<]
TUDelft

Delft University of Technology

Artificial Intelligence Supported Site Mapping for Building Pop-Up Habitats

Aslaminezhad, Atousa; Bier, Henriette; Hidding, Arwin; Calabrese, Giuseppe

DOI
10.1007/978-981-96-2124-8_10

Publication date
2025

Document Version
Final published version

Published in
Evolution in Computational Intelligence - Proceedings of the 12th International Conference on Frontiers in
Intelligent Computing

Citation (APA)

Aslaminezhad, A., Bier, H., Hidding, A., & Calabrese, G. (2025). Artificial Intelligence Supported Site
Mapping for Building Pop-Up Habitats. In V. Bhateja, P. Patel, & J. Tang (Eds.), Evolution in Computational
Intelligence - Proceedings of the 12th International Conference on Frontiers in Intelligent Computing: Theory
and Applications, FICTA 2024 (pp. 131-148). (Smart Innovation, Systems and Technologies; Vol. 436).
Springer. https://doi.org/10.1007/978-981-96-2124-8_10

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.


https://doi.org/10.1007/978-981-96-2124-8_10
https://doi.org/10.1007/978-981-96-2124-8_10

Green Open Access added to TU Delft Institutional Repository
as part of the Taverne amendment.

More information about this copyright law amendment
can be found at https://www.openaccess.nl.

Otherwise as indicated in the copyright section:
the publisher is the copyright holder of this work and the
author uses the Dutch legislation to make this work public.


https://repository.tudelft.nl/
https://www.openaccess.nl/en

Artificial Intelligence Supported Site )
Mapping for Building Pop-Up Habitats e

Atousa Aslaminezhad, Henriette Bier, Arwin Hidding,
and Giuseppe Calabrese

Abstract Building pop-up habitats in extreme weather conditions such as deserts
requires preliminary contextual, i.e., site studies. Since the site’s condition is
constantly changing due to sand relocation induced by wind, a rapid mapping solu-
tion is proposed. This is implemented by generating a 3D mesh model of the site
with the help of a visual workflow and advanced computational design methods to
implement in-situ 3D printing of habitats. This paper presents an integrated approach
utilizing Computer Vision (CV), Deep Learning (DL), and generative design tools
like Grasshopper. By harnessing the potential of Convolutional Neural Networks
(CNNs), a robust framework is developed to recognize complex desert terrain
features, independent of solar orientation and camera positioning. The methodology
employs a state-of-the-art CNN customized for detecting features in desert settings.
This is further enhanced by using Grasshopper to systematically generate a diverse
dataset that enriches the model’s learning process. The resulting model efficiently
extracts precise 3D meshes from 2D images, optimizing site mapping and integrating
habitat printing workflows. This automated approach offers an effective solution for
habitat construction in challenging environments, showcasing real-time processing.

A. Aslaminezhad ()
University of Antwerp, Antwerp, Belgium
e-mail: a.aslaminezhad @hw.ac.uk

Heriot-Watt University, Dubai, United Arab Emirates

H. Bier - A. Hidding
Delft University of Technology, Delft, Netherlands
e-mail: h.h.bier @tudelft.nl

A. Hidding
e-mail: a.j.hidding @tudelft.nl

H. Bier
University of Sydney, Sydney, Australia

G. Calabrese
International Research School of Planetary Sciences, Universita d’ Annunzio, Pescara, Italy
e-mail: giuseppe.calabresel @unich.it

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 131
V. Bhateja et al. (eds.), Evolution in Computational Intelligence, Smart Innovation,
Systems and Technologies 436, https://doi.org/10.1007/978-981-96-2124-8_10


http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-2124-8_10&domain=pdf
mailto:a.aslaminezhad@hw.ac.uk
mailto:h.h.bier@tudelft.nl
mailto:a.j.hidding@tudelft.nl
mailto:giuseppe.calabrese1@unich.it
https://doi.org/10.1007/978-981-96-2124-8_10

132 A. Aslaminezhad et al.

1 Introduction

Recent advancements in Artificial Intelligence (AI) and in particular Computer
Vision (CV) for three-dimensional mesh generation from images offer new oppor-
tunities for site layout mapping [1]. This paper explores the capabilities of CV to
extract 3D meshes from a single photograph in real-time in the desert.

