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SUMMARY

In this thesis we perform a theoretical study on the Chirality Induced Spin Selectivity
effect in the context of two-terminal measurements for realistic parameters. In two-
terminal measurements on chiral molecules one of the leads is magnetized and the cur-
rent is measured for opposite magnetizations. In experiment it is found that the currents
for opposite magnetizations are different for finite bias voltage. We call this finite differ-
ence a magnetocurrent. The magnetocurrent is odd in bias voltage and the size of the
effect of the order of a few percent. Our aim is to explain this effect through modeling
junctions with interactions and the spin-orbit where we always use choose realistic pa-
rameters.

In chapter 1 we give an introduction to the different experiments that have been per-
formed on the Chirality Induced Spin Selectivity effect. We focus on the two-terminal
measurements and discuss Onsager reciprocity and Büttiker reciprocity. We conclude
that Onsager reciprocity must always be explicitly verified in experiment and theory.
Lastly we conclude that interactions have to be present to explain the Chirality Induces
Spin selectivity.

In chapter 2 we model a two-terminal junction containing helicene and gold with re-
alistic parameters. Interactions are introduced through Büttiker voltage probes and we
are interested in the size of the effect (magnetoresistance) in the currents. We conclude
that the magnetoresistance vanishes if interactions are absent, in line with the Büttiker
reciprocity theorem. When interactions are present a finite magnetoresistance appears
and for realistic parameters it is of the order 0.1% and vanishes if the spin-orbit coupling
(in the gold and the molecule) is set to zero. We explicitly verify the Onsager-reciprocity
theorem such that the magnetocurrent around zero bias voltage is non-linear. The mag-
netocurrent is found to be dominantly even in bias voltage, contrary to the odd signature
found in experiment.

In chapter 3 we model a molecule as a tight binding chain with nearest neighbour
hopping and next-nearest neighbour spin-orbit coupling. Interactions are modelled
through on-site Coulomb interactions in the Hartree-Fock and Hubbard One approx-
imation. The leads are take in the wide-band limit. The magnetocurrent is found to
satisfy Onsager reciprocity and to be dominantly odd in bias voltage for strong Coulomb
interactions in both approximations. The size of the effect is of the order 0.1% for a real-
istic choice of parameters.

In chapter 4 we model a molecule as a tight binding chain with nearest neighbour
hopping and nearest neighbour spin-orbit coupling. Interactions are modelled through
on-site Coulomb interactions in the Hartree-Fock and Hubbard One approximation. The
bias dependence of the magnetocurrent for semi-infinite leads and wide-band limit leads
is studied. We find that the magnetocurrent is exactly even for leads in the wide band
limit and exactly odd for semi-infinite leads in both approximations. These numeri-
cal findings are supported by the theoretical analyses and originate from the bipartite-

ix



x SUMMARY

lattice symmetry and time-reversal properties of the Green’s function. We also demon-
strate the validity of Onsager reciprocity and we find an effect that is of the order 0.1%
for realistic parameters.

In chapter 5 we study the effect of vibrational modes in the off-resonance regime for
chiral molecules. The magnetocurrent is found to satisfy the Onsager-reciprocity theo-
rem and its is dominantly even in bias voltage. The magnetocurrent becomes non-zero
when the bias voltage matches the energy of the vibrational mode and the size of the
effect is of the order 0.1% for realistic parameters.



SAMENVATTING

In deze thesis voeren we een theoretische studie uit over het chiraliteit geïnduceerde
spin selectieve effect in de context van systemen met twee elektrodes voor realistiche
parameters. In metingen voor systemen met twee elektrodes betreffende chirale mole-
culen wordt één van de elektrodes gemagnetiseerd en de stroom wordt gemeten voor
tegenovergestelde magnetisaties. In het experiment wordt gemeten dat de stroom voor
tegenovergestelde magnetisatie richtingen van elkaar verschilt voor een eindig bias vol-
tage. Wij noemen dit eindige verschil een magnetostroom. De magnetostroom is oneven
in het bias voltage en de grootte van het effect is van de orde van een paar procent. Ons
doel is om dit effect te verklaren door interacties en de spin-baan koppeling in de theore-
tische beschrijving van het systeem op te nemen waarbij er altijd gebruik wordt gemaakt
van realistische parameters.

In hoofdstuk 1 geven we een introductie over de verschillende soorten experimenten
die gedaan zijn in de context van chiraliteit geïnduceerde spin selectiviteit. Uiteindelijk
zullen we ons concentreren op twee elektrode metingen en zullen we Onsager reciproci-
teit en Büttiker reciprociteit bespreken. We concluderen dat Onsager reciprociteit altijd
expliciet geverifieerd moet worden in het experiment én in de theorie. Tot slot conclu-
deren we dat interacties aanwezig moeten zijn in de theoretische beschrijving om het
chiraliteit geïnduceerde spin selectieve effect te verklaren.

In hoofdstuk 2 modelleren we een junctie die bestaat uit een heliceen molcuul met
gouden elektrodes voor realistische parameters. Interacties worden geïntroduceerd door
Büttiker voltage probes en we zijn geînteresseerd in de grootte van het effect (magneto-
weerstand). We concluderen dat de magnetoweerstand nul wordt als interacties afwezig
zijn, in overeenstemming met Büttiker reciprociteit. Wanneer interacties worden mee-
genomen verschijnt er voor realistische parameters een eindige magnetoweerstand die
van de orde 0.1% is en verdwijnt als de spin-baan koppeling (in het goud en in het he-
liceen molecuul) op nul wordt gezet. Onsager reciprociteit wordt expliciet geverifieerd
zodanig dat de magnetostroom rond het bias voltage nul non-lineair is. De magneto-
stroom in onze studie is dominant even in het bias voltage, in tegenstelling tot het sig-
natuur dat gevonden wordt in het experiment.

In hoofdstuk 3 modelleren we een molecuul in als een eindige “tight-binding” ket-
ting met naaste buren hopping en naaste-naaste buren hopping afkomstig van de spin-
baan koppeling. Interacties worden gemodelleerd als Coulomb interacties tussen elek-
tronen die zich op hetzelfde site bevinden met tegenovergestelde spin in de Hartree-
Fock en Hubbard-One benadering. De elektrodes worden gemodelleerd in de wijde ban-
den limiet. De magnetostroom voldoet aan Onsager reciprociteit en de magnetostroom
is dominant oneven in het bias voltage voor sterke Coulomb interacties in beide bena-
deringen. De orde van grootte van het effect is van de orde 0.1% voor realistische para-
meters.

In hoofdstuk 4 modelleren we een molecuul in als een eindige “tight-binding” ket-
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ting met naaste buren hopping en naaste buren hopping afkomstig van de spin-baan
koppeling. Interacties worden gemodelleerd als Coulomb interacties tussen elektro-
nen die zich op hetzelfde site bevinden met tegenovergestelde spin in de Hartree-Fock
en Hubbard-One benadering. De bias voltage afhankelijkheid van de magnetostroom
wordt onderzocht voor semi-oneindige elektrodes en elektrodes in de wijde banden li-
miet. Een theoretische analyse gebaseerd, op de tweedelige rooster en tijdsomkeer sym-
metrie van de Green’s functies, toont aan dat de voltage afhankelijkheid van de mag-
netostroom exact even is in de wijde banden limiet en exact oneven is voor de semi-
oneindige elektrodes in beide benaderingen. Onze numerieke resultaten ondersteunen
deze theoretische analyse. We tonen wederom aan dat aan Onsager reciprociteit wordt
voldaan en dat de orde van grootte voor realistische parameters 0.1% is.

In hoofstuk 5 bestuderen we het effect van vibrationele “modes” in het uit-resonante
regime voor chirale moleculen. De magnetostroom voldoet aan Onsager reciprociteit en
is dominant even in het bias voltage. De magnetostroom wordt niet-nul wanneer het
bias voltage gelijk is aan de eigenfrequentie van de vibrationele “mode” en de grootte
van het effect is van de order 0.1% voor realistische parameters.



1
INTRODUCTION

The Chirality Induced Spin Selectivity (CISS) effect is measured across different types of
experiments for chiral molecules. We focus on two-terminal transport experiments with
chiral molecules where a non-zero magnetocurrent is measured. Magnetocurrent is de-
fined as the difference between the charge currents at finite bias in a two terminal device
for opposite magnetizations of one of the leads. Our aim is to develop a theory to explain
the appearance and bias voltage dependence of this magnetocurrent. In order to do so we
discuss the Onsager reciprocity theorem in detail. We conclude that in order to understand
the CISS effect, electrons must interact amongst themselves or with vibrational modes. In
the following chapters the signature and size of the magnetocurrent for the different types
of interactions are discussed.

1.1. CHIRALITY INDUCED SPIN SELECTIVITY
Chirality induced spin selectivity (CISS) is a broad term that is used to describe phenom-
ena observed across different types of experiments concerning chiral molecules. These
experiments entail photo-emission, enantiospecific adsorption, two terminal transport,
Hall-type and chemical reactions (for an extensive overview see ref [1]).

Chirality is the property a stationary object can have and it means that there are two
different configurations which are related to each other by by a mirror operation. These
two configurations cannot be made to coincide by applying rotations on them. The term
chirality is derived from the ancient Greek word for hand: χϵιρ (kheir) and, not surpris-
ingly, an example of a chiral object is a hand. Molecules can also be chiral and example is
shown in figure 1.1, the molecules are each others mirror image and cannot be superim-
posed by applying rotations.1 Other examples of organic chiral molecules are helicene,
DNA,proteins,sugars etc. and also some anorganic molecules such as copper oxide and
perovskites can be made chiral. Helicene and DNA molecules are shaped like a helix

1Barron2 made a further distinction of chirality for moving (rather than stationary) objects. A moving object is
said to be “truly chiral” if its time-reversed image cannot be superimposed with its mirror image.

1
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Figure 1.1: The molecule on the right is the mirror image of the molecule on the left. These molecules cannot
be made to coincide by applying rotations and translations, therefore they are chiral.

and their chirality is indicated by the direction in which the helix turns, which is either
clockwise or anti-clockwise when looking along the helical axis.

1.2. PHOTO-EMISSION EXPERIMENTS
Before the first observation of CISS, Mayer and Kessler3 found that a vapor of chiral,
camphorlike molecules containing an ytterbium atom (Yb(hfc)3), show an asymmetry
between the transmission probability of electrons initially polarized parallel and anti-
parallel to the electron beam axis. This asymmetry changed sign between the enan-
tiomers of the molecule. Later experiments with bromocamphor,4 dibromocamphor
and X(hfc)3 (with X = Yb,Pr,Eu,Er)5 also showed this asymmetry. It was found that the
asymmetry grows with the atomic number of atoms added to the camphor (Br,Yb,Pr,Eu,Er)
and that the asymmetry became large when there were resonances in the cross-section
corresponding to temporary ion formation.4,5

The first observation of CISS was made in the photo-emission experiment of Ray et
al.6 in 1999. In this experiment electrons where photo-excited from a gold substrate,
then passed through a layer of chiral molecules attached to this substrate and the trans-
mission for spin up and spin down electrons was measured. The polarization of the
incoming light can induce an asymmetry for spin up and spin down electrons in the out-
going electron beam, even for a bare gold substrate (the asymmetry is zero for linearly
polarized light). Surprisingly, it was found that a layer of chiral molecules attached to the
gold substrate changed this asymmetry significantly for spin up and spin down electrons
than the bare gold substrate. Other studies confirmed that this effect also occurred for
other chiral molecules such as double stranded DNA molecules7,8 on gold, helicene9 on
copper & gold, oligopeptides10 on Au and copper oxide - gold films.11

1.3. TWO-TERMINAL TRANSPORT
In two terminal transport experiments on chiral molecules12–24 one lead is magnetized
and the currents for positive and negative magnetization are measured as a function of
bias voltage (see fig. 1.2). The CISS effect manifests itself as the appearance of a magne-
tocurrent. Magnetocurrent is the observation that the currents for non-zero bias voltage
differ for opposite magnetizations of the lead. The magnetocurrent is dominantly odd
in bias voltage and values of the order 6%−90% have been measured. In this thesis we
will focus on the theory of two terminal transport of CISS experiments.
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Figure 1.2: Schematic of a two terminal experiment. A bias voltage V is applied and the current I that runs
through the chiral helicene molecule is measured for the positive (+m) and negative (−m) magnetization.

Yang, van Wees and van der Wal25 pointed out the importance of Onsager-Casimir
reciprocity in experiments. Onsager-Casimir reciprocity26–28 prohibits magnetocurrent
from being observed in two-terminal junctions voltage, in the regime where the current
scales linearly with the bias voltage. Astonishingly, several experiments13–15,18,21,23,29

seem to show violation of Onsager-Casimir reciprocity for reasons that are not yet known.
An example of current-voltage curves that violate Onsager-Casimir reciprocity is shown
in fig. 1.3a & 1.3b. In ref fig. 1.3a the currents for positive and negative magnetization
are plotted. At zero bias voltage the slopes of the currents for positive and negative mag-
netization differ, thereby implying that the corresponding magnetocurrent in fig. 1.3b is
linear in bias voltage and Onsager-Casimir reciprocity is violated. However in some of
these experiments the currents for positive and negative magnetization show a plateau
of zero current around zero bias voltage (like the one in fig. 1.3c) such that the demon-
stration of Onsager-Casimir reciprocity is not really convincing. In order for Onsager
reciprocity to be tested experimentally for devices with chiral molecules, the currents
near zero bias voltage need to be dominantly linear in bias voltage and be significantly
nonzero. To the best of our knowledge ref. [30] is one of the first experiments that has
explicitly verified Onsager reciprocity for a junction with chiral molecules.

Naturally the question arises what can break Onsager-Casimir reciprocity in two ter-
minal experiments? To answer that question, let us first give a short recap on Onsager
reciprocity (see ref. [31] for more details). Onsager started his derivation by consider-
ing the entropy near its maximum i.e. near thermodynamic equilibrium. Equilibrium
for a two terminal system means that temperatures and chemical potentials for the left
and right lead are equal (i.e. TL = TR and µL = µR).32 The system is driven out of equi-
librium by a bias voltage V and the current I , in the linear response regime, scales as:
I ∝ G1V , with G1 the linear conductance coefficient. Another important consideration
is how quantities such as magnetic field, velocity, force, etc. change under reversal of
time i.e. if the quantities considered are time-even or time-odd. The linear conductance
coefficient for a two terminal system depends on time-even quantities, denoted as xn
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and time-odd quantities, denoted as x̃q such that G1 =G1(x1, ..., xN , x̃1, ..., x̃Q ). Under re-
versal of time t →−t , time-even quantities remain the same (xn → xn) while time-odd
quantities change sign (x̃q →−x̃q ). From Onsager’s derivation26,27 it follows that the lin-
ear conductance coefficient for a two terminal system is invariant under reversal of the
arrows of time:

G1(x1, ..., xN , x̃1, ..., x̃Q ) =G1(x1, ..., xN ,−x̃1, ...,−x̃Q ). (1.1)

The magnetic field m in the lead is a time-odd quantity, thus this implies that linear con-
ductance coefficients are equal for opposite magnetizations G1(m) = G1(−m). This in
turn implies that the magnetocurrent can only scale non-linearly with bias voltage.25,33–35

Lastly it should be noted that the reciprocity theorem is generic: it does not rely on a spe-
cific description of the scattering process. Therefore we expect that any theory should
reproduce Onsager’s reciprocity theorem or provide strong reasons for its violation: vi-
brational modes or Coulomb interactions cannot invalidate the theorem. The only cri-
terion is that the system is near equilibrium. Nevertheless the meaning of Onsager’s
reciprocity theorem in the context of two terminal transport experiments on molecules
has been topic of debate.36,37

1.4. BROKEN RECIPROCITY ?
Experimental work of38–40 showed that self-assembled monolayers of chiral molecules
can magnetize when put on a nonmagnetic gold surface at room temperature. We call
this spontaneous magnetization mχ. This magnetization changes with the chirality of
the molecules40 and it decreases over time.39 In this section we will discuss the implica-
tions of these experimental findings for two terminal transport, theories based on spin-
accumulation in one of the leads41,42 and possible experimental errors in light of the
Onsager reciprocity theorem.

We consider two extreme scenarios. In the first scenario the spontaneous magne-
tization mχ changes sign with the magnetization of the leads and the linear conduc-
tance satisfies: G1(m,mχ) = G1(−m,−mχ), in agreement with the Onsager reciprocity
theorem. In the second scenario the self-assembled monolayer of molecules act a spin
valve. This means that, for some unknown reason, the spontaneous magnetization mχ

does not change at all upon reversal of the magnetization m in the leads, the linear con-
ductance coefficients for positive and negative magnetization of the lead are G1(m,mχ)
and G1(−m,mχ) respectively. According to the Onsager reciprocity theorem these co-
efficients can be unequal to each other, since time-reversal would flip the sign of both
magnetizations m,mχ and therefore non-reversal of mχ implies violation of the Onsager
reciprocity. Firstly the question is whether a spontaneous magnetization mχ is expected
from theory and secondly the question is how the spontaneous magnetization changes
with the magnetization in the leads.

Hedegård43 pointed out that the relative motion of electrons, magnetic dipole-dipole
coupling can serve as a source for a spontaneous magnetization. He concluded that nei-
ther of these is a viable source of spontaneous magnetization. A ‘back of the envelope’
calculation44 tells us that the dipolar interaction energy between two magnetic dipoles
m1 and m2 (of the order of a few Bohr magneton) separated by a few Å is of the or-
der 10−4 eV, which is well below the energy scale set by room-temperature (T = 300 K)
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(a) (b)

(c) (d)

Figure 1.3: (a) The figure shows the current as a function of bias voltage for positive and negative magnetiza-
tion of the lead. Around zero bias voltage the slopes for positive and negative magnetization differ. (b) The
difference between the positive and negative magnetization of figure 1.3a. It shows that the magnetocurrent is
linear around zero bias voltage and dominantly odd in V . (c) The current for positive and negative magneti-
zation as a function of bias voltage for a chiral molecule. Around zero bias voltage the currents show a plateau
behaviour. (d) Difference between the current for up and down magnetization in fig. 1.3c The difference is
dominantly odd in bias voltage V . Note that none of these figures are made with actual experimental data, but
rather serve as an illustration for the violation of Onsager reciprocity.
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: kBT ≈ 2.5 ·10−2 eV. Therefore thermal fluctuations will destroy any spontaneous mag-
netization at such temperatures. Hedegård43 also pointed out that exchange interac-
tions (of electrons with the surroundings of the molecule) are important. This is under-
stood through Stoner’s criterion,45 which implies that an interacting system can lower
its ground state energy by building up a finite magnetization.

In other studies46,47 exchange effects were taken into account. When molecules are
adsorbed onto a nonmagnetic lead, a positive (mup) and a negative (mdown) magnetic
ground state were found, by varying the packing density of the molecules.46 When a vi-
brational spin-dependent coupling47 was taken into account, a magnetization was ob-
tained for a molecule coupled to a nonmagnetic substrate.

There are some problems with large ensembles of molecules spontaneously magne-
tizing. First of all we are dealing with organic molecules and gold, two materials that
are paramagnetic at room temperature and unlike for example Fe or Co do not have an
unpaired electron in their outer shell. Then suddenly, when put together, they seem to
become ferromagnetic. Secondly, we have the randomising effect of temperature which
will destroy any magnetization above the critical temperature (the temperature below
which the system is magnetic and above which it is non-magnetic). Nevertheless mag-
netization of self-assembled monolayers of molecules has been observed at 300 K far
above a typical critical temperature.40 It is topic of debate whether the effect of exchange
interactions can explain this spontaneous magnetization.

Now let us address the question how the spontaneous magnetization mχ changes
with the magnetization in the leads. Let us assume that self-assembled monolayers of
chiral molecules form an Ising model (although a Heisenberg model is probably more
realistic). This monolayer is adsorbed onto a substrate and it is considered near equilib-
rium. In the Landau theory2 of phase transitions the free energy of the Ising model, in the
presence of an external magnetic field h, is approximated as F =−hm+r m2+sm4, valid
when the system is close to the critical temperature. Let us assume that the temperature
in experiment is below the critical temperature. The field h causes the minimum of the
free energy that is opposite in sign to h to become metastable and the minimum which
is aligned with the same sign as h to become stable in free energy, making the latter min-
imum more likely. We call the magnetization corresponding to the stable minimum of
the free energy at external magnetization h, mχ(h) (see fig. 1.4) and it can be seen that it
changes sign with the external magnetization mχ(h) =−mχ(−h).

Upon reversal of the external field h, a system initially in the global minimum state
mχ(h), may stick in the state which has now become metastable mmeta(−h) (see fig.
1.4)), implying violation of reciprocity. After some time, the system is however expected
to relax to the stable minimum and Onsager reciprocity is then restored: G1(h,mχ) =
G1(−h,−mχ). Some authors have argued that a finite spin current42 or spin-transfer
torque41 induce a spin-accumulation close the the molecule-lead interface. This means
that the chemical potential for up and down spin is unequal µs = µ↑ −µ↓ ̸= 0. It has
been topic of debate whether this spin-accumulation can break Onsager reciprocity.
Due to spin being a time-odd quantity it flips under reversal of time and thus the spin-
accumulation: µs →−µs is a time odd-quantity. Onsager reciprocity implies that: G1(m,µs ) =
G1(−m,−µs ). We therefore expect that any sane theory finds the equilibrium spin-accumulation

2Landau theory neglects fluctuations and is not correct for d < 4.
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Figure 1.4: Free Energy of Landau theory as a function of the systems magnetization for a system where an
external magnetization h is applied. The figure shows that the minima of the free energy mχ(h) and mχ(−h)
are opposite in sign and that the free energy obtain the same value in its minimum for positive and negative
external magnetization. The metastable magnetizations for positive mmeta(h) and negative magnetization
mmeta(−h) are indicated in the Free energy.

to change sign when the magnetization is flipped.
One could argue that a spin accumulation in one of the leads closely resembles a

spontaneous magnetization in that lead. From the perspective of the molecule the leads
acquire a spin-accumulation and from the extended molecule perspective (i.e. the molecule
and a part of the leads) a part of the lead magnetizes i.e. there is an imbalance be-
tween spin-up and spin-down electrons. This accumulation/magnetization is expected
to always change sign between the opposite magnetizations, due to Onsager reciprocity.
In conclusion, the effect of spin-accumulation can only transiently cause Onsager reci-
procity to be broken. Moreover, the leads outside of the extended molecule are in equi-
librium; hence also from the perspective of the leads this accumulation of spin will
change sign between the opposite magnetizations of the lead.

When considering time-even quantities, the force exerted by the leads on the molecule
is of great importance. Force is a time-even quantity and Onsager reciprocity requires it
to remain unchanged when the magnetization of the lead is reversed. If the substrate
on which the molecules are are attached has is only weakly magnetized, the magnetic
lead will either be attracted or repelled by the substrate, resulting in a different force that
is exerted on the molecule for the opposite magnetizations of the lead. Of course it is
assumed that in experiment such effects are taken into account by looking at the force-
distance curves.

1.5. RECIPROCITY ABIDING MAGNETOCURRENT
In this thesis we will not focus on mechanisms that could break Onsager’s reciprocity
theorem. Rather, we analyse models with well-defined physical mechanisms and we will
always explicitly verify that Onsager reciprocity holds.

Now let us move on to the task of developing theoretical models that allow for a non-
zero magnetocurrent in the first place. As a start, we recall that in photo-emission ex-
periments it was shown that a layer of chiral molecules induces an asymmetry in the
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transmission for spin up and spin down electrons. It is because of this reason that early
theory has focused on the spin dependence of the transmission which can be induced by
spin-orbit coupling and some form of chirality. Another condition for the transmission
to be asymmetric for spin up and spin down electron is that, for a two terminal system,
the leads must support more than one spin-degenerate channel.48,49 It is known that the
spin-orbit coupling of the molecule’s constituents can induce an asymmetry of the order
10−5% for helicene50 (where the s, px,y orbitals were projected out), six to seven orders of
magnitude smaller than is observed in experiment. When taking the spin-orbit coupling
of a gold substrate into account, the effect is of the order of a few percent for a chiral
chain of carbon atoms51 or for a helicene molecule.34,52

Although a spin dependent transmission may be interesting, it does however not
guarantee a finite magnetocurrent. In fully coherent two terminal transport, the ab-
sence of a magnetocurrent extends to the nonlinear regime as well, this is called Büttiker
reciprocity.53 In order to see a magnetocurrent in the nonlinear regime, coherence must
be broken; this is done through interactions of the electrons with vibrational modes54 or
among themselves , through the Coulomb interactions.55

We conclude that there are three important points when developing a two terminal
transport theory for CISS. The first point is Onsager-Casimir reciprocity that states the
linear conductance coefficients are equal for the opposite magnetizations of one of the
leads G1(m) =G1(−m). Deviations from Onsager are not expected and therefore theory
should reproduce it or provide strong reasons for its violation.56 The second one is the
bias dependence of the magnetocurrent which in two terminal transport experiments is
found to be dominantly odd in the bias voltage. Theory has found that interactions mod-
eled by a decoherence node33 yield a magnetocurrent dominantly even in bias voltage.
A model including spin-dependent electron phonon coupling57 finds an odd magne-
tocurrent, however it seems that the currents for opposite magnetizations seem to have
a different slope at zero bias voltage, indicating that Onsager reciprocity does not hold.
The last point is the size of the effect, the polarization of the charge current, defined as
the magnetocurrent divided by the sum of the opposite currents: PC = I (m)−I (−m)

I (m)+I (−m) . In
experiment, values varying from 6%-90% are observed, while theory finds for large val-
ues of the spin-orbit coupling an effect which is of the order 0.1% for Büttiker voltage
probes34 or Coulomb interactions.35,58 Fransson55 found an effect of the order of the or-
der of a few percent, when taking Coulomb interactions and spin-orbit coupling for a
chiral molecule into account, although the Fermi-level in his work lies well outside the
molecular spectrum.

1.6. THIS THESIS
This thesis is structured as follows. In chapter 2 we model a molecular junction for real-
istic parameters and introduce interactions through Büttiker voltage probes. In chapter
3 and 4 we model bipartite asymmetric and bipartite symmetric structures respectively
with spin-orbit coupling and on-site Coulomb interactions. In chapter 5 we investigate
the effect of vibrational modes on the magnetocurrent in the off-resonance regime.
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2
BÜTTIKER VOLTAGE PROBES

One of the manifestations of chirality-induced spin selectivity (CISS) is the magnetore-
sistance in two-terminal transport measurements on molecular junctions. This chapter
investigates the effect of spin-orbit coupling in the leads on the polarization of the trans-
mission. A helicene molecule between two gold contacts is studied using a tight bind-
ing model. In order to study the occurrence of magnetoresistance, which is prohibited
in coherent transport, as a consequence Büttiker reciprocity, we add Büttiker probes to
the system in order to incorporate inelastic scattering effects. We show that for a strict
two-terminal system without inelastic scattering the magnetoresistance is strictly zero in
the linear and nonlinear regimes. We show that for a two-terminal system with inelastic
scattering, a nonzero magnetoresistance does appear in the nonlinear regime, reaching
values of the order of 0.1%. Our calculations show that for a two-terminal system respect-
ing time-reversal symmetry and charge conservation, a nonzero magnetoresistance can
only be obtained through inelastic scattering. However spin-orbit coupling in the leads in
combination with inelastic scattering modelled with the Büttiker voltage probe method
cannot explain the magnitude of the magnetoresistance measured in experiments.

Part of this chapter has been published in the Journal of Physical Chemistry C 2021, 125, 42, 23364–23369 [1].
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2.1. INTRODUCTION

In two-terminal transport experiments,2–10 polarizations of the current i.e. magnetore-
sistances (MRs, see eq. (2.2) for the definition) ranging from 6% to 90% have been mea-
sured for self assembled monolayers (SAMs) of chiral molecules. This MR is a manifesta-
tion of the connection between chirality of the molecular structure and spin selectivity,
commonly denoted as the CISS effect. Theoretical efforts have been geared towards ex-
plaining the existence of CISS in transport including quantitative estimates for the MR.

