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Chapter 1

Introduction

Motion simulators are used frequently for both vehicle operator training and research into
human perception (Reid & Nahon, 1986). These devices aim to reproduce the sensation of
motion a vehicle operator would experience in a real vehicle. This replication is done through
a combination of visual, vestibular, somatosensory and auditory cues (Fischer, 2007). In
general, however, the exact replication of a vehicle’s physical motion is not possible, since
motion simulators have limited motion envelopes (Reid & Nahon, 1986).

To ensure a motion simulator remains within its motion envelope, a Motion Cueing Algorithm
(MCA) is used to map vehicle inertial motion to simulator inertial motion (Stahl, Abdulsa-
mad, Leimbach & Vershinin, 2014). One of the first (and, to this day, most commonly im-
plemented) MCAs is the classical washout filter (CWF), as introduced by Schmidt & Conrad
(Schmidt & Conrad, 1970) and explained by Reid & Nahon (Reid & Nahon, 1986). Since its
introduction various improved versions of this algorithm, using adaptive and optimal control
techniques, have been introduced (Salisbury & Limebeer, 2016). Also, novel motion cueing
techniques based on human perception models have been proposed (Venrooij et al., 2015). All
these techniques feature parameters which can be tuned to improve an MCA’s performance
for a given motion simulator and simulation scenario.

Several frameworks have been developed to tune MCA performance. Schroeder (Schroeder,
1999) developed an objective method for tuning MCA parameters based on the motion fidelity
criterion established by Sinacori (Sinacori, 1977), which specifies acceptable gains and phase
delays for 1 rad/s signals. A similar criterion was proposed by Advani & Hosman (Advani &
Hosman, 2006), based on vehicle natural frequencies.

Research by Valente Pais et al. (Valente Pais, van Paassen & Mulder, 2009), however, showed
that human perception of motion cueing errors changes with the frequency of the motion
cueing signals. This suggests that basing an MCA tuning criterion on a single frequency is
not correct. Additionally, a recent review by Nash, Cole & Bigler (Nash, Cole & Bigler, 2016)
shows human perception thresholds to vary with signal frequency as well. A subjective tuning
method for classical washout filters based on pilot evaluations was proposed by Grant (Grant,
1995). This paradigm, however, is only valid for a single type of MCA. Also, subjective tuning
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of an MCA will likely lead to different outcomes in case the tuning process is repeated with
different evaluation pilots (Hosman & Advani, 2016).

Research by Cleij et al. (Cleij et al., n.d.) showed that subjects’ perception of the realism
of a motion simulation depends both on the magnitude and type of motion cueing errors
(mismatches between the presented visual motion and experienced simulator motion). Motion
cueing algorithms could thus be improved by focusing on removing the worst types of errors
from a simulation.

To do so, it should be investigated what errors are the most important in determining a
human’s perception of a motion simulation. Additionally, it should be possible to objectively
identify both the time of occurrence and type of motion cueing error throughout a simulation.
To make this approach suitable for all MCAs, no knowledge of the applied MCA should be
used in this identification process.

As of now, however, there is no way of objectively identifying the presence of various mo-
tion cueing error types in time histories of a simulation, other than by (subjective) visual
inspection. With the aim of improving the performance of motion simulators in the future, it
is worth investigating whether a breakdown in motion cueing error types can be made, and
whether these can be objectively identified in motion simulation traces.

1-1 Research goal

Motion cueing algorithms could be improved by focusing tuning efforts on the worst parts of
a simulation. To do so, it should be possible to (objectively) identify different types of motion
cueing error in a motion simulation. Additionally, it should be known which of these error
types is perceived to be worst by humans.

This leads to three goals for this research:

1) To define a breakdown of motion cueing error types.

2) To develop a methodology which identifies the error types defined in 1) in a motion
simulation input and output trace.

3) To investigate which error types defined in 1) are perceived to be worst by humans
during a motion simulation.

1-2 Methodology

Research goal 1) was fulfilled through a literature study, the results of which were presented
in a Preliminary Thesis. In this Preliminary Thesis, research goal 2) was also addressed
for idealised motion cueing errors. Using the results of this initial research, the methodology
developed in the Preliminary Thesis was extended to real simulator traces. The final algorithm
developed as a result of this process was explained in an IEEE paper. The experiment carried
out to answer research goal 3) is also discussed in this paper.

The motion cueing error detection algorithm described in both the Preliminary Thesis and
IEEE paper was developed using Matlab. For implementation of wavelet analysis, Matlab’s
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wavelet toolbox was used. Several modifications to this toolbox have been made, these changes
are described in both the Preliminary Thesis and IEEE paper. The experiment carried out
to validate this algorithm was run in the CyberMotion Simulator (CMS) of the Max Planck
Institute for Biological Cybernetics. The analysis of data from this experiment was done
using Matlab, with statistical tests being performed in SPSS.

For the Preliminary Thesis, a literature survey was carried out. This literature survey focused
on three main topics: Motion cueing error types, human perception and wavelet analysis.
Literature was collected from various online databases, including Scopus, Google Scholar,
AIAA, IEEE Xplore and Wiley online library. Search terms included (combinations of) the
following keywords:
Motion simulation, motion cueing algorithm, motion cueing (errors), perception, thresholds,
coherence zones, error detection, algorithm, wavelet analysis, coherence

1-3 Report structure

This report is divided in two parts. In part I, the IEEE paper summarising the work performed
in this research project is presented. This paper is followed by a set of appendices, which
provide extra data supporting the research presented in the IEEE paper. In part II of this
report the Preliminary Thesis, written prior to executing the experiment described in the
IEEE paper, is presented. In this Preliminary Thesis relevant literature for the research is
discussed, and a first version of the motion cueing error detection algorithm is presented.
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Simulator Motion Cueing Error Detection
Using a Wavelet-based Algorithm

Tim D. van Leeuwen, Diane Cleij, Daan M. Pool, Member, IEEE, Heinrich H. Bülthoff, Max Mulder

Abstract—Understanding the process of human motion per-
ception is essential for optimizing the motion cueing algorithms
(MCAs) used by motion simulators. Previous research has shown
that different motion cueing error types can be distinguished,
at least some of which are rated differently by humans for
equal error magnitude. Optimizing a motion simulation for
both error magnitude and error type requires a method to
objectively identify the presence of different motion cueing error
types from simulation input and output traces. This paper
presents a wavelet-based motion cueing error detection algorithm
that exploits the time and frequency characteristics of these
error types. A simulator experiment is presented through which
parameters of the algorithm are determined. It is shown that
motion cueing errors can be detected by the algorithm without
prior knowledge of the MCA used. The need for the algorithm
is demonstrated by showing that motion cueing error types can
be divided in clusters of severity. Additionally, it is shown that
in curve driving, given a reference of unity gain, the lateral
specific force can be scaled down to 70% and up to at least
130% before subjects indicate motion to be too weak or too
strong. A required input and output coherence of 0.7 is found
for simulator input and output to be considered coherent. The
motion cueing error detection algorithm can be used to improve
motion cueing algorithms in the future.

Index Terms—Motion simulation, motion cueing, motion per-
ception, error detection, algorithm, wavelets

I. INTRODUCTION

MOTION simulators are used extensively for vehicle op-
erator training and research into human perception [1].

By combining visual, vestibular, auditory and somatosensory
cues these devices try to replicate the sensation of motion
an operator would have in an actual vehicle [2]. The exact
replication of a vehicle’s physical motion is generally not
possible, however, as motion simulators have limited motion
envelopes [1].

Mapping vehicle motion to the simulator motion space is
done using a motion cueing algorithm (MCA) [3]. Various
types exist, amongst others the classical washout filter as
introduced by Schmidt & Conrad [4] and described by Reid &
Nahon [1], improved versions of this algorithm using adaptive
and optimal control techniques [5], and novel techniques
based on human perception models [6]. All these techniques
feature parameters that can be tuned to optimize an MCA’s
performance for a given simulator and simulation scenario.
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Several frameworks have been developed previously for
MCA tuning. Schroeder [7] developed an objective method of
tuning MCA parameters based on the motion fidelity criterion
established by Sinacori [8], which specifies acceptable gains
and phase delays for 1 rad/s signals. A similar criterion was
proposed by Advani & Hosman [9], based on vehicle natural
frequencies. Research by Valente Pais et al. [10], however,
showed that human perception of motion cueing errors changes
with the frequency of the motion cueing signals. This suggests
that basing an MCA tuning criterion on a single frequency
is not correct. Additionally, a recent review by Nash, Cole
& Bigler [11] shows human perception thresholds to vary
with signal frequency as well. A subjective tuning method
for classical washout filters based on pilot evaluations was
proposed by Grant [12]. This paradigm, however, is only valid
for a single type of MCA. Also, subjective tuning of an MCA
will likely lead to different outcomes in case the tuning process
is repeated with different evaluation pilots [13].

Research by Cleij et al. [14] showed that subjects’ percep-
tion of the realism of a motion simulation depends both on the
magnitude and type of motion cueing errors (mismatches be-
tween the presented visual motion and experienced simulator
motion). Motion cueing algorithms could thus be improved
by focusing on removing the worst types of errors from a
simulation. To do so, it should be investigated what errors
are the most important in determining a human’s perception
of a motion simulation. Additionally, it should be possible to
objectively identify both the time of occurrence and type of
motion cueing error throughout a simulation. To make this
approach suitable for all MCAs, no knowledge of the applied
MCA should be used in this identification process.

As of now, however, there is no way of objectively iden-
tifying the presence of various motion cueing error types
in time histories of a simulation, other than by (subjective)
visual inspection. The goal of this research therefore is to first
define categories of motion cueing errors. Next, an algorithm
is designed which is capable of detecting these types of errors
in input/output time traces of a simulation. This is done using
five characteristics: error frequency (shown to influence error
severity by Valente Pais et al. [10]), error duration, the output
over input signal ratio, input and output coherence and phase
difference (all shown to influence error severity by Casas et
al. [15]). Since both time and frequency characteristics of the
signal are considered, the spatio-temporal analysis method of
wavelet analysis is used. All characteristics are determined
without knowledge of the MCA used. Various parameters
(e.g., the minimum and maximum allowable scaling factors for
motion, and human perception threshold levels) are included
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in the algorithm. These can be varied to tune the sensitivity
of the algorithm.

To validate the motion cueing error detection algorithm, an
experiment was performed in the CyberMotion Simulator of
the Max Planck Institute for Biological Cybernetics. In this
experiment subjects passively experienced a car drive through
identical curves, with all curves featuring a modified lateral
specific force. Subjects were asked to continuously rate their
perceived visual-motion mismatch using the continuous rating
method explained by Cleij et al. [16]. These ratings allow for
commenting on what types of motion cueing errors are the
most detrimental to the realism of a simulation, and allow
for finding suitable parameter values for the error detection
algorithm.

This paper is structured as follows: first the categorization
of motion cueing errors is discussed in Section II. Since both
time- and frequency-domain information of these errors is
taken into account, the spatio-temporal analysis method of
wavelets is investigated in Section III. The design of the
motion cueing error detection algorithm is then discussed
in Section IV. Following this, the set-up of the simulator
experiment to tune and validate the algorithm is discussed in
Section V, with the results of this experiment being presented
in Section VI. A discussion of these results is presented in
Section VII, with conclusions being drawn from this paper in
Section VIII.

II. MOTION CUEING ERROR CLASSIFICATION

Research by Cleij et al. [14] has shown that not all motion
cueing errors of equal magnitude are rated as being equally
detrimental to motion simulator fidelity. This observation was
already made by Grant et al. [17] and Fischer [18], who
proposed a distinction between scale and shape errors after
observing that downscaling a simulator input signal has a
different effect on the perceived motion fidelity than distorting
this motion but keeping a unity gain.

This finding was confirmed by Casas et al. [15] in a study
into a more elaborate breakdown of motion cueing errors. They
concluded that the coherence between a simulator’s input and
output signal (i.e., how similar the input and output signal
are in their shape/appearance) mainly determines a subject’s
perception of the simulation (a correlation value of 0.4-0.5
was found). In addition, [15] shows the absolute average scale
and estimated delay indicators to correlate (correlation values
of 0.2-0.3) with humans’ perception of a simulation.

All indicators used in these previous studies, however,
were computed using the entire simulator input and output
signal. This means all time resolution is lost when using
these indicators, as they produce just one value for the entire
simulation. This property is undesirable given that the motion
cueing error detection algorithm should indicate errors over
time, such that tuning activities can be focused on the worst
sections in a simulation. Such a tuning approach is expected to
show improvements over the current approaches suggested by
Schroeder [7] and Grant [12], which tune MCAs based on an
algorithm’s performance over a whole simulation. The error
breakdown method proposed by Grant et al. [17] and Fischer

[18] implicitly assumes constant input scaling to be applied,
which limits its applicability to motion cueing algorithms for
which this scaling is constant and known.

It is for these reasons that a new method of analysis, which
requires no a priori knowledge, will be presented in this
paper. The method is based on a motion cueing error type
breakdown derived from the comprehensive overview of Grant
& Reid [19]. Grant & Reid distinguish three types of motion
cueing error: false cues, scaling errors and phase errors. This
distinction will lead to three error categories in this paper.

Objective detection of the different motion cueing error
types will be done based on five mathematical characteristics
of these errors. As shown by Valente Pais et al. [10], error
frequency influences the perceived severity of a motion cueing
error. Hence, this frequency is investigated. Since errors should
be localized in time, error duration is also discussed. As an
extension to the results of Casas et al. discussed previously
[15], the time-varying input and output signal coherence (a
measure of signal similarity, referred to as the I/O coherence)
will be investigated. Additionally, a time-varying version of
the absolute average scale and estimated delay indicators of
Casas et al. is also investigated. The phase difference between
the output and input signal is measured in degrees. The time-
varying output over input ratio at time t, referred to as the
Power Ratio or PR from now on, is defined as:

PR(t) =
Output(t)
Input(t)

(1)

In the following, error types and their properties are
described. Examples of error causes are given for classical
washout filters, since these are most common [5]. However,
note that most error causes (e.g., washout, tilt-coordination
and motion scaling) also occur in non filter-based algorithms
[20].

False cues - Grant & Reid [19] note that false cues are the
most detrimental to motion simulator fidelity. Three different
types can be distinguished:
• Type I false cue (F1) - F1 errors are typified by the

simulator output being of opposite sign to the simulator
input. Typical causes for such an error are simulator
washout and braking near the end of the motion envelope.
Additionally, these errors are caused by high-pass filters
at the end of a sustained cue. Since the input and output
are of opposite sign the Power Ratio is negative and I/O
coherence is low. F1 errors typically last in the order of
seconds and are expected at mid-to-low frequencies since
they originate from simulator washout, which operates at
these frequencies.

• Type II false cue (F2) - F2 errors are described by Grant
& Reid as “a motion cue in the simulator when none was
expected” [19]. These errors are mostly caused through
the tilt coordination process. This process introduces false
rotational rates into a simulation. To limit the effect of
these false rotational rates, the tilt rate is often limited
[21]. However, due to this limited tilt rate, it takes time to
return a tilted simulator back to its neutral position. This
prolonged tilt introduces false specific forces. The latter
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cause is referred to as the tilt coordination remnant [19].
Since the output is (much) larger than the input, the PR
will be larger than 1 and I/O coherence will be low. Again
these errors are expected at mid-to-low frequencies since
they are often the result of a motion cueing algorithm’s
low-pass filters.
Since motion simulators have a limited motion envelope,
deliberate exaggeration of motion is not expected. For
this reason, exaggerated motion is identified as an F2
error too. This motion could occur at any frequency
and for long durations. Should this happen, then the I/O
coherence remains high, the PR is larger than 1 and there
is no phase difference between input and output.

• Type III false cue (F3) - Unexpected cues of high fre-
quency are designated Type III false cues. A distinction
is made in this paper between short-duration F3a errors
(e.g., caused by a simulator hitting a displacement limit)
and long-duration F3b errors (e.g., caused by simulator
noise). For both error types the I/O coherence is low and
the PR can take on any value, as these errors can occur
in combination with any other error.

Scaling errors - The second category of motion cueing errors
is scaling errors. Research has shown that these errors are
not detrimental per se [22], [23], meaning scaling does not
have to be one to one. Even severe scaling errors usually
lead to lower perceived mismatches than false cues [14]. Two
types of scaling error can be distinguished, with the following
mathematical properties:

• Type I scaling error (S1) - S1 errors are pure scale
errors as defined by Grant et al. [17] and Fischer [18].
They originate from a constant gain for all frequencies
being applied to the simulator input. Input scaling is
usually applied throughout a simulation, hence these
errors are expected for long durations at all frequencies.
As indicated by Casas et al. [15] the I/O coherence is
high for these errors. Since downscaling is applied, the
Power Ratio will be between 0 and 1 by definition. S1
errors finally are characterized by the fact that no phase
shift is applied between the simulation’s input and output.

• Type II scaling error (S2) - In case not all frequencies
are attenuated equally (as is the case for an S1 error),
the error is designated an S2 error. These errors are
typically caused by non-complementary high-pass and
low-pass filters in MCAs [19]. In case such filters are
used, both high-frequency and low-frequency motion are
simulated with a (near) unity gain, but mid-frequency
motion is attenuated. Similar to the previous, S2 errors
have a Power Ratio between 0 and 1 by definition. Unlike
for S1 errors, however, the signal coherence will drop in
case of an S2 error since not all frequencies are attenuated
equally. Like F1 and F2 errors, these errors mostly
originate from filter effects, hence they are expected at
mid-to-low frequencies. The error duration is expected to
be in the order of seconds.

Phase errors (P) - The final category of motion cueing
errors are phase errors, which are caused by delays between
the simulator input and output signal. These delays can be

caused by delays in sending commands to a simulator’s
motion system, a simulator’s filter settings, its rate- and
acceleration-limits or its inertia [19]. In case of a delay
between simulator input and output, the I/O coherence will
remain high and (on average) the Power Ratio will remain
close to 1 (though the delay may cause it to take on any
instantaneous value). P errors are expected to be noticeable at
mid-to-low frequencies and are expected to last in the order
of seconds.

For reference an overview of all distinguished motion cue-
ing error types and their mathematical characteristics is given
in Table I. From this table it can be concluded that F1, F2, S1
and S2 errors are mutually exclusive. F3 errors can occur in
combination with all other error types, P errors could occur
in combination with an S1 error.

III. WAVELET ANALYSIS

In the previous section both time- and frequency-based char-
acteristics were identified as motion cueing error properties to
be used for error identification, meaning that a spatio-temporal
analysis method is required. Several such analysis methods
exist, such as the Short-Term Fourier Transform (STFT) and
the Wavelet Transform (WT) [24]. It has been shown that the
WT is more efficient in making a time-frequency decomposi-
tion [25], for this reason the WT is selected as the method of
analysis in this paper.

Wavelet analysis has already been applied in a variety of
research fields, including geophysics [26]–[28], biology [29],
[30] and economics [31]. Most studies use wavelet analysis
to analyze the behavior of a single variable, but this paper
uses wavelet analysis to compare two signals (simulator input
and output). Also wavelet analysis is applied in this paper to
signals that do not necessarily display periodic behavior (as
opposed to sea temperatures [26], daily migrations [29] and
exchange rates [31]).

1) Mathematical development: The explanation of wavelet
analysis in this section is based on the work of Torrence &
Compo [26]. Like the Fourier transform (FT), the wavelet
transform (WT) is based on computing the inner product of a
time function f(t) with an analyzing function ψ(t). For the FT
this analyzing function ψ(t) is a complex exponential function
of frequency ω [32]:

F (ω) = F{f(t)} =

∫ ∞

−∞
f(t)ψ(t)dt

=

∫ ∞

−∞
f(t)e−iωtdt (2)

In (2) F{·} denotes the Fourier Transform operator and F (ω)
denotes the Fourier Transform of f(t). In case of the WT the
analyzing function ψ(t) is a stretched and translated version
of a mother wavelet ψM (t), the requisites for which are:

∫ ∞

−∞
ψM (t) dt = 0 (3)

∫ ∞

−∞
|ψM (t)|2 dt = 1 (4)

Unlike the analyzing function of the FT, wavelet functions
are bounded in both time and frequency. As such, the mother
wavelet can not only be stretched by a scale s (which changes
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TABLE I: Descriptions and mathematical properties of error types. Properties denoted with * are used by the algorithm.

Category & Type Abbr. Description Frequency Coherence Power Ratio Duration Phase difference
ω [rad/s] ρ2 [-] PR [-] ∆t [s] ∆φ [deg]

False

Type I F1 Perceived simulator motion in the opposite direction
to the direction expected based on visual cues.

Mid-Low * Low * PR < 0 * Any Yes

Type II F2 Perceived simulator motion when no/less vehicle
motion was expected based on visual cues.

Mid-Low * Low * PR > 1 * Any Yes
All * High * PR > 1 * Any No *

Type IIIa F3a A short high-frequency disturbance of simulator
motion which was not expected based on visual cues.

High * Low * Any < 0.5 s * Yes

Type IIIb F3b Continuous high-frequency disturbance of simulator
motion which was not expected based on visual cues.

High * Low * Any ≥ 0.5 s * Yes

Scaling

Type I S1 Perceived simulator motion is scaled down (equally
over all frequencies) compared to visual cues.

All * High * 0 < PR < 1 * Any No *

Type II S2 Perceived simulator motion is scaled down (unequally
over all frequencies) compared to visual cues.

Mid-Low * Low * 0 < PR < 1 * Any Yes

Phase P Perceived simulator motion appears out of phase with
the visual cues.

Mid-Low * High * P̄R ≈ 1 Any Yes *

the wavelet’s frequency), but also be translated by τ seconds
(to change the point in time at which the time function f(t)
is inspected). In case a wavelet is stretched horizontally by
a scale s, a vertical scaling factor 1√

s
is applied to meet

requirement (4). The inner product for a given scale s over
all points in time is then computed as:

W (s, t) =

∫ ∞

−∞
f(τ) · 1√

s
ψ∗M

(
t− τ
s

)
dτ (5)

= F−1

[
F (ω) · 1√

s
· |s|ΨM (sω)

]
(6)

In (5) ∗ denotes the complex conjugate. W (s, t) represents the
wavelet transform of f(t) at time t for a wavelet scale s. τ
denotes the integration variable used in the convolution in (5).
The convolution operation in (5) can also be evaluated in the
frequency domain, leading to (6) (in which F−1 is the inverse
Fourier Transform and |s|ΨM (sω) is the Fourier Transform
of ψM (s, t). The end result of a repeated evaluation of (5)
and (6) for a set of scales s is a two-dimensional spectrum,
showing which frequency content is present at which points
in time.

2) Choice of wavelet: A wide variety of analyzing functions
satisfy conditions (3) and (4). As a result, one has to choose
both a wavelet family and parameter set to use based on the
time resolution (a wavelet’s capability to distinguish signal fea-
tures in time) and frequency resolution (a wavelet’s capability
to distinguish signal features in the frequency domain) offered.
A complete overview of wavelet families and their parameters
can be found in Appendix A. For this paper the frequency-
based complex Morlet wavelet with ω0 (the parameter which
defines the wavelet’s frequency at scale s = 1) set to 4
rad/s was chosen, for its balance between time and frequency
resolution [33].

3) Post-processing: Wavelet analysis provides a limited
time and frequency resolution, as a result signal power tends
to spread out over time and frequency. This effect can partially
be mitigated using two corrections: 1) determining the region
of influence of edge effects and 2) significance testing.

The region of influence is discussed by Torrence & Compo
[26]. However, their proposed methodology is not suitable
for all wavelets discussed in Appendix A. For this reason

a modified methodology was used, which determines the
effective width of a wavelet ψ(s, t) by investigating between
which points in time 95% of a wavelet’s energy is contained.
This is done by twice solving (7), once for E = 0.025 and once
for E = 0.975. This method is further explained in Appendix
B. ∫ tlim

−∞
|ψM (t)|2 dt = E (7)

In a second post-processing step the power of the time-
frequency based wavelet spectrum |W (s, t)|2 is compared
to a pre-determined background spectrum. This background
spectrum is the power spectrum of red noise with the same
variance as the analyzed time function f(t) [26]. W (s, t)
is only considered the result of a feature in f(t) in case
|W (s, t)|2 is significantly larger than this red noise background
spectrum. In this way, the effects of power spread are filtered
out. This method is further explained in Appendix B.

4) Wavelet coherence: As explained by Casas et al. [15]
input/output coherence is an important factor in determining
a subject’s reaction to motion simulation. Wavelet analysis
allows for determining this coherence per frequency over time,
this process was explained by Torrence & Webster [34]. As
a first step, the cross-wavelet spectrum of two signals is
computed:

WX,Y (s, t) = WX(s, t) ·W ∗Y (s, t) (8)

In (8) ∗ again denotes the complex conjugate. The cross-
wavelet spectrum is similar to the cross-spectral density
SX,Y (ω) of two signals. SX,Y (ω) is the Fourier transform
of two signals’ cross-correlation and is defined by [35]:

SX,Y (ω) = E [F ∗X(ω) · FY (ω)] (9)

In (9) E [·] denotes the expected value. Note that (9) is similar
to (8), except that the complex conjugate of FX(ω) is taken,
rather than that of FY (ω).

Using the wavelet cross-spectrum, the wavelet coherence
ρ2(s, t) can be computed using [34]:

ρ2(s, t) =
|S
(
s−1 ·WX,Y (s, t)

)
|2

S (s−1 · |WX(s, t)|2) · S (s−1 · |WY (s, t)|2)
(10)
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Additionally the phase difference φ(s, t) between two sig-
nals can be computed using:

φ(s, t) = tan−1

(
=
[
S(s−1 ·WX,Y (s, t))

]

< [S(s−1 ·WX,Y (s, t))]

)
(11)

In (10) and (11) S(·) is a smoothing function in both time and
frequency, as discussed by Grinsted, Moore and Jevrejeva [33].
<[·] and =[·] denote the real and imaginary part of a number,
respectively. In [33] smoothing in time is only implemented
for the frequency-based, complex-valued Morlet wavelet. An
extension to this method is made in Appendix C, in which
modulating functions (which are used as a filter in time) are
discussed for all wavelets listed in Appendix A.

Again, (10) and (11) are similar to the expressions for
determining the coherence and phase difference between two
signals using a Fourier analysis, which can be done using [35]:

ρ2
X,Y (ω) =

|SX,Y (ω)|2
SX,X(ω) · SY,Y (ω)

(12)

φX,Y (ω) = tan−1

(−= [SX,Y (ω)]

< [SX,Y (ω)]

)
(13)

The difference between (11) and (13) is the omission of the
smoothing function S(·) in (13) and the minus operator in
the numerator of (13). The latter stems from the fact that the
complex conjugate of FX(ω) was taken, rather than that of
FY (ω), in (9).

IV. MOTION CUEING ERROR DETECTION ALGORITHM

The motion cueing error detection algorithm (to be referred
to from now on as “the algorithm”) described in this sec-
tion uses wavelet analysis to detect the motion cueing error
characteristics listed in Table I. The algorithm’s structure is
based on Grant’s motion cueing algorithm tuning paradigm
[12], however, our algorithm does not combine the detection
or errors and tuning of the MCA. Instead, by only detecting
motion cueing errors without using knowledge of the MCA
used, our algorithm can be used for any MCA. In the specific
case of a classical washout filter, the algorithm presented in
this paper could replace the subjective evaluation pilot used to
provide input to the algorithm in [12].

A. Algorithm description

The algorithm’s process, which is repeated for all six motion
channels, consists of five steps and is illustrated in Fig. 1.

Step 0 Threshold evaluation – Given a simulator input and
output signal, the algorithm first checks whether all input
and output is below threshold level Φ. If so, then a subject
is assumed not to have experienced any motion nor to have
expected any based on the visual information. Thresholds have
been used from research by Nesti et al. [21] (for rotational
rates) and Heerspink et al. [36] (for linear accelerations), see
Table II.

Step 1 Error analysis – The error signal is first computed
from the simulator input and output. This error signal is
wavelet transformed using a frequency-based, complex-valued

TABLE II: Motion perception thresholds [21], [36]–[38].

Motion channel Perceptual Theshold PRmin PRmax

ax 0.04 m/s2 0.5 1.3
ay 0.04 m/s2 0.5 1.3
az 0.08 m/s2 0.5 1.3

ωx 3 deg/s 0.6 1.1
ωy 3 deg/s 0.6 1.1
ωz 3 deg/s 0.6 1.1

Morlet wavelet with ω0 = 4 rad/s, to obtain a time-frequency
decomposition of the error signal. Using the significance test
discussed in Section III, regions of significant error (at a 95%
significance level, with a red-noise autocorrelation coefficient
of 0.9) are identified in this time-frequency space. Steps 2-4
are then repeated for each significant region.

Step 2A Frequency analysis – From Table I it can be
seen that the frequency content of an error is important in
determining its type, hence an error is first designated high or
mid-low frequency. This is done by comparing the minimal
error frequency found in Step 1 to the reference value of 0.5
Hz proposed by Grant [12]. Errors containing solely power at
frequencies higher than 0.5 Hz are designated high-frequency.

Step 2B High-frequency analysis – In case an error is high-
frequency, the algorithm continues with Step 2B to determine
whether the error is an F3 or S1/F2 error, the distinction be-
tween which is the I/O coherence. To determine this quantity,
a coherence spectrum ρ2(s, t) is first computed using (10).
Next, a high-frequency coherence value ρ2

HF(t) is found for
all points in time by averaging the wavelet coherence ρ2(s, t)
over all frequencies between 2 Hz and 10 Hz (frequencies
between 0.5 Hz and 2 Hz are left out as they tend to contain
artifacts of signal spread at lower frequencies).

In case the coherence level ρ2
HF(t) remains above a set

threshold ρ2
HF,min, it is concluded that either an S1 error or an

F2 error occurred, or nothing is wrong. The latter is concluded
in case the Power Ratio computed in (1) falls within the
coherence zones described by Correia Grácio et al. [37] and
Valente Pais et al. [38]. Threshold values for this scaling are
given in Table II. In case the Power Ratio in (1) is lower
than PRmin an error is designated an S1 error, in case the PR
exceeds PRmax an F2 error is detected.

In case the high-frequency coherence level ρ2
HF(t) drops

below a certain threshold ρ2
HF,min, an F3 error is found. To

distinguish between F3a and F3b errors, the error duration
is determined from the region of significant error of Step 1.
In case this duration is below a certain ∆tmin (set to 0.5 s,
as errors resulting from hitting a simulator displacement limit
are expected to last shorter than that) the error is designated
an F3a error, otherwise an F3b error is found.

Step 3 Threshold analysis – In order to prevent false
positives or false negatives in case of subthreshold input or
output (e.g., labelling subthreshold simulator washout a false
cue), it is first checked whether the input and output at time
t are above threshold level Φ, see Table II. In case both are
below threshold level Φ no error is called, in case only the
input is above threshold level Φ then an S2 error is assigned.
Finally, if there is noticeable output when no input is expected
an F2 error is found.
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Fig. 1: Flowchart of the motion cueing error detection algorithm discussed in this paper, with its four steps highlighted. Φ
denotes a perceptual threshold.

Step 4 Power Ratio, Coherence & Phase analysis – Should
the error be of mid-to-low frequency and both the input and
output be above threshold level, then three properties are
determined prior to assessing of what type(s) the error is.

Like in the high-frequency case, a low-frequency coherence
value ρ2

LF(t) is computed by averaging the wavelet coherence
spectrum ρ2(s, t) over all frequencies between 0.05 and 0.5 Hz
(since effects with a period longer than 20 s are not expected
to be dominant). The Power Ratio is computed from (1).
As a third indicator the phase difference ∆φ(t) between the
input and output is computed by averaging the phase spectrum
φ(s, t) obtained in (11) over all frequencies between 0.05
and 10 Hz. Using PR(t), ρ2

LF(t) and ∆φ(t) as indicators, the
remaining error types can be identified.

Phase errors stand out due to their high I/O coherence and
large phase shifts between input and output. Beckers et al.
[39] concluded that phase shifts larger than ∆φmax = 16.4
deg would lead to humans perceiving a phase error. In case a
phase error is detected, the integrals of the (absolute) input and
output during the phase error are compared to assess whether
an S1 error was present simultaneously. The Power Ratio is
not suitable for use here, since the delay between input and
output could cause the PR to take on any value.

In case the low-frequency coherence ρ2
LF(t) is higher than

ρ2
LF,min and ∆φmax is not exceeded, an S1 error is detected

in case the PR is positive and smaller than PRmin. Since
deliberate exaggeration of motion is not expected in motion
simulation (given simulators’ limited motion envelopes), any
error for which the PR is larger than PRmax whilst having high
coherence and no phase error will be designated an F2 error.

