
 
 

Delft University of Technology

Artificial Intelligence Supported Site Mapping for Building Pop-Up Habitats

Aslaminezhad, Atousa; Bier, Henriette; Hidding, Arwin; Calabrese, Giuseppe

DOI
10.1007/978-981-96-2124-8_10
Publication date
2025
Document Version
Final published version
Published in
Evolution in Computational Intelligence - Proceedings of the 12th International Conference on Frontiers in
Intelligent Computing

Citation (APA)
Aslaminezhad, A., Bier, H., Hidding, A., & Calabrese, G. (2025). Artificial Intelligence Supported Site
Mapping for Building Pop-Up Habitats. In V. Bhateja, P. Patel, & J. Tang (Eds.), Evolution in Computational
Intelligence - Proceedings of the 12th International Conference on Frontiers in Intelligent Computing: Theory
and Applications, FICTA 2024 (pp. 131-148). (Smart Innovation, Systems and Technologies; Vol. 436).
Springer. https://doi.org/10.1007/978-981-96-2124-8_10
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/978-981-96-2124-8_10
https://doi.org/10.1007/978-981-96-2124-8_10


Green Open Access added to TU Delft Institutional Repository 
as part of the Taverne amendment. 

More information about this copyright law amendment 
can be found at https://www.openaccess.nl. 

Otherwise as indicated in the copyright section: 
the publisher is the copyright holder of this work and the 

author uses the Dutch legislation to make this work public. 

https://repository.tudelft.nl/
https://www.openaccess.nl/en


Artificial Intelligence Supported Site 
Mapping for Building Pop-Up Habitats 

Atousa Aslaminezhad, Henriette Bier, Arwin Hidding, 
and Giuseppe Calabrese 

Abstract Building pop-up habitats in extreme weather conditions such as deserts 
requires preliminary contextual, i.e., site studies. Since the site’s condition is 
constantly changing due to sand relocation induced by wind, a rapid mapping solu-
tion is proposed. This is implemented by generating a 3D mesh model of the site 
with the help of a visual workflow and advanced computational design methods to 
implement in-situ 3D printing of habitats. This paper presents an integrated approach 
utilizing Computer Vision (CV), Deep Learning (DL), and generative design tools 
like Grasshopper. By harnessing the potential of Convolutional Neural Networks 
(CNNs), a robust framework is developed to recognize complex desert terrain 
features, independent of solar orientation and camera positioning. The methodology 
employs a state-of-the-art CNN customized for detecting features in desert settings. 
This is further enhanced by using Grasshopper to systematically generate a diverse 
dataset that enriches the model’s learning process. The resulting model efficiently 
extracts precise 3D meshes from 2D images, optimizing site mapping and integrating 
habitat printing workflows. This automated approach offers an effective solution for 
habitat construction in challenging environments, showcasing real-time processing.

A. Aslaminezhad (B) 
University of Antwerp, Antwerp, Belgium 
e-mail: a.aslaminezhad@hw.ac.uk 

Heriot-Watt University, Dubai, United Arab Emirates 

H. Bier · A. Hidding 
Delft University of Technology, Delft, Netherlands 
e-mail: h.h.bier@tudelft.nl 

A. Hidding 
e-mail: a.j.hidding@tudelft.nl 

H. Bier 
University of Sydney, Sydney, Australia 

G. Calabrese 
International Research School of Planetary Sciences, Università d’Annunzio, Pescara, Italy 
e-mail: giuseppe.calabrese1@unich.it 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 
V. Bhateja et al. (eds.), Evolution in Computational Intelligence, Smart Innovation, 
Systems and Technologies 436, https://doi.org/10.1007/978-981-96-2124-8_10 

131

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-2124-8_10&domain=pdf
mailto:a.aslaminezhad@hw.ac.uk
mailto:h.h.bier@tudelft.nl
mailto:a.j.hidding@tudelft.nl
mailto:giuseppe.calabrese1@unich.it
https://doi.org/10.1007/978-981-96-2124-8_10


132 A. Aslaminezhad et al.

1 Introduction 

Recent advancements in Artificial Intelligence (AI) and in particular Computer 
Vision (CV) for three-dimensional mesh generation from images offer new oppor-
tunities for site layout mapping [1]. This paper explores the capabilities of CV to 
extract 3D meshes from a single photograph in real-time in the desert. 

By applying Convolutional Neural Networks (CNNs), the presented study seeks 
to open novel prospects in constructing pop-up habitats in the desert through robotic 
3D printing. Given the complexity involved in the dataset collection and prohibitive 
costs, this research turns to computer-generated datasets as significant resources for 
AI model training. 

