
 
 

Delft University of Technology

Feller property of regime-switching jump diffusion processes with hybrid jumps

Blom, Henk A.P.

DOI
10.1080/07362994.2024.2313202
Publication date
2024
Document Version
Final published version
Published in
Stochastic Analysis and Applications

Citation (APA)
Blom, H. A. P. (2024). Feller property of regime-switching jump diffusion processes with hybrid jumps.
Stochastic Analysis and Applications, 42(3), 516-532. https://doi.org/10.1080/07362994.2024.2313202

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1080/07362994.2024.2313202
https://doi.org/10.1080/07362994.2024.2313202


Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=lsaa20

Stochastic Analysis and Applications

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/lsaa20

Feller property of regime-switching jump diffusion
processes with hybrid jumps

Henk A.P. Blom

To cite this article: Henk A.P. Blom (17 Mar 2024): Feller property of regime-switching
jump diffusion processes with hybrid jumps, Stochastic Analysis and Applications, DOI:
10.1080/07362994.2024.2313202

To link to this article:  https://doi.org/10.1080/07362994.2024.2313202

© 2024 The Author(s). Published with
license by Taylor & Francis Group, LLC.

Published online: 17 Mar 2024.

Submit your article to this journal 

Article views: 74

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=lsaa20
https://www.tandfonline.com/journals/lsaa20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/07362994.2024.2313202
https://doi.org/10.1080/07362994.2024.2313202
https://www.tandfonline.com/action/authorSubmission?journalCode=lsaa20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=lsaa20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/07362994.2024.2313202?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/07362994.2024.2313202?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/07362994.2024.2313202&domain=pdf&date_stamp=17 Mar 2024
http://crossmark.crossref.org/dialog/?doi=10.1080/07362994.2024.2313202&domain=pdf&date_stamp=17 Mar 2024


STOCHASTIC ANALYSIS AND APPLICATIONS
https://doi.org/10.1080/07362994.2024.2313202

Feller property of regime-switching jump diffusion processes
with hybrid jumps

Henk A.P. Blom

Department Aerospace Engineering, Delft University of Technology, Delft, Netherlands

ABSTRACT
The transition kernel of anR

n-valued diffusion or jump diffusion process
{Xt} is known to satisfy the Feller property if {Xt} is the solution of an SDE
whose coefficients are Lipschitz continuous. This Lipschitz route to Feller
falls short if {Xt} is the solution of an SDE whose coefficients depend on a
state-dependent regime-switching process {θt}. In this paper it is shown
that pathwise uniqueness and the Feller property are satisfied under
mild conditions for a regime-switching jump diffusion process {Xt , θt}
with hybrid jumps, i.e. jumps in {Xt} that occur simultaneously with {θt}
switching.
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1. Introduction

Continuous-time Markov processes with hybrid state space have proven their great value
in modeling complex stochastic systems. Applications range from finance [1] to air traffic
[2, 3], and to biology [4]. Lygeros and Prandini [5] review literature on processes that
involve an R

n-valued component {Xt} and a discrete-valued component {θt}, and where
both components may interact with each other, i.e. {θt} influences the dynamics of {Xt}
and vice versa. Foundations for the study of hybrid state Markov processes with a two-
sided interaction between the dynamics of {Xt}and {θt} have been laid by Davis [6, 7] for
Piecewise Deterministic Markov Processes (PDMP) and by Skorohod [8] and Ghosh et al.
[9] for state-dependent regime-switching diffusions. In contrast to the latter, PDMP involves
hybrid jumps, i.e. a jump in {Xt} that occurs simultaneously with {θt} switching. Processes
that involve Brownian motion and hybrid jumps have been studied from a Markov automaton
perspective [10–15] and as pathwise unique solutions of Itô-Skorohod SDEs on a hybrid state
space [16 –18].

A natural condition of a Markov process is that the transition kernel satisfies the Feller
property, i.e. the transition kernel transforms a continuous function into a continuous
function. For diffusion and jump-diffusion processes, the Feller property has shown to be
satisfied if the coefficients of the corresponding SDEs satisfy Lipschitz conditions [19–21].
However, this Lipschitz route to the Feller property does not exist for the Markov transition
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Table 1. Conditions imposed by [22–27] on key elements in (1.1)-(1.2) for the Feller property.
Source M �ij(x) V g1(x, ., .) U c(x, ., .) g2(x, ., .)

[22] Finite Continuous - = 0 R Measurable = 0
[23] Countable Lipschitz - = 0 R Measurable = 0
[24] Countable Continuous - = 0 R Measurable = 0
[25], [26] Countable Lipschitz R Locally Lipschitz R Measurable = 0
[27] Finite Lipschitz R Locally Lipschitz R Measurable Bounded

kernel of a regime-switching diffusion, let alone for a regime-switching jump-diffusion that
involves hybrid jumps. To improve the situation, this paper studies the Feller property of the
transition kernel of a regime-switching jump-diffusion process {Xt , θt}, which is the solution
of the pair of Itô-Skorohod SDEs of [18]:

dXt = a(Xt , θt)dt + b(Xt , θt)dWt +
∫
V

g1(Xt−, θt−, v)q1(dt, dv)

+
∫
U

g2(Xt−, θt−, u)p2(dt, du) (1.1)

dθt =
∫
U

c(Xt−, θt−, u)p2(dt, du) (1.2)

with {Wt} standard Brownian motion, q1(dt, dv) a martingale random measure with intensity
measure μ1(dv) on mark space V , and p2(dt, du) a Poisson random measure with intensity
measure μ2(du) on mark space U. {Wt}, q1(dt, dv) and p2(dt, du) are independent of each
other and of (X0, θ0). The coefficient c(x, θ , u) in (1.2) is defined in such a way that {θt}assumes
values in M = {e1, .., eN}, according to Xt-conditional transition rates �ij(Xt):

P{θt+� = ej |θt = ei, Xt = x, (Xs, θs; s < t)} = �ij(x)� + o(�) (1.3)

with lim�→0 o(�)/ |�| = 0.
For specific versions of (1.1)-(1.2), the Feller property of the corresponding transition

kernel has been shown by [22–27]; an overview is given in Table 1. Yin and Zhu [22] study the
Feller property if g1(.) = g2(.) = 0, which simplifies (1.1) to the regime-switching diffusion:

dXt = a(Xt , θt)dt + b(Xt , θt)dWt (1.4)

Yin and Zhu [22, Lemma 2.14] first remind that the Feller property is satisfied, if �ij(x)

is x-invariant. Subsequently, Yin and Zhu [22, Theorem 2.18] develop a novel approach in
proving that the Feller property is satisfied if �ij(x) is continuous in x. Shao [23] and Zhang
[24] extend the results of [22] to situations of countable M = {1, 2, ...}. Xi et al. [25] and
Kunwai and Zhu [26] extend the Feller property results of [22, 23] to regime-switching jump-
diffusions of type (1.1)-(1.2) with locally Lipschitz g1(x, .). [22–26] have g2(.) = 0 in common,
i.e. there are no hybrid jumps.

