive computational 
network model. The model is illustrated by a not too complex but realistic case study. 

Keywords Adaptive computational network model · Mental models ·
Organisational learning mechanisms 

6.1 Introduction 

Learning is an essential part of survival and has been a topic intensively studied. 
Organisational learning is a dynamic, multilevel and non-linear type of learning 
both involving individuals and independent of individuals. It is dynamic because it 
involves people, it is multilevel because the learning of organisation is different than 
all the individuals in the organisation, and it is non-linear because it has feedback 
mechanisms which provide individuals to learn from organisation. The concept of 
organisational learning has been addressed, for example, in (Argyris 1978; Bogen-
rieder 2002; Crossan 1999; Fischhof 1997; Kim  1993; McShane 2010; Stelmaszczyk
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G. Canbaloğlu et al. (eds.), Computational Modeling of Multilevel Organisational 
Learning and Its Control Using Self-modeling Network Models, Studies in Systems, 
Decision and Control 468, https://doi.org/10.1007/978-3-031-28735-0_6 

93

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-28735-0_6&domain=pdf
mailto:gulaycnbl@gmail.com
mailto:j.treur@vu.nl
mailto:proelofsma@yahoo.co.uk
https://doi.org/10.1007/978-3-031-28735-0_6


94 G. Canbaloğlu et al.

2016;Wiewiora  2019). Until recently the extensive literature on the concept of organ-
isational learning had some deficiencies when it comes to computational models for 
it. However, in recent years a more detailed computational formalization of a clearly 
defined organisational learning process from beginning to end was developed. The 
study described in the current chapter, was the first in which a self-modeling network 
perspective was used to model the different processes and phases of organisational 
learning. 

The transitions between individual and organisational learning are key points 
of understanding and directing the learning process of organisations (Kim 1993). 
Without any doubt, one of the most influential papers on organisational learning is 
(Kim 1993) with an impressive number of around 5000 citations in Google Scholar in 
2022. The following quote illustrates in a summarized form the perspective sketched 
by Kim (1993): 

Organisational learning is dependent on individuals improving their mental models; making 
those mental models explicit is crucial to developing new shared mental models. This process 
allows organisational learning to be independent of any specific individual. Why put so much 
emphasis on mental models? Because the mental models in individuals’ heads are where a 
vast majority of an organisation’s knowledge (both know-how and know-why) lies. (Kim 
1993), p. 44 

According to Kim, although there is a huge amount of previous research on 
learning, we are not able to fully understand the process itself (Kim 1993). There-
fore, to comprehend and manage the formation of the common unified mental poten-
tial of a group, we need to work on organisational learning and its processes and 
phases. Computational odelling of organisational learning provides a more observ-
able formalization of development steps of unified shared mental models. To this end, 
the network-oriented modeling approach based on self-modeling networks intro-
duced in (Treur 2020a, b) that will be explained in detail in Sect. 6.3 was used in this 
current chapter. This modeling approach is at least as general as any other adaptive 
dynamical system modeling approach, as in (Hendrikse, Treur, Koole, 2023) it has 
been proven that any smooth adaptive dynamical system has a canonical represen-
tation as a self-modeling network. The paper by Kim (1993) was used as a point of 
departure and main source of inspiration for this chapter. 

First, Sect. 6.2 presents how and in what aspects literature provides ideas on 
mental models and their role in organisational learning. Then, Sect. 6.3 explains 
the characteristics and details of adaptive self-modeling network models and how 
they can be used to model the different processes concerning dynamics, adaptation 
and control of mental models. In Sect. 6.4 the controlled adaptive network model 
for organisational learning is introduced. Then in Sect. 6.5, an example simulation 
scenario is explained in detail. In Sect. 6.6 equilibrium analysis of the introduced 
adaptive network model is provided. Section 6.7 is a Discussion section. Lastly, 
Sect. 6.8 is an appendix with a full specification of the model.
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6.2 Background Literature 

The topic addressed in this chapter involves a number of concepts and processes such 
as individual mental models and shared mental models, and how they are handled in 
order to obtain organisational learning. In this section, some of the multidisciplinary 
literature about these concepts and processes is briefly discussed. This provides 
a basis for the design choices made for the adaptive network model that will be 
presented in Sect. 6.4 and accordingly for the scientific justification of the model 
based on this multidisciplinary literature. 

6.2.1 Mental Models 

For the history of the mental model area, often Kenneth Craik is mentioned as a central 
person. In his book (Craik 1943), he describes a mental model as a small-scale model 
that is carried by an organism within its head as follows; see also (Williams 2018): 

If the organism carries a “small-scale model” of external reality and of its own possible 
actions within its head, it is able to try out various alternatives, conclude which is the best 
of them, react to future situations before they arise, utilize the knowledge of past events in 
dealing with the present and future, and in every way to react in a much fuller, safer, and 
more competent manner to the emergencies which face it. (Craik 1943, p. 61) 

Note that this quote covers both the usage of a mental model based on so-
called internal mental simulation (‘try out various alternatives’) and the learning 
of it (‘utilize the knowledge of past events’). Moreover, it also indicates how this 
contributes to safety when facing emergencies. 

Other authors also have formulated what mental models are. For example, with 
an emphasis on causal relations, Shih and Alessi (1993, p. 157) explain that. 

By a mental model we mean a person’s understanding of the environment. It can represent 
different states of the problem and the causal relationships among states. 

De Kleer and Brown (1983) describe a mental model as the envisioning of a system, 
including a topological representation of the system components, the possible states 
of each of the components, and the structural relations between these components, 
the running or execution of the causal model based on basic operational rules and on 
general scientific principles. 

An analysis of various types of mental models and the types of mental processes 
processing them can found in (Van Ments and Treur 2021). This analysis has led to 
a three-level cognitive architecture as depicted in Fig. 6.1 where:

• The base level models internal simulation of a mental model 
• The middle level models the adaptation of the mental model (formation, learning, 

revising, and forgetting a mental model, for example) 
• The upper-level models the (metacognitive) control over these processes
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Fig. 6.1 Cognitive 
architecture for mental 
model handling with three 
levels of mental processing 
for mental models

Control of adaptation of mental models 

Adaptation of mental models 

Use of mental models 

Specific forms of learning that can be applied to mental models are observational 
learning (Yi and Davis 2003; Van  Gog et al.  2009), instructional learning (Hogan 
1997) and combinations thereof. 

By using the notion of self-modeling network (or reified network) from (Treur 
2020a, b), recently this cognitive architecture has been formalized computationally 
and used in computer simulations for many applications of mental models; for an 
overview of this approach and various applications of it, see (Treur and Van Ments 
2022); see also Sect. 6.3. 

6.2.2 Shared Mental Models 

Mental models also play an important role when people work together in teams. 
When every team member has a different individual mental model of the task that 
is performed, then this will stand in the way of good teamwork. Therefore, ideally 
these mental models should be aligned to such an extent that it becomes one shared 
mental model for all team members. 

Team errors have often been linked to inadequacies of the shared mental model 
and the lack of adaptivity of it (Fisschoff and Johnson 1997; Jones and Roelofsma 
2000; Mathieu et al. 2000; Burthscher et al. 2011; Wilson 2019; Todd 2018). This 
has major implications for health care and patent safety in the operation room, e.g., 
concerning open heart operation and tracheal intubation (Higgs et al. 2018; Seo et al. 
2021). Jones and Roelofsma (2000) discuss four types of team errors resulting from 
inadequate shared mental models. 

