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S U M M A R Y
This paper proposes a reflectivity constraint for velocity estimation to optimally solve the
inverse problem for active seismic imaging. This constraint is based on the velocity model
derived from the definition of reflectivity and acoustic impedance. The constraint does not
require any prior information of the subsurface and large extra computational costs, like the
calculation of so-called Hessian matrices. We incorporate this constraint into the joint mi-
gration inversion algorithm, which simultaneously estimates both the reflectivity and velocity
model of the subsurface in an iterative process. Using so-called full wavefield modelling, the
misfit between forward modelled and measured data is minimized. Numerical and field data
examples are given to demonstrate the validity of our proposed algorithm in case accurate
initial models and the low-frequency components of observed seismic data are absent.

Key words: Image processing; Inverse theory; Waveform inversion; Seismic tomography.

1 I N T RO D U C T I O N

A fundamental problem in active seismic imaging is that both the
depth reflectivity and velocity distribution of the subsurface have to
be predicted by only seismic events observed at the surface, which
is a mathematically ill-posed problem. Two types of approaches
have been mainly utilized for addressing this problem in the oil
and gas industry. One approach consists of solving the problems
in two separate steps: velocity estimation and migration. In this
approach, migration provides the reflectivity image based on the
typically smooth velocity model provided by a preceding velocity
estimation method, like full waveform inversion (FWI) (Tarantola
1984; Virieux & Operto 2009). Another approach is to utilize an
interactive procedure between velocity and reflectivity estimation.
For example, migration velocity analysis (MVA) (Liu & Bleistein
1995) has been commonly used as this approach.

FWI enables us to estimate a high-resolution velocity model
through matching a forward modelled response with the events of
observed ‘waveform’ data (presented by Tarantola 1984), which
correspond to so-called diving waves in the standard FWI algo-
rithm for seismic data. However, as FWI is a strongly non-linear
inverse problem, the solutions tend to converge to local minima,
which mean inaccurate velocity models. It is known that several
conditions such as correctness of the initial velocity and presence
of low-frequency components of the observed data are crucial in
preventing the local minima in FWI (see, e.g. Virieux & Operto
2009). Several approaches have been proposed to mitigate the local
minima with the reduced conditions. For example, the effectiveness
of a misfit criterion via Wiener filters for the observed data for
FWI was demonstrated in Warner & Guasch (2016), and a penalty

method for partial differential equation constraint was also applied
to diminish the conditions in van Leeuwen & Herrmann (2016). In
relation to the local minima problem, reconstructing the velocity for
high-contrast geobodies (e.g. salt, basalt) is still a challenge in FWI.
In Esser et al. (2015), an approach was introduced based on total
variation and Hinge loss used in support vector machine, which is
an algorithm of machine learning, to realize the estimation for a
high-contrast velocity model. This approach was expanded by the
split Bregman method (Goldstein & Osher 2009), although these
approaches require the prior information for true total variation and
Hinge loss of the subsurface (Qiu et al. 2016). In addition to the
challenge caused by the local minima, data acquisition with long
offsets is indispensable to obtain enough depth penetration because
standard FWI exploits diving waves. As stated, since FWI is the
first process in the two steps-based approach, migration has to be
applied by using the velocity predicted by FWI.

MVA is capable of stably updating the velocity distribution by im-
proving the flatness of so-called common image gathers, which are
the migrated images with the previous velocity, in the offset or angle
domain (Biondi & Symes 2004; Sava & Biondi 2004). Although
the velocity updated via MVA takes into account information on
the reflectivity of the migrated image, a more advanced migration
scheme, like reverse time migration (RTM), is often applied for
finally using the predicted velocity after MVA. Thus, the approach
based on MVA also requires an additional migration process to give
the final image as the second step.

Joint migration inversion (JMI) was proposed as one of the meth-
ods to simultaneously estimate both velocity and depth reflectivity
distributions and to reduce the mentioned non-linearity in FWI
(Berkhout 2012, 2014b). This means that the two steps containing
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2 S. Masaya and D. J. Verschuur

velocity analysis and migration are integrated in the JMI process.
The seismic modelling algorithm in the JMI process is so-called
full wavefield modelling (FWMod) (Berkhout & Verschuur 2011;
Berkhout 2014a), which is a reflection modelling process, including
higher order scattering and transmission effects, with similarities to
the Bremmer series in optics (Bremmer 1951). This means that the
JMI process utilizes internal multiples for the imaging, although
conventional imaging methods such as MVA, standard RTM and
standard FWI, do not deal with internal multiples. In the data mod-
elling procedure, the velocity model only affects the kinematics
without any scattering effect in the modelling operators and the
reflectivity model only deals with scattering effects. Hence, due to
the involved decoupling of the parameters reflectivity and velocity,
the inverse problem becomes less non-linear. However, for accurate
inversion, when searching the global minimum, some coupling be-
tween the two types of parameters will be desired in the end. In this
paper, we discuss the velocity estimation imposed on a reflectivity
constraint to accurately solve this inverse problem.

Several prior studies reported that reflectivity information can
aid the optimization of velocity inversion. Although MVA might be
also categorized in such approach, the drawback of MVA is that the
resolution of the updated velocity is relatively low because MVA
exploits the flatness of common image gathers instead of fitting
modelled with measured data. A scheme to combine MVA with
FWI was also suggested in Biondi & Almomin (2012) to improve
the resolution. Incorporating the information of migration into the
tomography process for velocity estimation improves the final depth
image (Mathewson et al. 2012), where a dirty salt velocity was es-
timated via the reflectivity, which is computed by true-amplitude
RTM, under a 1D assumption (Ji et al. 2011). With a similar rea-
soning, Maciel et al. (2015) applied nonlinear filters from the field of
morphological image processing to address this challenge and to en-
hance the contrast of the JMI velocity solution. In order to improve
the resolution of the velocity model, we also presented an initial
algorithm and result (Masaya & Verschuur 2016) for reflectivity-
constrained velocity estimation by adding a slowness-based objec-
tive function in JMI, which independently inverts reflectivity and
velocity models.