In unpublished report [27], Feller property is proven in case of hybrid jumps and finite
M under the conditions that �ij(x) is Lipschitz and g2(., ., .) is bounded. This proof makes
use of a stochastic continuity result by Gihman and Skorohod [28] for a non-switching jump-
diffusion solution of (1.1) for |M| = 0.

The objective of this paper is to relax the Lipschitz and bound conditions that [27] imposes
on �ij(x) and g2(x, ., .) to continuity and linear growth conditions respectively. To make this
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feasible, section 2 introduces a partition of the mark space U, that differs from the common
partition [9, 16–18, 22–27]. In addition, the following generalizations of the mark space U
and the mapping g2(x, ., .) are adopted. Firstly, a multi-dimensional mark space is assumed,
i.e. U = R×R

d. Secondly, the measure μ2 is assumed to be a product of a Lebesque measure
onR and probability measure onR

d. Thirdly, while only one mark component of u influences
coefficient c(x, θ , u) in (1.2), all mark components of u influence coefficient g2(x, θ , u) in (1.1).

The novel mark space partition and the generalization of U and g2(x, ., .) imply the need
of a novel proof of the existence of a pathwise unique solution of (1.1–1.2), as well as a novel
route in using the stochastic continuity result of [28] in the derivation of the Feller property
for the corresponding transition kernel.

This paper is organized as follows. Section 2 starts presenting the novel partitioning and
extension of the mark space U and definitions of g2(x, θ , u) and c(x, e, u). Subsequently,
Section 2 develops relevant characterizations and an illustrative hybrid jump example. Section
3 starts with the background of pathwise uniqueness of a jump-diffusion solution of a non-
switching Itô-Skorohod SDE of type (1.1) if |M| = 0. Subsequently, Section 3 derives the
existence of pathwise unique solutions of Itô-Skorohod SDEs (1.1)-(1.2) under the novel
mark space partition and generalization of U and g2(x, ., .). Finally, Section 3 characterizes
the corresponding Markov transition kernel. Section 4 proves that this Markov transition
kernel satisfies the Feller property. Section 5 provides a discussion of results.

2. Composition and characterization of p2(dt, du) generated discontinuities

2.1. Composition

Throughout the paper all processes are defined on a stochastic basis (�,F , F, P), with
(�,F) a measurable space that is equipped with a collection F = {Ft , t ∈ [0, ∞)} of
increasing right-continuous sub σ -algebra’sFt ofF ; P is a probability measure defined on the
σ -algebra F .

Itô-Skorohod SDEs (1.1)-(1.2) evolve on hybrid space Rn × M, where M = {e1, e2, .., eN}
is a finite set of unit vectors ei ∈ R

N , i ∈ {1, .., N}. We assume Borel measurable mappings
a : Rn×M → R

n, b : Rn×M → R
n×R

m, g1 : Rn×M×V → R
n, g2 : Rn×M×U → R

n,
c : R

n × M × U → R
N , with U = R × R

d; and that {Wt}, q1(dt, dv), and p2(dt, du) satisfy
(A1)-(A4):

(A1) {Wt} is an m−dimensional standard Wiener process;
(A2) q1(dt, dv) is a martingale random measure on a Blackwell space {V ,V}, associated to a
homogeneous Poisson random measure p1(dt, dv) with intensity dt × μ1(dv), where μ1(dv)
is a positive σ -finite measure on {V ,V};
(A3) p2(dt, du) is a homogeneous Poisson random measure on a Blackwell space {U,U} with
intensity dt × μ2(du), where μ2(du) is a positive σ -finite measure on {U,U};
(A4) Wiener process {Wt} and Poisson random measures p1(dt, dv) and p2(dt, du) are
mutually independent, and are also independent of initial condition ξ0 = (x0, θ0).

The right-continuous sub σ -algebra Ft is assumed to be endowed with the restriction to
[0, t] of Wiener process {Wt} and Poisson random measures p1(dt, dv) and p2(dt, du).

Composition of the p2(dt, du) related measure μ2(du) and mappings c(., ., .) and g2(., ., .)
are specified in (C0) below:

(C0) Conditions imposed on μ2(du), and on coefficients g2(., ., .) and c(., ., .) :
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Measure μ2(du) satisfies:

μ2(du0 × du) = m(du0) × μ(du), (2.1a)

with m(du0) Lebesque measure on R and μ(du) a probability measure on R
d. Mappings

c(., ., .) and g2(., ., .) are composed as follows:

c(x, ei, (u0, u)) =
N∑

j=1

[
(ej − ei)1�ij(x)(u0)

]
=

{
ej − ei, if u0 ∈ �ij(x), u ∈ R

d

0, otherwise (2.1b)

g2(x, ei, (u0, u)) =
N∑

j=1

[
ϕij(x, u)1�ij(x)(u0)

]
=

{
ϕij(x, u), if u0 ∈ �ij(x), u ∈ R

d

0, otherwise (2.1c)

with measurable mappings ϕij : Rn × R
d → R

n, i, j = 1, 2, .., N; and where �ij(x), i, j =
1, 2, .., N, are the following intervals on the real line:

�ij(x) �
[
(j − 1)Cλ, (j − 1)Cλ + λij(x)

]
, (2.1d)

with constant Cλ < ∞, and measurable mappings λij : Rn → [0, Cλ), i, j = 1, 2, .., N.

Remark 2.1. The μ2(du) product composition in (2.1a) and the g2(., ., .) composition in (2.1c)
follow [16]. The composition of c(., ., .) in (2.1b) is similar to the one in [22–27]. However,
the �ij(x)’s defined by (2.1d) differ from those in [16, 22–27] on the following three aspects.
Firstly, in addition to the sets �ij(x),i �= j, (2.1d) also defines non-empty sets �ii(x). Secondly,
�ij(x) in (2.1d) has an x-invariant left-hand-side boundary. Thirdly for i �= k the sets �ij(x)

and �kj(x) in (2.1d) have overlap.