Most theoretical work done on CISS focuses on calculating the spin-polarization of
the transmission (SPT, see eq. (2.1)). The spin-orbit coupling of the molecule’s con-
stituents is too weak to explain the CISS effect. In ref [11] the molecule helicene was
studied and a maximum spin-polarization of the transmission of the order 10−5% was
found. When decoherence is taken into account, by adding on-site imaginary terms to
the Hamiltonian, a maximum spin-polarization of the transmission of 0.3% was found.
As in this approach the particle number is not conserved, the system is no longer strictly
two-terminal and it therefore does not explain the MR unless in the experiment elec-
trons are leaking from the device into another reservoir than the source or drain. In
two-terminal transport experiments, heavy metals such as gold, platinum and silver are
often used. These metals are known to have strong spin-orbit coupling. Previous the-
oretical work has studied the effect of large spin-orbit coupling in gold leads on the
spin-polarization of the transmission12,13 in density functional theory and tight binding
models.14,15 Spin-polarizations of the transmission reaching values of 1%12 and 5%13

were found. Another interesting proposal for obtaining sizeable spin polarization was
put forward by Dalum and Hedegård.16 They noticed that close to degeneracies in the
spectrum, the eigenstates of the Hamiltonian rotate away significantly from the unper-
turbed states, leading to substantial spin polarization. Until recently, most theoretical
work that tried to explain the CISS effect, focused on calculating the spin-polarization of
the transmission but it has now been realized that spin-polarization of the transmission
does not necessarily lead to the occurrence of a MR.

Two fundamental reciprocity theorems are very important when considering the nonzero
MR measured in experiments and putting it in a theoretical perspective. The first is the
Onsager-Casimir reciprocity17,18 which implies that for a two-terminal interacting sys-
tem the MR can only be nonzero in the nonlinear regime. The second is the Büttiker reci-
procity theorem.19 This theorem, that is based on time-reversal symmetry and unitarity
of the S-matrix, prohibits MR to occur for two-terminal non-interacting systems irre-
spective of the regime (linear/nonlinear, see sec. 2.2.2), even when the spin-polarization
of the transmission is nonzero. In order to obtain a nonzero MR, interactions must be
included. In refs [20] and [21] the effects of the Coulomb interactions and a coupling to
vibrational modes were studied respectively and a nonzero MR was found.

Nonzero MR can be obtained by breaking charge conservation but in the experiment
the leakage currents are often too small to justify this as a cause of a MR. In this chapter
we focus on another option: electrons that scatter inelastically while conserving their
number during the process. We construct a tight binding model for a junction in which
helicene is coupled to 2 gold electrodes which have strong spin-orbit coupling. Büt-
tiker probes are added in order to model inelastic scattering while maintaining charge
conservation. We denote the system with Büttiker probes as an interacting system and
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the system without Büttiker probes as a non-interacting system. Tight binding has the
advantage over a quantum-chemical calculation that inelastic effects can easily be in-
cluded through Büttiker probes. Also, it is easy to study the effect of changing couplings
and interaction parameters.

We first validate our model by calculating the spin-polarization of the transmission
and comparing this to density functional theory results.12,13 The first goal is to verify the
occurrence of a MR and to investigate its magnitude when Büttiker probes are active.
The second goal is to address the characteristics features of the MR and compare it with
the characteristics found in experiment.

In section 2.2.1 the spin-polarization of the transmission is defined. In section 2.2.2
the MR is defined and it is explained what restrictions are imposed on the MR by Büt-
tiker and Onsager-Casimir reciprocity together with the implications for experimental
observables. In sec. 2.2.3 a description of the non-interacting system is given. In sec.
2.2.4 the Büttiker probes and their parameters are described. The results for the non-
interacting and interacting system are given in section 2.3.1 and 2.3.2 respectively. In
section 2.4 we present conclusions.

2.2. COMPUTATIONAL DETAILS

2.2.1. THEORY: SPIN-POLARIZATION OF THE TRANSMISSION

The spin-polarization of the transmission from the right to the left lead is defined as:

Pz(E) = T↑↑
RL +T↓↑

RL −T↑↓
RL −T↓↓

RL

TRL
. (2.1)

Here T ss′
RL is the energy-dependent transmission probability for an electron in the right

lead with spin s = ↑,↓ (quantised in the z -direction, which we take as the direction of the
transmission) to be transmitted to the left lead with spin s′ = ↑,↓ and TRL =∑

s,s′∈{↑,↓} T ss′
RL ,

with TRL the total transmission probability from right to left. In the non-equilibrium
Green’s function (NEGF) formalism, the transmission function is given by the Meir-Wingreen
formula TRL(E) = Tr[G(E)ΓRG(E)†ΓL(E)], withΓL,R(E) the imaginary part of the self-energy
of the left and right lead respectively and G(E) the retarded Green’s function which is
given by G(E) = (E1−H−ΛL −ΛR + i

2ΓL + i
2ΓR)−1. Here 1 is the unit-matrix, H is the

Hamiltonian of the scattering region in figure 2.1 and ΛL,R the real part of the self en-
ergy of the left, right lead respectively. Below, we drop the explicit dependence of the
transmission on energy E.

2.2.2. MAGNETORESISTANCE AND THE RECIPROCITY THEOREMS

We define the MR as the normalized difference of the currents for the up and down mag-
netization m,−m of the lead:

MR = I(m)− I(−m)

I(m)+ I(−m)
. (2.2)
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For a two-terminal system which respects current conservation, the net current into the
left lead is calculated with:

I(m,V ) = e

h

∫ ∞

−∞
TRL(m)

(
fL(E)− fR(E)

)
dE, (2.3)

where fL(E), fR(E) are the Fermi-Dirac distributions of the left and right lead respectively
and m is the magnetization of the left lead. The chemical potentials for spin up and down
electrons in the left/right lead are equal i.e. µ↑

i = µ↓
i for i = L, R. Assuming symmetric

capacitive coupling to the left and right lead, the chemical potentials of the left and right
leads are EF+ V

2 and EF− V
2 respectively with EF the Fermi energy and V the bias voltage.

The current can be expanded in the bias voltage:

I (m,V ) = G1(m)V +G2(m)V 2 +G3(m)V 3 + ... (2.4)

We define∆I(m,V ) as the difference between the currents for positive and negative mag-
netization. Using eq. (2.4) we can write ∆I(m,V ) as:

∆I(m,V ) ≡ I(m,V )− I(−m,V )

=
[

G1(m)−G1(−m)
]

V +
[

G2(m)−G2(−m)
]

V 2 +
[

G3(m)−G3(−m)
]

V 3 + ...

(2.5)

We define the odd and even part of ∆I(m,V ) as:

A(m,V ) = 1

2

[
∆I (m,V )−∆I (m,−V )

]
=

[
G1(m)−G1(−m)

]
V +

[
G3(m)−G3(−m)

]
V 3 + ...,

(2.6)

B(m,V ) = 1

2

[
∆I(m,V )+∆I(m,−V )

]
=

[
G2(m)−G2(−m)

]
V 2 +

[
G4(m)−G4(−m)

]
V 4 + ...,

(2.7)

respectively.
In ref. [19] it was shown that for a two-terminal system time-reversal symmetry and

unitarity of the S-matrix (which expresses charge conservation) imply that TRL(m) = TRL(−m).
This relation is known as the Büttiker reciprocity theorem for two-terminal systems.
Combining this relation with eq. (2.3) it trivially follows that: I (m,V ) = I(−m,V ). Com-
bining this with eq. (2.5), we obtain:

∆I(m,V ) =
[

G1(m)−G1(−m)
]

V +
[

G2(m)−G2(−m)
]

V 2 +
[

G3(m)−G3(−m)
]

V 3 + ... = 0.

(2.8)

From this it follows that: Gn(m) = Gn(−m) for n = 1,2, .. if Büttiker reciprocity holds.
Time-reversal symmetry and unitarity of the S-matrix prohibit a finite ∆I (m,V ) in the
linear and nonlinear regime for a two-terminal system without interactions.

On the other hand Onsager-Casimir reciprocity holds for systems with interactions.
Onsager-Casimir reciprocity implies that I (m,V ) = I (−m,V ) in the linear regime: G1(m) =
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G1(−m),17,18 i.e. the linear coefficient is an even function of the magnetization. This
means that the differential conductance evaluated at V = 0 is identical for opposite mag-
netizations:

G1(m) ≡ d I (m,V = 0)

dV
= d I (−m,V = 0)

dV
= G1(−m). (2.9)

For the non linear-coefficients: G2(m),G3(m), ... in principle we can have: Gn(m) ̸= Gn(−m)22–24

for n ≥ 2. In ref. [24] it was shown that electron interactions allow for a second order
contribution ( odd in m) αmV 2 to the current from which clearly G2(m) ̸= G2(−m). An-
other example of this is the electrical magnetochiraleffect25 which gives (for small bias
voltages) a second order contribution to the current15 G2(m) = G0(χ)m (with G0(χ) a
coefficient which depends on the chirality χ) for which also G2(m) ̸= G2(−m). In ref.
[26] a rigorous analysis based on full counting statistics derived relations between the
coefficients Gn(m),Gn(−m) under microscopic reversibility. As expected the Onsager-
Casimir relation G1(m) = G1(−m) was found. From this work it can also be concluded
that microscopic reversibility does not imply that the nonlinear coefficients for opposite
magnetizations are equal: Gn(m) ̸=Gn(−m) for n ≥ 2.

We now expand the MR (eq (2.2)) in the bias voltage for an interacting system. Defin-
ing ∆Gn(m) ≡ Gn(m)−Gn(−m) and Gn(m) ≡ Gn(m)+Gn(−m). We can write the MR as:

MR = ∆G1(m)V +∆G2(m)V 2 + ...

G1(m)V +G2(m)V 2 + ...
. (2.10)

Onsager-Casimir reciprocity implies ∆G1(m) = 0, so that eq. (2.10) simplifies to: MR =
∆G2(m)V+...

G1(m)+G2(m)V+...
, showing that the MR vanishes at zero bias. Remarkably in ref. [2] a

nonzero MR was found at zero bias which seems in contradiction with the Onsager-
Casimir reciprocity.

The analysis in this section and refs [22–24, 26] imply that interactions play a crucial
role in obtaining a MR.

2.2.3. TIGHT BINDING HAMILTONIAN
Our Slater-Koster Tight Binding model addresses four parts of a transport junction i)
semi-infinite gold leads without spin-orbit coupling ii) a block of 3× 3× 3 gold atoms
with spin-orbit coupling, iii) a sulfur anchoring group and iv) a helicene molecule. A
schematic picture of the scattering region is shown in figure 2.1. The outer 3×3 layers
of gold atoms on the left and right side each have a semi-infinite gold lead without spin-
orbit coupling attached to it see figure 2.1.

For parts i) and ii) the Slater-Koster tight binding parametrization of ref. [27] will
be used; for a detailed description see section 2.5.1 of the Appendix. The tight bind-
ing parameters reported in ref. [28] are used for the anchoring group. For a detailed
description of part iii) see Appendix section 2.5.1. We use the full Slater-Koster tight
binding model of helicene reported in ref. [11] and the Slater-Koster tight binding pa-
rameters are given in the Appendix 2.5.1. Only the 2p,2s orbitals of carbon atoms are
considered. A [n]helicene molecule consist of a chain of n benzene rings. Helicene
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Figure 2.1: Reprinted with permission from [13]. Copyright 2018, M.P. Rebergen. Schematic picture of the
scattering region. The gold spheres are gold atoms, the bright yellow spheres are sulfur atoms and the grey
spheres in the middle are carbon atoms. To this scattering region semi-infinite gold lead are attached.

has two enantiomeric states: P and M related by mirror symmetry. The numerical cal-
culations were performed using the Kwant code [29]. For details regarding the imple-
mentation in Kwant see section 2.5.1 of the Appendix. Our Python code is available on
https://github.com/khhuisman/CISS_effect.

2.2.4. BÜTTIKER PROBES

In order to model interactions, we use Büttiker probes; virtual leads that are attached to
each site of the molecule. Büttiker probes can act as a “dephasing probe” or a “voltage
probe” to model elastic and inelastic processes respectively.30,31 In ref. [32] it was shown
that for an Aharonov-Bohm junction a dephasing probe does not lead to a finite MR in
the linear, nor in the nonlinear regime, but a voltage probe does lead to a nonzero MR in
the nonlinear regime, confirming the findings of ref [23]. Therefore in our model we use
voltage probes. The Büttiker probe acts as a voltage probe if the total charge current into
the probe is zero. The chemical potential of the probe is determined in a self-consistent
manner such that the total charge current into the probe is zero. However, there is a finite
net energy current going into each virtual lead which represents energy being dissipated
into an external environment (the Büttiker probe), while respecting charge conservation
(in contrast to refs [11, 15] where the addition of on-site imaginary terms leads to loss of
particles). The Hamiltonian of a virtual lead is modeled as a semi-infinite linear chain
(see Appendix section 2.5.1).

We define a probe to be a collection of virtual leads. For the [6]helicene molecule
we have 26 carbon atoms to which we can attach a virtual lead. One probe contain-
ing several leads, with one and the same chemical potential, can be attached to several
sites. Alternatively a virtual lead, characterised by a single chemical potential, can be
connected to more than one carbon atoms.

The hopping parameter within the lead is t0 and tleak is the coupling between the
lead and the carbon atom. In order to cover a wide range of energies, we choose t0

to be large compared to the Slater-Koster tight binding hopping parameters of carbon
(see Appendix section 2.5.1), hence we take t0 = 50 eV. We distinguish three regimes:
tleak > t0, tleak = t0 and tleak < t0.

We varied the attachment position of the probe(s), the amount of leads in a single
probe, the coupling between the probe and the molecule: tleak and the amount of inde-
pendent probes consisting of one lead. In Appendix section 2.5.4 we prove that a voltage

 https://github.com/khhuisman/CISS_effect
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probe always satisfies the Onsager-Casimir reciprocity: G1(m) = G1(−m).

2.3. RESULTS

2.3.1. TWO-TERMINAL JUNCTION, NON-INTERACTING

In fig. 2.2a the spin-polarization of the transmission (see eq. (2.1)) for [6]P,M- helicene
is shown for an unmagnetized lead and we find a maximum absolute value of the spin-
polarization of the transmission of 2%, which is comparable with the density functional
theory studies12,13 (see Appendix section 2.5.1 for the result of the ref [13]). In fig. 2.2a
we also see that the spin-polarization of the transmission is exactly opposite in sign
for [6]P,M- helicene as expected (see Appendix section 2.5.2). In figure 2.2b the spin-
polarization of the transmission for [12]P-helicene and [6]P-helicene for an unmagne-
tized lead are plotted. The spin-polarization of the transmission is seen to increase with
the length of the molecule as was found in ref [12]. Dalum and Hedegård16 find an
increased spin-polarization of the transmission at degeneracies of the molecular spec-
trum. The frontier levels do not show degeneracies beyond the usual Kramer’s degen-
eracy. Moreover the spin-orbit coupling of the gold supersedes the effect highlighted by
these authors.

(a) (b)

Figure 2.2: (a) Spin-polarization for the gold-sulfur - [6] P and M helicene unmagnetized junction as a function
of energy in red, orange respectively. EF is the Fermi energy of gold in electronvolt (eV). (b) Spin-polarization
for [6,12]P-helicene in the unmagnetized junction as a function of energy. EF is the Fermi energy of gold
in electronvolt (eV). The figure shows an increase in spin-polarization when the length of the molecule is
increased.

We now turn to a system with a magnetized lead. In figure 2.3a the transmissions
TRL(m),TRL(−m) are plotted in blue, red respectively as a function of energy. We see that
for every energy these transmissions are equal: TRL(m) = TRL(−m), confirming that Büt-
tiker reciprocity holds for our two-terminal system. The currents I(m), I(−m) are plotted
in figure 2.3b in blue and in red respectively as a function of bias voltage V and are calcu-
lated using eq. (2.3) for a Fermi energy of gold EF =−5.3 eV at T = 0 K. They are obviously
identical, confirming that the MR for this non-interacting system is zero in the linear and
nonlinear regime, even though there is a nonzero spin-polarization of the transmission
in the bias window [EF − V

2 ,EF + V
2 ] for the magnetized system (not plotted).
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(a) (b)

Figure 2.3: (a) Transmission from right to left for EF = −5.3 eV, and the magnetizations m = ±2.1 of the left
lead. The difference between TRL(m) and TRL(−m) is zero. (b) The charge current I(m) in eV into the left lead
for the magnetizations ±m increases and shows no difference between I(m), I(−m).

2.3.2. TWO-TERMINAL JUNCTION, INELASTIC SCATTERING

Varying the attachment position, the order of magnitude of the MR varies between of
10−2% and 10−1%. In fig. 2.4a the MR is plotted for [6]M,P- helicene. We see that its sign
changes between the enantiomers of the molecule, as was found in experiments.3,5,9,10

In fig. 2.4a there is a MR around zero bias (except at V = 0 there MR = 0 as expected
see sec. 2.2.2), which is allowed by Onsager-Casimir because the MR only arises in the
nonzero difference between higher order contributions (∆Gn for n ≥ 2) to ∆I(m,V ) see
eq. (2.10).

In figure 2.4b we show the odd and even parts of ∆I(m,V ) in red and in blue, see eqs.
(2.6) and (2.7). The fact that the voltage probe satisfies Onsager-Casimir reciprocity (see
Appendix 2.5.4) ensures that there are no contributions to ∆I(m,V ) which are linear in
V . This means that the odd part in figure 2.4b must be nonlinear in nature. The even
part of the ∆I(m,V ) in figure 2.4b can only scale with V 2,V 4, ... which by definition is
nonlinear. In figure 2.4b we see the even contribution to ∆I(m,V ) dominates. Experi-
mental results on CISS imply that ∆I(m,V ) has an odd part which is larger than the even
contribution.2,5–10

One might expect that adding more independent probes leads to more inelastic scat-
tering and therefore a larger MR, however this turns out not to be the case. We calculated
the MR for up to and including 4 independent probes and found that the MR did not in-
crease with the number of independent probes. The order of magnitude of the largest
MR stayed below 0.1%. We also varied the amount of leads in one independent probe.
For this case the amount of probes did not change the order of magnitude of the MR.

We found that the MR primarily depends on the spin-orbit coupling of the gold whereas
the effect of the spin-orbit coupling from the carbon atoms on the MR is negligible, and
it vanishes when the spin-orbit coupling is switched off altogether. So far, the potential
across the molecule has been kept constant. If we apply a linear drop to the on-site po-
tential along the helix axis of the molecule, the maximum MR remains of the same order
of 0.1%.

Fransson20 has studied a model capturing the coupling between the electrons and



2.4. CONCLUSION

2

23

the vibrational modes. He obtained a significant MR only when including a coupling to
the spin-orbit hopping term in the Hamiltonian. This term has a rather specific form and
our generic Büttiker probes may fail to represent this. Fransson finds that the MR scales
with the coupling between electrons and vibrational modes. In contrast, the Büttiker
probe method used here, gives a MR which quickly saturates to a (rather low) MR value
when increasing the coupling parameter tleak. Further research into the specific form of
the self-energy and the construction of an appropriate Büttiker probe seems useful. The
question remains why substantial MR is found in experiments. Maybe this is a conse-
quence of interactions like the ones we study in this chapter, but it can also be that in the
experiments on SAMs, part of the current is leaking into reservoirs other than the two
terminals of the voltage source.

It could be that SAMs of chiral molecules allow for molecule-molecule or molecule-
substrate interactions. These interactions might manifest themselves as a magnetization
of the substrate as was measured in ref [33]. How this magnetization effects the cur-
rents in two-terminal junctions is unclear. Whether CISS is a single molecule property
or rather a property of SAMs remains an open question. More experiments on single-
molecule (rather than SAMs), two-terminal junctions are highly desirable.
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Figure 2.4: (a) The MR in percentage for the gold- sulfur-[6] P and M helicene junction with 1 probe consisting
of 1 lead attached, as a function of bias voltage in red and orange respectively. The MR changes sign between
the enantiomers of the molecule. (b) The even and odd part in V of ∆I(m,V ) in blue and red respectively as a
function of bias voltage.

2.4. CONCLUSION
We have constructed a tight binding model that includes spin-orbit coupling in the gold
leads and found a spin-polarization of the transmission comparable to that found in
density functional theory studies on a similar system.12,13 Furthermore the spin-polarization
of the transmission changes sign between the enantiomers of the molecule and increases
with the length of the molecule. In line with the Büttiker reciprocity theorem, we find
that the MR vanishes in the linear and nonlinear regime in the non-interacting system
even though the spin polarized transmission is finite.
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Adding Büttiker probes yields a magnetoresistance beyond the linear regime. The
spin-orbit coupling in the leads in combination with inelastic scattering modeled through
local Büttiker probes gives a nonzero MR of the order 0.1%, which is 1-2 orders of mag-
nitude smaller than the MR found in the experiments.2–10 The MR only arises in the
nonzero difference between higher order contributions (∆Gn ̸= 0 for n ≥ 2), satisfying
Onsager-Casimir reciprocity. Furthermore we find that the MR changes sign between
the enantiomers of the molecule as was found in refs [3, 5, 9, 10] and contrary to ex-
periment ∆I(m,V ) has an even contribution in bias voltage which is larger than the odd
contribution.

2.5. APPENDIX

2.5.1. TIGHT BINDING MODEL

GOLD LEADS
For the block of 3×3×3 gold atoms with spin-orbit coupling and the semi-infinite gold
leads the SKTB parametrization of ref [27] is used. It considers the 5d, 6s, 6p orbitals of
gold; the atomic spin-orbit coupling has a dominant contribution from the 5d-orbitals.
The onsite Hamiltonian (without spin) is:

Honsite,gold = diag(ϵs,ϵp,ϵp,ϵp,ϵxy,ϵx2−y2 ,ϵxz,ϵyz,ϵz2 ). (2.11)

Here is ϵi is the energy of orbital i, the values are listed in table 2.1. The Slater-Koster
parameters for nearest-neighbour (NN) and next-NN (NNN) hopping are displayed in
table 2.2.

In the cubic harmonic basis: dxy,dx2−y2 ,dxz,dyz,dz2 basis, the spin-orbit coupling Hamil-

tonian becomes with si = 1
2σi (ħ= 1) and i = x, y, z:

HSOC = ξ5dL ·S = ξ5d


0 2i sz −i sx i sy 0

−2i sz 0 i sy i sx 0
i sx −i sy 0 −i sz i

p
3sy

−i sy −i sx i sz 0 −i
p

3sx

0 0 −i
p

3sy i
p

3sx 0

 . (2.12)

Here ξ5d is the spin-orbit coupling parameter. which takes on the value 0.3−0.4 eV.27,34

We take ξ5d = 0.3 eV. The 6s orbitals do not have an atomic SOC and the 6p orbitals do
not have a significant atomic SOC respectively.

In experiment the gold substrate usually is placed on a nickel, a metal with negligible
SOC, therefore the semi-infinite gold lead has the atomic SOC turned “off” i.e. ξ5d = 0
only the 3×3×3 block of gold atoms have the atomic SOC turned “on” i.e. ξ5d = 0.3 eV.
In order to calculate the MR we need to magnetize the left lead. We take a magnetization
of the left lead m, pointing in the z-direction. This leads to the Hamiltonian:

Hmag
lead,L = ∑

i∈L,µ
c†

i,µci,µmσz, (2.13)
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Onsite energy Rydberg
ϵs 0.56220
ϵp 1.27897
ϵd1 0.26097
ϵd2 0.25309

Table 2.1: The onsite energies of the 6s, 6p and 5d orbitals of gold taken from table 6.62 of ref [27] in Rydberg.
Here d1 refers to the dxy, dxz, dyz orbitals and d2 to the dx2-y2 , dz2 orbitals and p to the px, py, pz orbitals.

Slater-Koster parameters Nearest Neigbour (NN) Next-NN
Vssσ -0.0668 0.00277
Vppσ 0.17866 0.03707
Vppπ -0.01645 -0.01025
Vddσ -0.04971 -0.00305
Vddπ 0.02624 0.0024
Vddδ -0.00457 -0.00057
Vspσ 0.09721 0.00261
Vsdσ -0.04722 -0.00784
Vpdπ 0.01896 -0.00762
Vpdσ -0.06399 0.0047

Table 2.2: The nearest neighbour and next-nearest neighbour Slater-Koster parameters of gold in the orthogo-
nal basis taken from table 6.62 of ref [27] in Rydberg.

which is added to the onsite Hamiltonian of the left semi-infinite gold lead eq. (2.11).
Here m is the magnetization in eV, c†

i,µ & ci,µ are the fermionic creation and annihilation

operators respectively, i labels the sites of the left lead, µ labels the 6p, 6s, 5d orbitals (9
orbitals total), σz is the Pauli z-matrix.

HELICENE MODEL

We use the full SKTB model of helicene reported in ref [11], sec. 1.1 and the parame-
ters given in table 2.3. Only the 2p and 2s orbitals of carbon atoms are considered in
this model. A [n]helicene molecule consist of a chain of n benzene rings. Helicene has
two enantiomeric states: P and M. For P-helicene the helix turns clockwise and for M-
helicene the helix turns counter-clockwise along the helix axis.

ANCHORING GROUP

Carbon and gold do not form a bond very easily and therefore an anchoring group is used
to attach the molecule to the leads. The anchoring group consists of a sulfur atom which
forms bonds well with a carbon atom of helicene and with gold atoms on the surface.
A DFT study was performed to see which orbitals of sulfur and gold and sulfur and car-
bon contributed most to the electron hopping. Detailed quantum chemical calculations,
carried out with the code ADF from SCM35 show that the 3p orbitals of the sulfur atom
and the 6s & 5d orbitals of gold atom, the 2p orbitals of carbon atom respectively are key
in the hopping process28 forming a a hollow configuration. The DFT study showed an
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Slater-Koster parameters eV
Vssσ -7.92
Vspσ 8.08
Vppσ 7.09
Vppπ -3.44

Onsite energies eV
ϵs -18
ϵppσ -18
ϵppπ -10.5

Spin - Orbit Coupling eV
ξp 6×10−3

Geometric Parameters Å
a0 1.4
b0 3.6

Table 2.3: The Slater-Koster parameters of carbon, onsite energies, SOC parameter and geometric parameters
taken from table 1 of [11] in eV and in Ångström. We also take ||E = 0|| for the electric field E .

onsite energy of sulfur of ES = −6.21 eV and the hopping matrix elements are listed in
table 2.4 and 2.5 in eV.