The first is called ‘false consensus’. The false consensus effect (Ross et al. 1977; 
Kreuger 1998) refers to the tendency to overestimate the degree of similarity between 
self and other team members and this may result in biased judgements or team deci-
sions. It is often described as people’s tendency to ‘see their own behavioural choices 
and judgements as relatively common and appropriate to existing circumstances 
while viewing alternative responses as uncommon, deviant, or inappropriate’. 

A second type of team error and perhaps the most well-known is ‘groupthink’; 
e.g., (Janis 1972; Kleindorfer et al. 1993). It is often described as a mode of thinking 
that people engage in when they are deeply involved in a cohesive in-group, when the
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members’ striving for unanimity overrides their motivation to realistically appraise 
alternative courses of action. Groupthink refers to a deterioration of mental efficiency 
and reality testing that results from in-group pressures. 

A third type of team error resulting from inadequate shared mental model is 
group polarization, e.g., (Lamm and Myers 1978; Isenberg 1986). This refers to the 
phenomenon that occurs when the position that is held on an issue by the majority 
of the group members is intensified as a result of discussion. For example, if group 
members are initially generally in favour of a particular preference of action, then 
group discussion will further enhance the favorability of this preference at an indi-
vidual level. There are two special cases of group polarization. One is termed risky 
shift and occurs when a group, overall, becomes more risk seeking than the initial 
average risk seeking tendencies of the individual members. The other is termed 
cautious shift and occurs when groups become more risk averse than the initial 
average risk averse tendencies of the individual members. In both cases the average 
response of the individual group members is more extreme after discussion. Such 
shifts in preference have been demonstrated by an overwhelming number of studies. 

A fourth team error is labelled escalation of commitment, e.g., (Bazerman 1984). 
This refers to the tendency for individuals or groups to continue to support a course 
of action despite evidence that it is failing. In other words, it is the tendency for 
a decision to support a previous decision for which there was a negative outcome. 
The specific concern is with non-rational escalation of commitment with a degree to 
which an individual escalates commitment to a previously selected course of action 
beyond a rational one. 

An example of a computational model of a shared mental model and how imper-
fections in it work out can be found in (Van Ments et al. 2021). The model also uses the 
cognitive architecture for mental models depicted in Fig. 6.1 and its computational 
formalization addressed in (Treur and Van Ments 2022). 

6.2.3 Organisational Learning: From Individual to Shared 
Mental Models and Back 

Organisational learning is an area which has received much attention over time; see, 
for example, (Argyris 1978; Bogenrieder 2002; Crossan 1999; Fischhof 1997; Kim  
1993; McShane 2010; Stelmaszczyk 2016; Wiewiora et al. 2019). However, contri-
butions to computational formalization of organisational learning are very rare. The 
quote in the introduction section illustrates the perspective sketched by Kim (1993). 
Here, mental models are considered a vehicle for both individual learning and organi-
sational learning. By learning individual mental models (and making them explicit), 
a basis for formation of shared mental models for the level of the organisation is 
created, which provides a mechanism for organisational learning. Inspired by this, 
the overall process consists of the following main processes and interactions (see 
also (Kim 1993), Fig. 6.8):
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(a) Individual level 

(1) Creating and maintaining individual mental models 
(2) Choosing for a specific context a suitable individual mental model as focus 
(3) Applying a chosen individual mental model for internal simulation 
(4) Improving individual mental models (individual mental model learning) 

(b) From individual level to organisation level 

(1) Deciding about creation of shared mental models 
(2) Creating shared mental models based on developed individual mental 

models 

(c) Organisation level 

(1) Creating and maintaining shared mental models 
(2) Associating to a specific context a suitable shared mental model as focus 
(3) Improving shared mental models (shared mental model refinement or 

revision) 

(d) From organisation level to individual level 

(1) Deciding about individuals to adopt shared mental models 
(2) Individuals adopting shared mental models by learning them 

In terms of the cognitive architecture depicted in Fig. 6.1, applying a chosen 
individual mental model for internal simulation relates to the base level, improving 
the individual mental model relates to the middle level and choosing an individual 
mental model as focus relates to the upper level. Moreover, both interactions from 
individual to organisation level and vice versa involve changing (individual or shared) 
mental models and therefore relate to the middle level, while the deciding actions as 
a form of control relate to the upper level. 

This overview will provide useful input to the design of the computational network 
model for organisational learning that will be introduced in Sect. 6.4. 

6.3 The Self-Modeling Network Modeling Approach Used 

In this section, the network-oriented modeling approach used is briefly introduced. 
Following (Treur 2020b), a temporal-causal network model is characterised by (here 
X and Y denote nodes of the network, also called states): 

• Connectivity characteristics 
Connections from a state X to a state Y and their weights ωX,Y 

• Aggregation characteristics 
For any state Y, some combination function cY (..) defines the aggregation that is 
applied to the impacts ωX,Y X(t) on Y from its incoming connections from states 
X
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• Timing characteristics 
Each state Y has a speed factor ηY defining how fast it changes for given causal 
impact. 

The following difference (or related differential) equations that are used for simula-
tion purposes and also for analysis of temporal-causal networks, incorporate these 
network characteristics ωX,Y , cY (..), ηY in a standard numerical format: 

Y (t + /\t) = Y (t) + ηY [cY (ωX1,Y X1(t), . . . ,  ωXk ,Y Xk(t)) − Y (t)]/\t (6.1) 

for any state Y and where X1 to Xk are the states from which Y gets its incoming 
connections. Within the software environment described in (Treur 2020b, Ch. 9), a 
large number of currently around 65 useful basic combination functions are included 
in a combination function library. The above concepts enable to design network 
models and their dynamics in a declarative manner, based on mathematically defined 
functions and relations. The examples of combination functions that are applied in 
the model introduced here can be found in Table 6.1.

Realistic network models are usually adaptive: Often not only their states but also 
some of their network characteristics change over time. By using a self-modeling 
network (also called a reified network), a similar network-oriented conceptualisation 
can also be applied to adaptive networks to obtain a declarative description using 
mathematically defined functions and relations for them as well; see (Treur 2020a, 
b). This works through the addition of new states to the network (called self-model 
states) which represent (adaptive) network characteristics. In the graphical 3D-format 
as shown in Sect. 6.4, such additional states are depicted at a next level (called 
self-model level or reification level), where the original network is at the base level. 

As an example, the weight ωX,Y of a connection from state X to state Y can be 
represented (at a next self-model level) by a self-model state named WX,Y . Simi-
larly, all other network characteristics from ωX,Y , cY (..), ηY can be made adaptive by 
including self-model states for them. For example, an adaptive speed factor ηY can 
be represented by a self-model state named HY . 

As the outcome of such a process of network reification is also a temporal-causal 
network model itself, as has been shown in (Treur 2020b, Ch 10), this self-modeling 
network construction can easily be applied iteratively to obtain multiple orders of 
self-models at multiple (first-order, second-order, …) self-model levels. For example, 
a second-order self-model may include a second-order self-model state HWX,Y repre-
senting the speed factor ηWX,Y for the dynamics of first-order self-model state WX,Y 

which in turn represents the adaptation of connection weight ωX,Y . Similarly, a persis-
tence factor μWX,Y of such a first-order self-model state WX,Y used for adaptation 
(e.g., based on Hebbian learning) can be represented by a second-order self-model 
state MWX,Y . 

