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A B S T R A C T   

The challenges for sustainable cities to protect the environment, ensure economic growth, and maintain social 
justice have been widely recognized. Along with the digitization, availability of large datasets, Machine Learning 
(ML) and Artificial Intelligence (AI) are promising to revolutionize the way we analyze and plan urban areas, 
opening new opportunities for the sustainable city agenda. Especially urban spatial planning problems can 
benefit from ML approaches, leading to an increasing number of ML publications across different domains. What 
is missing is an overview of the most prominent domains in spatial urban ML along with a mapping of specific 
applied approaches. This paper aims to address this gap and guide researchers in the field of urban science and 
spatial data analysis to the most used methods and unexplored research gaps. We present a scoping review of ML 
studies that used geospatial data to analyze urban areas. Our review focuses on revealing the most prominent 
topics, data sources, ML methods and approaches to parameter selection. Furthermore, we determine the most 
prominent patterns and challenges in the use of ML. Through our analysis, we identify knowledge gaps in ML 
methods for spatial data science and data specifications to guide future research.   

1. Introduction 

Cities are facing tremendous environmental, infrastructural and so-
cial challenges that are unprecedented in scale, scope, and complexity 
(Meerow & Newell, 2019). To become sustainable, cities need to 
accommodate a growing population, meet greenhouse gas targets, adapt 
to a changing climate, and ensure fair and equal living conditions for all. 
To address these challenges and to improve urban efficiency, justice and 
quality of life, sustainable smart cities use information and communi-
cation technology (Colding et al., 2020). The associated rise of sensors, 
crowd sourcing and real-time monitoring has tremendously increased 
the availability of large spatial datasets. Advances in urban geographic 
information sciences and spatial data analytics have opened new ave-
nues to analyze and visualize spatial data (Goodchild & Haining, 2004). 
Leveraging these advances and benefiting from the increasing of digital 
innovations of our cities has been identified as one of the key trans-
formations needed for achieving the Sustainable Development Goals 
(Sachs et al., 2019). 

Today, most prominently Artificial Intelligence (AI) and Machine 
Learning (ML) provide new opportunities to better monitor, understand, 
and predict the (sustainable) development of urban areas. As such, 
urban analytics and modeling have become increasingly prominent to 
deal with the complex sustainability challenges that cities grapple with 

(Batty, 2008). Studies such as Nosratabadi et al., and Aram (2020)) and 
Vinuesa et al. (2020) have used machine learning to improve sustain-
ability and achieve the sustainable development goals. Here, we follow 
the vision of Elmqvist et al. (2019) in defining a sustainable city via the 
"integration of all sub-systems in an urban region in ways that guarantee 
the wellbeing of current and future generations” (Elmqvist et al., 2019). 
As such, we review subsystems that relate to the social, economic and 
environmental aspects of sustainable cities, as well as the infrastructural 
systems that shape the interactions between the different elements (see 
also Section 3.2 for an overview of categories). 

Machine learning (ML) has gained popularity in many research 
fields. The foundations of ML were already laid in 1959, when Arthur 
Samuel, a pioneer in AI, coined the term (Samuel, 1959). In a nutshell, 
ML is a method to train algorithms to understand patterns inherent in 
data and predict outcomes based on statistical analysis. ML methods are 
data-driven: they extract meaningful information from data, instead of a 
priori modeling causal links. The ‘learning’ aspect herein implies that 
the better an algorithm performs in a specific task, the better it learned 
from that experience (Mitchell, 1997). 

ML algorithms are divided into two main groups: supervised and 
unsupervised learning. Supervised learning uses a training set of ex-
amples with correct responses (targets) (Hastie et al., 2009; Marsland, 
2014) In contrast, in unsupervised learning, correct responses are not 
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provided. Instead, the algorithms aim to identify similarities between 
inputs and group them (Celebi & Aydin, 2016). Moreover, natural lan-
guage processing (NLP) developed techniques that aim to extract a fuller 
meaning representation from free text (Kao & Poteet, 2007). Studies can 
combine algorithms from supervised, unsupervised and NLP methods. 

In the 1990s, Openshaw and Openshaw (1997) published one of the 
first books about ML applications in geography. Since then, ML has 
contributed to the fields of geography and spatial analyzes generally, 
and urban systems more specifically. Spatial ML uses primarily geo-
spatial data, which refers to data containing a geographic component 
that identifies locations (e.g., coordinates, addresses, and postcodes) or 
indicates geographically referenced features and conditions, such as the 
population of a district, seasonal weather of a region, number of vehicles 
passing a highway intersection, and geo-tagged social media data 
(Boulos et al., 2019). Moreover, urban spatial ML analyzes different 
aspects of the urban system, consisting of multiple tangible (e.g., in-
frastructures, land use) and intangible aspects (e.g., social equality, 
gentrification). 

Recently, GeoAI was proposed as a framework for analyzing data- 
driven problems in geographic information science (Janowicz et al., 
2020; Li, 2020). GeoAI aims to integrate artificial intelligence, in 
particular deep learning techniques, with geospatial big data and 
high-performance computing to investigate geospatial problems. In 
GeoAI, spatially explicit models are viewed as a significant research 
direction. Those models fulfil at least one of these four requirements: the 
results are not invariant under the relocation of studied phenomena 
(invariance test), the models contain a spatial representation of the 
studied phenomena (representation test), the models make use of spatial 
concepts in their implementation (formulation test) and the spatial 
forms of input and outcomes differ (outcome test) (Goodchild, 2001; 
Janowicz et al., 2020). Clear steps to build spatially explicit models 
shifting from general ML models to designing more complex ones are not 
yet well-evaluated. 

While spatial data collection has been accelerated through techno-
logical innovations (such as social and remote sensing), the availability 
of the data is not equally distributed throughout the world (Guigoz et al., 
2017; Leyk et al., 2019). At locations where data is available, local 
statistical data are related to different areas of a municipality, which can 
vary among organizations and time. Because of the heterogeneous na-
ture of data sources and availability, spatial analyses need to integrate 
data from different sources and spatial granularities to establish a 
comprehensive understanding (Cheng et al., 2006). Due to the intense 
data collection and processing requirements, the reuse of spatial data 

has become a new norm (Janowicz et al., 2020). Lack of standards and 
unclear data collection procedures become a potential risk in the 
development of reliable datasets. 

Reflecting the increasing popularity of ML methods, several reviews 
were published in the fields of geography and urban analysis (see 
Table 11). While there are publications that focus on specific areas of 
application or ML algorithms, there is no comprehensive overview 
across urban domains that allows researchers to compare and choose the 
most adequate methods for their topic, neither it is possible to under-
stand the potential overlaps and synergies, or to leverage the insights 
from one field for another. Moreover, a discussion about the types of 
spatial data used for urban ML analyzes, or methods for choosing pa-
rameters is missing. We address this gap by conducting a scoping review 
of the fields and domains in urban analysis, which have priority in ML 
research, along with a mapping of the specific approaches, algorithms, 
or data sets and their fit to specific applications. 

As indicated in Table 1, there are already numerous reviews on 
remote sensing (for example see Lary et al., 2015; Ma et al., 2019; 
Maxwell et al., 2018; Zhu, Tuia et al., 2017). These reviews show that 
support vector machines (SVM), random forests (RF), and boosted de-
cision trees (DTs) have been shown to be very powerful methods for 
classification of remotely sensed data. However, all remote sensing 
studies aim to detect and monitor the physical surface of the world by 
using remotely sensed images. What is missing though, is the relation of 
the physical features of a city to its functions and sustainability. 
Therefore, in our scoping review, we focus on studies that primarily use 
geospatial data for urban sustainability. We explain the eligibility 
criteria in depth in section 2.1. The remainder of this paper is organized 
as follows. Section 2 explains the material and methods used for this 
scoping review. Subsequently, the paper provides insights into (i) the 
main themes and domains of applications of ML in urban analytics 
(Section 3.2), (ii) the data sources used (Section 3.3), (iii) the ML al-
gorithms applied (Section 3.4) and (iv) the approaches for parameter 
selection (Section 3.5). The paper continues with a discussion of the 
main gaps and presents a research agenda to address these gaps. We 
conclude with the main findings. 