VIRTUAL LEADS
The Hamiltonian of a virtual lead (Büttiker probe) is given by:

Hvirt. lead =
i=∞∑
i=0,µ

u0 d †
i,µdi,µ1̂s + t0 d †

i,µdi+1,µ1̂s +h.c., (2.14)

Hcoup. = tleak

∑
µ

d †
0,µax,µ+a†

x,µd0,µ. (2.15)

Here u0 is the onsite energy, t0 the hopping parameter, d †
i,µ,di,µ are the fermionic cre-

ation and annihilation operators, i labels the sites of the virtual lead, µ labels the orbitals
(4 orbitals total) and 1̂s is the 2×2 identity matrix. The coupling between the first site of
the virtual lead and the carbon atom is described by eq. (2.15), here ax,µ is the annihi-
lation operator of an electron on site x in orbital µ of helicene and tleak is the coupling
strength . In principle every carbon atom of helicene has a semi-infinite lead described
by eqs. (2.14), (2.15) to it. The current going into each virtual lead is calculated with for-
mulas described in section 2.5.5. We use the Newton - Raphson method to determine
µB(m) such that IB(m) = 0 the convergence criterion is that |IB(m)| ≤ 10−13.
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Au1 - S 3px 3pz 3pz
6s 1.31 -2.20 3.471

5dxy 0.557 0.376 -1.14
5dx2−y2 -0.92 -0.431 -0.809

5dxz -0.508 -0.987 0.701
5dyz -1.04 0.852 -1.32
5dz2 0.622 -1.158 -0.681

Au2 - S 3px 3pz 3pz
6s 1.33 2.22 3.50

5dxy -0.555 0.367 1.16
5dx2−y2 -0.933 0.458 -0.796

5dxz -0.513 1.02 0.73
5dyz 1.07 0.836 1.35
5dz2 0.654 1.20 -0.674

Au3 - S 3px 3pz 3pz
6s -2.323 0.004 3.191

5dxy -0.004 1.083 0.01
5dx2−y2 -0.191 -0.007 1.279

5dxz 1.302 0.004 -1.166
5dyz 0.008 -0.825 -0.003
5dz2 -0.921 -0.003 -0.712

Table 2.4: Hopping matrix elements between the 6s,5d orbitals of gold and 3p orbitals of sulfur in eV for gold
atoms 1,2,3.

C - S 3px 3pz 3pz

2s -3.3 -0.323 7.863
2px -2.1 0.21 -2.851
2px 0.208 -3.822 -0.266
2pz -3.031 -0.288 3.294

Table 2.5: Hopping matrix elements between the 2p,2s orbitals of carbon and 3p orbitals of sulfur in eV.
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IMPLEMENTATION IN KWANT
For the TB calculation a crucial detail for the implementation in Kwant is explained here.
The Kwant package comes with a file called leads.py. In that file the function modes is
defined:

def modes(h_cell, h_hop, tol = 1e6, stabilization = None,
*, particle_hole = None,time_reversal = None,
chiral=None, projectors = None).

We changed the variable stabilization from the default None to (False,False). Alterna-
tively we can change it to (True,False), (False, True) or (True,True), we found that it did
not matter for our calculation. By changing stabilization in this way the internal algo-
rithms Kwant uses are changed such that it accurately calculates the transmission. When
one does not change stabilization this will result in a transmission that will diverge to
unrealistic values for some energies.

SPIN POLARIZATION DFT STUDY

Figure 2.5 shows the transmission for spin up and spin down electrons: G↑ and G↓ of ref.
[13]. Here a DFT study for a 2T noninteracting system such as the one studied in this
paper was done making use of the wide-band limit. Figure 2.5 show a SPT (defined here

as
G↑−G↓
G↑+G↓ ) of the order 1%, similar to the SPT found in this paper.

Figure 2.5: Reprinted with permission from [13]. Copyright 2018, M.P. Rebergen. The transmission for spin up
and spin down electrons: G↑ and G↓ respectively as a function of energy E of the DFT study of ref [13]. E f is
the Fermi energy of gold.

2.5.2. SIGN CHANGE OF SPIN-POLARIZATION OF TRANSMISSION
Helicene with helical axis pointing in the z-direction has two enantiomeric states that
can be interconverted by applying the mirror operation: My : y → −y. In ref [36] the
effects of rotation operations by π C2 around a longitudinal,transverse and planar axis
(l, t, p respectively) and mirror operations M in a longitudinal,transverse plane on the
transmission for a 2T junction were studied. For our tight binding model (see fig. 2.6)
we identify l, t, p = z, y, x, thus the mirror operation y →−y corresponds to the mirror
operation Ml. In sec. 2.5.3 the effect of My on the Hamiltonian is explained.
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Figure 2.6: Schematic picture of the tight binding model. The helix axis of helicene lies along the z-axis.

For Ml we have the relations from figure 3 of ref [36]:

T
σsσ

′
s

RL → Tσsσs
′

RL for spin in the s = z,x direction, (2.16)

T
σsσ

′
s

RL → T
σsσ

′
s

RL for spin in the s = y direction. (2.17)

Where σs is the spin quantized along s axis and σs indicates that the spin σs is flipped.
For the spin-polarization Pz in the z-direction

Pz =
T↑↑

RL +T↓↑
RL −T↑↓

RL −T↓↓
RL

T↑↑
RL +T↓↑

RL +T↑↓
RL +T↓↓

RL

, (2.18)

the mirror operation implies that

P ′
z =My(Pz) =T↓↓

RL +T↑↓
RL −T↓↑

RL −T↑↑
RL

T↑↑
RL +T↓↑

RL +T↑↓
RL +T↓↓

RL

=−Pz. (2.19)

Thus we have shown that the spin-polarization Pz changes sign under My. This is equiv-
alent to the statement that the spin-polarization changes sign between the enantiomers
of the molecule. Note that for spin quantized along the x, y axis we have: Px →−Px and
Py → Py (Py is invariant) under Ml.

2.5.3. MIRROR OPERATION
The goal is to show how the mirror operation: My : y → −y affects the different parts
of the Hamiltonian: i) The onsite spin-orbit coupling Hamiltonian (the onsite energies
clearly do not change under My) and ii) the hopping elements (of gold-gold, carbon-
gold, sulfur-gold and carbon-carbon).

Spin-Orbit Coupling: Under My, spin and orbital angular momentum transforms
as:

S = (Sx,Sy,Sz)
My→ (−Sx,Sy,−Sz), (2.20)

L = (Lx,Ly,Lz)
My→ (−Lx,Ly,−Lz). (2.21)

This implies that the spin-orbit coupling Hamiltonian HSOC = ξL ·S is invariant under
My.
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Hopping Matrices The SKTB matrix element: Hµ,ν
l,m,n is the hopping parameter be-

tween orbital µ and ν and l,m,n are the direction cosines. Under My the SKTB hopping
matrices transform as:

Hµ,ν
l,m,n → Hµ,ν

l,−m,n. (2.22)

This implies changes for hopping matrices of carbon-carbon, gold-gold, gold-sulfur and
sulfur-carbon! The detailed transformation of the orbitals transform under My can be
deduced from the hopping matrices in the SKTB framework. Alternatively for the he-
licene molecule we can change the direction in which the helix rotates by letting Φi →
−Φi in equation (1) of ref [11], since P,M helicene are distinct from each other in the
clockwise/counterclockwise rotation of the helix. This change will alter the hopping el-
ement caculated in eqs. (4), (5) and (6) of ref [11].

2.5.4. BÜTTIKER PROBES AND ONSAGER-CASIMIR

Given that we can expand the current into the left lead in the bias voltage V as I (m,V ) =
G1(m)V +G2(m)V 2 +G3(m)V 3 + ..., we have that:

G1(m) = d I (m,V )

dV
|V=0. (2.23)

The goal of this section is to show that G1(m) = G1(−m) for a Büttiker voltage probe. For a
system at finite temperature andµL,R = EF± V

2 the Fermi Dirac function and its derivative
w.r.t bias voltage are:

f (E ,µ(V )) =
(

exp
[
β(E −µ(V )

]+1
)−1

, (2.24)

∂ f (E ,µ(V ))

∂V
=β

(
exp

[
β(E −µ(V )

]+1
)−1 ∂µ(V )

∂V
= g(E,µ)

∂µ

∂V
. (2.25)

For eq. (2.38) with i = L and j = R, B we have (where we drop e
h ):

IL(m,V ) =
∫ [

TBL(m)+TRL(m)
]

f (E ,µL)−TLB(m) f (E ,µB)−TLR(m) f (E ,µR)dE. (2.26)

Thus the derivative ∂V IL(m,V ), which we hereby define as G1(V ,m), for a bias voltage
- independent system is:

∂V IL((m,V )) ≡ G1(V ,m) =
∫

1

2

[
TBL(m,E)+TRL(m,E)

]
×g(E,µL)+ 1

2
TLR(m,E)×g(E,µR)

−TLB(m)g(E,µB)
∂µB(V ,m)

∂V
dE. (2.27)

And at V = 0 we have the expression:
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G1(V = 0,m) =
∫

1

2

[
TBL(m,E)+TRL(m,E)+TLR(m,E)

]
×g(E,µ= EF)

−TLB(m)g(E,µB(0))
∂µB(V = 0)

∂V
dE. (2.28)

To find ∂µB(V ,m)
∂V we must turn to the current into the Büttiker probe: IB(m). This

current is given by eq. (2.38) with i = B and j = R, L (where we drop e
h ):

IB =
∫ [

TLB(m)+TRB(m)
]

f (E ,µB)−TBL(m) f (E ,µL)−TBR(m) f (E ,µR)dE. (2.29)

For a voltage probe we have the condition that: IB = 0. We take the derivative w.r.t.
IB(m) and the left hand side and right hand side of this expression:

d

dV
IB(m) =

∫ [
TLB(m,µB(V ))+TRB(m,µB(V ))

]
g(E,µB)

∂µB(V )

∂V

+TBR(m)g(E,µR)
1

2
−TBL(m)g(E,µL)

1

2
dE = 0,

⇒

∂V µB(V ) = 1

2

∫
TBL(m)g(E,µL)−TBR(m)g(E,µR)dE∫

g(E,µB)
[
TLB(m,µB)+TRB(m,µB)

]
dE

.

(2.30)

We can take ∂V µB(V ) outside of the integral since it does not depend on energy and
in the last lign we put the integral signs back in. For V = 0 we have µL = µR = EF and
because there can be no currents running at V = 0 we have that µB(V = 0) = EF. To prove
this we can plug µL =µR =µB(V = 0) = EF into eq. (2.29):

IB =
∫

f (E ,EF)
[

TLB(m)+TRB(m)−TRB(m)−TBL(m)
]

dE = 0, (2.31)

because TLB(m)+TRB(m)−TRB(m)−TBL(m) = 0 (this follow from unitarity of the scat-
tering matrix). This proofs µB(V = 0) = EF satisfies the probe condition IB = 0. Plugging
µB(V = 0) = EF into eq. (2.30) and relabeling the energy E → E1 we find:

⇒ ∂V µB(m,V = 0) = 1

2

∫
g(E1,EF)

[
TBL(m)−TBR(m)

]
dE1∫

g(E1,EF)
[

TLB(m)+TRB(m)
]

dE1

. (2.32)

Plugging eq. (2.32) back into eq. (2.28) gives (omitting EF):
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G1(V = 0,m) =
∫

1

2

[
TBL(m)+TRL(m)+TLR(m)

]
×g(E)

−TLB(m)g(E)

∫
g(E1)

[
TBL(m,E1)−TBR(m,E1)

]
dE1∫

g(E1)
[

TLB(m,E1)+TRB(m,E1)
]

dE1

. (2.33)

Now we relabel the energy E in eq. (2.33) with E2 and calculate:

∆G ≡ G1(V = 0,m)−G1(V = 0,−m),

= 1

2

∫ [
TBL(m,E2)+TRL(m,E2)+TLR(m,E2)+ ....(m →−m)

]
×g(E2)dE2

−
∫

TLB(m,E2)g(E2)
∂µB(m,V = 0)

∂V
dE2 +

∫
TLB(−m,E2)g(E2)

∂µB(−m,V = 0)

∂V
dE2.

(2.34)

We now use time-reversal symmetry (Tij(m) = Tji(−m)) and TLB(m)+TRB (m) = TBR(m)+
TBL(m) ( this follow from unitarity of the scattering matrix) to find:

∆G = 1

2a

∫
g(E1)g(E2)

[
2×TLB(m,E2)TBL(m,E1)

+TLB(m,E1)
(
TBR(m,E2)−TBL(m,E2)−TLB(m,E2)−TRB(m,E2)

)]
dE1dE2.

(2.35)

Where a = ∫
g(E,EF)

[
TLB(m)+TRB(m)

]
dE. If there are interactions then a ̸= 0. Now we

interchanges the labels E2,E1 in the first part of eq. (2.35) and find:

∫
g(E1)g(E2)

[
2×TBL(m,E2)TLB(m,E1)

]
dE1dE2 =

∫
g(E1)g(E2)

[
2×TBL(m,E1)TLB(m,E2)

]
dE1dE2.

(2.36)

Plugging eq. (2.36) back into eq. (2.35):

∆G = 1

2a

∫
g(E1)g(E2)×TLB(m,E1)

[
TBR(m,E2)+TBL(m,E2)−TLB(m,E2)−TRB(m,E2)

]
dE1dE2 = 0.

(2.37)

We can conclude that Onsager-Casimir reciprocity is satisfied for any temperature
in the case of a Büttiker voltage probe, and a ̸= 0. Again time-reversal symmetry and
unitarity of the S-matrix imply that: G1(m) = G1(−m).
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2.5.5. CHARGE CURRENT FORMULA
For a system with multiple leads which respects unitarity of the S-matrix and which has
magnetization m the current going into lead i is given by:

Ii(m) = e

h

∫ ∞

−∞

∑
j ̸=i

Tji(m) fi −Tij(m) fj dE. (2.38)

Here Tji(m) is the transmission from lead j to lead i for a magnetization m of the system
and fi is the Fermi-Dirac function of lead i. There is an implicit sum over spins in Tji(m) =∑

s,s′∈{↑,↓} T ss′
ji (m). For a 2 terminal system which respects current conservation: IL+IR = 0,

eq. (2.38) reduces to:

I(m) = e

h

∫ ∞

−∞
TRL(m,E)

(
fL(E)− fR(E)

)
dE. (2.39)
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3
NON-BIPARTICE STRUCTURES

WITH COULOMB INTERACTIONS

One of the manifestations of chirality-induced spin selectivity (CISS) is the appearance of
a magnetocurrent. Magnetocurrent is the observation that the charge currents at finite
bias in a two terminal device for opposite magnetizations of one of the leads differ. Mag-
netocurrents can only occur in the presence of interactions, either of the electrons with vi-
brational modes or among themselves, through the Coulomb interaction. In experiments
on chiral molecules assembled in monolayers the magnetocurrent seems to be dominantly
cubic (odd) in bias voltage while theory finds a dominantly even bias voltage dependence.
Thus far, theoretical work has predicted a magnetocurrent which is even bias. Here we
analyze the bias voltage dependence of the magnetocurrent numerically and analytically
involving the spin-orbit and Coulomb interaction (through the Hartree-Fock and Hub-
bard One approximations). For both approximations it is found that for strong Coulomb
interactions the magnetocurrent is dominantly odd in bias voltage, confirming the sym-
metry observed in experiment.

Part of this chapter has been published in the Journal of Physical Chemistry C 2023, 127, 14, 6900–6905 [1].
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3.1. INTRODUCTION
Chirality-induced spin selectivity (CISS) is a term that classifies a collection of exper-
imental observations on chiral molecules. These observations were made in photo-
emission,2–5 Hall-type,6,7 and transport experiments8–16 (for an extensive overview see
ref [17]). Photo-emission experiments show that a layer of chiral molecules has a differ-
ent transmission probability for spin up and down electrons i.e. the transmission prob-
ability is spin dependent. Hall-type experiments show that self-assembled monolayers
of chiral molecules magnetize when placed on a substrate. This magnetization changes
with the chirality of the molecules6 and it decreases over time.7

In two terminal transport experiments, CISS manifests itself as the appearance of
magnetocurrent. Magnetocurrent is the observation that the currents for non-zero bias
differ for opposite magnetizations of the lead.

Theory initially has mostly focused on the spin dependence of the transmission. The
spin-orbit coupling of the molecule’s constituents in combination with the chirality of
the molecule induce an asymmetry in the transmission probability for spin up and down
electrons of the order 10−5% when no decoherence is considered.18 It has been shown
that the chirality of the molecule in combination with the spin-orbit coupling of the sub-
strate can induce an asymmetry in the transmission probability for spin up and down
electrons of a few percent,19,20 consistent with theoretical work on21,22 and findings in
photo-emission experiments. A spin dependent transmission does however not imply a
magnetocurrent..20,23,24

Magnetocurrent simply is not possible in a fully coherent, noninteracting particle
picture according to Büttiker’s reciprocity theorem for two terminal systems25 so that
modelling beyond this simplified picture is necessary.23

Thus in addition to the chirality of the molecule and spin-orbit coupling, interactions
need to be present26 to obtain a magnetocurrent, in other words, interactions are a nec-
essary ingredient for translating a spin dependent transmission into a non-zero magne-
tocurrent. Several authors have made attempts to reveal magnetocurrent in a theoretical
description in chiral structures by including electron-phonon interactions,27 electron-
electron interactions28 or a generic decoherence probe.20,24 Some authors29,30have pro-
posed alternative explanations based on chirality-induced interface magnetisation. In
describing two terminal transport measurements of the CISS effect there are three points
that need to be addressed by theory.

The first point is the Onsager-Casimir reciprocity, which states that the linear con-
ductance terms at equilibrium are equal for opposite magnetizations : G1(m) =G1(−m).23,31–33

Deviations from Onsager-Casimir reciprocity are not expected and theories should there-
fore reproduce this, or provide a strong reason for their violation.34

The second point is the odd/even behaviour of the magnetocurrent ∆I in bias volt-
age. From Onsager-Casimir reciprocity it follows that the magnetocurrent ∆I is non-
linear in bias voltage.20,24 Experiments9–16 find that the magnetocurrent is dominantly
odd in bias voltage indicating that a cubic dependence dominates (∆I ∝V 3). The theo-
retical work of Yang, van der Wal and van Wees24 modelled interactions with the vibra-
tional modes via an extra node which is placed between the molecule and one of the
leads, forcing the electrons to move through this node and thereby fully decohere. They
found that the magnetocurrent is dominantly even in bias voltage (∆I ∝ V 2). An anal-
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ysis from our group that modelled interactions with the vibrational modes via the Büt-
tiker voltage probe method and realistic parameters for the electronic structure came
to the same conclusion.20 Theoretical work of refs [26] and [35] for mesoscopic metal-
lic samples (quantum Hall bar, chaotic cavity) finds that ∆I is dominantly even in bias
voltage. In ref [36] ∆I is odd but it seems to violate Onsager-Casimir reciprocity since ∆I
is linear in bias voltage. The discrepancy between the odd ∆I −V characteristics of the
experiment and the even ones of the theory remains a puzzling problem and it is this
discrepancy which is the main topic of this chapter.

The third point entails the size of the effect. In experiments it can reach values of
1-80 % while from theoretical model calculations for realistic parameters,20,37 values of
less than 1% have been reported. Fransson28 found that for Coulomb interactions in
the Hubbard One approximation the size of the CISS effect can reach values of the order
10%, although the Fermi level lies well outside the molecular spectrum.

In this chapter we will consider Coulomb interactions using the Hartree Fock ap-
proximation (HFA) and the Hubbard One approximation (HIA) for more or less realistic
parameters, focusing on the bias voltage dependence of the magnetocurrent. The chap-
ter is structured as follows: in sec. 3.2 we describe the scattering region, in sec. 3.3 we
present our numerical results, in sec. 3.4 we give an explanation of our results and we
present our main conclusions in sec. 3.5.

3.2. MODEL DESCRIPTION
The Hamiltonian of a molecular transport junction is given by:

H = Hos +HT +HSOC +HU +Hlead-molecule +Hleads, (3.1)

where Hos is the on-site Hamiltonian, HT is the hopping Hamiltonian, HSOC is the hop-
ping Hamiltonian due to spin-orbit coupling, HU describes the Coulomb interactions,
Hlead-molecule describes the coupling of the molecule to the leads and Hleads describes
the Hamiltonian of the leads. The on-site Hamiltonian is given by Hos = ∑

k ϵk n̂k , the
on-site energy will be set to zero (ϵk = 0) throughout this chapter. The hopping Hamil-
tonian is given by HT = −∑

k t ĉ†
k+1ĉk + h.c., where t is the hopping parameter and h.c.

denotes the hermitian conjugate. In this chapter the sites are arranged in a helix with
radius a and pitch c. N is the number of sites within one winding and M is the num-
ber of windings such that M N is the total number of sites in the molecule. For the
hopping Hamiltonian due to spin-orbit coupling we use the model of Fransson28 which
couples next-nearest neighbours HSOC = ∑

k λ
(
i v⃗k · σ⃗)

ĉ†
k+2ĉk +h.c., where λ is the spin-

orbit coupling parameter, the components of σ⃗ are the Pauli-matrices, v⃗k = d⃗k+1 × d⃗k+2

and d⃗k+n = (⃗rk − r⃗k+n)/|⃗rk − r⃗k+n |, with r⃗k the coordinates of site k on a helix: r⃗k =
[a cos

(
φk

)
, a sin

(
φk

)
,c φk

2π
N

N M−1 ] and φk = 2π(k−1)
N , k ∈ M N . We take M = 1, N = 8

and a = 1,c = 1. Note that due to the spin-dependent hopping term the lattice is non-
bipartite. HU contains the Coulomb interactions, we take those to be on-site:

HU =U
∑
k

n̂k↑n̂k↓, (3.2)

with U the Coulomb interaction strength.
We model the leads using the wide-band limit, meaning that the self-energies are
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purely imaginary and independent of energy. The diagonal matrix elements of lead α

that are coupled to the molecule are given by γ(1+pα
z σz) and are zero otherwise. Here

γ is the coupling strength and pα
z ∈ [−1,1] the magnetic polarization of lead α. For the

right lead we take pR
z = 0 and we couple the left lead to the two leftmost sites and the

right lead to the two right most sites.
We aim at using realistic parameters corresponding to a molecule consisting of car-

bon atoms. We take the hopping parameter t = 2.4 eV.38 Due to the image-charge effect39

the effective on-site Coulomb interaction of carbon, which for an isolated molecule is
UC = 10.06 eV,40 will be lowered to an extent which sensitively depends on the molecule-
lead separation. To investigate the effect of U on the bias dependence of the magne-
tocurrent we vary U to a maximum value of 4.8 eV. The spin-orbit coupling parameter
of helicene is λ = 6 meV18 (therefore λ/t ≈ 10−3). To also investigate its effect on the
bias dependence of the magnetocurrent we will vary λ between 10−3t and 10−1t . Fur-
thermore we take T = 300 K , the coupling strength the lead is taken γ = 0.5 eV41 and
pL

z = 0.5.
The Coulomb interactions cause a shift in the on-site energies of the Hamiltonian of

U /2 causing the molecular spectrum to be symmetric around U /2 for bipartite lattices.
At zero bias voltage the chemical potentials of the left and right lead are given by the
Fermi energy EF. In that case for EF = U

2 the molecule is charge neutral and EF lies pre-
cisely between the highest occupied molecular orbital (HOMO) and lowest unoccupied
molecular orbital (LUMO) energy. However in molecular junctions the molecule is rarely
charge neutral due to charge transfer, which corresponds to EF ̸= U

2 (lying either closer
to the HOMO or LUMO energy). Therefore we also vary the Fermi energy between the
energy of the HOMO and LUMO level.

In sec. 3.4 we state the retarded and advanced two-point Green’s functions in the
Hartree-Fock and the Hubbard One approximation derived with the equation of motion
technique (analogous to ch. 12 of of ref. [42]). These Green’s functions are expressed in
terms of the average electron densities for site k with spin s: 〈nks〉, which we determine
self consistently from the Green’s functions see equation (eq. (3.11)). Every iteration m
has an input and an output electron density and as convergence criterion for the m-
th iteration we use: |〈ni n,m

ks 〉− 〈nout ,m
ks 〉| < 10−5. The Hamiltonian without interactions

(U = 0) is defined as: H0 = Hos+HT+HSOC and is constructed with the Kwant code43 and
the Qsymm code.44 We have implemented a non-equilibrium transport code which can
be found in https://github.com/khhuisman/CISS_CoulombInteraction.

In this code we determine the electron density as follows. Suppose we want to cal-
culate the electron density for the decreasing or increasing bias voltages {0,V1,V2, ...},
(|Vi+1| > |Vi |). First of all we start our self-consistent calculation at zero bias voltage
where we expect that every site is approximately half filled , therefore we take this as
an initial guess (〈ni n,m=0

ks (V = 0)〉 = 1
2 ). Then we self-consistently determine the elec-

tron densities for V = 0 and obtain the converged result 〈nconver g ed
ks (V = 0)〉. We then

use these values as an initial guess for the next bias voltage V1: 〈ni n,m=0
ks (V = V1)〉 =

〈nconver g ed
ks (V = 0)〉. We always use the output of a self-consistent calculation as ini-

tial guess for the next bias voltage: 〈ni n,m=0
ks (V = Vi+1)〉 = 〈nconver g ed

ks (V = Vi )〉 to adia-
batically connect the two solutions. This procedure is done separately for positive and

 https://github.com/khhuisman/CISS_CoulombInteraction
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negative bias and both times we start in V = 0. Furthermore we employ linear mixing of
the electron densities meaning that the input for iteration m +1 is a linear combination
of the input and output of iteration m: 〈ni n,m+1

ks (V )〉 = (1−α)〈nout ,m
ks (V )〉+α〈ni n,m

ks (V )〉
characterized by the parameterα ∈ [0,1). The used values ofα vary between the different
Coulomb interaction strengths and are indicated in the code.

3.3. RESULTS
We now turn to a two terminal system with Coulomb interactions. The transmission
then depends on the bias voltage V through the Coulomb potential, and in the HFA and
HIA, this is expressed in terms of the electron densities, that depend on the bias voltage
applied to the molecule. This means that the transmission becomes voltage dependent:
TLR(m) → TLR(m,V ) = TLR(m,〈n1↑(m,V )〉,〈n1↓(m,V )〉, ...,〈nks (m,V )〉). The current into
the left lead is then given by:

I(m,V ) = e

h

∫ ∞

−∞
TLR(m,V )

(
fL − fR

)
dE, (3.3)

where fα = f (E,µα,β) is the Fermi-Dirac distribution of the lead α with chemical po-
tential µα at β = 1

kBT with T the temperature of the lead. The transmission is given by

TLR = Tr
[
ΓLG+ΓRG−

]
with G+ the retarded Green’s function. Assuming symmetric ca-

pacitive coupling to the left and right lead, the chemical potentials of the left and right
leads are EF+ V

2 and EF− V
2 respectively, with EF the Fermi energy and V the bias voltage.

Using eq. (3.3) we can write the magnetocurrent as:

∆I(m,V ) ≡ I(m,V )− I(−m,V )

= e

h

∫ ∞

−∞

[
TLR(m,V )−TLR(−m,V )

]
( fL − fR)dE . (3.4)

In figure 3.1, ∆I (m,V ) is plotted as a function of bias voltage in the HFA and HIA
respectively. In fig. 3.1a the magnetocurrent is plotted for EF ̸= U

2 in the HFA and we
see that for small U /t (upper panels) the magnetocurrent is dominantly even in bias
voltage and for large U /t (lower panels) the magnetocurrent is dominantly odd in bias
voltage for EF ̸= U

2 . In fig. 3.1b the magnetocurrent is plotted for EF ̸= U
2 in the HIA

and we see that it is a dominantly odd function of the bias voltage. In fig. 3.1c and 3.1d
we see that ∆I (m,V ) is dominantly odd in voltage for EF = U

2 . From the numerical re-
sults it is clear that ∆I (m,V ) is dominantly odd in bias voltage in both the HFA and HIA
for most cases, the only exception being EF ̸= U

2 for small U /t < 1 in the HFA for which
the magnetocurrent is dominantly even. Here we simply stated our numerical results,
in sec. 3.4 we present a theoretical analyses to explain them. Now follow some other
results, our calculation shows that in both the HFA and HIA the polarization of the cur-
rent PC (V ) = I(m,V )−I(−m,V )

I(m,V )+I(−m,V ) is less than 1% even if relatively large values of the spin-orbit
coupling parameter are used. Also it is found that when the molecule changes its chiral-
ity, ∆I (m,V ) exactly changes sign ∆I (m,V ) →−∆I (m,V ). Furthermore if the spin-orbit
coupling parameter is set to zero, the magnetocurrent vanishes. In Appendix 3.6.4 we
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(a) HFA (b) HIA

(c) HFA (d) HIA

Figure 3.1: ∆I (m,V ) for the the helical geometry. Asymmetric chemical potential (a) in the HFA, (b) in the HIA.
Symmetric chemical potential: (c) in the HFA, (d) in the HIA.

consider the effects of magnetic stray field B that pierces the scattering region in the ab-
sence of spin-orbit coupling. The constant magnetic stray field either couples to the spin
of the electron, yielding an on-site term or it induces a Peierls phase (see eq. (3.82)) in the
hopping parameters due the Peierls substitution. We find that the coupling between the
spin and the magnetic field alone yields a numerically vanishing magnetocurrent. The
magnetocurrent due to a magnetic phase and nearest neighbour (rather than on-site)
Coulomb interactions is negligibly small and of the order 10−4%.