In the current chapter, this multi-level self-modeling network perspective will be 
applied to obtain a second-order adaptive mental network architecture addressing the 
mental and social processes underlying organisational learning by proper handling of 
individual mental models and shared mental models. In this self-modeling network
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Table 6.1 The combination functions used in the introduced network model 

Notation Formula Parameters 

Advanced 
logistic 
sum 

alogisticσ,τ(V1,…,Vk) [ 1 
1+e−σ(V1+···+Vk−τ) − 1 

1+eστ ] (1 + e−στ) Steepness σ > 0  
Excitability 
threshold τ 

Steponce steponceα,β(..) 1 if time  t is between α and β, else 0 Start time α 
End time β 

Hebbian 
learning 

hebbμ(V1, V2, V3) V1 ∗ V2(1 − V3) + μV3 V1,V2 activation 
levels of the 
connected 
states; V3 
activation level 
of the self-model 
state for the 
connection 
weight 
Persistence 
factor μ 

Maximum 
composed 
with 
Hebbian 
learning 

max-hebbμ(V1, …, Vk) max(hebbμ(V1, V2, V3), V4, . . . ,  V k ) V1,V2 activation 
levels of the 
connected 
states; V3 
activation level 
of the self-model 
state for the 
connection 
weight 
Persistence 
factor μ 

Scaled 
maximum 

smaxλ(V1, …, Vk) max(V1, …, Vk)/λ Scaling factor λ

architecture the base level addresses the use of a mental model by internal simulation, 
the first-order self-model the adaptation of the mental model, and the second-order 
self-model level the control over this; see Fig. 6.2. In this way the three-level cognitive 
architecture depicted in Fig. 6.1 is formalized computationally in the form of a 
self-modeling network architecture.

In (Bhalwankar and Treur 2021a, b) it is shown how specific forms of learning 
and their control can be modeled based on this self-modeling network architec-
ture, in particular observational learning (Yi and Davis 2003; Van  Gog et al.  2009) 
and instructional learning (Hogan 1997) and combinations thereof. Such forms of 
learning will also be applied in the model for organisational learning introduced here 
in Sect. 6.4.
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         Control of adaptation 

           of a mental model 

Adaptation 

         of a mental model 

Internal simulation 

by a mental model

               Second-order self-model

                  of a mental model 

First-order self-model 

              of a mental model 

Base level with a mental model 
            as subnetwork 

Three-level cognitive architecture Self-modeling network architecture 

Fig. 6.2 Computational formalization of the three-level cognitive architecture for mental model 
handling from Fig. 6.1 by a self-modeling network architecture

6.4 The Adaptive Network Model for Organisational 
Learning 

The case study addressed to illustrate the introduced model was adopted from the 
more extensive case study in an intubation process from (Van Ments et al. 2021a, b). 
Here only the part of the mental models is used that addresses four mental states; see 
the red outlined parts in Fig. 6.3 and the explanations in Table 6.2. 

In the case study addressed here, initially the mental models of the nurse (person 
A) and doctor (person B) are different and based on weak connections; they don’t 
use a stronger shared mental model as that does not exist yet. The organisational 
learning addressed to improve the situation covers:

Fig. 6.3 The example mental model from (Van Ments et al. 2021a, b) with indicated the part used 
in the current chapter
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Table 6.2 The mental model used for the simple case study 

States for mental 
models of persons A, 
B and organisation O 

Short notation Explanation 

a_A a_B a_O Prep_eq_N Preparation of the intubation equipment by the nurse 

b_A b_B b_O Prep_d_N Nurse prepares drugs for the patient 

c_A c_B c_O Pre_oy_D Doctor executes pre oxygenation 

d_A d_B d_O Prep_team_D Doctor prepares the team for intubation

1. Individual learning by A and B of their mental models through internal simulation 
which results in stronger but still incomplete and different mental models (by 
Hebbian learning). Person A’s mental model has no connection from c_A to d_A 
and person B’s mental model has no connection from a_B to b_B. 

2. Formation of a shared organisation mental model based on the two individual 
mental models. A process of unification takes place. 

3. Learning individual mental models from the shared mental model, e.g., a form 
of instructional learning. 

4. Strengthening these individual mental models by individual learning through 
internal simulation which results in stronger and now complete mental models 
(by Hebbian learning). Now person A’s mental model has a connection from c_A 
to d_A and person B’s mental model has a connection from a_B to b_B. 

The connectivity of the designed network model is depicted in Fig. 6.4; for an 
overview of the states, see Figs. 6.5, 6.6, 6.7. For more details about the connections 
and how they relate to (a) to (d) from Sect. 6.2.3, see Fig. 6.8.

In this model, at the base level individual mental states of persons and shared 
mental model states of the organisation involving these people are placed. The context 
states used for initiation of different processes or phases are also in this base level 
plane. These states can be considered as the core of the model representing knowledge 
of people and organisation’s general level of knowledge on separate tasks. The mental 
states of persons are connected to each other, which reflects the knowledge about 
the temporal order between tasks and the first ones have a connection from the first 
context state to be initiated in the first phase. Their ‘hollow’ mental states, the tasks 
that they do not know, have connections also from the fourth context state to be able 
to observe the progress of these states. 

First- and second-order self-model states are used to bring multi-order adaptivity 
to the network model. The first-order adaptation level provides adaptivity of the base 
level and the second-order one controls this adaptivity. In the first-order self-model 
level, W-states for all the weights of the connections between the base level states are 
placed. In the first place, these are the adaptive weights of the base level individual 
mental state connections of persons. In addition, there are W-states of the developed 
shared organisation mental model states. At this first-order adaptation level there 
are (intralevel) connections from all the W-states (two for this case) that specify the
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a_A 

d_Bc_B 

b_A 

a_B 
b_B 

Wa_O,b_O 

Wb_B,c_B 

Wb_A,c_A Wc_A,d_A 

Wa_A,b_A 

Wa_B,b_B 

Wc_B,d_B 

HWb_B,c_B 

HWa_B,b_B 

HWc_B,d_B 

HWc_A,d_A 

WWa_O,b_O,Wa_A,b_A 

MWc_A,d_A 

HWb_A,c_A 

HWa_A,b_A 

MWa_A,b_A 

MWb_A,c_A 

MWb_B,c_B 

MWa_B,b_B 

HWc_O,d_O 

HWa_O,b_O 

HWb_O,c_O 

WWb_O,c_O,Wb_A,c_A 
Second-order self-model level 

for control of network adaptation 

First-order self-model level 

for network adaptation 

Base level 

MWc_B,d_B 
WWc_O,d_O,Wc_A,d_A 

WWb_O,c_O,Wb_B,c_B 

WWa_O,b_O,Wa_B,b_B WWc_O,d_O,Wc_B,d_B 

Wc_O,d_O 

Wb_O,c_O 

conph3 conph2 

c_A d_A 

a_O b_O c_O d_O 
conph4 

conph1 

Fig. 6.4 The connectivity of the second-order adaptive network model 

Nr State Explanation 
X1 a_A Individual mental model state for person A for task a 
X2 b_A Individual mental model state for person A for task b 