By applying Convolutional Neural Networks (CNNG), the presented study seeks
to open novel prospects in constructing pop-up habitats in the desert through robotic
3D printing. Given the complexity involved in the dataset collection and prohibitive
costs, this research turns to computer-generated datasets as significant resources for
Al model training.

1.1 State-of-the-Art Terrain Mapping Techniques

Terrain mapping is fundamental across various domains, from urban planning to envi-
ronmental monitoring. Over time, several methods [2-4] have emerged to accurately
depict the intricacies of different landscapes. Below, outlined are some cutting-edge
terrain mapping techniques currently utilized:

From Lidar technology employing laser pulses to photogrammetry extracting 3D
information from 2D images captured from varied perspectives and satellite remote
sensing using multi- or hyperspectral sensors, all generate valuable data for terrain
mapping.

Specialized algorithms have been designed to depict specific attributes of desert
landscapes, including features like sand dunes, rocky formations, and sparse coverage
of vegetation employing techniques such as cellular noise patterns and Perlin
noise functions to enable the accurate simulation of the terrain. Furthermore,
Voronoi diagrams which divide space into regions by the proximity to specific
points, are employed in modeling desert terrains. They aid in generating realistic
patterns resembling the distribution of sand dunes and rocky objects found in desert
landscapes.

More advanced methods involving Convolutional Neural Networks (CNNs) that
are trained on extensive datasets, can automatically recognize and categorize terrain
components like sand dunes, rocky surfaces, and vegetative cover, facilitating terrain
mapping and evaluation.

In this context, demonstrating such approaches is effective since they provide
real-time modeling of terrain surfaces based on different sources of sensor data
such as Lidar scans or radar images. The use of effective algorithms along with
the implementation of parallel processes helps to generate 3D models immediately,
making it possible to navigate autonomously and respond in deserts. Meanwhile,
the challenging dynamic landscapes (e.g., wind pattern shifts or erosion) call for the
development of advanced land-forming technology. Such techniques maintain the



Artificial Intelligence Supported Site Mapping for Building Pop-Up ... 133

density of sampling dynamically, by adjusting the complexity of the terrain; thus the
models are closer to the actual conditions of the terrain as it changes with time.

Furthermore, some research highlighted that this approach would be compatible
with the application of CV methodologies and in-situ 3D printing for the sustainable
implementation of extraterrestrial habitats in the framework of lava tubes by obtaining
depth maps [5].

In summary, these advanced terrain mapping approaches offer multidimensional
techniques to contour the terrain, process data, and generate images for multiple
uses. Continuous progress in sensor technology and data processing are the driving
forces that allow refining and widening the use of terrain mapping capabilities.

1.2 Contribution

This study provides a different approach for generating 3D meshes from 2D single-
shot images of desert landscapes and demonstrates the potential of the synergy
between Computer Vision (CV), Deep Learning (DL), and generative design tools
such as Grasshopper. By connecting DL to Convolutional Neural Networks (CNNs),
a robust framework is developed that can recognize and interpret complex desert
terrain features for 3D mapping without the need for any interventions such as solar
orientation and camera positioning.

This approach, which is in the domain of CV and DL, can be especially useful
in the fields of architecture, urban design, and urban planning. The proposed model
is developed to provide an efficient and cost-effective approach to construction in
extreme environments.