3.4. DISCUSSION
In this section we provide theoretical arguments to qualitatively explain our numeri-
cal results. We can expand the magnetocurrent (eq. (3.4)) in bias voltage as ∆I(m,V ) =
∆G1(m)V +∆G2(m)V 2 +∆G3(m)V 3 + ..., where:

∆Gn(m) = 1

n!

[( ∂

∂V

)n
∆I (m,V )

]
V =0

. (3.5)

Onsager-Casimir reciprocity,31,32 implies that ∆G1(m) = 0. To show that this relates
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back to time-reversal symmetry at equilibrium ( V = 0 and equal temperatures for both
leads45) we write ∆G1(m) in terms of the transmission:

∆G1(m) = ∂∆I (m,V )

∂V

∣∣∣
V =0

,

= e

h

∫ ∞

−∞
f ′

0

(
TLR(m,V = 0)−TLR(−m,V = 0)

)
dE . (3.6)

Here we adopted the notation: f ′
0 = −∂E f (E ,EF,β). Onsager requires that in equilib-

rium the system is time-reversal symmetric. This in combination with current conser-
vation implies for the transmission that: TLR(m,V = 0) = TLR(−m,V = 0) so that indeed
∆G1(m) = 0. As a consequence of this the magnetocurrent can only be non-linear in
bias voltage ∆I (m,V ) ∝∆G2(m)V 2+∆G3(m)V 3+ ... in accordance with the conclusions
of.23,24 From our numerical calculations we indeed verify that the transmission satisfies
TLR(m,V = 0) = TLR(−m,V = 0) in the HFA and HIA, therefore Onsager-Casimir reci-
procity is satisfied. The non linear-coefficients: ∆G2(m),∆G3(m), ... may however vanish.
To show that ∆G2(m) is finite, we analyse it via eq. (3.5). At equilibrium, time-reversal
symmetry (TRS) implies that the occupation difference∆nks (m,V ) = 〈nks (m,V )〉−〈nks (−m,V )〉
(s denotes that we flip spin s) is zero∆nks (m,V = 0) = 0. At nonzero bias, deviation from
equilibrium manifests itself through∆nks (m,V ) which no longer vanishes when the bias
voltage is finite. Therefore from (3.5) ( Appendix 3.6.1) we have:

∆G2(m) = 1

2

e

h

∫ ∞

−∞
f ′

0

∑
k,s
∂ks TLR(m,V = 0)

[
∂V∆nks (m,V )

]
V =0

dE , (3.7)

where ∂ks = ∂〈nks (m,V =0)〉. Eq. (3.7) can be understood as follows: the Green’s function
is time-reversal symmetric except for the electron densities. As the zeroth order term
∆nks (m,V = 0) = 0, ∆G2(m) can only scale with the first order derivative of ∆nks (m,V )
at V = 0. Intuitively this makes sense: to what extent TRS is broken out of equilibrium
(V ̸= 0) scales with the occupation difference: ∆nks (m,V ) = 〈nks (m,V )〉−〈nks (−m,V )〉.
Deviations from TRS thus manifest themselves through∆nks (m,V ). If this deviates from
zero,∆G2(m) will too. If TRS is present out of equilibrium for every voltage (〈nks (m,V )〉 =
〈nks (−m,V )〉) then ∆G2(m) ∝ ∂V∆nks (m,V = 0) = 0 and there is no magnetocurrent as
expected due to Büttikers reciprocity theorem for two terminal systems.25 Furthermore
if U = 0 then∆I (m,V ) = 0, since every derivative with respect to bias V yields an electron
density multiplied by U . This shows the importance of going beyond the non-interacting
particle picture. From eq. (3.5) ( Appendix 3.6.1) we have for ∆G3(m):

∆G3(m) =1

4

e

h

∫ ∞

−∞
f ′

0

∑
k,k ′,s,s′

∂ks∂k ′s′TLR(m,V = 0)

×
[
∂V 〈nks (m,V )〉∂V 〈nk ′s′ (m,V )〉−∂V 〈nks (−m,V )〉∂V 〈nk ′s′ (−m,V )〉

]
V =0

dE

+1

4

e

h

∫ ∞

−∞
f ′

0

∑
k,s
∂ks TLR(m,V = 0)

[
∂2

V∆nks (m,V = 0)
]

dE , (3.8)
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for a symmetrically biased junction. For small V we expect that ∆nks (m,V ) varies lin-
early with bias voltage V . It can then be shown that∆G3(m)/∆G2(m) ∝U in the HFA and
HIA ( Appendix 3.6.1). This is consistent with figure 3.1a since ∆I (m,V ) changes from
even to odd with increasing U , and we see that for large U , the cubic term in the magne-
tocurrent tends to dominate. In the HIA we see similar behaviour only for much smaller
U than considered in fig. 3.1b. The numerical results for EF ̸= U

2 figs. 3.1a and 3.1b show

that the even/odd behaviour of∆I (m,V ) can change a lot compared to EF = U
2 . At EF ̸= U

2
and V = 0 the system is not exactly half-filled which is more the rule than the exception
in molecular junctions due to charge transfer to the molecule. Due to the large Coulomb
interactions this will result in a magnetocurrent which is odd in bias voltage.

Here we comment on the Green’s functions that are used to calculate the magne-
tocurrent. A derivation of the Green’s functions is done in chapter 12 of Haug and Jauho.42

Here we simply give the Green’s functions for a system with spin-orbit coupling. The
Hamiltonian without interactions (U = 0) is defined as: H0 = Hos +HT +HSOC. The re-
tarded Green’s function in the Hartree-Fock approximation is given by:

G+
HFA(ϵ) =

[
ϵI−H0 −U n−Σ

]−1
, (3.9)

and the retarded Green’s function in the Hubbard One approximation is given by:

G+
HIA(ϵ) = 1

(ϵI−Hos −U I)(ϵI−H0 −Σ)−U n(HT +HSOC +Σ)
×

[
ϵI−Hos −U (I−n)

]
.

(3.10)

Where Σ is the retarded self-energy of the leads, which in the wide band limit for a mag-

netized left lead is given byΣ=− i
2

(
ΓL(m)+ΓR

)
=− i

2Γ(m) and n =∑
ks〈nks〉n̂ks is a diag-

onal matrix with the electron densities on the diagonal. For these Green’s functions the
density of states are symmetric around the Fermi energy EF = U

2 if the lattice is bipartite.
The electron density for site k with spin s is given by:

〈nks (m,V )〉 =
∫ ∞

−∞

(
G+

[ ∑
α=L,R

fαΓα
]

G−
)

ks,ks

dϵ

2π
. (3.11)

In eq. (3.9) the term
∑

k,s〈nks〉n̂ks is the result of a Wick contraction of the term nk↑nk↓ in

eq. (3.2). This contraction in principle also allows for the term:46,47 −〈c†
k↑ck↓〉c†

k↓ck↑+h.c.
which we will call the non-collinear Hubbard model. In that case we obtain ( Appendix
3.6.2) the following non-collinear (NC) Hartree Fock Green’s function:

G+
HFA,NC(ϵ) =

[
ϵI−H0 −U n+Uρ−Σ

]−1
(3.12)

and the the non-collinear Hubbard One Green’s function:

G+
HFA,NC(ϵ) =

[
(ϵI−Hos −U I)(ϵI−H0 −Σ)−U (n−ρ)(HT +HSOC +Σ)

]−1 ×
[
ϵI−Hos −U (I−n+ρ)

]
(3.13)
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Where we defined: ρ =∑
ks〈c†

ks
cks〉c†

ks cks . The expectation value 〈c†
ks

cks〉 vanishes in the
absence of spin-orbit coupling and it is expected that it does not change the result of our
calculations. Indeed, when we include this term in our calculations the bias dependence
of the magnetocurrent does not change with respect to 〈c†

ks
cks〉 = 0 for all of the consid-

ered values of the spin-orbit coupling, Coulomb interaction strength and Fermi energy.
Only in the HFA for U

t = 2, λt = 0.1 and EF ̸= U
2 the size of the effect increases signifi-

cantly to a few percent for low bias voltage. However this increase in the size of the effect
happens for a particular choice Fermi energy and it is not clear to us why that happens
however we suspect this is due to a numeric instability. Furthermore for large Coulomb
interactions (U

t > 1) the non-collinear Hubbard One Green’s function (eq. (3.13)) gives
more accurate results and the size of the effect remains less than 1% while the magne-
tocurrent remains odd in bias voltage.

3.5. CONCLUSION
In this work we studied the voltage dependence of the magnetocurrent for system with
Coulomb interactions (in the HFA and HIA). The system we studied has next-nearest
neighbour, spin-dependent hopping that causes the lattice to be non-bipartite. Our nu-
merical results show that the magnetocurrent is odd in bias voltage in both the HFA and
HIA for strong Coulomb interactions U > t in agreement with experiments.9–16 Further-
more we verified that the Onsager-Casimir reciprocity is satisfied, as expected. For a
large spin-orbit coupling parameter (λt = 0.1) we found that the size of the effect is of the
order 0.1% which is of the same order as our previous work on Büttiker voltage probes.20

How a bipartite lattice with spin-orbit coupling affects the voltage dependence of the
magnetocurrent will be considered in a separate chapter.

3.6. APPENDIX

3.6.1. COULOMB INTERACTIONS: HIGHER ORDER DIFFERENTIAL CONDUC-
TANCE COEFFICIENTS

In section 3.6.1 the coefficients ∆G2(m),∆G3(m) will be calculated via equation (eq.)
(3.5) and it will be shown that Onsager-Casimir reciprocity (∆G1(m) = 0) follows from
time-reversal symmetry in equilibrium. We then compare ∆G2(m),∆G3(m) for a system
with Coulomb interactions in the Hartree-Fock approximation that satisfies Onsager-
Casimir reciprocity.

HARTREE-FOCK: DIFFERENTIAL CONDUCTANCE COEFFICIENTS

Let us introduce the notation:

fα(E) = [exp
(
βα(E −µα)

)+1]−1, (3.14)

f ′
α ≡ ∂µα fα, f ′′

α ≡ ∂2
µα

fα (3.15)

Where µα is the the chemical potential of lead α and βα = 1
kBTα

with Tα the tempera-

ture of lead α. We will only consider equal temperatures for the leads βL,R = 1
kBT . The
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chemical potential of the left, right lead read given by:

µL = EF +ηV , µR = EF − (1−η)V

∂V µL = η, ∂V µR =−(1−η) (3.16)

Here η is the capacitive coupling. We define f0 = fL,R(E)|V =0 = [exp
(
β(E −EF)

)+1]−1 and

f
′

0 = ∂µL,R fL,R(E)|V =0.

ONSAGER-CASIMIR RECIPROCITY

Onsager demands that in equilibrium the system is time-reversal symmetric. To be un-
ambiguous we define “equilibrium” as V = 0 (i.e. µL = µR) and equal temperatures for
both leads (i.e. TL = TR) if one of these conditions is violated we say the system is “out
of equilibrium”.45 For the transmission time-reversal symmetry implies that TLR(m,V =
0) = TRL(−m,V = 0). Also we have TRL(m,V ) = TLR(m,V ), due to current conservation
IL+IR = 0. Combining time-reversal symmetry and current conservation this implies for
the transmission that:

TLR(m,V = 0) = TLR(−m,V = 0). (3.17)

This implies that ∆G1(m) = 0 see eq. (3.6).

COEFFICIENT ∆G2(m)

From eq. (3.5) we obtain the following expression for ∆G2(m) (invoking eq. (3.17)):

∆G2(m) = 1

2

∂∆I (m,V = 0)

∂V 2 ,

= 1

2

e

h

∫ ∞

−∞

[
∂V TLR(m,V = 0)−∂V TLR(−m,V = 0)

]
f ′

0dE ,

= 1

2

e

h

∫ ∞

−∞

∑
k,s
∂ks TLR(m,V = 0)

[
∂V∆nks (m,V = 0)

]
f ′

0dE . (3.18)

Here we adopted the notation ∂〈nks (m,V =0)〉 ≡ ∂ks and in the last line∆nks (m,V ) ≡ 〈nks (m,V )〉−
〈nks (−m,V )〉. Time-reversal symmetry at equilibrium implies that that the electron den-
sities satisfy: 〈nks (m,V = 0)〉 = 〈nks (−m,V = 0)〉, meaning that the partial derivatives:
∂〈nks (m,V =0)〉 = ∂〈nks (−m,V =0)〉 ≡ ∂ks . Futhermore at equilibrium we have that TLR(m,V =
0) = TLR(−m,V = 0) (see sec 3.6.1), we use this to write ∂〈nks (m,V =0)〉TLR(m,V = 0) =
∂〈nks (−m,V =0)〉TLR(−m,V = 0).
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COEFFICIENT ∆G3(m)
From eq. (3.5) we obtain the following expression for ∆G3(m) (invoking eq. (3.17)):

∆G3(m) = 1

6

∂3∆I (m,V = 0)

∂V 3

= 1

4

e

h

∫ ∞

−∞
f ′′

0 (2η−1)
∑
k,s
∂ks TLR(m,V = 0)

[
∂V∆nks (m,V = 0)

]
,

+ 1

4

e

h

∫ ∞

−∞
f ′

0

∑
k,k ′,ss′

∂ks∂k ′s′TLR(m,V = 0)

×
[
∂V 〈nks (m,V )〉∂V 〈nk ′s′ (m,V )〉−∂V 〈nks (−m,V )〉∂V 〈nk ′s′ (−m,V )〉

]
V =0

dE

+ 1

4

e

h

∫ ∞

−∞
f ′

0

∑
k,s
∂ks TLR(m,V = 0)

[
∂2

V∆nks (m,V = 0)
]

dE . (3.19)

To simplify the expression we used the expressions:

∂〈nks (m,V =0)〉TLR(m,V = 0) = ∂〈nks (−m,V =0)〉TLR(−m,V = 0),

∂〈nks (m,V =0)〉∂〈nk′s′ (m,V =0)〉TLR(m,V = 0) = ∂〈nks (−m,V =0)〉∂〈nk′s′ (−m,V =0)〉TLR(−m,V = 0).

(3.20)

Furthermore we adopted the notation ∂〈nks (m,V =0)〉 ≡ ∂ks and used that ∂〈nks (m,V =0)〉 =
∂〈nks (−m,V =0)〉 as discussed in sec. 3.6.1.

COMPARING NON-LINEAR COEFFICIENTS

In section 3.6.1 we show that: ∂ks∂k ′s′TLR(m,V = 0) =U 2T (2)
ks,k ′s′ (m) ∝U 2 and ∂ks TLR(m,V =

0) = U T (2)
ks (m) ∝ U . For small bias we expect ∂V 〈nks (m,V = 0)〉,∂V 〈nks (−m,V = 0〉)

to vary approximately linear in bias voltage (∂2
V nks (±m) ∝ 0). Let us further assume

symmetric capacitive coupling to the leads η = 1/2 then the ratio between ∆G3(m) and
∆G2(m) is given by;

∆G3(m)/∆G2(m) ∝U . (3.21)

TRANSMISSION DERIVATIVES
In the previous section we encountered the derivatives:

∑
k,s ∂ks TLR(m,V = 0) and∑

k,k ′,s′,s ∂k ′s′∂ks TLR(m,V = 0), where we adopted the notation ∂〈nks (m,V =0)〉 = ∂ks . Here
we investigate how the derivatives of the transmission scale with the interaction strength
U in the HFA and HIA.

HARTREE FOCK

We use ∂
∂x A−1 = −A−1 ∂A

∂x A−1 and that in the HFA Green’s function (eq. (3.9) ) at V = 0 is

given by: G±
0 (ϵ,n(m,V = 0),m) =

[
Iϵ−H0 −U n(m,V = 0)± i

2Γ(m)
]−1

. The derivative ∂ks

only acts on the electron densities:

∂ks G±
0 =U G±

0 Xks G±
0 . (3.22)
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Where we define Xks =∑
k ′,s′

∂〈nk′s′ (m,V =0)〉
∂〈nks (m,V =0)〉 n̂k ′s′ = n̂ks . This is a diagonal matrix with only

one non-zero element i.e. Xk↑ = diag(0,0, ..,1,0, ...,0) and Xk↓ = diag(0,0, ..,0,1, ...,0). The
first derivative of the transmission then becomes:

∂ks TLR(m,V = 0) =U Tr
[

Xks
(
G+

0 ΓRG−
0 ΓL(m)G+

0 +h.c.
)]

=U T (1)
ks (m,V = 0) ∝U . (3.23)

Now we continue with the second derivative using (3.22):

∂k ′s′∂ks TLR(m,V = 0)

=U 2Tr
[

Xks
(
G+

0 Xk ′s′G+
0 ΓRG−

0 ΓL(m)G+
0 +h.c.

)]
+U 2Tr

[
Xks

(
G+

0 ΓRG−
0 Xk ′s′G−

0 ΓL(m)G+
0 +h.c.

)]
+U 2Tr

[
Xks

(
G+

0 ΓRG−
0 ΓL(m)G+

0 Xk ′s′G+
0 +h.c.

)]
=U 2T (2)

k ′s′,ks (m,V = 0) ∝U 2 (3.24)

This thus shows that ∂k ′s′∂ks TLR(m) ∝U 2.

HUBBARD ONE

In the Hubbard One Approximation the Green’s function is given by eq. (3.10). We rewrite

it as G+
HIA = A−1B where A,B are given by: A =

[
(ϵI−Hos−U I)(ϵI−H0−Σ)−U n(HT+HSOC+

Σ)
]

and B = ϵI−Hos −U (I−n). Taking the derivative with respect to the electron density

of G+
HIA gives:

∂ks G+
HIA =U A−1

[
Xks

(
HT +HSOC +Σ

)
G+

HIA +Xks
]

(3.25)

∂k ′s′∂ks G+
HIA =U 2A−1Xk ′s′

(
HT +HSOC +Σ)A−1

[
Xks

(
HT +HSOC +Σ

)
G+

HIA +Xks
]

+U 2A−1Xks
(
HT +HSOC +Σ

)
A−1

[
Xk ′s′

(
HT +HSOC +Σ

)
G+

HIA +Xk ′s′
]
(3.26)

The first derive of the transmission with respect to the electron density is given by:

∂ks TLR(m,V = 0) = Tr
[
ΓL(m)∂ks G+

HIAΓRG−
HIA +ΓL(m)G+

HIAΓR∂ks G−
HIA

]
∝U , (3.27)

and with eq. (3.25) we see it is proportional to U . The second derivative of the transmis-
sion with respect to the electron density is given by:

∂k ′s′∂ks TLR(m,V = 0) = Tr
[
ΓL(m)∂k ′s′∂ks G+

HIAΓRG−
HIA +ΓL(m)∂ks G+

HIAΓR∂k ′s′G
−
HIA

+ΓL(m)∂k ′s′G
+
HIAΓR∂ks G−

HIA +ΓL(m)G+
HIAΓR∂k ′s′∂ks G−

HIA

]
∝U 2,

(3.28)

and with eqs. (3.25),(3.26) we see it is proportional to U 2.
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3.6.2. DERIVATION OF ELECTRON GREEN’S FUNCTION
In this section the Green’s function with Coulomb interactions will be derived in the
Hartree-Fock and Hubbard One Approximation. A derivation of these Green’s functions
is done in the work of Haug and Jauho for a system without spin-orbit coupling while the
novelty in this section is that we derive these Green’s functions for a system with spin-
orbit coupling.

This section is structured as follows, in 3.6.2 we will define conventions for our Fourier
transforms, in 3.6.2 we will give a short introduction on Green’s function, in 3.6.2 we will
introduce the equation of motion technique, in 3.6.2 we will define the Hamiltonian, in
3.6.2 we will derive the equation of motion for the retarded Green’s function, in sec. 3.6.2
we will solve the retarded Green’s function in the Hartree-Fock approximation and in sec.
3.6.2 we will solve the retarded Green’s function in the Hubbard One approximation.

DEFINITIONS
We define the Fourier transforms conventions:

F ( f (t )) ≡ f (ω) =
∫ ∞

−∞
e iωt f (t )d t =

∫ ∞

−∞
e i ϵħ t f (t )d t = f (ϵ), (3.29)

F ( f (ω)) ≡ f (t ) = 1

2π

∫ ∞

−∞
e−iωt f (ω)dω= 1

2πħ
∫ ∞

−∞
e−i ϵħ t f (ϵ)dϵ. (3.30)

Equation (3.30) implies that: F (iħ ḟ (t )) = ϵ f (ϵ). We define [A,B ]± ≡ AB ±B A. From
this definition we define the anti-commutator: {A,B} ≡ [A,B ]+ and the commutator:
[A,B ] ≡ [A,B ]−.

GREEN’S FUNCTION
The Green’s function in the time domain is defined as the time ordered product of a
creation and annihilation operator:

Gαs,βs′ (t − t ′) =− i

ħ〈T {cαs (t )c†
βs′ (t ′)}〉. (3.31)

Here c†
αs and cαs are the creation and annihilation operators respectively, the Greek in-

dices α,β label sites and roman labels s, s′ label spin. Throughout this chapter we will
only consider fermionic operators these satisfy anti-commutation relations:

{cαs ,c†
βs′ } = δαβδss′ , (3.32)

{cαs ,cβs′ } = 0 = {c†
αs ,c†

βs′ }. (3.33)

We can write the Green’s function as:

G(t − t ′) =Θ(t − t ′)G>(t − t ′)+Θ(t − t ′)G<(t − t ′). (3.34)

Here G>(t − t ′) and G<(t − t ′) are the greater and lesser green’s function respectively and
Θ(x) is the Heaviside step function. Here greater and lesser refer to the time difference
t − t ′ being greater or lesser than zero. We identify:
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G>
αs,βs′ (t − t ′) =− i

ħ〈cαs (t )c†
βs′ (t ′)〉, (3.35)

G<
αs,βs′ (t − t ′) = i

ħ〈c†
βs′ (t ′)cαs (t )〉. (3.36)

We will work with retarded and advanced Green’s functions respectively:

G+
αs,βs′ (t − t ′) =− i

ħΘ(t − t ′)〈{cαs (t ),c†
βs′ (t ′)}〉, (3.37)

G−
αs,βs′ (t − t ′) = i

ħΘ(t ′− t )〈{cαs (t ),c†
βs′ (t ′)}〉. (3.38)

Here retarded and advanced refer to an event happening at time t that is before time
t ′ (t > t ′) or after time t ′ respectively (t < t ′). In the Fourier domain it can be shown
that: G−(ϵ) = (G+(ϵ))†. The Green’s functions in eqs. (3.35) - (3.38) are by their definition
related as : G+−G− =G>−G<.

EQUATION OF MOTION TECHNIQUE
In the equation of motion technique we try to get a closed expression for the retarded,advanced
Green’s function. We start from the definitions of the retarded Green’s function (3.37) and
take the derivative with respect to t :

iħĠ+
κs′′,χs′′′ (t − t ′) = δ(t − t ′)〈{cκs′′ (t ),c†

χs′′′ (t ′)}〉,
+Θ(t − t ′)〈{ċκs′′ (t ),c†

χs′′′ (t ′)}〉. (3.39)

This equation is central to the equation of motion technique. In the equation above
ċκs′′ (t ) appears. We can calculate the time derivative in the Heisenberg picture. In that
picture the operators evolve in time and the eigenstates are stationary. The time deriva-
tive works on an operator A as:

iħȦ(t ) = [A(t ), H ]. (3.40)

with H the Hamiltonian of the system. Given a specific Hamiltonian we can calculate
ċκs′′ (t ) in eq. (3.39) via eq. (3.40).

COUPLED, INTERACTING SYSTEM
In this section we define our Hamiltonian. For a molecule that is coupled to leads and
has on-site Coulomb interactions between opposite spins, the Hamiltonian is given by:

H =∑
αs
ϵαs nαs + U

2

∑
αs

nαs nαs

+ ∑
α,β,s,α̸=β

tαβc†
αs cβs +

∑
α,β,s,s′,α̸=β

vαβ,ss′c
†
α,s cβ,s′

+∑
K

∑
α,β,s,s′

V K
αs′,βs c†

αs′d
K
βs +V †K

αs′,βs d †K
βs cαs′ +

∑
K ,β,s

ϵK
β,s d †K

βs d K
βs (3.41)
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Here c†
αs and cαs are the creation and annihilation operators on the molecule respec-

tively. The on-site Hamiltonian is given by: H os = ∑
αs ϵαs nαs with ϵαs the on-site en-

ergy for spin s and nαs = c†
αs cαs the number operator. The Coulomb interaction gives

rise to on-site interactions between opposite spins which is described by the Hamilto-
nian HU = U

2

∑
αs nαs nαs here s indicates that spin s is flipped and U is the Coulomb

interactions strength. The spin-independent hopping Hamiltonian is given by H T =∑
α,β,s,α̸=β tαβc†

αs cβs where tαβ describes hopping between different sites. For purely real
NN hopping we have that: tαβ = t (δα,β+1+δβ,α+1). The spin-orbit coupling gives rise to a

spin-dependent hopping H SOC =∑
α,β,s,s′,α̸=β vαβ,ss′c

†
α,s cβ,s′ . The operators d †K

βs and d K
βs

are the creation and annihilation operators of electrons in lead K respectively. The term
H lead-molecule =

∑
K

∑
α,β,s,s′ V K

αs′,βs c†
αs′d

K
βs+h.c. describes the coupling between electrons

on the different leads and on the molecule and H lead = ∑
β,s ϵ

K
βs d †K

βs d K
βs is the Hamilto-

nian of the lead K and ϵK
βs its on-site energy. The Hamiltonian of the molecule without

interactions (U = 0) is defined as: H 0 = H os +H T +H SOC.

RETARDED GREEN’S FUNCTION: EQUATION OF MOTION
Now that we have defined our Hamiltonian we first compute time-derivatives of the an-
nihilation operators in the molecule and on the lead ċκs′′ , ḋ K

κs′′ via (3.41) and (3.40), then
we will obtain the equation of motion for the Green’s functions.
Time - derivatives of operators
i) For electrons in the molecule we have:

iħċκs′′ = [cκs′′ , H ] =
[
ϵκs′′ +Unκs′′

]
cκs′′ +

∑
β

tκβcβs′′ +
∑
β,s

vκβ,s′′s cβ,s +
∑

K ,βs
V K
κs′′,βs d K

βs .

(3.42)

ii) The time derivative of the operators in the lead are given by:

iħḋ K
κs′′ = [d K

κs′′ , H ] = ϵK
κs′′d

K
κs′′ +

∑
α,s′

(V †K
αs′,κs′′ )cαs′ . (3.43)

Green’s Functions
In the equation of motion of the retarded Green’s function (eq. (3.39)) we replace ċκs′′ by
eq. (3.42) and we Fourier transform on both sides with respect to t − t ′. This results in
the following expression:[

ϵ−ϵκs′′
]
G+
κs′′,χs′′′ (ϵ)− ∑

K ,βs
V K
κs′′,βsG+,K

βs,χs′′′ (ϵ)−∑
β

tκβG+
βs′′,χs′′′ (ϵ)−∑

βs
vκβ,s′′sG+

βs,χs′′′ (ϵ)

= δκχδs′′′s′′ +UG+2
κs′′,κs′′,χs′′′ (ϵ). (3.44)

Here we define:

G+2
κs′′,κs′′,χs′′′ (t − t ′) =− i

ħΘ(t − t ′)〈{nκs′′ (t )cκs′′ (t ),c†
χs′′′ (t ′)}〉, (3.45)

G+,K
ab,cd (t − t ′) =− i

ħΘ(t − t ′)〈{d K
ab(t ),c†

cd (t ′)}〉, (3.46)
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with G+2
κs′′,κs′′,χs′′′ (ϵ) and G+,K

ab,cd (ϵ) the respective Fourier transforms.