This means two causes of F2 errors have already been
covered, the final cause is identified in case the I/O coherence
drops below ρ2

LF,min and the PR is larger than PRmax. F1 errors
are characterized by their negative PR, hence in case this
negative PR is accompanied by a low I/O coherence this error
can be singled out.

As a final error type, S2 errors are called out in case the
low-frequency I/O coherence drops below ρ2

LF,min and the PR
is positive, but smaller than PRmin.

Step 5 Post-processing – Two steps of post-processing are
performed on the output of Steps 1-4. First it is checked that
gaps between equal error types are at least 0.2 s long. If not,
then errors are made continuous. Should an F3a error longer
than 0.5 seconds be found (resulting from multiple F3a errors
being lumped together in the first step of post-processing) then
this error is post hoc redesignated as F3b.

B. Algorithm demonstration

The detection algorithm will be demonstrated in this section,
using the input and output signals shown in Fig. 2a. The input
signal (sampled at 1000Hz) is given by:

I(t) = 2 sin2 (0.25π(t− 3)) for 3 < t ≤ 5

I(t) = 2 for 5 < t ≤ 10

I(t) = 2 cos2 (0.25π(t− 10)) for 10 < t ≤ 12

This shape is repeated (negatively) for t = 19-28 s and for t
= 34-43 s, with the signal being 0 outside these intervals. The
output was created by filtering the input using a first-order
high-pass filter (ωn = 1.2 rad/s) between t = 2-10 s, adding
white noise (σ = 0.1) for t = 21-26 s (building up and dying
out in the first and last second) and scaling the input down
50% for t = 34-43 s.

Step 1 Error analysis – A wavelet transform of the error
signal shown in Fig. 2a results in the spectrum shown in
Fig. 2b. Two areas of significant error are found: The entire
low-frequency area of the plot (A) and a high-frequency region
around t = 22 s (B). The latter consists of many small regions,
due to the very limited width of a wavelet at these small scales
s (which correspond to high frequencies). This shows wavelet
analysis is not able to continuously identify high-frequency
noise.

Step 2A Frequency analysis – From Fig. 2b it is easily
seen that the bottom region stretches to frequencies below 0.5
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Perception thresholds for lateral acceleration are also shown.

0 10 20 30 40 50

Time [s]

0.01

0.1

1

10

P
er
io
d
[s
]

1

10

100

1000

F
re
q
u
en
cy

[r
ad

/s
]

A

B

10 20 30 40

|W (s, t)|

(b) Step 1: Wavelet transform of the error signal shown in
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Fig. 2: Visual algorithm output for the demonstration discussed.
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Hz and that the top region does not. The latter is therefore
labelled high-frequency and treated further in Step 2B.

Step 2B High-frequency analysis – The high-frequency
coherence ρ2

HF(t) is obtained by averaging the wavelet coher-
ence spectrum ρ2(s, t) shown in Fig. 2c over all frequencies
between 2 Hz and 10 Hz, resulting in the line shown in Fig. 2d.
Since the high-frequency coherence ρ2

HF(t) drops below ρ2
min

(= ρ2
HF,min = ρ2

LF,min in this demonstration) between t = 22 s
and t = 26 s the high-frequency error identified in Step 1 is
an F3 error. The significant region shown in the top of Fig. 2b
consists of many small regions, each lasting less than 0.5 s,
meaning a succession of F3a errors is (incorrectly) identified
here.

Step 3 Threshold analysis – In Fig. 2a the input exceeds
the perceptual threshold without the output exceeding it on
three occasions: at t = 3.2 s, t = 34.2 s and t = 42.6 s. All
are marked as S2 errors.

Step 4 Power Ratio, Coherence & Phase analysis – For
completing Step 4 the low-frequency coherence ρ2

LF(t), Power
Ratio PR(t) and phase difference ∆φ(t) of the input and
output are required. The first is shown in Fig. 2d, having
averaged the coherence ρ2(s, t) of Fig. 2c over all frequencies
between 0.05 Hz and 0.5 Hz. The Power Ratio is shown
in Fig. 2e, ∆φ(t) (obtained by averaging φ(s, t) over all
frequencies between 0.05 and 10 Hz) is shown in Fig. 2f.

From Fig. 2d it can be seen that the coherence ρ2
LF(t) never

drops below the threshold value of 0.8. Since Fig. 2f shows
a large phase difference between t = 4 s and t = 7 s, this
error part is labelled a P error. Between t = 34 s and t = 43 s
one can see the coherence ρ2

LF(t) remaining high but the PR
dropping below PRmin, so this is an S1 error. Between t = 19
s and t = 28 s the coherence ρ2

LF(t) is high, the PR is within
bounds and no lead or lag is identified, so no error is called
here in addition to the F3a errors found in Step 2B.

Step 5 Post-processing – In Step 2B a succession of F3a
errors was identified. Since the gap between these is under
0.2 s these are connected in Step 5, meaning the total length
exceeds 0.5 s. As a result, now an F3b error is identified here.
This means the output of the algorithm is as shown in Fig. 2g,
with three brief S2 errors and a P, F3b and S1 error being
identified.

C. Algorithm limitations

In this section the algorithm for detecting motion cueing
errors has been explained and demonstrated. Based on findings
of this demonstration a number of improvements and topics
of further research are still foreseen.
• The output of the algorithm could have been different in

case other parameter values were chosen. For example,
increasing ρ2

LF,min would result in an S2 error being
detected rather than a P error between t = 4 s and t
= 7 s. Also, lowering PRmin would result in no S1 error
being found between t = 34 s and t = 43 s. Experiments
are thus needed to determine suitable parameter values.

• The error between t = 4 s and t = 7 s is identified as
a phase error, however one could also argue that this is
an S2 error. Phase errors are essentially combinations of

S2, F1 and F2 errors, hence they could also be identified
as such. This ambiguity could be resolved by requiring
the input signal to be periodic for a phase error to be
possible. This change would require an extra check on
periodicity to be implemented in the algorithm.

• Currently, the algorithm treats error recognition by hu-
mans as a binary process with fixed thresholds. It is,
however, well established that human perception is a
probabilistic process best described using psychometric
functions [11]. Should such psychometric functions be
included in the algorithm, then the algorithm could in-
dicate a probabilistic chance of noticing a certain error
type, rather than producing a binary output. To do so,
research on psychometric functions for thresholds and
coherence zones for all six motion channels would have
to be combined.

• The coherence ρ2(t) and phase difference ∆φ(t) are cur-
rently determined by averaging the coherence spectrum
ρ2(s, t) and phase spectrum φ(s, t) over a fixed frequency
band. The frequency bands used in this paper were shown
to work well for the demonstration given, however they
might be less suited for other analyses.
The determination of coherence ρ2(t) and phase differ-
ence ∆φ(t) might be improved by averaging ρ2(s, t) and
φ(s, t) over frequencies at which the input and output
signal actually contain power, instead of using fixed
frequency bands. This change would prevent the drops
in high-frequency coherence ρ2

HF seen in Fig. 2d at t = 3
s and t = 6 s. These drops are caused by spread of lower-
frequency effects (see Fig. 2c). From Fig. 2b, however,
one can observe the error not to contain power at these
frequencies.

• In Fig. 2g three brief S2 errors are displayed. All are
caused by the input signal exceeding threshold level Φ
slightly earlier than the output signal, or the output signal
decreasing to below the threshold level Φ earlier than the
input. These brief errors are not expected to be noticed
by humans. An experiment assessing what the minimum
duration of an S2 or F2 error should be for it to be
noticeable would allow for removing identified errors
which are too short.

• In further experiments with the algorithm it was found
that the algorithm has most difficulty with detecting high-
frequency errors. Decreasing the amplitude of the noise
added to the output signal with 20% (to σ = 0.08) for
example results in most of region B of Fig. 2a no longer
being marked as significant. Lowering the sampling rate
had the same effect on the algorithm’s output.
This finding is explained by the wavelet normaliza-
tion used by Torrence & Compo [26], who multiply
all wavelet values with

√
2πs
∆t to ensure unit energy.

This normalization causes (5) to produce low values
for W (s, t) for small s (high frequencies) and lower
sampling frequencies. This wavelet normalization has
been disputed [40], however the significance test of [26]
used in this paper is based on normalized wavelets. Fur-
ther research into significance testing for non-normalized
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wavelets might thus improve the performance of the algo-
rithm for high-frequency signals and for signals sampled
at a lower rate.

• In this paper, the algorithm was used in an offline fashion,
i.e., the entire time history of the input and output are
known. For driving experiments, however, online MCAs
are required and the future driver input is unknown. An
online implementation of the algorithm would pose two
challenges: the available computation time and the lack
of future input and output values.
Currently, the wavelet transform and coherence com-
putations performed for each motion channel require
large computation times. To reduce computation times
the signals could be downsampled and/or less scales
could be used (in case the previous point is addressed).
Both options, however, would reduce the time/frequency
resolution of the analysis. Further reductions in compu-
tation times could be achieved by replacing the wavelet
transform with a less computationally expensive analysis
method, e.g., the Windowed Fourier Transform using
a short window. This would, however, limit the lowest
frequency that can be analyzed.
Additionally, (5) and (6) are non-causal, as they make use
of values of f(t) for t > t1 when computing W (t1, s).
In case of online simulation, these values are unknown.
Predictive filters would thus be required to estimate future
input and output values.

V. METHODS

In order to tune the parameters PRmin, PRmax and ρ2
LF,min,

and determine what motion cueing error types should be
distinguished by the algorithm, a between-subjects simulator
experiment was performed. During this experiment subjects
passively experienced a car drive, meaning they did not have
to operate the throttle or steering wheel. As such, they could
fully concentrate on their task, which was to continuously
rate their perceived visual-motion mismatch (PVMM) using
a rating method described by Cleij et al. [16].

A. Participants

In total 16 participants (11 male, 5 female) aged between
23 and 40 years (µ = 28.4 yrs, σ = 6.1 yrs) took part in
the experiment, all naive to the goal of the experiment. All
participants were, or had been, in possession of a driver’s
license for at least 3 years (µ = 9.3 yrs, σ = 4.6 yrs) and drove
a car 3.8 hours per week on average (σ = 4.4 hr). Simulator
experience ranged from novice (first time in a simulator, 6
subjects) to intermediate (have been in a simulator before, 6
subjects) and expert (researcher on motion cueing, 5 subjects).

B. Apparatus

The experiment was performed in the CyberMotion Sim-
ulator (CMS) of the Max Planck Institute for Biological
Cybernetics [41], [42], see Fig. 3. This eight degree-of-
freedom simulator is based on an industrial robot (Kuka
GmbH, Germany). Car inertial motion and visual images were

Fig. 3: The CyberMotion Simulator (CMS) at the Max Planck
Institute for Biological Cybernetics.

Highest PVMM 

during run

Zero 

mismatch

Fig. 4: Outside visuals shown during the experiment, showing
the reference line drawn on the road and the displayed rating
bar at the bottom in blue.

recorded using CarSim (Mechanical Simulation Corporation),
a vehicle simulation program. An impression of the visual
images shown is shown in Fig. 4. Subjects indicated their
rating by turning a rotary knob (SensoDrive GmbH, Germany),
see Fig. 5. The current rating of a subject was shown on the
vehicle dashboard, see Fig. 4.

C. Scenario and conditions

For the experiment a car drive featuring a straight line
acceleration from standstill to 50 km/h, followed by 22 90-
degree turns with a 120 m radius (separated by 150 m
straights) and a deceleration back to standstill was recorded
using CarSim. Each complete drive took 9 minutes in total.
The vehicle specific forces and rotational rates for a curve to
the left are shown in Fig. 6.

Fig. 5: Rotary knob used by subjects to indicate their PVVM.
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Fig. 6: Vehicle (black) and simulator (gray) specific forces
and rotational rates during a curve to the left, as recorded in
CarSim.

The automatic CarSim driver steered in and out of curves
relatively early and slowly. This steering behavior reduced
the lateral jerk, ensuring that the tilt-coordination roll rate
for lateral specific force simulation remained below 3 deg/s
throughout the experiment [21]. To assist subjects in judging
when the automatic driver steered, a line was drawn on the
center of the road, see Fig. 4. On straight road sections this
line aligned with the head of the subjects, in the curves the
automatic driver would deviate from this line.

For simulating this motion in the CMS a washout filter was
used. This MCA first multiplies all input by a fixed gain k
for each motion channel. Next, the high-frequency motion
(which is simulated by directly translating or rotating the
simulator cabin) is obtained by filtering the scaled input with
the following high-pass filter HHP(s):

HHP(s) =
s2

s2 + 2ζ
HP
ωnHPs+ ω2

nHP

· s

s+ ωn,2HP

(14)

In this equation s is the Laplace variable and ωnHP is the
high-pass break frequency in rad/s, with ζ

HP
the damping

ratio. ωn,2HP ensures additional input attenuation at lower
frequencies, and ensures the simulator returns to its neutral
position for constant specific force input. Sustained motion
(which was simulated using tilt-coordination) was filtered
using the following low-pass filter HLP(s):

HLP(s) =
ω2
nLP

s2 + 2ζ
LP
ωnLPs+ ω2

nLP

(15)

Again, ωnLP is the low-pass break frequency in rad/s, with ζ
LP

the damping ratio. In the baseline condition the lateral specific
force was simulated one to one through a high-pass filter, a
low-pass filter and a complementary band-pass filter which
provided commands to the simulator’s linear rail. Parameter
settings for all motion channels are summarized in Table III.
The resulting motion of the MCA is compared to the vehicle
motion in Fig. 6.

Two curves featured a one-to-one simulation of the lateral
specific force (the baseline condition), 20 curves featured a
modified lateral specific force. For most conditions, this mod-
ified lateral specific force was obtained through modifications
to the washout filter. For seven conditions (C14, C15, C17
and C19-C22), the lateral specific input force was obtained by

Highest PVMM 

during run

Zero 

mismatch

Fig. 7: Rating bar displayed to subjects.

modifying the MCA input. An overview of these conditions
is given in Table IV. All 22 curves were spread random over
each of the 6 runs used in the experiment.

D. Independent variables & Dependent measures

The specific lateral force error conditions specified in
Table IV are the independent variable of the experiment.
Conditions C1 and C2 serve as the baseline of the experiment
and allow for checking the consistency in subjects’ ratings.
Conditions C3-C8 were chosen to investigate the effect of
lateral specific force scaling on a simulator’s fidelity. The
maximum scaling factor was chosen such that the maximum
tilt-coordination roll rate was 3 deg/s.

Conditions C4, C9, C14, C16, C18, C19 and C22 were
included to study the effect of different motion cueing error
types on subjects’ perception of a simulation. Conditions C10-
C13 each feature a different minimum value of ρ2

LF(t) and thus
serve to determine a suitable value for ρ2

LF,min. Condition C15
was included to study the effect of the magnitude of an F1
error, condition C17 was included to investigate whether an F2
error with a more distorted shape increased subjects’ ratings.
Conditions C20-C22 finally were included to study the effect
of delays between input and output.

As a dependent measure the method of Continuous Rating
as introduced by Cleij et al. was used [16]. Subjects provided a
continuous indication of their PVMM through turning a rotary
knob with a range of -60 to 60 degrees (see Fig. 5). Feedback
on their current rating was displayed on their screen using
a bar as shown in Figs. 4 and 7. This indicated PVMM was
converted to a score between 0 and 100 for later analysis using:

Score =
Rating knob angle + 60

120
· 100 (16)

E. Experiment procedure

Prior to the experiment all subjects were briefed on the
experiment through an instruction form and additional verbal
explanation. Subjects were explained that the motion they
saw would not always correspond to the motion they felt
during this experiment. They were instructed to continuously
rate (by turning the rotary knob) the discrepancy between

TABLE III: Motion washout filter parameters.

Motion channel k ωnHP ζ
HP

ωn,2HP ωnLP ζ
LP

[-] [rad/s] [-] [rad/s] [rad/s] [-]

ax 0.3 1.5 1 0.8 1.4 1
ay 1 - - - - -
az 1 0.5 1 0.3 0 -

ωx 0.5 0 - 0.5 0 -
ωy 0.5 0.5 1 - 0 -
ωz 0.3 0 - 0.5 0 -
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TABLE IV: Specific lateral force conditions. Conditions
marked with ∗ were obtained through input modification rather
than washout setting modifications.

Error type Washout filter modifications
ky , ζ in [-], ωn in [rad/s]

C1 - None
C2 - None

C3 S1 Scaled with ky = 0.4
C4 S1 Scaled with ky = 0.5
C5 S1 Scaled with ky = 0.6
C6 S1 Scaled with ky = 0.8

C7 F2 Scaled with ky = 1.2
C8 F2 Scaled with ky = 1.275

C9 S2 LP-filtered using ωn = 0.6, ζ = 1 for t<10 s
C10 S2 Filtered using ωnHP = 0.5, ζ

HP
= 0.8,

ωnLP = 2.4, ζ
LP

= 1.2
C11 S2 Filtered using ωnHP = 0.5, ζ

HP
= 0.6,

ωnLP = 2.0, ζ
LP

= 1.2
C12 S2 Filtered using ωnHP = 0.55, ζ

HP
= 0.35,

ωnLP = 2.0, ζ
LP

= 1.2
C13 S2 Filtered using ωnHP = 0.5, ζ

HP
= 0.125,

ωnLP = 1.2, ζ
LP

= 1

C14∗ F1 ay(t) = ±0.6

(
e

(
t−2.5
1.2

)2
− e

(
t−17
1.6

)2)

C15∗ F1 ay(t) = ±0.85

(
e

(
t−4
2

)2
− e

(
t−15.6

2

)2)

C16 F2 LP-filtered using ωn = 0.6, ζ = 1 for t>12 s
C17∗ F2 Error of C9 added to input after t>10 s

C18 F3a Scaled with ky = 0.5 for ∆t = 0.05 s
C19∗ F3b -24dBW white noise added to input

C20∗ P Input delayed by 0.6s
C21∗ P Input delayed by 1.5s
C22∗ P Input delayed by 2.5s

the visual motion they saw and the inertial motion they felt
on a scale ranging from zero (for perfect correspondence
between visual and inertial motion) to a maximum rating (for
the biggest mismatch subjects encountered during a run), see
Fig. 7. Additionally examples of visual-inertial mismatches
were explained to subjects.

Following these instructions, subjects signed an informed
consent form and filled in a simulator sickness questionnaire
[43]. The latter form would be repeated after the experiment
to verify whether simulator sickness could have influenced
the results of this study. Two subjects reported slight sickness
effects, however, it is not believed these effects influenced the
results of the experiment so all data (n = 16) was used.

After the experiment preparations, subjects started with a
familiarization run consisting of 10 curves of condition C1.
This run served to make subjects familiar with the driving
style of the automatic CarSim driver, which steered in and
out of curves relatively slowly in order to keep the simulator
tilt coordination roll rate below 3 deg/s in all conditions [21].
Following this familiarization run, subjects were instructed to
take this run as a reference for coherent motion.

Next, subjects experienced two training runs, which featured
the full drive including the lateral specific force conditions
thought to cause the smallest and largest PVMM. During the
first training run, subjects were asked to focus on what motion
corresponded most and least to the motion they saw, allowing
them to determine the end points of their rating scale (see

Fig. 7). Following this training run, subjects were specifically
asked to describe the motion that felt worst. During the second
training run, subjects were asked to continuously provide
ratings of their PVMM on the scale developed during the
first training run. Subjects were instructed they could change
their rating scale during this second training run (should
they encounter motion that was even worse than previously
experienced), but were instructed to keep a constant rating
scale from the training onwards. After going through the
training phase of the experiment, the four experimental runs
were presented in random order.

To prevent fatigue from influencing the experiment’s results
a break outside the simulator was introduced after the first
block of four runs (consisting of the familiarization run, both
training runs and the first experimental run). Following the
break the familiarization run was repeated, followed by the
final three experimental runs. Between runs within a block,
subjects had the possibility to take a break in the stationary
simulator. In total, the experiment lasted just under two hours.

F. Hypotheses

The goal of this experiment was to tune parameters of the
motion cueing error detection algorithm and to investigate
what motion cueing errors should be distinguished. Prior to
the experiment the following hypotheses were set up:
• H1A The minimum power ratio PRmin is 0.5.

Based on research by Correia Grácio et al. [37] it is
hypothesized that subjects will indicate motion as being
too small for scaling factors lower than 0.5. To investigate
this hypothesis, conditions C3-C6 will be compared to C1
during the steady-state part of the curve.

• H1B The maximum power ratio PRmax is 1.3.
Based on research by Correia Grácio et al. [37] it is hy-
pothesized that subjects will indicate motion as being too
strong for scaling factors higher than 1.3. To investigate
this hypothesis, conditions C7-C8 will be compared to
C1 during the steady-state part of the curve.

• H1C The minimum coherence value ρ2
LF,min is 0.8.

Based on algorithm demonstration in Section IV a coher-
ence threshold of 0.8 is hypothesized. To investigate this
hypothesis, conditions C10-C13 will be compared to C1
during the steady-state part of the curve. These conditions
have a minimal coherence value ρ2

LF,min of 0.85, 0.75, 0.65
and 0.45, respectively.

• H2 All error types are rated differently.
The goal of this research was to define a breakdown of
motion cueing errors and to investigate which of these
should be distinguished in analyzing motion simulator
performance. The effect of all lateral specific force cueing
errors was assessed by analyzing the average maximum
rating given to each condition. To allow for fair com-
parison between all seven motion cueing error types, the
maximum lateral specific force error of conditions C4,
C9, C16, C18 and C22 was kept equal. Additionally con-
ditions C14 and C19 were analyzed, for these conditions
it was not possible to set the maximum error equal to
that of the other five conditions.
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VI. RESULTS

For all subjects, the continuous ratings were averaged over
their four repeated runs (one subject indicated to have mis-
understood instructions after the first run, for this subject the
final three runs were used), yielding 16 average ratings per
condition. For all analyses a significance level of α = 0.05
was used.

A. Threshold determination

Algorithm thresholds (PRmin, PRmax and ρ2
LF,min) are deter-

mined based on conditions C1, C3-C8 and C10-C13. For these
conditions the lateral specific force and the average rating of
all participants are shown in Fig. 8, together with an indication
of the spread in ratings.

From Fig. 8 one can see subjects rated the straight sections
of the trajectory as (almost) perfect. Since ratings went back
to zero between curves, it can be concluded that the ratings
for one curve do not directly influence the ratings of the next.
Fig. 8 shows downscaled conditions to be rated worse than
conditions for which ky >1. Also, ratings for C1-C6 increase
with decreasing ky from ky = 1 onwards. This finding matches
the observations made by Jamson [44] and Berger et al. [45],
who in a similar experiment (in terms of motion profile and
intensity) showed that subjects preferred one-to-one inertial
and visual motion.

Ratings for C10-C13 only differ from that of C1 at times
when an error is present, with subjects showing consistent
ratings up until t = 8 s. Interesting to note is that condition
C4 is rated far worse than condition C13, even though the
maximum error in lateral specific force is equal. Based on the
division between shape and scale errors proposed by Grant et
al. [17] and Fischer [18], one would have expected the shape
error of C13 to be rated worse than the scale error of C4.

To comment on suitable algorithm threshold values the
(average) ratings given by participants were averaged between
t = 9 s and t = 15 s, which corresponds to the part of the
curve featuring a constant lateral specific force (taking into
account the observed 1.5 s delay in subject ratings, which
matches the delay found by Cleij et al. [14]). The distribution
of these values is shown in Fig. 9 for conditions C1-C8 and
C10-C13.

A first observation from Fig. 9 is that both repetitions of
the unmodified lateral specific force condition (C1 and C2, see
Table IV) are not rated as perfect. This indicates that subjects
used real car driving as their reference. As such, subjects will
have rated the filtered yaw rate (see Fig. 6) or the false roll
rates (see Fig. 10). Based on comments made by subjects it is
most likely that subjects rated false roll angles, with the roll
angles of around 10◦ exceeding the somatosensory threshold
of 9◦ found by Bringoux et al. [46].

Fig. 9 also shows that the ratings for C1 and C2 are very
similar. For this reason, only C1 is used for comparison.
Non-parametric tests are run since not all data are normally
distributed and there is no homogeneity of variances. A
Friedman test performed on this data showed a significant
effect (χ2(10) = 73, p <0.001) over the eleven conditions.

Ten Sidak-corrected post-hoc Wilcoxon signed-rank tests
were performed to compare conditions C3-C13 to C1, at a
corrected significance level of p <0.0051. At this significance
level conditions C3-C5 (Z <-3.464, p <0.001), C12 (Z = -
3.103, p = 0.002) and C13 (Z = -3.258, p = 0.001) were found
to differ significantly from condition C1.

Based on these results hypothesis H1A (PRmin = 0.6)
is rejected, instead it is concluded that a value of 0.7 is
more suitable. Hypothesis H1B (PRmax = 1.3) is rejected nor
confirmed, as none of the two gains larger than unity were
rated as too strong.

Based on the comparison of conditions C10-C13 with C1,
hypothesis H1C (ρ2

LF,min = 0.8) is also rejected, instead a
threshold value of 0.7 was found. It should be kept in mind
that this value is only applicable in case the I/O coherence
is determined by averaging signal coherence ρ2(s, t) over the
0.05-0.5 Hz frequency range.

B. Error discrimination

In order to determine which error types are best discrim-
inated by the subjects, conditions C1, C4, C9, C14, C16,
C18, C19 and C22 were compared. All but conditions C9 and
C19 had equal maximum lateral specific force errors. Lateral
specific force traces and average ratings for these conditions
are shown in Fig. 11.

To compare these conditions, the maximum average rating
(over four runs) per subject was determined, yielding 16
datapoints per condition. The distribution of these values is
shown in Fig. 12.

Fig. 12 shows large variations in maximum ratings, es-
pecially for conditions C4 (an S1 error), C9 (an F1 error)
and C22 (a P error). This finding matches an observation
made during the training phase, during which subjects all
indicated paying attention to different signal characteristics
(scaling, timing, false roll rates, etc.). This different focus
could explain some subjects rating particular errors and others
not, explaining the increased spread in ratings. Conditions C1
and C2 are again rated consistently, indicating that the training
phase provided subjects with a well-defined baseline.

Since the distribution for conditions C1 and C2 is again
similar, only condition C1 is compared to other conditions.
The requirements for parametric testing are not met for this
data, hence again non-parametric tests are used. A Friedman
test of the data showed a significant effect (χ2(7) = 66, p
<0.001) over the eight conditions.

To determine which error types were distinguished, a fac-
torial post hoc Wilcoxon signed-rank test was performed on
these eight conditions, yielding a Sidak-corrected significance
level p <0.0018. At this significance level, all conditions not
placed together on a line in the figure below are significantly
different:

C14 - C18 - C4 - C9 - C22 - C19 - C16 - C1 

These results lead to the conclusion that F1, F3a and S1
errors should be identified separately at the very least, with
other errors not differing significantly from condition C1 in
terms of maximum rating. Due to the number of comparisons
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Fig. 8: Lateral specific force (left) and average ratings (right) for conditions C1, C3-C6, C7-C8 and C10-C13. Error bars
indicate the confidence interval µ ± 1σ.
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Fig. 9: Distribution of average ratings during the sustained part
of the curve (t = 9−15 s). * indicates a significant difference
(p <0.0051) compared to condition C1.
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Fig. 10: Roll rate ωx as experienced in the actual vehicle, com-
pared to conditions C1 and C3-C8. Initial and final mismatches
are caused by simulator washout of the previous condition.

(28), however, this conclusion is very conservative. In case no
correction factor is used (p <0.05) the results are as follows:

C14 - C18 - C4 - C9 - C22 - C19 - C16 - C1 

This comparison shows only S2 errors not to be noticed.
Based on this comparison four clusters of errors should be
identified: 1) F1 and F3a errors, 2) S1 errors, 3) S2, F3b and
P errors and 4) F2 errors.

This finding might allow for some simplification of the
algorithm, however, no cluster features error types differing
on only one aspect of Table I. A different structure of the
algorithm might better exploit this finding, however.

VII. DISCUSSION

In this paper, an algorithm capable of detecting various
types of motion cueing errors has been developed with a
view of improving motion cueing algorithms in future. The
algorithm uses wavelet analysis to detect motion cueing error
characteristics in both the time and frequency domain. A
simulator experiment was performed to determine algorithm
parameters and assess what error types are distinguished by
humans. In the experiment, subjects were asked to rate the
incongruence between visual and inertial motion during a
curve-driving maneuver. In the following, the findings from
these ratings will be discussed.

A. Threshold determination

Based on the ratings shown in Fig. 8 three parameter values
for the algorithm were determined: PRmin = 0.7, PRmax >1.3
and ρ2

LF,min = 0.7.
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Fig. 11: Lateral specific force (left) and average ratings (right) for conditions C1, C4, C9, C14, C16, C18, C19 and C22. Error
bars indicate the confidence interval µ ± 1σ.
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Fig. 12: Maximum average ratings for all motion cueing error
types.

The values for both PRmin and PRmax are slightly larger
than the values found by Correia Grácio et al. [37]. As such,
an upward shift of the coherence zone was found compared
to [37]. This finding is attributed to the fact that, unlike
in [37], subjects had been given a reference condition in
this experiment with a unity lateral specific force gain. The
influence of this reference could also explain the fact that no
significant increase in ratings is observed for the conditions
with a lateral specific force gain larger than 1.

The values found for PRmin and PRmax in this experiment
are valid for the lateral specific force in low-frequency curve
driving maneuvers. Separate research is needed to investigate
whether these parameters are still valid for higher-frequency
cornering maneuvers (e.g., driving a slalom). Also, further
experiments are needed to comment on these parameters for
longitudinal and vertical motion, as well as rotational rates. For
flight simulation, research into scaling of longitudinal motion
and rotational rates is especially important, since aircraft
usually turn in a coordinated fashion, featuring no (or very
little) lateral specific sideforce.

Since longitudinal and lateral motion are usually simulated
using the same MCA structure [1], the value found for ρ2

LF,min
might also be valid for longitudinal motion. Further research is
required to confirm this. Since vertical motion and rotational
rates are usually high-pass filtered (either directly using filters
or indirectly using a cost function), different values for ρ2

LF,min

are expected for these motion channels. Further research is
required to comment on ρ2

LF,min for these motion channels.
A final observation made from Fig. 8 is that conditions C3-

C6 are only rated worse than condition C1 after t = 4.5 s.
This finding may be explained by subjects’ delay in noticing
the scaled motion, as well as the reduced false roll rates for C3-
C6 during the curve onset, as shown in Fig. 10. For condition
C6 it could thus be that the benefits of a reduced false roll
rate during curve onset offsets the effect of the scaled-down
motion, explaining why subjects only increase their rating
from t = 10 s onwards.

B. Error discrimination

Through a comparison of different motion cueing error
types with a similar maximum lateral specific force error, four
clusters of error types were identified: 1) F1 and F3a errors,
2) S1 errors, 3) S2, F3b and P errors and 4) F2 errors.

The worst ratings for F1 and F3a errors match the observa-
tion made by Grant & Reid [19], who note that false cues are
the most detrimental to simulator fidelity. Fig. 11 shows the
maximum rating of the F3a error (C18) occurs shortly after
the disturbance. The maximum rating of the F1 error (C14),
however, occurs when no motion is present, rather than when
the motion presented is of opposite sign. This either suggests
that not perceiving any motion is even worse than perceiving
false motion (a statement contradicting the observation made
by Valente Pais et al. [38]) or shows that subjects did not
notice the motion to be of opposite sign.

S1 errors (C4), for which the coherence ρ2(t) remains
high, were rated worse than other conditions for which the
coherence dropped. This contradicts the finding by Casas et al.
[15], who concluded that input/output coherence plays a large
role in determining a subject’s perception of a simulation, and
both Grant et al. [17] and Fischer [18], who suggest it is better
to scale down motion and not distort it than to not scale down
motion but distort it.

From Fig. 11 one can conclude that S2 errors (C9) are rated
worse than F2 errors (C16), this was also shown by the post
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Fig. 13: Ratings (bottom) for the conditions featuring a de-
layed lateral specific sideforce (C20-C22). Error bars indicate
the confidence interval µ± 1σ of ratings.

hoc analysis of the maximum ratings. The low ratings of the F2
error are surprising, since Valente Pais et al. [38] found these
F2 errors at the end of curves to cause a classical washout filter
to be rejected in favour of no motion. Cleij et al. [14] (who
label S2 and F2 errors missing and false cues) also found F2
errors to be worse than S2 errors. In [38], however, 90◦ curves
of smaller radius were driven in a shorter time. In [14], the
curve onset and exit were also faster than in this study. Both
[14] and [38] therefore investigated higher-frequency motion,
which might explain the differences between the studies.