2.2. Characterizations

Condition (C0) leads to the following characterizations.

Characterization 2.2: Thanks to the �ij(x) definition in (2.1d), for all ei ∈ M, x, y ∈ R
n:

�ik(x) ∩ �ij(y) = ∅, if k �= j. (2.2)

The non-overlap property in (2.2) will be used in proving existence of pathwise uniqueness of
solutions of (1.1)-(1.2) and subsequently in proving the Feller property of the Markov kernel.

Characterization 2.3: If eq. (1.2) admits a pathwise unique solution {θt} that assumes
values in [0, ∞) × M then {θt} is an {Xt}-dependent N−state switching process with N × N
transition rate matrix �(Xt−) = [

�ij(Xt−)
]
, with �ii(x) = − ∑

j�=i
�ij(x) and off-diagonal

components satisfying:

�ij(x) = λij(x), j �= i. (2.3)

Characterization 2.4: (1.1)-(1.2) includes the special case that the {θt} transition rate
matrix is x-invariant, i.e. �(x) = �. Then p2(dt, du) in (1.1)-(1.2) can still generate
simultaneous jumps in {Xt} and in {θt}, as a result of which the process {θt} is not independent
of the process {Xt}. Because in this case the term 1�ij(x)(u0) in (2.1b-c) is x-invariant, pathwise
uniqueness and Feller property of the joint solution of (1.1)-(1.2) follows from the classical
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reasoning under the additional conditions that λii(x) is x-invariant and ϕij(x) satisfies a local
Lipschitz condition.

Characterization 2.5: If p2(dt, du) generates a joint random mark (u0, u) at moment τ ,
and if Xτ− = x and θτ− = ek, then the jump in {Xt , θt} satisfies:
[

Xτ − Xτ−
θτ − θτ−

]
=

[
Xτ − x
θτ − ek

]
=

[
g2(x, ek, u0, u)

c(x, ek, u0, u)

]
=

N∑
j=1

(
1�kj(x)(u0)

[
ϕkj(x, u)

(ej − ek)

])
.

(2.4)

where the last equality follows from substituting eq. (2.1b,c). From eq. (2.4) can be seen when
the different types of jumps in {Xt , θt} happen:

(1) Jump in {Xt} only: if u0 ∈ �kk(x) and ϕkk(x, u) �= 0;
(2) Jump in {θt} only: if ∃j �= k such that u0 ∈ �kj(x) and ϕkj(x, u) = 0;
(3) Hybrid jump: if ∃j �= k such that u0 ∈ �kj(x) and ϕkj(x, u) �= 0;
(4) No jump: if none of conditions 1) - 3) hold true.

2.3. Hybrid jump example of (1.1)-(1.2) under (C0)

In air traffic, spontaneous changes of aircraft dynamics pose safety risk. For example, the
aircraft flight mode may suddenly switch from level flight to climb or to descent. Consider a
discrete-valued state space consisting of three vertical flight modes: Level flight (i = 1), Climb
(i = 2), and Descent (i = 3). The vertical flight mode process θ⊥

t evolves according to SDE
(1.2), with c⊥(x, θ , u) satisfying (2.1b) and (2.1d), with non-zero rates λ12(x), λ13(x),λ21(x)

and λ31(x). Because an aircraft undergoes a finite number of discontinuities on a finite time
interval, Xt is modeled by (1.1) with g1(., .) = 0, where the Xt components in vertical direction
are position Xy,t and velocity Xv,t . The evolution in vertical position satisfies dXy,t = Xv,tdt,
i.e. ay((y, v), θ) = v and by((y, v), θ) = 0. In between two successive mode switching’s, the
evolution in vertical velocity satisfies dXv,t = fθ (vθ − Xv,t) + βθ dwv,t , i.e. av((Xy, Xv), θ) =
fθ (vθ − Xv) and bv((Xy, Xv), θ) = βθ , with fθ a feedback factor to keep the aircraft near the
desired vertical velocity vθ under mode θ , and βθ the level of Brownian motion disturbance
in vertical velocity under mode θ .

At moments of mode switching the random measure p2(dt, du) also generates a jump in
vertical velocity. This is modeled using eq. (2.1c) with d = 1, u ∈ R+, and with

ϕv,ij((y, v), u) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−v if (i, j) = (2, 1)

−v, if (i, j) = (3, 1)

−v + u, if (i, j) = (1, 2)

−v − u, if (i, j) = (1, 3)

0, else

, (2.5)

where the first two lines capture a reset of the vertical velocity to zero simultaneously with
a mode switching from Climb or from Descent to Level flight. The third and fourth lines
capture a jump in the vertical velocity to random value u or −u from probability measure
μ(du), simultaneously with a mode switching from Level flight to Climb or to Descent.
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3. Existence of pathwise unique solutions

Characterization 2.4 explains that the classical route to pathwise unique joint solution of
(1.1)-(1.2) falls short if one or more of the following three conditions apply: 1) �(x) �= �;
2) λii(x) �= λii, for some i; and 3) ϕij(x, u) is non-Lipschitz in x, for some i, j. To address
these cases, in subsection 3.1 a non-Lipschitz route in literature for an Itô-Skorohod SDE on
a Euclidean space is presented. Next, in subsection 3.2, the existence of a pathwise unique
solution of (1.1)-(1.2) under (C0) is proven under weak conditions, by elaboration of the
mapping of Itô-Skorohod SDEs and pathwise uniqueness conditions from Euclidean space to
hybrid space.