To solve for G+,K
ab,cd (ϵ) we first take a derivative with respect to t of eq. (3.46) and

use eq. (3.43) for ḋ K
ab(t ), then we Fourier transform and solve to to find: G+,K

ab,cd (ϵ) =∑
e f

V K∗
e f ,ab

(ϵ−ϵK
ab )

G+
e f ,cd (ϵ). We then use this to obtain:

∑
K ,βs

V K
κs′′,βsG+,K

βs,χs′′′ (ϵ) = ∑
K ,e f

(∑
βs

V K
κs′′βsV K∗

e f ,βs

ϵ−ϵK
βs

)
G+

e f ,χs′′′ (ϵ) = ∑
K ,e f

ΣK
κs′′,e f G+

e f ,χs′′′ (ϵ). (3.47)

Where we define:

ΣK
ab,cd (ϵ) =∑

χβ

V K
ab,χβV K∗

cd ,χβ

ϵ−ϵK
χβ

, (3.48)

as the retarded self-energy of lead K . It is common to split the retarded self energy into
an imaginary and a real part:

ΣK
ab,cd (ϵ) =Λab,cd (ϵ)− i

2
Γab,cd (ϵ), (3.49)

whereΛab,cd (ϵ) and Γab,cd (ϵ) are real numbers. Now eq. (3.44) becomes:[
ϵ−ϵκs′′

]
G+
κs′′,χs′′′ (ϵ)− ∑

K ,e f
ΣK
κs′′,e f G+

e f ′,χs′′′ (ϵ)−∑
β

tκβG+
βs′′,χs′′′ (ϵ)−∑

βs
vκβ,s′′sG+

βs,χs′′′ (ϵ)

= δκχδs′′′s′′ +UG+2
κs′′,κs′′,χs′′′ (ϵ). (3.50)

HARTREE - FOCK APPROXIMATION
Normally in the Hartree-Fock approximation the second order and first order Greens
function are related as:

G+2
κs′′,κs′′,χs′′′ (ϵ) = 〈nκs′′〉G+

κs′′,χs′′′ (ϵ). (3.51)

We do this to cut of the hierarchy of the Green’s function. Physically it means that you
neglect correlations between all occupation numbers. Equation (3.51) is the result of
considering the Wick contraction of the first two equal time operators: c†

κs′′cκs′′cκs′′ in
eq. (3.45). However we can also consider the contraction of the first with the third (note
that 〈cabce f 〉 = 0) resulting in:

c†
κs′′cκs′′cκs′′ = 〈nκs′′〉cκs′′ −〈c†

κs′′cκs′′〉cκs′′ . (3.52)

The expectation value 〈c†
κs′′cκs′′〉 is nonzero in the presence of spin-orbit coupling (but

vanishes if the spin-orbit coupling is set to zero). Thus we can approximate the second
order Green’s function as:

G+2
κs′′,κs′′,χs′′′ (ϵ) = 〈nκs′′〉G+

κs′′,χs′′′ (ϵ)−〈c†
κs′′cκs′′〉G+

κs′′,χs′′′ (ϵ). (3.53)
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for a system with spin-orbit coupling. We now substitute eq. (3.53) into eq. (3.50) to find
the equation of motion:

[
ϵ−ϵκs′′

]
G+
κs′′,χs′′′ (ϵ)−U 〈nκs′′〉G+

κs′′,χs′′′ (ϵ)+U 〈c†
κs′′cκs′′〉G+

κs′′,χs′′′ (ϵ)

+ ∑
K ,e, f

ΣK
κs′′,e f G+

e f ,χs′′′ (ϵ)−∑
β

tκβs′′G
+
βs′,χs′′′ (ϵ)−∑

βs
vκβs′′sG+

βs,χs′′′ (ϵ) = δκχδs′′′s′′ . (3.54)

We can now solve this equation for G+. The retarded Green’s function in matrix notation
is given by:

G+
HFA(ϵ) =

[
ϵ1−H 0 −U n +Uρ−Σ

]−1
. (3.55)

Here Σ=∑
K Σ

K is the sum of all retarded self-energies of the leads, n =∑
κs〈nκs〉nκs is a

diagonal matrix with the electron densities on the diagonal and ρ =∑
κs〈c†

κs
cκs〉c†

κs cκs is
an off-diagonal matrix.

The term ρ describes hopping between up and down electrons on the same site,
therefore it can have an imaginary and a real part: 〈c†

κs′′cκs′′〉 = a + i b and its complex
conjugate a − i b which makes that ρ is proportional to the Pauli matrices: aσx +bσy .
Thus we can interpret this term as an on-site spin in the x and y direction. That is why
some references call this the non-collinear Hubbard model,47 since the spin is not par-
allel to z direction. Therefore we call the Green’s function in eq. (3.55) the non-collinear
Hartree Fock Green’s function.

The Hartree Fock Green’s function is usually made particle-hole symmetric by sub-

tracting a factor of 1/2 from the electron densities: U
(
〈nκs〉− 1

2

)
nκs . For a bipartite lattice

the density of states are symmetric around the energy E = 0. When the factor of 1/2 is
omitted the density of states are symmetric around the energy E = U

2 .

HUBBARD ONE APPROXIMATION

In the Hubbard One approximation we solve for G+2
κs′′,κs′′,χs′′′ (ϵ) instead of approximating

it (via eq. (3.53) ). A solution is sought via the equation of motion of G+2
κs′′,κs′′,χs′′′ (ϵ), which

is obtained by taking the time derivative of eq. (3.45) with respect to t :

Ġ+2
κs′′,κs′′,χs′′′ (t − t ′) =− i

ħδ(t − t ′)〈{nκs′′ (t )cκs′′ (t ),c†
χs′′′ (t ′)}〉

− i

ħΘ(t − t ′)〈{ṅκs′′ (t )cκs′′ (t ),c†
χs′′′ (t ′)}〉

− i

ħΘ(t − t ′)〈{nκs′′ (t )ċκs′′ (t ),c†
χs′′′ (t ′)}〉.

(3.56)
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In eq. (3.56) the time derivative of the number operator ṅκs′′ (t ) is given by:

ṅκs′′ (t ) = [nκs′′ , H ]

=∑
β

tκβc†
κs′′cβs′′ − tβκc†

βs′′cκs′′

+ ∑
β,s′

vκβ,s′′s′c
†
κs′′cβs′ − vβκ,s′s′′c

†
βs′cκs′′

+∑
K

∑
β,s

V K
κs′′,βs

c†
κs′′d

K
βs −V †K

κs′′,βs
d †K
βs cκs′′ . (3.57)

In the original work of Hubbard48 the time derivative of the number operator is set
to zero (ṅκs′′ (t ) = 0). We will not put that into eq. (3.56) directly (for reasons that will
become clear later). In eq. (3.56) we substitute eqs. (3.42) for ċκs′′ (t ) and eq. (3.57) for
ṅκs′′ (t ) and Fourier transform the resulting equation with respect to t − t ′:

(ϵ−ϵκs′′ )G
+2
κs′′,κs′′,χs′′′ = δκχδs′′s′′′〈nκs′′〉−δκχδs′′s′′′〈c†

κs′′cκs′′〉
+UG+3

κs′′χs′′′ (ϵ)

+∑
β

tκβG+2
κs′′,βs′′,χs′′′ +

∑
βs

vκβ,ss′′G
+2
κs′′,βs,χs′′′

+ ∑
K ,βs′

V K
κs′′,βs′G

+2,K
κs′′,βs′,χs′′′

+∑
β

tκβG
+2
κs′′,βs′′,κs′′,χs′′′ − tβκG

+2
βs′′,κs′′,κs′′,χs′′′

+ ∑
β,s′

vκβ,s′′s′G
+2
κs′′,βs′,κs′′,χs′′′ − vβκ,s′s′′G

+2
βs′,κs′′,κs′′,χs′′′

+∑
K

∑
β,s

V K
κs′′,βs

G
+2,K
κs′′,βs,κs′′,χs′′′ − (V K

κs′′,βs
)†G

−2,K
βs,κs′′,κs′′,χs′′′ . (3.58)

Note the appearance of 〈c†
κs′′cκs′′〉 which usually is set to zero42,48 but not here (due to

spin-orbit coupling). Furthermore we define:

G+2
κs′′,e f ,χs′′′ (t − t ′) =− i

ħΘ(t − t ′)〈{nκs′′ (t )ce f (t ),c†
χs′′′ (t ′)}〉, (3.59)

G+2,K
κs′′,βs′,χs′′′ (t − t ′) =− i

ħΘ(t − t ′)〈{nκs′′ (t )d K
βs′ (t ),c†

χs′′′ (t ′)}〉, (3.60)

G
+2
ab,cd ,e f ,g h(t − t ′) =− i

ħΘ(t − t ′)〈{c†
ab(t )ccd (t )ce f (t ),c†

g h(t ′)}〉, (3.61)

G
+2,K
ab,cd ,e f ,g h(t − t ′) =− i

ħΘ(t − t ′)〈{c†
ab(t )d K

cd (t )ce f (t ),c†
g h(t ′)}〉, (3.62)

G
−2,K
ab,cd ,e f ,g h(t − t ′) =− i

ħΘ(t − t ′)〈{d †K
ab (t )ccd (t )ce f (t ),c†

g h(t ′)}〉, (3.63)
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with G+2
κs′′,e f ,χs′′′ (ϵ) , G+2,K

κs′′,βs′,χs′′′ (ϵ),G
+2
ab,cd ,e f ,g h(ϵ) , G

+2,K
ab,cd ,e f ,g h(ϵ) and G

−2,K
ab,cd ,e f ,g h(ϵ) as

the respective Fourier transforms. The third order Green’s function is defined as:

G3+
κs′′,χs′′′ (t − t ′) =− i

ħΘ(t − t ′)〈{nκs′′ (t )nκs′′ (t )cκs′′ (t ),c(t ′)†
χs′′′ }〉, (3.64)

and G3+
κs′′,χs′′′ (ϵ) its Fourier transform. For fermions working on a number state we have

that n2
κs′′ = nκs′′ , thus we conclude G3+

κs′′,χs′′′ (ϵ) =G+2
κs′′,κs′′,χs′′′ (ϵ). Now in order to solve eq.

3.58 in terms of G+2
κs′′,κs′′,χs′′′ we need to approximate.

Approximations
As an approximation we will consider all non-zero possible Wick contractions of the
equal time operators in eqs. (3.59) -(3.63):

G+2
κs′′,αs,χs′′′ = 〈nκs′′〉G+

αs,χs′′′ −〈c†
κs′′cαs〉G+

κs′′,χs′′′ , (3.65)

G+2,K
κs′′,βs′,χs′′′ = 〈nκs′′〉G+,K

βs′,χs′′′ −〈c†
ks′′d

K
βs′〉G+

κs′′,χs′′′ , (3.66)

G
+2
ab,cd ,e f ,g h = 〈c†

abccd 〉G+
e f ,g h −〈c†

abce f 〉G+
cd ,g h , (3.67)

G
+2,K
ab,cd ,e f ,g h =−〈c†

abce f 〉G+,K
cd ,g h +〈c†

abdcd 〉G+
e f ,g h , (3.68)

G
−2,K
ab,cd ,e f ,g h = 〈d †

abccd 〉G+
e f ,g h −〈d †

abce f 〉G+
cd ,g h . (3.69)

Putting the approximations eqs. (3.65)-(3.69) into eq. (3.58) we obtain after some rear-
rangement:

(ϵ−ϵκs′′ −U )G+2
κs′′,κs′′,χs′′′ = δκχδs′′s′′′〈nκs′′〉−δκχδs′′s′′′〈c†

κs′′cκs′′〉

+〈nκs′′〉
(∑
β

tκβG+
βs′′,χs′′′ +

∑
βs

vκβ,ss′′G
+
βs,χs′′′ +

∑
K ,βs′

V K
κs′′,βs′G

+,K
βs′,χs′′′

)
−〈c†

κs′′cκs′′〉
(∑
β

tκβG+
βs′′,χs′′′ +

∑
β,s′

vκβ,s′′s′G
+
βs′,χs′′′ +

∑
K

∑
βs

V K
κs′′,βs

GK
βs,χs′′′

)
+

[∑
β

tβκ〈c†
βs′′cκs′′〉− tκβ〈c†

κs′′cβs′′〉

+∑
β,s

vβκ,ss′′〈c†
βs cκs′′〉− vκβ,ss′′〈c†

κs′′cβs〉

+∑
K

∑
β,s

(V K
κs′′,βs

)†〈d †K
βs cκs′′〉−V K

κs′′,βs′〈c†
ks′′d

K
βs′〉

]
G+
κs′′,χs′′′

+
[∑
β

tκβ〈c†
κs′′cβs′′〉− tβκ〈c†

βs′′cκs′′〉

+∑
β,s

〈c†
κs′′cβs′〉vκβ,s′′s − vβκ,ss′′〈c†

βs cκs′′〉

+∑
K

∑
β,s

V K
κs′′,βs

〈c†
κs′′d

K
βs〉−V †K

κs′′,βs
〈d †K

βs cκs′′〉
]
G+
κs′′,χs′′′ . (3.70)

The term in front of G+
κs′′,χs′′′ in eq. (3.70) is recognized as the expectation value of the

time derivative of the number operator: 〈ṅκs′′ (t )〉 (via eq. (3.57)). We set this expectation
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value to zero since in steady state the electron density is constant.
To show that the term in front of G+

κs′′,χs′′′ in eq. (3.70) is zero we first calculate the

time derivative of c†
κs′′ (t )cκs′′ (t ):

d

d t
c†
κs′′ (t )cκs′′ (t ) = [c†

κs′′cκs′′ , H ]

=∑
β

tκβc†
κs′′cβs′′ − tβκc†

βs′′cκs′′

+∑
βs

vκβ,ss′′c
†
κs′′cβs′′ − vβκ,ss′′c

†
βs′′cκs′′

+ ∑
K ,βs

V K
κs′′,βs c†

κs′′d
K
βs −V †K

κs′′,βs
d K
βs cκs′′ , (3.71)

where we used that ϵαs = ϵαs (no magnetic field in the molecule). With the result in eq.
(3.71) we see that the term in front of G+

κs′′,χs′′′ in eq. (3.70) is equal to :−〈 d
d t c†

κs′′cκs′′〉. We

set this term to zero as well since the average spin in the x, y direction will be fixed in
steady state. Given these approximations we obtain the following equation of motion:

(ϵ−ϵκs′′ −U )G+2
κs′′,κs′′,χs′′′ = 〈nκs′′〉δκχδs′′′s′′ −δκχδs′′s′′′〈c†

κs′′cκs′′〉

+〈nκs′′〉
(∑
β

tκβG+
βs′′,χs′′′ +

∑
βs

vκβ,ss′′G
+
βs,χs′′′ +

∑
K ,e f

ΣK
κs′′,e f G+

e f ,χs′′′
)

−〈c†
κs′′cκs′′〉

(∑
β

tκβG+
βs′′,χs′′′ +

∑
β,s′

vκβ,s′′s′G
+
βs′,χs′′′ +

∑
K

∑
e f
ΣK
κs′′,e f

G+
e f ,χs′′′

)
.

(3.72)

Where we also used eq. (3.47) and the definition of the retarded self energy (eq. (3.48)).
Now we come back to reason why we did not put the approximation ṅκs′′ = 0 directly
in (3.56). Had we done that, then the terms in front of G+

κs′′,χs′′′ and G+
κs′′,χs′′′ could not

have been recognized as 〈ṅκs′′ (t )〉 and −〈 d
d t c†

κs′′cκs′′〉 respectively, because there would
be correlators missing that otherwise would have come from ṅκs′′ (t ). Usually the re-
lation: ṅκs′′ (t ) = 0 is used directly and then (after some Wick contractions) individual
correlators are set to zero. We point out that this ‘usual’ procedure results in the same
equation of motion for G+2 if 〈c†

κs′′cκs′′〉 = 0. We now solve for the retarded Green’s func-
tion by via eqs. (3.50) and (3.72) which in matrix notation become:

(ϵI −H 0 −Σ)G+−UG+2 = I , (3.73)

and:

G+2 =
[

(ϵI −H os −U I )
]−1[

(n −ρ)
(

I + (H T +H SOC +Σ)G+
)]

, (3.74)

respectively. Substituting (3.74) into (3.73) and solving for G+ gives:

G+
HIA(ϵ) = 1[

(ϵI −H os −U I )(E −H os)−
(
ϵI −H os −U (I −n +ρ)

)(
H T +H SOC +Σ

)]
×

[
ϵI −H os −U (I −n +ρ)

]
. (3.75)
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Which we will call the non-collinear Hubbard One Green’s function. If the spin-orbit
coupling is small we can set ρ = 0 and the Green’s function reduces to its well-known
form [42].

Now follow some sanity checks. It is common to write the lesser, greater Green’s func-
tion in the Fourier domain as:

G< =G+
[∑

K
ΓK fK

]
G−, G> =G+

[∑
K
ΓK (1− fK )

]
G−, (3.76)

with ΓK = 2Im[(ΣK )†] and fK the Fermi-Dirac distribution of lead K . This implies that
G>−G< = iG+ΓG−. By definition of the Green’s function we should then find G>−G< ≡
G+−G− = iG+∑

K Γ
K G−. To show that this we first rewrite the Green’s function as:

G+ = [g−1
0 −Σ]−1, (3.77)

with g−1
0 =

[
ϵI −H os−U (I −n+ρ)

]−1[
(ϵI −H os−U I )(E −H os)

]
−(H T+H SOC). From the

fact that ϵI ,U I , H os are diagonal and H T, H SOC are hermitian it follows that g−1
0 = (g−1

0 )†.
From this we can easily verify that: G+−G− = iG+∑

K Γ
K G− is satisfied. For small U we

should retrieve the Hartree-Fock Green’s function. We can expand g−1
0 to first order in

U :

g−1
0 = g−1

0 |U=0 +U∂U g−1
0 U=0 = E −H os −U (n −ρ)U=0 −H T −H SOC. (3.78)

Here we used d A−1

d x = A−1 d A
d x A−1 .Plugging the equation above back into eq. (3.77) G+ =[

E−H os−U (n−ρ)U=0−H T−H SOC−Σ
]−1

which is identical to the non collinear Hartree

Fock Green’s function (eq. (3.55)) when n,ρ are expanded to zeroth order in U . These
two sanity checks support that the Green’s function found eq. (3.75) is correct.

3.6.3. EVENNESS OR ODDNESS OF MAGNETOCURRENT
In this section we will present the results regarding the odd or even behaviour of∆I (m,V ).
In order to quantify the degree to which a function is odd or even, we define the quantity
P (V ):

P (V ) =
∫ V

0 O[∆I (m,V ′)]2 −E [∆I (m,V ′)]2dV ′∫ V
0 O[∆I (m,V ′)]2 +E [∆I (m,V ′)]2dV ′ . (3.79)

Here O[∆I (m,V ′)],E [∆I (m,V ′)] are the odd and even part of ∆I (m,V ′) in bias voltage
respectively. For functions that are purely odd or even we have P (V ) = 1 and P (V ) =−1
respectively. If P (V ) > 1/4 we say that ∆I (m,V ) is odd, if P (V ) < −1/4, ∆I (m,V ) is even
and if |P (y)| ≤ 1

4 , then we say that ∆I (m,V ) is neither odd nor even. For small V the er-
rors on ∆I (m,V ) are relatively large, therefore P (V ) is sensitive to these errors for small
bias. Therefore we neglect |∆I (m,V )| < 10−8. In fig. 3.2 we see the P (V ) parameter for
the helical geometry in the HFA and HIA approximation. In fig. 3.2a P (V ) is plotted for
EF ̸= U

2 in the HFA. For U
t = 0.1 and for U

t = 2 the magnetocurrent is even for small bias

and odd for large bias respectively. In fig. 3.2b) P (V ) is plotted for EF ̸= U
2 in the HIA. Here
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the magnetocurrent is and odd function. The unclear symmetry of the magnetocurrent
for U /t = 1

2 and small bias we attribute to the relatively large numerical errors present
in that range (especially for λ= 10−3 where the signal is very weak). Since both U /t ,λ/t
are small the magnetocurrent is expected to be small and its behaviour sensitive to nu-
merical errors. In fig. 3.2c P (V ) is plotted for EF = U

2 in the HFA and∆I (m,V ) is perfectly
odd function of bias voltage for small U /t and dominantly odd for large U /t . In fig. 3.2d)
P (V ) is plotted for EF = U

2 in the HIA. We see that ∆I (m,V ) is a pure odd function of bias
voltage for large U /t and a dominantly odd function for small U /t . From fig. 3.2 we can
conclude that the magnetocurrent is an odd function of bias voltage.

(a) HFA (b) HIA

(c) HFA (d) HIA

Figure 3.2: P (V ) for the the helical geometry. Asymmetric chemical potential (a) in the HFA, (b) in the HIA.
Symmetric chemical potential: (c) in the HFA, (d) in the HIA.

3.6.4. MAGNETIC STRAY FIELDS

Theoretical work aimed at obtaining a finite magnetocurrent through on-site Coulomb
interactions1,28,49 or via the addition of Büttiker voltage probes20 relies on the spin-orbit
coupling of the molecules or the substrate. The work of our group indicates that that,
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for large values of the spin-orbit coupling parameter, the size of the effect is of the order
of 0.1 %,1,20,49 well below the size of the effect in experiments. The odd bias depen-
dence found in experiment was reproduced by a model with NNN spin-orbit coupling
and on-site Coulomb repulsion in the wide-band limit1 and a model with NN spin-orbit
coupling and on-site Coulomb repulsion for semi-infinite leads.49 The spin-orbit cou-
pling of the leads is often considered as the mechanism behind the CISS effect. However
in the photo-emission experiments50 the effect has been observed for aluminium sub-
strates which have a small spin-orbit coupling. Therefore it is useful to search for another
mechanism to obtain a magnetocurrent without relying on the spin-orbit coupling. We
now evaluate the role of magnetic stray fields in this context.

In the work of Bedkihal and Segal [51] two models of a double-dot Aharonov-Bohm
interferometer were studied. In Model I a magnetocurrent was generated by a phase-
shift in the hybridization matrix52 (due to a magnetic flux piercing the scattering region)
combined with an asymmetry in the on-site energies ϵ1 ̸= ϵ2 and nearest neighbour
Coulomb interactions. In Model II the interactions were modeled only using Büttiker
probes.51 It was found that both Coulomb interactions (Model I) and Büttiker probes
(Model II) capture the relevant transport properties, thereby implying a correspondence
them. The point of interest here is that a magnetocurrent was obtained through a mag-
netic phase and nearest-neighbour Coulomb interactions. In other words no spin-orbit
coupling was required.

In a different study on a triple dot Aharonov-Bohm interferometer [53], three sites in
a triangle configuration were considered and a magnetic flux piercing the scattering re-
gion generated a phase in the hopping parameters between the sites. Interactions were
modeled via Büttiker voltage probes and a finite magnetocurrent was obtained. Site 1
and 2 were couple to the left and right lead respectively and the hybridization matrix did
not obtain a magnetic phase in this case. A finite magnetocurrent was found by intro-
ducing an asymmetry in one of the on-site energies of the triangle.53 Given the corre-
spondence between the probe method and Coulomb repulsion, as was demonstrated by
Bedkihal and Segal [51] the magnetocurrent of the triangle configuration could also have
been obtained by modeling interactions via nearest neighbour Coulomb interactions.

In most CISS experiments the magnetic field applied to the leads pierces the region
with the molecules as well for example due to stray fields. However, in the work of Pra-
manik et al. [54] the magnetic field was orientated orthogonal to the direction of the cur-
rent to exclude the electrical magnetochiral anisotropy effects, which originates from the
parallel components of current and magnetic field .55 The presence of this magnetic field
makes it is possible that the hopping parameters in the molecules obtain a phase shift
due the Peierls substitution. Furthermore most molecules in CISS experiments have a
large Coulomb interaction. Take for example carbon atoms inside a helicene molecule.
The nearest neighbour Coulomb repulsion W in the Ohno-parametrization56 for two
Carbon atoms separated by 1.3 Å and an on-site Coulomb repulsion term for isolated
Carbon of UC = 10 eV40 gives W = 7.4 eV. In reality the on-site repulsion term U is low-
ered due to the image-charge effect39 and to what extent depends on the molecule-lead
separation. However we expect the on-site repulsion to still be large when compared
the to the hopping parameter of Carbon t = 2.4 eV,38 for example UC = 2t ≈ 5 eV results
in W = 4.5 eV. We conclude that the nearest-neighbour Coulomb interactions are non-
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negligible.
In this section we will investigate the bias dependence of the magnetocurrent and

the size of the effect due to magnetic stray fields and nearest neighbour Coulomb inter-
actions. To that end we model a molecule as a tight binding chain where the sites lie on
a helix connected to leads that are modeled in the wide-band limit. We will also verify
Onsager reciprocity.

THE MODEL
The total Hamiltonian is given by:

H = HU +HW +H os +H hop +H leads-molecule +H leads, (3.80)

where HU , HW describe the Coulomb interactions, H os is the on-site Hamiltonian, H hop

the hopping Hamiltonian, H lead-molecule describes the coupling of the molecule to the
leads and H leads describes the Hamiltonian of the leads. We consider Coulomb inter-
action between electrons on the same site between opposite spins : HU =U

∑
m(nm↑−

1
2 )(nm↓− 1

2 ) and between neighbouring sites: HW =W
∑

〈nm〉(n̂m−1)(n̂n−1). Here n̂mσ =
ĉ†

mσĉmσ, where ĉ†
mσ and ĉmσ are fermionic creation and annihilation operators respec-

tively for site m and spin σ and n̂m ≡ n̂m↑+ n̂m↓. We then approximate the Coulomb in-

teraction in a mean field theory: H MF
U →U

∑
m,σ

(
〈nmσ〉− 1

2

)
n̂mσ and H MF

W →W
∑

〈nm〉(〈n̂n〉−
1)n̂m which is the result of considering the Wick contractions of the full operator. Here
〈nmσ〉 is the average electron density on site m with spin σ.

A constant, magnetic stray field B pierces the scattering region and couples to the
spin σ of the electron, which causes a shift in the on-site energy. The on-site Hamil-

tonian is given by H os(B ) = ∑
m,σ,σ′ c†

mσ

(
ϵmδσσ′ +µB(B ·σ)σσ′

)
ĉmσ′ , with ϵm = ϵos the

on-site energy, σ a vector of Pauli-matrices σ = [σx,σy,σz], the Bohr magneton µB =
5.8 ·10−5 eV T−1.

The hopping Hamiltonian is given by: H hop(B ) = ∑
mnσ tmne iφmn (B )ĉ†

mσĉnσ + h.c.
where h.c. denotes hermitian conjugate, tmn is the hopping parameter between site m
and n and the phase φmn(B ) is generated by the constant, magnetic stray field B . This
phase is determined as follows. All sites lie on a helix with radius a and pitch c. N is the
number of sites within one winding and M is the number of windings such that M N is
the total number of sites in the molecule. The position of site k is given by:

Rk = [a cos
(
ϕk

)
, a sin

(
ϕk

)
,c
ϕk

2π

N

N M −1
], (3.81)

with ϕk = 2π(k−1)
N , k ∈ M N . Here the constant stray field is chosen orthogonal to the

helical axis ẑ: B = B x̂, this generates the phase φmn which is calculated via:57

φmn(B ) = 2π

Φ0

[1

2
B ·

(
Rm ×Rn

)
+χ(Rn)−χ(Rm)

]
. (3.82)

withΦ0 = h
e ≈ 4.136 ·10−15 Wb, the magnetic flux quantum and χ(r ) a scalar gauge field.