In the experiment carried out it was shown that a P error
is rated equally bad as an S2 or F3b error, however, some
caution should be exercised here. From Fig. 12 one can see
that condition C22 is almost a combination of the error parts
of C9 (an S2 error) and C16 (an F2 error), as such it is not
surprising that the rating of C22 is equal to that of C9 initially
and C16 near the end. For proper assessment of the ratings of
a phase error, a slalom (featuring a delayed sinusoidal lateral
specific force signal) should be simulated.

The ratings for all delayed conditions (C20-C22) are shown
in Fig. 13. From this figure it can be concluded that subjects
did not notice delays of at least up to 1.5 seconds, which is
significantly higher than the delay of 175 ms (of visuals w.r.t.
motion) reported by Beckers et al. [39] or the results in the
order of 100 ms reported by Chung & Schroeder [47] (both
for visuals leading the motion and vice versa). This finding
may be explained by the fact that the lateral specific force
profile used in this experiment was of very low frequency
(its effective period is 40 s, so a delay of 1.5 s represents a
13.5◦ phase delay, which is below the value of ∆φmax=16.4◦

reported by Beckers et al. [39]). Also, subjects reported having
difficulty with determining exactly when the autopilot steered
into the curve, meaning small phase differences might have
been attributed to subjects’ uncertainty in the timing of the
curve onset.

C. Future applications

The motion cueing error detection algorithm developed in
this paper can be used to improve motion cueing algorithms
in the future. Rather than evaluating a simulation as a whole,
the algorithm allows for focusing MCA tuning efforts on those
errors most detrimental to simulator fidelity. In the paper, these
were shown to be F1, F3a and S1 errors in case of curve
driving. To comment on other car maneuvers (e.g., longitudinal
motion) and flight simulation, further experiments would have
to be performed to investigate the severity of error types in
these situations.

In the specific case of a classical washout filter, this
algorithm can be combined with the tuning paradigm of
[12] to form a two-step tuning process, in which errors are
first detected and then resolved. Should tuning paradigms be
available for other MCA types, then the algorithm can be
combined with these too. In this way, a step can be taken
to optimizing MCAs, taking into account both motion cueing
error magnitude error type.

VIII. CONCLUSION

In this paper an algorithm capable of detecting seven
different motion cueing error types from a motion simulation’s
input and output signal was developed. This algorithm satisfies
the need for objective motion cueing error detection (without
assuming knowledge of the motion cueing algorithm used) and
can be used to gain further insight into what motion charac-
teristics are most important for simulator motion perception.
Using wavelet analysis, five error characteristics (frequency,
duration, scaling, coherence and phase difference) are analyzed
in order to successfully distinguish between error types. The
algorithm was tuned through a simulator experiment, showing
that the lateral specific force during curve driving can be scaled
down to 70% or scaled up to at least 130% without subjects
reporting this. A threshold of 0.7 was also determined for
input/output signal coherence. Finally, the need for error type
recognition has been demonstrated by showing that different
motion cueing error types of equal maximum error magnitude
are rated differently. The algorithm developed in this paper
allows MCA tuning efforts to be focused on parts of a
simulation that are the most detrimental to simulator fidelity,
allowing for motion cueing improvements in the future.
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Tübingen, Germany, Sep. 16-18, 2015. Max Planck Institute, 2015.

[17] P. Grant, M. Blommer, B. Artz, and J. Greenberg, “Analysing classes
of motion drive algorithms based on paired comparison techniques,”
in Proceedings of the Driving Simulation Conference (DSC) North
America, Dearborn, USA, Oct. 8-10, 2003. University of Toronto &
Ford Motor Company, 2003.

[18] M. Fischer, “Motion-cueing-algorithmen für eine realitätsnahe bewe-
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APPENDIX A
WAVELET FAMILIES & PARAMETERS

Wavelet analysis can be carried out using various wavelet
families, all satisfying the requirements of (3) and (4). Several
overviews of these families already exist, see for example
[48]–[50]. These overviews, however, do not comment on
the effects of changes to wavelet parameters. An overview
including these influences is discussed here.

Wavelet families can be broken down along two axes: they
are either time- or frequency-based and are either real or
complex. Frequency-based wavelets offer the advantage of
faster computation through (6), however, there is less variation
between different wavelet families than there is between time-
based wavelet families. For the first reason, only frequency-
based wavelets are discussed by Torrence & Compo [26].

In contrast to real wavelets, the inner product of complex
wavelets with a harmonic function (as computed in (5))
is never zero. This means that complex wavelets produce
continuous non-zero output over time for such a function,
whereas a convolution with a real wavelet oscillates, producing
an inner product of zero in the process. Real-valued wavelets
therefore can not indicate signal power continuously.

An overview of common wavelets is given in Table V. Time
descriptions of the mother wavelet (not including the scale
factor s) are given, these are also shown in Fig. 14. Frequency
descriptions (if known) are given too, again for an unscaled
mother wavelet.

For wavelet families for which this was possible, a mod-
ulating (or bounding) function in time has been given. This
function will be used for smoothing in time when determining
wavelet coherence, as explained in Appendix C. Finally,
Table V also indicates the effects of parameter changes to
a wavelet’s frequency resolution (FR, a wavelet’s ability to
distinguish signal properties in the frequency domain) and
time resolution (TR, a wavelet’s ability to distinguish signal
properties in the time domain). Note that these changes are
mostly modest compared to switching wavelet family. Of the
wavelets listed, the Haar and Daubechies wavelets provide
good TR but poor FR (due to their limited width in time and
non-smooth behavior). The Shannon and Frequency B-Spline
wavelet offer the best FR of the wavelets listed here, due to
their large width in the time domain and compact support in
the frequency domain. All other wavelet families offer a trade-
off between TR and FR.

APPENDIX B
WAVELET POST-PROCESSING

Due to wavelets’ limited time and frequency resolution,
wavelet spectra are typically characterized by power spread.
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Fig. 14: Real (solid) and imaginary (dashed) parts of the
mother wavelets of ten wavelet families. From left to right, top
to bottom: The time-based complex Morlet wavelet (fb = 2, fc
= 1 Hz), Gaussian wavelet (n = 4), complex Gaussian wavelet
(n = 4), Shannon wavelet (fb = 1 Hz, fc = 0.8 Hz), Frequency
B-Spline wavelet (fb = 1 Hz, fc = 0.8 Hz, M = 2), Haar
wavelet and Daubechies wavelets, followed by the frequency-
based Morlet wavelet (ω0 = 6 rad/s), Paul wavelet (m = 4)
and Derivative of a Gaussian wavelet (n = 4). Modulating
functions are shown if available.

Two ways of dealing with this spread are discussed in this
section, that is, dealing with edge effects and significance
testing.

A. Edge effects

The inner product of a wavelet centered at time t1 and
a function f(t) is based on values of f(t) on the interval
[t1 − tinf, t1 + tinf], where tinf denotes the time it takes the
wavelet to decay to 0. If t1 is less than tinf away from the
edge of the domain of f(t), then the inner product is computed
based either on values outside of the domain (assumed zero),
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TABLE V: Time description, frequency description, modulating function and parameter effects for time- and frequency-based
mother wavelets. Constants C ensure unit energy. FR denotes Frequency Resolution, TR denotes Time Resolution, DOG
denotes Derivative of a Gaussian. H(ω) indicates the Heaviside step function. Details taken from [26], [48], [51].

Wavelet Function in time Function in frequency Modulating wave Parameter effects

Time-based wavelets
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(πfb)

· e2πifct · e−
t2

fb ΨM (ω) = e−π
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2
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Frequency-based wavelets
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or based on a repeated version of f(t) outside the domain.
Both methods introduce errors in the WT and, as such, WT
values near the edge of the domain of f(t) should be treated
with care.

Torrence & Compo name this region in which care should
be taken the Cone of Influence (COI), defining it as “the
e-folding time for the autocorrelation of wavelet power
(|W (s, t)|2) at each scale” [26], which is equal to “the area
in which the wavelet power caused by a discontinuity at the
edge has dropped to e−2 of the value at the edge” [33].

Two problems exist with this definition. Firstly, it does not
hold for real symmetric wavelets, such as the derivative of a
Gaussian (DOG) wavelets with even order n, since the inner
product of a step function at t = 0 s and such a wavelet
centered at t = 0 s is zero. Secondly, it can be shown that
varying m for a Paul wavelet changes the COI, the expression
in [26], however, is independent of m.

Torrence & Compo [26] provide expressions for the COI
width as a function of scale only for frequency-based wavelets.
In this paper an extended method suitable for all wavelet
families is presented, based on a wavelet’s distribution of
energy. Since (4) holds for all wavelets, wavelet energy allows
for a natural way of determining on what interval a wavelet
contains most of its energy. By checking whether the function
f(t) is defined on this interval, a Cone of Influence can be
determined.

First, the two time points between which 95% of wavelet
energy is contained (recall that total wavelet energy is 1 as per
(3)) are determined and are designated t0.025 and t0.975. Next
the influence time tinf of the wavelet is determined using:

tinf =
t0.975 − t0.025

2
(17)
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Fig. 15: Comparison of the influence time tinf found by
Torrence & Compo (dotted lines) and the methodology of this
paper (solid lines), for the frequency-based complex Morlet
wavelet with ω0 = 4 rad/s (black) and Paul wavelet with m =
4 (gray).

The inner product domain then becomes [t1 − tinf, t1 + tinf].
If the function f(t) is defined on this entire interval the
wavelet transform W (s, t1) is valid, if not then W (s, t1) is
designated part of the COI. Using this approach produces
results very similar to the

√
2s and s/

√
2 values for tinf

found by Torrence & Compo [26] for the frequency-based
complex Morlet and Paul wavelets respectively (see Fig. 15).
The approach presented here can be extended to any wavelet.

B. Significance testing

In order to discriminate between parts of the WT containing
genuine power and parts of the WT influenced by signal
spread, Torrence & Compo [26] propose a significance check
on the wavelet spectrum. The null hypothesis of this check is
that the analyzed signal originates from a white or red noise
process, with a data point xn in this noise given by:

xn = αxn−1 + zn (18)
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In (18), α is the lag-1 autocorrelation coefficient, which for
simulator signals is near 1 since the next data point is the
sum of the previous and some small change. For this reason
α is set to 0.9. The noise input zn is white noise. For a red
noise signal the normalized Fourier power spectrum is given
by [52]:

P k =
σ2(1− α2)

1 + α2 − 2α cos(2πk/N)
(19)

In this equation, σ2 is the variance of the signal f(t) which
was wavelet transformed, and k is the frequency index used
in the Fast Fourier Transform of the input signal, with N
the total number of data points. A piece of the WT spectrum
is significant in case the WT power (|W (s, t)|2) in a time-
slice of this WT is significantly larger than this background
spectrum. The reader is referred to Torrence & Compo [26]
for a discussion showing that this confidence value can be
obtained from a χ2-distribution with either two Degrees of
Freedom (DoF) (for complex wavelets) or one DoF (for real
wavelets). As a result, WT-spectra regions are significant in
case (ndf denotes the number of DoFs):

|W (s, t)|2 ≥
χ2
ndf

(0.95)

ndf
· P (20)

APPENDIX C
WAVELET COHERENCE EXTENSION

Determination of the coherence between two signals based
on wavelet analysis is done using (8), (10) and (11). Grinsted,
Moore and Jevrejeva describe S(·) in (10) and (11) as a
smoothing function in both time and frequency [33]. In [33] an
expression for S(·) is only available for the frequency-based
Morlet wavelet. In this appendix, an extension is made to all
wavelet families.

According to [34], the smoothing in time for a (frequency-
based) Morlet wavelet is done by applying a filter e

−t2
2s2 to

the wavelet spectrum W (s, t). The latter expression is the
modulating function m(t/s) of the Morlet wavelet for scale s
= 1, see Table V. This means that smoothing in time is done by
convoluting W (s, t) with the (absolute) modulating function of
the wavelet used to determine W (s, t). To extend the method
of [33] to all wavelets, further modulating functions m(t/s)
of wavelet families have been given in Table V. It should be
noted that the constants C, which ensure unit wavelet energy,
drop out of (10) and (11) and can thus be omitted.

Alternatively, one can multiply W (s, t) with the Fourier
Transform of the (absolute) modulating function (if available)
for faster computation. For the time-based complex Morlet
wavelet this modulating wave M(sω) is Ce−fb(sω)2/4, for
the Gaussian, complex Gaussian and frequency-based Morlet
wavelet this is Ce−(sω)2/2.

For wavelet families for which only a time-description of
|m(t/s)| is known (or for which no modulating function is
available) the wavelet spectrum W (s, t) is convoluted with
|m(t/s)|, if available, or otherwise |ψ(t/s)|, with ψ(t/s) de-
noting the wavelet time description including wavelet scaling.

According to [34], smoothing in frequency is done by using
a moving average filter over all frequencies. For this paper this

approach was copied. A moving average filter measuring four
scales (and hence frequencies) wide was used.

APPENDIX D

LIST OF SYMBOLS

Greek Symbols
α Significance level [-]
α Lag-1 red noise autocorrelation coefficient [-]
∆ Difference operator
ζ Damping ratio [-]
µ Average
ρ2 (Wavelet) Coherence [-]
σ Signal standard deviation
τ Time shift of a wavelet [s]
Φ Perceptual threshold for acceleration or rotation
φ Signal phase (difference) [deg]
Ψ Fourier transform of wavelet function
ψ Analyzing function
ψ (Daughter) Wavelet function
ω Rotational rate [deg/s]
ω Frequency [rad/s]
ω0 Complex Morlet wavelet frequency at a scale of 1

[rad/s]
Roman Symbols

a Specific force [m/s2]
C Constant
E Wavelet energy
F Fourier transform operator
F Fourier transform of time signal f
f Time signal
fb Complex morlet, Shannon and Frequency B-spline

modulating wave decay parameter [-]
fc Complex morlet, Shannon and Frequency B-spline

wavelet carrier wave frequency parameter [Hz]
H Heaviside step function
H Transfer function
i Unit imaginary number
k Simulator input scaling factor [-]
k Frequency index
M Modulating function Fourier transform
M Sinc-function power for the Frequency B-spline

wavelet
m Modulating function
m Paul wavelet parameter
N Total number of data points [-]
n Daubechies wavelet number
n Derivative order for a (complex) Gaussian wavelet
n Number of
P Fourier power spectrum
PR Power Ratio
p p-value of statistical test
S Scaling function in time and frequency
S Power spectral density
s Scale factor of a daughter wavelet [-]
s Laplace variable
t Time [s]
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W Wavelet transform
x Time signal
Z Standard score of statistical test
z White noise signal

Subscripts
df Degree(s) of freedom
HP High-pass
inf Influence
lim Limit
LP Low-pass
max Maximum value
min Minimum value
M Mother
n Natural
n Index number
X Signal X
x Longitudinal direction
Y Signal Y
y Lateral direction
z Vertical direction
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Appendix A

Experiment Instructions

Prior to the simulator experiment, subjects were instructed both through an instruction form
and through verbal explanation. The instruction form can be found on the next three pages.
Subjects first read through this instruction form and were given additional verbal explanation
afterwards. During the verbal instruction, the following points were emphasised:

• Subjects were told that during the experiment, the motion they felt would not al-
ways correspond to the motion they saw. Subjects were reassured that, should these
mismatches cause severe sickness symptoms, subjects were free to end the experiment
whenever they wished to.

• Subjects were explained that they would experience a passive car drive, meaning an
automatic driver would steer the vehicle. Subjects were told that the driving style of this
automatic driver might differ from their own, and that for this reason a familiarisation
run (without rating) would be run first.

• Subjects were instructed that this familiarisation run would serve as a reference, and
that all changes in motion felt thereafter could be attributed to the experimenter (and
not to changes in road conditions, weather conditions, etc.).

• Subjects were explained the rating scale during the experiment, and were explained the
purpose of the two training runs. These were:

– In the first run, subjects were instructed to focus on what parts of the drive felt
best (this would define their minimum rating) and what part felt worst (this would
define their maximum rating). Subjects were told that after this run, they would
be asked to describe the worst motion they experienced.

– In the second run, subjects would practise assigning ratings to their perceived
visual-motion mismatch on the scale developed in the first run.

– Subjects were told they could change their rating scale during the second training
run, should they encounter motion that felt worse than any motion of training

Simulator motion cueing error detection using a wavelet-based algorithm Tim van Leeuwen
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run 1. This, however, was not to be expected, since both runs featured identical
motion. Subjects were also instructed not to change their rating scale once the
training phase had ended.

Subjects were asked to briefly comment on each condition during the training runs,
such that the experimenter could assess whether they were paying attention to the
correct features (i.e., to check whether they rated the motion, rather than for example
the quality of the visual images or the driving style of the driver). This request was
dropped prior to the first experiment run.

• Subjects were instructed to always provide a rating for a feature they felt, even if
realising something was wrong had taken multiple seconds (i.e., a delayed rating was
preferred over no rating).

Tim van Leeuwen Simulator motion cueing error detection using a wavelet-based algorithm



  

 

Experiment instructions 

 
Aim of the experiment 
The goal of this experiment is to investigate the performance of different settings of the CyberMotion 

Simulator during curve driving. We will do so by asking you how well the inertial motion presented by 

the CyberMotion Simulator feels compared to what you are seeing. 

 

Your task in this session 
You are sitting in a virtual car and will experience four ten-minute driving scenarios, in which your car 

first accelerates from 0 to 50 kilometres an hour, then drives through 22 90⁰ curves (either left-hand 

or right-hand) and comes to a standstill afterwards. Each drive will take around ten minutes.  

 

In order to ensure you can fully concentrate on the inertial motion you feel and the visual motion you 

see you do not have to drive or steer the car yourself, instead the car is driven automatically. The 

autopilot of the vehicle has been set such that the distance travelled is minimised, as a result the car 

drives along the inner curve in each corner. In order to do so the autopilot ‘steers into’ the corner 

earlier than you might do when driving yourself. In the absence of a steering wheel (which would 

indicate the autopilot starting a turn), a line has been drawn on the road to use as a lateral reference. 

 

An illustration of your vehicle and the typical view in a curve are shown below.  

Figure 1 Your car and the surrounding landscape     Figure 2 View of the track (car interior not shown) 

 

As a result of the different experiment conditions the motion you feel might not always fully 

correspond to what you see. You will be asked to rate this incoherence between the simulator motion 

and the visual images (taking the latter as reference) during each run. You can indicate the incoherence 

between motion and visuals at that moment by turning a knob placed in the cabin with your right hand. 

The current rating value of this knob is indicated on your screen through a blue rating bar. An 

illustration of this rating bar is shown below. 

 

 

 

Figure 3 - Illustration of your rating scale during the experiment 

Worst you’ve felt during the run Best you’ve felt during the run 



  

 

 

There are various reasons which might lead you to rate motion as being incoherent, reasons include 

(but are not limited to, anything which doesn’t feel ‘right’ for you should be rated): 

 The motion presented feels too weak compared to the visuals, or feels too strong 

 The direction of the motion you feel is wrong compared to the visuals 

 The motion is presented too late compared to the visuals, or too early 

 You feel motion, but you weren’t expecting any based on the visuals 

 You don’t feel motion when you were expecting motion based on the visuals 

 

Please indicate motion which feels coherent (i.e. as you would expect) by turning the knob to the 

left/CCW (so all blue dots in the previous figure disappear), and indicate motion which feels highly 

incoherent with what you are seeing by turning the knob to the right/CW (fully filling the bar with blue 

dots). A rating of zero (maximally CCW) indicates perfect coherence, a maximum rating indicates the 

worst motion you have encountered throughout the trial. Before starting a trial, turn the knob fully 

CCW (to zero). 

 

Training / calibration 
Since the driving behaviour of the autopilot might be different than your driving behaviour in a car, 
you are first presented a short drive (ten corners) where the simulator moves exactly with the 
simulated car. During this trial you are asked to fully focus on what the motion feels like to become 
familiar with the way the autopilot performs the drive. 
 

In order to calibrate your rating scale and get used to providing continuous ratings, you will then go 

through two training trials. Each training trial features (amongst others) the (presumed) best and worst 

setting/condition tested in the experiment, allowing you to ‘calibrate’ your internal rating scale. That 

means that after the training phase you should be able to distinguish your perceived ‘best’ motion and 

rate it with a zero score, and perceive your ‘worst’ motion and rate it with a maximum score. 

Each trial will be initiated by the experiment operator after you’ve indicated that you are ready for the 

next trial. Before each trial you will be repositioned to the starting point for the next trial. This process 

may take several seconds.  

Experiment 

During the experiment you are asked to rate the perceived incoherence between inertial and visual 

motion through four car drives. Rate this incoherence using the scale you developed during the training 

phase. Hence continuously ask yourself ‘does this motion feel right’ and provide a rating to the degree 

to which it feels incoherent, on the scale illustrated below. Rate everything you feel and always provide 

a rating for something you felt, even if your rating might be a little late (a late rating is better than no 

rating). 

 

 

Figure 4 - Illustration of your rating scale during the experiment (repeated) 

Worst you’ve felt during the run Best you’ve felt during the run 



  

 

During the experiment some conditions are repeated multiple times, and the differences between 
conditions may be small. Therefore, you should not necessarily expect to perceive a difference in 
incoherence between each turn, and just rate the incoherence as you perceive it. 
  
Break & Timing  
Between each car manoeuvre you can take a small break in the simulator if desired, after three out of 

six trials (including training) a break outside the simulator can be taken. If you need more breaks just 

let the experimenter know. Following a break outside the simulator the short run of ten autopilot 

corners is played again to remind you of the driving behaviour of this autopilot. 

 

The experiment lasts just over two hours in total. 

 

 

 

Important 
When giving your response: 

 Always use the motion you saw (the visual scene) as a reference 

 Don’t think too much about it, respond quickly. We are only interested in your impression 

 Rate all incoherent features, even if your rating is a little late 

 Try to use consistent ratings after the training phase, for the duration of the experiment 

For your comfort and safety 
If at any time during the study you start feeling bad and/or tired and/or wish to have a break, please 
communicate to the researchers so that the experiment can be paused or stopped. Note that 
stopping is possible at all times, your participation in this experiment is completely voluntary. 



34 Experiment Instructions

Tim van Leeuwen Simulator motion cueing error detection using a wavelet-based algorithm



Appendix B

Participants & Informed consent

Prior to entering the CyberMotion Simulator and starting the experiment, subjects were
asked to sign an informed consent form. In this form, subjects indicated to:

1. Be aware of their voluntary participation in the experiment.

2. Have been explained the risks involved in using the CyberMotion Simulator.

3. Have been explained the safety features and emergency procedures of the CyberMotion
Simulator.

4. Be aware that their data is stored and that their anonymity is protected.

Additionally, subjects indicated on the form their:

1. Age

2. Number of years they’d owned a car driving license for

3. Average number of car driving hours per week

This produced the data summarised in table B-1.
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Table B-1: Self-reported data of the participants who took part in the experiment described in
the IEEE paper.

Participant Gender Age Driver’s license Car driving
[Years] [Years] [Hours/week]

1 M 28 9 6
2 M 23 5 12
3 M 24 6 15
4 F 26 7 2
5 M 31 10 0
6 F 21 5 0
7 M 37 11 2
8 F 40 15 0
9 M 27 8 1
10 M 21 3 5
11 F 25 8 4
12 F 26 9 1.5
13 M 28 9 0
14 M 25 7 6
15 M 40 22 4
16 M 33 14 2
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Appendix C

Experimental order

In the experiment carried out, subjects rated the perceived visual-motion mismatch during
four experimental runs. Prior to the experiment, two training runs were simulated to enable
subjects to get familiar with the experienced conditions. In this appendix, the experimental
order is elaborated on. Details of all runs used in the experiment are given in section C-1,
the experiment matrix used in this experiment is given in section C-2.

C-1 Order of conditions

In this experiment six runs were used (two training runs, four experiment runs) in addition
to a shorter familiarisation run. Each training/experiment run consisted of 22 90-degree
corners with a radius of 120m, with 150m straight sections in between each corner. Each
corner featured a different lateral specific force condition, for completeness all conditions are
repeated in table C-1:

An overview of the distribution of conditions over the runs is shown in table C-2. Further
explanation is given below:

Familiarisation - The familiarisation run consisted of ten curves, each with condition C1.

Training - For the training runs, a selection was made of motion conditions thought to
result in the smallest perceived visual-motion mismatches (C1 (2x), C2 (2x), C6, C10
and C20). Also, conditions thought to result in the biggest perceived-visual-motion
mismatches (C9, C14, C15, C16, C18 (2x), C19 and C22 (2x)) were selected. Finally,
some medium-severity errors were included (C3(2x), C8 (2x), C13 (2x)). These three
groups of severity would allow a subject to determine his/her minimum and maximum
perceived visual-motion mismatch. Also, it allowed for practising giving a rating on this
scale. It was ensured all types of motion cueing error were present during training.

Experiment - During the four experiment runs, each condition featured twice in a left-
handed turn and twice in a right-handed turn. Also, the conditions were spread out
over all four runs as much as possible.
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Table C-1: Specific lateral force conditions used in the experiment.

Condition Error type Washout filter modifications
ky, ζ in [-], ωn in [rad/s]

C1 - None
C2 - None

C3 S1 Scaled with ky = 0.4
C4 S1 Scaled with ky = 0.5
C5 S1 Scaled with ky = 0.6
C6 S1 Scaled with ky = 0.8

C7 F2 Scaled with ky = 1.2
C8 F2 Scaled with ky = 1.275

C9 S2 LP-filtered using ωn = 0.6, ζ = 1 for t <10 s
C10 S2 Filtered using ωnHP = 0.5, ζHP = 0.8,

ωnLP = 2.4, ζLP = 1.2
C11 S2 Filtered using ωnHP = 0.5, ζHP = 0.6,

ωnLP = 2.0, ζLP = 1.2
C12 S2 Filtered using ωnHP = 0.55, ζHP = 0.35,

ωnLP = 2.0, ζLP = 1.2
C13 S2 Filtered using ωnHP = 0.5, ζHP = 0.125,

ωnLP = 1.2, ζLP = 1

C14 F1 ay(t) = ±0.6
(
e(

t−2.5
1.2 )

2

− e( t−17
1.6 )

2)

C15 F1 ay(t) = ±0.85
(
e(

t−4
2 )

2

− e( t−15.6
2 )

2)

C16 F2 LP-filtered using ωn = 0.6, ζ = 1 for t >12 s
C17 F2 Error of C9 added to input after t >10 s

C18 F3a Scaled with ky = 0.5 for ∆t = 0.05 s
C19 F3b -24dBW white noise added to input

C20 P Input delayed by 0.6s
C21 P Input delayed by 1.5s
C22 P Input delayed by 2.5s

Tim van Leeuwen Simulator motion cueing error detection using a wavelet-based algorithm
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C-2 Experiment matrix

The two training runs and four experimental runs presented in the previous section were
presented to the subjects in random order. During the experiment, the experiment matrix
shown in table C-3 was used.

Between the two blocks of the experiment (which each lasted around 35 minutes) a break
outside the simulator was taken. Subjects were instructed to let the experimenter know when
they felt comfortable to continue again, this usually was after around 10-15 minutes. In
between runs within a block, subjects were given the opportunity to take a short break in the
(stationary) simulator.

Table C-3: Experiment matrix used during the experiment.

Participant Block 1 Block 2
Run 1 Run 2 Run 3 Run 4 Break Run 1 Run 2 Run 3 Run 4

1 F T2 T1 E4 F E1 E2 E3

2 F T1 T2 E1 F E2 E4 E3

3 F T2 T1 E3 F E4 E2 E1

4 F T2 T1 E3 F E2 E4 E1

5 F T2 T1 E2 F E3 E1 E4

6 F T2 T1 E3 F E4 E1 E2

7 F T1 T2 E2 F E1 E3 E4

8 F T2 T1 E1 F E2 E3 E4

9 F T1 T2 E1 F E3 E4 E2

10 F T2 T1 E4 F E2 E1 E3

11 F T1 T2 E4 F E1 E3 E2

12 F T1 T2 E4 F E2 E3 E1

13 F T1 T2 E2 F E1 E4 E3

14 F T1 T2 E2 F E4 E3 E1

15 F T2 T1 E2 F E3 E1 E4

16 F T2 T1 E2 F E3 E4 E1
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Sickness Scores

Both prior to and after the experiment, subjects were asked to fill in a simulator sickness
scoring form introduced by Kennedy et al. (Kennedy, Lane, Berbaum & Lilienthal, 1993).
The total simulator sickness scores before and after the experiment are shown in table D-1.

From table D-1 one can observe participants 8, 9, 10 and 15 to have experienced an increase
larger than 50 points. These subjects all indicated to have provided ratings continuously,
despite their simulator sickness effects. Inspecting the individual ratings of these four subjects
showed no ratings to seem abnormal, for this reason data from these subjects was retained.

Table D-1: Total simulator sickness scores, before and after the experiment.

Participant Total score Total score
Pre-experiment Post-experiment

1 7.5 18.7
2 15.0 11.2
3 11.2 33.7
4 0.0 11.2
5 3.7 7.5
6 18.7 48.6
7 22.4 44.9
8 0.0 93.5
9 0.0 71.1
10 3.7 56.1
11 33.4 44.9
12 37.4 48.6
13 7.5 37.4
14 29.9 37.4
15 22.4 97.2
16 7.5 15.0
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Appendix E

IMU Measurements

To validate the motion presented by the Cybermotion Simulator (CMS), IMU measurements
were taken of the inertial motion of the CMS. A description of the apparatus used is given
in section E-1, measurement results are shown in section E-2. The IMU measurements are
discussed in section E-3.

E-1 Apparatus

An inertial measurement unit (Stim300, Sensonor AS, Norway) was placed in the cabin of
the CMS. This IMU was positioned 20 centimetres below the eye height of a subject, some 20
centimetres behind the head of a subject and 30 centimetres to the right of a subject’s head.
Due to the low tilt rates presented in this simulation (<3 deg/s) the IMU should present a
reasonably accurate estimation of the inertial motion experienced by subjects, even though
it was mounted some distance away from a subject’s head.

The IMU has a sampling rate of 250 Hz. To synchronise the IMU clock with the CMS clock,
the IMU clock time was sent to a CMS log file at the start of each run.

E-2 Measurement results

The IMU measurements for all 22 conditions are shown in figures E-1 through E-22. Data
collected for left- and right-handed curves has been merged, by changing the sign of the lateral
specific force ay, roll rate ωx and yaw rate ωz for all right-handed curves. The confidence
interval shown is based on between 23 and 35 samples, since not all IMU measurements were
successful.
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Figure E-1: Comparison between the inertial motion experienced in the real vehicle during a left-
hand turn (shown in yellow), the inertial motion simulated by the MCA (blue) and the inertial motion
experienced by subjects in the CyberMotion Simulator (green) in condition C1. Data of the CMS
inertial motion was obtained using an IMU. IMU-data for right-hand curves has been switched sign
for ay, ωx and ωz.
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Figure E-2: Comparison between the inertial motion experienced in the real vehicle during a left-
hand turn (shown in yellow), the inertial motion simulated by the MCA (blue) and the inertial motion
experienced by subjects in the CyberMotion Simulator (green) in condition C2. Data of the CMS
inertial motion was obtained using an IMU. IMU-data for right-hand curves has been switched sign
for ay, ωx and ωz.
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Figure E-3: Comparison between the inertial motion experienced in the real vehicle during a left-
hand turn (shown in yellow), the inertial motion simulated by the MCA (blue) and the inertial motion
experienced by subjects in the CyberMotion Simulator (green) in condition C3. Data of the CMS
inertial motion was obtained using an IMU. IMU-data for right-hand curves has been switched sign
for ay, ωx and ωz.
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(a) Longitudinal specific force ax.
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Figure E-4: Comparison between the inertial motion experienced in the real vehicle during a left-
hand turn (shown in yellow), the inertial motion simulated by the MCA (blue) and the inertial motion
experienced by subjects in the CyberMotion Simulator (green) in condition C4. Data of the CMS
inertial motion was obtained using an IMU. IMU-data for right-hand curves has been switched sign
for ay, ωx and ωz.