X3 c_A Individual mental model state for person A for task c 

X4 d_A Individual mental model state for person A for task d 
X5 a_B Individual mental model state for person B for task a 

X6 b_B Individual mental model state for person B for task b 

X7 c_B Individual mental model state for person B for task c 
X8 d_B Individual mental model state for person B for task d 

X9 a_O Shared mental model state for organisation O for task a 

X10 b_O Shared mental model state for organisation O for task b 
X11 c_O Shared mental model state for organisation O for task c 

X12 d_O Shared mental model state for organisation O for task d 

X13 conph1 Context state for Phase 1: individual mental model simulation and learning 
X14 conph2 Context state for Phase 2: creation of a shared mental model for organisation O 

X15 conph3 
Context state for Phase 3: learning individual mental models from the shared mental 

model for organisation O 
X16 conph4 Context state for Phase 4: individual mental model simulation and learning 

Fig. 6.5 Base level states of the introduced adaptive network model

weight of a connection between the same tasks for all people (two for this case) to 
the W-states representing the weights of the connections of the shared organisation 
model (for the formation of the shared organisation mental model) and vice versa 
(for the learning of the shared organisation mental model by the individuals). At 
the second-order self-model level, there are W-states specifying the weights of the 
connections from the W-states to the individual ones (to initiate and control the 
learning of the shared organisation mental model by the individuals), HW-states for
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Nr State Explanation 
X17 Wa_A,b_A First-order self-model state for the weight of the connection from a to b within 

the individual mental model of person A 

X18 Wb_A,c_A First-order self-model state for the weight of the connection from b to c within 
the individual mental model of person A 

X19 Wc_A,d_A First-order self-model state for the weight of the connection from c to d within 

the individual mental model of person A 
X20 Wa_B,b_B First-order self-model state for the weight of the connection from a to b within 

the individual mental model of person B 

X21 Wb_B,c_B First-order self-model state for the weight of the connection from b to c within 
the individual mental model of person B 

X22 Wc_B,d_B First-order self-model state for the weight of the connection from c to d within 

the individual mental model of person B 
X23 Wa_O,b_O First-order self-model state for the weight of the connection from a to b within 

the shared mental model of the organisation O 

X24 Wb_O,c_O First-order self-model state for the weight of the connection from b to c within 
the shared mental model of the organisation O 

X25 Wc_O,d_O First-order self-model state for the weight of the connection from c to d within 

the shared mental model of the organisation O 

Fig. 6.6 First-order self-model states of the introduced adaptive network model

adaptation speeds of connection weights in the first-order adaptation level, and MW-
states for persistence of adaptation. This provides the speed and persistence control 
of the adaptation. 

6.5 Example Simulation Scenario 

In this scenario, a multi-phase approach is applied to observe two separate individual 
mental models first, formation and effects of the created shared mental model for 
the organisation then. Thus, it is possible to explore how organisational learning 
progresses. Note that these processes are structured in phases to get a clear picture 
of what happens. In practice and also in the model, these processes also can overlap 
or take place entirely simultaneously. The four phases were designed as follows:

• Phase 1: Individual mental model usage and learning 
This relates to (a) in Sect. 6.2.3. Two distinct mental models representing two 
different employees in the same group or organisation are constructed here. 
Persons have both common and special characteristics and knowledge. For the 
specific scenario, persons A and B are the employees of an organisation. Initially 
they have a weak mental model for their job considered here but by (Hebbian) 
learning their mental models strengthen over time during usage of them for internal 
simulation. They are involved in the same job, but A does the first part of the job 
while B finishes it. Therefore, in this phase A does not have the knowledge of 
the end part of the job, and B does not know how to start the job. Moreover, their 
characteristics are different in terms of persistence of the learning. The values of
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Nr State Explanation 
X26 WWa_O,b_O,Wa_A,b_A Second-order self-model state for the weight of the connection from shared 

mental model connection weight self-model state Wa_O,b_O to individual mental 

model connection weight self-model state Wa_A,b_A for instructional learning of 
the shared mental model 

X27 WWb_O,c_O,Wb_A,c_A Second-order self-model state for the weight of the connection from shared 

mental model connection weight self-model state Wb_O,c_O to individual mental 
model connection weight self-model state Wb_A,c_A for instructional learning of 

the shared mental model 

X28 WWc_O,d_O,Wc_A,d_A Second-order self-model state for the weight of the connection from shared 
mental model connection weight self-model state Wc_O,d_O to individual mental 

model connection weight self-model state Wc_A,d_A for instructional learning of 
the shared mental model 

X29 WWa_O,b_O,Wa_B,b_B Second-order self-model state for the weight of the connection from shared 

mental model connection weight self-model state Wa_O,b_O to individual mental 
model connection weight self-model state Wa_B,b_B for instructional learning of 

the shared mental model 

X30 WWb_O,c_O,Wb_B,c_B Second-order self-model state for the weight of the connection from shared 
mental model connection weight self-model state Wb_O,c_O to individual mental 

model connection weight self-model state Wb_B,c_B for instructional learning of 

the shared mental model 
X31 WWc_O,d_O,Wc_B,d_B  Second-order self-model state for the weight of the connection from shared 

mental model connection weight self-model state Wc_O,d_O to individual mental 

model connection weight self-model state Wc_B,d_B for instructional learning of 
the shared mental model 

X32 HWa_A,b_A Second-order self-model state for the adaptation speed of individual mental 

model connection weight self-model state Wa A,b A 
X33 HWb_A,c_A Second-order self-model state for the adaptation speed of individual mental 

model connection weight self-model state Wb A,c A 

X34 HWc_A,d_A Second-order self-model state for the adaptation speed of individual mental 
model connection weight self-model state Wc A,d A 

X35 HWa_B,b_B Second-order self-model state for the adaptation speed of individual mental 

model connection weight self-model state Wa B,b B 
X36 HWb_B,c_B Second-order self-model state for the adaptation speed of individual mental 

model connection weight self-model state Wb B,c B 

X37 HWc_B,d_B Second-order self-model state for the adaptation speed of individual mental 
model connection weight self-model state Wc B,d B 

X38 HWa_O,b_O Second-order self-model state for the adaptation speed of shared mental model 

connection weight self-model state Wa_O,b_O for formation or revision of the 
shared mental model 

X39 HWb_O,c_O Second-order self-model state for the adaptation speed of shared mental model 

connection weight self-model state Wb_O,c_O for formation or revision of the 
shared mental model 

X40 HWc_O,d_O Second-order self-model state for the adaptation speed of shared mental model 

connection weight self-model state Wc_O,d_O for formation or revision of the 
shared mental model 

X41 MWa_A,b_A Second-order self-model state for persistence of adaptation of individual 

mental model connection weight self-model state Wa A,b A 
X42 MWb_A,c_A Second-order self-model state for persistence of adaptation of individual 

mental model connection weight self-model state Wb A,c A 

X43 MWc_A,d_A Second-order self-model state for persistence of adaptation of individual 
mental model connection weight self-model state Wc A,d A 

X44 MWa_B,b_B Second-order self-model state for persistence of adaptation of individual 

mental model connection weight self-model state Wa B,b B 

X45 MWb_B,c_B Second-order self-model state for persistence of adaptation of individual 

mental model connection weight self-model state Wb B,c B 
X46 MWc_B,d_B Second-order self-model state for persistence of adaptation of individual 

mental model connection weight self-model state Wc B,d B 

Fig. 6.7 Second-order self-model states of the introduced adaptive network model
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Intralevel connections 
x_Z - y_ Z Connection from x to y in individual mental model of person Z: (a) from Sect. 2.3. 

x_O - y_O Connection from x to y in shared mental model of organisation O: (a) from Sect. 2.3. 
conp - x_Z Connection from context state conp for phase p {ph1, ph4} to activate mental model 

state x of person  Z: (c) from Sect. 2.3. 