2. Material and methods 

This section describes the process and methods that have been fol-
lowed in this review. As our objective here is to scope the field and its 
many applications for sustainable cities, we opted for a scoping review. 
Scoping reviews have been developed as a methodology to develop a 
mapping of study domains, data sources, approaches, and methods 
(Peters et al., 2015). While scoping reviews are still relatively new as 
compared to systematic reviews, they have been described as an ideal 
tool to determine the scope or coverage of an (emergent) body of liter-
ature on a given topic and provide an overview of its focus (Munn et al., 
2018). A scoping review is especially suitable because the number of 
publications on ML applications for urban analyses has grown rapidly in 
the past years. Therefore, it is impossible to conduct a rigorous sys-
tematic review without excluding aspects of the field. Moreover, sys-
tematic reviews are not immune to exclusions of relevant papers 
(Biljecki & Ito, 2021). 

Methodologically, our review process falls into the conventional 
three steps of a scoping review (Peters et al., 2015): (i) planning the 
review by developing eligibility criteria; (ii) identifying relevant litera-
ture through a database search, screening and selection; (iii) conducting 
the review and charting the results. 

Table 1 
Previously published reviews on machine learning applications for geography 
and urban analysis.  

Authors (year) Field of study 

Biljecki and Ito (2021) Street view imagery 
Chaturvedi and de Vries (2021) Urban land use planning 
Grekousis (2019) ANN and deep learning in urban geography 
Hegde and Rokseth (2020) Engineering risk assessment 
Ibrahim et al. (2020) Computer vision 
Lary et al. (2015)) Remote sensing 
Ma et al. (2019) Remote sensing 
Maxwell et al. (2018) Remote sensing 
Milojevic-Dupont and Creutzig (2021) Climate change mitigation 
Nikparvar and Thill (2021) Spatial data 
Toch et al., and Ben-Gal (2019) Mobility data 
Zhu et al. (2017) Remote sensing  

1 In addition, Kamel Boulos, Peng, and Vopham (2019) presented works in 
GeoAI for healthcare topics, which might have applications for urban sustain-
ability. However, this is not a formal review, so not included here. 
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2.1. Planning the review: Eligibility Criteria 

ML and urban analysis for sustainability are broad fields. We used the 
following criteria to select papers that are relevant for our analysis on 
ML applications that use spatial information in urban areas:  

1) Papers mainly used ML algorithms to solve urban problems. We 
included supervised, unsupervised ML and neural linguistic pro-
gramming methods. We excluded papers that used solely linear 
regression or that discussed the theory of ML. 

2) Papers primarily focused on urban scales ranging from neighbor-
hoods to counties. The broad scoping allows us to include applica-
tions on smaller areas that could scale to cities or metropolitan 
regions.  

3) Papers used geospatial datasets, i.e., data series, vector, or raster 
datasets when they are used in conjunction with a geographic loca-
tion stored by coordinates or by indexes. For example, we included 
papers that used satellite images in combination with feature data-
sets as references for land use and land cover.  

4) We excluded papers that solely focused on remote sensing, detection 
of geospatial objects and features from remote sensing images, image 
processing, image classification, computer vision, urban street 
images.  

5) Papers are published in journals or peer-reviewed conferences and 
written in English. 

2.2. Database search and screening 

To identify an initial pool of literature for this study, the Web of 
Science was used to ensure the highest academic standards and validity 
of the articles, and for its broad and multi-disciplinary coverage. The 
web of Science (WoS) is the oldest, most widely used, and authoritative 
database of publications (Birkle et al., 2020), and in a recent compara-
tive study has been shown to guarantee reproducible results (Gusenba-
uer & Haddaway, 2020). 

In the literature, the terms urban areas, cities and urban environment 
are often used interchangeably. Therefore, we included each term in the 
search. Moreover, we included the keywords ‘urban spatial analysis’ and 
‘land use change’ to aim for papers with a spatial analytical component. 
As a result, we used as keywords ‘urban area’, ‘cities’, ‘urban environ-
ment’, ‘urban spatial analysis’, ‘land use change’ and ‘machine learning’ 
for our database search (search string: ((‘urban area’ OR ‘urban spatial 
analysis’ OR ‘land use change’ OR ‘cities’ OR ‘urban environment’) AND 
‘machine learning’)). We screened the literature by following three ap-
proaches to lower the risk of bias. First, we looked for papers that 
included the keywords in the abstract and that were highly cited ac-
cording to Web of Science statistics to ensure inclusion of publications 
with high impact. Second, we looked for papers that were published in 
2021 to ensure that the most recent trends and developments are 
covered. Third, we identified additional papers by snowballing with 
Google Scholar. In total, we screened 245 papers and selected 162 pa-
pers that met all eligibility criteria. We collected this set of papers on 
December 2021. 

2.3. Review and analysis 

After selecting the articles based on the eligibility criteria, we 
analyzed the body of literature. We selected key information in the 
papers: title, authors, year of publication, the purpose of the study, place 
of the case study, the method used, data reported, training-testing in-
formation, and hyperparameter or parameter information. For our 
mapping of themes and methods, we collected the information in tables 
by analyzing each paper. If a paper did not provide any information 
about a specific detail, we reported it as missing. 

Our analysis covered five perspectives.  

1) We investigated the spatial and temporal distribution of papers. 
For the spatial analyzes, we use the locations of case studies, and 
grouped them into seven regions: Africa, Asia, Europe, North 
America, Central and South America, Middle East, and Oceania.  

2) We mapped out the topics studied in papers to identify priority 
research areas and gaps. We developed four categories of studies that 
represented specific urban sub-systems: land use and urban form, 
socioeconomic, environment and infrastructures.  

3) To identify patterns of data (sources), we investigated the type of 
data that papers used to develop their models. We distinguished data 
stored in tabular form (e.g., csv) and spatial data in vector and raster 
forms as well as remote sensing data.  

4) To map out the most prominent ML methods in each category of 
study, we analyzed the methods used. We distinguish ML methods 
based on supervised, unsupervised, a mix of unsupervised and su-
pervised and natural language processing algorithms.  

5) We analyzed the training-testing and the hyperparameter- 
parameter information reported to study how authors implemented 
their analyzes and reported the associated information. 

3. Results 

3.1. Spatial and temporal distribution 

159 papers reported the location of the case studies. Fig. 1 shows the 
distribution of case studies by country and over time, clearly high-
lighting the discrepancy between regions. Most cases are located in 
China and the US, followed by the UK. Overall, 31% of the case studies 
were in Europe, 29% in Asia, and 27% in North America. 7 papers 
include multiple case studies in different countries and 4 of them on 
different continents. If a paper covered multiple case studies, we coun-
ted each case study separately and assigned it to the respective conti-
nent. In Fig. 1, the bars show the year of publication of papers. 84% of 
the papers were published between 2014 and 2021 indicating the 
increasing popularity of the field. 

3.2. Categories 

To derive topical categories, we built on the conceptual model of a 
sustainable urban system developed by Meerow and Newell (2019). As 
we focused on spatial attributes, we omitted the governance layer, and 
included those categories that characterize the urban system in terms of 
people, physical features, and services (i) land use and urban form, (ii) 
socioeconomic, (iii) infrastructures. To also capture the importance of 
environmental factors and hazards on the urban system, we put forward 
a fourth category on environment. 

We found that 34% of the studies (55 papers) are dedicated to 
infrastructure, 24% to socioeconomic topics (39 papers), 23% to land 
use and urban form (38 papers), and 18% to environmental topics (30 
papers). In the following sections, we present a summary of selected 
papers based on each category. We will discuss these categories and 
findings in section 4. 

3.2.1. Land use and urban form 
Fig. 2 shows the main topics studied in these categories. We distin-

guish papers dedicated to the (A) land use (29/38 papers) from studies 
related to the (B) urban form (9/38 papers).  

A Studies on the land use focus on (A.1) land use detection (15 papers) 
and (A.2) land use change (14 papers). 

A.1 Land use detection characterizes areas in cities spatially. We 
identified four categories (see Fig. 2): land use detection from social 
sensing, functional areas, urban identities, and informal settlements. Of 
these, the identification of functional areas was the most prominent 
topic of study (6/15 papers). 
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1 Social sensing based on mobile phone or social media data is used in 
two papers to map urban areas based on the activity patterns 
(Cranshaw et al., 2012; Toole et al., 2012).  