In this paper, we propose a new reflectivity-based objective func-
tion instead of the mentioned slowness-based objective function for
the reflectivity-constrained velocity estimation in JMI. The objec-
tive function per iteration is based on the difference between the
estimated reflectivity from JMI and the reflectivity approximated
from the estimated velocity from JMI. In addition, a sparsity con-
straint for the reflectivity estimation is introduced to promote the
effect of the reflectivity-constrained velocity estimation. We call
this algorithm reflectivity-constrained JMI (RCJMI) in this paper.
RCJMI aims to automatically update velocity with this reflectivity
constraint and also reflectivity in an alternating iteration process.

This paper first describes notations and the review of JMI in Sec-
tion 2 and, next, gives an algorithm for our proposed reflectivity-
constrained velocity estimation in Section 3. Then, synthetic and
field data examples are presented in Section 4. The extension to mit-
igate the assumption in the proposed algorithm is mainly discussed
in Section 5. Finally, we draw conclusions on the basis of the results
for the examples in Section 6.

Figure 1. Reflected and transmitted wavefields at depth level zn.

2 N O TAT I O N S A N D R E V I E W

We consider a 2D seismic data with Nr ∈ N
+ receivers, Ns ∈ N

+

sources and Nω ∈ N
+ frequency samples. Since a so-called stag-

gered grid is utilized to describe the grid of the subsurface,
the reflectivity model and P-wave velocity model are defined by
mr ∈ R

(M+1)×Nx and mc ∈ R
>0,M×Nx with Nx ∈ N

+ lateral samples
and M ∈ N

+ depth samples. The elements of the reflectivity and
velocity model at a lateral location x and depth z are written by r(x,
z) and c(x, z), respectively.

Let P±(zn) ∈ C
Nr ×Ns×Nω and W±(zn±1; zn) ∈ C

Nr ×Nr ×Nω be the
downgoing/upgoing wavefields at depth level zn and the downgo-
ing/upgoing propagation operators between zn and zn ± 1 in the fre-
quency domain, respectively. Here, the signs, ∗+ and ∗−, represent
‘downgoing’ and ‘upgoing’. Let R∪(zn), R∩(zn) ∈ R

Nr ×Nr be re-
flection operators at zn, as illustrated in Fig. 1. When we consider
a monochromatic wavefield with the frequency ωf, f = 1, 2, · · ·,
Nω, and the source located at xs, ξ , ξ = 1, 2, · · ·, Ns, the down-
going/upgoing wavefields are written by �P±(zn, xs,ξ , ω f ) ∈ C

Nr ,
which are the vectors in P±(zn). The propagation operator at the fre-
quency ωf is also described by W±(zn±1; zn, ω f ) ∈ C

Nr ×Nr , which
is the matrices in W±(zn±1; zn). For the simplification, we use the
following notations (e.g. see Berkhout 1982) for monochromatic
wavefields and propagation operators:

�P±(zn) ≡ �P±(zn, xs,ξ , ω f ), (1)

W±(zn±1; zn) ≡ W±(zn±1; zn, ω f ). (2)

Note that although we describe and demonstrate the process for
the 2D case, the method can easily be extended to the full 3D
situation (such as described in Kinneging et al. 1989; Davydenko
& Verschuur 2017).

2.1 Representations for reflection, transmission and
propagation

This subsection reviews the representation for the reflection, trans-
mission and propagation to introduce our discussed inverse problem.
When a monochromatic downgoing wavefield �P+(zn) at depth level
zn is reflected at a sharp discontinuity, we can write the reflected
wavefield in the frequency domain by using a reflection operator
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Reflectivity-constrained velocity estimation 3

R∪(zn):

�Q−(zn) = R∪(zn) �P+(zn). (3)

Since the upgoing wavefield does not contain only energy from the
reflected wavefield but also from the transmitted wavefield in the
discontinuity, at depth level zn, we can actually express:

�Q−(zn) = T−(zn) �P−(zn) + R∪(zn) �P+(zn), (4)

where �Q−(zn) ∈ C
Nr indicates the total upgoing wavefield moving

away from the discontinuity, �P−(zn) describes the upgoing incom-
ing wavefield at depth level zn from below, and T−(zn) represents
a transmission operator in the discontinuity (see Fig. 1). The trans-
mission operators are defined as T±(zn) ≡ I + δT±(zn), meaning
that differential transmission operator δT±(zn) = 0 if there is no
contrast at zn. Then, eq. (4) is written as:

�Q−(zn) = �P−(zn) + δT−(zn) �P−(zn) + R∪(zn) �P+(zn), (5)

where the last two terms contain the scattered wavefields at depth
level zn for the wavefields that arrive from both sides.

In a similar way, the total downgoing wavefield �Q+(zn) ∈ C
Nr

that leaves the depth level zn can be written as a sum of transmission
and reflection terms:

�Q+(zn) = T+(zn) �P+(zn) + R∩(zn) �P−(zn)

= �P+(zn) + δT+(zn) �P+(zn) + R∩(zn) �P−(zn). (6)

Eqs (4)–(6) are similar to the representation of the Bremmer series
(Bremmer 1951), which is exploited in the mentioned FWMod
process (Berkhout & Verschuur 2011).