Simulator motion cueing error detection using a wavelet-based algorithm Tim van Leeuwen



48 IMU Measurements

0 5 10 15 20

Time [s]

-0.5

0

0.5

1

1.5

a
x
[m

/s
2
]

Vehicle
MCA output
IMU average
µIMU ± σIMU
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Figure E-5: Comparison between the inertial motion experienced in the real vehicle during a left-
hand turn (shown in yellow), the inertial motion simulated by the MCA (blue) and the inertial motion
experienced by subjects in the CyberMotion Simulator (green) in condition C5. Data of the CMS
inertial motion was obtained using an IMU. IMU-data for right-hand curves has been switched sign
for ay, ωx and ωz.
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Figure E-6: Comparison between the inertial motion experienced in the real vehicle during a left-
hand turn (shown in yellow), the inertial motion simulated by the MCA (blue) and the inertial motion
experienced by subjects in the CyberMotion Simulator (green) in condition C6. Data of the CMS
inertial motion was obtained using an IMU. IMU-data for right-hand curves has been switched sign
for ay, ωx and ωz.
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Figure E-7: Comparison between the inertial motion experienced in the real vehicle during a left-
hand turn (shown in yellow), the inertial motion simulated by the MCA (blue) and the inertial motion
experienced by subjects in the CyberMotion Simulator (green) in condition C7. Data of the CMS
inertial motion was obtained using an IMU. IMU-data for right-hand curves has been switched sign
for ay, ωx and ωz.
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Figure E-8: Comparison between the inertial motion experienced in the real vehicle during a left-
hand turn (shown in yellow), the inertial motion simulated by the MCA (blue) and the inertial motion
experienced by subjects in the CyberMotion Simulator (green) in condition C8. Data of the CMS
inertial motion was obtained using an IMU. IMU-data for right-hand curves has been switched sign
for ay, ωx and ωz.
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Figure E-9: Comparison between the inertial motion experienced in the real vehicle during a left-
hand turn (shown in yellow), the inertial motion simulated by the MCA (blue) and the inertial motion
experienced by subjects in the CyberMotion Simulator (green) in condition C9. Data of the CMS
inertial motion was obtained using an IMU. IMU-data for right-hand curves has been switched sign
for ay, ωx and ωz.
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Figure E-10: Comparison between the inertial motion experienced in the real vehicle during a left-
hand turn (shown in yellow), the inertial motion simulated by the MCA (blue) and the inertial motion
experienced by subjects in the CyberMotion Simulator (green) in condition C10. Data of the CMS
inertial motion was obtained using an IMU. IMU-data for right-hand curves has been switched sign
for ay, ωx and ωz.
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Figure E-11: Comparison between the inertial motion experienced in the real vehicle during a left-
hand turn (shown in yellow), the inertial motion simulated by the MCA (blue) and the inertial motion
experienced by subjects in the CyberMotion Simulator (green) in condition C11. Data of the CMS
inertial motion was obtained using an IMU. IMU-data for right-hand curves has been switched sign
for ay, ωx and ωz.
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Figure E-12: Comparison between the inertial motion experienced in the real vehicle during a left-
hand turn (shown in yellow), the inertial motion simulated by the MCA (blue) and the inertial motion
experienced by subjects in the CyberMotion Simulator (green) in condition C12. Data of the CMS
inertial motion was obtained using an IMU. IMU-data for right-hand curves has been switched sign
for ay, ωx and ωz.
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Figure E-13: Comparison between the inertial motion experienced in the real vehicle during a left-
hand turn (shown in yellow), the inertial motion simulated by the MCA (blue) and the inertial motion
experienced by subjects in the CyberMotion Simulator (green) in condition C13. Data of the CMS
inertial motion was obtained using an IMU. IMU-data for right-hand curves has been switched sign
for ay, ωx and ωz.
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(a) Longitudinal specific force ax.
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Figure E-14: Comparison between the inertial motion experienced in the real vehicle during a left-
hand turn (shown in yellow), the inertial motion simulated by the MCA (blue) and the inertial motion
experienced by subjects in the CyberMotion Simulator (green) in condition C14. Data of the CMS
inertial motion was obtained using an IMU. IMU-data for right-hand curves has been switched sign
for ay, ωx and ωz.
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Figure E-15: Comparison between the inertial motion experienced in the real vehicle during a left-
hand turn (shown in yellow), the inertial motion simulated by the MCA (blue) and the inertial motion
experienced by subjects in the CyberMotion Simulator (green) in condition C15. Data of the CMS
inertial motion was obtained using an IMU. IMU-data for right-hand curves has been switched sign
for ay, ωx and ωz.
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Figure E-16: Comparison between the inertial motion experienced in the real vehicle during a left-
hand turn (shown in yellow), the inertial motion simulated by the MCA (blue) and the inertial motion
experienced by subjects in the CyberMotion Simulator (green) in condition C16. Data of the CMS
inertial motion was obtained using an IMU. IMU-data for right-hand curves has been switched sign
for ay, ωx and ωz.
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Figure E-17: Comparison between the inertial motion experienced in the real vehicle during a left-
hand turn (shown in yellow), the inertial motion simulated by the MCA (blue) and the inertial motion
experienced by subjects in the CyberMotion Simulator (green) in condition C17. Data of the CMS
inertial motion was obtained using an IMU. IMU-data for right-hand curves has been switched sign
for ay, ωx and ωz.
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(a) Longitudinal specific force ax.
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Figure E-18: Comparison between the inertial motion experienced in the real vehicle during a left-
hand turn (shown in yellow), the inertial motion simulated by the MCA (blue) and the inertial motion
experienced by subjects in the CyberMotion Simulator (green) in condition C18. Data of the CMS
inertial motion was obtained using an IMU. IMU-data for right-hand curves has been switched sign
for ay, ωx and ωz.
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Figure E-19: Comparison between the inertial motion experienced in the real vehicle during a left-
hand turn (shown in yellow), the inertial motion simulated by the MCA (blue) and the inertial motion
experienced by subjects in the CyberMotion Simulator (green) in condition C19. Data of the CMS
inertial motion was obtained using an IMU. IMU-data for right-hand curves has been switched sign
for ay, ωx and ωz.
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(a) Longitudinal specific force ax.

0 5 10 15 20

Time [s]

0

0.5

1

1.5

2

2.5

a
y
[m

/s
2
]

(b) Lateral specific force ay.

0 5 10 15 20

Time [s]

-1

-0.5

0

0.5

1

a
z
[m

/s
2
]

(c) Vertical specific force az.

0 5 10 15 20

Time [s]

-3

-2

-1

0

1

2

3

ω
x
[d
eg
/s
]

(d) Roll rate ωx.

0 5 10 15 20

Time [s]

-3

-2

-1

0

1

2

3

ω
y
[d
eg
/s
]

(e) Pitch rate ωy.

0 5 10 15 20

Time [s]

0

2

4

6

ω
z
[d
eg
/s
]

(f) Yaw rate ωz.

Figure E-20: Comparison between the inertial motion experienced in the real vehicle during a left-
hand turn (shown in yellow), the inertial motion simulated by the MCA (blue) and the inertial motion
experienced by subjects in the CyberMotion Simulator (green) in condition C20. Data of the CMS
inertial motion was obtained using an IMU. IMU-data for right-hand curves has been switched sign
for ay, ωx and ωz.
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Figure E-21: Comparison between the inertial motion experienced in the real vehicle during a left-
hand turn (shown in yellow), the inertial motion simulated by the MCA (blue) and the inertial motion
experienced by subjects in the CyberMotion Simulator (green) in condition C21. Data of the CMS
inertial motion was obtained using an IMU. IMU-data for right-hand curves has been switched sign
for ay, ωx and ωz.

Tim van Leeuwen Simulator motion cueing error detection using a wavelet-based algorithm



E-2 Measurement results 65

0 5 10 15 20

Time [s]

-0.5

0

0.5

1

1.5

a
x
[m

/s
2
]

Vehicle
MCA output
IMU average
µIMU ± σIMU

(a) Longitudinal specific force ax.
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Figure E-22: Comparison between the inertial motion experienced in the real vehicle during a left-
hand turn (shown in yellow), the inertial motion simulated by the MCA (blue) and the inertial motion
experienced by subjects in the CyberMotion Simulator (green) in condition C22. Data of the CMS
inertial motion was obtained using an IMU. IMU-data for right-hand curves has been switched sign
for ay, ωx and ωz.
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E-3 Discussion

From figures E-1 through E-22 it can be seen that the CMS was capable of accurately repro-
ducing the inertial motion as desired by the MCA. Two conditions stand out in terms of the
match between the MCA output and the CMS inertial motion:

Condition C14 - From figure E-14 one can observe the IMU measurements to show strange
behaviour from t = 15 s onwards. Further research into the motion for this condition
(which represents an F1 error) revealed that, unlike for all other conditions, the motion
in a left- and right-handed curve was not mirrored for this condition, see figure E-23.
This was attributed to a mistyping in setting up the conditions, the intention was to
make all curves like the right-handed one (with the second peak at t = 17 s).

Condition C14 was used to compare different motion cueing error types. As such,
only the maximum average rating of all subjects was used as a metric. To investigate
the influence of this mistake, the maximum average ratings over the entire run were
compared to the maximum average ratings before t = 15 s (the time at which the
motion of opposite sign starts), see table E-1.

Only four (out of sixteen) subjects gave their maximum rating after t = 15 s. This is
a surprising result in itself, as the maximum ratings were expected during the part of
the curve featuring a lateral specific force in the wrong direction. Of these four, only
one lowers the maximum rating by more than five points (out of a hundred). A t-test
between these two distributions showed no significant effect at an α = 0.05 significance
level (p = 0.22). It is therefore concluded that this mistake had little effect on the
results of this study.

Condition C18 - Condition C18 (see figure E-18) features an F3a error at t = 9.5 s. This
desired sudden motion however is presented too strong by the CMS. Also, vibrations are
introduced in the CMS, which take around 0.6 seconds to die out. This is close to (but
slightly higher than) the ∆t = 0.5 s threshold used in the IEEE paper for distinguishing
F3a from F3b errors.
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Figure E-23: Lateral specific force ay distribution (µ ± 1σ) for left-handed and right-handed
curves featuring condition C14.
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Table E-1: Maximum average ratings R̄max for condition C14 (which features an F1 error),
excluding and including the curve exit.

Participant R̄max before t = 15s R̄max entire curve

1 71.3 72.4
2 99.4 99.4
3 94.5 94.5
4 94.0 94.0
5 98.9 98.9
6 77.4 77.4
7 98.8 98.8
8 49.1 49.1
9 73.5 78.1
10 65.2 65.2
11 29.3 29.3
12 86.6 86.6
13 99.3 99.3
14 54.9 54.9
15 98.8 99.5
16 52.3 77.1
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Appendix F

Experiment Ratings

During the experiment described in the IEEE paper, all 16 participants experienced four runs
during the experiment phase. This leads to a total of 64 ratings provided for each motion
condition. In this appendix, the ratings presented in the IEEE paper are broken down further.
In section F-1 the average ratings (over four runs) of individual subjects are shown for all 22
conditions of the experiment. Single-run ratings for all subjects are shown in section F-2.

F-1 Subject average ratings

Figures 8, 11 and 13 of the IEEE paper showed the average ratings over all subjects for various
conditions, and gave an indication of the spread of the ratings. In this section, the average
ratings for individual subjects are shown for all conditions in figures F-1 through F-22.
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Figure F-1: Average rating for individual subjects during a curve of Condition C1.
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Figure F-2: Average rating for individual subjects during a curve of Condition C2.
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Figure F-3: Average rating for individual subjects during a curve of Condition C3.
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Figure F-4: Average rating for individual subjects during a curve of Condition C4.
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Figure F-6: Average rating for individual subjects during a curve of Condition C6.
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Figure F-7: Average rating for individual subjects during a curve of Condition C7.
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Figure F-8: Average rating for individual subjects during a curve of Condition C8.
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Figure F-9: Average rating for individual subjects during a curve of Condition C9.

0

1

2

a y
[m

/s
2
]

Vehicle
C10

0 5 10 15 20 25

Time [s]

0

50

100

R
at
in
g
[-
]

Avg.

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

S13

S14

S15

S16

Figure F-10: Average rating for individual subjects during a curve of Condition C10.
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Figure F-11: Average rating for individual subjects during a curve of Condition C11.
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Figure F-12: Average rating for individual subjects during a curve of Condition C12.
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Figure F-13: Average rating for individual subjects during a curve of Condition C13.
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Figure F-14: Average rating for individual subjects during a curve of Condition C14.
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Figure F-15: Average rating for individual subjects during a curve of Condition C15.
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Figure F-16: Average rating for individual subjects during a curve of Condition C16.
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Figure F-17: Average rating for individual subjects during a curve of Condition C17.
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Figure F-18: Average rating for individual subjects during a curve of Condition C18.
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Figure F-19: Average rating for individual subjects during a curve of Condition C19.
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Figure F-20: Average rating for individual subjects during a curve of Condition C20.
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Figure F-21: Average rating for individual subjects during a curve of Condition C21.
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Figure F-22: Average rating for individual subjects during a curve of Condition C22.
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F-2 Single-run ratings

In the figures shown in the previous section, all ratings for individual subjects were the average
of four repetitions of all conditions. For subject 4 only the final three repetitions were used,
as the subject indicated to have misunderstood the instructions after the first experiment
run. The ratings for each repetition, for all subjects and all conditions are shown in figures
F-23 through F-374. For subject 4, only the three final ratings are shown.
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Figure F-23: Ratings by subject S1 for Condition
C1. The mean rating is repeated in figure F-1.
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Figure F-24: Ratings by subject S1 for Condition
C2. The mean rating is repeated in figure F-2.
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Figure F-25: Ratings by subject S1 for Condition
C3. The mean rating is repeated in figure F-3.
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Figure F-26: Ratings by subject S1 for Condition
C4. The mean rating is repeated in figure F-4.
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Figure F-27: Ratings by subject S1 for Condition
C5. The mean rating is repeated in figure F-5.
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Figure F-28: Ratings by subject S1 for Condition
C6. The mean rating is repeated in figure F-6.
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Figure F-29: Ratings by subject S1 for Condition
C7. The mean rating is repeated in figure F-7.
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Figure F-30: Ratings by subject S1 for Condition
C8. The mean rating is repeated in figure F-8.
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Figure F-31: Ratings by subject S1 for Condition
C9. The mean rating is repeated in figure F-9.
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Figure F-32: Ratings by subject S1 for Condition
C10. The mean rating is repeated in figure F-10.
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Figure F-33: Ratings by subject S1 for Condition
C11. The mean rating is repeated in figure F-11.
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Figure F-34: Ratings by subject S1 for Condition
C12. The mean rating is repeated in figure F-12.
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Figure F-35: Ratings by subject S1 for Condition
C13. The mean rating is repeated in figure F-13.
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Figure F-36: Ratings by subject S1 for Condition
C14. The mean rating is repeated in figure F-14.
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Figure F-37: Ratings by subject S1 for Condition
C15. The mean rating is repeated in figure F-15.
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Figure F-38: Ratings by subject S1 for Condition
C16. The mean rating is repeated in figure F-16.
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Figure F-39: Ratings by subject S1 for Condition
C17. The mean rating is repeated in figure F-17.
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Figure F-40: Ratings by subject S1 for Condition
C18. The mean rating is repeated in figure F-18.
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Figure F-41: Ratings by subject S1 for Condition
C19. The mean rating is repeated in figure F-19.
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Figure F-42: Ratings by subject S1 for Condition
C20. The mean rating is repeated in figure F-20.
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Figure F-43: Ratings by subject S1 for Condition
C21. The mean rating is repeated in figure F-21.
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Figure F-44: Ratings by subject S1 for Condition
C22. The mean rating is repeated in figure F-22.
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Figure F-45: Ratings by subject S2 for Condition
C1. The mean rating is repeated in figure F-1.
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Figure F-46: Ratings by subject S2 for Condition
C2. The mean rating is repeated in figure F-2.
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Figure F-47: Ratings by subject S2 for Condition
C3. The mean rating is repeated in figure F-3.
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Figure F-48: Ratings by subject S2 for Condition
C4. The mean rating is repeated in figure F-4.
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Figure F-49: Ratings by subject S2 for Condition
C5. The mean rating is repeated in figure F-5.
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Figure F-50: Ratings by subject S2 for Condition
C6. The mean rating is repeated in figure F-6.

Simulator motion cueing error detection using a wavelet-based algorithm Tim van Leeuwen



80 Experiment Ratings

0 5 10 15 20 25

Time [s]

0

25

50

75

100

R
at
in
g
[-
]

Avg. S2
Run E1
Run E2
Run E3
Run E4

Figure F-51: Ratings by subject S2 for Condition
C7. The mean rating is repeated in figure F-7.
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Figure F-52: Ratings by subject S2 for Condition
C8. The mean rating is repeated in figure F-8.
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Figure F-53: Ratings by subject S2 for Condition
C9. The mean rating is repeated in figure F-9.
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Figure F-54: Ratings by subject S2 for Condition
C10. The mean rating is repeated in figure F-10.
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Figure F-55: Ratings by subject S2 for Condition
C11. The mean rating is repeated in figure F-11.
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Figure F-56: Ratings by subject S2 for Condition
C12. The mean rating is repeated in figure F-12.
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Figure F-57: Ratings by subject S2 for Condition
C13. The mean rating is repeated in figure F-13.
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Figure F-58: Ratings by subject S2 for Condition
C14. The mean rating is repeated in figure F-14.
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Figure F-59: Ratings by subject S2 for Condition
C15. The mean rating is repeated in figure F-15.
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Figure F-60: Ratings by subject S2 for Condition
C16. The mean rating is repeated in figure F-16.
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Figure F-61: Ratings by subject S2 for Condition
C17. The mean rating is repeated in figure F-17.
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Figure F-62: Ratings by subject S2 for Condition
C18. The mean rating is repeated in figure F-18.
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Figure F-63: Ratings by subject S2 for Condition
C19. The mean rating is repeated in figure F-19.
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Figure F-64: Ratings by subject S2 for Condition
C20. The mean rating is repeated in figure F-20.
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Figure F-65: Ratings by subject S2 for Condition
C21. The mean rating is repeated in figure F-21.
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Figure F-66: Ratings by subject S2 for Condition
C22. The mean rating is repeated in figure F-22.
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Figure F-67: Ratings by subject S3 for Condition
C1. The mean rating is repeated in figure F-1.
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Figure F-68: Ratings by subject S3 for Condition
C2. The mean rating is repeated in figure F-2.
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Figure F-69: Ratings by subject S3 for Condition
C3. The mean rating is repeated in figure F-3.
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Figure F-70: Ratings by subject S3 for Condition
C4. The mean rating is repeated in figure F-4.
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Figure F-71: Ratings by subject S3 for Condition
C5. The mean rating is repeated in figure F-5.
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Figure F-72: Ratings by subject S3 for Condition
C6. The mean rating is repeated in figure F-6.
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Figure F-73: Ratings by subject S3 for Condition
C7. The mean rating is repeated in figure F-7.

0 5 10 15 20 25

Time [s]

0

25

50

75

100

R
at
in
g
[-
]

Avg. S3
Run E1
Run E2
Run E3
Run E4

Figure F-74: Ratings by subject S3 for Condition
C8. The mean rating is repeated in figure F-8.
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Figure F-75: Ratings by subject S3 for Condition
C9. The mean rating is repeated in figure F-9.
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Figure F-76: Ratings by subject S3 for Condition
C10. The mean rating is repeated in figure F-10.
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Figure F-77: Ratings by subject S3 for Condition
C11. The mean rating is repeated in figure F-11.
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Figure F-78: Ratings by subject S3 for Condition
C12. The mean rating is repeated in figure F-12.
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Figure F-79: Ratings by subject S3 for Condition
C13. The mean rating is repeated in figure F-13.
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Figure F-80: Ratings by subject S3 for Condition
C14. The mean rating is repeated in figure F-14.
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Figure F-81: Ratings by subject S3 for Condition
C15. The mean rating is repeated in figure F-15.
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Figure F-82: Ratings by subject S3 for Condition
C16. The mean rating is repeated in figure F-16.
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Figure F-83: Ratings by subject S3 for Condition
C17. The mean rating is repeated in figure F-17.
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Figure F-84: Ratings by subject S3 for Condition
C18. The mean rating is repeated in figure F-18.
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Figure F-85: Ratings by subject S3 for Condition
C19. The mean rating is repeated in figure F-19.
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Figure F-86: Ratings by subject S3 for Condition
C20. The mean rating is repeated in figure F-20.

0 5 10 15 20 25

Time [s]

0

25

50

75

100

R
at
in
g
[-
]

Avg. S3
Run E1
Run E2
Run E3
Run E4

Figure F-87: Ratings by subject S3 for Condition
C21. The mean rating is repeated in figure F-21.
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Figure F-88: Ratings by subject S3 for Condition
C22. The mean rating is repeated in figure F-22.
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Figure F-89: Ratings by subject S4 for Condition
C1. The mean rating is repeated in figure F-1.
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Figure F-90: Ratings by subject S4 for Condition
C2. The mean rating is repeated in figure F-2.
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Figure F-91: Ratings by subject S4 for Condition
C3. The mean rating is repeated in figure F-3.
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Figure F-92: Ratings by subject S4 for Condition
C4. The mean rating is repeated in figure F-4.
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Figure F-93: Ratings by subject S4 for Condition
C5. The mean rating is repeated in figure F-5.
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Figure F-94: Ratings by subject S4 for Condition
C6. The mean rating is repeated in figure F-6.
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Figure F-95: Ratings by subject S4 for Condition
C7. The mean rating is repeated in figure F-7.
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Figure F-96: Ratings by subject S4 for Condition
C8. The mean rating is repeated in figure F-8.
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Figure F-97: Ratings by subject S4 for Condition
C9. The mean rating is repeated in figure F-9.
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Figure F-98: Ratings by subject S4 for Condition
C10. The mean rating is repeated in figure F-10.
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Figure F-99: Ratings by subject S4 for Condition
C11. The mean rating is repeated in figure F-11.
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Figure F-100: Ratings by subject S4 for Condition
C12. The mean rating is repeated in figure F-12.
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Figure F-101: Ratings by subject S4 for Condition
C13. The mean rating is repeated in figure F-13.
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Figure F-102: Ratings by subject S4 for Condition
C14. The mean rating is repeated in figure F-14.
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Figure F-103: Ratings by subject S4 for Condition
C15. The mean rating is repeated in figure F-15.
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Figure F-104: Ratings by subject S4 for Condition
C16. The mean rating is repeated in figure F-16.
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Figure F-105: Ratings by subject S4 for Condition
C17. The mean rating is repeated in figure F-17.
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Figure F-106: Ratings by subject S4 for Condition
C18. The mean rating is repeated in figure F-18.
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Figure F-107: Ratings by subject S4 for Condition
C19. The mean rating is repeated in figure F-19.
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Figure F-108: Ratings by subject S4 for Condition
C20. The mean rating is repeated in figure F-20.
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Figure F-109: Ratings by subject S4 for Condition
C21. The mean rating is repeated in figure F-21.
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Figure F-110: Ratings by subject S4 for Condition
C22. The mean rating is repeated in figure F-22.
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Figure F-111: Ratings by subject S5 for Condition
C1. The mean rating is repeated in figure F-1.
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Figure F-112: Ratings by subject S5 for Condition
C2. The mean rating is repeated in figure F-2.
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Figure F-113: Ratings by subject S5 for Condition
C3. The mean rating is repeated in figure F-3.
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Figure F-114: Ratings by subject S5 for Condition
C4. The mean rating is repeated in figure F-4.
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Figure F-115: Ratings by subject S5 for Condition
C5. The mean rating is repeated in figure F-5.
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Figure F-116: Ratings by subject S5 for Condition
C6. The mean rating is repeated in figure F-6.
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Figure F-117: Ratings by subject S5 for Condition
C7. The mean rating is repeated in figure F-7.
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Figure F-118: Ratings by subject S5 for Condition
C8. The mean rating is repeated in figure F-8.
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Figure F-119: Ratings by subject S5 for Condition
C9. The mean rating is repeated in figure F-9.
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Figure F-120: Ratings by subject S5 for Condition
C10. The mean rating is repeated in figure F-10.
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Figure F-121: Ratings by subject S5 for Condition
C11. The mean rating is repeated in figure F-11.
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Figure F-122: Ratings by subject S5 for Condition
C12. The mean rating is repeated in figure F-12.
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Figure F-123: Ratings by subject S5 for Condition
C13. The mean rating is repeated in figure F-13.
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Figure F-124: Ratings by subject S5 for Condition
C14. The mean rating is repeated in figure F-14.
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Figure F-125: Ratings by subject S5 for Condition
C15. The mean rating is repeated in figure F-15.
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Figure F-126: Ratings by subject S5 for Condition
C16. The mean rating is repeated in figure F-16.
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Figure F-127: Ratings by subject S5 for Condition
C17. The mean rating is repeated in figure F-17.

0 5 10 15 20 25

Time [s]

0

25

50

75

100

R
at
in
g
[-
]

Avg. S5
Run E1
Run E2
Run E3
Run E4

Figure F-128: Ratings by subject S5 for Condition
C18. The mean rating is repeated in figure F-18.
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Figure F-129: Ratings by subject S5 for Condition
C19. The mean rating is repeated in figure F-19.
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Figure F-130: Ratings by subject S5 for Condition
C20. The mean rating is repeated in figure F-20.

Simulator motion cueing error detection using a wavelet-based algorithm Tim van Leeuwen



88 Experiment Ratings

0 5 10 15 20 25

Time [s]

0

25

50

75

100

R
at
in
g
[-
]

Avg. S5
Run E1
Run E2
Run E3
Run E4

Figure F-131: Ratings by subject S5 for Condition
C21. The mean rating is repeated in figure F-21.
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Figure F-132: Ratings by subject S5 for Condition
C22. The mean rating is repeated in figure F-22.
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Figure F-133: Ratings by subject S6 for Condition
C1. The mean rating is repeated in figure F-1.
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Figure F-134: Ratings by subject S6 for Condition
C2. The mean rating is repeated in figure F-2.

0 5 10 15 20 25

Time [s]

0

25

50

75

100

R
at
in
g
[-
]

Avg. S6
Run E1
Run E2
Run E3
Run E4

Figure F-135: Ratings by subject S6 for Condition
C3. The mean rating is repeated in figure F-3.
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Figure F-136: Ratings by subject S6 for Condition
C4. The mean rating is repeated in figure F-4.
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Figure F-137: Ratings by subject S6 for Condition
C5. The mean rating is repeated in figure F-5.
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Figure F-138: Ratings by subject S6 for Condition
C6. The mean rating is repeated in figure F-6.
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Figure F-139: Ratings by subject S6 for Condition
C7. The mean rating is repeated in figure F-7.
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Figure F-140: Ratings by subject S6 for Condition
C8. The mean rating is repeated in figure F-8.
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Figure F-141: Ratings by subject S6 for Condition
C9. The mean rating is repeated in figure F-9.
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Figure F-142: Ratings by subject S6 for Condition
C10. The mean rating is repeated in figure F-10.
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Figure F-143: Ratings by subject S6 for Condition
C11. The mean rating is repeated in figure F-11.
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Figure F-144: Ratings by subject S6 for Condition
C12. The mean rating is repeated in figure F-12.
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Figure F-145: Ratings by subject S6 for Condition
C13. The mean rating is repeated in figure F-13.
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Figure F-146: Ratings by subject S6 for Condition
C14. The mean rating is repeated in figure F-14.
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Figure F-147: Ratings by subject S6 for Condition
C15. The mean rating is repeated in figure F-15.
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Figure F-148: Ratings by subject S6 for Condition
C16. The mean rating is repeated in figure F-16.

0 5 10 15 20 25

Time [s]

0

25

50

75

100

R
at
in
g
[-
]

Avg. S6
Run E1
Run E2
Run E3
Run E4

Figure F-149: Ratings by subject S6 for Condition
C17. The mean rating is repeated in figure F-17.
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Figure F-150: Ratings by subject S6 for Condition
C18. The mean rating is repeated in figure F-18.
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Figure F-151: Ratings by subject S6 for Condition
C19. The mean rating is repeated in figure F-19.
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Figure F-152: Ratings by subject S6 for Condition
C20. The mean rating is repeated in figure F-20.
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Figure F-153: Ratings by subject S6 for Condition
C21. The mean rating is repeated in figure F-21.
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Figure F-154: Ratings by subject S6 for Condition
C22. The mean rating is repeated in figure F-22.
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Figure F-155: Ratings by subject S7 for Condition
C1. The mean rating is repeated in figure F-1.
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Figure F-156: Ratings by subject S7 for Condition
C2. The mean rating is repeated in figure F-2.
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Figure F-157: Ratings by subject S7 for Condition
C3. The mean rating is repeated in figure F-3.
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Figure F-158: Ratings by subject S7 for Condition
C4. The mean rating is repeated in figure F-4.
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Figure F-159: Ratings by subject S7 for Condition
C5. The mean rating is repeated in figure F-5.
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Figure F-160: Ratings by subject S7 for Condition
C6. The mean rating is repeated in figure F-6.
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Figure F-161: Ratings by subject S7 for Condition
C7. The mean rating is repeated in figure F-7.
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Figure F-162: Ratings by subject S7 for Condition
C8. The mean rating is repeated in figure F-8.
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Figure F-163: Ratings by subject S7 for Condition
C9. The mean rating is repeated in figure F-9.
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Figure F-164: Ratings by subject S7 for Condition
C10. The mean rating is repeated in figure F-10.
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Figure F-165: Ratings by subject S7 for Condition
C11. The mean rating is repeated in figure F-11.
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Figure F-166: Ratings by subject S7 for Condition
C12. The mean rating is repeated in figure F-12.
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Figure F-167: Ratings by subject S7 for Condition
C13. The mean rating is repeated in figure F-13.
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Figure F-168: Ratings by subject S7 for Condition
C14. The mean rating is repeated in figure F-14.
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Figure F-169: Ratings by subject S7 for Condition
C15. The mean rating is repeated in figure F-15.
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Figure F-170: Ratings by subject S7 for Condition
C16. The mean rating is repeated in figure F-16.
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Figure F-171: Ratings by subject S7 for Condition
C17. The mean rating is repeated in figure F-17.
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Figure F-172: Ratings by subject S7 for Condition
C18. The mean rating is repeated in figure F-18.
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Figure F-173: Ratings by subject S7 for Condition
C19. The mean rating is repeated in figure F-19.
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Figure F-174: Ratings by subject S7 for Condition
C20. The mean rating is repeated in figure F-20.
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Figure F-175: Ratings by subject S7 for Condition
C21. The mean rating is repeated in figure F-21.
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Figure F-176: Ratings by subject S7 for Condition
C22. The mean rating is repeated in figure F-22.
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Figure F-177: Ratings by subject S8 for Condition
C1. The mean rating is repeated in figure F-1.
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Figure F-178: Ratings by subject S8 for Condition
C2. The mean rating is repeated in figure F-2.
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Figure F-179: Ratings by subject S8 for Condition
C3. The mean rating is repeated in figure F-3.
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Figure F-180: Ratings by subject S8 for Condition
C4. The mean rating is repeated in figure F-4.
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Figure F-181: Ratings by subject S8 for Condition
C5. The mean rating is repeated in figure F-5.
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Figure F-182: Ratings by subject S8 for Condition
C6. The mean rating is repeated in figure F-6.
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Figure F-183: Ratings by subject S8 for Condition
C7. The mean rating is repeated in figure F-7.
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Figure F-184: Ratings by subject S8 for Condition
C8. The mean rating is repeated in figure F-8.
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Figure F-185: Ratings by subject S8 for Condition
C9. The mean rating is repeated in figure F-9.
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Figure F-186: Ratings by subject S8 for Condition
C10. The mean rating is repeated in figure F-10.
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Figure F-187: Ratings by subject S8 for Condition
C11. The mean rating is repeated in figure F-11.
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Figure F-188: Ratings by subject S8 for Condition
C12. The mean rating is repeated in figure F-12.
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Figure F-189: Ratings by subject S8 for Condition
C13. The mean rating is repeated in figure F-13.
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Figure F-190: Ratings by subject S8 for Condition
C14. The mean rating is repeated in figure F-14.