Wx_Z,y_Z - Wx_O,y_O Connection for person Z’s contribution from the weight of the connection from x to y in 

the individual mental model of Z to the weight of the connection from x to y in the shared 

mental model of O: (b) from Sect. 2.3. 

Wx_O,y_O - Wx_Z,y_Z Connection for O’s contribution from the weight of the connection from x to y in the 

shared mental model of O to the weight of the connection from x to y in the individual 
mental model of person Z: (d) from Sect. 2.3. 

Wx_Z,y_Z - Wx_Z,y_Z Persistence connection for Z’s mental model connections: (a) from Sect. 2.3. 

Interlevel connections 
x_Z - Wx_Z,y_Z Connection for individual Hebbian learning from state x in person Z’s 

individual mental model to self-model state Wx_A,y_A for Z’s individual 

mental model: (a) from Sect. 2.3. 

Upward 
from base 

level to first 

self-model 

level 

y_Z - Wx_Z,y_Z Connection for individual Hebbian learning from state y in person Z’s 

individual mental model to self-model state Wx_A,y_A for Z’s individual 

mental model: (a) from Sect. 2.3. 

x_O - Wx_O,y_O Connection for Hebbian learning from state x in O’s shared mental model to 

self-model state Wx A,y A for O’s shared mental model: (c) from Sect. 2.3.  

y_O - Wx_O,y_O Connection for Hebbian learning from state y in O’s shared mental model to 

self-model state Wx A,y A for O’s shared mental model: (c) from Sect. 2.3. 

Wx_Z,y_Z - y_Z  Connection for the effect of self-model state Wx_Z,y_Z for person Z’s 

individual mental model on state y in Z’s individual mental model: (a) from 
Sect. 2.3. 

Downward 
from first-

order self-

model level 

to base level 
Wx_O,y_O - y_O  Connection for the effect of self-model state Wx_O,y_O for O’s shared mental 

model on state y in O’s shared mental model: (c) from Sect. 2.3. 

conph2 - HWx_O,y_O Connection from the context state for Phase 2 to second-order self-model 
state HWa_O,b_O representing the adaptation speed of first-order self-model 

state Wx_O,y_O for the weight of the connection from x to y in the shared 

mental model of O in order to trigger this adaptation speed for shared 
mental model formation: (b) from Sect. 2.3. 

Upward 
from base 

level to 

second-order 

self-model 

level 

conph3-  

    WWx_O,y_O,Wx_Z,y_Z 
Connection from the context state for Phase 3 to second-order self-model 
state WWx_O,y_O,Wx_Z,y_Z representing the weight of the connection from first-

order self-model state Wx_O,y_O for the weight of the connection from x to y 

in the shared mental model of O to first-order self-model state Wx_Z,y_Z for 

the weight of the connection from x to y in the individual mental model of 
person Z in order to activate this connection for instructional learning of Z 

from the shared mental model: (d) from Sect. 2.3. 

HWx_O,y_O - Wx_O,y_O Effectuation of control of the adaptation of O’s shared mental model 
connection weight Wx_O,y_O for shared mental model formation based on Z’s 

individual mental model: (b), (c) from Sect. 2.3. 

Downward 

from second- 
to first-order 

self-model 

level 

WWx_O,y_O,Wx_Z,y_Z  -  

                 Wx_Z,y_Z 
Effectuation of control of the adaptation of person Z’s individual mental 

model connection weight Wx_Z,y_Z for instructional learning of Z’s individual 

mental model from O’s shared mental model: (d) from Sect. 2.3. 

Fig. 6.8 Types of connections in the adaptive network model and how they relate to (a) to (d) 
identified in Sect. 6.2.3. For the example scenario, x and y are states from {a, b, c, d} and Z is a 
person from {A, B}

person A’s M-states are slightly higher than B’s. It means that B forgets things 
faster than A.

• Phase 2: Shared mental model formation



6 Using Self-modeling Networks to Model Organisational Learning 107

This relates to (b) and (c) in Sect. 6.2.3. Formation of the unified shared mental 
model of the employees occurs in this phase. This takes place by a form of aggre-
gation and unification of the individual mental models. The collaboration of the 
employees starts the process of organisational learning, and the values of the W-
states of the shared mental model for the general (non-personal) states for the 
job (a_O to d_O) increase. Then this shared mental model is maintained by the 
organisation. 

• Phase 3: Instructional learning of the shared mental model by the individuals 
This relates to (d) in Sect. 6.2.3. The connections from the general W-states of the 
shared mental model to the personal W-states of the individuals are activated, and 
knowledge from the shared mental model is received here as a form of instructional 
learning. Persons start to learn from the organisation’s unified shared mental 
model, for this scenario, which can be considered as learning from each other in 
an indirect manner via the shared mental model. Since there is only one shared 
mental model, this does not require many mutual one-to-one interactions between 
employees. 

• Phase 4: Individual mental model usage and learning 
This relates to (d) in Sect. 6.2.3. In this phase, employees have the chance of further 
improving their mental models (in Phase 3 already improved based on the shared 
mental model) by the help of Hebbian learning during usage of the mental model 
for internal simulation. Person A starts to learn about task d (state d_A) by using 
the knowledge of person B (obtained via the shared mental model) and similarly B 
learns about task a (state a_B) that they did not know in the beginning. Therefore, 
these ‘hollow’ states become meaningful for the individuals. The individuals take 
advantage of the organisational learning. 

Figure 6.9 shows an overview of all states of the simulation; Figs. 6.10, 6.11 focus 
on part of the states (for the same simulation) to get a more detailed view.

In Fig. 6.10 it can be seen that the activation levels of person A’s mental model 
states X1, X2 and X3 (a_A to c_A) increase in Phase 1 between time 10 and 300 while 
the activation level of X4 (d_A) remains at zero because A does not have knowledge 
on this state d in the beginning. The latter state will increase in Phase 4 after learning 
in Phase 3 from the unified shared mental model developed in Phase 2. 

Person B’s mental model states X6, X7 and X8 (b_B to d_B) increase just like A’s 
in phase 1, while the activation level of X5 (a_B) remains at zero because B does not 
have knowledge of this state a in the beginning. It will also increase in Phase 4 after 
learning in Phase 3 from the unified shared model developed in Phase 2. 