The wavefields �Q±(zn) after the transmission and reflection at zn

propagate to the neighboring depth levels zn ± 1 via the wavefield
extrapolation based on the Rayleigh II integral:

�P±(zn±1) = W±(zn±1; zn) �Q±(zn), (7)

where W+(zn+1; zn) and W−(zn−1; zn) are the downgoing and up-
going propagation operators to propagate the wavefields to the next
depth level zn ± 1. The elements of W are written by:

Wi, j (zm ; zn) = 2sign(zn − zm)
∂G

∂z
(x j , zm ; xi , zn), (8)

where G(xj, zm; xi, zn) represents a Green’s function from the orig-
inal location (xj, zm) to the extrapolated wavefield location at (xi,
zn). Within a homogeneous layer, the matrix W exhibits a Toeplitz
structure. This means that the one-way propagation operator in the
medium (i.e. one column of W) is simply defined by a phase-shift
operator (Gazdag 1978):

�W j (zm ; zn) = F−1
x [e− jkz�z̃ e− jkx x j ], (9)

with

kz =
{√

k2 − k2
x , (|kx | ≤ |k|),

− j
√

k2
x − k2, (|kx | > |k|), (10)

where �z̃ ≡ |zn − zm | and k ≡ ω/c. Fx is the spatial Fourier trans-
form.

In the FWMod procedure, the scattering process described in
eqs (5) and (6) and the propagation process described in eq. (7)
are recursively performed at each depth. The procedure can be
summarized in the following equations (Berkhout 2014a):

(i) for the downgoing wavefields (m = 1, 2, · · ·, M):

�P+(zm) = W+(zm ; z0)�S+(z0)

+
m−1∑
n=0

W+(zm ; zn)R∩(zn) �P−(zn), (11)

Figure 2. Flowchart of JMI.

with

W+(zm ; zn) ≡ W+(zm ; zm−1)
n+1∏

l=m−1

T+(zl )W
+(zl ; zl−1), (12)

(ii) for the upgoing wavefields (m = 0, 1, · · ·, M − 1):

�P−(zm) = W−(zm ; zM ) �P−(zM )

+
M∑

n=m+1

W−(zm ; zn)R∪(zn) �P+(zn), (13)

with

W−(zm ; zn) ≡ W−(zm ; zm+1)
n−1∏

l=m+1

T−(zl )W
−(zl ; zl+1), (14)

where �S+(z0) is a downgoing source wavefield at the surface.

2.2 Joint migration inversion

JMI is an inversion algorithm to optimize velocity and reflectivity
models of the subsurface by minimizing the residual between ob-
served and modelled data, which takes into account the scattering
and propagation process based on the mentioned FWMod process,
as shown in Fig. 2.

In the standard implementation for JMI (Staal & Verschuur 2013;
Staal et al. 2014; Verschuur et al. 2016), the objective function,
which contains the residual between the observed data and the
modelled data, is defined as follows:

J = 1

2

Ns∑
ξ

Nω∑
f

‖ �P−
obs(z0, xs,ξ , ω f ) − �P−

mod (z0, xs,ξ , ω f )‖2, (15)

where �P−
obs(z0, xs,ξ , ω f ) and �P−

mod (z0, xs,ξ , ω f ) represent the ob-
served shot data and forward modelled shot data, respectively. Note
that this objective function takes into account multishots and mul-
tifrequency components of seismic data instead of one shot and its
monochromatic component.

The reflectivity and velocity update for eq. (15) is solved by a
gradient decent scheme, as shown in Algorithm 1. Here, ∇Jr and
αr represent the gradient and scale factor for the reflectivity update.
∇Jσ and ασ are the gradient and scale factor for the slowness update.
Furthermore, ∗(k) indicates kth iteration in this inversion and ∗i

Seismic tomography.is the roundtrip number in JMI. The detailed
formulation for the update rules is described in Appendix A.

On the basis of the above procedure, JMI enables to automatically
update reflectivity and slowness/velocity models of the subsurface
in an alternating manner in each iteration. Like typically done in
FWI, to improve the convergence, the JMI process is run according
to a certain frequency schedule, starting with a low-frequency range
and expanding the range after certain number of iterations.
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Figure 3. Overview of RCJMI, where the estimated image also constrains
the velocity update.

Figure 4. The scheme for the velocity update with a reflectivity-based
constraint in each iteration of RCJMI. Note that the block ‘JMI’ refers
to the process shown in Fig. 3.

3 R E F L E C T I V I T Y- C O N S T R A I N E D
V E L O C I T Y E S T I M AT I O N

In this section, we describe our proposed algorithm for iteratively
and automatically reflectivity-constrained velocity estimation. The
main idea in this algorithm is to impose a reflectivity-based con-
straint during the velocity estimation step to improve the accuracy
of the JMI solution, as illustrated in Figs 3 and 4. Furthermore, a
sparsity constraint in the reflectivity update is introduced to further
enhance the reflectivity-constrained velocity estimation.