Simulator motion cueing error detection using a wavelet-based algorithm Tim van Leeuwen



94 Experiment Ratings

0 5 10 15 20 25

Time [s]

0

25

50

75

100

R
at
in
g
[-
]

Avg. S8
Run E1
Run E2
Run E3
Run E4

Figure F-191: Ratings by subject S8 for Condition
C15. The mean rating is repeated in figure F-15.
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Figure F-192: Ratings by subject S8 for Condition
C16. The mean rating is repeated in figure F-16.
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Figure F-193: Ratings by subject S8 for Condition
C17. The mean rating is repeated in figure F-17.
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Figure F-194: Ratings by subject S8 for Condition
C18. The mean rating is repeated in figure F-18.
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Figure F-195: Ratings by subject S8 for Condition
C19. The mean rating is repeated in figure F-19.
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Figure F-196: Ratings by subject S8 for Condition
C20. The mean rating is repeated in figure F-20.
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Figure F-197: Ratings by subject S8 for Condition
C21. The mean rating is repeated in figure F-21.
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Figure F-198: Ratings by subject S8 for Condition
C22. The mean rating is repeated in figure F-22.
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Figure F-199: Ratings by subject S9 for Condition
C1. The mean rating is repeated in figure F-1.
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Figure F-200: Ratings by subject S9 for Condition
C2. The mean rating is repeated in figure F-2.
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Figure F-201: Ratings by subject S9 for Condition
C3. The mean rating is repeated in figure F-3.
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Figure F-202: Ratings by subject S9 for Condition
C4. The mean rating is repeated in figure F-4.
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Figure F-203: Ratings by subject S9 for Condition
C5. The mean rating is repeated in figure F-5.
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Figure F-204: Ratings by subject S9 for Condition
C6. The mean rating is repeated in figure F-6.
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Figure F-205: Ratings by subject S9 for Condition
C7. The mean rating is repeated in figure F-7.
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Figure F-206: Ratings by subject S9 for Condition
C8. The mean rating is repeated in figure F-8.
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Figure F-207: Ratings by subject S9 for Condition
C9. The mean rating is repeated in figure F-9.
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Figure F-208: Ratings by subject S9 for Condition
C10. The mean rating is repeated in figure F-10.
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Figure F-209: Ratings by subject S9 for Condition
C11. The mean rating is repeated in figure F-11.
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Figure F-210: Ratings by subject S9 for Condition
C12. The mean rating is repeated in figure F-12.
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Figure F-211: Ratings by subject S9 for Condition
C13. The mean rating is repeated in figure F-13.
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Figure F-212: Ratings by subject S9 for Condition
C14. The mean rating is repeated in figure F-14.
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Figure F-213: Ratings by subject S9 for Condition
C15. The mean rating is repeated in figure F-15.
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Figure F-214: Ratings by subject S9 for Condition
C16. The mean rating is repeated in figure F-16.
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Figure F-215: Ratings by subject S9 for Condition
C17. The mean rating is repeated in figure F-17.

0 5 10 15 20 25

Time [s]

0

25

50

75

100

R
at
in
g
[-
]

Avg. S9
Run E1
Run E2
Run E3
Run E4

Figure F-216: Ratings by subject S9 for Condition
C18. The mean rating is repeated in figure F-18.
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Figure F-217: Ratings by subject S9 for Condition
C19. The mean rating is repeated in figure F-19.
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Figure F-218: Ratings by subject S9 for Condition
C20. The mean rating is repeated in figure F-20.
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Figure F-219: Ratings by subject S9 for Condition
C21. The mean rating is repeated in figure F-21.
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Figure F-220: Ratings by subject S9 for Condition
C22. The mean rating is repeated in figure F-22.
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Figure F-221: Ratings by subject S10 for Condition
C1. The mean rating is repeated in figure F-1.
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Figure F-222: Ratings by subject S10 for Condition
C2. The mean rating is repeated in figure F-2.
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Figure F-223: Ratings by subject S10 for Condition
C3. The mean rating is repeated in figure F-3.
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Figure F-224: Ratings by subject S10 for Condition
C4. The mean rating is repeated in figure F-4.
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Figure F-225: Ratings by subject S10 for Condition
C5. The mean rating is repeated in figure F-5.
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Figure F-226: Ratings by subject S10 for Condition
C6. The mean rating is repeated in figure F-6.
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Figure F-227: Ratings by subject S10 for Condition
C7. The mean rating is repeated in figure F-7.
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Figure F-228: Ratings by subject S10 for Condition
C8. The mean rating is repeated in figure F-8.
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Figure F-229: Ratings by subject S10 for Condition
C9. The mean rating is repeated in figure F-9.
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Figure F-230: Ratings by subject S10 for Condition
C10. The mean rating is repeated in figure F-10.
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Figure F-231: Ratings by subject S10 for Condition
C11. The mean rating is repeated in figure F-11.
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Figure F-232: Ratings by subject S10 for Condition
C12. The mean rating is repeated in figure F-12.
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Figure F-233: Ratings by subject S10 for Condition
C13. The mean rating is repeated in figure F-13.
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Figure F-234: Ratings by subject S10 for Condition
C14. The mean rating is repeated in figure F-14.
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Figure F-235: Ratings by subject S10 for Condition
C15. The mean rating is repeated in figure F-15.
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Figure F-236: Ratings by subject S10 for Condition
C16. The mean rating is repeated in figure F-16.
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Figure F-237: Ratings by subject S10 for Condition
C17. The mean rating is repeated in figure F-17.
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Figure F-238: Ratings by subject S10 for Condition
C18. The mean rating is repeated in figure F-18.
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Figure F-239: Ratings by subject S10 for Condition
C19. The mean rating is repeated in figure F-19.
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Figure F-240: Ratings by subject S10 for Condition
C20. The mean rating is repeated in figure F-20.
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Figure F-241: Ratings by subject S10 for Condition
C21. The mean rating is repeated in figure F-21.
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Figure F-242: Ratings by subject S10 for Condition
C22. The mean rating is repeated in figure F-22.
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Figure F-243: Ratings by subject S11 for Condition
C1. The mean rating is repeated in figure F-1.
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Figure F-244: Ratings by subject S11 for Condition
C2. The mean rating is repeated in figure F-2.
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Figure F-245: Ratings by subject S11 for Condition
C3. The mean rating is repeated in figure F-3.
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Figure F-246: Ratings by subject S11 for Condition
C4. The mean rating is repeated in figure F-4.
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Figure F-247: Ratings by subject S11 for Condition
C5. The mean rating is repeated in figure F-5.
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Figure F-248: Ratings by subject S11 for Condition
C6. The mean rating is repeated in figure F-6.
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Figure F-249: Ratings by subject S11 for Condition
C7. The mean rating is repeated in figure F-7.
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Figure F-250: Ratings by subject S11 for Condition
C8. The mean rating is repeated in figure F-8.
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Figure F-251: Ratings by subject S11 for Condition
C9. The mean rating is repeated in figure F-9.
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Figure F-252: Ratings by subject S11 for Condition
C10. The mean rating is repeated in figure F-10.
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Figure F-253: Ratings by subject S11 for Condition
C11. The mean rating is repeated in figure F-11.
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Figure F-254: Ratings by subject S11 for Condition
C12. The mean rating is repeated in figure F-12.
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Figure F-255: Ratings by subject S11 for Condition
C13. The mean rating is repeated in figure F-13.
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Figure F-256: Ratings by subject S11 for Condition
C14. The mean rating is repeated in figure F-14.
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Figure F-257: Ratings by subject S11 for Condition
C15. The mean rating is repeated in figure F-15.
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Figure F-258: Ratings by subject S11 for Condition
C16. The mean rating is repeated in figure F-16.
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Figure F-259: Ratings by subject S11 for Condition
C17. The mean rating is repeated in figure F-17.
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Figure F-260: Ratings by subject S11 for Condition
C18. The mean rating is repeated in figure F-18.
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Figure F-261: Ratings by subject S11 for Condition
C19. The mean rating is repeated in figure F-19.
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Figure F-262: Ratings by subject S11 for Condition
C20. The mean rating is repeated in figure F-20.
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Figure F-263: Ratings by subject S11 for Condition
C21. The mean rating is repeated in figure F-21.
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Figure F-264: Ratings by subject S11 for Condition
C22. The mean rating is repeated in figure F-22.
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Figure F-265: Ratings by subject S12 for Condition
C1. The mean rating is repeated in figure F-1.
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Figure F-266: Ratings by subject S12 for Condition
C2. The mean rating is repeated in figure F-2.
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Figure F-267: Ratings by subject S12 for Condition
C3. The mean rating is repeated in figure F-3.
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Figure F-268: Ratings by subject S12 for Condition
C4. The mean rating is repeated in figure F-4.
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Figure F-269: Ratings by subject S12 for Condition
C5. The mean rating is repeated in figure F-5.
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Figure F-270: Ratings by subject S12 for Condition
C6. The mean rating is repeated in figure F-6.
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Figure F-271: Ratings by subject S12 for Condition
C7. The mean rating is repeated in figure F-7.
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Figure F-272: Ratings by subject S12 for Condition
C8. The mean rating is repeated in figure F-8.

0 5 10 15 20 25

Time [s]

0

25

50

75

100

R
at
in
g
[-
]

Avg. S12
Run E1
Run E2
Run E3
Run E4

Figure F-273: Ratings by subject S12 for Condition
C9. The mean rating is repeated in figure F-9.
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Figure F-274: Ratings by subject S12 for Condition
C10. The mean rating is repeated in figure F-10.
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Figure F-275: Ratings by subject S12 for Condition
C11. The mean rating is repeated in figure F-11.
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Figure F-276: Ratings by subject S12 for Condition
C12. The mean rating is repeated in figure F-12.
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Figure F-277: Ratings by subject S12 for Condition
C13. The mean rating is repeated in figure F-13.
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Figure F-278: Ratings by subject S12 for Condition
C14. The mean rating is repeated in figure F-14.
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Figure F-279: Ratings by subject S12 for Condition
C15. The mean rating is repeated in figure F-15.
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Figure F-280: Ratings by subject S12 for Condition
C16. The mean rating is repeated in figure F-16.
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Figure F-281: Ratings by subject S12 for Condition
C17. The mean rating is repeated in figure F-17.
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Figure F-282: Ratings by subject S12 for Condition
C18. The mean rating is repeated in figure F-18.
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Figure F-283: Ratings by subject S12 for Condition
C19. The mean rating is repeated in figure F-19.
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Figure F-284: Ratings by subject S12 for Condition
C20. The mean rating is repeated in figure F-20.

0 5 10 15 20 25

Time [s]

0

25

50

75

100

R
at
in
g
[-
]

Avg. S12
Run E1
Run E2
Run E3
Run E4

Figure F-285: Ratings by subject S12 for Condition
C21. The mean rating is repeated in figure F-21.
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Figure F-286: Ratings by subject S12 for Condition
C22. The mean rating is repeated in figure F-22.
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Figure F-287: Ratings by subject S13 for Condition
C1. The mean rating is repeated in figure F-1.
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Figure F-288: Ratings by subject S13 for Condition
C2. The mean rating is repeated in figure F-2.
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Figure F-289: Ratings by subject S13 for Condition
C3. The mean rating is repeated in figure F-3.
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Figure F-290: Ratings by subject S13 for Condition
C4. The mean rating is repeated in figure F-4.
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Figure F-291: Ratings by subject S13 for Condition
C5. The mean rating is repeated in figure F-5.
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Figure F-292: Ratings by subject S13 for Condition
C6. The mean rating is repeated in figure F-6.
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Figure F-293: Ratings by subject S13 for Condition
C7. The mean rating is repeated in figure F-7.
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Figure F-294: Ratings by subject S13 for Condition
C8. The mean rating is repeated in figure F-8.
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Figure F-295: Ratings by subject S13 for Condition
C9. The mean rating is repeated in figure F-9.
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Figure F-296: Ratings by subject S13 for Condition
C10. The mean rating is repeated in figure F-10.
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Figure F-297: Ratings by subject S13 for Condition
C11. The mean rating is repeated in figure F-11.
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Figure F-298: Ratings by subject S13 for Condition
C12. The mean rating is repeated in figure F-12.
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Figure F-299: Ratings by subject S13 for Condition
C13. The mean rating is repeated in figure F-13.
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Figure F-300: Ratings by subject S13 for Condition
C14. The mean rating is repeated in figure F-14.
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Figure F-301: Ratings by subject S13 for Condition
C15. The mean rating is repeated in figure F-15.
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Figure F-302: Ratings by subject S13 for Condition
C16. The mean rating is repeated in figure F-16.
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Figure F-303: Ratings by subject S13 for Condition
C17. The mean rating is repeated in figure F-17.
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Figure F-304: Ratings by subject S13 for Condition
C18. The mean rating is repeated in figure F-18.
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Figure F-305: Ratings by subject S13 for Condition
C19. The mean rating is repeated in figure F-19.
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Figure F-306: Ratings by subject S13 for Condition
C20. The mean rating is repeated in figure F-20.
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Figure F-307: Ratings by subject S13 for Condition
C21. The mean rating is repeated in figure F-21.
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Figure F-308: Ratings by subject S13 for Condition
C22. The mean rating is repeated in figure F-22.
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Figure F-309: Ratings by subject S14 for Condition
C1. The mean rating is repeated in figure F-1.
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Figure F-310: Ratings by subject S14 for Condition
C2. The mean rating is repeated in figure F-2.

Simulator motion cueing error detection using a wavelet-based algorithm Tim van Leeuwen



106 Experiment Ratings

0 5 10 15 20 25

Time [s]

0

25

50

75

100

R
at
in
g
[-
]

Avg. S14
Run E1
Run E2
Run E3
Run E4

Figure F-311: Ratings by subject S14 for Condition
C3. The mean rating is repeated in figure F-3.
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Figure F-312: Ratings by subject S14 for Condition
C4. The mean rating is repeated in figure F-4.
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Figure F-313: Ratings by subject S14 for Condition
C5. The mean rating is repeated in figure F-5.
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Figure F-314: Ratings by subject S14 for Condition
C6. The mean rating is repeated in figure F-6.
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Figure F-315: Ratings by subject S14 for Condition
C7. The mean rating is repeated in figure F-7.
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Figure F-316: Ratings by subject S14 for Condition
C8. The mean rating is repeated in figure F-8.
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Figure F-317: Ratings by subject S14 for Condition
C9. The mean rating is repeated in figure F-9.
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Figure F-318: Ratings by subject S14 for Condition
C10. The mean rating is repeated in figure F-10.
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Figure F-319: Ratings by subject S14 for Condition
C11. The mean rating is repeated in figure F-11.

0 5 10 15 20 25

Time [s]

0

25

50

75

100

R
at
in
g
[-
]

Avg. S14
Run E1
Run E2
Run E3
Run E4

Figure F-320: Ratings by subject S14 for Condition
C12. The mean rating is repeated in figure F-12.
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Figure F-321: Ratings by subject S14 for Condition
C13. The mean rating is repeated in figure F-13.
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Figure F-322: Ratings by subject S14 for Condition
C14. The mean rating is repeated in figure F-14.
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Figure F-323: Ratings by subject S14 for Condition
C15. The mean rating is repeated in figure F-15.
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Figure F-324: Ratings by subject S14 for Condition
C16. The mean rating is repeated in figure F-16.
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Figure F-325: Ratings by subject S14 for Condition
C17. The mean rating is repeated in figure F-17.
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Figure F-326: Ratings by subject S14 for Condition
C18. The mean rating is repeated in figure F-18.

0 5 10 15 20 25

Time [s]

0

25

50

75

100

R
at
in
g
[-
]

Avg. S14
Run E1
Run E2
Run E3
Run E4

Figure F-327: Ratings by subject S14 for Condition
C19. The mean rating is repeated in figure F-19.
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Figure F-328: Ratings by subject S14 for Condition
C20. The mean rating is repeated in figure F-20.
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Figure F-329: Ratings by subject S14 for Condition
C21. The mean rating is repeated in figure F-21.
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Figure F-330: Ratings by subject S14 for Condition
C22. The mean rating is repeated in figure F-22.
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Figure F-331: Ratings by subject S15 for Condition
C1. The mean rating is repeated in figure F-1.
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Figure F-332: Ratings by subject S15 for Condition
C2. The mean rating is repeated in figure F-2.
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Figure F-333: Ratings by subject S15 for Condition
C3. The mean rating is repeated in figure F-3.
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Figure F-334: Ratings by subject S15 for Condition
C4. The mean rating is repeated in figure F-4.
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Figure F-335: Ratings by subject S15 for Condition
C5. The mean rating is repeated in figure F-5.
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Figure F-336: Ratings by subject S15 for Condition
C6. The mean rating is repeated in figure F-6.
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Figure F-337: Ratings by subject S15 for Condition
C7. The mean rating is repeated in figure F-7.
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Figure F-338: Ratings by subject S15 for Condition
C8. The mean rating is repeated in figure F-8.
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Figure F-339: Ratings by subject S15 for Condition
C9. The mean rating is repeated in figure F-9.
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Figure F-340: Ratings by subject S15 for Condition
C10. The mean rating is repeated in figure F-10.
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Figure F-341: Ratings by subject S15 for Condition
C11. The mean rating is repeated in figure F-11.
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Figure F-342: Ratings by subject S15 for Condition
C12. The mean rating is repeated in figure F-12.
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Figure F-343: Ratings by subject S15 for Condition
C13. The mean rating is repeated in figure F-13.
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Figure F-344: Ratings by subject S15 for Condition
C14. The mean rating is repeated in figure F-14.
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Figure F-345: Ratings by subject S15 for Condition
C15. The mean rating is repeated in figure F-15.

0 5 10 15 20 25

Time [s]

0

25

50

75

100

R
at
in
g
[-
]

Avg. S15
Run E1
Run E2
Run E3
Run E4

Figure F-346: Ratings by subject S15 for Condition
C16. The mean rating is repeated in figure F-16.
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Figure F-347: Ratings by subject S15 for Condition
C17. The mean rating is repeated in figure F-17.
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Figure F-348: Ratings by subject S15 for Condition
C18. The mean rating is repeated in figure F-18.
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Figure F-349: Ratings by subject S15 for Condition
C19. The mean rating is repeated in figure F-19.
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Figure F-350: Ratings by subject S15 for Condition
C20. The mean rating is repeated in figure F-20.
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Figure F-351: Ratings by subject S15 for Condition
C21. The mean rating is repeated in figure F-21.
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Figure F-352: Ratings by subject S15 for Condition
C22. The mean rating is repeated in figure F-22.
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Figure F-353: Ratings by subject S16 for Condition
C1. The mean rating is repeated in figure F-1.
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Figure F-354: Ratings by subject S16 for Condition
C2. The mean rating is repeated in figure F-2.
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Figure F-355: Ratings by subject S16 for Condition
C3. The mean rating is repeated in figure F-3.
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Figure F-356: Ratings by subject S16 for Condition
C4. The mean rating is repeated in figure F-4.
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Figure F-357: Ratings by subject S16 for Condition
C5. The mean rating is repeated in figure F-5.
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Figure F-358: Ratings by subject S16 for Condition
C6. The mean rating is repeated in figure F-6.
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Figure F-359: Ratings by subject S16 for Condition
C7. The mean rating is repeated in figure F-7.
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Figure F-360: Ratings by subject S16 for Condition
C8. The mean rating is repeated in figure F-8.

Tim van Leeuwen Simulator motion cueing error detection using a wavelet-based algorithm



F-2 Single-run ratings 111

0 5 10 15 20 25

Time [s]

0

25

50

75

100

R
at
in
g
[-
]

Avg. S16
Run E1
Run E2
Run E3
Run E4

Figure F-361: Ratings by subject S16 for Condition
C9. The mean rating is repeated in figure F-9.
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Figure F-362: Ratings by subject S16 for Condition
C10. The mean rating is repeated in figure F-10.
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Figure F-363: Ratings by subject S16 for Condition
C11. The mean rating is repeated in figure F-11.
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Figure F-364: Ratings by subject S16 for Condition
C12. The mean rating is repeated in figure F-12.
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Figure F-365: Ratings by subject S16 for Condition
C13. The mean rating is repeated in figure F-13.
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Figure F-366: Ratings by subject S16 for Condition
C14. The mean rating is repeated in figure F-14.
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Figure F-367: Ratings by subject S16 for Condition
C15. The mean rating is repeated in figure F-15.
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Figure F-368: Ratings by subject S16 for Condition
C16. The mean rating is repeated in figure F-16.
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Figure F-369: Ratings by subject S16 for Condition
C17. The mean rating is repeated in figure F-17.
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Figure F-370: Ratings by subject S16 for Condition
C18. The mean rating is repeated in figure F-18.
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Figure F-371: Ratings by subject S16 for Condition
C19. The mean rating is repeated in figure F-19.
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Figure F-372: Ratings by subject S16 for Condition
C20. The mean rating is repeated in figure F-20.
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Figure F-373: Ratings by subject S16 for Condition
C21. The mean rating is repeated in figure F-21.
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Figure F-374: Ratings by subject S16 for Condition
C22. The mean rating is repeated in figure F-22.
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Appendix G

Algorithm experiment output

To demonstrate the workings (and shortcomings) of the algorithm, the vehicle inertial motion
and MCA output used during the experiment described in the IEEE paper has been analysed
using the motion cueing error detection algorithm. The vehicle inertial motion for the drive
recorded for experimental run E1 is shown in figure G-1 for all six motion channels. MCA
output for this motion condition is also shown in this figure. As shown in Appendix E, this
MCA output was reproduced accurately by the CMS.

The vehicle inertial motion and MCA output were given to the motion cueing error detection
as an input. The parameters of this algorithm were set to those found in the experiment. For
completeness, an overview of these parameters is given in table G-1.

The output of the algorithm is shown in figure G-2. The following comments can be made
about this output:

ax - For the longitudinal specific force ax scaling errors were detected at the begin and end
of the run. Given that a scaling factor of 0.3 was applied for longitudinal motion, this
finding was expected. The algorithm also detects F2 errors in nearly every corner. This
finding is attributed to the combination of the applied tilt coordination and the slight
yaw of the cabin, which introduces a small false longitudinal specific force slightly above
threshold level Φ.

ay - The lateral specific force signal features the most motion cueing errors, of varying type.
Most errors are identified correctly, however, a number of comments should be made.

1. The F3a error near t = 75 s is detected as both an F3a and F3b error. The same
holds for the accompanying error in ωx. Increasing the maximum allowable gap
between equal errors would ensure these errors are detected as one single F3b error,
increasing the minimum duration of an F3b error (∆tmin) could ensure this error
is labelled as an F3a error only instead.

2. The two smallest phase errors (with a delay of 0.6 s and 1.5 s) are detected, the
largest phase error (with a delay of 2.5 s, at t = 350-375 s), however, is not labelled
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as a phase error. Instead, an S2 and F2 are identified in succession. This deficiency
highlights the problems encountered with phase errors, and suggests these errors
might have to be redefined in terms of properties.

3. The F3b error between t = 200-225 s is not detected by the algorithm. This is
most probably caused by the high-frequency disturbance not containing enough
power.

4. Experiment run E1 features condition C12 between t = 100-125 s. The coherence
level ρ2

LF(t) of condition C12 drops to 0.65, which is below the threshold level
ρ2

LF,min = 0.7. This error is not detected, however, since the Power Ratio does not
drop below 0.7.

az - For the vertical force a false cue is detected in nearly every corner. This finding is
the result of the applied tilt coordination angle, which decreases the gravity component
along a subject’s z-axis.

ωx - The roll rate ωx of the vehicle is always below threshold level, the MCA output only
exceeds the threshold level Φ around t = 500 s. This error is detected by the algorithm
as an F2 error.

ωy - The pitch rate ωy only exceeds the threshold level Φ on one occasion, around t = 545
s. This error is detected by the algorithm as an F2 error.

ωz - The yaw rate ωz of the vehicle is not simulated by the MCA, as a result a succession
of S2 errors is detected in each corner.
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Table G-1: Parameter settings and values used during the analysis of the inertial motion presented
in the experiment described in the IEEE paper.

Algorithm step Parameter Value

Input
∆t (Input) 0.001 s

∆t (Output) 0.001 s

Step 0&3

Φ(ax) 0.04 m/s2

Φ(ay) 0.04 m/s2

Φ(az) 0.08 m/s2

Φ(ωx) 3 deg/s
Φ(ωy) 3 deg/s
Φ(ωz) 3 deg/s

Step 1

Wavelet function Frequency-based
Wavelet type Complex
Wavelet name Morlet

ω0 4 rad/s
Lag-1 autocorrelation α 0.9
Sig. confidence level α 0.95

Step 2A fmin of HF error 0.5 Hz

Step 2B

∆tmin 0.5 s
PRmin 0.7
PRmax 1.3

fmin for ρ2
HF(t) 2 Hz

fmax for ρ2
HF(t) 10 Hz

ρ2
HF,min 0.7

Step 4

fmin for ρ2
LF(t) 0.05 Hz

fmax for ρ2
LF(t) 0.5 Hz

ρ2
LF,min 0.7

fmin for ∆φ(t) 0.05 Hz
fmax for ∆φ(t) 0.5 Hz

∆φmax 16.4 deg

Post-process ∆tgap,max 0.2 s

Simulator motion cueing error detection using a wavelet-based algorithm Tim van Leeuwen



116 Algorithm experiment output

-4

-2

0

2

a x
[m

/s
2
]

Vehicle motion
MCA Output

-2

0

2

a y
[m

/s
2
]

-0.3

-0.2

-0.1

0

0.1

a z
[m

/s
2
]

-2

0

2

ω
x
[d
eg
/s
]

-2

0

2

ω
y
[d
eg
/s
]

0 100 200 300 400 500

Time [s]

-5

0

5

ω
z
[d
eg
/s
]

(a) Longitudinal specific force ax (forward positive).
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(b) Lateral specific force ay (left positive).
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(c) Vertical specific force az (upwards positive).
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(d) Roll rate ωx.
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(e) Pitch rate ωy.
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(f) Yaw rate ωz.

Figure G-1: Inertial vehicle motion and MCA output for experiment run E1. Positive specific
force directions have been given, rotational rates follow the right-hand rule.
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Figure G-2: Motion cueing error detection algorithm output for the vehicle inertial motion and
algorithm output of experiment run E1.
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Part II

Preliminary Thesis: Objective identification of
motion cueing errors in motion simulation

using wavelet analysis
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Acronyms

CMS CyberMotion Simulator
COI Cone of Influence
CWT Continuous Wavelet Transform
DOF Degrees of Freedom
DOG Derivative of a Gaussian
FR Frequency Resolution
MCA Motion Cueing Algorithm
MPI Max Planck Institute for Biological Cybernetics
PR Power Ratio
ROI Region of Influence
SRS Simona Research Simulator
TR Time Resolution
TU Delft Delft University of Technology
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List of Symbols

Greek Symbols

α Lag-1 red noise autocorrelation coefficient [-].

∆ Difference operator.

ρ Wavelet coherence [-].

σ Signal standard deviation.

τ Time shift of a wavelet [s].

Φ Perceptual threshold for acceleration or rotation.

φ Signal phase (difference) [◦].

Ψ Fourier transform of wavelet function.

ψM Mother wavelet function.

ψ Daughter wavelet function, a scaled and translated version of ψM .

ω Rotational rate [◦/s]

ω Frequency [rad/s]

ω0 Complex Morlet wavelet frequency at a scale of 1 [rad/s].

Roman Symbols

a Acceleration [m/s2].

F Fourier transform operator.

F Fourier transform of time signal.

f Time signal.

fb Complex morlet, Shannon and Frequency B-spline modulating wave decay para-
meter [-].
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124 List of Symbols

fc Complex morlet, Shannon and Frequency B-spline wavelet carrier wave frequency
parameter [Hz].

H(ω) Heaviside step function.

i Unit imaginary number.

k Frequency index.

M Sinc-function power for the Frequency B-spline wavelet.

m Paul wavelet parameter.

N Total number of data points [-].

n Daubechies wavelet number.

n Derivative order for a (complex) Gaussian wavelet.

ndf Number of degrees of freedom.

P Fourier power spectrum.

P Period [s].

S Scaling function in time and frequency.

s Scale factor of a daughter wavelet [-].

t Time [s].

t0.025 Point in time before which 2.5% of wavelet energy is contained.

t0.975 Point in time after which 2.5% of wavelet energy is contained.

W Wavelet transform.
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Chapter 1

Introduction

Ever since humans mastered the art of flying the importance of pilot training has been recog-
nised, especially with the first aircraft being unstable in flight. Since in-flight training was
dangerous in the early days of flight methods were quickly developed to train pilots on the
ground, leading to the invention of the first flight simulators. Flight simulators have evolved
together with aircraft ever since, with modern flight simulators being able to provide pilots
with visual, vestibular, auditory and proprioceptive cues in a realistic environment.

Two examples of modern day high-end flight simulators are shown in Figure 1-1, the Simona
Research Simulator (SRS) of the Delft University of Technology (TU Delft) and the Cy-
berMotion Simulator (CMS) of the Max Planck Institute for Biological Cybernetics (MPI).
The SRS is a typical example of a hexapod motion simulator, in which a cabin is placed on
six hydraulic or electric actuators. Such hexapod simulators offer the possibility to provide
high accelerations for big payloads and are inherently safe because the actuators function in a
closed chain (Teufel et al., 2007). The CMS is an example of a serial robot simulator, in which
the actuators are placed in series rather than parallel. This positioning offers the advantage
of a bigger dexterity and a larger motion envelope (Robuffo Giordano et al., 2010).

Figure 1-1: Two modern simulators, the Simona Simulator of the TU Delft (left) and the MPIs
CyberMotion Simulator (right).
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Using these simulators for training and research instead of real aircraft offers advantages
through reduction of cost, pollution, noise and air traffic density (Rolfe & Caro, 1982;
Baarspul, 1990, p18). Additionally simulators allow for (repeated) exact replication of cer-
tain situations and execution of only part of a task (Sanders, 1991, p1016), a feature which is
beneficial for both training and research. To validate the use of simulators for these purposes
various research has been done into the effectiveness of motion simulators, leading to the
conclusion that motion simulators indeed lead to effective knowledge transfer in training (de
Winter, Dodou & Mulder, 2012; Pool, Harder & van Paassen, 2016).

1-1 Problem statement

Because of their limited motion envelopes motion simulators are unable to exactly replicate
large input vehicle motion. As a result discrepancies occur between the desired motion and
the motion presented by the simulator (leading to a decrease in objective simulator fidelity)
and the desired motion and the motion experienced by a simulator occupant (decreasing
a simulator’s perceptual fidelity) (Advisory Group for Aerospace Research & Development,
1980, p1). Understanding how such motion cueing errors influence perceptual (or perceived)
simulator fidelity is key to improving motion simulators in the future.

To investigate this issue research is ongoing at the MPI. With simulator fidelity mostly defined
as an overall concept, the time-varying nature of simulator fidelity has been investigated
through the development of a Continuous Rating tool (Cleij et al., 2015). In continuation of
Cleij’s project attempts are now being made to predict Continuous Rating traces for a given
simulation by analysing the magnitude of simulation errors being made. Preliminary results of
this research look promising, however they appear to show that humans rate errors not solely
on the magnitude of that error but also on the type of error. As such, predicting the perceived
fidelity of a simulation can be improved by taking into account the effect of different types
of motion simulation errors. Currently no algorithm exists however to objectively identify
different types of motion cueing errors.

1-2 Project goal

The goal of this master thesis project is to design, test and evaluate an algorithm capable of
detecting various types of motion cueing errors in a motion simulator input/output trace. In
short the algorithm should make the conversion shown in Figure 1-2 (p127).

In this figure three different motion cueing errors (discrepancies between simulator input and
output) are shown, all with equal magnitude (as indicated by the shaded areas). It can be
argued however that all three errors belong to a different type. This distinction should be
detected by the algorithm, showing what errors are present at what points in time. Such a
detection would then allow for assigning different weights to these errors in the Continuous
Rating reconstruction, leading to better prediction of human rating behaviour.

Since both the time of occurrence and frequency content of a motion cueing error are of
interest (the latter allowing to comment on the type of error) the method of wavelet analysis
is chosen as as method of analysis in this project.
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Figure 1-2: Visual representation of the goal of this master’s thesis project. Different types of
errors in motion simulator input/output signals should be detected by the algorithm.

1-3 Research questions

The project goal described in the previous section has been summarised in the following
research question:

How to design an objective identification algorithm for both time- and frequency-localisation
of different types of motion cueing errors to improve the knowledge on these errors in

motion simulation?

This main research question has been divided into several subquestions, which can be answered
one by one in answering the research question as a whole.

1. Can we come up with a set of mutually exclusive categories of motion cueing errors?
1a. What are possible causes of these categories of errors?

1b. What properties distinguish these error types?

1c. What mathematical technique(s) allow(s) for identifying these properties and dif-
ferences?

2. How does the wavelet transform of a single signal work?
2a. Are there any prerequisites on the signal?

2b. What computations are necessary to perform a wavelet transform?