3.1. Itô-Skorohod SDE on Euclidean space

The Itô-Skorohod SDE considered is:

dξt = ã(ξt)dt + b̃(ξt)dWt +
∫
V

g̃1(ξt−, v)q1(dt, dv) +
∫
U

g̃2(ξt−, u)p2(dt, du), (3.1)

with ã : R
n′ → R

n′ , b̃ : R
n′ → R

n′ × R
m, g̃1 : R

n′ × V → R
n′ , g̃2 : R

n′ × U →
R

n′ measurable mappings, and with {Wt}, q1(dt, dv) and p2(dt, du) satisfying (A1)-(A4).
Moreover, the coefficients ã, b̃, g̃1, and g̃2 satisfy conditions (L1)-(L3):

(L1) There exists a constant cG < ∞ such that for all ξ ∈ R
n′ :

∣∣ã(ξ)
∣∣2 +

m∑
k=1

∣∣∣b̃k(ξ)

∣∣∣2 +
∫
V

∣∣g̃1(ξ , v)
∣∣2

μ1(dv) +
∫
U

∣∣g̃2(ξ , u)
∣∣2

μ2(du) ≤ cG(1 + |ξ |2);

(L2) For each positive integer r there is constant cr
L < ∞ such that for all |ξ | , |ζ | < r:

∣∣ã(ξ) − ã(ζ )
∣∣2 +

m∑
k=1

∣∣∣b̃k(ξ) − b̃k(ζ )

∣∣∣2 +
∫
V

∣∣g̃1(ξ , v) − g̃1(ζ , v)
∣∣2

μ1(dv) ≤ cr
L |ξ − ζ |2);

(L3) There is a constant cJ < ∞ such that sup
ξ∈Rn′

{∫
U

1{g̃2(ξ , u) �= 0}μ2(du)} ≤ cJ .

If g̃2(., .) = 0, then conditions for existence of pathwise unique cadlag solution of (3.1)
are well known under (L1) and (L2), e.g. [20, 21]. If g̃2(., .) �= 0, (L3) assures that p2(dt, du)

generates a finite number of additional discontinuities in {ξt} on a finite interval, as a result
of which no Lipschitz condition on g̃2(ξ , .) is needed to prove existence of pathwise unique
solution of (3.1) [28–30].

Proposition 3.1. Let assumptions (A1)-(A4) hold true and let the coefficients of Itô-Skorohod
SDE (3.1) satisfy conditions (L1)-(L3). Then for each F0-measurable square integrable R

n′-
valued random variable η, SDE (3.1) with initial condition ξ0 = η admits a pathwise unique
Ft-measurable cadlag solution ξ

0,η
t , t ∈ [0, ∞), satisfying E

∣∣∣ξ 0,η
t

∣∣∣2
< ∞. Moreover, for

each ξ ∈ R
n′ there exists a random measurable function φ(ξ , t, ω), t ∈ [0, ∞), such that

φ(ξ , t) = ξ
0,ξ
t P − a.s.
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In having shown existence and pathwise uniqueness of a solution of an SDE driven by
Brownian motion and Poisson random measure, the classical approach in showing stochastic
continuity of this solution is to make use of Lipschitz continuity for all terms in (3.1). Because
Proposition 3.1 does not assume Lipschitz continuity on the term involving g̃2(ξ , u), another
proof is needed to show that the solution process of (3.1) is stochastically continuous. Such
proof has been given by Gihman and Skorohod [28, pp. 249–254], the result of which is stated
in Proposition 3.2 below.

Proposition 3.2. Let, in addition to the assumptions and conditions of Proposition 3.1, g̃2(ξ , u)

be continuous in ξ , for almost all u in measure μ2(du). Then for any converging sequence {ηκ}
that is independent of {Wt}, p1(dt, dv), p2(dt, du) and ξ0, and has limit lim

κ→∞ ηκ = η ∈ R
n′ ,

lim
κ→∞ P(sup

t≤r

∣∣∣ξ 0,ηκ

t − ξ
0,η
t

∣∣∣ > ε) = 0, all r > 0 and ε > 0.

3.2. Itô-Skorohod SDE on a hybrid space

To prove existence of a pathwise unique solution of (1.1)-(1.2), in addition to condition (C0),
we adopt the following conditions (C1)-(C3):
(C1) There exists a constant �G such that for all ei ∈ M and all x ∈ R

n:

|a(x, ei)|2 +
m∑

k=1
|bk(x, ei)|2 +

∫
V

∣∣g1(x, ei, v)
∣∣2

μ1(dv) ≤ �G(1 + |x|2);

(C2) For each positive integer r there exists a constant �r
L such that for all ei ∈ M and all

|x| ,
∣∣y∣∣ < r:

∣∣a(x, ei) − a(y, ei)
∣∣2 +

m∑
k=1

∣∣bk(x, ei) − bk(y, ei)
∣∣2

+
∫
V

∣∣g1(x, ei, v) − g1(y, ei, v)
∣∣2

μ1(dv) ≤ �r
L
∣∣x − y

∣∣2;

(C3) There exists a constant �ϕ < ∞ such that for all i, j = 1, 2..., N and all x ∈ R
n:∫

Rd

∣∣ϕij(x, u)
∣∣2

μ(du) ≤ �ϕ(1 + |x|2).

To prove existence of a pathwise unique solution, the system of equations (1.1)-(1.2) is
mapped on (3.1). Subsequently it is verified that conditions (C0)-(C3) imply that conditions
(L1)-(L3) in Proposition 3.1 hold true. Hence, Proposition 3.1 yields existence of a pathwise
unique solution of (1.1)-(1.2).

Theorem 3.3. Let assumptions (A1)-(A4) and conditions (C0)-(C3) hold true. Then for each
F0-measurable square integrable R

n × M-valued random variable η, SDE (1.1)-(1.2) with
initial condition ξ0 = (x0, θ0) = η, admits a pathwise unique Ft-measurable cadlag solution
ξ

0,η
t , t ∈ [0, ∞), satisfying E

∣∣∣ξ 0,η
t

∣∣∣2
< ∞. Moreover, for each ξ ∈ R

n × M there exists a

random measurable function φ(ξ , t, ω), t ∈ [0, ∞), such that φ(ξ , t) = ξ
0,ξ
t P − a.s.
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Proof. See Appendix A, which also explains differences with the proof in [27].

A well-known consequence of Theorem 3.3 is that joint solutions of (1.1)-(1.2) define a
Markov transition kernel, e.g. [19, 20].

Corollary 3.4. Theorem 3.3’s pathwise unique Ft-measurable SDE solution process ξ
0,η
t , t ∈

[0, ∞) is a time-homogeneous Markov process with respect to F = {Ft}, with Markov transition
kernel Qt(ξ ; B) � P{φ(ξ , t) ∈ B}, t ∈ [0, ∞), ξ ∈ R

n × M,B ∈ β(Rn × M), forming a
semigroup, i.e.