1.1 State-of-the-Art Terrain Mapping Techniques 

Terrain mapping is fundamental across various domains, from urban planning to envi-
ronmental monitoring. Over time, several methods [2–4] have emerged to accurately 
depict the intricacies of different landscapes. Below, outlined are some cutting-edge 
terrain mapping techniques currently utilized: 

From Lidar technology employing laser pulses to photogrammetry extracting 3D 
information from 2D images captured from varied perspectives and satellite remote 
sensing using multi- or hyperspectral sensors, all generate valuable data for terrain 
mapping. 

Specialized algorithms have been designed to depict specific attributes of desert 
landscapes, including features like sand dunes, rocky formations, and sparse coverage 
of vegetation employing techniques such as cellular noise patterns and Perlin 
noise functions to enable the accurate simulation of the terrain. Furthermore, 
Voronoi diagrams which divide space into regions by the proximity to specific 
points, are employed in modeling desert terrains. They aid in generating realistic 
patterns resembling the distribution of sand dunes and rocky objects found in desert 
landscapes. 

More advanced methods involving Convolutional Neural Networks (CNNs) that 
are trained on extensive datasets, can automatically recognize and categorize terrain 
components like sand dunes, rocky surfaces, and vegetative cover, facilitating terrain 
mapping and evaluation. 

In this context, demonstrating such approaches is effective since they provide 
real-time modeling of terrain surfaces based on different sources of sensor data 
such as Lidar scans or radar images. The use of effective algorithms along with 
the implementation of parallel processes helps to generate 3D models immediately, 
making it possible to navigate autonomously and respond in deserts. Meanwhile, 
the challenging dynamic landscapes (e.g., wind pattern shifts or erosion) call for the 
development of advanced land-forming technology. Such techniques maintain the



Artificial Intelligence Supported Site Mapping for Building Pop-Up … 133

density of sampling dynamically, by adjusting the complexity of the terrain; thus the 
models are closer to the actual conditions of the terrain as it changes with time. 

Furthermore, some research highlighted that this approach would be compatible 
with the application of CV methodologies and in-situ 3D printing for the sustainable 
implementation of extraterrestrial habitats in the framework of lava tubes by obtaining 
depth maps [5]. 

In summary, these advanced terrain mapping approaches offer multidimensional 
techniques to contour the terrain, process data, and generate images for multiple 
uses. Continuous progress in sensor technology and data processing are the driving 
forces that allow refining and widening the use of terrain mapping capabilities. 

1.2 Contribution 

This study provides a different approach for generating 3D meshes from 2D single-
shot images of desert landscapes and demonstrates the potential of the synergy 
between Computer Vision (CV), Deep Learning (DL), and generative design tools 
such as Grasshopper. By connecting DL to Convolutional Neural Networks (CNNs), 
a robust framework is developed that can recognize and interpret complex desert 
terrain features for 3D mapping without the need for any interventions such as solar 
orientation and camera positioning. 

This approach, which is in the domain of CV and DL, can be especially useful 
in the fields of architecture, urban design, and urban planning. The proposed model 
is developed to provide an efficient and cost-effective approach to construction in 
extreme environments. 

2 Approach and Methodology 

The methodology of the presented study involves the development of a robust AI 
model that can effectively understand, interpret, and rebuild 3D representations of 
desert sites based on 2D images. This implies the development of numerous solutions 
to deal with what the desert environment offers while considering what is required 
for robotic construction. To train the AI model, a dataset of computer-generated 2D 
images depicting different desert site maps is used. The data validation process is 
discussed in the following section, during which the accuracy and loss metrics are 
evaluated. In the most ideal case, the closer the accuracy value is to 1 and the loss 
value to 0, the better performance of the AI model is expected, and the anticipation 
is to predict the 3D mesh of the site plan.



134 A. Aslaminezhad et al.

2.1 Dataset Generation 

Due to a lack of relevant practical data collection as well as logistical challenges 
related to collecting a high-quality real-world dataset, a synthetic dataset is made 
using computer simulations. This dataset simulates desert environments with a 
variety of perspectives for images spanning across the entire spectrum of lighting, 
such as harsh direct sunlight, subtle and soft shadows, diffused light, and overcast 
skies. 

In this approach, all the parameters that influence the generation of certain datasets 
are changed for every trial. Hence, every desert model holds one visual source, and 
separate seeds are used for each model, resulting in a completely random generation 
of the algorithm parameters. 