2 Functional areas were identified by specific activities and mobility 
patterns (Hu et al., 2020; Yan et al., 2017; Yao et al., 2017; Yuan 
et al., 2012; Zhai et al., 2019; Zhang et al., 2018).  

3 Urban identities were studied by exploring the physical or spatial 
characteristics of public spaces (Chang et al., 2017; Chang et al., 
2018), or the characteristics of attributes of urban blocks (Laskari 
et al., 2008).  

4 Informal settlements studies focus on mapping (Fallatah et al., 
2020; Jochem et al., 2018), detecting (Mahabir et al., 2020) or un-
derstanding the growth (Badmos et al., 2019) of urban informal 
settlements and slums. Because these studies are conventionally 
situated in the Global South, the papers also present approaches to 
address the problem of limited geographic data. 

A.2 Land use change is used to analyze urban evolution over time. 
Predicted changes can be the transition from non-urbanized to urban-
ized (Huang et al., 2009; Pijanowski et al., 2002, 2014) or between land 
use classes (Chan et al., 2001; Petrović et al., 2017; Sangermano et al., 
2010; Zubair et al., 2017). ML helps to detect urban change with cellular 
automata models (Feng et al., 2016; Moghaddam & Samadzadegan, 
2009). Studies then focus on evaluating densification potentials in 
neighborhoods (Eggimann et al., 2021), analysing the dynamics of 
urban change from building alteration activities (Lai & Kontokosta, 
2019), investigating the land use intensity from new masterplans (Gong 
et al., 2014), looking at the abandonment of residential areas (Xu et al., 
2019), studying the evolution of the urbanization level in a metropolitan 
area (Grekousis et al., 2013).  

Continue2A For the urban form, studies analyze the spatial structure of 
cities. Urban morphology was investigated in architectural 
scales (Gil et al., 2012; Hanna, 2007; Li et al., 2020; 

Fig. 1. Spatial and temporal distribution of papers. The map shows the distribution of case studies per countries, the bars show the years of publication.  

Fig. 2. Topics studied in the land use and urban form category. The tree-plot shows the main research themes. We reported the number of papers per category 
in brackets. 
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Thomas et al., 2010). Urban areas were delineated by their 
vertical extensions (Arribas-Bel et al., 2019) or by their 
land cover extension (Liu et al., 2019). Other publications 
addressed the problem to predict the height of buildings 
(Biljecki et al., 2017) or derived them in time (Farella et al., 
2021). Lee et al., and Yu (2017) studied map generalization 
tasks of cartography. 

3.2.2. Socioeconomic 
The papers covering socioeconomic aspects in urban areas were 

categorized into (A) socioeconomic attributes, (B) land economy, and 
(C) social issues (see Fig. 3). The large majority considered social issues 
(26/39 papers), with only a small number of socio-economic attributes 
(3/39 papers).  

A The earliest paper aiming to detect socioeconomic attributes by 
Grove and Roberts (1980) studies the social and economic variation 
of British towns. Then, socioeconomic attributes were predicted in 
neighbourhoods (Dong et al., 2019) and GDP was investigated in 
relation to geographic predictors (Chen et al., 2020). 

B Land economy falls almost equally into the prediction of retail at-
tributes and real estate prices. When looking at the retail attributes, 
some studies predicted locations of stores (Satman & Altunbey, 2014; 
Xu et al., 2016). Other publications analyzed success indicators of 
retail store locations (Karamshuk et al., 2013) and hotels (Yang et al., 
2015). For real estate prices, publications predicted market values 
of houses (Kauko, 2009; Xue et al., 2020), rent prices of residential 
units (Santibanez et al., 2015), or the real estate prices in different 
cities from the same country (Tchuente & Nyawa, 2021). Two 

publications studied the factors or amenities that drive prices for 
green building projects (Ma & Cheng, 2017) or land prices (Gao & 
Asami, 2007).  

C Social issues included (a) social inequality, (b) gentrification, (c) 
social vulnerability and (d) crime prediction (see Fig. 3). Of these, 
crime prediction was the most prominent topic (11/26 papers).  
1 Social inequality covers a broad range of topics. Most papers that 

aim to detect inequalities by studying unequal access from urban 
services as different as health (Lalloué et al. 2013; Mayaud et al., 
2019); leisure space (Wang & Zhang, 2017); or digital services 
(Singleton, Alexiou, and Savani 2020). Others analyse differences 
in welfare (Wójcik & Andruszek, 2021) or aim to predict future 
income distribution (Auerbach et al., 2017). Only one paper in-
vestigates the impact of inequality by studying isolation (Wang 
et al., 2018). 

2 Gentrification is addressed by studying socioeconomic charac-
teristics in urban neighbourhoods (Alejandro & Palafox, 2019; 
Palafox & Ortiz-Monasterio, 2020; Reades et al., 2019; Walks & 
Maaranen, 2008).  

3 The social vulnerability papers analyze how urban communities 
will respond or adapt to hazards. As such, this work complements 
the analysis of hazards in the environment category (see Section 
3.2.3). All papers here focus on identifying vulnerable groups, 
either before a hazard occurs (Cutter & Finch, 2008; Dong et al., 
2020), or investigate and monitor the impact of a hazard on wel-
fare (Knippenberg et al., 2019; Allen et al., 2016).  

4 Recently, there has been increasing interest in the topics of safety 
and crime prediction. Patterns of crime were identified by 
Mohammed and Baiee (2020) and a comparison of safety level in 

Fig. 3. Topics studied in the socioeconomic category. The tree-plot shows the main research issues investigated in papers of the socioeconomic category. We showed 
the number of papers in brackets. 
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cities was studied by Kourtit et al., and Traian Pele (2021). Other 
authors predicted crime (Bappee et al., 2020; Cichosz, 2020; Dash 
et al., 2019; De Nadai et al., 2020; Kim et al., 2021; Lin et al., 2018; 
Redfern et al., 2020; Yang et al., 2018) or identified spatial and 
temporal factors for crime prediction (Yi et al., 2018) . 

3.2.3. Environment 
For the environment, we distinguished studies on (A) physical sys-

tem (6/30 papers) from (B) hazard and risk (see Fig. 4).  

A Studies on the environment as a physical system are categorized 
into weather (5/9 papers) and ecological aspects. For the weather, 
studies analyzed mostly temperatures in cities by studying land 
surface temperature in relation to land use attributes (Osborne & 
Alvares-Sanches, 2019; Sun et al., 2019), assessing heatwave 
thresholds (Park & Kim, 2018) or mapping Local Climate Zones 
(Bechtel et al., 2019). A method to predict turbulent air flows in the 
urban environment was developed by Xiao et al. (2019). In ecology, 
studies investigated the occurrence of ravens (Baltensperger et al. 
(2013), the ecological footprint of urban areas (Yao, 2012), the 
carbon storage of urban trees (Strohbach & Haase, 2012), and 
socio-ecological indicators of urban soil (Bonilla-Bedoya et al., 
2021).  

B For analyzing hazards and associated risks in urban systems, we 
distinguish flood risk prediction and detection of pollution. A variety 
of studies analyzed flooding mainly for classification and prediction 
purposes. The studied topics were the classification of the severity of 
flood events based on rainfall intensities (Ke et al., 2020), suscepti-
bility maps (Tehrany et al., 2019; Zhao et al., 2019) and flood risk 
maps of cities (Darabi et al., 2019; Eini et al., 2020; Motta et al., 
2021). For pollution in urban areas, most papers focus on predicting 
air pollution. Studies predicted PM2.5 based on meteorological data 
(Banga et al., 2021; Deters et al., 2017), CO2 emissions from 
metereological and socioeconomic variables (Li & Sun, 2021), car-
bon emission from urban blocks (Zhang et al., 2021), air pollution on 
roads by using traffic and meteorological data (Arnaudo et al., 2020; 
Suleiman et al., 2019). Studies investigated the relations between 
land use and air quality in urban areas (Brokamp et al., 2017; 
Champendal et al., 2014; Liu et al., 2015). Related to COVID-19 
disease, studies analyzed the relationship between pollution levels 
and COVID-19 spread (Magazzino et al., 2020); Mirri et al., 2021) or 
analyzed the changes in the air quality from lockdowns (Shi et al., 
2021). For other kinds of pollution, studies investigated chemical 
pollution from industrial areas in air and water (Shi & Zeng, 2014) 
and noise pollution (Hernandez-Jayo & Goñi, 2021; Torija & Ruiz, 
2015). 