Qt+�(ξ ; B) =
∫

Rn×M

Q�(u; B)Qt(ξ ; du), for all t, � ∈ [0, ∞). (3.2)

Remark 3.5. Conditions (C0) through (C3) adopted in Theorem 3.3 mean that for the
existence of a pathwise unique solution of (1.1)-(1.2) it is sufficient for λij(x) and ϕij(x, .) to
be measurable only. In the next section it will be shown that the Feller property holds true if
λij(x) and ϕij(x, u) are continuous in x, for each i, j, u.

4. Feller property of the Markov transition kernel

Let CRn×M denote the space of bounded functions on R
n ×M that are continuous on R

n for
each value inM. Following [19], transition kernel Qt(ξ ; B), ξ ∈ R

n×M, B ∈ β(Rn×M) is said
to satisfy the Feller property if

∫
Rn×M

f (y)Qt(ξ ; dy) ∈ CRn×M, for each f ∈ CRn×M,t ∈ [0, ∞).

The objective is to prove that the Markov transition kernel of Corollary 3.4 satisfies the
Feller property. This is accomplished by adopting additional conditions (C4)-(C5):
(C4) λij(x) is continuous in x for all i, j = 1, 2..., N.
(C5) ϕij(x, u) is continuous in x, for every u ∈ R

d, for all i, j = 1, 2..., N.
Under these additional assumptions, it will be proven in Theorem 4.2 that solution ξ

0,η
t of

(1.1)-(1.2) is stochastically continuous in η ∈ R
n × M. To prepare, we first prove in Lemma

4.1 that g2(x, ei, u) and c(x, ei, u) are continuous in x, for almost all u in measure μ2(du).

Lemma 4.1. Under (C0), (C4) and (C5), the mapping

g̃2((x, ei), u)) =
[

g2(x, ei, u)

c(x, ei, u)

]
(4.1)

is continuous in x, for almost all u in measure μ2(du).

Proof. Substitution of (2.1b,c) in (4.1) yields:

g̃2((x, ei), (u0, u)) =
N∑

j=1

(
1�ij(x)(u0)

[
ϕij(x, u)

(ej − ei)

])

Due to (C5), ϕij(x, u) is continuous in x ∈ R
n for every i, j = 1, 2..., N and every u ∈ R

d.
Hence, for the completion of the proof, it remains to be shown that the process { 1�ij(x)(u0) }
is continuous in x, for almost all u0 in measure m(du0). To prove the latter, for each sequence
{xκ ∈ R

n}, that is independent of {Wt}, p1(dt, dv), p2(dt, du) and ξ0, and which converges to
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x ∈ R
n, i.e. lim

κ→∞ xκ = x, we evaluate:

∫
R

∣∣∣∣∣∣
N∑

j=1
[(1�ij(x)(u0) − 1�ij(xκ )(u0))]

∣∣∣∣∣∣ m(du0)

=
∫
R

∣∣∣∣∣∣
N∑

j=1
[(1�ij(x)\�ij(xκ )(u0) − 1�ij(xκ )\�ij(x)(u0))]

∣∣∣∣∣∣ du0.

Thanks to non-overlap property (2.2), there is only one non-zero term in each of the
summations over j. Hence the summation can be moved outside ||. Due to Fubini’s theorem,
the summation can subsequently be moved outside the integral. These two moves yield:

∫
R

∣∣∣∣∣∣
N∑

j=1
[(1�ij(x)(u0) − 1�ij(xκ )(u0))]

∣∣∣∣∣∣ m(du0)

=
N∑

j=1

∫
R

∣∣∣1�ij(x)\�ij(xκ )(u0) − 1�ij(xκ )\�ij(x)(u0)
∣∣∣du0

=
N∑

j=1

∣∣λij(x) − λij(xκ)
∣∣.

Hence lim
κ→∞

∫
R

∣∣∣∣∣
N∑

j=1
[(1�ij(x)(u0) − 1�ij(xκ )(u0))]

∣∣∣∣∣ m(du0) = lim
κ→∞

N∑
j=1

∣∣λij(x) − λij(xκ)
∣∣

Following (C4), λij(x) is continuous in x, which means lim
κ→∞

∣∣λij(x) − λij(xκ)
∣∣ = 0. Hence

lim
κ→∞

∫
R

∣∣∣∣∣∣
N∑

j=1
[(1�ij(x)(u0) − 1�ij(xκ )(u0))]

∣∣∣∣∣∣ m(du0) = 0

The latter implies that the mapping 1�ij(x)(u0) is continuous in x for every i, j = 1, 2, .., N and
almost all u0 in measure m(du0).

Remark 4.2. There are two differences with [27]. The first difference is that under the
common partition, non-overlap property (2.2) does not hold true. Therefore [27; Appendix
C] cannot shift the summation outside ||, which makes the proof more demanding and needs
Lipschitz λij(x). The second difference is that instead of proving, [27; Remark 2.4] assumes
that g2(x, ei, u) is continuous in x for almost all u in measure μ2(du).

Next, Proposition 3.2 and Lemma 4.1 are used to prove in Theorem 4.3 that solution ξ
0,η
t

of (1.1)-(1.2) is stochastically continuous in η ∈ R
n × M. From this stochastic continuity

result the Feller property follows in Theorem 4.4.

Theorem 4.3. Let in addition to the assumptions and conditions of Theorem 3.3, conditions
(C4) and (C5) hold true. Then solution ξ

0,η
t of (1.1)-(1.2) is stochastically continuous in η ∈

R
n ×M, i.e. for any converging sequence {ηκ}, ηκ = (xκ , ei) ∈ R

n ×M, that is independent of
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{Wt}, p1(dt, dv), p2(dt, du) and ξ0, and that converges to lim
κ→∞ ηκ = η = (x, ei) ∈ R

n × M:

lim
κ→∞ P

(
sup
t≤r

∣∣∣ξ 0,ηκ

t − ξ
0,η
t

∣∣∣ > ε

)
= 0, for all r > 0 and ε > 0. (4.2)

Proof. From the proof of Theorem 3.3 we know that SDE (1.1)-(1.2) has a pathwise unique
Ft-measurable solution for each initial value in R

n × M. From Lemma 4.1 we know that
g̃2((x, ei), (u0, u)) is continuous in x, for almost all (u0, u) in measure μ2(du). Then, from
Proposition 3.2 follows for all r > 0 and ε > 0:

lim
κ→∞ P

(
sup
t≤r

∣∣∣ξ 0,ηκ

t − ξ
0,η
t

∣∣∣ > ε

)
= 0. (4.3)

Hence solutions of SDE (3.1) are stochastically continuous. Because SDE (3.1) embeds SDE
(1.1)-(1.2), limit (4.3) also holds true for (1.1)-(1.2).