2c. What kind of output does one obtain following a wavelet transform?

2d. Does the wavelet transform have any limitations?
3. Which wavelet types are best suited for motion cueing error detection?

3a. What different types of wavelets are commonly used?

3b. What are the advantages of these types of wavelets?
4. How do you compare two wavelet-transformed signals?

4a. What options for comparison are available?

4b. Is there a specific type of data these methods are most suited to?

4c. What method is best suited for the comparison of motion simulator input and
output?

5. How can we verify and validate that the algorithm functions correctly?
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1-4 Report structure

The structure of this preliminary thesis is as follows. A general introduction into motion
simulation is given in chapter 2, allowing for explanation of the various errors made (and
their origins) in such a simulation. In this chapter a categorisation of motion cueing errors is
then proposed, as such answering subquestion 1.

Chapter 3 then discusses the mathematical technique of wavelet analysis, the spatio-temporal
analysis method which is to be used in this research project. Both the general idea of wavelet
analysis and the options available within this analysis are discussed, answering subquestions
2 and 3. Chapter 4 then continues on this explanation to investigate how two time signals
can be compared using wavelet analysis (providing answers to subquestion 4) and how the
error properties discovered in chapter 2 can be identified from such an analysis.

Having then categorised motion cueing errors and their properties on the one hand and
evaluated the possibilities wavelet analysis offers on the other hand, chapter 5 then brings
these two fields of knowledge together by proposing an algorithm for motion cueing error
detection which uses the possibilities of wavelet analysis to identify mathemathical error
characteristics from simulator input and output signals. The algorithm is then tested by
running simulations on idealised motion cueing errors.

This preliminary thesis report is then concluded in chapter 6, in which the results of this
preliminary thesis are presented and discussed, an outlook to future work is given and a
proposal for a simulator experiment is treated.
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Chapter 2

Motion Cueing Errors

In this chapter a description and categorisation of various types of motion cueing errors will
be given. To do so, the process of motion simulation will first be described in section 2-
1. Although this process is strictly beyond the scope of this project (the algorithm to be
developed simply takes an input and output signal without bothering how they came to be),
the description in this section will make it easier to understand what sources of motion cueing
errors can be distinguished.

Following this explanation of motion cueing a distinction between various error types will
be proposed in section 2-2, with section 2-3 discussing the (mathematical) characteristics of
these errors. These characteristics should then allow for error identification later on. The
conclusions of this chapter with respect to the research questions introduced in chapter 1 are
then summarised in section 2-4.

2-1 Motion cueing

As explained previously all motion simulators are limited by the amount of motion space
available to them. In order to simulate vehicle motion a mapping is therefore needed from
vehicle motion to simulator motion, this mapping is taken care of by a so-called Motion
Cueing Algorithm (MCA). Various types of MCA exist, all of which exploit flaws in the
human sensory system. One of the first MCA techniques is (classical) washout filtering, first
introduced by Schmidt and Conrad and later well explained by Reid and Nahon (Schmidt &
Conrad, 1970; Reid & Nahon, 1986). This technique will be used to illustrate the principles
of motion cueing and to highlight sources of errors in motion simulators.

In washout filtering motion is split into two cues: a (high-frequency) onset cue and a (low-
frequency) sustained cue. This split is illustrated in Figure 2-1, in which a step input in
acceleration (in longitudinal direction in case of the example) is split up in its high- and
low-frequency components. In order to keep the simulator within limits only the onset cues
are presented to an occupant directly by translating the simulator, sustained accelerations are
simulated by tilting the entire simulator in a process called tilt coordination. By tuning the
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Figure 2-1: Illustration of the washout filtering process, in which motion is split into a high-
frequency onset part and a low-frequency sustained part.

classical washout filter’s parameters specific motion frequencies can be designated to either
onset cueing or to tilt coordination, in this way one can assure a simulator will always remain
within its operational limits.

Both washout (the slow return of a simulator cabin to its neutral position following an on-
set cue) and tilt coordination make use of the imperfections of the human sensory system.
Washout exploits human perceptual thresholds by moving the simulator back to its neutral
position using accelerations not perceivable to humans, as such ensuring the simulator retains
its capacity to move in all directions. Tilt coordination on the other hand lets humans per-
ceive an acceleration by rotating them at a sub-threshold angular velocity, leading them to
mistakenly perceive a component of gravity as a longitudinal or lateral acceleration (Salisbury
& Limebeer, 2016; Baarspul, 1990, p108). Using these two techniques enables vehicle motion
to be replicated without exceeding a simulator’s motion envelope, if the classical washout
filter is well-tuned.

2-2 Error types

Irrespective of the tuning of a simulator the process of classical washout filtering (or any
other MCA) is never able to exactly reproduce motion profiles from a certain motion intensity
onwards (depending on the simulator motion envelope and the tilt coordination rate limiting
used). As a result the motion perception induced by simulator motion will not fully correspond
to the visual motion presented to a subject (which is a one-to-one copy of the vehicle motion),
this mismatch will from now on be defined as the Motion Cueing Error.

Currently the quality of a simulation is often assessed by analysing the (squared) sum of these
errors made in a simulation, applying a weighting factor for each motion channel (Naseri &
Grant, 2005; Ko, 2012, p20). Such an approach assumes all motion cueing errors to be equally
bad, as mentioned in the introduction however research suggests this is not the case. It is
helpful therefore to define different types of motion cueing errors.

One such distinction was proposed by Fischer (Fischer, 2009, p52), who distinguished between
scale errors (the difference between a simulator input and the scaled version of that input
used by the MCA of that simulator) and shape errors (the difference between the scaled
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input and the simulator output). The term shape error had already been introduced by
Grant, Blommer, Artz and Greenberg (Grant et al., 2003), who argued that ”the error due
to scaling is to be considered separately from the shape error because the reduction in fidelity
may be of a different order”.

A limitation of this breakdown of error types is that the use of an MCA with constant
scaling by a known scaling factor (such as a Classical Washout Filter) is assumed, allowing
for separating scale errors from shape errors. This assumption of a constant scaling factor
brings a limitation: novel motion cueing techniques such as the perception-based motion
cueing (PBMC) algorithm developed at the Max Planck Institute for Biological Cybernetics
make use of scaling factors varying over time (Venrooij et al., 2015). It is for this reason that
the aforementioned division between shape and scale errors is not suitable for this project,
since that would require prior knowledge of the MCA used and would exclude algorithms
applying varying input scaling.

Another research project investigating the relation between error signal characteristics and
perceived simulator fidelity was performed by Casas, Inmaculada, Riera and Fernández (Casas
et al., 2015). Besides investigating the effect of error magnitude through the (Normalised)
Average Absolute Difference and the effect of input scaling by determining the Average Ab-
solute Scale, Casas et al. also investigated the influence of the correlation between simulator
input and output. All these quantities however were computed over two input and output
signals as a whole, providing no basis of identifying motion cueing error types in time. The
mathematical characteristics identified in this research will be helpful for this project however.

A comprehensive overview showing a distinction between and definition of motion cueing error
types was given by Grant and Reid (Grant & Reid, 1997), who distinguished three different
error types: false cues, scaled/missing cues and phase errors. This categorisation of errors
allows for identifying errors produced by any simulator and MCA without requiring prior
knowledge, hence this error type distinction will serve as a basis for the error type distinction
used in this report.

Grant and Reid propose a threefold definition of false cues, in this thesis we will let this lead
to three types of false cues:

Type I false cue - Grant and Reid refer to the first type of false cue as ”a motion cue in
the simulator that is in the opposite direction to that in the aircraft” (naturally this can
be extended to any vehicle). A typical cause for such an error is simulator washout (a
simulator’s return to its neutral position which requires an acceleration opposite to the
acceleration being simulated) or a simulator braking near the end of its displacement
envelope.

Type I false cues also arise at the (smooth) ending of a sustained rotational rate. Since
rotational rates are often only high-passed a simulator’s output near the end of a sus-
tained rotational input will be close to zero, and then increase as the input decreases
back to zero. An illustration of this effect for an acceleration trace is given in the top-left
of Figure 5-5 (page 171).

Another cause of such an error might be the tilt-coordination process. When simulating
a sustained forward acceleration a subject will be tilted backwards. In case the subject’s
head is centred above the centre of rotation of the simulator cabin this tilting will result
in a backward head acceleration, leading to a Type I false cue.
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Type II false cue - Grant and Reid describe a Type II false cue as ”a motion cue in the
simulator when none was expected in the aircraft”. Two typical examples of this stem
from the tilt-coordination process applied by all motion cueing algorithms. One example
shows in Figure 1-2 around t = 10s, where the relatively slow tilt coordination response
causes the subject to perceive an acceleration even when the vehicle acceleration has
dropped already. Grant and Reid refer to this cause as the tilt-coordination remnant.

The tilt-coordination process also introduces false tilt rates to simulate sustained accel-
erations (when simulating an aircraft take-off the subject will pitch backwards during
the acceleration, a real aircraft doesn’t pitch at the moment yet). Usually these tilt
rates are kept at sub-threshold levels (such that a subject won’t notice them), this is
not always the case however. A final cause of a Type II false cue is referred to by Grant
and Reid as G-tilt. In case an aircraft makes a banked (coordinated turn) the simu-
lator cabin will be tilted to simulate the banking, this however introduces a sideways
acceleration due to gravity which is not present in an aircraft performing a coordinated
turn.

Type III false cue - This type of false cue is referred to by Grant and Reid as ”a relatively
high-frequency distortion of a sustained cue in the simulator for an expected sustained
cue in an aircraft”. A typical cause for this error is a badly-tuned simulator hitting its
safety/displacement limit, causing an abrupt stop of the simulator.

Another cause for Type III false cues are high-frequency simulator vibrations/noise as
a result of the motion presented by a simulator. This especially is a problem for serial
simulators such as the MPIs CMS, in which vibrations build up through all serial links.
Hexapod simulators (which are actuated in parallel) suffer less from this phenomenon.

Scaling errors (in which the simulator presents a scaled-down version of the input motion at
certain frequencies) are present in virtually all motion simulations, as in general all motion is
scaled down in a simulator to limit simulator displacement. This scaling has been shown not
to be detrimental for perceived simulator fidelity per se, possibly even improving perceived
fidelity as humans tend to rate simulator motion as being ’too strong’ in case one-to-one visual
and motion cues are presented (Berthoz et al., 2013). Again two types of scaling errors are
distinguished.

Type I scaling error - The first type of scaling error could be described as an ideal scaling
error, in which the scaling constant applied to the simulator input signal is constant
for all frequencies. An example of such an error is shown between t = 2s and t = 4s in
Figure 1-2, showing a scaling factor of about 0.8.

Type II scaling error - Type II scaling errors are caused by signal attenuation which is
not constant over all frequencies. A typical cause of such errors are the motion filters
applied in Motion Cueing Algorithms: often a high-pass filter is used to simulate onset
cues and a low-pass filter is used to regulate the tilt-coordination process. These filters
are often not complementary however, meaning that mid-frequency signal content is
often attenuated. Referring to Figure 1-2 such an error can be seen at t = 6s: even
though both the actual vehicle and the simulator present motion the simulator response
misses power in certain middle-frequency bands.
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The final error type identified by Grant and Reid are phase errors, which we define as ”simu-
lator cues presented with a delay with respect to that same cue in the real vehicle”. Possibly
causes of such a delay are rate- or acceleration-limits of a simulator and simulator inertia
(although the latter has less influence for properly-actuated simulators).

As a wrap-up all types of motion cueing errors are summarised in Table 2-1.

Error category Error type Description

False cue Type I Perceived simulator motion at a certain frequency op-
posite to the vehicle motion being simulated.

Type II Perceived simulator motion at a certain frequency when
there is no (or far less) vehicle motion in that channel.

Type III A noticeable high-frequency disturbance in a sustained
simulator cue during a sustained vehicle manoeuvre.

Scale error Type I Perceived motion in a sensory channel scaled at all fre-
quencies with respect to the input signal, leading to sim-
ilar signal behaviour.

Type II Perceived motion on a sensory channel scaled at a subset
of frequencies with respect to the input signal, altering
the signal behaviour.

Phase error A simulator cue is presented with a perceivable delay
with respect to that same cue in a real vehicle.

Table 2-1: Proposed definitions of categories and types of motion cueing errors, based on Grant
and Reid (Grant & Reid, 1997).

Of these three error types false cues have proven to be most detrimental to perceived simulator
fidelity (Grant & Reid, 1997; Reid & Nahon, 1987), partially explaining why most research
focusses on the aforementioned shape errors and explaining why scaling errors and phase errors
are discussed little in literature. Scaling errors occur most frequently as any simulator makes
use of motion scaling. As a result these two error types are most important to distinguish in
motion simulator input/output signals, hence distinguishing these five types of errors is the
main goal of this thesis.

2-3 Error characteristics

In the previous section a distinction has been made between the various types of motion cueing
errors. This section will highlight (mathematical) characteristics of these errors, which will
help recognising these errors from given simulator input and output signals. Emphasis will
be put on the duration, frequency and power ratio (defined as ratio of the output signal
value and the input signal value over time) of the errors, as these characteristics will allow
for discriminating the errors. Also the coherence between the input and output signal will be
discussed. The first two error characteristics allow for time and frequency localisation of the
errors, the latter two error/signal characteristics follow the work of Casas et al. (Casas et al.,
2015).
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Type I false cues - As mentioned previously a Type I false cue typically originates from
simulator washout, the tilt coordination process or simulator braking. All of these
processes take place at middle to low frequencies, as a result Type I false cues are
expected at all but the very high frequencies. In case a Type I false cue is caused by the
high-pass rotational filters then the error will also contain high-frequency power, with
additional mid-frequency power caused by the damping out of the error.

False cues tend to last in the order of 1 second, depending on the tilt rate being applied
in the tilt coordination process and the filter settings of an MCA. In case of a Type I
false cue the input and output signals won’t match too well (being of opposite sign),
leading to poor coherence. The power ratio at the specific frequency of the Type I false
cue will be negative by definition.

Type II false cues - As mentioned previously Type II false cues are mainly caused by tilt-
coordination artefacts. The tilt-coordination process takes place at middle and low
frequencies, Type II errors therefore are expected at these frequencies and last in the
order of 1 second. Since the simulator presents motion which is not or hardly present
in the input signal the coherence between the two signals is low, and the power ratio
at the error frequency is (much) larger than 1 (since the output signal contains power
whereas the input signal did not/contained little).

Type III false cues - Type III false cues stand out due to them only containing high-
frequency content (much higher than common simulated motion). In case this high-
frequency content is caused by the simulator hitting a displacement limit the signal
power is usually very high, in case a Type III false cue is caused by simulator vibrations
power will be relatively low. Displacement limit errors are also expected to last very
short, whereas simulator vibrations are ever-present. For this reason a distinction will
be made between these two origins of Type III false cues, to be referred to as Type III-1
and Type III-2 false cues from now on.

Since these high-frequency vibrations are not present in the input signal the correlation
between simulator input and output will be low. For Type III-1 false cues the power
ratio can take on any value, for Type III-2 errors the power ratio is expected to be close
to 1 in case the simulator input is non-zero (for simulator input close to zero, the noisy
output can cause the power ratio to take on any value).

Type I scaling errors - A Type I scaling error is characterised by the fact that the shape
of the simulator output matches the input’s shape but is scaled down. As a result the
coherence between the two signals remains high and the power ratio at all frequencies
is smaller than 1. Since Type I scaling errors usually arise from the scaling of the whole
input signal they occur at all frequencies and last long.

Type II scaling errors - As illustrated by Figure 1-2 a typical Type II scaling error (or a
missing cue) is the opposite of a Type II false cue. As a result the expected frequency
at which the error occurs and duration for which it lasts are similar: all but the very
high frequencies are expected (since Type II scaling errors also mostly originate from
the tilt coordination process) at a relatively long duration. Again the coherence at the
frequency of the error is low, since the input signal contains power the output signal
does not. As a result the power ratio will be smaller than 1.
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Phase errors - Finally phase errors are characterised by their phase difference, meaning that
the simulator output signal lags behind the input signal at specific (or all) frequencies.
Phase errors can occur at any frequency, though will be most noticeable and occur
at similar durations as the errors mentioned previously (apart from the Type III false
cues). In case of a pure phase error the coherence between two signals will remain high
(as their frequency content is equal but slightly time-shifted), setting this error apart
from most other errors. Like for a Type III-2 false cue the power ratio can take on any
value, but will in general be close to 1.

To summarise, an overview of all mathematical properties of the different error types is given
in Table 2-2 below. These properties will be exploited in chapter 5 in order to identify different
motion cueing error types in a simulator input/output signal.

Error category Type Cause Duration Frequency Coherence Power ratio

False cue Type I All Long Mid-Low Low P < 0
Type II All Long Mid-Low Low P > 1
Type III Limit Short High Low

Noise Long High Low P ≈ 1
Scaling error Type I All Long All High 0 < P < 1

Type II All Long Mid-Low Low 0 < P < 1
Phase error All Long All High P ≈ 1

Table 2-2: Mathematical characteristics of the motion cueing error types defined in Table 2-1.

2-4 Chapter conclusions

In this chapter most of research question 1 (introduced in section 1-3 and discussing the
categorisation of motion cueing errors) has been treated. The following answers have been
provided:

1. Can we come up with a set of mutually exclusive categories of motion cueing errors?
Three categories of motion cueing errors are distinguished: false cues, scaling errors and
phase errors. Three further types of false cues are distinguished, along with two types
of scaling errors.
1a. What are possible causes of these categories of errors?

Most motion cueing errors are caused by overall input scaling applied by most
MCAs, as well as the tilt-coordination process in motion simulation (which is the
main solution motion cueing algorithms provide for simulating sustained accel-
erations). Errors are primarily caused by the limited tilt rate allowable for this
solution (having to remain below perceptual threshold levels), leading to lag in the
onset of cues (missing cues) and lag in returning to zero tilt (false cues).

1b. What properties distinguish these error types?
The three categories of motion cueing errors (and their type subdivision) can be
distinguished by their frequency content, duration, signal coherence and power
ratio.
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Chapter 3

Wavelet Analysis

As mentioned in chapter 1 the algorithm to be designed will make use of a spatio-temporal
mathematical analysis technique. Multiple such techniques exist (such as the Short Time
Fourier Transform and Windowed Fourier Transform), for this project however wavelet ana-
lysis is chosen as it is more efficient in making a time-frequency decomposition (Daubechies,
1992, p9). This chapter will detail on this technique as well as the options it provides.

First the reason for choosing wavelet analysis will be explained in section 3-1, with section 3-2
then explaining how a wavelet analysis is carried out. Available options are then explored
in section 3-3 by providing an overview of the different wavelet types available as well as the
effects of their parameters. Finally artefacts in wavelet analyses are discussed in section 3-
4, with ways of dealing with these effects being proposed. Again chapter conclusions are
summarised in section 3-5.

3-1 Choosing wavelet analysis

Signal analysis can be performed in both the time- and frequency domain. Both methods
of analysis have their benefits and disadvantages, with time-domain plots allowing for pre-
cise localisation of signal features in time but offering little information on signal content.
Frequency analysis methods (such as Fourier transforms) on the other hand are able to give
insight into signal content but lose all time resolution. As a result, neither pure time- nor
frequency based methods are able to comment on both a signal’s frequency content (needed
to comment on error type) and its instance of occurrence.

Spatio-temporal analysis methods combine the best of both worlds by splitting a signal out
in both the time and frequency domain. Daubechies compares such a representation to
music notation, in which a musician is told to play what tone (frequency) when (in time)
(Daubechies, 1992, p1). Wavelet analysis allows for analysis of the frequency of a signal in
a more extended way than for example the Fourier transform does. An illustration of this
difference is given in Figure 3-1.

Simulator motion cueing error detection using a wavelet-based algorithm Tim van Leeuwen



138 Wavelet Analysis

Figure 3-1: Illustration of the advantage of wavelet analysis over pure time/frequency domain
analysis. The Fourier transforms of signals y1 and y2 are equal, but their wavelet transforms
(right) show frequency power evolving over time.

Figure 3-1 shows two signals which are each other’s mirror image in time. Two different
periods can be recognised (2s and 4s), corresponding to frequencies of 0.5Hz and 0.25Hz
respectively. The two signals’ Fourier transforms (shown at the bottom left) are actually
identical, as both signals contain equal power (albeit at different points in time). Since the
Fourier transform loses all time resolution it is unable to tell when each frequency occurs.

This is where the advantage of the wavelet transform shows, as from the wavelet transform
plots on the right we can clearly distinguish signal 1 (top right) to contain power at a period
of 2 seconds first and then ’drop’ to a period of 4 seconds. For signal 2 this is exactly the
other way around, consistent with the visual observation from the top left image.

It is this ability to provide both time- and frequency-information of a signal that makes wavelet
analysis an interesting technique for many signal analysis applications. As a result wavelet
analysis has already been used in a host of research fields, including geophysics (Torrence &
Compo, 1998; Cooper & Cowan, 2008; Jonah et al., 2015), biology (Valle-Levinson, Castro,
Cáceres & Pizarro, 2014; Yochum, Renaud & Jacquir, 2016; Chang & Glover, 2010) and
economics (Jammazi & Aloui, 2015; Kristoufek, 2015; Papaioannou, Dikaiakos, Evangelidis,
Papaioannou & Georgiadis, 2015; Pei, Zhang, Li & Lee, 2015).

Most of these examples use wavelet analysis for investigating the evolution of a single signal’s
frequency content over time, such as the variation in sea temperature, heart rate or exchange
rate. The current project differs from these studies in two ways: firstly the current study does
not aim to investigate the content of a (single) signal but aims to comment on the content
of the difference between two signals, and secondly the motion cueing signals in this study
are not expected to be of periodic/oscillating nature (like sea temperatures, which vary per
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season, and exchange rates are). As a result the current project represents a new application
of wavelet analysis in a new research domain.

3-2 Wavelet theory

Having established the benefits of the Continuous Wavelet Transform (CWT) in the previous
section, the current section will explain the computations performed during a CWT. This
explanation will be done in a graphical way in subsection 3-2-1, followed by a mathematical
explanation in subsection 3-2-2.

3-2-1 Graphical explanation

The key idea behind wavelet analysis is that the similarity between an input signal and a
wavelet with a specific frequency is determined at various points in time. By stretching or
compressing the wavelet (and thus altering its characteristic frequency) different frequencies
can be analysed, different points in time are evaluated by translating this wavelet.

A graphical explanation of this process is shown in Figure 3-2, in which the CWT of signal
y1 in Figure 3-1 has been repeated. Highlighted in the top-left of this figure are three time-
frequency points, each corresponding to one of the other three plots.

Figure 3-2: Illustration of the CWT, in which a signal is compared to a stretched and translated
version of a wavelet at various locations in the time-frequency domain.

Starting with the blue dot, the top-right figure shows signal y1 together with a complex Morlet
wavelet (ω0 = 6) translated by τ = 2.5s and stretched by a factor s = 2. For this particular
wavelet this scale corresponds to a period of roughly 2 seconds too. As is easily observed the
period of signal y1 and the wavelet are nearly equal, meaning the inner product of the signal
and the (real part of the) wavelet will result in a high value. As such the CWT-value at t =
2.5s and P = 2s becomes high.
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Time-shifting the wavelet to τ = 16s (as illustrated by the green dot and bottom left figure)
results in two signals that don’t align, therefore the inner product (with both the real and
complex part of the wavelet) will now be low. For this reason the top left plot indicates little
power at a period of 2s at t = 16s.

This changes when we also stretch the wavelet to a scale of 4 (bottom right figure), now the
wavelet (with P = 4s) matches the period of the signal after t = 12s. As a result, the inner
product of signal y1 with the complex part of the wavelet now becomes large, resulting in a
high value when we plot the absolute value of the CWT (as we do in Figure 3-2).

This process of translating and scaling a wavelet and then computing its inner product with
the signal is repeated for all scales of interest and all time points available, resulting in the
construction of a CWT contour plot as shown in the top left of Figure 3-2.

This graphical explanation reveals a requirement placed on CWT input signal: Since most
signals used for wavelet analysis are discrete (stemming from measurements for example) the
inner product described will be executed in a discretised fashion as well. To allow for shifting
of the wavelet this means that the signal evaluated has to be sampled with a constant time
interval ∆t. For simulator signals this should not be a problem, with most motion simulators
sampling at a constant sample rate (and IMUs for example sampling at a constant rate too).

3-2-2 Mathematical explanation

In this subsection the mathematical details of the process explained graphically in the previ-
ous subsection will be gone through, based on the explanation given by Torrence & Compo
(Torrence & Compo, 1998). As explained previously the wavelet transform of a signal is
determined by computing its inner product with a wavelet at various scales at various points
in time. Two conditions need to be satisfied for a signal to be suitable as a wavelet:

∫ ∞

−∞
ψM (t) dt = 0 (3-1)

∫ ∞

−∞
|ψM (t)|2 dt = 1 (3-2)

The first requirement states that a wavelet should have zero mean, the second requires a
wavelet to oscillate around zero and go to zero for large values of |t|. This requirement to
oscillate guarantees that all wavelets have a characteristic period, which allows for retriev-
ing frequency information. From the mother wavelet a daughter wavelet is then formed by
translating by τ and stretching by a scale factor s:

ψ(t, τ , s) =
1√
s
· ψM

(
t− τ
s

)
(3-3)

It can easily be verified that a daughter wavelet satisfies conditions (3-1) and (3-2) in case
the mother wavelet ψM does so too. Using Equation (3-3) allows for computing the inner
product of the analysed signal f(t) and the daughter wavelet at any time shift τ and scale s:

W (τ , s) = f(t) · ψ∗(t, τ , s) (3-4)
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In this equation ψ∗(t, τ , s) represents the complex conjugate of the wavelet function. Re-
peating this process for all τ the CWT of signal f(t) for a given scale can be computed by
convoluting f(t) with the daughter wavelet:

W (s, t) =
1√
s

∫ ∞

−∞
f(τ) · ψM ∗(

t− τ
s

)dτ (3-5)

This convolution operation is computationally expensive and can be performed easily in the
frequency domain in case a Fourier Transform of the wavelet function is available (F denotes
the Fourier transform):

W (s, t) = F−1 [F(f(t)) · F(ψ∗(t, s)] = F−1 [F (ω) ·Ψ(sω)] (3-6)

Evaluating Equation (3-6) at multiple scales allows for constructing a time-frequency wavelet
power decomposition such as the one shown in Figure 3-1. Since the CWT is often complex
(as multiple wavelets are complex) there are various ways of plotting the transform, in this
thesis the absolute value of the CWT will be plotted unless stated otherwise.

From this mathematical description a number of limitations of the continuous wavelet trans-
form become apparent. These are summed up below:

1. In case f(t) is a constant, combining Equation (3-1) with Equation (3-4) leads to the
conclusion that the CWT of a constant equals zero. This means that zero-frequency
signal content can’t be detected by the CWT, in fact when computing the CWT in the
frequency domain a signal’s average is first removed.

2. The use of the Fourier transform means that the maximum frequency to be analysed is
determined by the Nyquist frequency, equal to half the signal sampling rate.

3. The minimum observable frequency (or maximum period) is determined by total obser-
vation time of a signal.

4. In case Equation (3-5) is used to determine the CWT the signal is padded with zeros
in case the wavelet extends to outside the signal observation period. The same problem
is encountered in Equation (3-6), in which the Discrete Fourier Transform assumes the
analysed signal to be periodic. As a result results near the edges of the CWT can not
be trusted, this artefact is further discussed in section 3-4.

3-3 Wavelet options

Within the mathematical process described in the previous section a wide variety of wavelets
can be used, with both the wavelet type and wavelet parameters being variable. In current lit-
erature no complete overview of these wavelet types and parameters has been found, therefore
an attempt is made to create such an overview in subsection 3-3-2. Before such an overview
is given the topic of wavelet resolution has to be discussed, this is done in subsection 3-3-1.
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3-3-1 Wavelet resolution

Just like discrete time signals have a finite time resolution and a signal’s Fourier Transform
only provides a certain frequency resolution (depending on the signal’s sampling time), the
CWT has both a time and frequency resolution. Both these properties are described below:

Time Resolution (TR) - A wavelet’s time resolution indicates the ability of that wavelet to
pinpoint signal features in time. Since the inner product of Equation (3-4) is influenced
by all time points where a wavelet has power, a wavelet which is narrower in time will
be less influenced by signal features ’far away’. As a result wavelets which are narrow
in time will have better time resolution.

Frequency Resolution (FR) - A wavelet’s frequency resolution indicates its ability to pin-
point the frequency content of a signal and discriminate between slightly higher/lower
frequencies. The ability to identify a particular frequency in a signal increases when
more information is taken into account in Equation (3-4), hence wavelets which are wide
in time (and thus narrow in frequency) lead to better frequency resolution.

From these descriptions it is obvious that a trade-off between time and frequency resolution
should always be made, the outcome of which depends on the aim of the analysis.

3-3-2 Wavelet overview

In this section an overview will be given of commonly used wavelets which are all available in
Matlab’s toolboxes. A distinction has to be made between wavelets which are implemented
in the frequency domain using Matlab’s cwtft command (the (complex) Morlet, Paul and
DOG wavelets) and those implemented in the time domain using Matlab’s cwt command
(the (complex) Morlet, Gaussian, complex Gaussian, Shannon, Frequency B-spline, Haar and
Daubechies wavelets). Wavelets implemented in the time domain are discussed first, followed
by wavelets implemented in the frequency domain.

For all wavelet families discussed Continuous Wavelet Transforms have been performed on a
test signal. This test signal features multiple characteristics such as signal peaks, multiple
constant-frequency sines, signal discontinuities and a frequency sweep (or chirp) signal. By
using various parameter values the effect of these parameters can be demonstrated. All figures
can be found in Appendix A, pages 186-190. It should be noted that these plots are shown
with an inversed y-axis, as will be standard from now on. This way of plotting ensures
that high-frequency peaks in the CWT plot will point directly to events in time in the plots
above. The white shaded areas indicated the Regions of Influence, which are discussed in
subsection 3-4-1.

Complex Morlet - The Morlet wavelet is one of the most commonly used wavelet types. The
Morlet wavelet is a wave modulated by a Gaussian (Torrence & Compo, 1998), as shown in
Figure 3-3. In the time domain two parameters tune this wavelet, the modulating Gaussian
decay parameter fb > 0 and the carrier wave frequency fc > 0 . Increasing fb leads to a
slower decay of the Gaussian, broadening the wavelet in time and hence increasing frequency
resolution and decreasing time resolution. Increasing fc increases the carrier wave frequency
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(and hence lowers the characteristic period), meaning more time information is now available
for analysing this frequency. As a result the frequency resolution increases and time resolution
decreases. These two findings can be verified in Figure A-2, in which the spread in power
over frequencies decreases as fb and fc are increased. Table 3-1 summarises these findings.

Complex Morlet wavelet

Function in time ψM (t) = (fb · π)−1/2 · e2π·i·fc·t · e−t2/fb
Function in frequency ψM (sω) = e−π

2fb(sω−fc)2

Modulating wave ± C·e−t2/fb
Parameter effects fb

↑ → FR↑ & fb
↑ → TR↓

fc
↑ → FR↑ & fc

↑ → TR↓

Table 3-1: Details of the time-based complex Morlet wavelet (Teolis, 1999, p66).
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Figure 3-3: The time-based complex
Morlet wavelet (fb = 2, fc = 1 Hz)
with its modulating wave highlighted.
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Figure 3-4: The time-based DOG
wavelet (n = 4) with its modulating
wave highlighted.

Gaussian - Gaussian (or DOG) wavelets such as the one shown in Figure 3-4 are based
on derivatives of the Gaussian function (any derivative between first and eighth order is
accepted in Matlab). As opposed to the complex Morlet wavelet this wavelet is real, meaning
that it is unable to continuously detect signal power (instead the inner product will oscillate
between positive and negative values as the DOG traces a sine). This effect can also be seen
in Figure A-2, in which both the sine wave and frequency sweep show up as intermittent
peaks. Increasing the derivative order n (an integer) increases the number of sign changes
and hence the wavelet frequency. Again this leads to more time information used to evaluate
the inner product at higher frequencies, leading to better frequency resolution and decreasing
time resolution.
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Gaussian wavelet

Function in time ψM (t) = dn

dtn

(
C · e−t2

)

Function in frequency −
Modulating wave ≈ ± C·e−t2/2
Parameter effects n↑ → FR↑ & n↑ → TR↓

Table 3-2: Details of the time-based Gaussian wavelet (constant C ensures unit energy).
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Complex Gaussian - The complex Gaussian wavelet is similar to the DOG wavelet, however
for this wavelet the DOG wavelet is used as a modulating function of a complex exponential
(see Figure 3-5). The order parameter has a similar effect to that of the Gaussian wavelet:
increasing the integer n increases the frequency resolution and decreases the time resolution.
Since this wavelet is complex it is able to continuously indicate power and indicate the phase
of a signal.