3.2.4. Infrastructure 
The investigated infrastructures were predominantly (A) transport 

(33/55 papers), followed by (B) energy, (C) water and sewer system, and 
(D) waste. Gas was only considered by one publication. Other networked 
infrastructures, such as information and communication technologies 
have not been considered in the urban ML literature thus far (see Fig. 5).  

A Studies on transportation infrastructures mainly focus on (A.1) 
mobility and behavior (31 out of 33 papers), while 2 out of 33 papers 
analyze (A.2) physical infrastructure (see Fig. 5). 

A.1 From the mobility and behavior perspective, studies detect 
transportation system properties.   

1 Studies detected transportation modes (Aschwanden et al., 
2019; Badii et al., 2021; Bjerre-Nielsen et al., 2020; Tang et al., 
2018; Zhu et al., 2016), analyzed driving modes in a framework to 
estimate vehicle emission (Lehmann & Gross, 2017), and pre-
dicted travel mode and destinations (Truong et al., 2021)  

2 Clusters of mobility data were studied to characterize the spatial- 
temporal properties of urban areas (Jiang et al., 2012; Kim, 2020; 
Wang et al., 2021; Xie et al., 2018). Wang et al., and Wang (2020) 
proposed a clustering method to analyze traffic data.  

3 For bike-sharing systems, studies examined public opinion 
(Taleqani et al., 2019), identified suitable locations to place bike 
stations (Chen et al., 2015), predicted the number of available 
bikes and free bike slots (Collini et al., 2021)  

4 When looking at electric vehicles, studies predicted locations of 
charging pools (Straka et al., 2020) and investigated the charging 
behavior by predicting the departure time and energy needs 
(Shahriar et al., 2021).  

5 More broadly, Oke et al. (2019) studied urban typologies based 
on different urban dimensions to investigate the relationships 
between mobility and environmental sustainability.  

6 Most studies (13/31 papers) analyzed traffic characteristics for 
predicting traffic speed (Ma et al., 2017; Magalhaes et al., 2021), 
traffic congestion spots (Awan et al., 2021; Majumdar et al., 2021; 
Qin et al., 2020; Saldana-Perez et al., 2019), traffic flows (Moretti 
et al., 2015) and traffic flow in relation to air vehicle emissions 
(Alam et al., 2018; Nyhan et al., 2016), commuting patterns be-
tween cities (Spadon et al., 2019), and driving distance in relation 
to the built environment and demographic (Ding et al., and Næss 
(2018)). When studying road accidents and events, studies looked 
at how to predict short-term car crashes (Bao et al., 2019) or 
studied a way to detect traffic-related events (Alomari et al., 
2021). 

A.2. From the physical infrastructure perspective, two papers look 
at the structural characteristics of transportation networks. The topol-
ogy of road network was compared in different cities (Strano et al., 
2013) and the road network vulnerability was analyzed against river 
flooding (Abdulla & Birgisson, 2020).  

A In the energy sector, papers predicted the energy use. They built 
bottom-up approaches that estimated the energy demand or con-
sumption in buildings at different scales and types (Abbasabadi & 
Azari, 2019; Ali et al., 2020; Carrera et al., 2021; Kontokosta & Tull, 
2017; Ma & Cheng, 2016; Nutkiewicz et al., 2018; Rahman et al., 
2018; Robinson et al., 2017; Zekić-Sušac et al., 2021; W. Zhang et al., 
2018).  

B For the water sector, some studies developed predictions of the 
water use. They modelled residential water consumption and clus-
tered residences accordingly (Aksela & Aksela, 2011), studied how to 
predict the water usage in urban areas from mobility data (Smolak 
et al., 2020), analyzed outdoor residential water demand (Gage & 

Fig. 4. Topics studied in the environmental category. The tree-plot shows the 
main research issues investigated in papers of the environmental category. We 
show the number of papers per topic in brackets. 
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Cooper, 2015), modelled water demand to optimize water distribu-
tion (Rozos, 2019). Other authors investigated the vulnerabilities of 
the water supply infrastructure. They investigated leakages scenarios 
in the urban water supply system (Candelieri et al., 2013) and pre-
dicted pipe failure and breakage (Konstantinou & Stoianov, 2020; 
Kutyłowska, 2017; Winkler et al., 2018). The only study that looked 
at the sewer system was the one of Liu et al., and Prigiobbe (2021), 
who predicted groundwater infiltration into the sewer network.  

C Two studies studied how to predict waste in cities. They investigated 
the amount of solid waste (Ayeleru et al., 2021) and looked at how 
much municipal waste could be used to produce energy (Kaya et al., 
2021). 

D Li et al., and Wang (2019) predicted vulnerabilities of the under-
ground gas pipeline network in a city. 

3.3. Data 

Machine learning studies reveal critical and hidden information in 
datasets. For our analysis on the underlying data, we start with an 
overview of the frequency, at which different types of data were used. 

We distinguish numeric (e.g., csv) data, vector data, remote sensing and 
raster maps. Fig. 6 shows a heatmap of the numeric and vector data 
across the different topical categories. We listed data used at least in two 
papers in alphabetical order. We calculated the percentages of the total 
number of papers that used each data type over the total number of 
reviewed papers. 

The most popular data was Demographic data (29%), which describe 
the size of the population in an area. Points of Interest (POI) data (28%), 
which report locations and labels of public services and private busi-
nesses in the city, were primarily used for land use and socioeconomic 
analyzes, but also in environment and infrastructure (Fig. 6). Not sur-
prisingly, socioeconomic data (22%; incl. GDP per capita, ownership, 
income, education, employment, subsidy, and tax assessment charac-
teristics) was most prominent in the socioeconomic category. Road data 
(24%; information about road network structure) was most often used 
for land use, and less frequently for infrastructure studies. 

Although social media and telecommunication datasets are gaining 
prominence, especially when it comes to privacy (de Montjoye et al., 
2018), we found that such data is still not frequently used: 4% of the 
papers used Twitter and 3% Foursquare. Twitter, Foursquare and Flickr 

Fig. 5. . Topics studied in the infrastructure category. The tree-plot shows the main research issues investigated in papers of the infrastructure category. We 
showed the number of papers for topics in brackets. 
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(1%) were the only social media platforms in this review. 2% of the 
papers used data from the search engine Baidu, 4% used mobile phone 
data. Only one publication used Wifi connections (Xu et al., 2016). 

Fig. 7 shows remote sensing data and raster data, which were used in 
13% of the reviewed papers. Generally, remote sensing and raster data 
were used most in land use and environment, and less in the infra-
structure category. The most common datasets in land use and envi-
ronment studies used digital elevation models (DEM) (7%). Satellite 
imagery of the land surface (7%) and topographic maps (4%) were 
important for land use; night light data (4%) and vegetation indexes 
(2%) had applications in different categories. Other data accounted for 
1% to 2% of papers. 

Next, we compared the underlying data in each topic. In all topics, 
we found that there is a large heterogeneity in datasets used even for 
similar problems. In addition, papers often chose data without reporting 
a systematic methodology that guided the selection processes. However, 
we can still identify one or two common datasets in most topics. For 
example, in detection of functional areas, papers rely mainly on POI 
data, to which researchers have been adding different types of mobility 
data. Taxi trajectories were used by Yuan et al. (2012)), bicycle stations 
and their rental records were used by Zhang et al., and Du (2018), while 
mobile phone data and origin-destination (OD) data trucks were used by 
Zhai et al. (2019). Similarly, for land use change detection, research is 
conventionally built on land use or land cover data as it represents the 
real distribution of land use at a certain time, and then complemented by 
datasets such as DEM, road and population data, or demographic 
information. 

3.4. ML methods 

In this section, we analyze the methods adopted per topic. We group 

the studies into four categories: 1) supervised, 2) unsupervised, 3) a mix 
of unsupervised and supervised or 4) natural language processing 
methods. Fig. 8 shows the distribution of methods per category. We 
calculated the ratio over the total number of methods. We omitted the 
paper of Spadon et al. (2019)) as an outlier in the count, who used 34 
supervised algorithms to avoid distortions. 