Theorem 4.4. Under assumptions and conditions of Theorem 4.3, the Markov transition kernel
Qt(ξ ; B) satisfies the Feller property.

Proof. Because solutions ξ
0,η
t of (1.1)-(1.2) are stochastically continuous w.r.t. η ∈ R

n × M

(see Theorem 4.3), for all f ∈ CRn×M the process {f (ξ 0,η
t )} also is stochastically continuous

w.r.t. η ∈ R
n ×M. This means that E{f (ξ 0,η

t )} ∈ CRn×M for all f ∈ CRn×M. Because we know
E{f (ξ 0,ξ

t )} = ∫
Rn×M

f (y)P{ξ 0,ξ
t ∈ dy} = ∫

Rn×M

f (y)P{φ(ξ , t) ∈ dy} = ∫
Rn×M

f (y)Qt(ξ ; dy),

this implies
∫

Rn×M

f (y)Qt(ξ ; dy) ∈ CRn×M, i.e. the Feller property holds true for Qt(ξ ; B).

Corollary 4.5. Under the assumptions and conditions of Theorem 4.3, the time-homogeneous
Markov process solution {ξ 0,η

t } of (1.1)-(1.2) is a strong Markov process, i.e. for any stopping time
τ with P{τ < ∞} = 1, for every t ∈ [0, ∞) and B ∈ β(Rn × M):

P{ξ 0,η
τ+t ∈ B

∣∣Fτ } = Qt(ξ
0,η
τ , B) a.s.

Proof. See Friedman [19, Theorem 2.4].

5. Discussion of results

This paper has studied Feller property of the Markov transition kernel of regime-switching
jump diffusion processes with hybrid jumps. The processes considered evolve in a hybrid
state space, as solutions of SDE’s that are driven by Brownian motion and Poisson random
measures. The results obtained significantly enhance Feller results of [22–27] for SDE’s that
involve regime-switching.

These results also open directions for relevant follow-on research. One is the extension to
a countable number of modes [23–26]. Another extension is to further relax growth and local
Lipschitz conditions for the mode-dependent drift coefficient [22, 25, 26]. Thirdly, [11–15, 17,
18] show relevant larger classes of continuous-time hybrid state Markov processes; the study
of the Feller property of their Markov transition kernels forms another direction for relevant
follow-on research.
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n × M are mapped on SDE (3.1) on R

n′ , with n′ = n + N and:

ã : Rn+N → R
n+N , ã((x, z)) =

[ N∑
i=1

[αi(z)a(x, ei)] ON
]T

, x ∈ R
n, z ∈ R

N ;

b̃ : Rn+N → R
(n+N) × R

m, b̃(x, z) =
[ N∑

i=1
[αi(z)b(x, ei)] ON×m

]T
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g̃1 : Rn+N × V → R
n+N , g̃1((x, z), v) =

[ N∑
i=1

[αi(z)g1(x, ei, v)] ON
]T

;

g̃2 : Rn+N × U → R
n+N , g̃2((x, z), u) =

[ N∑
i=1

[αi(z)g2(x, ei, u)]
N∑

i=1
[αi(z)c(x, ei, u)]

]T
,

where ON and ON×m denote zero N-vector and zero N × m-matrix respectively, and αi(z) is
an elevated cosine on the set

{
z ∈ R

N ; |z − ei| ≤ 1
}

and zero outside this set, i.e.

αi(z) �
{ 1

2 + 1
2 cos(2π |z − ei|), if |z − ei| ≤ 1

2
0, else .

This implies that αi(z) is Lipschitz continuous and that αi(z)αj(z) = 0 for each i �= j, z ∈ R
N .

We have to verify that posing conditions (C0)-(C3) on coefficients a(x, ei), b(x, ei),
g1(x, ei, .), g2(x, ei, .), and c(x, ei, .), for (x, ei) ∈ R

n × M, imply that conditions (L1)-(L3)
of Proposition 3.1 hold true for ã(ξ), b̃(ξ), g̃1(ξ , .), and g̃2(ξ , .) for ξ = (x, z) ∈ R

n+N .
This verification is demonstrated in subsections A.1, A.2 and A.3 for (L1), (L2), and (L3)
respectively.

During this verification we point to the ei that is at smallest distance from z ∈ R
N by

using the pointer iz � min{arg max
i

|z − ei|}. This pointer is of specific use if ∃i �= j such that

|z − ei| = ∣∣z − ej
∣∣; in such case αiz(z) = 0.

Remark A: [27] also maps (1.1)-(1.2) on (3.1) in a way similar as done above, and sub-
sequently verifies that conditions imposed on (1.1)-(1.2) imply those imposed on (3.1) for
the existence of a pathwise unique solution. In doing so, there are two differences. The first
difference is that [27; Appendix B] restricts the mapping on (3.1) to (x, ei) ∈ R

n × M, which
means αi(ei) = 1. This restricted mapping makes the verification of growth and Lipschitz
conditions simpler, though also requires λij(x) to be Lipschitz. The second difference is that
[27, Appendix A] assumes that g̃2(., .) in (3.1) is bounded; this asks g2(., .) also to be bounded.