Each image in the dataset is paired with explicit three-dimensional mesh coor-
dinates developed in the AI model, providing the ground truth needed for effective 
training. 

The data generation process relies on the capabilities of the Grasshopper software 
which not only eliminates the difficulties of the physical data collection process but 
also meets the standards to provide a set of images with uniform conditions at high 
volume demand. This approach is structured in such a way that the data that goes 
into the training of the CNNs is patterned to closely resemble the complexities of the 
real-world scenarios they are going to be deployed to. The following steps elaborate 
on the dataset generation in detail: 

Geometric Simulation. The high number of samples necessitates the automatic 
generation, rendering, and classification of 3D models that are performed in 
Grasshopper. The algorithm extracts the lines of the dunes with the aid of data gener-
ated by the Tundra plugin. Tundra uses the Perlin function, and it takes random param-
eters based on mathematical relationships. Furthermore, it builds the terrain form of 
the targeted geographical area via the same function. Moreover, the wind effect on the 
generated mesh is included. This function is utilized to make the computer-generated 
mesh correspond to reality. Two generative algorithms were developed to simulate 
the desert environment: 

Cellular Noise Algorithm. This algorithm is built on Worley noise [6] allowing for 
the creation of Voronoi patterns that imitate the natural way sand, and rocks are 
distributed (Fig. 1).

Generative Guide Curves Algorithm. This algorithm uses an improved Perlin noise 
function to generate the guide curves [7] that are involved in the formation of the 
dune patterns and the site topography (Figs. 2 and 3).

A selection between the two algorithms resulted in a Perlin noise output which 
is superior in terms of the geometrical diversity and the higher similarity to terrain 
environment characteristics. Additionally, the Bezier function has also been adapted 
to simulate the cross-section of dunes.



Artificial Intelligence Supported Site Mapping for Building Pop-Up … 135

Fig. 1 Modeling steps of Cellular Noise Algorithm: Generating stochastic points (top left), Creating 
Voronoi cells (top left second row), Triangulation (top right second row), Generated cellular noise 
map (top right), Modifying dunes shape by Bezier graph (bottom left), Creating mesh (bottom left 
second row), Smoothening mesh (bottom right second row), Depth map (bottom right)

Fig. 2 Step-by-Step Process of Generative Guide Curves for finding random Dune shapes Using 
Perlin Noise and Bezier Graphs. Defining dune patterns by using the Perlin Noise function with 
the help of the Tundra plugin [8], and defining wind pattern-X direction (leftmost). Extracting dune 
curves (middle left), Surface triangulation for elevation (middle right), Modifying dunes shape by 
Bezier graph; As the mesh vertices get closer to the extracted lines, their height increases according 
to the Bezier curve pattern (rightmost) 

Fig. 3 Example of a pattern produced for dunes. Dune + Terrain (top left), Dune (top middle), 
Terrain (top right), Wind X + Y (bottom left), Wind X (bottom middle), Wind Y (bottom right), 
Combination of all patterns (rightmost)



136 A. Aslaminezhad et al.

Fig. 4 Geometric prototyping of mesh. Creating mesh (left), Creating mesh with sharp dune curves 
(middle), Creating mesh with soft dune curves (right) 

Geometric Prototyping. To cover the diverse geometrical typologies of dunes, 
two distinct algorithmic strategies for mesh generation as part of prototyping were 
investigated (Fig. 4). 

Sharp Dune Curves. In this approach, the meshes are designed with protruding or 
more pronounced dune lines to replicate the sharp features observed in certain desert 
landscapes. 

Soft Dune Curves. This method is aimed to form meshes on which the dunes’ slopes 
are soft and grade to each other which is in line with more gradual slopes found in 
some desert regions. 

Object Scattering. Dubai’s desert was selected as the context of this research. Based 
on the observations made, plants and small stones exist in the landscape which need 
to be considered in the digital 3D simulations for improved AI model training. To 
allow all this, a scattering algorithm was used to distribute planes randomly on the 
original mesh. Five different types of plants and rocks were randomized in different 
sizes, numbers, and orders across the mesh. The sizes, quantities, rotations, and 
distribution patterns were controlled by this algorithm (Fig. 5).

Visualization. The V-Ray plugin was employed due to its advanced rendering capa-
bilities to simulate realistic lighting and material properties, and its full integration as 
a plugin in Grasshopper allows automated dataset generation while giving realistic 
renderings.