We find that supervised methods dominate across topics, with 
infrastructure most prominently, followed by environment, and equally, 
by land use and environment. Unsupervised methods were mainly 
adopted by socioeconomic topics, followed by land use, infrastructure, 
and environment topics. A mix of unsupervised and supervised methods 
is mainly used for socioeconomic topics, followed by infrastructure, 
environment and land use. Natural language processing was used mostly 
by the land use category, whereas socioeconomic and environmental 
problems do not use it. 

Because of their prominence, we provide a closer analysis of the most 
popular algorithms for supervised and unsupervised ML. Fig. 9 (left) 
shows the number of times papers used specific supervised algorithms. 
For supervised learning, we listed algorithms used in at least two papers. 
Despite the wide range of algorithms, papers tended to use mainly a few. 
Neural networks (NN), random forests (RF), support vector machines 
(SVM), gradient boosting decision trees (GBDT), decision trees (DT), K- 
nearest Neighbour (KNN) and logistic regression were the most 
frequently used supervised algorithms. Less frequently papers combined 
supervised ML algorithm with Cellular Automata analyzes. Studies that 
adopted only unsupervised ML algorithms (Fig. 9, right) used mostly 
PCA for data selection and k-means for clustering purposes. 

Further, we analyzed the link between topics and methods. Table 3 

Fig. 6. Heatmap of numeric tables and vector datasets, in alphabetical order. We reported the type of data used and the number of papers that reported their use by 
each category. We highlighted the social media and telecommunication data. 

Fig. 7. Heatmap of remote sensing and raster data. We reported the type of 
data used and the number of papers that reported their use by each category. 

Fig. 8. Machine learning methods per topic. The histogram shows the ratio of 
papers that used supervised, unsupervised, a mix of unsupervised and super-
vised algorithms or neural language processing (NLP) methods per category. 
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shows our results. As for the datasets, we see a broad variety and het-
erogeneity of methods. Few algorithms were used several times per 
topic, with neural networks (NN) in energy use prediction as the top 
algorithm (7 papers in the topic), followed by NN in land use change and 
air pollution modeling (5 papers). The greatest heterogeneity in selec-
tion of supervised algorithms was found within the infrastructure cate-
gory. Of the studies that used a mix of supervised and unsupervised ML, 
principal component analysis (PCA) was the most used unsupervised 
algorithm for feature selection as input to supervised ML methods, fol-
lowed by the k-means algorithm. Natural language processing was 
prominently used when studies investigated functional areas in the land 
use category. These papers use Word2Vec, Place2Vec, DMR, TF-IDR, 
and LDA topic models to discover the thematic structure of spatial data. 

3.5. Patterns in parameter selection 

In this section, we analyze patterns in parameter selection in su-
pervised and unsupervised ML. 

In supervised learning, we investigated the training and testing 
information reported. Although the parameter choices have an impor-
tant impact on the results, we found that often authors did not report any 
information about the selection of training and testing parameters. The 
ones that did report mostly divided the data into two datasets: the 
training dataset comprised usually 70%-80% of data, and the testing 
dataset was in between 30%-20% of the total data. Some papers instead 
divided the training and testing data by years because they were 
developing temporal analyzes (Dash et al., 2018, Yang et al., 2018). 
Limited papers used three datasets for training, validation, and testing 
purposes (Arnaudo et al., 2020; Kutyłowska, 2017; Lee et al., 2017). 

Few papers systematically report selection of hyperparameters, and 
thus far there is no common standard. For example, Xu et al. (2016) 
listed the hyperparameters for different algorithms in bullet points. 
Satman and Altunbey (2014), Grekousis et al. (2015), Kontokosta et al. 
(2017), Ma and Cheng (2016) and Li et al. (2019) reported hyper-
parameters or information about the architecture of NN in tables. 
However, the vast majority of papers failed to report hyperparameters 
and details about the model architecture. If authors reported hyper-
parameters, those mainly appeared in the body text rather than in a 
detailed and systematic fashion via tables or figures, making the infor-
mation not easily readable. This finding was in line with earlier criticism 

on the lack of reporting of hyperparameters in artificial neural networks 
(Grekousis et al., 2019). 

For unsupervised ML, we analyze how clustering and PCA were 
used. For clustering algorithms, we distinguish two approaches: (i) the 
optimal number of clusters is determined by using algorithms system-
atically, or (ii) the number of clusters is determined by users and algo-
rithms assign data to each cluster. For the first category, for instance, 
optimal number of clusters were selected by using the partition coeffi-
cient and classification entropy by Grekousis et al. (2013)). Clustergram 
was used to identified clusters for k-means by Singleton et al. (2020), 
which plots a series of potential k values. The optimal number of 
k-means clusters was evaluated by using the silhouette coefficient by 
Shi and Zheng (2014). In the second category, authors typically selected 
the number of clusters based on empirical evaluations of the case studies 
(e.g., Chang et al., 2018, Aksela & Aksela, 2011; Lehmann & Gross, 
2017). 

For principal component analysis (PCA), we found that different 
methods were used when selecting the number of principal components 
(PCs). For example, Cutter and Finch (2008), Wang and Zhang (2017) 
and Gao and Asami (2007) used the Kaiser criterion. Champendal et al. 
(2014)) used Kaiser, Joliffe and Catell criteria. Other papers selected the 
numbers of PCs that captured the majority of the total variance without 
fixing a priori a number or following any specific criteria (Lalloue’ et al., 
2013, Dong et al., 2020 and Ke et al., 2020, Reades et al., 2019, Sulei-
man et al., 2019). 

4. Discussion 

In this section, we discuss the implications of the results from the 
review, identify research gaps and objectives for future research across 
the dimensions of our scoping review. 

4.1. Spatial distribution 

We found that case studies were mainly located in Asia, North 
America, and Europe (Fig. 1). The lack of studies in other regions or 
comparative studies may be driven by limited access and availability of 
data, which strongly affects computational studies. This gap presents an 
opportunity to develop methods for data sparse environments (Brajard 
et al., 2020; Nikparvar & Thill, 2021), and comparative studies that 
identify the impact of different data sets and granularities of the results. 

Some of the most promising research avenues in data sparse contexts 
are the creation of satellite Earth observations (EO). Related approaches 
have proven successful to monitor agri-food systems (Nakalembe et al., 
2021) or to understand urban sprawl and land-use change (Sankhala & 
Singh, 2014). Other methodologies improve spatial data collection in 
some regions. For the social dimension of sustainable urban develop-
ment, the DesInventar methodology is an example, with a focus on 
disaster losses (Panwar & Sen, 2020). However, this methodology re-
ports still important limitations regarding the level of urban dis-
aggregated data and consistent coverage (Osuteye et al., 2017). 

Digital technologies can be beneficial for sustainable development 
goals (Nosratabadi et al., 2020; Sachs et al., 2019; Vinuesa et al., 2020). 
However, there are risks and downsides that countries must identify and 
tackle through integrated strategies and a focus on the 
leave-no-one-behind principle (Sachs et al., 2019). Some of these risks 
concern ethical issues, for example, the loss of jobs for lower-skilled 
workers, the theft of digital identities, invasion of privacy by govern-
ments or businesses, and discrimination based on personal data. 
Therefore, responsible implementations and use of AI methods should 
address these topics and principles. Furthermore, model interpretability 
of AI algorthms must be addressed jointly with requirements and con-
straints related to data privacy, model confidentiality, fairness, and 
accountability (Barredo et al., 2020). 

As a result, there is a need to conduct research that focuses on: 

Fig. 9. Histograms of supervised (left) and unsupervised (right) applications of 
machine learning algorithms. 
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• Developing ML applications for prominent urban or rapidly urban-
izing regions in Southeast Asia, India, or Africa. This entails the 
development of the appropriate data fusion, assimilation, or sam-
pling techniques to generate databases that are fit for machine 
learning applications in data sparse contexts.  

• Comparative studies across continents, validating findings from the 
different areas of studies while acknowledging the diversity of un-
derlying data sets (see also data). 