A.1. Verification that (C0), (C1) and (C3) imply condition (L1) in Proposition 3.1

For ξ ∈ R
n+N we get:

∣∣ã(ξ)
∣∣2 +

m∑
k=1

∣∣∣b̃k(ξ)

∣∣∣2 +
∫
V

∣∣g̃1(ξ , v)
∣∣2

μ1(dv) +
∫
U

∣∣g̃2(ξ , u)
∣∣2

μ2(du)

= ∣∣ã(x, ei)
∣∣2 +

m∑
k=1

∣∣∣b̃k(x, ei)
∣∣∣2 +

∫
V

∣∣g̃1(x, ei, v)
∣∣2

μ1(dv) +
∫
U

∣∣g̃2(x, ei, u)
∣∣2

μ2(du)

=
∣∣∣∣∣

N∑
i=1

[αi(z)a(x, ei)]
∣∣∣∣∣
2

+
m∑

k=1

∣∣∣∣∣
N∑

i=1
[αi(z)bk(x, ei)]

∣∣∣∣∣
2

+
∫
V

∣∣∣∣∣
N∑

i=1
[αi(z)g1(x, ei, v)]

∣∣∣∣∣
2

μ1(dv)

+
∫
U

∣∣∣∣∣
N∑

i=1

[
αi(z)

[
g2(x, ei, u)

c(x, ei, u)

]]∣∣∣∣∣
2

μ2(du)
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=
N∑

i=1
|αi(z)a(x, ei)|2 +

m∑
k=1

N∑
i=1

|αi(z)bk(x, ei)|2 +
∫
V

N∑
i=1

∣∣αi(z)g1(x, ei, ν)
∣∣2

μ1(dv)

+
∫
U

N∑
i=1

∣∣∣∣αi(z)
[

g2(x, ei, u)

c(x, ei, u)

]∣∣∣∣
2
μ2(du)

= |αiz(z)a(x, eiz)|2 +
m∑

k=1
|αiz(z)bk(x, eiz)|2 +

∫
V

∣∣αiz(z)g1(x, eiz , ν)
∣∣2

μ1(dv)

+
∫
U

∣∣∣∣αiz(z)
[

g2(x, eiz , u)

c(x, eiz , u)

]∣∣∣∣
2
μ2(du)

≤ |a(x, eiz)|2 +
m∑

k=1
|bk(x, eiz)|2 +

∫
V

∣∣g1(x, eiz , ν)
∣∣2

μ1(dv) +
∫
U

∣∣∣∣
[

g2(x, eiz , u)

c(x, eiz , u)

]∣∣∣∣
2
μ2(du)

≤ �G(1 + |x|2) +
∫
U

∣∣∣∣∣∣
N∑

j=1

[
1�iz j(x)(u0)

[
ϕizj(x, u)

(ej − eiz)

]]∣∣∣∣∣∣
2

μ2(du),

where �G is the constant in (C1), and the last term follows from (2.1b,c) of (C0). Thanks to
(2.1d) of (C0) we can make use of (2.2), which implies that there is only one non-zero term in
the summation over j. Hence the summation can be moved outside ||. Due to Fubini’s theorem
this summation can also be moved outside the integral, i.e.

∫
U

∣∣∣∣∣∣
N∑

j=1

[
1�iz j(x)(u0)

[
ϕizj(x, u)

(ej − eiz)

]]∣∣∣∣∣∣
2

μ2(du) =
N∑

j=1

∫
U

∣∣∣∣1�iz j(x)(u0)

[
ϕizj(x, u)

(ej − eiz)

]∣∣∣∣
2
μ2(du)

≤ Cλ

N∑
j=1

∫
Rd

∣∣∣∣
[

ϕizj(x, u)

(ej − eiz)

]∣∣∣∣
2
μ(du) = Cλ

N∑
j=1

∫
Rd

[∣∣ϕizj(x, u)
∣∣2 + ∣∣ej − eiz

∣∣2]μ(du)

= Cλ

N∑
j=1

∫
Rd

∣∣ϕizj(x, u)
∣∣2

μ(du) + 2Cλ(N − 1) ≤ CλN�ϕ(1 + |x|2) + 2CλN.

This implies:
∣∣ã(ξ)

∣∣2 +
m∑

k=1

∣∣∣b̃k(ξ)

∣∣∣2 +∫
V

∣∣g̃1(ξ , v)
∣∣2

μ1(dv)+∫
U

∣∣g̃2(ξ , u)
∣∣2

μ2(du) ≤ �G(1+
|x|2) + CλN�ϕ(1 + |x|2) + 2CλN ≤ cG(1 + |x|2). Hence (L2) is satisfied by setting cG =
max{2CλN, (�G + CλN�ϕ)}, where �G and �ϕ are the constants in (C1) and (C3).

A.2. Verification that (C1) and (C2) imply condition (L2) in Proposition 3.1

For ξ = (x, z), ζ = (y, ϑ) we define:

L1(x, y, z) �
∣∣ã(x, z) − ã(y, z)

∣∣2 +
m∑

k=1

∣∣∣b̃k(x, z) − b̃k(y, z)
∣∣∣2
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+
∫
V

∣∣g̃1(x, z, v) − g̃1(y, z, v)
∣∣2

μ1(dv),

L2(y, z, ϑ) �
∣∣ã(y, z) − ã(y, ϑ)

∣∣2 +
m∑

k=1

∣∣∣b̃k(y, z) − b̃k(y, ϑ)

∣∣∣2

+
∫
V

∣∣g̃1(y, z, v) − g̃1(y, ϑ , v)
∣∣2

μ1(dv).

Evaluation of L1(x, y, z) for |x| ,
∣∣y∣∣ < r yields:

L1(x, y, z) = ∣∣ã(x, z) − ã(y, z)
∣∣2 +

m∑
k=1

∣∣∣b̃k(x, z) − b̃k(y, z)
∣∣∣2

+
∫
V

∣∣g̃1(x, z, v) − g̃1(y, z, v)
∣∣2

μ1(dv)

=
∣∣∣∣∣

N∑
i=1

αi(z)[a(x, ei) − a(y, ei)]
∣∣∣∣∣
2

+
m∑

k=1

∣∣∣∣∣
N∑

i=1
αi(z)[bk(x, ei) − bk(y, ei)]

∣∣∣∣∣
2

+
∫
V

∣∣∣∣∣
N∑

i=1
αi(z)[g1(x, ei, v) − g1(y, ei, v)]

∣∣∣∣∣
2

μ1(dv)

≤ ∣∣a(x, eiz) − a(y, eiz)
∣∣2 +

m∑
k=1

∣∣bk(x, eiz) − bk(y, eiz)
∣∣2

+
∫
V

∣∣g1(x, eiz , v) − g1(y, eiz , v)
∣∣2

μ1(dv)

≤ �r
L
∣∣(x, eiz) − (y, eiz)

∣∣2 ≤ �r
L
∣∣x − y

∣∣2 , with �r
L the constant in (C2).