The values of person A’s W-states X17 and X18 representing A’s mental model 
connection weights Wa_A,b_A and Wb_A,c_A increase in the first phase, meaning that A 
learns the mental model better by using it for internal simulation (Hebbian learning). 
However, they slightly decrease in the second phase at about 300–400 since the 
persistence factor self-model M-state of A has not the perfect value 1, meaning 
that A forgets. Person B’s W-states X21 and X22 representing B’s mental model



108 G. Canbaloğlu et al.
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X31 - WX24,X21 X38 - Hwa_O,b_O X39 - HWb_O,c_O X40 - HWc_O,d_O 

Fig. 6.9 Simulation graph showing all states 
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Fig. 6.10 The base states and connection weight self-model states for the individual mental models
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X31 WWc_O,d_O,Wc_B,d_B 

Fig. 6.11 The connection weight self-model states for the shared mental model and the weights 
by which individuals receive instructional learning of the shared mental model

connections Wb_B,c_B and Wc_B,d_B follow a similar pattern but since the persistence 
factor of B is smaller than of A, they decrease more in the second phase: it can be 
observed that B is a more forgetful person. 

State X19 (Wc_A,d_A) is the  W-state for the connection from c_A to d_A within 
A’s mental model. Because A does not have a nonzero X4 state in the beginning, 
learning can happen only (by instructional learning in Phase 3) after a unified shared 
mental model has been formed (in Phase 2). Thus, X19 increases in Phase 3 at about 
time 450. Same is valid for X20, the  W-state for the connection from a_B to b_B 
within B’s mental model. This addresses the task a that B does not know about in 
the beginning. 

By observing in Fig. 6.10 Phase 4 after time 650, it can be seen that all the W-
states of the individuals make an upward jump. The reason for this is the main focus 
of this chapter, organisational learning. As will be explained in more detail in the 
following paragraph, the W-states of the organisation’s shared mental model have 
links back to the W-states of the individuals’ mental models to provide the ability of 
individuals to learn (by instructional learning) from the shared mental model. 

As can be seen in Fig. 6.11, all the second-order self-model W-states (X26 to 
X31) for connections from the unified shared mental model’s W-states to the indi-
viduals’ W-states become activated in Phase 3 between 450 and 650. This models 
the instructional learning: the persons are informed about the shared mental model. 
Because the characteristics involved have the same values in the role matrices, they 
trace the same curve. The unified shared mental model gains its characteristics in 
the second phase at around 350 by the help of a form of aggregation of the W-states 
of the mental models of the employees A and B. As also can be seen in Fig. 6.11, 
states X23, X24 and X25 (shared mental model connection weight self-model states 
Wa_O,b_O, Wb_O,c_O, and Wc_O,d_O) jump upward in this phase to form the unified
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shared mental model, and during the phase they decrease a little bit because of the 
forgetting of the employees. 

6.6 Mathematical Analysis of Equilibria of the Network 
Model 

In general, a dynamical system is in equilibrium at time t if dY(t)/dt = 0 for all 
of its state variables Y. The same can be applied to self-modeling network models. 
However, given the standard Eq. (6.1) in terms of the network characteristics, for 
network models the condition dY(t)/dt = 0 can be formulated as the following 
criterion 

μY = 0 or  cY (ωX1,Y X1(t), . . . ,  ωXk ,Y Xk(t)) = Y (t) (6.2) 

This can be used to verify if the implemented model is correct with respect to the 
design of the model. As an example, consider the adaptation of the weights according 
to the combination function max-hebb defined in Table 6.1. 

max − hebbμ(V1, . . . ,  Vk) = max
(
hebbμ(V1, V2, V3), V4, . . . ,  Vk

)
(6.3) 

where 

hebbμ(V1, V2, V3) = V1 ∗ V2(1 − V3) + μV3 

Therefore, for this case the above criterion for being in an equilibrium state is 
equivalent to 

ηY = 0 or max(V1 ∗ V2(1 − V3) + μV3, V4, . . . ,  Vk) = Y (t) (6.4) 

One of the states to which this combination function is applied (with k = 4) is 
Wb_A,c_A, which is X18. It has incoming connections from b_A, c_A (X2, X3) and X18 

itself (all three with connection weights 1), and from X24 (with adaptive connection 
weight represented by self-modeling state WWb_O,c_O , Wb_A,c_A which is X27). Moreover, 
μ = 0.995. From the simulation results it seems that this state is (approximately) 
stationary at time t = 299 and at time t = 849. The speed factor η of Wb_A,c_A is 
0.05 which is nonzero. The values for the relevant states from the simulation at these 
time points are the following: 

V1 = X2(299) = 0.956268089647092
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V2 = X3(299) = 0.954552603376293 

V3 = X18(299) = 0.994443719684304 

V4 = X24(299) = 0 

μ = 0.995 

If these values are substituted in (4) we get the following 

max(V1 ∗ V2(1 − V3) + V3, V4, . . . ,  Vk) = 0.994543319288979 

Y (299) = 0.994443719684304 

These two values show a deviation of 0.0000996 which is less than 10–4. This quite 
good approximation of the equation in (4) provides evidence that the implemented 
model is correct with respect to its design. Similarly, for t = 849: 

V1 = X2(849) = 0.956269533716948 

V2 = X3(849) = 0.95457581935179 

V3 = X18(849) = 0.994548119402481 

V4 = X24(849) = 0.970297110356546 

μ = 0.995 

If these values are substituted in (4) we get the following 

max(V1 ∗ V2(1 − V3) + V3, V4, . . . ,  Vk) = 0.994552028641134 

Y (849) = 0.994548119402481 

These two values show a deviation of 0.00000391, which is less than 10–5. This  
again quite good approximation of the equation in (4) provides still more evidence 
that the implemented model is correct with respect to its design.
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6.7 Discussion 

This chapter is based on material from (Canbaloğlu et al. 2022). Organisational 
learning is a complex process that is challenging when computational modeling of it 
is concerned; computational models of organisational learning are practically absent 
in the literature. Within mainstream organisational learning literature such as (Kim 
1993; Wiewiora et al.  2019), (individual and shared) mental models are considered 
to be a vehicle for both individual learning and organisational learning. By learning 
individual mental models, sources for the formation of shared mental models for the 
level of the organisation as a whole are created. Once these shared organisation mental 
models have been formed, they are available to be adopted by individuals within the 
organisation by learning and applying them. This combination of individual mental 
model learning—shared mental model formation—individual (shared) mental model 
adoption, and some others indicates a handful of mechanisms of different types 
that together can be considered to form the basis of organisational learning. The 
challenges then are (1) to formalize these mechanisms in a computational manner, 
and (2) to glue them together according to a suitable type of architecture. 

These mechanisms indeed have been used as a basis for the designed adaptive 
computational network model. The model was illustrated by a not too complex but 
realistic case study. Note that for the sake of presentation, in the case study scenario 
the different types of mechanisms have been structured over time sequentially. This is 
not inherent in the designed computational network model itself. All these processes 
can equally well work simultaneously in parallel. 

The introduced computational model for organisational learning has been 
designed as a second-order adaptive network model according to the modeling 
approach based on self-modeling network models described in (Treur 2020b). Here, 
the three-level cognitive architecture for handling mental models as described in 
(Van Ments and Treur 2021) was adopted and formalized computationally as a self-
modeling network architecture, where the first-order self-model level models the 
adaptation of weights of connections within mental models and the second-order self-
model level models the control over this adaptation. These weights can be adapted 
in different manners, depending on the context. One context for adapting them is for 
the focusing on a specific mental model as, for example, is addressed in (Canbaloğlu 
and Treur 2021). Another context for adaptation is for Hebbian learning as applied 
during internal mental simulation in (Canbaloğlu et al. 2022) and in (Bhalwankar 
and Treur 2021) during observational learning. These different types of adaptation 
were also adopted in the adaptive network for organisational learning introduced in 
the current chapter. Thereby, the context-sensitive control of them was modeling by 
the second-order self-model level. 