4.2. Categories 

Although a broad range of topics has been investigated by using ML 
(see Figs. 2-5), some topics are underrepresented. In the socioeconomic 
category, studies are missing that investigate social attributes, for 
example, in urban cultures and the labour market. Social justice issues 
were partially treated with respect to inequalities and gentrification 
studies. Given the prominence of discussion related to accessible and 
affordable housing in fast-growing areas (Kramer, 2018; Rodríguez-Pose 
& Storper, 2019), and equality and equity in access to public urban 
services and infrastructures (Martínez et al., 2018; Modai-Snir & van 
Ham, 2018), more research in these domains is urgently needed. In the 
environmental field, which only marks 18% of the publications, more 
contributions are needed in evaluating more kinds of disaster risks (e.g. 
sea-level rise), natural resources consumption and ecosystem services. In 
the infrastructure category, crucial subjects such as waste management, 
logistics, renewable energy systems were underrepresented, which is 
surprising given the growing interest in circularity for cities (Sachs et al., 
2019). 

Further, there is a lack of cross domain publications. Two prominent 
areas that require research across urban systems are sustainability and 
resilience. Cities will be exposed to an increasing number of extreme 

events and will have to balance long-term sustainable and green 
development with resilience to hazards (Elmqvist et al., 2019). For both 
areas, infrastructural, social and environmental aspects need to be 
combined. Therefore, ML approaches are particularly promising. Sus-
tainable urbanism is increasingly becoming smart and data-driven 
(Bibri 2020). However, our findings on a lack of cross-cutting publica-
tions in sustainability and resilience confirmed Milojevic-Dupont and 
Creutzig (2021), who found that despite their potential, ML tools were 
not common in climate change research communities. Similarly, despite 
urban resilience becoming a research and policy priority (Krishnan 
et al., 2021; Meerow & Newell, 2019), we identified one paper that used 
ML to evaluate resilience (Knippenberg et al., 2019), while resilience 
was discussed by Cutter and Finch (2008); Dong et al. (2020)); Motta 
et al. (2021)). 

In sum, the most pressing research needs are related to:  

• Developing machine learning applications targeting new areas of 
research such as (i) labour market and cultural attributes of cities; (ii) 
accessible and affordable housing in fast growing areas and equity or 
fairness in access to urban services; (iii) a circular urban economy, 
including waste management and logistics; and (iv) climate change 
and related extreme events.  

• Designing applications that focus on the interplay between the 
different urban environmental infrastructural and socioeconomic 
settings with land use, especially in the areas of sustainability and 
urban resilience. 

4.3. Data 

Despite the popularity of data sources such as demographic data and 
POI, our findings showed a significant heterogeneity in the datasets 

Table 2 
List of data used in similar studies. The table shows the data information adopted by papers grouped in by topic of study.  

TOPIC DATA PAPER 

Detection of functional areas POI. 
POI, taxi trajectory. 
POI, bicycle stations and rental records. 
POI, mobile phone data and OD data of trucks. 

Hu et al., 2020. Yao et al., 2016. Yan et al., 2017 
Yuan et al., 2012, Zhai et al., 2019, Zhang et al., 
2018 

Detection of land use change Land use, roads, DEM. 
Land use, roads, population, DEM. 
Land use, roads, population. 
Landsat - land use, roads, population, POI. 
Land cover. 
SPOT - land cover, roads, population, tax-break development areas. 

Pijanowski et al., 2014, Pijanowski et al., 2002. 
Huang et al., 2009, Petrović et al., 2017,  
Sangermano et al., 2010, Zubair et al., 2017 

Prediction of store location POI, retail stores data. 
POI, user data from Baidu and Wifi connection data. 

Satman & Altunbey, 2014, Xu et al., 2016 

Model land surface 
temperature (LST) 

Landsat-LST data, Night-time light, building information, road, POI, water surface ratio and 
vegetation index. 
Landsat - LST data, land cover  

Osborne & Alvares-Sanches, 2019, Sun et al., 
2019 

Predict flood risk Inundated areas, DEM, land use, rain data, curve number, slope, urban density and texture, 
quality of buildings, road, POI, distance to river, distance to channel, population, 
socioeconomic data (household; age; women population; education; immigrant; tenant; women 
head of household; employment) 
Inundated areas, DEM, rain data, land use/land cover, slope percent, curve number, distance to 
river, distance to channel, and depth to groundwater, urban density, quality of buildings, age of 
buildings, population, socioeconomic conditions divided in levels. 
Inundated areas, weather data. 

Eini et al., 2020 
Darabi et al., 2019, Motta et al., 2021 

Assessment of air quality 
related to land use 

Pollution data in points, land use, distance to roads, airports, hydrographic networks, 
population, maximal power of heating systems, traffic. 
Pollution data in points, land use, expressway and major roads, weather variables. 
Pollution data in points, land cover, traffic intensity, DEM, population density, greenspace, 
emission point sources. 

Champendal et al., 2014 
Brokamp et al., 2017, Liu et al., 2015 

Detection of transportation 
mode 

GPS trajectory, road network, bus stops, subways lines, real time road condition. 
Socioeconomic data and transport statistics from travel survey in households. 
Georeferenced trips from survey, satellite images. 
Wi-Fi and Bluetooth traces, railway network, public transport information. 
Mobility data of trajectories (speed, acceleration, location, etc.) from mobile data, transport 
facilities, green areas 

Zhu et al., 2016 
Tang et al., 2018 
Aschwanden et al., 2019, Badii et al., 2021,  
Bjerre-Nielsen et al., 2020  
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Table 3 
Machine learning algorithms used in urban analyzes. For each topic, we report the algorithm used in the analyzes. Number of publications in bracket for algorithms 
with more than one application in the topic. If a paper uses more than one method, all are reported under the same topic. Abbreviations: Decision Trees (DT), Density- 
based spatial clustering of applications with noise (DBSCAN), Dirichlet Multinomial Regression (DMR), Gradient Boosting Decision Tree (GBDT), k-nearest neighbors 
(KNN), Latent Dirichlet Allocation (LDA), Least absolute shrinkage and selection operator (LASSO), Neural Network (NN), Principal Component Analysis (PCA), 
Support Vector Machines (SVM), Term frequency–inverse document frequency (TF-IDF), Topical Word Embeddings (TWE).  

Pattern in methods  
Topic of study Algorithms 

Supervised    
Land use and form   
Land use change NN (5), SVM (3), DT (1), SimWeight (2).  
Land use from social data RF.  
Land use intensity NN, Linear regression.  
Abandonment of rural areas RF, SVM, Naïve Bayes.  
Identify informal settlements RF (2), Logistic regression (2), DT, Discriminant Analysis.  
Urban extension NN, RF, GBDT, and their ensemble models.  
Map generalization DT, SVM, KNN, Naïve Bayes.  
Predict building heights RF (2), Ordinary least-squares regression, GBDT, SVM, NN.  
Socioeconomic   
Mapping GDP RF.  
Real estate price GBDT (4), RF (3), NN (2), SVM (2), KNN, Cubist, Partial Least Squares, Adaptive boosting.  
Tax assessment RF.  
Hazards LASSO, RF.  
Site location of stores  NN, LASSO, SVM, KRR, RF, GBDT, Learning to rank models.  
Predict popularity of stores SVM, DT, Linear regression with regularization.  
Predict popularity of hotels NN, SVM, Boosted regression, Linear regression.  
Crime prediction RF (4), SVM (3), NN (2), LASSO, DT, KNN, GBDT, Polynomial regression, Logistic regression, Naïve Bayes.  
Gentrification NN, RF.  
Predict well-being SVM, RF, GBDT, LASSO.  
Influenza monitoring SVM.  
Environment   
Temperatures and heatwaves RF (2), Multivariate Adaptive Regression Splines, Ordinary least-squares regression, GBDT.  
Flooding SVM (2), Genetic Algorithm Rule-Set Production (2), DT(2), NN (2), SVM (2), RF, KNN, Maximum Entropy, 

Logistic regression, Naïve-Bayes.  
Air pollution NN (5), RF (5), GBDT (3), Adaptive Boosting (2), SVM (2), Linear regression with Bayesian Ridge Regularization, 