We use the helical coordinates given by eq. (3.81) to calculate the phase in eq. (3.82).
Now we fix our choice of the gauge field χ(r ) by demanding that the phase φmn should
be invariant with one rotation of 2π around the helical axis. This leads to the gauge
choice:57 χ(r ) = 1

2 (r · t )(r · (t ×B )), with t = ẑ.
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MAGNETOCURRENT STRAY FIELDS
The magnetocurrent depends not only on the magnetisation of the leads but also on the
stray field B and it is given by (using eq. (3.4)):

∆I(m,B ,V ) ≡ I(m,B ,V )− I(−m,−B ,V )

= e

h

∫ ∞

−∞

[
TLR(m,B ,V )−TLR(−m,−B ,V )

]
( fL − fR)dE . (3.83)

The transmission depends on the electron densities via the retarded and advanced Green’s
functions. The densities are determined self-consistently for every voltage via:

〈nk (m,B ,V )〉 =
∫ ∞

−∞

(
G+

[ ∑
α=L,R

fαΓα
]

G−
)

k,k

dϵ

2π
. (3.84)

Here the mean field Green’s function is given by:

G±(ϵ,〈nk〉,m,B ) =
[
ϵ1−H MF

U (B )−H MF
W (B )−H hop(B )∓Σ(m,ϵ)

]−1
, (3.85)

where Σ(m,ϵ) = ΣL(m,ϵ)+ΣR(ϵ) and Σα the retarded self energy of the lead α. In the
wide-band limit the retarded self energies are purely imaginary and independent of en-
ergy Σα =− i

2Γ
α.

RESULTS
We then calculate the magnetocurrent (eq. (3.83)) arising from the stray field B . First of
all we find that the magnetocurrent vanishes numerically (10−15) if the magnetic phase
is set to zero, (as expected) independent of the value of µB. We conclude that in the pres-
ence of interactions an on-site term arising from the coupling between the spin and the
magnetic field cannot cause a finite magnetocurrent. That is why we set µB = 0 in the
rest of this section. A magnetocurrent can then be caused only by the magnetic phase
φmn .

We then consider two distinct scenarios. In the first scenario we set the on-site re-
pulsion between opposite spins to zero: U = 0, but not the interaction between neigh-
bouring electrons W ̸= 0, the leads are not magnetically polarized pα

z = 0 and the stray
fields are non-zero B ̸= 0. In the second scenario we consider U = W ̸= 0 and we only
magnetically polarize the left lead pL

z = 0.5 which changes sign with the magnetic stray
field. The main difference with our model in section 3.2 is that the spin-orbit coupling
here is zero. The stray field B is always oriented orthogonal to the transport direction.
The nearest neighbour Coulomb interaction strengths are taken as W ≤ t as is typical
for a mean field theory. For large values of the nearest neighbour Coulomb interaction
strength Extended Dynamical Mean-Field Theory58,59 are more accurate.

We consider a model consisting of 4 sites N = 4 and one winding M = 1 and the radius
and pitch of the helix are chosen as a = 1.4 Å and c = 3.6 Å respectively.18 The hopping
between the sites is NN and NNN and corresponding hopping parameters are given by :
tN N = 2.4 eV, tN N N = 0.4tN N . The on-site energy is taken as ϵ0 = 0. The coupling to the
left and right lead is taken to be γ= 0.5 eV.41 We choose the Fermi level such that the sys-
tem is approximately half filled. We take the size of orthogonal magnetic field |B | = 1 T,
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comparable to the orthogonal field of ref. [54].
In fig. 3.3 the magnetocurrent is plotted for EF = 0.44 eV in fig. 3.3a and for EF =−0.37

eV in fig. 3.3b. In both figures the finite interaction strength U = 0 and W is varied be-
tween 0.5t and t . The figures show that the magnetocurrent is dominantly even for small
values of W and dominantly odd for larger values of W . This is the general trend we find
for different Fermi levels. Note that we do not magnetize the left lead in this case m = 0,
the signal that is found is purely due to the stray field B .

In fig. 3.3c the magnetocurrent is plotted for EF = 0.44 eV and in in fig. 3.3d for
EF = −0.37 eV. In both figures the finite interaction strengths U ,W are varied between
0.5t and t . The figures show that the magnetocurrent is dominantly even for small val-
ues of U ,W and dominantly odd for larger values of U ,W . This is the general trend we
find for different Fermi levels.

The size of the effect corresponding to the magnetocurrents in fig. 3.3 is of the or-
der 10−4%. This result makes sense, since the magnetic flux enclosed by the molecule

is very small (in eq. (3.82): |φmn | ≈ BR2

Φ0
≈ 10−6 where R ≈ 10−10m and B = 1 Tesla ).

Further note that the magnetocurrent vanishes if the next-nearest neighbour hopping is
set to zero. In equilibrium (i.e. µL = µR = EF and TL = TR = T ) we find that the trans-
missions satisfies time-reversal symmetry, thereby confirming that Onsager-reciprocity
is satisfied. Our code can be found on https://github.com/khhuisman/Nearest_
Neigbour_Coulomb. The Hamiltonian H mol. = H os+H hop is constructed with the Kwant
code43 and the Qsymm code.44

CONCLUSION
We modelled a chiral chain with on-site and nearest neighbour Coulomb interactions,
where a magnetic stray field induced a magnetic phase in the hopping due to the Peierls
substitution and an on-site coupling between the spin of the electron. The coupling
between the spin of the electron and the magnetic stray fields yields a numerically van-
ishing magnetocurrent. When a phase shift due to the Peierls substitution was taken
into account the effect was of the order 10−4% for realistic parameters. We conclude that
magnetic stray fields have a negligibly small effect. To improve this study one could con-
sider investigate the effect of stronger Coulomb interactions. In that case the Extended
Dynamical Mean-Field Theory58,59 might be give more accurate results than a mean field
theory.

https://github.com/khhuisman/Nearest_Neigbour_Coulomb
https://github.com/khhuisman/Nearest_Neigbour_Coulomb
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Figure 3.3: The magnetocurrent for different values of the Fermi level and Coulomb interactions strength. (a)
EF = 0.44 eV and U = 0,W = 0.5t ,0.8t eV (b) EF = −0.37 eV and U = 0,W = 0.5t ,0.8t . (c) EF = 0.44 eV and
U =W = 0.5t , t eV (d) EF =−0.37 eV and U =W = 0.5t , t . The size of the orthogonal stray field is |B | = 1 Tesla.
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4
BIPARTICE STRUCTURES WITH

COULOMB INTERACTIONS

“I am not afraid of the Great Gray Wolf"

Artorias

One of the manifestations of chirality-induced spin selectivity (CISS) is the appearance of a
magnetocurrent. Magnetocurrent is defined as the difference between the charge currents
at finite bias in a two terminal device for opposite magnetizations of one of the leads. In
experiments on chiral molecules assembled in monolayers the magnetocurrent is domi-
nantly odd in bias voltage, while theory often yields an even one. From theory it is known
that the spin-orbit coupling and chirality of the molecule can only generate a finite mag-
netocurrent in the presence of interactions, either of the electrons with vibrational modes
or among themselves, through the Coulomb interaction. Here we analytically show that
the magnetocurrent in bipartite-chiral structures mediated through Coulomb interactions
is exactly even in the wide band limit and exactly odd for semi-infinite leads due to the
bipartite lattice symmetry of the Green’s function. Our numerical results confirm these
analytical findings.

Part of this chapter has been published in the Journal of Chemical Physics 2023, 158, 174108 [1].
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4.1. INTRODUCTION

One of the manifestations of chirality-induced spin selectivity (CISS) is the appearance
of a magnetocurrent. Magnetocurrent is defined as the difference between the charge
currents at finite bias in a two terminal device for opposite magnetizations of one of the
leads. Onsager-Casimir reciprocity2–4 prohibits a magnetocurrent from being observed
in two-terminal junctions in the linear regime. In fully coherent two terminal transport,
this absence of a magnetocurrent extends to the nonlinear regime as well, this is called
Büttiker reciprocity.5 In order to see a magnetocurrent in the nonlinear regime, coher-
ence must be broken; this is done through interactions of the electrons with vibrational
modes or among themselves, through the Coulomb interaction. It should be noted that
several experiments6–10 seem to show violation of Onsager-Casimir reciprocity for rea-
sons that are not yet known. In some of these experiments the currents for positive and
negative magnetization show a plateau of zero current around zero bias voltage such
that the demonstration of Onsager-Casimir reciprocity is not really convincing.

In this paper we focus on the symmetry of the magnetocurrent versus bias volt-
age. In two terminal transport experiments on chiral molecules the magnetocurrent
is dominantly odd in bias voltage6–18 (for an extensive overview see ref [19]). In the-
ory an even magnetocurrent is found by introducing a decoherence node20 or via the
Büttiker voltage probe method.21 A model including spin-dependent electron-phonon
coupling22 yields an odd magnetocurrent. However the seemingly linear magnetocur-
rent found in ref [22] violates Onsager-Casimir reciprocity. In our previous paper on
Coulomb interactions23 we found that Onsager-Casimir reciprocity is satisfied and the
odd magnetocurrent is mediated by the strong Coulomb interactions in combination
with the next nearest-neighbor spin-orbit coupling, making the lattice non-bipartite. We
found, in the wide-band limit (WBL), that the magnetocurrent was nearly perfectly odd
in the bias voltage, when the Fermi level was aligned with the energy around which the
spectrum is approximately particle hole symmetric. In this paper we study the bias de-
pendence of the magnetocurrent for a bipartite lattice when the Fermi level is aligned
with the energy around which the spectrum is exactly particle hole symmetric. We show
that, close to this symmetry point, there is a difference between the bias dependence of
the magnetocurrent for bipartite and non-bipartite lattices.

In most work done on two-terminal transport through molecular junctions the leads
are modelled using the wide-band limit (see e.g.20–23), however, for some metals, semi-
infinite (SIF) leads may be more realistic. We will analyse the magnetocurrent analyt-
ically for WBL and SIF leads by exploiting the bipartite lattice symmetry and the time
reversal property of the Green’s function. To confirm our analytical findings we analyze
a chiral model system with a nearest-neighbor spin-orbit coupling and Coulomb inter-
actions numerically.

In sec. 4.2 we define our model. In sec. 4.3 the magnetocurrent is analysed analyti-
cally for WBL and SIF leads. In sec. 4.3.1 we define the magnetocurrent, in sec. 4.3.2 we
define the Green’s functions in the Hartree-Fock (HFA) and Hubbard One approxima-
tion (HIA) and in sec. 4.3.3 it is specified how these Green’s functions transform under
bipartite lattice symmetry and the time-reversal operator. In sec. 4.3.4 and sec. 4.3.5 the
bias dependence of the magnetocurrent is analysed for WBL and SIF leads respectively,
in sec. 4.4 the numerical results are presented and we conclude our work in sec 4.5.
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4.2. MODEL DESCRIPTION
The Hamiltonian of a molecular transport junction is given by:

H = Hos +HT +HSOC +HU +Hlead-molecule +Hleads, (4.1)

where Hos is the on-site Hamiltonian, HT is the hopping Hamiltonian, HSOC is the hop-
ping Hamiltonian due to spin-orbit coupling, HU describes the Coulomb interactions,
Hlead-molecule describes the coupling of the molecule to the leads and Hleads describes
the Hamiltonian of the leads. The on-site Hamiltonian is given by Hos = ∑

m ϵm n̂m , we
set this to zero (ϵm = 0) throughout this paper. The hopping Hamiltonian is given by:
HT =−∑

m t ĉ†
m+1ĉm + h.c., where t is the hopping parameter and h.c. denotes the her-

mitian conjugate. In order to see the effect of the effect of bipartite lattice symmetry, we
consider an S-shaped structure,24 see fig. 4.1. The spin-dependent hopping Hamilto-
nian acting between nearest neighbor sites is given by:

HSOC =−iλ
∑
k

∑
〈m,n〉

ĉ†
mσ · (e ×d k )ĉn +h.c., (4.2)

with λ the spin-orbit coupling parameter. A constant electric field pointing in the out of
plane direction generates this nearest neighbor spin-dependent hopping and the com-
ponents of σ⃗ are the Pauli-matrices. Here d k is the hopping vector and k indicates its di-
rection (longitudinal and transverse), e indicates the direction of the electric field. This
model is defined on a 2D lattice where the indices m,n label the sites. HU contains the
Coulomb interactions, we take those to be on-site:

HU =U
∑
m

(n̂m↑−
1

2
)(n̂m↓−

1

2
). (4.3)

Here U is the Coulomb interaction strength. The factors of 1
2 are included to make the

spectrum of the Hamiltonian particle hole symmetric around the energy ϵ = 0. The
S-shape in fig. 4.1 has a C2 symmetry around the out of plane direction p, leading
to a difference between the (non-spin flip) spin-up and down transmissions.24 Here
Hα

lead-molecule = ∑
k,m,s,s′ V α

ms,ks′c
†
ms d K

ks′ +h.c. where V α
ms,ks′ the coupling parameter be-

tween electrons on the molecule and lead α. The Hamiltonian of the non-interacting
lead α is Hα

lead =∑
k,s ϵ

α
ks d †α

ks dα
ks .

4.3. THEORY

4.3.1. MAGNETOCURRENT DEFINITION
The transmission for a 2-terminal system with Coulomb interactions depends on the
bias voltage V through the electron densities: TLR(ϵ,m) → TLR(ϵ,m,V ) = TLR(ϵ,m,〈nks (m,V )〉),
where 〈nks (m,V )〉 is the average electron density for site k with spin s given by eq. (4.14)
and m is the magnetization of the left lead. The current into the left lead is then given by
(see Appendix 4.6.6):

I(m,V ) = e

h

∫ ∞

−∞
TLR(ϵ,m,V )

(
f (ϵ,µL)− f (ϵ,µR)

)
dϵ, (4.4)
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Figure 4.1: Schematic of the S geometry. Blue dots are sites of the scattering region and the red dots are sites
on the lead. The black and red links between the sites represent hopping. Ep is the component of the electric
field pointing in the out of plane direction.

where f (ϵ,µα) = [exp
(
βα(ϵ−µα)

)+1]−1, µα is the the chemical potential of lead α and
βα = 1

kBTα
with Tα the temperature of lead α. We will restrict ourselves to equal temper-

atures for the leads βL,R = 1
kBT =β. The chemical potential of the left, right lead read are

given by µL = EF + 1
2 V , µR = EF − 1

2 V (assuming symmetric capacitive coupling). The
transmission is given by

TLR(ϵ,m,V ) = Tr
[
ΓL(ϵ,m)G+ΓR(ϵ)G−(ϵ,〈nks (m,V )〉,m)

]
. (4.5)

Note that from now on, whenever a product of operators occurs, the arguments of the
Green’s functions are written at the end of the product, so in eq. (4.5) the retarded and
advanced Green’s functions depend on the same argument (ϵ,〈nks (m,V )〉,m). It can be
seen that we only magnetize the left lead with magnetization m. Using eq. (4.4) we can
write the magnetocurrent as:

∆I(m,V ) ≡ I(m,V )− I(−m,V )

=
∫ ∞

−∞

[
TLR(ϵ,m,V )−TLR(ϵ,−m,V )

](
f (ϵ,µL)− f (ϵ,µR)

)
dϵ. (4.6)

It is our goal to determine the bias dependence of the magnetocurrent ∆I (m,V ). If
the Coulomb interactions are absent, (U = 0) the magnetocurrent vanishes due to Büt-
tiker’s reciprocity theorem for two terminal systems. Thus we should go beyond the non-
interacting particle picture (U ̸= 0) in order to find a finite magnetocurrent in the pres-
ence of spin-orbit coupling.21,23,25 This magnetocurrent can only be non-linear in the
bias voltage, since linear terms vanish due to the Onsager-Casimir reciprocity2–4 theo-
rem. Due to the absence of vibrational modes in our description, only the Coulomb in-
teractions can be responsible for the occurrence of a non zero magnetocurrent and these
interactions manifest themselves through the electron densities. The bias dependence
of the magnetocurrent therefore has its origin in the bias dependence of the electron
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densities. We study the bias dependence of the electron densities in detail by exploiting
the bipartite lattice symmetry and time-reversal property of the Green’s function.

4.3.2. ELECTRON GREEN’S FUNCTION
The retarded Green’s function of the scattering region, coupled to leads, in the Hartree-
Fock approximation is given by:

G+
HFA(ϵ,〈nks (m,V )〉,m) =

[(
ϵ+ U

2

)
I−HT −HSOC −U n(〈nks (m,V )〉)−Σ(ϵ,m)

]−1
, (4.7)

and in the Hubbard One approximation the retarded Green’s function is given by (see
e.g. chapter 12 of Haug and Jauho26):

G+
HIA(ϵ,〈nks (m,V )〉,m) =

[[
(ϵ− U

2
)I+U n(〈nks (m,V )〉)]−1(ϵ− U

2
)(ϵ+ U

2
)I−HT −HSOC −Σ(ϵ,m)

]−1
,

(4.8)

For our analyses of the WBL and SIF leads we will only magnetize the left lead with
magnetization m. Here the retarded self energy is defined as the sum of retarded self-
energies for the left and right lead Σ(ϵ,m) = ΣL(ϵ,m)+ΣR(ϵ) and the diagonal matrix
n(〈nks (m,V )〉) has elements nks,k ′s′ = 〈nks̄ (m,V )〉δkk ′δ ss′ (where s denotes that spin s is
flipped).

In the WBL, the retarded self energy is purely imaginary and energy-independent, it

is given by: ΣWBL(ϵ,m) = − i
2

(
ΓL(m)+ΓR

)
. Only the diagonal matrix elements of lead α

that are coupled to the molecule are nonzero and they are given by γα(I+pα
z σz ). Here

γα is the coupling strength and pα
z ∈ [−1,1] is the magnetic polarization of lead α.

For SIF leads with on-site energy ϵ0 and nearest neighbour hopping tlead, the retarded
self energy is given by Σ(ϵ) =Λ(ϵ)− i

2Γ(ϵ). Here Λ(ϵ),Γ(ϵ) are both real and for |ϵ− ϵ0| <
2tlead they are given by:27 Γ(ϵ,ϵ0, tlead) =

√
(2tlead)2 − (ϵ−ϵ0)2, Λ(ϵ,ϵ0, t ) = ϵ−ϵ0

2 and for |ϵ−
ϵ0| ≥ 2tlead they are given byΓ(ϵ,ϵ0, tlead) = 0, Λ(ϵ,ϵ0, tlead) = ϵ−ϵ0

2 −sign(ϵ−ϵ0) 1
2

√
(ϵ−ϵ0)2 − (2tlead)2.

For semi infinite leads we take the coupling parameter between electrons on the
molecule and the lead to be a constant real number: tc, and as a consequence, the

retarded self energy is given by Σ(ϵ,ϵ0, tlead) → Σ̃(ϵ,ϵ0, tlead, tc) =
∣∣∣ tc

tlead

∣∣∣2[
Λ(ϵ,ϵ0, tlead)−

i
2Γ(ϵ,ϵ0, tlead)

]
. When lead α is magnetically polarized with pα

z ∈ [−1,1] the bands for up

and down spin electron split such that for the spin - up bands: ϵ0 → ϵu = ϵ0 +mα and
for the spin-down bands ϵ0 → ϵd = ϵ0−mα, where the magnetization of leadα is defined
as mα = 2tleadpα

z . For a SIF lead magnetized with magnetization m and ϵ0 = 0, Γ and Λ
satisfy:

Γ(ϵ,m) = Γ(−ϵ,−m), (4.9)

Λ(ϵ,m) =−Λ(−ϵ,−m). (4.10)

Throughout our analyses for SIF leads we take the on-site energies of the left and right
lead to be zero ϵ0 = 0.
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4.3.3. GREEN’S FUNCTION: TRANSFORMATION UNDER TIME-REVERSAL -
AND SUBLATTICE SYMMETRY

The time reversal operator is given by T = iσy K, where K is the conjugation operator.
Under T the retarded and advanced Green’s functions (indicated with a plus and minus
respectively) transform as follows:

TG±(ϵ,〈nks (m,V )〉,m)T−1 = G∓(ϵ,〈nks (m,V )〉,−m). (4.11)

We emphasize that in eq. (4.11) the magnetization m in the argument of the electron
densities does not change sign because the real valued electron densities transform un-
der T as: T〈nks (m,V )〉T−1 = 〈nks (m,V )〉.

If the lattice of the system can be separated into sublattices A and B such that there
is only hopping possible from site A to site B and vice versa, then the system is bipartite.
In that case the Green’s function (HFA eq. (4.7) and HIA eq. (4.8)) in the wide-band limit
and for semi-infinite leads (SIF) satisfy:

G±
WBL(ϵ,〈nks (m,V )〉,m) =−MG∓

WBL(−ϵ,1−〈nks (m,V )〉,m)M, (4.12)

G±
SIF(ϵ,〈nks (m,V )〉,m) =−MG∓

SIF(−ϵ,1−〈nks (m,V )〉,−m)M. (4.13)

Here M is a diagonal matrix which takes the values +1 for sites on sublattice A and −1 for
sites on sublattice B. Here the diagonal matrices I,n,Σ are invariant under M and nearest
neighbor hopping matrices change sign under M: MHT,SOCM =−HT,SOC . Note that par-
ticles and holes are interchanged: 〈nks (m,V )〉→ 1−〈nks (m,V )〉 and note that (contrary
to WBL leads) for SIF leads the magnetization m changes sign under this transformation
due to properties of the self energies in eqs. (4.9), (4.10) ( see Appendix 4.6.1).

The electron density for site k with spin s is given by:

〈nks (m,V )〉 =
∫ (

G+Γ<(ϵ,m,V )G−(ϵ,〈nks (m,V )〉,m)
)

ks,ks

dϵ

2π
, (4.14)

where (with EF = 0):

Γ<(ϵ,m,V ) =ΓL(ϵ,m) f (ϵ,
V

2
)+ΓR(ϵ) f (ϵ,−V

2
). (4.15)

Note that in eq. (4.14) both the retarded and advanced Green’s functions depend on the
same argument (ϵ,〈nks (m,V )〉,m) written at the end of the expression, whileΓ< depends
on (ϵ,m,V ). Note the the Fermi level EF is precisely aligned with the energy ϵ= 0 around
which the density of states, corresponding to these systems, is particle hole symmetric.
This alignment forms one of the cornerstones of our analyses the other one being that
the capacitive coupling to the left and right lead is symmetric.

4.3.4. WIDE BAND LIMIT
The wide band limit is representative for a gold lead with its flat density of states around
the Fermi level.28 In this section we analyse the electron density in eq. (4.14) and the
magnetocurrent (4.6) using the time-reversal and bipartite lattice transformations of the
Green’s functions in eqs. (4.11), (4.12). From the time-reversal transformation of the
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Green’s function (4.11) and T〈nks (m,V )〉T−1 = 〈nks (m,V )〉 (note that m does not change
sign, since T only flips the spin index of the matrix) follows the identity:
G+Γ<(ϵ,m,V )G−(ϵ,〈nks (m,V )〉,m) = T−1G−Γ<(ϵ,−m,V )G+(ϵ,〈nks (m,V )〉,−m)T which
we use to rewrite the RHS of eq. (4.14). We then multiply both sides from the left with T
and from the right with T−1 which flips the spin on the LHS and cancels the time-reversal
operators on the RHS. Equation (4.14) then becomes:

〈nks (m,V )〉 =
∫ ∞

−∞

(
G−Γ<(ϵ,−m,V )G+(ϵ,〈nks (m,V )〉,−m)

)
ks,ks

dϵ

2π
. (4.16)

For the WBL, we can rewrite Γ<(ϵ,−m,V ) using the fact that f (ϵ,µ)+ f (−ϵ,−µ) = 1. The
electron density in eq. (4.16) can thus be expressed as:

〈nks (m,V )〉 =
∫ ∞

−∞

(
G−

[
ΓL(−m)+ΓR

]
G+(ϵ,〈nks (m,V )〉,−m)

)
ks,ks

dϵ

2π

−
∫ ∞

−∞

(
G−Γ<WBL(−ϵ,−m,−V )G+(ϵ,〈nks (m,V ),−m)

)
ks,ks

dϵ

2π
. (4.17)

From the properties of the HFA and HIA Green’s functions, defined in eqs. (4.7) &

(4.8), it follows that they satisfy the identity: G−
[
ΓL +ΓR

]
G+ = G+

[
ΓL +ΓR

]
G−. This

identity is used to rewrite the first term on the RHS, which is recognized to be equal to
1, because it can be interpreted as an electron density on site k with spin s, where the
chemical potentials of the left and right lead are at infinity ( f (ϵ,µ→∞) = 1) yielding a
filled level. Thus this expression can be rewritten as:

1−〈nks (m,V )〉 =
∫ ∞

−∞

(
G−Γ<WBL(−ϵ,−m,−V )G+(ϵ,〈nks (m,V )〉,−m)

)
ks,ks

dϵ

2π
. (4.18)

Next we use the bipartite lattice symmetry. First we multiply the LHS and the RHS from
the left and right with the matrix M. The LHS does not change. On the RHS we insert the
identity matrix I = MM between the matrices of the product and finally use eq. (4.12) to
transform the Green’s functions. The integration variable is changed as ϵ→−ϵ to obtain:

1−〈nks (m,V )〉 =
∫ ∞

−∞

(
G+Γ<WBL(ϵ,−m,−V )G−(ϵ,1−〈nks (m,V )〉,−m)

)
ks,ks

dϵ

2π
.

(4.19)

Note that eq. (4.19) is, except for the density dependence of the Green’s functions, almost
the same as the expression for the densities 〈nks (−m,−V )〉:

〈nks (−m,−V )〉 =
∫ ∞

−∞

(
G+Γ<WBL(ϵ,−m,−V )G−(ϵ,〈nks (−m,−V )〉,−m)

)
ks,ks

dϵ

2π
. (4.20)

Equations (4.19) and (4.20) describe self-consistency equations for the respective densi-
ties. Self-consistent solutions of eq. (4.20) are by definition solutions of eq. (4.19) and
vice-versa. From this we conclude:

1−〈nks̄ (m,V )〉 = 〈nks (−m,−V )〉. (4.21)
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Now we turn to the magnetocurrent. The transmission is given by eq. (4.5) and for
WBL leads the ΓL,R are energy-independent. The time-reversal operator allows us to
rewrite this expression as:

TLR(ϵ,m,V ) = Tr
[
ΓL(m)G−ΓRG+(

ϵ,〈nks (m,V )〉,−m
)]

, (4.22)

since T〈nks (m,V )〉T−1 = 〈nks (m,V )〉. The bipartite symmetry of the Green’s function (eq.
(4.12)) in combination with 〈nks (m,V )〉 = 1−〈nks (−m,−V )〉 (eq. (4.21)) implies:

TLR(ϵ,m,V ) = Tr[ΓL(−m)G+ΓRG−(−ϵ,〈nks (−m,−V )〉,−m
)]

. (4.23)

The expression on the RHS is recognized as the transmission for a negative magnetiza-
tion and negative bias voltage and negative energy: TLR(−ϵ,−m,−V ). Provided the bias
window is centered around the symmetric point ϵ= 0 it follows from the definition of the
current (eq. (4.4)) and this property of the transmission that:

I (−m,−V ) =−I (m,V ). (4.24)

Then the magnetocurrent satisfies∆I (m,V ) = I (m,V )−I (−m,V ) = I (m,−V )−I (−m,−V ) =
∆I (m,−V ). Therefore, the magnetocurrent is a purely even function of the bias voltage
∆IWBL(m,V ) =∆IWBL(m,−V ).

