1. Motivation & Purpose

This study aims at modeling the evolution of meanders by coupling the Bank Erosion and Retreat Model (BERM, by Chen and Duan, 2006) with a nonlinear flow model (by Blanckaert and de Vriend, 2010).

1.1 Linear flow method

Fig. Definition of variables and coordinate system: (a) plain view;(b) channel cross-section

$$\frac{u-U}{U} = Nbk\theta_0[-\alpha\cos(ks) + \beta\sin(ks)]$$

$$\alpha = \frac{kHC_f (A + A_s + F^2 + 1)}{H^2 k^2 + 4C_f^2}$$

Assume:
$$\theta = \theta_0 \cos(ks)$$

$$\beta = \frac{2C_f^2(A + A_s + F^2 - 1) - H^2k^2}{H^2k^2 + 4C_f^2}$$

Assume: db/ds=0;
$$r >> b$$
; $\lambda >> b$

1.2 Bank Erosion & Retreat Model (BERM)

1.3 Nonlinear flow method

Fig. Schematization of flow structure in a bend; definition of reference system and notations used in the non-linear flow model (adapted from Blanckaert & de Vriend 2010)

Toward nonlinear modeling of meander evolution

Dong Chen¹, Yun Zhang², Willem Ottevanger³, Koen Blanckaert³, Leilei Gu¹

- 1. Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- 2. Environmental Fluid Mechanics Laboratory, Department of Civil and Environmental Engineering, Stanford University, Stanford LISA
- 3. Department of Civil Engineering and Geosciences, Delft University of Technology, Delft, The Netherlands

2. Theory – physical process which redistribute flow in curved channels

By Blanckaert & de Vriend (2010)

(Extra terms compared to linear model by Johannesson and Parker (1989))

Transverse water surface and bed slope

Changes in curvature

Streamwise momentum redistribution by secondary flow

Cross-flow due to changes in transverse water surface and bed slope

3. Verification of linear & nonlinear flow models

Fig. Compare results of two methods with measurement (Silva, 1995, $\theta_0 = 30^{\circ}$,)

Fig. Compare results of two methods with measurement (Whitening & Dietrich, 1993, $\theta_0 = 115^{\circ}$)

Fig. Compare results of two methods with measurement (Silva, 1995, $\theta_0 = 110^{\circ}$)

Fig. Compare results of two methods with measurement (Kinoshita flume, Abad and Garcia, 2009) (adapted from Ottevanger et al., 2012)

4. Flowchart for meander evolution model

Fig. Flowchart of the calculation process

5. Conclusions

- $^{\prime}$ The results of linear & nonlinear flow models are similar in mildly curved channels with a flat bed.
- Linear models overestimate streamwise momentum redistribution by secondary flow in strongly curved channels.
- ✓ The nonlinear flow model gives a better result in high-sinuous channels with transverse bed slope.
- A better meander evolution model is expected and being built by coupling the Bank Erosion and Retreat Model (BERM, by Chen and Duan, 2006) with a nonlinear flow model (by Blanckaert and de Vriend, 2010).

6. References

- ♦ Abad, J.D. and M.H. Garcia (2009), Experiments in a high-amplitude kinoshita meandering channel: 1. implications of bend orientation on mean and turbulent flow structure. Water Resources Research 45, W02401.
- ♦ Blanckaert, K. and H. J. de Vriend (2010), Meander dynamics: A nonlinear model without curvature restrictions for flow in open channel bends, Journal of Geophysical Research, 115, FA4011
- ♦ Chen, D. and J.D. Duan (2006), Simulating sine-generated meandering channel evolution with an analytical model, Journal of Hydraulic Research, 44(3), 363-373.
- ♦da Silva, A.M.F. (1995), Turbulent flow in sine-generated meandering channel.
- Dissertation, Queen's University, Kingston, Ontario, Canada.
- ♦ Friedkin, J.F., 1945. A Laboratory Study of the Meandering of Alluvial Rivers. (Technical Report) U.S. Waterways Experiment Station, Mississippi.
- ◆ Johannesson, H. and G. Parker (1989), Velocity Redistribution in Meandering Rivers,
- Journal of Hydraulic Engineering, 115(8), 1019-1039.
 ♦ Ottevanger, W., K. Blanckaert and W.S.J. Ujitewaal (2012), Processes governing the flow redistribution in sharp river bends, Geomorphology, 163, 45-55.
- ♦ Whitening, P.J. and W.E. Dietrich (1993), Experimental Studies of Bed Topography and Flow Patterns in Large-amplitude Meanders. 1. Observations, Water Resources Research, 19(11), 3605-3614.