Artificial Intelligence Supported Site Mapping for Building Pop-Up … 137

Fig. 5 Object scattering on terrain. Site plan mesh (left), Scattered objects (right)

The material for dataset production was sourced by considering ten different types 
of materials found in the desert region of Dubai. The images were rendered with a 
resolution of 500 × 500 pixels, using an RGB color channel . Figure 6 shows selected 
images of the dataset. 

Initially, the dataset was set at 10,000 images. However, 10% of the images were 
either corrupted or misclassified which led to the growth of the initial dataset size to 
11,000 renderings. All images were automatically V-Ray rendered and saved in the 
transition from 0 to 11,000. At the same time, the Z coordinates of each vertex from 
the studied mesh were saved as a separate list in a Comma-separated Values (CSV) 
file. The corrupted and incorrect data was manually deleted from the dataset. 

Camera Settings. In this model, an algorithm is employed to determine the positions 
of the sun and the camera. It creates two points between two spheres with the target 
point located at the center of the site plan and on the ground surface, encompassing

Fig. 6 Selected samples from the generated dataset 



138 A. Aslaminezhad et al.

Fig. 7 Photography and camera placement model 

all points. Some parameters such as the direction of sun and light, the placement 
of the camera, site plan, elevation, overall topography, initial noise, and vegetation 
coverage will have a significant influence on the model. The Field of View (FOV) of 
Apple’s iPhone camera was used, with a value of 54° [9]. 

The distance between the camera and the center of the mesh remains unchanged. 
Consequently, because of the randomly chosen shooting angle, the camera is perpet-
ually oriented towards a sphere with a radius of 18.5 m, centered on the mesh that 
is being analyzed (Fig. 7). For the mesh to be within the camera’s FOV and be fully 
visible, 18.5 m was chosen as the distance between the camera and the examined 
mesh. 

Sun Position and Intensity. The sun’s position is generated on a large sphere with 
a radius equal to the mesh’s overall size. It is designed using a day-and-night system 
always to ensure the presence of the sun avoiding nighttime hours. For obtaining this 
light intensity and simulating various weather conditions, a sigmoid function that 
maps input values to a range between 0 and 1 was employed in the algorithm. 

2.2 Preparing Dataset for the AI Model 

The dataset images are first amended via Photoshop in batches based on some param-
eters such as hue, saturation, contrast, and histogram, and then the outlier data are 
deleted via a developed Python algorithm. Additionally, the images with modeling 
or visual errors are removed from the dataset. The 10,000 final images of the desert 
landscape generated in the preceding step have been standardized as pictures in JPG 
format. Besides that, the vertices of each mesh are simultaneously listed and posi-
tioned in the Z coordinates, kept in a CSV file format to be used for building the AI 
model. All images are standardized equally as they are recorded by the same camera



Artificial Intelligence Supported Site Mapping for Building Pop-Up … 139

settings with a common output size from Grasshopper. This can help improve the 
model’s overall performance. 

The study produced a primary and a secondary mesh. The primary mesh is the 
result of the Generative Guide Curves (GGC) algorithm which is the comprehensive 
and seamless reproduction of the natural features of the desert context. The secondary 
mesh, which is derived from the primary mesh, is a 10 × 10 square mesh grid whose 
vertices are spaced 1m apart and oriented in a way that its center aligns with the 
center of the image. This gives the camera real-time updates from the mesh for any 
further instant processes. 

3 Deep Convolutional Neural Networks for 3D Mesh 
Prediction from Site Images 

The core of the methodology is the usage of the CNN architecture which is tailored to 
allow Z coordinates extraction of 3D mesh vertices from a single 2D site plan image. 
CNNs have shown high efficiency in performing Computer Vision tasks like image 
classification, image understanding, and image segmentation to object detection [10]. 
These models can learn complex image feature representations through training, 
thereby making them appropriate for this study. The CNN architecture, training, and 
evaluation process involves the following steps. 

3.1 Data Processing 

In this study, the AI model is implementing the data that it has already generated for 
training purposes. The image’s pixel values serve as input (X_train), with the mesh 
Z coordinates as output (y train). The parameters of the model were adjusted during 
the training to minimize the difference in the coordinates between the actual and the 
predicted meshes for increased accuracy. 

The methodology uses the AI model to detect the required mesh and to navigate 
robotic construction in extreme environments in real-time. 

The code establishes essential libraries such as Pandas for data manipulation, 
Autogyro for numerical calculations, Tensorflow for Deep Learning (DL), and 
Python Imaging Library (PIL) for image processing [11]. File references are in the 
directory of 3D site plan images of deserts as well as the CSV file for storing 3D 
mesh Z coordinates.