For this first step in computational formalization of organisational learning by an 
adaptive network model as presented here, a number of issues have been left out of 
consideration yet. The model provides a good basis to address these in future work, 
thereby obtaining extensions or refinements of the model.
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One of these extension possibilities concerns the type of aggregation used for 
the process of shared mental model formation. In the current model this has been 
based on the person who has maximal knowledge about a specific mental model 
connection. But other forms of aggregation can equally well be applied, for example 
weighted averages. Moreover, the choice of aggregation can be made adaptive in a 
context-sensitive manner so that for each context a different form of aggregation can 
be chosen automatically as part of the overall process. Also, aspects of priorities for 
the importance or reliability of individual mental models compared to each other 
may be incorporated. 

Another extension is to make other states used for the control adaptive and context-
sensitive, such as the second-order self-model H- and M-states for the individuals, 
which for the sake of simplicity were kept constant in the current example scenario. 
A third option to extend the model is by adding states for the actual actions in the 
world and for observational learning based on such actions observed in the world, 
such as for example addressed in (Bhalwankar and Treur 2021). 

Finally, yet another option for an extension is to add an intermediate level of 
teams in between the individual and organisational level as, for example, discussed 
in (Wiewiora et al. 2019). In contrast to the current chapter, which used the paper by 
Kim (1993) as a point of departure and main source of inspiration for this chapter, 
In Chap. 7 of this volume (Canbaloğlu et al. 2023), this intermediate level will be 
addressed in addition. 

6.8 Appendix: Full Specification by Role Matrices 

In this section, the different role matrices are shown that provide a full specification 
of the network characteristics defining the adaptive network model in a standardised 
table format. Here in each role matrix, each state has its row where it is listed which 
are the impacts on it from that role.

6.8.1 Role Matrices for Connectivity Characteristics 

The connectivity characteristics are specified by role matrices mb and mcw shown 
in Figs. 6.12, 6.13. Role matrix mb lists the other states (at the same or lower level) 
from which the state gets its incoming connections, whereas in role matrix mcw the 
connection weights are listed for these connections. 

Nonadaptive connection weights are indicated in mcw (in Fig. 6.13) by a number 
(in a green shaded cell), but adaptive connection weights are indicated by a reference 
to the (self-model) state representing the adaptive value (in a peach-red shaded cell). 
This can be seen for states X2 to X4 (with self-model states X17 to X19), states X6 

to X8 (with self-model states X20 to X22), X10 to X12 (with self-model states X23 to 
X25), and X17 to X22 (with self-model states X26 to X31).
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mb              base         
connectivity            1 2 3 4 5 6 7 

X1 a_A X13 X16 

X2 b_A X1 

X3 c_A X2 

X4 d_A X3 

X5 a_B X16 

X6 b_B X5 X13 

X7 c_B X6 

X8 d_B X7 

X9 a_O 

X10 b_O X9 

X11 c_O X10 

X12 d_O X11 

X13 cph1 X13 

X14 cph2 X14 

X15 cph3 X15 

X16 cph4 X16 

X17 Wa_A,b_A X1 X2 X17 X23 

X18 Wb_A,c_A X2 X3 X18 X24 

X19 Wc_A,d_A X3 X4 X19 X25 

X20 Wa_B,b_B X5 X6 X20 X23 

X21 Wb_B,c_B X6 X7 X21 X24 

X22 Wc_B,d_B X7 X8 X22 X25 

X23 Wa_O,b_O X17 X20 

X24 Wb_O,c_O X18 X21 

X25 Wc_O,d_O X19 X22 

X26 WWa_O,b_O,Wa_A,b_A X23 X17 X13 X14 X15 

X27 WWb_O,c_O,Wb_A,c_A X24 X18 X13 X14 X15 

X28 WWc_O,d_O,Wc_A,d_A X25 X19 X13 X14 X15 

X29 WWa_O,b_O,Wa_B,b_B X23 X20 X13 X14 X15 

X30 WWb_O,c_O,Wb_B,c_B X24 X21 X13 X14 X15 

X31 WWc_O,d_O,Wc_B,d_B X25 X22 X13 X14 X15 

X32 HWa_A,b_A X1 X2 X17 X32 

X33 HWb_A,c_A X2 X3 X18 X33 

X34 HWc_A,d_A X3 X4 X19 X34 

X35 HWa_B,b_B X5 X6 X20 X35 

X36 HWb_B,c_B X6 X7 X21 X36 

X37 HWc_B,d_B X7 X8 X22 X37 

X38 HWa_O,b_O X14 

X39 HWb_O,c_O X14 

X40 HWc_O,d_O X14 

X41 MWa_A,b_A X1 X2 X17 X41 X13 X14 X15 

X42 MWb_A,c_A X2 X3 X18 X42 X13 X14 X15 

X43 MWc_A,d_A X3 X4 X19 X43 X13 X14 X15 

X44 MWa_B,b_B X5 X6 X20 X44 X13 X14 X15 

X45 MWb_B,c_B X6 X7 X21 X45 X13 X14 X15 

X46 MWc_B,d_B X7 X8 X22 X46 X13 X14 X15 

Fig. 6.12 Role matrices for the connectivity: mb for base connectivity
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mcw connection 
weights 1 2 3 4 5 6 7 

X1 a_A 1 1 

X2 b_A X17 

X3 c_A X18 

X4 d_A X19 

X5 a_B 1 

X6 b_B X20 1 

X7 c_B X21 

X8 d_B X22 

X9 a_O 

X10 b_O X23 

X11 c_O X24 

X12 d_O X25 

X13 cph1 1 

X14 cph2 1 

X15 cph3 1 

X16 cph4 1 

X17 Wa_A,b_A 1 1 1 X26 

X18 Wb_A,c_A 1 1 1 X27 

X19 Wc_A,d_A 1 1 1 X28 

X20 Wa_B,b_B 1 1 1 X29 

X21 Wb_B,c_B 1 1 1 X30 

X22 Wc_B,d_B 1 1 1 X31 

X23 Wa_O,b_O 1 1 

X24 Wb_O,c_O 1 1 

X25 Wc_O,d_O 1 1 

X26 WWa_O,b_O,Wa_A,b_A 1 1 0 0 1 

X27 WWb_O,c_O,Wb_A,c_A 1 1 0 0 1 

X28 WWc_O,d_O,Wc_A,d_A 1 1 0 0 1 

X29 WWa_O,b_O,Wa_B,b_B 1 1 0 0 1 

X30 WWb_O,c_O,Wb_B,c_B 1 1 0 0 1 

X31 WWc_O,d_O,Wc_B,d_B 1 1 0 0 1 

X32 HWa_A,b_A 1 1 -0.1 1 

X33 HWb_A,c_A 1 1 -0.1 1 

X34 HWc_A,d_A 1 1 -0.1 1 

X35 HWa_B,b_B 1 1 -0.1 1 

X36 HWb_B,c_B 1 1 -0.1 1 

X37 HWc_B,d_B 1 1 -0.1 1 

X38 HWa_O,b_O 1 

X39 HWb_O,c_O 1 

X40 HWc_O,d_O 1 

X41 MWa_A,b_A 1 1 1 1 -1 -1 -1 

X42 MWb_A,c_A 1 1 1 1 -1 -1 -1 

X43 MWc_A,d_A 1 1 1 1 -1 -1 -1 

X44 MWa_B,b_B 1 1 1 1 -1 -1 -1 

X45 MWb_B,c_B 1 1 1 1 -1 -1 -1 

X46 MWc_B,d_B 1 1 1 1 -1 -1 -1 

Fig. 6.13 Role matrices for the connectivity: mcw for connection weights
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mcfw combination                            
       function weights             