Extra tree, DT.  
Air pollution and COVID NN (2), SVM, KNN, Extra tree.  
Noise pollution Logistic regression, LDA, KNN, DT, SVM, Naïve Bayes.  
Ecology-animal detection RF.  
Ecological footprint NN.  
Carbon storage maps RF.  
Urban soil indicators RF.  
Infrastructure   
Crash risk prediction NN.  
Detect road traffic events SVM, Naïve Bayes, Logistic regression.  
Estimate transportation mode NN (3), RF (3), SVM (2), DT, Logistic regression, Bayesian network, Extra trees, GBDT.  
Prediction travel behaviour SVM, Multinomial logit.  
Prediction traffic speed NN, KNN, RF.  
Prediction traffic congestion NN (2), SVM.  
Prediction driving distance GBDT.  
Prediction traffic flow NN (4), Log-linear regression model.  
Prediction intercity flow 34 different algorithms (see Spadon et al., 2020).  
Predict electric vehicles sessions RF, SVM, GBDT, NN.  
Popular location for charging pools Logistic regression, RF, GBDT.  
Site location bike stations NN, Linear Regression-and-Ranking (LRR).  
Prediction of energy use NN (7), SVM (5), RF (5), Linear regression (4), GBDT (4), Elastic net (3), Extra Trees (2), Ridge regressor (2), KNN 

(2), DT(2), LASSO, Naïve Bayes, Generalized Linear Model, Logistic regression, Bagging regressor.  
Gas pipeline vulnerability NN, SVM.  
Road network vulnerability NN, KNN, RF, Logistic regression, and Naïve Bayes.  
Water network vulnerability RF (2), NN (2), SVM, DT, Naïve Bayes, Poisson GLM, Logistic Poisson GLM, GBDT, Probabilistic Random Forest, 

Discriminant Analysis, Time Linear Model, Time Exponential Model.  
Infiltration in water sewer Logistic regression.  
Water use prediction RF (2), SVM, Extra trees.  
Water supply management NN.  
Predict solid waste NN (2), SVM (2), RF, Extra trees, GBDT. 

Unsupervised Land use and form   
Urban form k-means (3), DBSCAN.  
Land use from social data Spectral clustering.  
Urban identities PCA (3), k-means (2)  
Socioeconomic   
Socioeconomic attributes PCA, Cluster mode analysis.  
Real estate price PCA, SOM.  
Hazard vulnerability PCA (2)  
Public leisure space PCA.  
Neighborhood isolation DBSCAN.  
Health PCA, Hierarchical clustering, SOM. 

(continued on next page) 
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used, even within the same topical category (see Table 2). Further, the 
rationale for the selection of datasets was often unexplained. We assume 
that many case studies followed a pragmatic approach built on the 
availability of data. With the significant differences in data sets both in 
scale and content, the results of ML algorithms are not comparable, 
hampering the development of urban analytics and evidence-based 
urban planning. While data availability is an issue, we argue that stan-
dards and explicit methods to select data for the different topical areas 
will help producing more generalizable and comparable results. 

The first promising way ahead is the integration of human sensing 
data. Surprisingly, urban ML still does not significantly rely on data from 
mobile phones or social media, confirming findings of Grekousis (2019) 
on ANNs. While such data is promising to understand interaction pat-
terns or the use of urban services, there are also challenges related to 
privacy and data protection that need to be addressed. 

Another promising research avenue is investigating approaches to 
integrate data from various sources. This issue has been recently raised 

within the data fusion and Big Data research domain (Favaretto et al., 
2020; Kar & Dwivedi, 2020; Yang et al., 2020). For the geographical 
domain, most Big Data are produced with space and time stamps. These 
are samples of sequential observations from various remote, in-situ, 
mobile and human sensing systems or simulations, which lead to an 
increased need for cross-scale data fusion, including integration across 
various sources and interpolation across spatiotemporal domains (Yang 
et al., 2020). The use of a large amount of data without solid reasoning 
can lead to misinterpretation of findings. 

In sum, research on data is needed that that focuses on:  

• Analyzing the impact of the different dataset choices for urban ML 
problems within and across the different topical categories. Based on 
this, standards and explicit methods can be developed to select data 
for the various topical areas.  

• Integrating sensing data such as from mobile phones or social media, 
while respecting privacy and data protection. 

Table 3 (continued ) 

Pattern in methods  
Topic of study Algorithms  

Crime DBSCAN.  
Gentrification PCA.  
Environment   
Air pollution k-means.  
Air and water pollution k-means.  
Infrastructure   
Cluster mobility data k-means (2), Spectral clustering, Hierarchical clustering, Quantum clustering, DBSCAN, DFB-saDBSCAN 

algorithm, cK-means.  
Urban mobility typologies Hierarchical clustering.  
Road network topology PCA. 

Unsupervised þ
Supervised 

Land use and form   

Model land use change NN + fuzzy c-means.  
Identify densification potential SVM, RF + PCA.  
Architectural style SVM + PCA.  
Socioeconomic   
Socioeconomic attributes LASSO, GBDT + DBSCAN.  
Green building market GBDT + DBSCAN.  
Digital inequalities GBDT, KNN + k-means.  
Crime prediction Logistic regression, SVM, DT, RF + PCA.   

CCRF model + Tree-structure clustering.   
Bayesian negative binomial + PCA.  

Safety level SVM, GBDT + k-means.  
Gentrification RF + PCA.  
Environment   
Flooding DT, Discriminant Analysis, SVM, KNN, Ensemble models + PCA.  
Air pollution NN, GBDT, SVM + PCA.   

NN, RF + PCA.  
Noise pollution NN, Gaussian Process Regression (GPR) + PCA.  
Air flow Gaussian Process Regression (GPR) + Singular value decomposition.  
Infrastructure   
Cluster vehicle prediction KNN + K-means, Gaussian Mixture Model, K-mediods  
Speed prediction RF, GBDT, Multivariate regression + k-means.  
Predict the number of available bikes GBDT, RF, NN + k-means.  
Energy Multiple linear regression, Nonlinear regression, RF, DT, KNN, NN + k-means.  
Water use prediction Regression models + k-means.  
Water network vulnerability Linear regression + In-deep bisecting clustering algorithm. 

Natural language 
Processing 

Land use and form   

Functional areas Word2Vec, TWE + HDBSCAN.   
Word2Vec, RF + k-means.   
Place2Vec + k-means.   
DMR, TF-IDF + k-means (2)   
Place2Vec.  

Urban change and construction 
activities 

LDA.  

Infrastructure   
Public opinion on dockless bike- 
sharing systems 

TF-IDF + Naïve Bayes, Logistic regression, SVM.  
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• Investigating new methods that merge data from different sources to 
derive meaningful results, especially in the context of data sparse 
environments (see also spatial distribution). 

4.4. Methods 

In this scoping review, we distinguish four categories of methods (see 
Section 4.4). Natural language processing was primarily used in land use 
topics, even though it may also have promising applications in other 
domains. While we found that most papers lean on supervised ML 
(Table 3), there is a broad variety of supervised, unsupervised, or mixed 
methods. As the method selection depends on the scientific problem to 
analyze, future research should compare different methods within spe-
cific topics. Like for the data category, systematic comparisons are 
beneficial to understanding the significance and output variety of using 
specific algorithms. 

We found that NN, RF, SVM, gradient boosting DT, DTs, KNN and 
logistic regression were the most popular supervised ML algorithms, 
while PCA and k-means were the most popular unsupervised ML algo-
rithms. In terms of the rationale for methodology selection, different 
reasons are put forward. Overall, some algorithms performed well in 
predicting or classifying data for specific problems, therefore they grew 
a strong reputation over time. Supervised ML methods are often chosen 
based on their complexity, overfitting properties, parameter re-
quirements, data requirements, and interpretability of results. Looking 
at the complexity of methods, RF and SVM are more complex compared 
to logistic regression, ordinary least square regressions or LASSO 
because they account for non-linear relationships (Cichosz, 2020; 
Knippenberg et al., 2019; Kontokosta & Tull, 2017). Whereas, NN are 
efficient predictors because they have higher computational complexity 
embedded in their network topology (Grekousis, 2019; Ma et al., 2017). 
When looking at overfitting properties, RF is often chosen because it 
avoids the overfitting of data (Chen et al., 2020; Jochem et al., 2018; Xu 
et al., 2019). For the parameter requirements, KNN does not require 
parameters in input for classification problems (Lee et al., 2017; Ma 
et al., 2017). For the interpretability, DT is often selected for the easy 
interpretability of the results (Lee et al., 2017). When looking at the data 
requirements, NN was not used because of the insufficient number of 
data (Knippenberg et al., 2019), or a NN based on an ensemble method 
was used to deal with data scarcity (Zhang et al., 2021). When studying 
unsupervised ML methods, PCA is often selected because it helps to 
synthesize datasets in a few sets of principal components (dimension-
ality reduction) and still preserves interpretability by loadings (Cutter & 
Finch, 2008; Laskari et al., 2008; Wang & Zhang, 2017). 