Complex Gaussian wavelet

Function in time ψM (t) = dn

dtn

(
C · e−it · e−t2

)

Function in frequency −
Modulating wave ≈ ± C·e−t2/2
Parameter effects n↑ → FR↑ & n↑ → TR↓

Table 3-3: Details of the time-based complex Gaussian wavelet (constant C ensures unit energy).
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Figure 3-5: The time-based complex
Gaussian wavelet (n = 4) with its
modulating wave highlighted.
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Figure 3-6: The time-based Shannon
wavelet (fb = 1 Hz, fc = 0.8 Hz) with
its modulating wave highlighted.

Shannon wavelet - A fourth class of time-based wavelets is the Shannon wavelet, which
consists of a plane wave modulated by a sinc-function, as shown in Figure 3-6. Two parameters
can be used to tune this wavelet: fb > 0 determines the frequency of the sinc-function and
fc > 0 determines the carrier wave frequency and hence the period of the wavelet.

Similar to the complex morlet wavelet, increasing fc increases the wavelet frequency (and
hence decreases the characteristic period) whilst keeping the wavelet equally broad in time.
As a result the frequency resolution increases whilst the wavelet’s time resolution decreases.
Increasing fb narrows the modulating sinc function in time, as such increasing time resolution
and decreasing frequency resolution. This means that increasing both fb and fc by an equal
factor leaves the time and frequency resolution of the Shannon wavelet unchanged, however
it does influence the signal frequency range which can be analysed.
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Shannon wavelet

Function in time ψM (t) =
√
fb · e2π·i·fc·t · sinc(fbt)

Function in frequency −
Modulating wave ±1/

√
fb · sinc(fbt)

Parameter effects fb
↑ → FR↓ & fb

↑ → TR↑

fc
↑ → FR↑ & fc

↑ → TR↓

Table 3-4: Details of the time-based complex Shannon wavelet (Teolis, 1999, p64).

Frequency B-spline wavelet - The frequency B-spline wavelet in Figure 3-7 is similar to
the Shannon wavelet, however in this wavelet the sinc-function is raised to the power M (an
integer ≥ 1). As a result, for M = 1 the Shannon and Frequency B-spline wavelet are equal
and the effect of parameters fb and fc is similar to that described for the Shannon wavelet
parameters. From M = 2 onwards increasing M broadens the modulating sinc-function in
time, hence increasing the frequency resolution and decreasing time wavelet’s time resolution.

Frequency B-spline wavelet

Function in time ψM (t) =
√
fb · e2π·i·fc·t ·

[
sinc(fbtM )

]M

Function in frequency −
Modulating wave ±1/

√
fb ·

[
sinc(fbtM )

]M

Parameter effects fb
↑ → FR↓ & fb

↑ → TR↑

fc
↑ → FR↑ & fc

↑ → TR↓

M↑ → FR↓ & M↑ → TR↑

Table 3-5: Details of the time-based complex Frequency B-spline wavelet (Teolis, 1999, p64).
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Figure 3-7: The Frequency B-spline
wavelet (M = 2, fb = 1 Hz, fc =
0.8 Hz) with its modulating wave high-
lighted.
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Figure 3-8: The time-based Haar
wavelet.

Haar wavelet - The real-valued Haar wavelet, shown in Figure 3-8, is one of the simplest
wavelets and one of the first to be developed. Taking on a value of -1 before its centre in time
and 1 after, the Haar wavelet essentially monitors signal changes. Its quick changes in time
mean that the Haar wavelet is able to provide excellent time resolution, with its frequency
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resolution being poor as the Haar wavelet is broad in frequency (Teolis, 1999).

Haar wavelet

Function in time ψM (t) = 1(− 1
2
,0] − 1(0, 1

2
]

Function in frequency Ψ(ω) = 2i · sin2(πω2 )
πω

Modulating wave −
Parameter effects −

Table 3-6: Details of the time-based Haar wavelet (Teolis, 1999, p62).

Daubechies wavelet - The final time-based family of wavelets to be discussed is the
Daubechies family, shown in Figure 3-9. This wavelet family was developed and described
by Daubechies in her ”Ten lectures on Wavelets”, in which mathematical details are given
as well (Daubechies, 1992, p195-199). A special member of this family is the ’db1’ wavelet,
which is actually just the Haar wavelet discussed previously. From Figure 3-9 one can see
that increasing the Daubechies number n stretches the wavelet in time whilst keeping the
characteristic frequency almost constant. As a result this increases the frequency resolution
and decreases the time resolution.

Daubechies wavelet

Function in time −
Function in frequency −
Modulating wave −
Parameter effects n↑ → FR↑ & n↑ → TR↓

Table 3-7: Details of the time-based Daubechies wavelet.
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Figure 3-9: Three Daubechies
wavelets (db2, db4 and db6).
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Figure 3-10: The frequency-based
Morlet wavelet (ω0 = 6 rad/s), with
its modulating wave highlighted.

The Daubechies family is the final time-based wavelet family to be discussed. Next to the time-
based implementation of the CWT one can also make use of the frequency-implementation of
the CWT, which requires a Fourier transform of the wavelet to be available. Three frequency-
based wavelets are discussed below:
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Complex Morlet wavelet - The complex Morlet wavelet can also be implemented in the
frequency domain in Matlab’s cwtft function. This frequency-implemented complex Mor-
let wavelet is most commonly used in wavelet analysis so far, as it provides a good balance
between time and frequency resolution (Teolis, 1999). As opposed to its time-based counter-
part the frequency-based Morlet wavelet has only one parameter, ω0 > 0, which alters the
carrier wave frequency in Figure 3-10. Like parameter fc in the time-domain increasing ω0

leads to better frequecy resolution and poorer time resolution.

Frequency-based Morlet wavelet

Function in time ψM (t) = π1/4 · ei·ω0·t · e−t2/2
Function in frequency Ψ(sω) = π1/4 ·H(ω) · e−(sω−ω0)2/2

Modulating wave ± C·e−t2/2
Parameter effects ω0

↑ → FR↑ & ω0
↑ → TR↓

Table 3-8: Details of the frequency-based Morlet wavelet (Torrence & Compo, 1998, p65).

Paul wavelet - A second complex frequency-implemented wavelet is the Paul wavelet, illus-
trated in Figure 3-11. Unlike previous complex wavelets the Paul wavelet does not consist of
a separate modulating and carrier wave, instead combining the two in one function. The Paul
wavelet parameter m (an integer between 2 and 7) determines the number of zero crossings
of the Paul wavelet, hence increasing m increases the wavelet characteristic frequency and
thus the frequency resolution. Increasing parameter m also slightly narrows the modulating
wave in time (decreasing frequency resolution), however this effect is smaller than the effect
mentioned previously.

Frequency-based Paul wavelet

Function in time ψM (t) = 2m·(1i)m·(m)!√
π·(2m)!

· (1− it)−(m+1)

Function in frequency Ψ(sω) = 2m√
m·(2m−1)!

H(ω)(sω)me−sm

Modulating wave ± C·
∣∣(1− it)−(m+1)

∣∣
Parameter effects m↑ → FR↑ & m↑ → TR↓

Table 3-9: Details of the frequency-based Paul wavelet (Torrence & Compo, 1998, p65).

Derivative of a Gaussian (DOG) wavelet - The final frequency-based wavelet is the real-
valued DOG wavelet shown in Figure 3-12. This wavelet is almost equal to the time-domain
based version discussed earlier, the only difference being that the exponential in the time
description is now divided by a factor 2. As a result this wavelet is slightly wider in time. Its
properties are summed up in Table 3-10.
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Figure 3-11: The frequency-based
Paul wavelet (m = 4), with its modu-
lating wave highlighted.
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Figure 3-12: The frequency-based
DOG wavelet (n = 4).

Frequency-based DOG wavelet

Function in time ψM (t) = (−1)n+1
√

Γ(n+ 1
2

)

dn

dtn

(
e−t

2/2
)

Function in frequency Ψ(sω) = (−i)n√
Γ(n+ 1

2
)
· (sω)n · e−(sω)2/2

Modulating wave −
Parameter effects n↑ → FR↑ & n↑ → TR↓

Table 3-10: Details of the frequency-based DOG wavelet (Torrence & Compo, 1998, p. 65).
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3-4 Wavelet artefacts

In the previous sections the process of wavelet analysis has been discussed, all commonly
used wavelet types have been introduced and the effect of their parameters on the time and
frequency resolution of an analysis has been highlighted. During wavelet analysis two artefacts
are introduced in the CWT which both have to do with the broad time basis of wavelets.
These two artefacts are discussed in subsection 3-4-1 and subsection 3-4-2, with solutions to
deal with these artefacts being proposed.

3-4-1 Edge effects

As can be seen in Figure 3-2 the determination of the inner product of Equation (3-4) at a
specific time t1 takes into account signal values around t1 as well in order to detect frequency
characteristics. The size of this time interval increases with the characteristic period of the
wavelet used.

Figure 3-13: Illustration of the Cone of Influence at
two different points in time. At t = 8s low-frequency
data can’t be trusted anymore.

This effect is illustrated in Figure 3-13, in
which the time-period domain for a hypo-
thetical signal with a length of 10 seconds is
shown. The blue cone (to be referred to as a
Cone of Influence (COI) from now on) illus-
trates the time interval taken into account to
determine any CWT value at t = 3s (the left
grey line) using a Shannon wavelet with fb
= 0.5 and fc = 1. Note that this definition
of a COI is different from the definition used
by Torrence & Compo (Torrence & Compo,
1998), this difference will be addressed later.

As can be seen from the blue COI the CWT
values at t = 3s are all determined based on
points in time at which the hypothetical signal is defined (0s ≤ t ≤ 10s). As a result, all
CWT values at t = 3s can be considered correct.

As noted in subsection 3-2-2 problems occur near the edges of the time-frequency domain, as
illustrated by the green COI. As is easily seen the CWT values at a period of more than 7
seconds are partially based on time values outside the signal domain, which consist of zeros
(in case of time-domain analysis) or a repeat of the signal from t = 0s onwards (in case of
frequency-domain analysis, which assumes periodicity). Near the edges of the CWT plot
therefore a region is found where the CWT values should be treated with caution.

Torrence & Compo name this region the Cone of Influence, in this thesis this region will be
referred to as the Region of Influence (ROI). Torrence & Compo define this region as the
”e-folding time for the autocorrelation of wavelet power (|CWT|2) at each scale” (Torrence &
Compo, 1998), which is equal to ”the area in which the wavelet power caused by a discontinuity
at the edge has dropped to e−2 of the value at the edge” (Grinsted, Moore & Jevrejeva,
2004). Torrence & Compo offer expressions for the width of this ROI as a function of scale
for all frequency-based wavelets but not for the time-based wavelet families. Besides this
incompleteness there are two further problems with the definition given by Torrence & Compo:
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1. By definition the inner product of any symmetric real wavelet (such as the Gaussian
wavelet for even n) centred at a discontinuity is zero (see Equation (3-1)), meaning that
the width of the ROI can’t be determined for such wavelets.

2. Torrence & Compo give a constant ROI width for the complex Paul wavelet, indepent
of its parameter m. Subsection 3-3-2 however showed that the width in time of the Paul
wavelet changes with m, meaning that the ROI width should vary with m.

In order to define a ROI for each type of wavelet a different approach is suggested in this
thesis. For each wavelet the two points in time between which 95% of wavelet energy is
contained (recall that the total wavelet energy is 1 by definition) are determined and are
designated t0.025 and t0.975. The boundaries of the cones in Figure 3-13 are then t + t0.025

(assuming t0.025 is negative) and t + t0.975. Now we define the ROI to be limited by those
(time,Period)-points where the lower/upper bound of this interval matches the lower/upper
bound of the signal interval. Shading the ROI when plotting the results of a CWT allows for
neglecting areas in which edge effects may have influenced results.

Using this approach produces results very similar to the
√

2s and s/
√

2 values found by
Torrence for the frequency-based complex Morlet and Paul wavelets respectively and enables
the approach to be extended to any wavelet. A ROI is shown with all CWT-plots shown
in Figures A-1 through A-5 in Appendix A, allowing for investigating the effect of different
wavelets and parameters on the size of the ROI. It can be seen for example that the Shannon
and Frequency B-spline wavelets have a very small ROI, with the Morlet wavelet having
a relatively large ROI. In general any parameter change that results in a higher frequency
resolution (which essentially means it makes the signal broader in time) will also increase the
size of the ROI.

3-4-2 Power spread

The limited time and frequency resolution of a wavelet introduce a second artefact in the
results of a wavelet transform: spread in wavelet power over both time and frequency. This
effect shows in Figure 3-1: although both signal parts contain only one frequency (0.5Hz
and 0.25Hz respectively) and start and end abruptly the wavelet power spreads over multiple
frequencies and over time.

In order to discriminate between parts of the CWT containing genuine power and parts of
the CWT influenced by this signal spread Torrence & Compo propose a significance check on
the wavelet spectrum (Torrence & Compo, 1998). The null hypothesis of this check is that
the signal analysed originates from a white or red noise process, with a data point in this
noise being given by:

xn = α · xn−1 + zn (3-7)

In Equation (3-7) α is the red noise lag-1 autocorrelation coefficient, which indicates to what
extent the previous datapoint (xn−1) is copied to the next (xn). Added to this is a sample
from Gaussian white noise (zn), meaning that if α is set to zero Equation (3-7) describes
a white noise process. For such a white or red noise process, the normalised Fourier power
spectrum is given by (Gilman, Fuglister & Mitchell, 1962):

Pk =
σ2(1− α2)

1 + α2 − 2α cos(2πk/N)
(3-8)
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In this equation σ2 is the time signal variance and k is the frequency index used in the Fast
Fourier Transform of the input signal, with N the total number of data points. Using this
spectrum as a background allows for marking pieces of the CWT as significant in case CWT
power (or |CWT|2) in a time-slice of this CWT is sufficiently above this background spectrum,
with the ”sufficient” factor being determined by the confidence value chosen (in this report
a 95% confidence value will be used). The reader is referred to Torrence & Compo for a
discussion showing that this confidence value can be obtained from a χ2 distribution with
either two Degrees of Freedom (DOF) (for complex wavelets) or one DOF (for real wavelets).
As a result, CWT-spectra regions are significant in case (ndf denotes the number of degrees
of freedom):

|CWT (f(t))|2 ≥ 1

ndf
P · χ2

ndf
(0.95) (3-9)

To show the effect of this significance check, the signal used in Figure 3-1 was copied and
analysed using a lag-1 autocorrelation coefficient of 0.95 and two degrees of freedom (since the
complex Morlet (ω0 = 6) was used to perform the wavelet analysis). Statistically significant
regions are indicated using the yellow contour in Figure 3-14 (note that the discontinuous
contours are caused by the discrete frequency scales).

Figure 3-14: Illustration of the wavelet transform of signal y1 in Figure 3-1, with significant
regions indicated.

As can be seen from Figure 3-14 the regions of significance enclose the true significance
regions (at P = 2 between t=0s and t = 8s, and at P = 4 between t=12s and t = 20s) and
indicate other regions where power was detected as not significant. Also note that the false
low-frequency content identified at t < 2s and the false high-frequency content identified for
t > 19s would be excluded by the Region of Influence.

For signals consisting of only periodic segments (such as the example signals in Figure 3-1)
detecting significant power is relatively easy, more difficult are cases in which the signal does
not show periodic behaviour (as explained earlier, most simulator input/output and error
signals do not show this behaviour). An example of a typical motion simulator error signal
(which is discussed later) is shown in the top left of Figure 3-15. This error has been scaled
to ensure the variance of this signal is 1, simplifying Equation (3-8).

As can be seen from Figure 3-15 the error only contains power between t = 4s and t =
7s, the CWT spectrum below however shows the power being spread over the entire time
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Figure 3-15: Illustration of the effect of the lag-1 autocorrelation coefficient on the CWT of a
typical motion cueing error signal.

window. Correctly identifying the genuine region containing power in this case requires the
right selection of the lag-1 autocorrelation coefficient α.

The effect of choosing three different lag-1 autocorrelation coefficients (α = 0 (effectively
assuming a white noise background), α = 0.8 and α = 0.95) is also shown in Figure 3-15.
Shown in the top right are the three theoretical Fourier power spectra for these three lag-1
coefficients (including the χ2(0.95) multiplication factor, which is around 3). As seen from
this figure increasing the lag-1 autocorrelation coefficient increases the significance threshold
for lower frequencies and slightly decreases this threshold for higher frequencies. This results
in the fact that the area deemed to be significant (which is the area in which a vertical slice
through this CWT spectrum is higher than the background spectrum) decreases for a higher
α. Note that an even higher α-value could have been chosen to decrease the significant area
even further, however that would have made the lines in the top right plot indistinguishable.

For the simulator signals considered in this project such a high lag-1 autocorrelation coefficient
is a logical choice, since in a simulator the next datapoint is the sum of the previous one plus
a small addition. For this reason α-values between 0.9 and 1 will be used in this project.

A problem of this method that should be noted concerns the wavelet normalisation to unit
energy introduced by Torrence & Compo (Torrence & Compo, 1998). To make different
wavelets at different scales comparable Torrence & Compo normalise all wavelets by a factor√

2πs
∆t , meaning that in case the signal is sampled four times as fast the outcome of the CWT

becomes twice as large. The background spectrum in Equation (3-8) does not change with
∆t however, meaning that the size of significant regions changes with varying sample rates.

The effects of this normalisation have been discussed previously (Verspecht, 2011), showing
that the normalisation can better be omitted for identification of neuromuscular admittance.
Since the significance check proposed by Torrence & Compo only holds for normalised wavelets
however this normalisation will remain to be used in this project, with another solution having
been implemented instead.
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Since all significance checks in this report having been performed for ∆t = 0.01s and results
were found to be satisfactory, wavelet transforms performed will from now on be normalised to

a ∆t of 0.01s by multiplying the CWT outcome by
√

∆t
0.01 . In this way all wavelet transforms

and significance checks will be directly comparable.

3-5 Chapter conclusions

In this chapter the following answers to research questions 2 and 3 posed in section 1-3 have
been given:

2. How does the wavelet transform of a single signal work?
The Continuous Wavelet Transform (CWT) of a single signal determines the inner
product of that signal with various stretched versions of a wavelet (all having a charac-
teristic frequency) at all signal points in time. By doing so the frequency content of a
signal as a function of time is determined.
2a. Are there any prerequisites on the signal?

The CWT requires a signal to have been sampled at a constant rate. This should
not be a problem for simulator signals (as simulators usually function at a constant
sampling rate).

2b. What computations are necessary to perform a wavelet transform?
To construct a CWT the inner product between a signal and a wavelet is computed
at all points in time for all scales. This computation can be done both in the
time domain (as a convolution) and the frequency domain (as a multiplication).
Different wavelets are available in both domains.

2c. What kind of output does one obtain following a wavelet transform?
Since the wavelet transform is often complex, this transform can be presented on
a (time,frequency)-grid (with each frequency corresponding to a certain scale) by
plotting either the real part, imaginary part or absolute value of the CWT in a
contour plot.

2d. Does the wavelet transform have any limitations?
The wavelet transform has a number of limitations:

1. The maximum analysable frequency of the signal is limited by the Nyquist
frequency, the minimum analysable frequency is limited by the signal length.

2. Wavelet analysis is not able to determine the value of a constant signal /
doesn’t take the mean of a signal into account.

3. Wavelet analysis has a limited time and frequency resolution, meaning that
concentrated signal power content (in either time or frequency) spreads out
over the (time-frequency grid).

4. Near the edges of a signal a wavelet stretches beyond the interval of the signal,
making use of false data. A Region of Influence is drawn to indicate caution
should be taken with interpreting this data.
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3. Which wavelet types are best suited for motion cueing error detection?
In previous work using wavelet transformations little overview has been given of all
available wavelets and their (dis)advantages. Such an overview has been created in this
chapter, allowing for choosing a suitable wavelet given the goal of a particular wavelet
analysis. In case of motion cueing error detection it turns out that complex-valued
wavelets with a good time resolution (such as the time-based complex Gaussian with n
= 2 or the complex Morlet wavelet with ω0 = 4) are best suited, for reasons discussed
in chapter 5.

3a. What different types of wavelets are commonly used?
Broadly speaking two types of wavelets are often used: time-based and frequency-
based wavelets. An overview has been provided of ten different wavelets (seven
time-based, three frequency-based) and their parameters. The frequency-based
complex Morlet wavelet is used most often as it was introduced first by Torrence
& Compo and in general offers a good trade-off between time resolution and
frequency resolution (Torrence & Compo, 1998). A second distinction between
wavelets can be made on whether they are complex or real.

3b. What are the advantages of these types of wavelets?
All wavelets have a different time and frequency resolution, with the time-based
Haar wavelet offering the best time resolution (but worst frequency resolution) and
the time-based Shannon/Frequency B-spline wavelets offering the best frequency
resolution (but worst time resolution). All other wavelets are somewhere in
between, with their parameters offering the possibility to improve either time or
frequency resolution.

Complex-valued wavelets (such as the complex Morlet wavelets) are able to continu-
ously indicate power at a certain frequency over time, whereas real-valued wavelets
will show oscillating power behaviour. An additional advantage of complex-valued
wavelets is their ability to indicate the phase of a signal’s frequency content, a
feature real-valued wavelets do not offer. Finally frequency-based wavelets have
an advantage over time-based wavelets in terms of computational effort required,
as the convolution operation in the time domain is computationally expensive.
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Chapter 4

Signal Comparison

In the previous chapter the details of the Continuous Wavelet Transform have been discussed,
showing the result of the wavelet analysis on a single signal. In this chapter the use of the
CWT to compare two different signals will be investigated. The possibilities of the analysis
of a simulator error signal will be discussed in section 4-1, the possibilities of the wavelet
coherence method will be discussed in section 4-2. Again the answers this chapter provides
with respect to the research questions formulated in chapter 1 are summarised in section 4-3.

4-1 Error signal analysis

The easiest way of comparing two time signals using wavelet analysis would be to compute
the CWT of both signals and compare these two spectra. Should one choose this approach,
then the linearity of the wavelet transform (which shows in Equation (3-4) in subsection 3-
2-2) makes this approach simpler, since CWT(f2(t)− f1(t)) = CWT(f2(t))− CWT(f1(t)).
Hence one can simply compute the error signal between a motion simulator’s input and output
and analyse this signal.

Analysis of this error signal allows for identifying at what points in time and at what fre-
quencies errors occur between the simulator input and output signal. Such an analysis does
not give a complete picture however, since only relative differences are determined but the
reference input value is lost. As a result the power ratio discussed in section 2-3 can’t be
determined. This reference value could be determined from the (CWT of the) original input
and output signal of course.

4-2 Wavelet coherence

Wavelet analysis also allows for determining the coherence between two signals at specific
points in time and at specific frequencies, this concept will from now on be referred to as
wavelet coherence. The determination of wavelet coherence was introduced by Torrence &
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Webster (Torrence & Webster, 1999), who indicate that the first step in determining wavelet
coherence is the computation of the cross-wavelet spectrum. This cross-wavelet spectrum is
defined as the product of the CWTs of two signals (for one of which the complex conjugate
is taken):

WX,Y (s, t) = WX(s, t)W ∗Y (s, t) (4-1)

The cross-wavelet spectrum shows the points in the (scale,time)-domain where the two signals
share power content. The cross-wavelet spectrum of a sine (with constant frequency) and a
chirp signal (with an initial frequency lower than the sine frequency but increasing to above
the sine frequency) will show high power at those points in time where the frequencies of the
two signals are (nearly) equal.

After computing this cross-wavelet spectrum the wavelet squared coherence can be computed
through Equation (4-2):

ρ2(s, t) =
|S
(
s−1 ·WX,Y (s, t)

)
|2

S (s−1 · |WX(s, t)|)2 · S (s−1 · |W Y (s, t)|)2 (4-2)

In this equation all wavelet spectra are multiplied by the scale inverse to convert back to an
energy density and S(·) denotes a smoothing operator in both time and frequency which is
further explained in (Grinsted et al., 2004). Both in these articles and in Matlab this wavelet
coherence is only implemented for the frequency-based complex Morlet wavelet discussed in
subsection 3-3-2, in this thesis an extension will be made to all other wavelets.

Grinsted, Moore and Jevrejeva indicate that the smoothing operator applied in time is given
a similar shape as the wavelet and Torrence & Webster say ”The time smoothing uses a filter
given by the absolute value of the wavelet function at each scale, normalized to have a total
weight of unity”, which for the frequency-based complex Morlet wavelet is C · e−t2/2s2 (see
Table 3-8). To extend this operation to other wavelet types the shape of other wavelets has
been given in subsection 3-3-2, for completeness these shapes are summarised below:

Wavelet type Shape in time Shape in frequency

Time-based complex Morlet C·e−t2/fbs2 C·e−(sω)2·fb/4

Time-based Gaussian C·e−t2/2s2 C·e−(sω)2/2

Time-based complex Gaussian C·e−t2/2s2 C·e−(sω)2/2

Time-based Shannon
∣∣∣C · sinc(fbts )

∣∣∣ −

Time-based Frequency B-spline

∣∣∣∣C ·
[
sinc( fbtMs)

]M ∣∣∣∣ −
Haar wavelet C(− s

2
,0)− C(0, s

2
) −

Daubechies wavelet − −
Frequency-based Morlet C·e−t2/2s2 C·e−(sω)2/2

Frequency-based Paul C·
∣∣(1− it/s)−(m+1)

∣∣ −
Frequency-based Gaussian − −

Table 4-1: Wavelet shape used for smoothing in time in the wavelet coherence.
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The constant C present in these smoothing functions scales the time function to ensure unit
energy but does not alter the shape, and drops out in case Equation (4-2) is applied (since
the constant is squared in the numerator and features twice in the denominator). It is for
this reason that no further investigation into the value of this constant is done.

In Matlab this smoothing in time is usually applied in the frequency domain, as this allows
for a regular multiplication rather than a convolution between the CWT spectrum and the
smoothing function. Hence computational effort can be saved in case a Fourier transform
of the smoothing functions are known, these are given (as far as possible) in Table 4-1 too.
Again scaling factors in the Fourier transform have been combined into one constant C (which
is not necessarily equal to the constant in the time domain functions). Note that although
frequency descriptions were given for more wavelet modulating functions in subsection 3-3-2,
the fact that the absolute value is used for the smoothing function means these frequency
descriptions are no longer valid.

The smoothing in frequency is done in Matlab using a moving average filter, the width of
which can be varied. A narrower moving average provides higher resolution in the coherence
plots.

The wavelet coherence method also allows for determination of the phase difference between
two signals, defined by Torrence & Webster as:

φ(s, t) = tan−1

(
Im
[
S(s−1 ·WX,Y (s, t))

]

Re [S(s−1 ·WX,Y (s, t))]

)
(4-3)

It is common practise to plot the wavelet coherence and phase together in one contour plot,
using arrows to illustrate the phase difference between the two signals at different points
in time and frequency. Right-pointing arrows in that case indicate no phase difference, left-
pointing arrows indicate antiphase, downward pointing arrows indicate signal X leading signal
Y by 90◦ and arrows pointing upwards indicate signal X trailing signal Y by 90◦.

An example of the result of a coherence analysis is shown in Figure 4-1, in which two multisine
signals are compared (using a frequency-based complex Morlet wavelet with ω0 = 6). Signal
X is a multisine featuring a component with a period of 4 seconds and a component with a
period of 8 seconds. Additionally an 8Hz component (P = 0.125s) is added between t = 5s
and t = 10s. Signal Y features the same components as signal X (though scaled differently),
with the 8s period component being anti-phase, the 4s component lagging by 0.5 seconds
(so 45◦) and the 8Hz component being in perfect phase. Added to these components is a
low-amplitude random Gaussian noise.

These phase differences are also shown by the arrows in Figure 4-1, which have only been
plotted in regions where ρ2 > 0.8. The right-pointing arrows between t = 5s and t = 10s at
P = 0.125s indicate the signal components are in phase, the left-pointing arrows at P = 8s
indicate anti-phase and the arrows pointing downwards to the right at P = 4s indicate signal
X leading signal Y.
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Figure 4-1: Illustration of the coherence analysis between two multisine signals X and Y. Both
share (temporary) content at a period of 0.125s, 4s and 8s (as shown by high coherence values),
with arrows indicating relative phase.

Besides high coherence at the expected frequencies and points in time the wavelet coherence
algorithm also detects signal coherence at other instances, most notably at t = 5s and t = 10s
(with the width of this column increasing for larger periods). This high coherence is attributed
to the sudden onset and disappearance of the 8Hz signal, which causes high-frequency power
at these instances in the Continuous Wavelet Transform spectra of the individual signals.
This high-frequency power then spreads out to lower frequencies.

To distinguish between parts of Figure 4-1 showing actual signal coherence and parts influ-
enced by CWT noise, the significance contour of the error between the signals in the top of
Figure 4-1 has been added to the bottom figure. As is easily seen this significance contour
excludes the areas of high coherence around t = 5s and t = 10s while indicating parts of the
plot at P = 0.125s, P = 4s and P = 8s as being significant.
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4-3 Chapter conclusions

In this chapter the following research questions of this project have been answered:

4. How do you compare two wavelet-transformed signals?

4a. What options for comparison are available?
Generally speaking two ways of analysis are possible for two wavelet-transformed
signals: one can subtract two Continuous Wavelet Transforms to obtain the CWT
of the error signal and analyse that CWT (using significance testing described in
subsection 3-4-2) and one can determine the wavelet coherence using the CWTs of
two signals. The latter method also allows for commenting on the relative phase
difference between the two signals.

4b. Is there a specific type of data these methods are most suited to?
Analysing the error signal between an input and output signal is possible for any
type of input. The determination of wavelet coherence will only hold value in case
signals are expected to be at least partly coherent (or coherent at a particular
frequency), as in case signals are not coherent at all the procedure will only return
noise.

4c. What method is best suited for the comparison of simulator input and output?
Both methods described hold value for the analysis and identification of motion
cueing errors, with error signal analysis allowing for the identification of errors,
and wavelet coherence assisting in the determination of the motion cueing error
type.
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Chapter 5

Error Recognition

In this thesis different types of motion cueing errors have been discussed in chapter 2, with
mathematical properties of these errors having been described in section 2-3. The possibilities
of wavelet analysis to detect signal characteristics and errors have then been described in
chapters 3 and 4. In this chapter the contents of these chapters will be combined by assessing
how wavelet analysis can be used to detect these different motion cueing errors, this process
is described in section 5-1. The workings of this process are then demonstrated by applying
the error detection scheme to idealised motion cueing errors in section 5-2, with chapter
conclusions being given in section 5-3.

5-1 Error detection

Based on the error properties summarised in Table 2-2 and the wavelet analysis possibilities
given in chapters 3 and 4 an error detection scheme as depicted in Figure 5-1 is proposed.
The scheme has a decision-making structure similar to Grant’s MCA tuning paradigm (Grant,
1995, p105-p137), contrary to that paradigm however the current algorithm detects Motion
Cueing errors rather than tuning an MCA to mitigate them (with error detection in Grant’s
algorithm being done through subjective pilot evaluation). In the following the reasoning
behind this scheme will be explained.

Step 1: Error Analysis - The starting point for motion cueing error detection will be a
simulator’s input and output signal. By subtracting these two the simulator error signal
is obtained. As discussed in section 4-1 performing a Continuous Wavelet Transform
of this error signal allows for determination of the time of occurrence and frequency
content of motion cueing errors. This is done by applying the significance test discussed
in subsection 3-4-2.

In case no significant region is found one can conclude that no errors were present in the
simulation, in case any error is present the result of the significance test is a collection
of significant regions in the (time,frequency)-domain.
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Figure 5-1: Proposed detection scheme for motion cueing errors, with orange blocks indicating
inputs, yellow blocks indicating computational operations, green blocks indicating choice blocks
and blue blocks representing conclusions.

For the purpose of identifying motion cueing errors it is best if a statistically significant
area shows up as one whole, rather than multiple smaller regions. For this reason real
wavelets (which produce CWT spectra oscillating between positive and negative in case
continuous power is detected, leaving statistically insignificant regions in between peaks)
are unsuited for this detection. It is for this reason that only complex wavelets will be
considered for this step. As will further be explained later wavelets with a good time
resolution are preferred for this detection (with the frequency resolution less relevant),
meaning the parameters discussed in subsection 3-3-2 are set to provide decent time
resolution.