3.1 Reflectivity approximation based on velocity

First, we derive a reflectivity approximation formulated from the
estimated velocity. If waves are normally incident to the boundary
between depth level zn and zn + 1, the reflection equation for n = 0, ·
· ·, M − 2 can be described by:

r (x, zn+1) = ρ(x, zn+1)c(x, zn+1) − ρ(x, zn)c(x, zn)

ρ(x, zn+1)c(x, zn+1) + ρ(x, zn)c(x, zn)
, (16)

where c and ρ represent the velocity and density model of the sub-
surface. Next, we assume for our constraint calculation that the
density model ρ is constant because in general the density varia-
tion of the subsurface is relatively small compared to the velocity
variation. Then, the reflectivity is approximately calculated by:

r (x, zn+1) � c(x, zn+1) − c(x, zn)

c(x, zn+1) + c(x, zn)
. (17)

We additionally assume that the horizontal variation of velocity
models is much smaller than the vertical variation. Then, a numer-
ical approximation can be obtained from eq. (17):

r (x, zn+1) ∼ �c

�z
× const., (18)

where �c ≡ c(x, zn + 1) − c(x, zn) and �z ≡ zn + 1 − zn. Eq. (18)
means a relationship between reflectivity and velocity. Therefore, an
estimated reflectivity rconstr derived from the velocity model, which
does not include the scale of the correct reflectivity, can be defined
by:

rconstr ≡ ∂c

∂z
. (19)

3.2 Objective function

An objective function for our proposed RCJMI is defined by the
mentioned reflectivity approximation based on the estimated veloc-
ity, i.e. rconstr, and is given as:

J = 1

2

Ns∑
ξ

Nω∑
f

‖P−
obs(z0, xs,ξ , ω f ) − P−

mod(z0, xs,ξ , ω f )‖2

+ λ2‖r (x, z) − �rconstr(x, z)‖2
2

+ λ3

2

∑
x

∑
z

ln{1 + κ−2r 2(x, z)}, (20)

where λ2, λ3 ∈ R
+ represent the weight parameters for the second

and third terms, respectively. � ∈ R
+ represents a scale factor be-

tween r(x, z) and rconstr(x, z) that also takes care of the difference
in units. κ ∈ R

+ indicates a parameter controlling the sparseness of
the reflectivity. We express separately the three terms in the RHS of
eq. (20):

J1 ≡ 1
2

∑Ns
ξ

∑Nω

f ‖P−
obs(z0, xs,ξ , ω f ) − P−

mod(z0, xs,ξ , ω f )‖2, (21)

J2 ≡ λ2‖r (x, z) − �rconstr(x, z)‖2
2, (22)

J3 ≡ λ3
2

∑
x

∑
z ln{1 + κ−2r 2(x, z)}, (23)

where J1 is the standard misfit term that is also described in eq. (15).
J2 is a term of the reflectivity constraint to minimize the residual be-
tween the reflectivity calculated by JMI and the reflectivity approx-
imated by the estimated velocity from JMI. J3 is an optional term
to enhance the sparseness of the reflectivity (Sacchi et al. 1998). As
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Reflectivity-constrained velocity estimation 5

for the weight parameter (λ2) and sparsity parameter (λ3) in RCJMI,
the optimum values are determined via several parameter tests in
each example. Note that if λ2 is chosen too large, velocity updates
will be calculated almost exclusively from the integrated reflectivity
values. On the other hand, if λ2 and λ3 are chosen too small, the
velocity and reflectivity updates will be mainly determined by the
data misfit term.

3.3 Reflectivity and velocity updates

As stated previously, the update procedure in JMI consists of the
reflectivity and slowness/velocity updates, which are derived from
the gradient decent scheme. In RCJMI, the standard misfit function
described by J1 of eq. (21) and the sparsity function described by
J3 of eq. (23) are used for the reflectivity update. On the other hand,
the velocity update in RCJMI is based on the standard misfit func-
tion shown in J1 of eq. (21) and the reflectivity-constraint function
expressed by J2 of eq. (22).

The gradient of J3 for the reflectivity update is simply calculated
by:

∇ J3,r (x, z) = λ3
r (x, z)

κ2 + r 2(x, z)
. (24)

Therefore, the following reflectivity update for RCJMI is given by:

r (k+1)(x, z) = r (k)(x, z) + αr (∇ J1,r (x, z) + ∇ J3,r (x, z)). (25)

As for the velocity update in RCJMI, since the approximated
reflectivity rconstr(x, z) does not have a correct scale, the reflectivity
residual rres(x, z) between r(x, z) and rconstr(x, z) is computed via
least-squares fitting in the first step (see Fig. 4):

rres(x, z) ≡ r (x, z) − �rconstr(x, z), (26)

� = arg min� ‖r (x, z) − �rconstr(x, z)‖2
2. (27)

To obtain the gradient of J2 for the velocity update, we take the
numerical integral of the reflectivity residual rres(x, z) along z:

∇ J2,c(x, z) = λ2

∫ z

z0

rres(x, z′)dz′. (28)

We apply a low-cut filter and a horizontal median filter to the gra-
dient ∇J2, c(x, z). The low-cut filter applied to the gradient ∇J2, c(x,
z) along z is used to provide a sharp velocity update. After the appli-
cation of the low-cut filter, a horizontal median filter for the gradient
is performed to remove the outliers, which can generate artefacts.

A scale factor for the velocity update of this term is given by:

αc2 =
∑

x

∑
z | ∫ z

z0
rres(x, z′)dz′|2∑

x

∑
z | ∫ z

z0
r (x, z′)dz′|2 . (29)

Therefore, we can update the velocity model as follows:

c(k+1)(x, z) = 1

σ (k)(x, z) + ασ1∇ J1,σ (x, z)
+ αc2∇ J2,c(x, z), (30)

where ∇J1, σ and ασ1 are the gradient and scale factor of the slowness
σ ( = 1/c) in standard JMI, which correspond to ∇Jσ of eq. (A21)
and ασ of eq. (A23) in Appendix A. The reflectivity and velocity
update procedure in RCJMI is summarized in Algorithm 2.

4 R E S U LT S

This section provides two synthetic data examples and one field data
example to evaluate the effectiveness of RCJMI in comparison with

standard JMI. Shot data for the synthetic examples is generated by
FWMod with a Ricker source wavelet centered at 20 Hz in order
to correctly examine the effect of our proposed constraints. Up to
the fifth order of multiples are included in the synthetic data. The
acquisition in the synthetic examples assumes to use fixed receivers
at the top of the depth level (z = 0).