Evaluation of L2(y, z, ϑ) for
∣∣y∣∣ < r yields:

L2(y, z, ϑ) = ∣∣ã(y, z) − ã(y, ϑ)
∣∣2 +

m∑
k=1

∣∣∣b̃k(y, z) − b̃k(y, ϑ)

∣∣∣2

+
∫
V

∣∣g̃1(y, z, v) − g̃1(y, ϑ , v)
∣∣2

μ1(dv)

=
∣∣∣∣∣

N∑
i=1

[αi(z) − αi(ϑ)]a(y, ei)

∣∣∣∣∣
2

+
m∑

k=1

∣∣∣∣∣
N∑

i=1
[αi(z) − αi(ϑ)]bk(y, ei)

∣∣∣∣∣
2

+
∫
V

∣∣∣∣∣
N∑

i=1
[αi(z) − αi(ϑ)]g1(y, ei, v)

∣∣∣∣∣
2

μ1(dv)

=
∣∣∣∣∣∣

∑
i=iz ,iϑ

[αi(z) − αi(ϑ)]a(y, ei)

∣∣∣∣∣∣
2

+
m∑

k=1

∣∣∣∣∣∣
∑

i=iz ,iϑ
[αi(z) − αi(ϑ)]bk(y, ei)

∣∣∣∣∣∣
2
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+
∫
V

∣∣∣∣∣∣
∑

i=iz ,iϑ
[αi(z) − αi(ϑ)]g1(y, ei, v)

∣∣∣∣∣∣
2

μ1(dv)

≤
∣∣∣∣∣∣

∑
i=iz ,iϑ

1
2
π |z − ϑ |a(y, ei)

∣∣∣∣∣∣
2

+
m∑

k=1

∣∣∣∣∣∣
∑

i=iz ,iϑ

1
2
π |z − ϑ |bk(y, ei)

∣∣∣∣∣∣
2

+
∫
V

∣∣∣∣∣∣
∑

i=iz ,iϑ

1
2
π |z − ϑ | g1(y, ei, v)

∣∣∣∣∣∣
2

μ1(dv)

≤ 1/4 π2 |z − ϑ |2
⎡
⎣

∣∣∣∣∣∣
∑

i=iz ,iϑ
a(y, ei)

∣∣∣∣∣∣
2

+
m∑

k=1

∣∣∣∣∣∣
∑

i=iz ,iϑ
bk(y, ei)

∣∣∣∣∣∣
2

+
∫
V

∣∣∣∣∣∣
∑

i=iz ,iϑ
g1(y, ei, v)

∣∣∣∣∣∣
2

μ1(dv)

⎤
⎦

= 1/4 π2 |z − ϑ |2
⎡
⎣ ∣∣a(y, eiz) + a(y, eiϑ )

∣∣2 +
m∑

k=1

∣∣bk(y, eiz) + bk(y, eiϑ )
∣∣2

+
∫
V

∣∣g1(y, eiz , v) + g1(y, eiϑ , v)
∣∣2

μ1(dv)

⎤
⎦

≤ π2 |z − ϑ |2 �G(1 + ∣∣y∣∣2
) ≤ π2 |z − ϑ |2 �G(1 + |r|2),

with �G the constant in (C1).

Taking the two bounds together yields for |x| ,
∣∣y∣∣ < r:

L1(x, y, z) + L2(y, z, ϑ) ≤ �r
L
∣∣x − y

∣∣2 + π2 |z − ϑ |2 �G(1 + r2).

Hence with ξ = (x, z), ζ = (y, ϑ) we get:

∣∣ã(ξ) − ã(ζ )
∣∣2 +

m∑
k=1

∣∣∣b̃k(ξ) − b̃k(ζ )

∣∣∣2 +
∫
V

∣∣g̃1(ξ , v) − g̃1(ζ , v)
∣∣2

μ1(dv)

= ∣∣ã(x, z) − ã(y, ϑ)
∣∣2 +

m∑
k=1

∣∣∣b̃k(x, z) − b̃k(y, ϑ)

∣∣∣2 +
∫
V

∣∣g̃1(x, z, v) − g̃1(y, ϑ , v)
∣∣2

μ1(dv)

≤ 2L1(x, y, z) + 2L2(y, z, ϑ) ≤ 2�r
L
∣∣x − y

∣∣2 + 2π2 |z − ϑ |2 �G(1 + r2)

≤ 2 max{�r
L, π2�G(1 + r2)} |ξ − ζ |2

Hence, (L2) is satisfied by setting cr
L = 2 max{�r

L, π2�G(1 + r2)}.
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A.3. Verification that (C0) implies (L3) in Proposition 3.1

Using ξ = (x, z) we get:

1
{

g̃2(ξ , u) �= 0
} = 1

{
g̃2((x, z), u) �= 0

} = 1

{ N∑
i=1

[
αi(z)

[
c(x, ei, u)

g2(x, ei, u)

]]
�= 0

}

= 1
{[

αiz(z)
[

c(x, eiz , u)

g2(x, eiz , u)

]]
�= 0

}
≤ 1

{[
c(x, eiz , u)

g2(x, eiz , u)

]
�= 0

}
.

Due to equations (2.1b,c) of (C0) we know: 1
{[

c(x, eiz , u)

g2(x, eiz , u)

]
�= 0

}
≤

N∑
j=1

1
{

u0 ∈ �izj(x)
}

.

Hence:∫
U

1{g̃2(ξ , u) �= 0}μ2(du) = ∫
U

1{g̃2((x, z), u) �= 0}μ2(du) ≤ ∫
U

N∑
j=1

1
{

u0 ∈ �izj(x)
}
μ2(du).

By using (2.1a) and (2.1d) from (C0) we get:∫
U

1{g̃2(ξ , u) �= 0}μ2(du) =
∫
U

N∑
j=1

1
{

u0 ∈ �izj(x)
}
μ2(du)

=
∫
R

N∑
j=1

1
{

u0 ∈ �izj(x)
}

m(du0) =
N∑

j=1
λizj(x).

Due to (C0) we also know λij(x) < Cλ < ∞ for all i, j, x; hence

sup
ξ∈Rn+N

⎧⎨
⎩

∫
U

1{g̃2(ξ , u) �= 0}μ2(du)

⎫⎬
⎭ ≤ sup

(x,z)∈Rn+N

⎧⎨
⎩

N∑
j=1

λizj(x)

⎫⎬
⎭ ≤

N∑
j=1

Cλ = NCλ < ∞.

The latter verifies (L3) by setting cJ = NCλ.
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