140 A. Aslaminezhad et al.

3.2 Loading Images and Coordinate Extraction 

The code iterates through each row of the CSV file: 
In this step, the code receives the images and turns them into a float-point NumPy 

array. This transformation is made to promote efficient information processing at 
the neural network’s internal level. The code then gains the 3D mesh Z coordinates 
of the image in the current row through the CSV file. This extracted geography 
information is added to the “coords” list. Additionally, the processed images are 
saved into another list called “images”. 

The code arranges the images into 10,000 for its algorithm. Each cell of array 
contains a list of three values to represent the RGB channels of each pixel, which is 
used as input data. Hence, the pixel values list of the images are referred to as X_ 
train, and the coordinates of the site plan list are referred to as y_train. 

3.3 Data Splitting 

The lists representing these arrays get converted into Numpy arrays, which will be 
referred to as X and y. X represents the list of input images and y represents the 
corresponding 3D vertices, i.e., Z coordinates of the mesh. Training and testing 
dataset partitioning is achieved via sklearn’s train_test_split function with test_size 
of 0.2 which includes 20% of the data being tested and 80% being trained. The 
splatted datasets are X_train, X_test, y_train, and y_test. The splitting allows the 
model to demonstrate its performance for any unseen datasets while being tested 
thus estimating the data generalizability. 

3.4 Data Normalization 

A Keras’s ImageDataGenerator object helps to perform data standardization by 
normalizing the image data. This operation is quite valuable in improving the model 
performance and training process. The idea of normalization focuses on pixelation 
by scaling and zeroing down the values. However, the range is factored in between 0 
to 1. Hence, the variations impact in image illumination and intensity are minimized 
which provides a smoother learning process for CNN. 

3.5 CNNs Architecture 

Convolutional Neural Networks (CNNs) as one of the best networks for image recog-
nition are used. CNNs which were trained on the synthetic dataset to identify and



Artificial Intelligence Supported Site Mapping for Building Pop-Up … 141

predict 3D forms of the terrain from the 2D images, were carefully designed to extract 
macro features of the desert. This led to high and precise 3D mesh modeling. 

Demonstrating the core of the system as a deep CNN model, made with a Sequen-
tial API from Keras. API makes provision for sequential deposition of layers which 
in turn is a platform for the creation of complex neural network architectures. 

The CNN architecture is thoroughly designed to process the input images and 
extract the essential features that indicate the 3D forms in the site plans. This 
architecture consists of several layers, each with a specific function: 

Input Layer. The first layer describes the shape of each input image data. This layer 
provides information about the size and the number of channels e.g., RGB in the 
model. 

Convolutional Layers. The model consists of two convolutional layers of 32 and 64 
filters with 3 × 3 size, respectively. Convolutional layers are the building blocks of 
CNNs. They perform an operation of convolution, extracting spatial features from 
the raw data and input images [12]. Every filter detects a small detail, such as an edge, 
texture, or pattern present in the image. The size of these filters plays an important 
role in high-resolution details in the network. After every convolutional operation, a 
function such as Rectified Linear Unit (ReLU) is involved to generate non-linearities 
in the model. This allows the model to learn complex relationships between the 
features. 

Pooling Layers. Two pooling layers with a pooling size of 2 × 2 are used after 
each convolutional layer. The filtering layers are used for pooling the feature maps 
and reducing the resolution, thus retaining only the most important features while 
providing invariance to features’ position in the input image as well as reducing the 
computational load for the next layers. This approach assists in keeping the model 
from being complex and in avoidance of overfitting. Figure 8 shows selected pooling 
feature extraction samples. 

Fig. 8 Feature maps extracted from CNN layers: visualization after applying filters and pooling 
operations



142 A. Aslaminezhad et al.

Flatten Layer. This layer converts the two-dimensional feature maps generated by 
the convolutional and pooling layers to a one-dimensional vector. This gives a lower-
dimension representation of the input data making it operational for the next layers 
that are only working with one-dimensional data. 

Dense Layers. The fully connected layers integrate the locally learned features there-
after to make universal predictions about the content of the images. In the context of 
3D mesh prediction, these layers produce coordinates that help build the structure of 
the meshes. The fully connected dense layers that are employed in the later stages 
of the network execute a matrix multiplication between the flattened feature vector 
and the weights assigned to each neuron. The first two dense layers are followed by 
each other with 100 neurons and the ReLU activation function. As a result, the model 
can further improve more complex relationships between the extracted features. The 
last dense layer has 100 neurons and softmax activation function while its output 
dimension corresponds to the size of the Z coordinates for each vertex of the 3D 
mesh. 