4.1 Lens-shaped model

The first example is a 2D model containing a lense-shaped anomaly,
shown in Figs 5(a) and (b). The model consists of the high-velocity
region with a lense shape and three horizontal reflectors under the
region. The receiver and source intervals are 20 and 80 m, respec-
tively.

Three frequency schedules, as shown in Tables 1–3, for the itera-
tion of the inversions are tested to investigate the frequency depen-
dence with the same conditions aside from the schedule. The max-
imum offset in the data used for the inversion is 2000 m. Figs 5(c)
and (d) show the initial velocity and reflectivity models for the
inversions. The parameters λ2 = 15, λ3 = 5.0 × 10−7, and κ =
2.5 × 10−2 are used for RCJMI.

Figs 5(e)–(l) represent the results of JMI and RCJMI with fre-
quency schedule I. It can be seen that RCJMI accurately inverts
a velocity field and, as a result, the reflectivity image is also cor-
rectly migrated (see Figs 5k and l). On the other hand, Figs 6(a)–(h)
and 7(a)–(d) indicate the results of JMI and RCJMI with frequency
schedule II and III, respectively. As shown in Figs 5(f) and (j),
the velocity profiles given by JMI apparently include the artefacts
beneath the high-velocity region, while these are almost absent in
Figs 6(b) and (f) and 7(b). This means that the accuracy of the mod-
els estimated by JMI strongly depends on each frequency schedule.
However, RCJMI is capable of providing highly accurate velocity
and reflectivity models, as illustrated in Fig. 8.

To quantitatively evaluate the accuracy of the velocity estimation
for JMI and RCJMI, the following velocity error cerror is defined:

cerror ≡
∑

x

∑
z |ctrue(x, z) − cest(x, z)|∑

x

∑
z ctrue(x, z)

, (31)
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6 S. Masaya and D. J. Verschuur

Figure 5. Reflectivity and velocity models in the first example with frequency schedule I (5–40 Hz). It can be seen that RCJMI stably provides accurate
velocity models, while the velocity models estimated by JMI include artefacts.

Table 1. The frequency schedule I for JMI and RCJMI in the first example.

Order Frequency (Hz) No. of iterations

1 5–10 12
2 5–20 12
3 5–30 10
4 5–40 106

Total 140

Table 2. The frequency schedule II for JMI and RCJMI in the first example.

Order Frequency (Hz) No. of iterations

1 5–10 5
2 5–20 15
3 5–30 15
4 5–40 105

Total 140

Table 3. The frequency schedule III for JMI and RCJMI in the first example.

Order Frequency (Hz) No. of iterations

1 10–15 5
2 10–23 15
3 10–32 15
4 10–40 105

Total 140

where ctrue and cest are the true velocity and the velocity estimated
by the inversions. Fig. 9 shows the iteration dependence of the
velocity error cerror for JMI and RCJMI using frequency schedules
I, II and III. It is clear that the performance of RCJMI is not sensitive
to the frequency schedule, although the solutions inverted by JMI
relatively converge to local minima. Note again that we are dealing
with a so-called ’inverse crime’, where the same FWMod is used
to obtain the shot data. Thus, in theory a perfect inversion result
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Figure 6. Estimated reflectivity and velocity models for the first example with frequency schedule II (5–40 Hz). Note that with this frequency schedule JMI
results are better, although the final RCJMI results are similar to that of schedule I (Fig. 5)

Figure 7. Estimated reflectivity and velocity models for the first example with frequency schedule III (10–40 Hz). As shown in (c) and (d), accurate reflectivity
and velocity can be reconstructed by RCJMI even if the low-frequency components smaller than 10 Hz are absent.

could be obtained, so any imperfection is due to the used inversion
algorithm.

4.2 SEG/EAGE salt model

As a more complex and realistic example, a 2D subset of the Soci-
ety of Exploration Geophysicists/European Association of Geosci-
entists and Engineers (SEG/EAGE) (Aminzadeh 1997) salt model
is used. Rescaling and horizontal resampling for this model are ap-
plied in order to reduce computation time. The model contains a
salt body, which has high velocity, shown in Figs 10(a) and (b). The
receiver and source intervals are 10 and 40 m, respectively.

The frequency schedules I, II and III, described in Table 4–6, are
used for the inversions in this example in order to investigate the
contribution of the low-frequency components, which are crucial

for standard FWI. Table 4 shows that the used frequency bands of
seismic data for the inversion consists of four cycles: 1a–3a, 4b–6b,
7c–9c and 10d–13d. This procedure is effective to estimate high-
velocity contrasts like salt bodies by both JMI and RCJMI. The
maximum offset used for the inversion is 3370 m. Figs 10(c) and
(d) show the initial velocity and reflectivity models for JMI and
RCJMI, which do not include any information about the salt body.
The parameter λ2 = 10 is used for RCJMI. The sparse term is not
exploited in this example (λ3 = 0).

We show the results of JMI using frequency schedule I after 60
iterations in Figs 10(e) and (f) and after 180 iterations in Figs 10(i)
and (j). The RCJMI results with frequency schedule I are illustrated
in Figs 10(g), (h), (k) and (l), and the RCJMI results using the fre-
quency schedules II and III are shown in Fig. 11. Fig. 12 represents

Downloaded from https://academic.oup.com/gji/article-abstract/214/1/1/4939269
by Delft University of Technology user
on 11 June 2018



8 S. Masaya and D. J. Verschuur

Figure 8. Comparison of the performance after 130 iterations between JMI
and RCJMI with frequency schedule I (5–40 Hz) at lateral location x =
1000 m.