4.3.5. SEMI - INFINITE LEADS
Here we analyse the electron densities for SIF leads. First we rewrite Γ<(ϵ,m,V ) by us-
ing that f (ϵ,µ)+ f (−ϵ,−µ) = 1 and by using eq. (4.9) to rewrite ΓL(ϵ,m) and ΓR(ϵ). The
electron density in eq. (4.16) is then rewritten as:

1−〈nks (m,V )〉 =
∫ ∞

−∞

(
G−Γ<SIF(−ϵ,m,−V )G+(ϵ,〈nks (m,V )〉,−m)

)
ks,ks

dϵ

2π
. (4.25)

Note the opposite sign of the magnetization m in Γ<SIF in eq. (4.25) with respect to that
occurring in eq. (4.18). Again we apply the matrix M to both sides and insert the identity
matrix I = MM between the matrices of this product and use eq. (4.13) to transform the
Green’s functions. Changing the integration variable as ϵ→−ϵ gives:

1−〈nks (m,V )〉 =
∫ ∞

−∞

(
G+Γ<SIF(ϵ,m,−V )G−(ϵ,1−〈nks (m,V )〉,m)

)
ks,ks

dϵ

2π
. (4.26)

The RHS of this self-consistency equation has the same form as the one for 〈nks (+m,−V )〉.
From this we conclude:

1−〈nks̄ (m,V )〉 = 〈nks (m,−V )〉. (4.27)

We now turn to the transmission, which is given by eq. (4.5). For SIF leads the ΓL,R

are energy dependent. The Green’s functions transform under time-reversal symmetry
according to eq. (4.11) and the transformation under bipartite lattice symmetry for semi-
infinite leads according to eq. (4.13). Combining these two transformations we obtain
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for the transmission:

TLR(ϵ,m,V ) = Tr
[
ΓL(ϵ,−m)G+ΓR(ϵ)G−(−ϵ,1−〈nks (m,V )〉,m

)]
,

= Tr
[
ΓL(−ϵ,m)G+ΓR(−ϵ)G−(−ϵ,〈nks (m,−V )〉,m

)]
,

= TLR(−ϵ,m,−V ). (4.28)

In the last step we rewrite ΓL(ϵ,−m) and ΓR(ϵ) using eq. (4.9) and we use that the
electron density satisfies eq. (4.27). The RHS of eq. (4.28) is recognized as the transmis-
sion for negative bias and negative energy. If the bias window is centered around the
symmetric point ϵ = 0 then from the definition of the current eq. (4.4) and eq. (4.28) it
follows that I (m,V ) =−I (m,−V ) and thus that the magnetocurrent is an odd function of
bias voltage ∆ISIF(m,V ) = −∆ISIF(m,−V ). In Appendix 4.6.2 we show that if the on-site
energies of the left and right leads are equal to the chemical potential of the respective
leads (ϵ0,L →µL = EF+ V

2 & ϵ0,R →µR = EF− V
2 ) then still the magnetocurrent is an exactly

odd function of bias voltage for SIF leads.

4.4. NUMERICAL RESULTS

We use parameters corresponding to a molecule consisting of sp2- hybridized carbon
atoms, to resemble that we have 1 electron per site. The hopping parameter then is
t = 2.4 eV29 and the on-site Coulomb interaction parameter UC = 10.06 eV.30 However
due to the image-charge effect31 the Coulomb interaction strength will be lowered to an
extent which sensitively depends on the molecule-lead separation. In our case it is not
known what the exact value of U will be due to the image-charge effect, probably we
are in the regime where U /t > 1 making the HIA more appropriate. However to show
that our analytical result is independent of the approximation we perform a numeri-
cal calculation for both the HFA and the HIA. We vary U between 0.5t and 3t , where
for small values of the Coulomb interaction strength (U /t ≤ 1) the HFA is used and for
large values (U /t > 1) the HIA is used. Furthermore we take T = 300 K. The spin-orbit
coupling parameter is taken to be λ/t = 0.1, this is rather large, however we found that
symmetry of the bias dependence of the magnetocurrent is not affected by the size λ.
The magnitude of the magnetocurrent of course scales directly with λ. In the WBL the
coupling parameter to the leads is taken to be γL,R = 0.5 eV28 and pL

z = 0.5. For SIF
leads the hopping parameter of the left and right lead is take to be tlead = 3t , the cou-
pling parameter tcoup = 1

2

p
tlead, the magnetic polarization of the left lead is taken to

be pL
z = 0.8 and the on-site energies of the left and right lead are equal to the chemical

potential of the respective leads (ϵ0,L → µL = V
2 & ϵ0,R → µR = −V

2 ). We always take the
Fermi level EF = 0. We have implemented a non-equilibrium transport code which can
be found in https://github.com/khhuisman/Coulomb_Bipartite.git and for de-
tails regarding the calculation of the electron densities see Appendix 4.6.5.

In fig. 4.2 the magnetocurrent is plotted as function of bias voltage for leads in the
WBL and Green’s function in the HFA ( fig. 4.2a) and the HIA ( fig. 4.2b). Both figures
show that the magnetocurrent is an even function of the bias voltage. This is explained
as follows. We have found that the electron densities in the WBL satisfy eq. (4.21), which

https://github.com/khhuisman/Coulomb_Bipartite.git
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we rewrite in the form:

1−〈nks (m,V )〉−〈nks (−m,−V )〉 = 0. (4.29)

In our numerical calculations we find that the LHS of this equation vanishes indeed (ex-
cept for numerical errors that can be made small), which is due to the bipartite lattice
symmetry of the Green’s functions with WBL leads. In sec. 4.3.4 we showed the mag-
netocurrent then is an even function of the bias voltage. We varied the value of U /t for
both the HFA and HIA and found that the magnetocurrent remained dominantly even.
When an asymmetry between the coupling parameter to the left and right lead γL ̸= γR

is introduced the magnetocurrent remains a dominantly even function of bias voltage as
expected (see Appendix 4.6.3).

In fig. 4.3 the magnetocurrent for SIF leads∆ISIF(m,V ) is plotted as a function of bias
voltage for the HFA (fig. 4.3a) and the HIA (fig. 4.3b). In both cases the magnetocurrent
is a dominantly odd function of bias voltage. We have found that the electron densities
for SIF leads satisfy eq. (4.27), which we rewrite in the form:

1−〈nks̄ (m,V )〉−〈nks (m,−V )〉 = 0. (4.30)

Again we find in our numerical calculations that the LHS of this equation vanishes. This
is a consequence of the bipartite lattice symmetry of the Green’s function with SIF leads
and it explains why we find an odd magnetocurrent as discussed in sec. 4.3.5. Again
when an asymmetry in the coupling parameter tc is introduced between the left and the
right lead we find that the magnetocurrent remains and odd function for SIF leads (see
Appendix 4.6.3).

Finally, we demonstrate time-reversibility for the densities in equilibrium. As in our
previous work on Coulomb interactions,23 our numerical results show that in equilib-
rium the electron densities satisfy time-reversal symmetry: 〈nks (m,V = 0)〉 = 〈nks (−m,V =
0)〉, which is attributed to the Onsager-Casimir reciprocity. In Appendix 4.6.4 we analyt-
ically show that the electron densities always satisfy time-reversal symmetry in equilib-
rium. Furthermore we find that the magnetocurrent vanishes if the spin-orbit coupling
parameter is set to zero and that the largest size of the effect, defined as PC = I (m)−I (−m)

I (m)+I (−m) ,
is of the order 0.1 %. A more minimal model of the S-shape (in fig. 4.1), consisting of a
chain with 4 sites and with a ‘kink’ present between the second and the third site, also
shows a finite magnetocurrent that satisfies the same symmetries.

4.5. CONCLUSION
In this work we studied the voltage dependence of the magnetocurrent for systems with
Coulomb interactions (in the HFA and HIA) and a nearest neighbour spin-orbit coupling.
We showed analytically that for a Fermi level that is aligned with energy around which
the density of states is particle hole symmetric and a capacitive coupling of the molecule
to the lead that is symmetric, the magnetocurrent is exactly even in the WBL and exactly
odd for SIF leads by exploiting the bipartite lattice symmetry of the Green’s function.
Our numerical calculations support this result. To test the predicted behaviour of the
magnetocurrent experimentally, a gate voltage can be used to align the energy around
which the density of states is particle hole symmetric with the Fermi-level. The WBL is
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appropriate for gold electrodes near the Fermi-level, thus provided that the molecule is
approximately particle-hole symmetric an even magnetocurrent is expected. An asym-
metry in the coupling from the molecule to right and left lead (γL ̸= γR) does not af-
fect symmetry properties either, as shown in appendix 4.6.3. In our previous work on
Coulomb interactions23 we modelled leads in the WBL and we had a next-nearest neigh-
bor spin-orbit coupling mechanism which destroys the bipartite lattice symmetry. When
the Fermi level was aligned with the energy around which the density of states is ap-
proximately particle hole symmetric and the capacitive coupling of the molecule to the
lead that was symmetric, we found a nearly perfect odd magnetocurrent. The absence
of bipartite lattice symmetry in our previous work is the reason why we find a different
behaviour of the magnetocurrent than in this paper, where∆IWBL is even in bias voltage.
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(a) (b)

Figure 4.2: The WBL magnetocurrent,∆IWBL(m,V ), is plotted as a function of bias voltage in the HFA (fig. 4.2a)
and HIA (fig. 4.2b).

4.6. APPENDIX

4.6.1. GREEN’S FUNCTION : PARTICLE HOLE TRANSFORMATION
In this section we will show that the Hartree-Fock Green’s function in eq. (4.7) transforms
as in eqs. (4.12) and (4.13). In eq. (4.7) the hopping matrices change sign under particle
hole transformation: MHT,SOCM =−HT,SOC while the self energyΣ(ϵ,m) and the electron
density matrix n do not, because they are diagonal matrices: MΣ(ϵ,m)M = Σ(ϵ,m) and
MnM = n. Therefore in general the HFA Green’s function transforms as:

−MG+
HFA(ϵ,〈ni s (m,V )〉,m)M =−

[
ϵI+HT +HSOC −U n+ U

2
I−Σ(ϵ,m)

]−1
,

=
[
−ϵI−HT −HSOC −U

(
I−n

)
+ U

2
I+Σ(ϵ,m)

]−1
.

(4.31)

In the WBL the retarded self-energy is purely imaginary and does not depend on
energy Σ(ϵ,m) =− i

2Γ(m) therefore Σ(ϵ,m) =−Σ†(−ϵ,m). From this we obtain:

−MG+
HFA,WBL(ϵ,〈ni s (m,V )〉,m)M = G−

HFA,WBL(−ϵ,1−〈ni s (m,V )〉,m). (4.32)

For SIF leads the retarded self-energy is given by: Σ(ϵ,m) =Λ(ϵ,m)− i
2Γ(ϵ,m). In the

region |ϵ−m| < 2tlead Λ,Γ satisfy: Λ(ϵ,m) = ϵ−m
2 =−−ϵ−(−m)

2 =−Λ(−ϵ,−m) and Γ(ϵ,m) =√
(2tlead)2 − (ϵ−m)2 = Γ(−ϵ,−m). From this is follows thatΣ(ϵ,m) =−

[
Λ(−ϵ,−m)+ i

2Γ(−ϵ,−m)
]
=

−Σ†(−ϵ,−m). In the region |ϵ−m| ≥ 2tlead, Γ(ϵ,m) = 0, therefore Σ(ϵ,m) = ϵ−m
2 −sign(ϵ−

m)
√

(ϵ−m)2 − (2tlead)2 = −Λ(−ϵ,−m)† = −Σ†(−ϵ,−m). In conclusion, for SIF leads the
reversal of the energy sign in the retarded self energy is accompanied by a reversal of
the magnetization and hermitian conjugation: Σ(ϵ,m) =Σ†(−ϵ,−m), which leads to the
relation −MG+

HFA,SIF(ϵ,〈ni s (m,V )〉,m)M = G−
HFA,SIF(−ϵ,1−〈ni s (m,V )〉,−m). One can also

show these relations for the Green’s function in the Hubbard One Approximation.
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(a) (b)

Figure 4.3: The SIF magnetocurrent, ∆ISIF(m,V ), is plotted as a function of bias voltage in the the HFA (fig.
4.3a) and HIA (fig. 4.3b).

4.6.2. SEMI - INFINITE LEADS: VOLTAGE DEPENDENCE OF THE ONSITE EN-
ERGY

In order to keep leads charge-neutral the onsite energy of the lead shift with the bias
voltage such that: ϵ0,L = EF+ V

2 and ϵ0,R = EF− V
2 . The retarded Green’s function becomes

explicitly voltage dependent via the retarded self energy : Σ(ϵ,m) →Σ(ϵ,m,V ). Since we
use the convention that EF = 0 it follows from the properties of SIF leads (see sec. 4.3.2)
that Γ,Λ now satisfy:

Γ(ϵ,V ,m) = Γ(−ϵ,−V ,−m), (4.33)

Λ(ϵ,V ,m) =−Λ(−ϵ,−V ,−m). (4.34)

whereΓ(ϵ,V ,m) =
√

(2tlead)2 − (ϵ−m − V
2 )2 andΛ(ϵ,V ,m) = ϵ−m− V

2
2 for |ϵ−m−V

2 | < 2tlead

and Γ(ϵ,V ,m) = 0, Λ(ϵ,V ,m) = ϵ−m− V
2

2 − 1
2 sign(ϵ− m − V

2 )
√

(ϵ−m − V
2 )2 − (2tlead)2 for

|ϵ−m − V
2 | ≥ 2tlead. Due to the properties in eqs. (4.33), (4.34) the bipartite lattice trans-

formation for Green’s functions now becomes:

G±
SIF(ϵ,〈nks (m,V )〉,m,V ) =−MG∓

SIF(−ϵ,1−〈nks (m,V )〉,−m,−V )M. (4.35)

Note that in eq. (4.35) we added an explicit argument for the bias voltage V to indicate
that the self-energy is voltage dependent.

The electron densities eq. (4.14) are now given by:

〈nks (m,V )〉 =
∫ (

G+Γ<SIF(ϵ,m,V )G−(ϵ,〈nks (m,V )〉,m,V )
)

ks,ks

dϵ

2π
, (4.36)

where (for EF = 0),

Γ
<
SIF(ϵ,m,V ) =ΓL(ϵ,V ,m) f (ϵ,

V

2
)+ΓR(ϵ,V ) f (ϵ,−V

2
). (4.37)
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Note that ΓL,R are voltage dependent quantities here. We use the time-reversal operator
to rewrite eq. (4.36) as:

〈nks (m,V )〉 =
∫ ∞

−∞

(
G−Γ<(ϵ,−m,V )G+(ϵ,〈nks (m,V ),−m,V )

)
ks,ks

dϵ

2π
. (4.38)

Now we rewrite Γ
<

(ϵ,−m,V ) by using the fact that f (ϵ,µ)+ f (−ϵ,−µ) = 1 and that
ΓL(ϵ,m,V ), ΓR(ϵ,V ) transform as in eq. (4.33). Analogously to sec. 4.3.5, the electron
density in eq. (4.38) is then rewritten as:

1−〈nks (m,V )〉 =
∫ ∞

−∞

(
G−Γ<SIF(−ϵ,m,−V )G+(ϵ,〈nks (m,V )〉,−m,V )

)
ks,ks

dϵ

2π
. (4.39)

We then use the bipartite lattice symmetry. First we multiply the LHS and the RHS
from the left and right with the matrix M. The LHS does not change. On the RHS we insert
the identity matrix I = MM between the matrices of this product and use eq. (4.35) to
transform the Green’s functions. The integration variable is changes as ϵ→−ϵ to obtain:

1−〈nks (m,V )〉 =
∫ ∞

−∞

(
G+Γ<SIF(ϵ,m,−V )G−(ϵ,1−〈nks (m,V )〉,m,−V )

)
ks,ks

dϵ

2π
. (4.40)

Equation (4.40) is identical to the self-consistency equation of 〈nks (+m,−V )〉. From this
we conclude:

1−〈nks̄ (m,V )〉 = 〈nks (m,−V )〉. (4.41)

We now turn to the transmission which is given by eq. (4.5) and for SIF leads ΓL,R

are energy dependent. The Green’s functions transforms under time-reversal symmetry
as in eq. (4.11) and the transformation under particle hole-symmetry for semi-infinite
leads as in eq. (4.13) . Combining these two transformations on the transmission we
obtain:

TLR(ϵ,m,V ) =Tr
[
ΓL(ϵ,−m,V )G+ΓR(ϵ,V )G−(−ϵ,1−〈nks (m,V )〉,m,−V

)]
. (4.42)

We then use eq. (4.33) to rewrite ΓL(ϵ,−m,V ) and ΓR(ϵ,V ) and that the electron density
satisfies eq. (4.41) to obtain: Tr

[
ΓL(−ϵ,m,−V )G+ΓR(−ϵ,−V )G−(−ϵ,〈nks (m,−V )〉,m,−V

)]
,

which is recognized as the transmission for negative bias negative energy. Thus we con-
clude:

TLR(ϵ,m,V ) = TLR(−ϵ,m,−V ). (4.43)

If the bias window is centered around the energy ϵ= 0 from the definition of the current
eq. (2.3) and eq. (4.43) it follows that I (m,V ) =−I (m,−V ) and thus that the magnetocur-
rent is an odd function of bias voltage ∆ISIF(m,V ) =−∆ISIF(m,−V ).
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4.6.3. ASYMMETRIC COUPLING
In molecular junction there is often an asymmetry in the coupling of the molecule to
the left and right lead i.e. γL ̸= γR. In the wide-band limit we quantify this asymmetry
by introducing the dimensionless parameter χ= γL−γR

γL+γR
. In fig. 4.4a the wide-band limit

magnetocurrent is plotted as a function of bias voltage for different values of this param-
eters χ =−0.6,0,0.6 (corresponding to (γL,γR) = (0.5,2), (0.5,0.5), (2,0.5) respectively) in
the HFA for U = 2t , pz = 0.5. It clearly shows that for the magnetocurrent is in an even
function of bias voltage independent of the value of χ.

For SIF leads we quantify this asymmetry by introducing the dimensionless param-

eter χ2 = t L
c −t R

c

t L
c +t R

c
, where tαc is the coupling parameter for electrons on the molecule on

electrons on lead α. In fig. 4.4b the SIF magnetocurrent is plotted as a function of bias

voltage for pz = 0.8, t L,R
lead = 2t , t R

c = 1
2

√
t R

lead, t L
c = 2

√
t L

lead and U
t = 0.5,1 in the HFA. The

figure shows that the magnetocurrent remains an odd function of voltage. For the HIA
the magnetocurrent remains even function of bias voltage in the WBL and an odd func-
tion of bias voltage for SIF leads, when an asymmetry in the coupling constant is intro-
duced.

(a) (b)

Figure 4.4: (a) The magnetocurrent in the HFA is plotted as a function of bias voltage when an asymmetry
between the coupling in the left and right lead is introduced for WBL leads. (b) The magnetocurrent in the
HFA is plotted as a function of bias voltage when an asymmetry between the coupling in the left and right lead
is introduced for and SIF leads.

4.6.4. TIME REVERSAL SYMMETRY IN EQUILIBRIUM
Here we show analytically that in equilibrium the electron densities satisfy time-reversal
symmetry. To be unambiguous we define equilibrium as V = 0 (i.e. µL = µR ) and take
equal temperatures for both leads (i.e. TL = TR ) if one of these conditions is violated we
say the system is out of equilibrium.32 In equilibrium the electron density (eq. (4.14)) is
given by:

〈nks (m,V = 0)〉 =
∫ ∞

−∞
f0

(
G+

[
ΓL +ΓR

]
G−(ϵ,〈nks (m,V = 0)〉,m)

)
ks,ks

dϵ

2π
, (4.44)
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where f0 = fL,R(E)|V =0 = [exp
(
β(E −EF)

)+1]−1. From the time-reversal property of the
Green’s function eq. (4.11) and T〈nks (m,V = 0)〉T−1 = 〈nks (m,V = 0)〉 follows the iden-
tity: G+[ΓL +ΓR]G−(ϵ,ns (m,V = 0),m) = T−1G−[ΓL +ΓR]G+(ϵ,ns (m,V = 0),−m)T which
we use to rewrite the RHS of eq. (4.44). We then multiply both sides from the left with T
and from the right with T−1 which flips the spin on the LHS and cancels the time-reversal

operators on the RHS. We then use the identity G−
[
ΓL +ΓR

]
G+ = G+

[
ΓL +ΓR

]
G−, which

follows from the definition of the Green’s functions in eqs. (4.7) & (4.8)), to rewrite the
RHS and we obtain:

〈nks (m,V = 0)〉 =
∫ ∞

−∞
f0

(
G+

[
ΓL +ΓR

]
G−(ϵ,〈nks (m,V = 0)〉,−m)

)
ks,ks

dϵ

2π
. (4.45)

The self-consistency equation above in eq. (4.45) is the same as for the self-consistency
equation of 〈nks (−m,V = 0)〉. Therefore we obtain the relation:

〈nks (m,V = 0)〉 = 〈nks (−m,V = 0)〉. (4.46)

Which is recognized as the time reversal symmetry in equilibrium since both spin and
magnetization change sign. In our previous work on Coulomb interactions23 we showed
that time-reversal symmetry in equilibrium leads to the fulfillment of Onsager-Casimir
reciprocity. Note that this conclusion holds for bipartite and non-bipartite lattices and
also holds for any value of Fermi level EF.

Perhaps it seems like a circular argument is presented here, since we use the time-
reversal operator to prove that time-reversal symmetry is satisfied in equilibrium. How-
ever no such circular argument is presented. If the temperatures in the left,right lead are
unequal (i.e. out of equilibrium) the electron densities after applying the time-reversal
operator left and right become:

〈nks (m,V = 0)〉 =
∫ ∞

−∞

(
G−

[
ΓL fL +ΓR fR

]
G+(ϵ,〈nks (m,V = 0)〉,−m)

)
ks,ks

dϵ

2π
. (4.47)

Note that the Green’s functions here are reversed with respect to the ones in eq.

(4.44). Before we could use the identity G−
[
ΓL +ΓR

]
G+ = G+

[
ΓL +ΓR

]
G−. However in

this case we cannot reverse the Green’s functions since G−
[
ΓL fL +ΓR fR

]
G+ ̸= G+

[
ΓL fL +

ΓR fR

]
G− and therefore 〈nks (m,V = 0)〉 ̸= 〈nks (−m,V = 0)〉. Therefore we conclude that

for unequal temperatures in the left,right lead (i.e. “out of equilibrium”) the electron
densities do not satisfy this time reversal property, consistent with our numerical cal-
culations which show a very small deviation from TRS in that case and a linear magne-
tocurrent in that case.

4.6.5. SELF CONSISTENT DETERMINATION OF THE ELECTRON DENSITIES
In our transport code we determine the electron density as follows. Suppose we want to
calculate the electron density for the decreasing or increasing bias voltages {0,V1,V2, ...},
(|Vi+1| > |Vi |). First of all we start our self-consistent calculation at zero bias voltage
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where we expect that every site is approximately half filled , therefore we take this as
an initial guess (〈ni n,m=0

ks (V = 0)〉 = 1
2 ). Then we self-consistently determine the elec-

tron densities for V = 0 and obtain the converged result 〈nconver g ed
ks (V = 0)〉. We then

use these values as an initial guess for the next bias voltage V1: 〈ni n,m=0
ks (V = V1)〉 =

〈nconver g ed
ks (V = 0)〉. We always use the output of a self-consistent calculation as ini-

tial guess for the next bias voltage: 〈ni n,m=0
ks (V = Vi+1)〉 = 〈nconver g ed

ks (V = Vi )〉 to adia-
batically connect the two solutions. This procedure is done separately for positive and
negative bias and both times we start in V = 0.

Now follows a description of a self-consistent loop for bias voltage Vi . Given an initial
guess for bias voltage Vi we iterate over eq. (4.14), mmax times. Every iteration m has an
input and an output electron density and as convergence criterion for the m-th iteration
we use: |〈ni n,m

ks 〉− 〈nout ,m
ks 〉| < 10−4. If a density did not converge within the maximum

number of iterations mmax , we discard it. Furthermore we employ linear mixing of the
electron densities meaning that the input for iteration m +1 is a linear combination of
the input and output of iteration m: 〈ni n,m+1

ks (Vi )〉 = (1−α)〈nout ,m
ks (Vi )〉+α〈ni n,m

ks (Vi )〉
characterized by the parameter α ∈ [0,1).

The Hamiltonian of the isolated molecule, without interactions (U = 0) is defined as:
H0 = HT +HSOC and is constructed with the Kwant code33 and the Qsymm code.34

4.6.6. FORMULA FOR THE CURRENT

In the work of Meir and Wingreen35 the current into the left lead is given by their eq. 5:

IL = i e

h

∫
Tr

[
ΓL(ϵ)[ f (ϵ,µL)(G+(ϵ)−G−(ϵ))+G<(ϵ)]

]
dϵ. (4.48)

We now show that G+(ϵ)−G−(ϵ) =−i G+(ϵ)
(
ΓL(ϵ)+ΓR(ϵ)

)
G−(ϵ) in the HIA. Let us first

rewrite G±(ϵ) in eq. (4.8):

G+(ϵ) = 1

g0(ϵ)−1 −Σ(ϵ)
, G−(ϵ) = 1

(g0(ϵ)†)−1 −Σ†(ϵ)
, (4.49)

where we define: g0(ϵ)−1 = [
(ϵ−U

2 )I+U n
]−1(ϵ−U

2 )(ϵ+U
2 )I−HT−HSOC, where the matrix

n has elements nks,k ′s′ = 〈nks̄〉δkk ′δss′ (where s̄ denotes that spin s is flipped). It follows

that G+(ϵ)−G−(ϵ) = G+(ϵ)
(
Σ(ϵ)−Σ†(ϵ)+ (g0(ϵ)†)−1 −g0(ϵ)−1

)
G−(ϵ). Since g0(ϵ) contains

no anti-hermitian parts, g0(ϵ) is an hermitian matrix. Here Σ(ϵ) = ΣL(ϵ)+ΣR(ϵ) is the
usual retarded self energy of the leads and ΓL,R(ϵ) =−i (ΣL,R(ϵ)−ΣL,R(ϵ)†). Thus it follows

that G+(ϵ)−G−(ϵ) =−i G+(ϵ)
(
ΓL(ϵ)+ΓR(ϵ)

)
G−(ϵ) in the HIA.

Eq. (4.48) reduces to the Landauer-Büttiker formula in the case that the lesser Green’s

function is given by G<(ϵ) = iG+(ϵ)
(
ΓL(ϵ) f (ϵ,µL)+ΓR(ϵ) f (ϵ,µR)

)
G−(ϵ) and the retarded

and advanced Green’s function are related as G+(ϵ)−G−(ϵ) =−iG+(ϵ)
(
ΓL(ϵ)+ΓR(ϵ)

)
G−(ϵ).