Having established a collection of statistically significant regions at this stage, the rest
of the motion cueing error detection scheme will be gone through for each significant
region separately.

Step 2: Signal coherence analysis - From Table 2-2 one can observe that Type I scaling
errors and phase errors stand out due to their high coherence between simulator input
and output. For this reason the signals’ coherence is determined using the methods
described in chapter 4. Should all coherence values within the detected significant
region be above 0.9 then an error is designated either a Type I scaling error or a phase
error.

Step 2-1: Lag analysis - In order to discriminate between Type I scaling errors and
phase errors the phase lag (denoted by ∆φ in Figure 5-1) between signals X and
Y will be determined from the coherence plot determined in step 2. In case a
significant lag is present an error will be designated a phase error, otherwise a
Type I scaling error is called in case the Power Ratio (discussed in Step 4) is below
threshold level. From previous research it is known that a phase lag exceeding
a threshold value of ∆φmax = 16.4◦ leads humans to perceiving a phase error
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(Beckers, Pool, Valente Pais, van Paassen & Mulder, 2012; Jonik, Valente Pais,
van Paassen & Mulder, 2011).

Step 3: Frequency analysis - Should the coherence between simulator input and output
drop then from Table 2-2 one can observe that (having already dealt with Type I scaling
errors) Type III false cues stand out due to their high-frequency content, with all other
errors expected at lower frequencies. This characteristic is exploited to identify Type
III false cues: in case a statistically significant region lies fully below the threshold level
of P = 2s an error is attributed a Type III false cue (Grant, 1995, p96), if not signal
coherence is investigated.

Step 3-1: Duration analysis - Having determined that an error is a Type III false
cue, one would still like to discriminate between errors caused by a simulator hitting
a displacement limit or errors caused by simulator vibrations or IMU measurement
noise. From Table 2-2 the difference between these two causes is found to be the
duration of the error. High-frequency errors lasting under 0.5 seconds will be
attributed to simulator displacements, errors lasting longer will be attributed to
simulator vibrations.

Step 4: Power Ratio determination - In case signal coherence drops below 0.9 in the
identified region of significant error three options remain: the error is either a Type I
false cue, a Type II false cue or a Type II scaling error. From Table 2-2 it is observed
that the difference between the remaining errors shows through the Power Ratio (PR)
of the simulator input and simulator output signal.

Ideally one would compute this power ratio from the CWTs of both signals (as that
allows for taking into account only those frequencies at which an error is present),
this however proved not to be possible due to the variability of and artefacts in the
Continuous Wavelet Transform. Therefore the PR will be determined from the time
signals, using:

PR[n] =
Output[n]

Input[n]
(5-1)

In this equation n denotes the time index of the signal. From the significance test in
step 1 the start time and end time of the particular error are known, meaning that the
indices n to be used in Equation (5-1) are known.

This power ratio does not yet tell the full story however, since it only comments on the
relative difference between output and input. This problem is illustrated in Figure 5-2.

If one would go by the power ratio only then one would designate simulator washout
(a simulator’s return to neutral during a sustained cue, a process shown in section II of
the left figure in Figure 5-2) as a Type I false cue, since the simulator accelerates in the
wrong direction. Section I would be labelled a Type II scaling error (since the power
ratio is smaller than 1), with section III being labelled a Type II false cue (since there
is output in the absence of input).

In a well-designed simulator however the subject won’t notice the washout because the
washout is done at sub-threshold levels. This effect is illustrated on the right-hand side
of Figure 5-2. Again section I would be identified as a Type II scaling error (however
only once both the input and output surpass threshold levels), but since the washout
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Figure 5-2: Effect of thresholds being taken into account during motion cueing error identifica-
tion.

takes place at sub-threshold levels the subject won’t notice the erroneous output. It is
for this reason that Section II should be identified as a Type II scaling error (absent
output in the presence of input), with only section III being identified as a Type I false
cue. Since the output in section IV is below the perceptual threshold level, no error
should be reported here.

The use of perceptual thresholds (denoted Φ) therefore allows for error determination
in case either the simulator input or output signal is below the perceptual threshold
level, using the scheme shown in Table 5-1.

Input < Φ Input > Φ

Output < Φ No error Type II scaling error
Output > Φ Type II false cue Use Power Ratio

Table 5-1: Decision scheme in case either the simulator input or simulator output signal is below
the perceptual threshold level Φ.

For this reason a Type I error is only called in case the power ratio is negative and
both the simulator input and output signal are above the human perceptual threshold
level. These reference values differ for each motion axis, in this preliminary study the
values given in Table 5-2 will be used (which assumes these thresholds to be frequency-
independent).

Motion Perceptual threshold

ax 0.04 m/s2 (Zaichik et al., 1999; Heerspink et al., 2005)
ay 0.04 m/s2 (Zaichik et al., 1999; Heerspink et al., 2005)
az 0.08 m/s2 (Zaichik et al., 1999; Heerspink et al., 2005)
ωx 3 ◦/s (Groen & Bles, 2004)
ωy 3 ◦/s (Groen & Bles, 2004)
ωz 3 ◦/s (Groen & Bles, 2004)

Table 5-2: Perceptual thresholds used by the motion cueing error detection algorithm.

The concept of perceptual thresholds allows for the determination of the scaling
threshold below which subjects perceive motion to be too weak (hence implying a Type
II scaling error) and the scaling threshold above which subjects perceive motion as be-
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ing too strong (introducing a Type II false cue). Again assuming these thresholds to
be frequency-independent (and constant for different motion amplitudes), the following
critical power ratio values have been determined:

Motion Lower gain Upper gain

Acceleration (Correia Grácio et al., 2013) 0.5 1.3
Rotation (Valente Pais, van Paassen & Mulder, 2009) 0.6 1.1

Table 5-3: Minimum and maximum allowable scaling factors for simulator accelerations and
rotations.

In case both the simulator input and output are above the perceptual threshold level (see
Table 5-1) and a PR lower than the minimum allowable scaling factor is determined a
Type II scaling factor is called at the time point under consideration, in case a PR higher
than the maximum allowable scaling factor is detected the point in time is assigned a
Type II false cue. Should the Power Ratio be within the bounds of the coherence zone,
no error is present.

5-2 Proof of concept

In this section the error detection scheme introduced in the previous section will be applied
to idealised versions of the motion cueing error types discussed in section 2-2. These idealised
motion cueing errors are shown in the top left of Figures 5-3 through 5-9. Notice that only the
Type I false cue isn’t a ’perfect’ motion cueing error, with its output having been created by
high-pass filtering the input. As a result one could partly typify this error as a Type II scaling
error too (in regions where the accelerations are not of opposite sign, but rather any output
is missing). In this section it is assumed these signals represent longitudinal accelerations,
meaning the perceptual threshold for the input and output signal is set to 0.04 m/s2, the
minimum allowable power ratio is 0.5 and the maximum allowable power ratio is 1.3.

For all input and output pairs the error signal has been shown on the top-right of Figures 5-3
through 5-9. For all these error types the error detection scheme proposed in the previous
section is gone through.

Step 1: Error Analysis - As stated in section 5-1 the Continuous Wavelet Transformation
of the motion cueing error signal should be done using a complex wavelet with a rel-
atively high time resolution (since the start and end time of error regions will be used
to pinpoint errors in time). In order to be able to compare spectra to one another the
time-based complex Gaussian wavelet was chosen for all error types, and to improve
time resolution the order was set to n = 2.

As explained in subsection 3-4-2 the choice of lag-1 autocorrelation coefficient α has
a major influence on the regions being rated as significant. For all but the Type III
false cues it was found that high α-values were required to raise the threshold level for
low-frequency signal content (which characterises these errors), hence analysis of these
errors was done using α = 0.98. For Type III errors it was found that lowering the
autocorrelation value to 0.9 resulted in better time and frequency resolution of the error
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detection (owing to high-frequency thresholds being raised when lowering the α-value,
see Figure 3-15). Both values correspond to the α-interval proposed in subsection 3-4-2.

The Continuous Wavelet Transform spectrum of all errors is shown in the middle left
plots of Figures 5-3 through 5-9. As can be seen most errors are characterised by a
single significant region, the exception being the phase error.

Step 2: Signal Coherence analysis - From the middle right plots in Figures 5-3 through
5-9 it is easily observed that only the Type I scaling error shows consistently high
coherence, separating it from the rest. Notice that besides the period being shown in
the left axis, the frequency (in radians per second) corresponding to these periods is
shown as well to allow for relating these plots to the dynamics of the human senses.

Step 2-1: Lag analysis - From the middle right plot in Figure 5-3 it is easily seen
the arrows indicate no phase lag, meaning this error is likely a Type I scaling
error. Taking the minimum and maximum time value from the identified region
of significant error, the Power Ratio (see the bottom left of Figure 5-3) is then
computed in case the output acceleration is above the threshold level. Based on
this Power Ratio a Type I scaling error is called.

It should be noted that, as opposed to what was expected, signal coherence does
not remain high for the perfect phase error in Figure 5-9. As a result, the algorithm
will not identify this error as a perfect phase error, as shown in the bottom right of
Figure 5-9. This finding is attributed to the fact that signal coherence will only be
high for a phase error in case multiple periodic cycles are gone through at a certain
frequency, something that will seldomly be the case for motion cueing signals. As a
result it is expected that many phase errors in motion simulation will be identified
as a combination of other errors, as is the case in Figure 5-9.

Step 3: Frequency analysis - From the middle left motion cueing error CWT plots (which
again show both period and frequency) the frequency content of the error can be invest-
igated. As expected, the two false cues (Figures 5-7 and 5-8) only show high-frequency
content, all other errors possess power at periods of over 2 seconds.

Step 3-1: Duration analysis - From Figures 5-7 and 5-8 it is easily noted that the
high-frequency power lasts for a short period of time in Figure 5-7, whereas power
lasts much longer in Figure 5-8. As a result, the algorithm considers the error in
Figure 5-7 a Type III-1 false cue due to a simulator hitting a displacement, and
considers the other a Type III-2 false cue due to simulator vibrations (as can be
seen from the bottom left figures).

Having detected a high-frequency error in the region of significant error, the other
algorithm steps are skipped (explaining why no Power Ratio is determined).

Step 4: Power Ratio analysis - For the four remaining errors Table 5-1 is gone through
to determine what error is present. In case either the input or output is below threshold
levels either no error, a Type II scaling error or a Type II false cue is called, otherwise
the Power Ratio is determined as shown in the bottom left of Figures 5-3 through 5-9.
Based on this power ratio a Type I false cue, Type II false cue or Type II scaling error
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is called. In case the power ratio is within the perception coherence zone discussed in
section 5-1 no error is called.

From Figures 5-4, 5-5, 5-6 and 5-9 one can see that all three type of errors are identified
correctly. Noticeable is the fact that an intended phase error is detected as a combination
of a Type II scaling error and Type II false cue (for reasons discussed previously).

(a) Input & Output signals of a Type I scaling error.
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(b) Error signal of a typical Type I scaling error.

(c) CWT (using the time-based complex Gaussian
(n = 2) of a Type I scaling error. Significant regions
are enclosed in white contours.

(d) Wavelet coherence of the input and output sig-
nal of a Type I scaling error. Significant regions are
enclosed in white contours.
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(e) Power ratio (at time points required) for the Type
I scaling error, with the coherence zone indicated.
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(f) Algorithm outcome, highlighting the presence
of a Type I scaling error.

Figure 5-3: Graphical output of the motion cueing error type detection algorithm for an idealised
Type I scaling error.
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(a) Input & Output signals of a Type II scaling error.
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(b) Error signal of a typical Type II scaling error.

(c) CWT (using the time-based complex Gaussian
(n = 2) of a Type II scaling error. Significant regions
are enclosed in white contours.

(d) Wavelet coherence of the input and output signal
of a Type II scaling error. Significant regions are
enclosed in white contours.
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(e) Power ratio (at time points required) for the Type
II scaling error, with the coherence zone indicated.
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(f) Algorithm outcome, highlighting the presence
of a Type II scaling error.

Figure 5-4: Graphical output of the motion cueing error type detection algorithm for an idealised
Type II scaling error.

Tim van Leeuwen Simulator motion cueing error detection using a wavelet-based algorithm



5-2 Proof of concept 171

(a) Input & Output signals of a Type I false cue.
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(b) Error signal of a typical Type I false cue.

(c) CWT (using the time-based complex Gaussian
(n = 2) of a Type I false cue. Significant regions are
enclosed in white contours.

(d) Wavelet coherence of the input and output signal
of a Type I false cue. Significant regions are enclosed
in white contours.
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(e) Power ratio (at times required) for the Type I
false cue, with the coherence zone indicated. Dashed
lines at PR = 2 and PR = -1 indicate PR-values
outside the figure boundaries.
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(f) Outcome of the algorithm, highlighting the pres-
ence of a Type I false cue at two instances in time,
as well as Type II false cues and Type II scaling
errors.

Figure 5-5: Graphical output of the motion cueing error type detection algorithm for an idealised
Type I false cue.
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(a) Input & Output signals of a Type II false cue.
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(b) Error signal of a typical Type II false cue.

(c) CWT (using the time-based complex Gaussian
(n = 2) of a Type II false cue. Significant regions
are enclosed in white contours.

(d) Wavelet coherence of the input and output signal
of a Type II false cue. Significant regions are enclosed
in white contours.
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(e) Power ratio (at times required) for a Type II false
cue, with the coherence zone indicated. The dashed
line at PR = 2 represents PR-values larger than 2.
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(f) Algorithm outcome, highlighting the presence
of a Type II false cue between t = 9.5s and t =
12s.

Figure 5-6: Graphical output of the motion cueing error type detection algorithm for an idealised
Type II false cue.
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(a) Input & Output signals of a Type III false cue
caused by a simulator displacement limit hit.
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(b) Error signal of a typical Type III false cue caused
by a simulator displacement limit hit.

(c) CWT (using the time-based complex Gaussian
(n = 2) of a Type III false cue. Significant regions
are enclosed in white contours.

(d) Wavelet coherence of the input and output sig-
nal of a Type III false cue. Significant regions are
enclosed in white contours.
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(e) Power ratio (at time points required) for the Type
III false cue caused by a simulator hitting its displace-
ment limit, with the coherence zone indicated.
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(f) Algorithm outcome, highlighting the presence
of a Type III false cue caused by a simulator hitting
its displacement limit.

Figure 5-7: Graphical output of the motion cueing error type detection algorithm for an idealised
Type III-1 false cue caused by a simulator displacement limit hit.
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(a) Input & Output signals of a Type III false cue
caused by simulator vibrations.
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(b) Error signal of a typical Type III false cue caused
by simulator vibrations.

(c) CWT (using the time-based complex Gaussian
(n = 2) of a Type III false cue. Significant regions
are enclosed in white contours.

(d) Wavelet coherence of the input and output sig-
nal of a Type III false cue. Significant regions are
enclosed in white contours.
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(e) Power ratio (at time points required) for the Type
III-2 false cue, with the coherence zone indicated.

False1

False2

False3-1

False3-2

Scaling1

Scaling2

0 2 4 6 8 10 12 14 16

Time [s]

Phase

(f) Algorithm outcome, highlighting the presence
of a Type III false cue due to simulator vibrations.

Figure 5-8: Graphical output of the motion cueing error type detection algorithm for an idealised
Type III-2 false cue due to simulator vibrations.
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(a) Input & Output signals of a typical phase error.
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(b) Error signal of a typical phase error.

(c) CWT (using the time-based complex Gaussian
(n = 2) of a phase error. Significant regions are
enclosed in white contours.

(d) Wavelet coherence of the input and output signal
of a phase error. Significant regions are enclosed in
white contours.
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(e) Power ratio (at times required) for a phase error,
with the coherence zone indicated. The dashed line
at PR = 2 represents PR-values larger than 2.
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(f) Algorithm outcome, highlighting the presence of
a Type II scaling error and Type II false cue, rather
than a phase error.

Figure 5-9: Graphical output of the motion cueing error type detection algorithm for an idealised
phase error.
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5-3 Chapter conclusions

In this chapter the preparatory work of all chapters so far has been combined to explain a
process capable of detecting various types of motion cueing errors. In the process the following
answers have been provided to research questions posed in chapter 1:

1. Can we come up with a set of mutually exclusive categories of motion cueing errors?

1c. What mathematical technique(s) allow(s) for identifying the properties of and dif-
ferences between these error types?
It has previously been determined that motion cueing errors can be discriminated
based on their frequency content, duration, phase different, signal coherence and
input/output ratio. In this chapter a variety of mathematical techniques has been
applied to categorise errors based on these properties.

The timing and frequency content of motion cueing errors was determined using
the spatio-temporal wavelet analysis technique using significance checking. Using
this same technique signal coherence and signal phase difference were determined.
The relevant input/output ratios of simulator signals were determined by dividing
the two signal values at time points of interest.

3. Which wavelet types are best suited for motion cueing error detection?
For accurate identification of the timing and frequency content of motion cueing errors
only complex wavelets can be used, with wavelets with a higher time resolution leading
to better time-identification of errors. As such the complex Morlet (both time- and
frequency-based), complex Gaussian and Paul wavelet are suitable for use.

4. How do you compare two wavelet-transformed signals?

4c. What method is best suited for the comparison of motion simulator input and out-
put?
In this chapter it has been shown that a combination of methods is required to
identify different types of motion cueing error from a simulator input and out-
put trace. The combination of using the wavelet transform on the simulator error
signal and then determining the coherence of the input and output signal using
the wavelet coherence method allows for first identifying (time-frequency)-regions
containing a motion cueing error, and then determining the type of error present.

5. How can we verify and validate that the algorithm functions correctly?
Verification of the algorithm designed has been performed by constructing individual
idealised motion cueing errors, as shown in the top left of Figures 5-3 through 5-9.
The algorithm has been given these input and output signals as input and it has been
verified that the algorithm identifies the correct type of error at the correct points in
time, without falsely identifying other errors.
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Chapter 6

Conclusions & Discussion

In this preliminary thesis the suitability of wavelet analysis for the detection of motion cueing
error types from simulator input and output signals has been investigated. This chapter
serves as a round-up of this report, drawing conclusions from the work done in section 6-1.
Following this summary results of this report are discussed in section 6-2, with shortcomings
of the work done so far highlighted. These shortcomings serve as input for the discussion of
future work in section 6-3, which is followed by an experiment proposal for validation of the
algorithm designed in section 6-4.

6-1 Conclusions

In section 5-2 it has been shown that individual idealised motion cueing errors can be correctly
identified using the wavelet-based identification scheme proposed in section 5-1, without other
motion cueing error types being falsely identified. Additionally the time of occurrence of these
errors is identified correctly. Because of this finding it is concluded that wavelet analysis holds
promise for the identification of scaling errors and false cues in simulator input and output
traces.

It has been found the algorithm is unable to identify a typical simulator phase error, owing
to the ambiguity of the definition of this error and the definitions of Type II scaling errors
and Type II false cues. As a result the algorithm identifies a combination of the latter two
rather than a phase error.

Detection of motion cueing error types is best done using complex wavelets with relatively
good time resolution, such as the complex Morlet wavelet (in either the time or frequency
domain), the time-based complex Gaussian wavelet or the frequency-based Paul wavelet.
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6-2 Discussion

The positive findings of this preliminary thesis should be accompanied by a number of con-
siderations, which are gone through in this discussion section. These considerations include
assumptions and simplifications made, and limitations of the current results.

Phase error detection - As noted in section 2-2 false cues are most detrimental to the sim-
ulator fidelity perceived by humans, followed by scaling errors. It is for this reason that
the algorithm’s current inability to detect a short term phase error (instead detecting a
combination of a Type II scaling error and Type II false cue due to the fact that phase
errors which don’t span multiple frequency cycles cause signal coherence to drop) is not
deemed too much of a problem, since this algorithm behaviour does correspond to the
definitions of the latter two error types.

dt- and α-dependency - As noted in subsection 3-4-2 the outcome of the wavelet signifi-
cance test proposed by Torrence & Compo depends on the sampling frequency of the
simulator input and output signal (with a higher sample rate leading to larger regions
being marked as statistically significant). This dependency can be partly covered by
adjusting the α-value of the significance test, this lag-1 autocorrelation coefficient in
itself however is arbitrarily picked at present.

For geophysical processes (for which this significance test was developed) determining a
suitable α-value is possible from signal autocorrelation (Torrence & Compo, 1998), for
simulator signals (which in general are non-periodic) this method is unsuitable. Trial
and error will thus be needed to determine proper α-values for the detection of motion
cueing errors in actual simulator signals.

Use of idealised errors - The idealised individual motion cueing errors used in chapter 5
represent a very limited case of the errors to be encountered in true simulator input/out-
put signals. In reality multiple errors could be combined (with Type I scaling errors and
Type III-2 false cues being present most of the time), meaning the algorithm should
be capable of discriminating all error types simultaneously. Looking forward to true
simulator signals, a number of problems are foreseen:

1. In case a true simulator signal features a Type III-1 false cue amidst a continuous
Type III-2 false cue due to simulator vibrations, the algorithm as currently imple-
mented won’t be able to discriminate the Type III-1 false cue from the Type III-2
false cue (since high-frequency content is continuously present). Alternatively (as
shown in Figure 5-8) a small significant region of a Type III-2 false cue will show
up as a Type III-1 false cue in the algorithm output.

2. All idealised errors (apart from the Type I scaling error) presented in section 5-2
featured no overall signal scaling. It is known that in most simulators such overall
scaling is applied, leading to errors being present to some extent most of the time.
It remains to be seen how well the wavelet significance test is able to identify
individual error regions in case multiple errors are present in the time signal.

3. From CMS experiments at the MPI it is known that real simulator output signals
feature significant noise due to simulator vibrations. It is expected that this noise
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will at times (in case of small output values) lead to the simulator output signal
falsely switching sign (causing the power ratio to switch sign) or exceeding percep-
tual thresholds. Both effects will lead to false identification of a Type I or Type II
false cue, when in reality only a Type III-2 error should be detected.

4. Simulating idealised motion cueing errors has shown that the coherence between
a simulator’s input and output signal drops quickly in case any error other than
a Type I scaling error is present. It remains to be seen therefore whether Type I
scaling errors are still correctly identified for noisy simulator output.

Number of sensory channels - So far, only a single pair of motion cueing signals has been
analysed at a time to identify the error(s) between the two. In a simulator however
subjects experience six motion signals simultaneously (ax, ay, az, ωx, ωy and ωz), with
each sensory channel possible containing errors.

Use of binary thresholds - In order to prevent false-positive error detections by the de-
tection algorithm proposed in this preliminary thesis human perceptual threshold levels
have been implemented in the algorithm. The use of these thresholds should mimic the
tendency of humans not to detect false cues when the output is at a sub-threshold level
(although it is substantially larger than the input) or to detect a Type II scaling error in
case an above-threshold input is accompanied by a sub-threshold output (even though
the two may be within the coherence zone).

It is known that in reality perceptual thresholds are not so much a binary concept,
but are a Bayesian process instead (depending on the stimulus the chance of detecting
it increases) (Nash et al., 2016, p100). As a result the short Type II scaling error
indicated in Figure 5-4 (which is the result of the input surpassing the threshold level
slightly earlier than the output value) will not show up as such in Continuous Ratings
provided by subjects. Additionally this human behaviour will cause the timing at which
a subject indicates the onset of an error to fluctuate.

6-3 Future work

Because of the limitations of the work done so far (as discussed in the previous section) a
number of amendments to and checks on the current algorithm are required before a simu-
lator validation experiment (as described in section 6-4) can be carried out. Of particular
importance is to test the current algorithm using realistic simulator signals (possibly using
data of both the CMS at the Max Planck Institute for Biological Cybernetics and the SRS at
the Delft University of Technology, which represent two different kinds of simulator) in order
to see to what extent the problems foreseen in the previous section (and other unforeseen
problems) are encountered.

Besides these checks a number of modifications are intended to be made:

1. In order to deal with the overall scaling of motion input signals (see point 2 in section 6-
2) the lag-1 autocorrelation coefficient α needs to be tuned such that all regions of
significant error due to Type I scaling errors and Type III false cues (which both can be
ever-present) are identified separately from regions of significant other errors (since the
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distinction between these is based on the identification of separate regions of significant
error).

2. In order to prevent point 3 of section 6-2 from taking place output signal denoising
using the inverse CWT is proposed. This will be done by removing the high-frequency
components identified as Type III-2 errors from the output CWT spectrum and then
inversely transforming this spectrum to obtain the denoised output signal.

3. In order to avoid short-term error indications like the Type II scaling error indication
in Figure 5-4 at t = 4.1s a minimum duration of indicated errors could be imposed (to
account for humans also requiring a certain exposure to an error). Such an adjustment
will only be made in case it is beneficial for future uses of this algorithm.

4. To deal with multiple sensory channels an easy-to-interpret visual representation of
errors is to be made which clearly shows what errors are present at what time and in
what sensory channel. This representation will be made by extending the bottom-right
plots in Figures 5-3 through 5-9, using colours indicating the different motion channels.

Following verification of the correct functioning of the error identification algorithm using real
simulator signals, the algorithm will then be validated (showing that the algorithm indicates
errors at points in time at which subjects also indicate errors) through a simulator experiment,
the set-up of which is discussed in the next section.

6-4 Validation experiment proposal

In this section the set-up of a proposed validation experiment for the motion cueing error
detection algorithm is discussed. Following the experiment’s objectives discussed in sub-
section 6-4-1 and the hypotheses provided in subsection 6-4-2, the experimental set-up is
discussed in subsection 6-4-3. Finally the proposed data analysis is discussed in subsection 6-
4-4.

6-4-1 Experiment objectives

This experiment has two objectives, the first of which is to validate that the motion cueing
error detection algorithm presented in this preliminary thesis detects errors at (or shortly
before) instances in time at which subjects also indicate a motion cueing error to be present.
It should also be validated that the algorithm does not signal false positives. At the very
least it should be validated that the algorithm does not miss any errors reported by human
subjects (and thus avoids false negatives).

The second objective of this experiment is to investigate whether the different types of errors
are rated significantly different for an equal error magnitude (which would confirm the need
to be able to discern them).

Tim van Leeuwen Simulator motion cueing error detection using a wavelet-based algorithm



6-4 Validation experiment proposal 181

6-4-2 Hypothesis

Prior to the experiment the following hypotheses are set up, which will be tested during the
experiment:

1. The motion cueing error detection algorithm designed will detect an error at instances
in time at which subjects indicate an error, and will not detect errors when subjects
indicate no error to be present.

2. The motion cueing error detection algorithm will detect errors earlier than subjects.

3. The motion cueing error types will, from worst to least bad, be ranked Type III-1 false
cues - Type I false cues - Type II false cues - Phase errors - Type III-2 false cues - Type
II scaling errors - Type I scaling errors.

The first hypothesis is set up to test the performance of the detection algorithm in terms
of the presence of false positive and false negative detections. The second hypothesis serves
to comment on the average time delay between an error taking place (as detected by the al-
gorithm) and a human indicating this error. This time delay can then be used when analysing
Continuous Ratings provided by test subjects, as described in section 1-1.

The third hypothesis finally serves to fulfill the second experimental objective and comment on
which motion cueing error types should be treated separately in the evaluation of a simulator’s
motion cueing quality.

6-4-3 Experimental set-up

The hypotheses described above will be tested through a simulator experiment performed at
the MPI, details of this experiment are described below:

General description - In this validation experiment subjects will experience a passive car
drive in a simulator and will be asked to rate the incoherence between the visual images
they are presented and the motion they feel. This incoherence rating will then be
compared to the detection algorithm output. The car drive features motion cueing
errors of different types, allowing to evaluate the influence of each motion cueing error
type.

Simulator - The experiment will be carried out in the CyberMotion Simulator at the Max
Planck Institute for Biological Cybernetics. The occupant cabin of this simulator is
equipped with two overlaying projectors to display visual images and will be equipped
with a SensoDrive rotary electrical knob to allow subjects to provide an incoherence
rating. This rating will also be displayed by the projectors to indicate to subjects their
current rating.

Manoeuvres - In order to simplify the comparison between the six-dimensional algorithm
output (which can detect motion cueing errors per motion channel) and the one-
dimensional output provided by subjects (who integrate the errors in all six motion
channels into one overall rating) a car manoeuvre is chosen which features motion on
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only a selection of motion channels. For this reason a car drive through alternating right
and left corners (with pieces of straights in between) at constant velocity (a track made
using the vehicle simulation programme CarSim provided by Mechanical Simulation,
US) is chosen as simulated manoeuvre.

The resulting input motion for each corner into the MCA is a lateral acceleration and
yaw rate with a profile similar to the input signal shown in Figures 5-3 through 5-
9. Choosing this input profile allows for modifying the simulator motion such that
outputs such as those shown in Figures 5-3 through 5-9 are presented to the subject.
The choice of a curve-driving manoeuvre also allows for relating the results of this
research to previous research on the perceived fidelity during curve driving in a simulator
(Grant et al., 2003; Valente Pais, Wentink, van Paassen & Mulder, 2009; Feenstra,
Wentink, Correia Grácio & Bles, 2009; Damveld, Wentink, van Leeuwen & Happee,
2012; Lakerveld et al., 2016).

Independent variable - During each corner either motion perfectly coherent to the visuals
is presented, or simulator motion containing a motion cueing error is presented to the
subject. By varying this motion cueing error type the effect of each error type on
perceived simulator fidelity can be investigated.

Measurements/Dependent variable - During each car manoeuvre a subject indicates his
or her rating of the perceived instantaneous incoherence between the presented visuals
and the simulator motion by turning the rotary knob installed in the cabin (a process
described by Cleij et al. (Cleij et al., 2015)), producing a rating between zero (’fully
coherent’) and one (’fully incoherent’). Measuring this rating allows for commenting
on the effect of the error type on a subject’s perceived simulator fidelity. The straight
road sections in between curves (in which no acceleration/rotation input is given) allow
subjects to decrease their rating back to zero, in turn allowing for analysing all error
types individually.

Additionally subjects will be asked to comment on any experienced simulator sickness
after their simulator run, allowing for exclusion of data in case subjects indicate to have
suffered from severe simulator sickness.

Subjects - In this experiment 12 subjects with car driving experience and at least some
motion simulation experience in the CMS will be selected. Previous experience with
the Continuous Rating method is not necessarily required as this can be acquired during
the training phase.

Training & Experiment phase - In order to get acquainted with the type of motion
provided by the CMS and the method of continuous rating subjects will first do a
training run through a number of corners. This training run is especially important
for the calibration of a subject’s internal incoherence grading scale, as subjects will be
instructed to assign a rating of 1 to the worst incoherence encountered.

To allow subjects to calibrate their own scale all motion cueing error types (and the
one-to-one motion) will feature twice during the training phase, once in a left turn and
once in a right turn. The order of these errors will be randomised.

Following this training phase the subjects will experience all motion cueing error types
four times during the experiment (twice in a left turn and twice in a right turn), again
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in randomised order. As mentioned previously all turns feature one after the other,
ensuring subjects don’t have to re-calibrate their internal incoherence scale.

6-4-4 Data analysis

Following the experiment the continuous ratings given by all subjects (during all repetitions
of the experiment) will be averaged per car manoeuvre and MCA setting. This average
incoherence rating will then be compared to the output of the error detection algorithm to
assess the algorithm’s performance and comment on hypotheses 1 and 2.

Additionally the distributions of maximum continuous ratings during a corner will be invest-
igated to determine what motion cueing error types differ significantly in terms of experience
incoherence, allowing for commenting on hypothesis 3.

Simulator motion cueing error detection using a wavelet-based algorithm Tim van Leeuwen



184 Conclusions & Discussion

Tim van Leeuwen Simulator motion cueing error detection using a wavelet-based algorithm



Appendix A

Continuous Wavelet Transform Plots

In this appendix the Continuous Wavelet Transform of a test signal (generated with ∆t =
0.01s) for the various wavelet types discussed in subsection 3-3-2 is presented. The test signal
consists of various typical signal contents: Two peaks, a constant sine superimposed with a
higher-frequency sine wave, a step input and a chirp signal with increasing frequency. For all
wavelet types the effect of different parameters is illustrated.

All plots are shown with a reversed y-axis (in order to have high-frequency CWT content
’point’ at the signal in time) and a Region of Influence (as discussed in subsection 3-4-1) has
been included with all figures.
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