Figure 9. The velocity error cerror between the true velocity model and the
estimated model from JMI and RCJMI with the frequency schedule I (5–
40 Hz), II (5–40 Hz) and III (10–40 Hz). These results demonstrate that the
solutions of RCJMI relatively converge to global minima (see red, purple
and blue lines).

the iteration dependency of the velocity error cerror for JMI and
RCJMI.

It can be observed that after 180 iterations JMI does not recon-
struct the correct shape of the salt body in the velocity estimation
(see Fig. 10j). However, RCJMI gives the accurate shape of the salt
body owing to its reflectivity-constrained velocity estimation in an
early iteration stage (see Fig. 10l). As a result, the reflectivity image
is clear (see Fig. 10k), although the depth of the imaged reflectivity
below the salt body is slightly inaccurate due to the overestimated
velocity under the salt body. As shown in Figs 11 and 12, both
the velocity and reflectivity distributions are effectively estimated
without accurate initial models and low-frequency components of
the observed seismic data. A close inspection of Fig. 12 shows that
the results without the low-frequency components up to 10Hz, sur-
prisingly enough, show an improved performance in terms of the
velocity estimation in RCJMI.

4.3 Field data example

Finally, we test our proposed method for a 2D field data provided
by Statoil. The data was acquired by a streamer survey in the North
Sea, in the Vøring area, offshore Norway. The receiver and source
intervals used in our process are 25 m and 50 m, respectively. The
direct wave and the surface-related multiples have been removed,
and receiver deghosting was applied.

The source wavelet used for JMI and RCJMI is estimated from the
surface-related multiples using the so-called estimation of primaries
by sparse inversion (EPSI) process (van Groenestijn & Verschuur
2009). As shown in Table 7 and 8, 5-40 Hz and 7-40 Hz of the
seismic data are prepared for JMI and RCJMI, respectively because
it was demonstrated that RCJMI is not sensitive to the existence of
low-frequency components in the above synthetic examples. The
maximum offset used for the inversion is 2500 m. As the initial
velocity model, a simple 1D velocity function shown in Fig. 13(b)
has been chosen. The parameter λ2=2 is used for RCJMI. The
sparsity term is not exploited in this example (λ3=0).

Figs 13(c) and (d) show the reflectivity and velocity estimated by
JMI after 85 iterations and Figs 13(e) and (f) illustrate the migrated
reflectivity and reconstructed velocity after 85 RCJMI iterations. To
compare the detail of the estimated velocity and reflectivity models,
we show the models in the depth levels 1500-2400 m in Fig. 14.
As illustrated in Figs 14(a) and (b), the velocity reconstructed by
RCJMI has high resolution and matches the structure of the esti-
mated reflectivity well, although the lateral variation in the high
velocity layer produced by JMI may be somewhat unlikely in the
light of the estimated reflectivity (see the part of the lateral locations
2000-3000 m and the depth levels 1700–2000 m in Fig. 14c). Note
that the difference of reflectivity estimated by between JMI and
RCJMI is not large because the velocity variation in this example
is relatively small.

5 D I S C U S S I O N

5.1 Computational cost

The extra computational cost of our proposed constraint is small.
When the computational time of JMI and RCJMI for 10 iterations
in the first example with the 2D lense-shaped model is measured,
the increase of the computational time by RCJMI is 1.0 per cent
per iteration on average. Therefore, this constraint does not require
large extra computational cost.

5.2 Density variations

Our proposed algorithm assumes that for the constraint calculation
the density of the subsurface is constant, as stated in eq. (17). Since
density variations are generally smaller than velocity variations, this
assumption would be realistic. However, density variations can be
simply included in the constraint if a well-known empirical relation,
so-called Gardner’s relation (Gardner et al. 1974), in rock physics
is used, which is given by:

ρ(x, z) = Ac(x, z)B, (32)

where A, B ∈ R
+ represent the parameters for fitting. If velocity

c and density ρ are measured in m/s and g/cm3, respectively, the
observation that taking A = 0.31 and B = 0.25 gives a good fit for
typical sediments is reported in (Gardner et al. 1974). A modified
reflectivity can be represented by the following equation instead of
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Figure 10. Reflectivity and velocity models in the second example with frequency schedule I (5–40 Hz).

Table 4. The frequency schedule I for JMI and RCJMI in the SEG/EAGE
salt model example.

Order Frequency (Hz) No. of iterations

1a 5–10 10
2a 5–25 10
3a 5–40 10
4b 5–10 10
5b 5–25 10
6b 5–40 10
7c 5–10 10
8c 5–25 10
9c 5–40 10
10d 5–10 12
11d 5–20 12
12d 5–30 10
13d 5–40 56

Total 180

Table 5. The frequency schedule II for RCJMI in the SEG/EAGE salt model
example.

Order Frequency (Hz) No. of iterations

1a 7–11 10
2a 7–25.5 10
3a 7–40 10
4b 7–11 10
5b 7–25.5 10
6b 7–40 10
7c 7–11 10
8c 7–25.5 10
9c 7–40 10
10d 7–11 12
11d 7–20.6 12
12d 7–30.3 10
13d 7–40 56

Total 180
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Table 6. The frequency schedule III for RCJMI in the SEG/EAGE salt
model example.