1 
alogistic 

2 
steponce 

3 
max-hebb 

4 
smax 

X1 a_A 1 

X2 b_A 1 

X3 c_A 1 

X4 d_A 1 

X5 a_B 1 

X6 b_B 1 

X7 c_B 1 

X8 d_B 1 

X9 a_O 1 

X10 b_O 1 

X11 c_O 1 

X12 d_O 1 

X13 cph1 1 

X14 cph2 1 

X15 cph3 1 

X16 cph4 1 

X17 Wa_A,b_A 1 

X18 Wb_A,c_A 1 

X19 Wc_A,d_A 1 

X20 Wa_B,b_B 1 

X21 Wb_B,c_B 1 

X22 Wc_B,d_B 1 

X23 Wa_O,b_O 1 

X24 Wb_O,c_O 1 

X25 Wc_O,d_O 1 

X26 WWa_O,b_O,Wa_A,b_A 1 

X27 WWb_O,c_O,Wb_A,c_A 1 

X28 WWc_O,d_O,Wc_A,d_A  1 

X29 WWa_O,b_O,Wa_B,b_B 1 

X30 WWb_O,c_O,Wb_B,c_B 1 

X31 WWc_O,d_O,Wc_B,d_B  1 

X32 HWa_A,b_A 1 

X33 HWb_A,c_A 1 

X34 HWc_A,d_A 1 

X35 HWa_B,b_B 1 

X36 HWb_B,c_B 1 

X37 HWc_B,d_B 1 

X38 HWa_O,b_O 1 

X39 HWb_O,c_O 1 

X40 HWc_O,d_O 1 

X41 MWa_A,b_A 1 

X42 MWb_A,c_A 1 

X43 MWc_A,d_A 1 

X44 MWa_B,b_B 1 

X45 MWb_B,c_B 1 

X46 MWc_B,d_B 1 

Fig. 6.14 Role matrices for the aggregation characteristics: combination function weights
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Fig. 6.15 Role matrices for the aggregation characteristics: combination function parameters
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ms speed 
factors 1 

X1 a_A 1 

X2 b_A 1 

X3 c_A 1 

X4 d_A 1 

X5 a_B 1 

X6 b_B 1 

X7 c_B 1 

X8 d_B 1 

X9 a_O 1 

X10 b_O 1 

X11 c_O 1 

X12 d_O 1 

X13 cph1 1 

X14 cph2 1 

X15 cph3 1 

X16 cph4 1 

X17 Wa_A,b_A X32 

X18 Wb_A,c_A X33 

X19 Wc_A,d_A X34 

X20 Wa_B,b_B X35 

X21 Wb_B,c_B X36 

X22 Wc_B,d_B X37 

X23 Wa_O,b_O X38 

X24 Wb_O,c_O X39 

X25 Wc_O,d_O X40 

X26 WWa_O,b_O,Wa_A,b_A 0.2 

X27 WWb_O,c_O,Wb_A,c_A 0.2 

X28 WWc_O,d_O,Wc_A,d_A 0.2 

X29 WWa_O,b_O,Wa_B,b_B 0.2 

X30 WWb_O,c_O,Wb_B,c_B 0.2 

X31 WWc_O,d_O,Wc_B,d_B 0.2 

X32 HWa_A,b_A 0 

X33 HWb_A,c_A 0 

X34 HWc_A,d_A 0 

X35 HWa_B,b_B 0 

X36 HWb_B,c_B 0 

X37 HWc_B,d_B 0 

X38 HWa_O,b_O 0.9 

X39 HWb_O,c_O 0.9 

X40 HWc_O,d_O 0.9 

X41 MWa_A,b_A 0 

X42 MWb_A,c_A 0 

X43 MWc_A,d_A 0 

X44 MWa_B,b_B 0 

X45 MWb_B,c_B 0 

X46 MWc_B,d_B 0 

iv initial 
values 1 

X1 a_A 0 

X2 b_A 0 

X3 c_A 0 

X4 d_A 0 

X5 a_B 0 

X6 b_B 0 

X7 c_B 0 

X8 d_B 0 

X9 a_O 0 

X10 b_O 0 

X11 c_O 0 

X12 d_O 0 

X13 cph1 0 

X14 cph2 0 

X15 cph3 0 

X16 cph4 0 

X17 Wa_A,b_A 0.1 

X18 Wb_A,c_A 0.1 

X19 Wc_A,d_A 0 

X20 Wa_B,b_B 0 

X21 Wb_B,c_B 0.1 

X22 Wc_B,d_B 0.1 

X23 Wa_O,b_O 0 

X24 Wb_O,c_O 0 

X25 Wc_O,d_O 0 

X26 WWa_O,b_O,Wa_A,b_A 0 

X27 WWb_O,c_O,Wb_A,c_A 0 

X28 WWc_O,d_O,Wc_A,d_A 0 

X29 WWa_O,b_O,Wa_B,b_B 0 

X30 WWb_O,c_O,Wb_B,c_B 0 

X31 WWc_O,d_O,Wc_B,d_B 0 

X32 HWa_A,b_A 0.05 

X33 HWb_A,c_A 0.05 

X34 HWc_A,d_A 0.05 

X35 HWa_B,b_B 0.05 

X36 HWb_B,c_B 0.05 

X37 HWc_B,d_B 0.05 

X38 HWa_O,b_O 0 

X39 HWb_O,c_O 0 

X40 HWc_O,d_O 0 

X41 MWa_A,b_A 0.995 

X42 MWb_A,c_A 0.995 

X43 MWc_A,d_A 0.995 

X44 MWa_B,b_B 0.99 

X45 MWb_B,c_B 0.99 

X46 MWc_B,d_B 0.99 

Fig. 6.16 Role matrices ms for the timing characteristics (speed factors) and initial values iv
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6.8.2 Role Matrices for Aggregation Characteristics 

The network characteristics for aggregation are defined by the selection of combina-
tion functions from the library and values for their parameters. In role matrix mcfw 
it is specified by weights which state uses which combination function; see Fig. 6.14. 

In role matrix mcfp (see Fig. 6.15) it is indicated what the parameter values are for 
the chosen combination functions. Some of them are adaptive, as can be seen in the 
rows from X17 to X22 (e.g., the persistence factors μ represented by the self-model 
states X41 to X46). 

6.8.3 Role Matrices for Timing Characteristics 

In Fig. 6.16, the role matrix ms for speed factors is shown, which lists all speed 
factors. Next to it, the list of initial values can be found. Also for ms some entries are 
adaptive: the speed factors of X17 to X25 are represented by (second-order) self-model 
states X32 to X40. 
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