New methods are needed that link the research on ML algorithms to 
urban science. Kitchin (2014) already discussed the challenges of new 
epistemologies and paradigm shifts that the use of big data and 
data-driven analytics might bring, highlighting the need for critical 
reflection on the epistemological implications of the data and analytical 
revolution. Falco (2015) demanded a human-centered approach. We 
argue that studies in ML and urban science should be aware of these 
challenges when developing appropriate methods that connect analyt-
ical frameworks with the broader urban science and policy. Especially 
knowledge transfer is a promising concept that fosters and supports 
collaborations between research organizations, business entities, and 
public sector (Heinimann & Hatfield, 2017). 

Therefore, there is a need for:  

• In depth explorations of using natural language processing for other 
fields than land use topics.  

• Comparing different machine learning algorithms within specific 
topics to study potential differences in results and their relationship.  

• Develop new methodological frameworks that go beyond the mere 
application of ML, but rather establish novel ways to explain, 
translate and transfer the results from ML to urban sciences, practice, 
and policy. 

4.5. Patterns in parameter selection 

We found that most papers tended to train and test the models for 
supervised learning, while only some authors included validation in 
their research. Often, papers did not report the parameters selected to 
build the models and the information about training-testing phases, 
leading to a lack of reproducibility. Although tables and figures are 
beneficial to the reader, only few studies presented parameter infor-
mation in these formats. These gaps were already identified by Gre-
kousis (2019) for ANNs. We argue that a consistent way of reporting 
parameters is vital to increase reproducibility and advance the 
state-of-the-art. 

Furthermore, we found that papers select number of clusters and 
principal components for unsupervised learning by using different ap-
proaches. Often, the approach that authors used to define the number of 
clusters is not appropriately justified. 

Benchmarking analyses might help to prepare better standards. This 
need is confirmed also by other reviews about the use of deep learning 
applications (Grekousis, 2019; Ma et al., 2019), which means it is a 
recurrent need in the field. For benchmark analyses, there should be 
benchmark datasets accessible to everyone. Therefore, the problem of 
transparency of pattern selection is linked to the accessibility of data. 

Thus, there is an urgent need for research on: 

• Studying protocols for reporting parameters in publications for su-
pervised and unsupervised algorithms  

• Analyzing the impact of the ML algorithm results across different 
topical categories to define joint standards and increase 
reproducibility 

5. Conclusions 

In this paper, we set out to review the state-of-the-art in Machine 
learning based on spatial data for sustainable cities. Since this is an 
emerging and highly dynamic research field, we conducted a scoping 
review to (i) map out the most prominent topics, data sources, ML al-
gorithms, and approaches to parameter selection, (ii) determine the 
most prominent patterns and challenges in the use of ML, (iii) identify 
knowledge gaps to guide future research. We reviewed papers covering 
different ML algorithms across all aspects of sustainable urban systems, 
which are divided into the categories of land use and urban form, socio- 
economic, environment, and infrastructure. Overall, the analyses helped 
to create a classification of ML approaches according to topics, methods, 
and data sources. 

There are three main takeaways from this study. First, there are still 
ample opportunities to evolve this research field. This can be achieved 
by investigating missing topics or by working on cross-domain or 
comparative case studies (see Section 4). As ML and AI are gaining 
momentum, we expected that applications of these technologies will 
serve to solve contingent problems around pressing issues pertaining to 
sustainability, such as circularity and resilience. 

Second, there is still a need to standardize the selection of data, al-
gorithms, and parameters. Systematic comparisons of the data and al-
gorithms selection can help in exploring the significance of these 
methods and the impacts of the results, while systematically reporting 
parameters increase the reproducibility of works and the transparency 
of the analytical process (see Section 4). Grekousis (2019) confirmed 
partially these findings for ANNs. This lack of transparency and sys-
tematic comparison of ML methods also hinders application. Sustainable 
urban planning decisions and policies that influence the urban envi-
ronment require concrete reasoning and clarity. 

Third, spatial ML will benefit in shifting attention to the creation and 
types of datasets. There are limitations in developing spatial ML studies 
in data-sparse areas (such as the Global South). Moreover, studies use 
often heterogeneous data from different data sources. Studying how to 
integrate and merge data will help spatial data-driven analyses to 
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become more meaningful. Along with these themes, ethical studies 
about the role of technology and its possible risks for communities and 
individuals (e.g. the loss of jobs for lower-skilled workers, the theft of 
digital identities, invasion of privacy by governments or businesses, 
discrimination based on personal data) should be addressed to develop a 
more conscientious use of spatially-explicit technology. 

This scoping review has some limitations related to the scope and the 
focus on spatial urban data. Although studies related to street view 
images have been on rise recently, we did not include papers that 
adopted images as the sole source of information to develop urban an-
alyzes. We refer the reader to literature reviews in computer vision for 
urban analytics (Biljecki & Ito, 2021; Ibrahim et al., 2020). For ML ap-
plications in the field of remote sensing, we refer to Lary et al., 2015, Ma 
et al., 2019, Maxwell et al., 2018 and Zhu, Tuia et al., 2017. Another 
limitation is that we developed an initial mapping of an emerging field, 
while a systematic review would include all published papers in litera-
ture by following a protocol (e.g. PRISMA protocol by Moher et al. 
(2009)). 

The scientific community can use this review as a guideline to un-
derstand which approaches and data sets have been used for which type 
of urban problem. Further, our analyses help shape a comprehensive 
understanding of the use between ML and geospatial data. Moreover, we 
identified several promising areas for future research in all domains, 
ranging from the need for more comparative studies and to an improved 
understanding of the impact of the selection of data sets, algorithms, or 
parameters. We especially stress the need to foster explainable machine 
learning approaches and invest in knowledge transfer to create impact 
and help equip cities with the tools they need to address the many 
challenges they are facing. 
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Arribas-Bel, Daniel, M., Garcia-López, & Elisabet, V.-M. (2019). Building(s and) cities: 
Delineating urban areas with a machine learning algorithm. Journal of Urban 
Economics, (September 2018), Article 103217. https://doi.org/10.1016/j. 
jue.2019.103217 

Aschwanden, G. D. P. A., Wijnands, J. S., Thompson, J., Nice, K. A., Zhao, H., & 
Stevenson, M. (2019). Learning to walk: Modeling transportation mode choice 
distribution through neural networks. Environment and Planning B: Urban Analytics 
and City Science, 48(1), 186–199. https://doi.org/10.1177/2399808319862571 

Auerbach, J., Chaganti, V., Blackburn, C., Barton, H., Ghai, B., Zegura, E., Blunt, T., 
Meng, A., & Flores, P. (2017). Using data science as a community advocacy tool to 
promote equity in urban renewal programs: An analysis of atlanta’s anti- 
displacement tax fund. ArXiv. 

Awan, F. M., Minerva, R., & Crespi, N. (2021). Using noise pollution data for traffic 
prediction in smart cities: experiments based on LSTM recurrent neural networks. 
IEEE Sensors Journal, 21(18), 20722–20729. 

Ayeleru, O. O., Fajimi, L. I., Oboirien, B. O., & Olubambi, P. A. (2021). Forecasting 
municipal solid waste quantity using artificial neural network and supported vector 
machine techniques: A case study of Johannesburg, South Africa. Journal of Cleaner 
Production, 289. 

Badii, C., Difino, A., Nesi, P., Paoli, I., & Paolucci, M. (2021). Classification of users’ 
transportation modalities from mobiles in real operating conditions. Multimedia Tools 
and Applications. 

Badmos, O. S., Rienow, A., Callo-Concha, D., Greve, K., & Jürgens, C. (2019). Simulating 
slum growth in Lagos: An integration of rule based and empirical based model. 
Computers, Environment and Urban Systems, 77(July), Article 101369. https://doi. 
org/10.1016/j.compenvurbsys.2019.101369 

Baltensperger, A. P., Mullet, T. C., Schmid, M. S., Humphries, G. R. W., Kövér, L., & 
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