Order Frequency (Hz) No. of iterations

1a 10–14 10
2a 10–27 10
3a 10–40 10
4b 10–14 10
5b 10–27 10
6b 10–40 10
7c 10–14 10
8c 10–27 10
9c 10–40 10
10d 10–14 12
11d 10–22.7 12
12d 10–31.3 10
13d 10–40 56

Total 180

Figure 11. RCJMI reflectivity and velocity models after 180 iterations with
frequency schedules II (7–40 Hz) and III (10–40 Hz).

eq. (16):

r (x, zn+1) = Ac(x, zn+1)B+1 − Ac(x, zn)B+1

Ac(x, zn+1)B+1 + Ac(x, zn)B+1

= c(x, zn+1)B+1 − c(x, zn)B+1

c(x, zn+1)B+1 + c(x, zn)B+1
. (33)

Here, using ζ (x, z) ≡ c(x, z)B + 1, we can derive an approximation:

r (x, zn+1) ∼ �ζ

�z
× const., (34)

where �ζ ≡ ζ (x, zn + 1) − ζ (x, zn). Since this eq. (34) has a similarity
with eq. (18), a similar constraint can be formulated by defining
rconstr(x, zn + 1) ≡ ∂ζ /∂z and rres(x, z) ≡ r(x, z) − �rconstr(x, z). The

Figure 12. The velocity error cerror between the true velocity model and the
estimated model from JMI and RCJMI using frequency schedule I (5-40 Hz),
II (7-40 Hz), and III (10-40 Hz). Compared with JMI, RCJMI remarkably
reduces the velocity error independently of the existence of low-frequency
components.

Table 7. The frequency schedule for JMI in the field data example.

Order Frequency (Hz) No. of iterations

1a 5–10 10
2a 5–20 10
3a 5–30 10
4a 5–40 5
5b 5–20 10
6b 5–30 10
7b 5–40 5
8c 5–20 10
9c 5–30 10
10c 5–40 5

Total 85

Table 8. The frequency schedule for RCJMI in the field data example.

Order Frequency (Hz) No. of iterations

1a 7–11 10
2a 7–20.6 10
3a 7–30.3 10
4a 7–40 5
5b 7–20.6 10
6b 7–30.3 10
7b 7–40 5
8c 7–20.6 10
9c 7–30.3 10
10c 7–40 5

Total 85

gradient for velocity update described in eq. (28) is replaced by:

∇ J2,c(x, z) = λ2[ζres(x, z)]1/(B+1), (35)

with

ζres(x, z) ≡
∫ z

z0

rres(x, z′)dz′. (36)

Hence, this extension of the proposed constraint is capable of deal-
ing with density variations by giving a parameter B. Note again that
since Gardner’s relation is an empirical relation, this extension does
not take account of any physics theory. Finally, note that this relation
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Figure 13. Estimated reflectivity and velocity models in the field data example.

Figure 14. Estimated reflectivity and velocity models for depth levels 1500-
2400 m. It is found that the RCJMI velocity has a better correspondence to
its reflectivity.

is only used in the constraint for updating the velocity; the forward
modelling process within JMI does not rely on this assumption.

6 C O N C LU S I O N S

We propose an algorithm for reflectivity-constrained velocity es-
timation to improve its accuracy through a novel velocity update
process utilizing the inverted reflectivity in each iteration. This al-
gorithm does not require any prior information of the subsurface and
large extra computational costs, such as the calculation of so-called
Hessian matrices.

The numerical and field data examples demonstrate that the pro-
posed reflectivity-constrained JMI algorithm enables us to largely
improve the automatic velocity estimation, even in the case of high-
velocity contrasts, without accurate initial models, although the
final velocity model is not perfect yet probably due to the typical
velocity-depth ambiguities. The reflectivity distributions are also
improved owing the accurate velocity. Moreover, the experiments
showed that the performance of the algorithm was not sensitive to
the existence of the used low-frequency components of observed
data and to the used frequency schedule for the inversion.
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A P P E N D I X A : R E F L E C T I V I T Y A N D
V E L O C I T Y U P DAT E S B Y J M I

This section derives the update rules for JMI. If we assume that
reflection coefficients are angle and frequency independent and the
subsurface wave conversion is small, we can obtain the following
approximations:

R(zn) = R∪(zn) = −R∩(zn), (A1)

δT+(zn) = R(zn), (A2)

δT−(zn) = −R(zn), (A3)

where R(zn) and T(zn) are diagonal matrices at depth level zn with
scalar reflectivity r(x, zn) and transmission t(x, zn), respectively,
along their diagonals.

A1 Reflectivity update

Calculation of their gradients is required to update the reflectivity
and velocity models by the gradient descent scheme. We can derive
the gradient for the reflectivity update:

∇ �Jr (zn) = diag

( Ns∑
ξ

Nω∑
f

[W−
i (z0; zn, ω f )]H �Ei (z0, xs,ξ , ω f )

[ �P+
i (zn, xs,ξ , ω f )]H

)
−diag

( Ns∑
ξ

Nω∑
f

[ M∑
m=n+1

[W+
i (zm ; zn, ω f )]H R(zm)W−

i (z0; zm, ω f )

]H

�Ei (z0, xs,ξ , ω f )[ �P−
i−1(zn, xs,ξ , ω f )]H

)
, (A4)

with

�Ei (z0, xs,ξ , ω f ) ≡ �P−
obs(z0, xs,ξ , ω f ) − �P−

mod,i (z0, xs,ξ , ω f ), (A5)

where �Ei (z0, xs,ξ , ω f ) represents the residual between observed and
modelled shot data at ith roundtrip and H indicates the Hermitian
conjugate. Note that the first term of the RHS in eq. (A4) means the
cross-correlation between the back-propagated upgoing wavefield
for the residual and the forward modelled downgoing wavefield.
The second term indicates the cross-correlation between the back-
propagated downgoing wavefield for the residual and the forward
modelled upgoing wavefield. Thus, eq. (A4) can be interpreted as the
reflectivity image of the residual data. The wavefield perturbation
can be obtained from the gradient as follows:

� �P−
J,r (z0, xs,ξ , ω f ) =

M∑
n=1

W−
i (z0; zn, ω f )∇Jr (zn)

�P+
i (zn, xs,ξ , ω f ), (A6)
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where ∇Jr (zn) is a square matrix with the gradient ∇ �Jr (zn) along
its diagonal. A scale factor to adjust the reflectivity update in each
iteration is defined by:

αr =
∑Ns

ξ

∑Nω

f [� �P−
J,r (z0, xs,ξ , ω f )]H �Ei (z0, xs,ξ , ω f )∑Ns

ξ

∑Nω

f ‖� �P−
J,r (z0, xs,ξ , ω f )‖2

. (A7)

Finally, we can update the reflectivity model as follows:

r (k+1)(x, z) = r (k)(x, z) + αr∇ Jr (x, z), (A8)

where ∇Jr(x, z) are the diagonal elements of ∇Jr (zn). Note that in
the above description, unlike the formulation of Berkhout (2014b),
the transmission operators have been included in the W’s, yielding
the W’s, providing a somewhat more accurate gradient.

A2 Slowness update

The velocity updating procedure is similar to the reflectivity update.
To keep the notation similar, we describe the procedure to update
the slowness (σ = 1/c) model instead of the velocity model (Staal
2015).

First, we derive a linearized relationship between the propagation
operators and the slowness model by introducing their perturbations.
The propagation operators are based on the phase-shift operator in
the wavenumber domain:

w̃(kx , ω) = e− jkz�z, (A9)

with

kz(σ ) =
√

ω2σ 2 − k2
x . (A10)

Using their perturbations, we can obtain the following linearized
equation:

�w̃ = w̃new − w̃old ≈
[

∂w̃

∂σ

]
σold

�σ

= − jω

[
k

kz

]
σold

w̃old�σ, (A11)

where w̃new is the operator in an updated slowness model σ new and
w̃old is the operator in the current slowness model σ old. Then, an
operator L, which is similar to the propagation operators in eq. (9),
is defined by:

�L j (zm ; zn) = F−1
x

[
− jω�z

[
k∗

z k

|kz |2 + ε

]
σold

e− jkz�ze− jkx x j

]
, (A12)

where ε is a small stabilization parameter and ∗ indicates com-
plex conjugate. Therefore, we can derive a linearized relationship
between the propagation operators and the slowness model:

�W−(zn+1; zn) ≈ L+(zn+1; zn)�σ (zn), (A13)

�W+(zn ; zn+1) ≈ �σ (zn)L−(zn ; zn+1), (A14)

where �σ (zn) is a diagonal matrix with the slowness updates
�σ (x, zn) along its diagonal. An operator L+(zn+1; zn) is defined as
L+(zn+1; zn) = [L−(zn ; zn+1)]T .

We calculate the update direction for the propagation operators:

�W−(zn ; zn+1, ω f ) =
Ns∑
ξ

[V−
i (z0; zn, ω f )]H

�Ei (z0, xs,ξ , ω f )[ �Q−
i (zn+1, xs,ξ , ω f )]H , (A15)

�W+(zn+1; zn, ω f ) =
Ns∑
ξ

[V∪
i (z0; zn+1, ω f )]H

�Ei (z0, xs,ξ , ω f )[ �Q+
i (zn, xs,ξ , ω f )]H , (A16)

with

V−
i (z0; zn, ω f ) ≡ W−

i (z0; zn, ω f )[I − Ri (zn)], (A17)

V∪
i (z0; zn+1, ω f ) ≡ W−

i (z0; zn, ω f )Ri (zn)

+
M∑

m=n+1

W−
i (z0; zm, ω f )Ri (zm)

W+
i (zm ; zn, ω f )[I + Ri (zn)], (A18)

and

�Q+
i (zn) = [I + Ri (zn)] �P+

i (zn) − Ri (zn) �P−
i−1(zn), (A19)

�Q−
i (zn) = [I − Ri (zn)] �P−

i (zn) + Ri (zn) �P+
i (zn), (A20)

where i represents the number of roundtrips. Hence, we can calculate
the gradient for the slowness update:

∇ �Jσ (zn) = diag

{ Nω∑
f

�W−(zn ; zn+1, ω f )

[L−(zn ; zn+1, ω f )]H

}
+ diag

{ Nω∑
f

[L+(zn+1; zn, ω f )]H �W+(zn+1; zn, ω f )

}
.

(A21)

The wavefield perturbation can be obtained from the gradient as
follows:

� �P−
J,σ (z0, xs,ξ , ω f ) =

M∑
n=1

V−
i (z0; zn, ω f )∇Jσ (zn)

L−(zn ; zn+1, ω f ) �Q−
i (zn+1, xs,ξ , ω f )

+
M∑

n=1

V∪
i (z0; zn+1, ω f )L+(zn+1; zn, ω f )

∇Jσ (zn) �Q+
i (zn, xs,ξ , ω f ), (A22)

where ∇Jσ (zn) indicates a square matrix with the gradient ∇ �Jσ (zn)
along its diagonal. On the basis of the wavefield perturbation, a
scale factor for the slowness update in each iteration is defined by:

ασ =
∑Ns

ξ

∑Nω

f [� �P−
J,σ (z0, xs,ξ , ω f )]H �E(z0, xs,ξ , ω f )∑Ns

ξ

∑Nω

f ‖� �P−
J,σ (z0, xs,ξ , ω f )‖2

. (A23)

Finally, we can update the slowness model:

σ (k+1)(x, z) = σ (k)(x, z) + ασ ∇ Jσ (x, z). (A24)
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