4 Model Training and Evaluation 

4.1 Model Compilation 

The model.compile function configures the model for training by specifying the 
following: 

Loss Function. In terms of 3D mesh prediction, which is a regression task, a usual 
choice is the MSE (Mean Squared Error) (1) measure to assess the squared mean 
differences of the predicted and given accurate values for training data. Reduction 
of the MSE via training leads the model to be as precise as it can, while making 
predictions that are as close to the true values as possible. This, in turn, investigates 
the model to reconfigure its inner parameters during the training process (weights 
and biases) to minimize the differences. 

MSE = 1 
n 

n∑

i=1

(
Yi − Ŷi

)2 
(1) 

Optimizer. The Adaptive Moment Estimation optimizer is a learning algorithm that 
iteratively improves the model by repeated weight and bias adjustment of parameters 
according to the calculated loss at each step of the training process. It strives to select 
the weights that minimize the amount of loss among all the training instances over 
all the sets of training datasets. The Adam optimizer was used in its default mode in 
the Tensorflow library with a learning rate of 0.001.



Artificial Intelligence Supported Site Mapping for Building Pop-Up … 143

Evaluation Metrics. It is the metrics argument that enables the observation of the 
extra parameters while the trainers and evaluators are working without the need 
for a third party. The mean absolute error (MAE) (2) metrics are adapted here to 
measure consistently the average absolute discrepancy between predicted and real 
coordinates. This gives a detailed look at how the model performed compared to the 
loss function. 

MAE = 1 
n 

n∑

i=1

∣∣Yi − Ŷi
∣∣ (2) 

4.2 Model Training and Evaluation Criteria 

Training a convolutional neural network (CNN) requires many steps which include 
adjusting the network’s weights according to data, which is needed for the model to 
learn. During this process, i.e., the backpropagation, the goal is to reduce the value of 
the loss function—this step plays an important role in guiding the training process. 
The prime issues are the choice of loss function and the evaluation metrics. Moreover, 
the training process includes a hyperparameter setting, which implies the process of 
adjusting parameters like learning rate, batch size, and the number of epochs. These 
hyperparameters inevitably make a profound impact on the training process which 
eventually may contribute to the final performance quality of the model. 

Model Training Process. The model.fit function is the main starting point of the 
training process. During training, the function iterates through the training data (X_ 
train, y_train) in batches and performs the following steps within each epoch: 

Forward Pass. The input image of the batch sample in the current processing is 
carried out by the network, producing a predicted outcome for the corresponding 3D 
coordinate mesh. 

Loss calculation. The loss function evaluates the gaps between the model’s predicted 
coordinates and the actual coordinates. 

Backward Pass. An increased loss is then propagated to the network using the back-
propagation method, and the model thereby can modify its weights and biases to 
minimize the loss in subsequent passes. 

Weight Update. The optimizer updates the weights and the bias of the model 
depending on the gradients computed during the backward pass. 

Model Evaluation Process. The model’s performance is periodically evaluated on a 
special set of validation data during training to verify its generalization capabilities 
and avoid overtraining. This means that the model can be trained with the data which 
is not seen by the model during training and then it can be used to test the predictions.



144 A. Aslaminezhad et al.

The model.evaluate function will give an overview of the model’s performance on 
the unseen testing data by using (X_test, y_test). The respective loss values (test_ 
loss) and MAE (test_mae) are calculated and printed to provide insights into the 
estimation of how well the model is performing against an unknown dataset. Ideally, 
both values should be as minimum as possible. 

4.3 Model Optimization 

The model is trained based on the evaluation results. Appropriate modifications are 
made to the architecture or the training parameters and hyperparameters towards the 
model’s enhancement. 

4.4 Model Saving 

The model.save function is used to save the optimized and trained model. This makes 
the model capable of keeping the knowledge it learns for future use. 

4.5 Model Loading 

The load_model function is used to load the previously saved model from the given 
path. Hence, the trained model can be used for the prediction of new images. 

5 Prediction of New Images 

To generate 3D mesh coordinates on a new image, the trained model undergoes a 
systematic process: loading the image and then preprocessing it to the model input 
template. Following this, the model.predict function is introduced to compute the 
mesh coordinates which are subsequently organized as an output list. Finally, the 
data is shown as a mesh in Grasshopper. Figure 9 shows three ideal predicted images. 
Flags represent predicted points.