We always assume this expression for the lesser Green’s function. The latter expression
holds for the HFA and HIA , justifying the use of the Landauer-Büttiker formula.
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In the analysis of the electron-phonon coupling, the Lang-Firsov transformation is
usually applied.36 This induces a coupling between the vibrational system on the molecule
and the leads, preventing us from requiring the leads to be in equilibrium, which is nec-
essary for writing eq. (4.48).
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5
MAGNETOCURRENT WITH

VIBRATIONAL MODES

We consider the effect of vibrational interactions on the off-resonant tunneling regime
through chiral molecules. Using the theory of Troisi, Ratner and Nitzan,1 we verify that the
Onsager reciprocity theorem is satisfied and that the magnetocurrent arising in the non-
linear regime is even in bias voltage with a size of the order 0.1%. Furthermore we find that
the effect of the spin-orbit coupling, chirality and magnetization can lead to large effects
in the second order differential conductance of the magnetocurrent.
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5.1. INTRODUCTION

In chapters 2, 3 and 4 we have seen that a finite magnetocurrent can only be gener-
ated in the presence of interactions. Fransson2 showed that, in transport through chiral
molecules, on-site Coulomb repulsion between electrons with opposite spin, in com-
bination with the spin-orbit coupling leads to a finite magnetocurrent. In chapters 3
and 4 we also took into account on-site Coulomb interactions and spin-orbit coupling
to generate a magnetocurrent in chiral molecules. We found a magnetocurrent that is
even or odd as a function of bias voltage depending on the type of spin-orbit coupling
(nearest-neighbour or next-nearest neighbour), the alignment of the Fermi level with
the molecular spectrum and the type of leads used (wide band limit versus semi-infinite
leads). Furthermore, the largest size of the effect was only of the order 0.1% when using
realistic model parameters.

In this chapter we focus on vibrational modes of the molecule to generate a magne-
tocurrent in the inelastic tunneling regime. Nuclei in the molecule can move and elec-
trons ‘feel’ this movement through the Coulomb force. When the potential associated
to this force is expanded to first order in the displacement of the nuclei, a coupling be-
tween electron and phonons (vibrational modes) appears, this is the electron-phonon
coupling. For small electron-phonon coupling one can for example resort to the self-
consistent Born approximation3–5 (which is computationally expensive), the lower order
expansion,6 or the method of Troisi et al..1,7 These methods are known to reproduce the
inelastic tunneling spectroscopy (IETS) spectra that are measured in experiment. For a
strong electron-phonon coupling one can solve the system by performing the polaron
(Lang-Firsov) transformation.8,9 This transformation modifies the coupling of the elec-
tron to the leads as well and in the work of Chen et al.10 an expression for the Green’s
function is obtained by taking the average over this modified coupling. For an extensive
overview of the theory of vibrational modes see chapter 17 of Cuevas and Scheer.11

In the context of the CISS effect it is known that vibrational modes12,13 can give a fi-
nite magnetocurrent as well. Fransson12 found an effect of the order 1−10% when the
electron-phonon coupling was spin-dependent. Klein and Michaeli14 pointed out that
the inclusion of interactions (vibrational modes) can lead to spurious violation of current
conservation. This motivated them to adjust the Meir-Wingreen formula14 such that the
total current is conserved : IL + IR = 0. When they implemented this adjusted formula in
a system with strong electron-phonon coupling,13 an effect of the order 1% was found
for large values of the spin-orbit coupling parameter.

In this chapter we will study vibrational modes in the off-resonant regime using the
method of Troisi et al..1,7 In molecular junctions the transport is mostly elastic in nature.
There can however be inelastic transport due to vibrational modes. Inelastic transport
occurs when the applied bias voltage matches the vibrational mode’s energy. The sig-
nature of inelastic transport can be observed as a step in the first and as a peak in the

second order differential conductance ( d I
dV and d 2 I

dV 2 respectively). We will investigate
the bias dependence of these conductances for the opposite magnetization of the leads,
when spin-orbit coupling is present. We will also verify Onsager-Casimir reciprocity, the
absence of currents for zero bias and current conservation.
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5.2. VIBRATIONAL MODES
The Hamiltonian for a two-terminal system with vibrational modes is given by:

H = Hmol. +Hlead-mol. +Hleads +Hel-ph +Hvib. (5.1)

Here Hmol. describes the Hamiltonian of the molecule and is taken as the chiral tight
binding chain from chapter 3, Hlead-mol. describes the coupling of the molecule to the
leads, and Hleads describes the Hamiltonian of the leads. The coupling of the molecular
vibrational modes to the electrons is described by:

Hel-ph = ∑
i ,α,β,s,s′

λi
αs,βs′c

†
αs cβs′ (bi +b†

i ) (5.2)

and the vibrational modes are described by Hvib. =
∑

i ħωi b†
i bi , where b†

i ,bi are bosonic
creation and annihilation operators with frequencyωi . We define the vibrational modes
coupling matrix λi = ∑

α,β,s,s′ λ
i
αs,βs′c

†
αs cβs′ , which describes the coupling of vibrational

mode i to the electrons. The matrix λi is finite and does not depend on the spin of
the electron (since it originates from interactions between the electrons and the nuclei,
which is a spin-independent interaction). Fransson12 however argued that in the pres-
ence of spin-orbit coupling the vibrational modes couple to the spin of the electron and
in principle it is possible that theλi is not diagonal in the spins anymore. Since both the
interaction between the electrons and the nuclei and the spin-orbit coupling are invari-
ant under the time-reversal operator T̂ = iσyK̂ (with K̂ the conjugation operator and

σy the y Pauli-matrix), the vibrational matrixλi is so as well: T λi T −1 =λi .
Now we turn to the formula for the current for a system with vibrational modes. It is

possible that electrons gain or lose energy due to the vibrational modes, when travelling
across the molecular junction. They then enter the scattering region with electron ϵ and
leave it with a different energy ϵ′ i.e. inelastic scattering. The Landauer-Büttiker formula
gives the current for elastic processes, therefore we need to adjust it to include inelastic
processes as well. The current into the left lead is given by:

I = e

h

Ï
T LR(ϵ,ϵ′) fL(ϵ)[1− fR(ϵ′)]−T RL(ϵ,ϵ′) fR(ϵ)[1− fL(ϵ′)]dϵdϵ′. (5.3)

Here fα is the Fermi-Dirac function of contactα : fα =
[

exp
(
β(ϵ−µα)

)+1
]−1

with µL,R =
EF± V

2 with EF the Fermi level and V the bias voltage. Note that the current into the right
lead is obtained by swapping the indices L ↔ R in eq. (5.3) and it follows that IL + IR = 0.

The transmission is the sum of an elastic and inelastic part and expressions for them
are obtained with the method of Troisi et al.1,7 in the off-resonant regime. For elastic pro-

cesses T LR
el. (ϵ,ϵ′) = T RL

el. (ϵ,ϵ′) = δ(ϵ− ϵ′)Tel.(ϵ), with Tel.(ϵ) = Tr
[

G+
el.(ϵ)ΓL(ϵ)G−

el.(ϵ)ΓR(ϵ)
]

.

Here G+
el. is the retarded, elastic Green’s function:

G+
el.(ϵ) =

(
ϵI −H mol. −Σleads(ϵ)

)−1
, (5.4)
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with Σleads(ϵ) = ΛL(ϵ)+ΛR(ϵ)− i
2

(
ΓL(ϵ)+ΓR(ϵ)

)
. The formula for the elastic current re-

duces to the Landauer-Büttiker formula:

Iel. =
e

h

∫
Tel.(ϵ)

(
fL(ϵ)− fR(ϵ)

)
dϵ. (5.5)

Near equilibrium and at low temperatures the system is in its ground state. Therefore
we consider an initial state where all vibrational modes are unoccupied |n〉 = |0〉 and a
final state |n′〉 which has modes i occupied with one boson and all other modes remain
unoccupied. In that case the inelastic transmission is given by: T LR(ϵ,ϵ′) =∑

i δ(ϵ− ϵ′−
ħωi )T LR

i (ϵ), where:

T LR
i (ϵ) = Tr

[
G+

inel.(ϵ)ΓL(ϵ)G−
inel.(ϵ)ΓR(ϵ−ħωi )

]
. (5.6)

Restricting ourselves to single quantum excitations from the ground state, the inelastic
retarded Green’s function is given by:1

G+
inel.(ϵ) =∑

i
G+

el.(ϵ)λi G+
el.(ϵ). (5.7)

and the advanced Green’s function is obtained through Hermitian conjugation G−
inel.(ϵ) =(

G+
inel.(ϵ)

)†
. The inelastic current is then given by (via eq. (5.3)):

Iinel. =
e

h

∫ ∑
i

T LR
i (ϵ) fL(ϵ)[1− fR(ϵ−ħωi )]−T RL

i (ϵ) fR(ϵ)[1− fL(ϵ−ħωi )]dϵ. (5.8)

In Appendix 5.6.1 we show that the inelastic current vanishes at V = 0 provided
ħωi ≫ kBT .

5.3. MAGNETOCURRENT & IETS OBSERVABLES
The magnetocurrent is given by the difference in the total current for opposite magneti-
zations. The elastic current does not contribute to the magnetocurrent, due to Büttiker
reciprocity Tel.(ϵ,m) = Tel.(ϵ,−m) for two terminal systems,15 making the magnetocur-
rent inelastic in nature:

∆I (m,V ) ≡ I (m)− I (−m)

= e

h

∑
i

∫ (
T LR

i (ϵ,m)−T LR
i (ϵ,−m)

)
fL(ϵ)[1− fR(ϵ−ħωi )]

−
(
T RL

i (ϵ,m)−T RL
i (ϵ,−m)

)
fR(ϵ)[1− fL(ϵ−ħωi )]dϵ. (5.9)

In the wide band limit the inelastic transmission satisfies T LR
i (ϵ,m) = T RL

i (ϵ,−m) (see

Appendix 5.6.2), which we use to rewrite the magnetocurrent as (for η= 1
2 ):

∆I (m,V ) = e

h

∑
i

∫ (
T LR

i (ϵ,m)−T LR
i (ϵ,−m)

)(
f (ϵ−EF − V

2
)[1− f (ϵ−ħωi −EF + V

2
)]

+ f (ϵ−EF + V

2
)[1− f (ϵ−ħωi −EF − V

2
)]

)
dϵ,

(5.10)
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with f (x) =
[

exp
(
βx

)+1
]−1

. From eq. (5.10) we immediately conclude that: ∆I (m,V ) =
∆I (m,−V ). The magnetocurrent is exactly even in bias voltage, independent of the choice
of Fermi level and type of spin-orbit coupling (NN versus NNN) if the junction is biased
symmetrically. The capacitive coupling to the left and right lead can differ and we can
write µL = EF +ηV ,µR = EF + (η−1)V with 0 < η < 1. For η ̸= 1

2 , the magnetocurrent in
the wide-band limit is no longer exactly even in the bias voltage. For finite temperatures
inelastic process will contribute to the total current around the bias voltages V = ±ħω
and below this voltage the current is exclusively determined by elastic process. There-
fore the magnetocurrent is expected to be zero for |V | < ħω (due to Büttiker reciprocity)
and around V =±ħω inelastic process contribute such that a non-zero magnetocurrent
will appear. In Appendix 5.6.2 we explicitly show that the magnetocurrent satisfies On-
sager reciprocity.

In IETS the linear conductance : G1(m,V ) = d I (m,V )
dV and second order conductance

G2(m,V ) = d 2 I (m,V )
dV 2 are measured as a function of bias voltage. The difference between

the linear conductance for opposite magnetizations is given by:

∆G1(m,V ) =G1(m,V )−G1(−m,V ) = d∆I (m,V )

dV
. (5.11)

Given the fact that ∆I (m,V ) (the magnetocurrent) is perfectly even in bias voltage, the
quantity∆G1(m,V ) is perfectly odd in bias voltage (and vanishes at V = 0 due to Onsager
reciprocity). At the voltages V = ±ħω a sudden change is expected in ∆G1(m,V ). For
G2(m,V ) the second order magnetoconductance ∆G2(m,V ) = G2(m,V )−G2(−m,V ) =
d 2∆I (m,V )

dV 2 is introduced and it follows that ∆G2(m,V ) is perfectly even in bias voltage.

5.4. NUMERICAL RESULTS
We will model the molecule as the chiral chain of Fransson,2 also used in chapter 3.
We take one winding ( M = 1) with four sites (N = 4). The radius and pitch of the
helix are taken as a = c = 1. The spin-orbit coupling parameter λsoc is chosen as :
λsoc = 0.1t (due to large spin-orbit coupling in the leads) with t = 2 eV the hopping pa-
rameter. The on-site energy is taken to be zero ϵ0 = 0. The left (right) two outermost
sites are coupled to the left (right) lead. The leads are taken in the wide band limit.
The elements that are coupled to the lead α are given by: γα(1+σzpα

z ) and zero oth-
erwise. Here pα

z is the magnetic polarization of lead α. We only magnetize the left lead
with pL

z = 0.5 and pR
z = 0. If not noted otherwise, the coupling strength to the left and

right lead are taken symmetrically γL = γR = 0.4 eV and we take the capacitive cou-
pling η = 1

2 and temperature T = 100 K . We will consider one vibrational mode with
energy ħω = 0.25 eV and the vibrational matrix coupling matrix is considered between
nearest neighbours, where the coupling strength is given by λvib. = 0.4t . To stay in the
off-resonant regime we apply a bias voltage such that the chemical potentials µR,µL

do not reach any eigenvalues of Hmol.. Our code can be found on https://github.
com/khhuisman/VibrationalModes_Troisi_Compact. The Hamiltonian of the H mol.

is constructed with the Kwant code16 and the Qsymm code.17

In figure 5.1 the current, magnetocurrent and their first and second derivatives are
shown. In 5.1a the total current for positive and negative magnetization is plotted and

https://github.com/khhuisman/VibrationalModes_Troisi_Compact
https://github.com/khhuisman/VibrationalModes_Troisi_Compact
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around V =±ħω, ‘kinks’ are observed, which arise due to the inelastic processes. In fig.
5.1b the difference between the currents for opposite magnetizations (i.e. the magne-
tocurrent) is plotted as a function of bias voltage. For |V | < ħω the magnetocurrent is
numerically zero and around V = ±ħω a finite magnetocurrent appears since inelastic
processes start to contribute. The magnetocurrent is perfectly even in bias and the size
of the effect PI = I (m,V )−I (−m,V )

I (m,V )+I (−m,V ) is of the order 0.1%.
In fig. 5.1c the linear conductance for positive and negative magnetization are plot-

ted. As expected there is a sudden increase at V = ±ħω. In fig. 5.1d the difference be-
tween the linear conductances, i.e. ∆G1(m,V ), is plotted. It is seen to be perfectly odd in
the bias voltage.

In 5.1e the second order differential conductance is plotted as a function of the bias
voltage for positive and negative magnetization. As expected there are are two peaks,
one at V =ħω and at V =−ħω. The difference between these coefficients i.e. ∆G2(m,V )
is plotted in 5.1f as a function of bias voltage and as expected it is perfectly even in the
bias. The size of the effect PG2 = G2(m,V )−G2(−m,V )

G2(m,V )+G2(−m,V ) at V = ±ħω is of the order 1%, which
should be detectable in experiment.

Further note that this effect vanishes if the spin-orbit coupling is set to zero. However
we anticipate it could emerge due to the spin-orbit interaction in the leads. When the vi-
brational modes are made spin dependent, an increase in the size of the effect PI ,PG2

was observed while the magnetocurrent remains even in the bias voltage.

5.5. CONCLUSION
In this chapter we investigated magnetocurrent caused by vibrational modes in the off-
resonant regime for helicenes, using the method of Troisi et al..1,7 We modeled a chiral
molecule with spin-orbit coupling in the wide-band limit. We found that the total cur-
rent is conserved IL + IR = 0 and no equilibrium currents arise I (V = 0) = 0 in the regime
where IETS is valid.

The magnetocurrent is found to be perfectly even if the capacitive coupling is cho-
sen as η = 1

2 , this follows from the definition of the magnetocurrent. This evenness can
in principle be verified experimentally by looking at the second order magnetoconduc-
tance. This quantity is expected to be dominantly even in the bias voltage and the size
of the effect at |V | = ħω is of the order of a few percent. When the capacitive coupling
deviates from this value (i.e. η ̸= 1

2 ) the magnetocurrent is no longer perfectly even and
obtains an odd signature. The discrepancy between odd magnetocurrent found in ex-
periment and even magnetocurrent found in theory dependence remains a puzzling
problem. We explicitly showed that the magnetocurrent satisfies Onsager reciprocity.
The size of the effect is of the order 0.1%. It is remarkable that the (relative) size of the
effect in the currents is of the same order as the relative MR found in previous chapters
for resonant transport.

For future theoretical studies the self-consistent Born approximation or lower order
expansion could be used to get a more accurate estimate for the size of the effect and the
bias dependence of the magnetocurrent, although we expect similar results.
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Figure 5.1: IETS spectrum for opposite magnetizations for the helical chain. 5.1a The total current as function
of bias voltage. 5.1b The magnetocurrent as a function of bias voltage. 5.1c The linear differential conduc-
tance. 5.1d The difference between the linear differential conductance for opposite magnetizations. 5.1e The
second order differential conductance.5.1f The difference between the second order differential conductance
for opposite magnetizations.
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5.6. APPENDIX

5.6.1. VANISHING EQUILIBRIUM CURRENT

At zero bias V = 0 the inelastic current in eq. (5.8) should vanish,this provides us with
the sanity check that:

Iinel.(V = 0) = e

h

∫ ∑
i

(
T LR

i (ϵ)−T RL
i (ϵ)

)
f0(ϵ)[1− f0(ϵ−ħωi )]dϵ, (5.12)

must be zero. Here f0(ϵ) =
[

exp
(
β(ϵ−EF)

)+1
]−1

. If T LR
i (ϵ) ̸= T RL

i (ϵ) the current can only

vanish by virtue of the overlap of the two Fermi-Dirac functions: f0(ϵ)[1− f0(ϵ−ħωi )].
Take for example T = 0 K and ħωi > 0 (the latter must always be the case), then the over-
lap reduces: Θ(−ϵ)Θ(ϵ−ħωi ) ( withΘ(x) the Heaviside function), which is zero for all en-
ergies, resulting in a vanishing equilibrium current. For finite temperatures and positive
ħωi , this overlap will be finite, but it can be made numerically small by choosing: ħωi ≫
kBT . In this regime emission processes dominate, which is precisely the processes con-
sidered in IETS.11 In our calculations we will explicitly verify that this equilibrium current
vanishes (the equilibrium current does not become larger than |Iinel.(V = 0)| < 10−10).

5.6.2. ONSAGER RECIPROCITY

We then consider a system where the left lead is magnetized with magnetization m, caus-
ing the transmission for elastic process to depend on this quantity:

Tel.(ϵ,m) = Tr
[

G+
el.(ϵ,m)ΓL(ϵ,m)G−

el.(ϵ,m)ΓR(ϵ)
]

, (5.13)

and for inelastic processes as well:

T LR
i (ϵ,m) = Tr

[
G+

el.(ϵ,m)λi G+
el.(ϵ,m)ΓL(ϵ,m)G−

el.(ϵ,m)λi G−
el.(ϵ,m)ΓR(ϵ−ħωi )

]
. (5.14)

Now we verify Onsager reciprocity by calculating the linear differential conductance co-
efficient of the total current I = Iel.+ Iinel. at zero bias voltage, for any value of the capac-
itive coupling η. Via eqs. (5.5) and (5.8) this gives:

G1(m) = e

h

∂I (m)

∂V

∣∣∣
V =0

=− e

h

∫
Tel.(ϵ,m) f ′

0(ϵ)dϵ

− e

h

∫ ∑
i

[
T RL

i (ϵ,m)+T LR
i (ϵ,m)

](
f ′

0(ϵ)[1− f0(ϵ−ħωi )]+ f0(ϵ) f ′
0(ϵ−ħωi )]

)
dϵ.

(5.15)

Here f ′
0(ϵ) = ∂ϵ f0(ϵ). Therefore the difference between the linear coefficients for opposite

magnetizations is:
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∆G1 =G1(m)−G1(−m)

=− e

h

∑
i

∫ [
T RL

i (ϵ,m)+T LR
i (ϵ,m)−T RL

i (ϵ,−m)−T LR
i (ϵ,−m)

]
×

(
f ′

0(ϵ)[1− f0(ϵ−ħωi )]+ f0(ϵ) f ′
0(ϵ−ħωi )]

)
dϵ. (5.16)

Where we used that Tel.(ϵ,m) = Tel.(ϵ,−m), due to Büttiker reciprocity. The Green’s func-
tions in the expression for the inelastic transmission eq. (5.14) transform under the time-
reversal operator as T̂ G±(m)T̂ −1 = G∓(−m), the matrix describing the coupling of the
electrons to the vibrational modes are symmetric under time T̂ λi T̂ −1 = λi (as is ΓR)
and the left lead coupling matrix transforms as: T̂ ΓL(m)T̂ −1 = ΓL(−m). We first insert
the identity matrix I = T̂ T̂ −1 between each matrix in eq. (5.14), we then use the trans-
formation rules under T for each matrix in the product and finally we use the cyclic
property of the trace to obtain:

T LR
i (ϵ,m) = Tr

[
G+

el.(ϵ,−m)λi G+
el.(ϵ,−m)ΓR(ϵ−ħωi )G−

el.(ϵ,−m)λi G−
el.(ϵ,−m)ΓL(ϵ,−m)

]
.

(5.17)

In the wide band limitΓL,ΓR are independent of energy and we obtain T LR
i (ϵ,m) = T RL

i (ϵ,−m)

and T RL
i (ϵ,m) = T LR

i (ϵ,−m), from which it follows that ∆G1 in eq. (5.16) vanishes: ∆G1 =
0. On the other hand, if the leads are energy dependent then the transmissions in the
integrand of eq. (5.16) do not always cancel out and ∆G1 can only vanish by virtue of the
overlap of the Fermi-Dirac functions: f ′

0(ϵ)[1− f0(ϵ−ħωi )]+ f ′
0(ϵ−ħωi ) f0(ϵ). At zero tem-

perature (T = 0 K ) this overlap becomes: δ(0)Θ(ϵ−ħωi )+δ(ħωi )Θ(−ϵ) and for ħωi > 0
this overlap is always zero. For finite temperatures this overlap is finite, but becomes nu-
merically small when ħωi ≫ kB T . In this regime emission processes dominate, which is
precisely the processes considered in IETS.11 Therefore we do not expect any violation
of Onsager-reciprocity in IETS measurements.
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on the CISS-effect : Peter Neu, Jędrzej Tepper, Zimu Wei, Xu Yang and Sytze Tirion for
interesting discussions.

Marc, from cradle to Quantum Nanoscience, we have know each other. I am happy
we are friends for so long and I want to thank you for the relaxing times after work by
navigating a coloured jellybean-like being across a ridiculous assault course, driving a

101



102 5. MAGNETOCURRENT WITH VIBRATIONAL MODES

car together across some life-threatening, insane circuit or just biking around Delft/on
the Cauberg. Laurens & Caspar, or “broski” and “amicum” respectively. Over the last
four years our gatherings have been more virtual than live. I will never forget the on-
line evenings, from Verdansk to Vondel or our live trips from Domburg to Düsseldorf.
I want to thank you for the relaxing times which made me forget about the stress that
accompanied my work.

Alba, I am so happy that watching a stupid football match on my phone in the train
made me miss my transfer to Delft. Otherwise the two of us most likely never would have
met. I want to thank you for the amazing time we had ever since that moment and for
the (emotional) support (yes I do have emotions) during my PhD. Suegros, yo he recibido
una “bienvenido a la familia ” que siempre deseaba. Sois personas muy buenas, gracias
por todo. Familie Huisman & Snip, ik wil jullie bedanken voor jullie mentale steun en
de nodige afleiding tijdens mijn promotietraject. Edzo & Madeleine of gewoon pap &
mam, mijn dank voor jullie steun tijdens mijn promotietraject. Ik draag deze thesis aan
jullie op omdat ik alles aan jullie te danken heb. Ik kan me geen betere ouders wensen,
was getekend jullie liefhebbende zoon Kars.



CURRICULUM VITAE

Karssien Hero HUISMAN

12-12-1993 Born in Amsterdam, the Netherlands.

EDUCATION
2019–2023 Promovendus, Technische Universiteit Delft

Thesis: Two Terminal Transport Theory Of Chirality Induced
Spin Selectivity

Promotors: prof. dr. J. M. Thijssen
prof. dr. ir. H.S.J. van der Zant

2017–2019 Master Theoretische Natuurkunde, Univeristeit van Amsterdam
Thesis: W → l ν̄l at Next to Leading Order in the Standard

Model Effective Field Theory
Supervisors: dr. W. J. Waalewijn

dr. D. J. Scott

2012–2017 Bachelor Univeristeit van Amsterdam,
Bachelor Econometrie (2012)
Bachelor Beta-Gamma, major Natuurkunde (2013-2017)
Thesis: Higgs Boson Production via Gluon - Gluon Fusion

And Decay Through: H → W W → lνlν Cutbased
Analyses Of The Run Two ATLAS Data

Supervisors: prof. dr. W. Verkerke
dr. L. Brenner

2006–2012 Coornhert Lyceum Haarlem, Atheneum

1998–2006 Openbare Basisschool Bos & Vaart, Haarlem

103





LIST OF PUBLICATIONS

3. K. H. Huisman, J.M. Thijssen, CISS Effect: A Magnetoresistance Throught Inelastic Scatter-
ing, J. Phys. Chem. C 2021, 125, 42, 23364–23369.

2. K. H. Huisman, J.B.M.Y. Heinisch and J.M. Thijssen, Chirality-Induced Spin Selectivity
(CISS) Effect: Magnetocurrent–Voltage Characteristics with Coulomb Interactions I, J. Phys.
Chem. C 2023, 127, 14, 6900–6905.

1. K. H. Huisman, J.B.M.Y. Heinisch and J.M. Thijssen, CISS Effect: Magnetocurrent–Voltage
Characteristics with Coulomb Interactions. II, J. Chem. Phys. 158, 174108 (2023).

105

https://doi.org/10.1021/acs.jpcc.1c06193
https://doi.org/10.1021/acs.jpcc.2c08807
https://doi.org/10.1021/acs.jpcc.2c08807
https://doi.org/10.1063/5.0148748

	Summary
	Samenvatting
	Introduction
	Chirality Induced Spin Selectivity
	Photo-Emission Experiments 
	Two-Terminal Transport 
	Broken Reciprocity ?
	Reciprocity Abiding Magnetocurrent 
	This Thesis
	References

	Büttiker Voltage Probes
	Introduction
	Computational Details
	Theory: Spin-Polarization of the Transmission
	 Magnetoresistance and the reciprocity theorems
	Tight Binding Hamiltonian
	Büttiker Probes

	Results
	Two-terminal junction, non-interacting
	Two-terminal junction, inelastic scattering

	Conclusion
	Appendix
	Tight Binding model
	 Sign change of spin-polarization of transmission 
	Mirror operation
	 Büttiker probes and Onsager-Casimir 
	Charge Current Formula

	References

	Non-Bipartice Structures with Coulomb Interactions 
	Introduction
	Model description
	 Results
	 Discussion
	Conclusion
	Appendix
	Coulomb Interactions: Higher Order Differential Conductance Coefficients 
	Derivation of Electron Green's Function 
	 Evenness or Oddness of Magnetocurrent
	Magnetic Stray fields

	References

	Bipartice Structures with Coulomb Interactions 
	Introduction
	Model description
	Theory
	 Magnetocurrent definition
	Electron Green's function
	Green's function: Transformation under time-reversal - and sublattice symmetry 
	Wide band limit 
	Semi - infinite leads

	 Numerical Results
	Conclusion
	Appendix
	 Green's function : particle hole transformation
	Semi - infinite leads: Voltage dependence of the onsite energy 
	Asymmetric coupling
	 Time reversal symmetry in equilibrium
	Self consistent determination of the electron densities
	Formula for the Current

	References

	Magnetocurrent with Vibrational Modes 
	Introduction
	Vibrational Modes 
	Magnetocurrent & IETS observables
	Numerical Results
	Conclusion
	Appendix
	Vanishing Equilibrium current
	 Onsager reciprocity

	References

	Acknowledgements
	Curriculum Vitae
	List of Publications