Artificial Intelligence Supported Site Mapping for Building Pop-Up … 145

Fig. 9 The ideal predicted samples. X_Predicts (top row), y_Predicts (bottom row) 

6 Results and Discussion 

The algorithm ran several times to evaluate the model’s performance based on its 
accuracy and loss metrics on both training and validation datasets. The evaluation is 
based on the training epochs and the experiment results as shown in Figs. 10 and 11. 
Due to the lack of real data, Human Evaluation and Statistical Comparison (Pixel-
level comparison) methods are used to validate the dataset. The Human Evaluation 
includes Expert evaluation and Perceptual studies that generate acceptable similar-
ities between them by examining the computer-generated dataset. In the Statistical 
Comparison, 400 generated images were compared against 20 real desert images 
using a Python algorithm and the results show that computer-generated images are 
similar to the real ones in terms of brightness and variance however, there are some 
differences in terms of details and diversity. So, to avoid an imbalanced dataset, the 
V-Ray rendering settings and preprocessing operations need further improvements.

Training Accuracy. The training accuracy has been improved from 0.025 to 0.246. 
This improvement indicates that the model can learn the characteristics in the training 
dataset and becomes more accurate in predicting. 

Validation Accuracy. The validation accuracy has also increased from 0.015 to 
0.194. Although this shows progression, the fact that it is much lower than the dataset 
accuracy indicates that the model most likely overfits the training data. This occur-
rence arises when a model prioritizes memorizing training data specifics rather than



146 A. Aslaminezhad et al.

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

0 5 10 15 20 25 30 35 40 

A
cc

u
ra

cy
 

Epoch 

Train accuracy 

Validation accuracy 

Fig. 10 Training and validation accuracy diagrams within 40 epochs 

0 

300 

600 

900 

1200 

0 5 10 15 20 25 30 35 40 

L
o

ss
 

Epoch 

Train Loss 

Validation Loss 

Fig. 11 Training and validation loss diagrams within 40 epochs

learning generalizable patterns. Hence, the model excels in performing on training 
data. 

Figure 11 shows the model’s learning curves during the training. The difference 
between the training and validation accuracy curves shows a potential overfitting. 

Training Loss. The training loss has been significantly minimized from 1330.103 
to 1.2537. This decrease in loss implies that the model is increasingly learning from 
each instance in the training data and as a result, its predictive accuracy is improving 
with each iteration. 

Validation Loss. The validation loss has also decreased from 1343.344 to 2.3436. 
This indicates that the model is improving its precision of prediction on the validation 
set. 

Overall, the model shows exponential growth in the learning curve with increasing 
accuracies and decreasing losses. Nevertheless, the difference between the perfor-
mance on training and validation reveals the possibility of overfitting. An enhanced 
model can be made by adding strategies such as regularization, data augmentation,



Artificial Intelligence Supported Site Mapping for Building Pop-Up … 147

and incorporating a complex validation set. Regular tracking of these metrics will be 
essential for tweaking and enhancing the performance of the model. 

Based on the results from the model’s output, the AI model is currently not very 
reliable, and the results cannot be taken as proven. Nevertheless, it is revealed through 
the assessment that CNN algorithms likely improve the performance detection of the 
mesh using images, and the results are promising. Since the purpose of mesh detection 
in this study is for the construction of pop-up habitats, a difference error between 
an actual and predicted coordinate of a few centimeters is acceptable. For instance, 
if all points have a prediction difference of 0.05, the loss value would be 0.0025. 
Therefore, the next step for improving this research is to minimize the loss value that 
can be further studied. 

The inherent difference between the synthetic dataset and the real-world terrains 
will cause inaccuracies in the predictions. The training of the model should be updated 
with high-resolution height map scans of real-world terrains, in combination with 
real photographs, so the model’s reliability can be improved. These benchmarking 
scans represent the true or ground truth surfaces and allow the model’s true error to 
be identified and can therefore be reduced. Because the model has been trained on 
synthetic datasets, the amount of real-world scanning data is significantly reduced. 
The error between the true landscape and the predicted meshes needs to be within 
production tolerances to make the model usable for in-situ production. Since there 
will always be an irreducible error between the predicted meshes and the true land-
scape, some flexibility and adaptability need to be built into the (semi)-robotic on-site 
production process. 

7 Conclusion 

This study provides an essential point in the scheme of data processing. The 
successful implementation of real-time 3D mesh detection for in-situ 3D printing in 
desert terrains exhibits how AI can change the problems of harsh and unpredictable 
environments. 

The creative utilization of CNNs as add-ons and computer simulations has led to 
great advancements in Computer Vision and robotics. 

The study proves that there is a potential for much wider implications of AI in 
construction than the immediate applications. The knowledge obtained may be used 
to build on further innovations, facilitating architects to develop habitats in extreme 
environments where accessibility is challenging. It shows the prospect of employing 
advanced technologies such as Computer Vision and Deep Learning in the construc-
tion of pop-up habitats in extreme environments, i.e., deserts. Using synthetic datasets 
generated by computer simulations, Convolutional Neural Networks are a promising 
method for predicting the 3D mesh coordinates from 2D images of desert landscapes. 
Despite the large amount of progress being made towards the improvement of factors 
such as the training process along with finding out the accuracy of loss, some chal-
lenges like the overfitting that occurs between synthetic and real-world scenarios



148 A. Aslaminezhad et al.

during implementation need to be addressed to simplify and enhance the processes 
for better practical use. Using real-world data such as high-quality height map scans 
and actual photos, for instance, can improve the training process as well as the consis-
tency of the model in producing results and minimizing inaccuracies. As a result, two 
major assets needed to aid in this process include resilience and adaptability, both of 
which help accommodate for unexpected errors between a predicted mesh and the 
true landscape, ensuring a very usable and practical process for the real world. 

Acknowledgements This study was developed by the contribution of researchers from the 
University of Antwerp, Delft University of Technology, and Università d’Annunzio. 

References 

1. P.K. Vinodkumar, D. Karabulut, E. Avots, C. Ozcinar, G. Anbarjafari, Deep learning for 3D 
reconstruction, augmentation, and registration: a review paper. Entropy (Basel, Switzerland) 
26(3), 235 (2024). https://doi.org/10.3390/e26030235 

2. O. Olson et al., Visual terrain mapping for mars exploration. Comput. Vis. Image Understanding 
105(1) (2007). https://doi.org/10.1016/j.cviu.2006.08.005 

3. M. Pieraccini et al., Terrain mapping by ground-based interferometric radar. IEEE Trans. 
Geosci. Remote Sens. 39(10) (2001). https://doi.org/10.1109/36.957280 

4. V.L. Mulder et al., The use of remote sensing in soil and terrain mapping—a review. Geoderma 
162(1–2), 1–19 (2011). https://doi.org/10.1016/j.geoderma.2010.12.018 

5. G. Calabrese, A. Hidding, H. Bier, C. Engelenburg, S. Kahdemi, A. Aslaminezhad, Computer 
vision for terrain mapping and 3D printing in-situ of extra/-terrestrial habitats, in Intelligent 
Systems Conference (IntelliSys) (2024) 

6. S. Worley, A cellular texture basis function, in Proceedings of the 23rd Annual Conference on 
Computer Graphics and Interactive Techniques (1996) 

7. A. Jain, A. Sharma, Rajan, Adaptive & multi-resolution procedural infinite terrain generation 
with diffusion models and Perlin noise, in Proceedings of the Thirteenth Indian Conference on 
Computer Vision, Graphics and Image Processing (2022) 

8. (Miroljub), Tundra. Food4Rhino (2019, February 16). https://www.food4rhino.com/en/app/ 
tundra 

9. FieldOfView, Apple developer documentation (n.d.). Retrieved 2 April 2024, from https://dev 
eloper.apple.com/documentation/modelio/mdlcamera/1391726-fieldofview 

10. M. Egmont-Petersen, D. de Ridder, H. Handels, Image processing with neural networks— 
a review. Pattern Recogn. 35(10), 2279–2301 (2002). https://doi.org/10.1016/s0031-320 
3(01)00178-9 

11. W. Ballard, Hands-On Deep Learning for Images with TensorFlow: Build Intelligent Computer 
Vision Applications Using TensorFlow and Keras (Packt Publishing, 2018) 

12. S. Bhattacharyya, V. Snasel, A. Ella Hassanien, S. Saha, B. Tripathy, Deep Learning: Research 
and Applications (De Gruyter, Berlin, Boston, 2020). https://doi.org/10.1515/9783110670905

https://doi.org/10.3390/e26030235
https://doi.org/10.1016/j.cviu.2006.08.005
https://doi.org/10.1109/36.957280
https://doi.org/10.1016/j.geoderma.2010.12.018
https://www.food4rhino.com/en/app/tundra
https://www.food4rhino.com/en/app/tundra
https://developer.apple.com/documentation/modelio/mdlcamera/1391726-fieldofview
https://developer.apple.com/documentation/modelio/mdlcamera/1391726-fieldofview
https://doi.org/10.1016/s0031-3203(01)00178-9
https://doi.org/10.1016/s0031-3203(01)00178-9
https://doi.org/10.1515/9783110670905