2 Approach and Methodology

The methodology of the presented study involves the development of a robust Al
model that can effectively understand, interpret, and rebuild 3D representations of
desert sites based on 2D images. This implies the development of numerous solutions
to deal with what the desert environment offers while considering what is required
for robotic construction. To train the Al model, a dataset of computer-generated 2D
images depicting different desert site maps is used. The data validation process is
discussed in the following section, during which the accuracy and loss metrics are
evaluated. In the most ideal case, the closer the accuracy value is to 1 and the loss
value to 0, the better performance of the AI model is expected, and the anticipation
is to predict the 3D mesh of the site plan.



134 A. Aslaminezhad et al.

2.1 Dataset Generation

Due to a lack of relevant practical data collection as well as logistical challenges
related to collecting a high-quality real-world dataset, a synthetic dataset is made
using computer simulations. This dataset simulates desert environments with a
variety of perspectives for images spanning across the entire spectrum of lighting,
such as harsh direct sunlight, subtle and soft shadows, diffused light, and overcast
skies.

In this approach, all the parameters that influence the generation of certain datasets
are changed for every trial. Hence, every desert model holds one visual source, and
separate seeds are used for each model, resulting in a completely random generation
of the algorithm parameters.

Each image in the dataset is paired with explicit three-dimensional mesh coor-
dinates developed in the Al model, providing the ground truth needed for effective
training.

The data generation process relies on the capabilities of the Grasshopper software
which not only eliminates the difficulties of the physical data collection process but
also meets the standards to provide a set of images with uniform conditions at high
volume demand. This approach is structured in such a way that the data that goes
into the training of the CNNss is patterned to closely resemble the complexities of the
real-world scenarios they are going to be deployed to. The following steps elaborate
on the dataset generation in detail:

Geometric Simulation. The high number of samples necessitates the automatic
generation, rendering, and classification of 3D models that are performed in
Grasshopper. The algorithm extracts the lines of the dunes with the aid of data gener-
ated by the Tundra plugin. Tundra uses the Perlin function, and it takes random param-
eters based on mathematical relationships. Furthermore, it builds the terrain form of
the targeted geographical area via the same function. Moreover, the wind effect on the
generated mesh is included. This function is utilized to make the computer-generated
mesh correspond to reality. Two generative algorithms were developed to simulate
the desert environment:

Cellular Noise Algorithm. This algorithm is built on Worley noise [6] allowing for
the creation of Voronoi patterns that imitate the natural way sand, and rocks are
distributed (Fig. 1).

Generative Guide Curves Algorithm. This algorithm uses an improved Perlin noise
function to generate the guide curves [7] that are involved in the formation of the
dune patterns and the site topography (Figs. 2 and 3).

A selection between the two algorithms resulted in a Perlin noise output which
is superior in terms of the geometrical diversity and the higher similarity to terrain
environment characteristics. Additionally, the Bezier function has also been adapted
to simulate the cross-section of dunes.



Artificial Intelligence Supported Site Mapping for Building Pop-Up ... 135

3

5

VAVAVAVAVAY,
v

74YAYAVAVAVAVAVAVY
TAVAVAVAYA'

AVAVAVAA

AVAYS
A vavavavy
A VA iy
ORI
Ve AV AV
KRR

SR

1
g
KX
PO
KRR

7

S
SN
N

o

AN
RN
ST
RRECH
SR
XL
<

)
Ky
Kt

v
oA
ERE
SRR
L
<
Y
R

IVAYAVAY
¢r

S
<]

PR
<K
RE

&5
X
S

A
>

VAVAVaY

el
2\
200

aVaYa
[
A

e NAVANAY AVAVATA
KIS,
Vs

pr
s
K

I/

LSS

Yava¥i

aYa
AV=
g

i
RIS

3
AVA
N
<1

2

iy

A

TS
JTAYA V4)
X
o

7
7S
YA

7
z

DRRPRD

A

VY
&
]

ST

K

ATAVAY,

0%

B

S SIS
s

1%

Fig. 1 Modeling steps of Cellular Noise Algorithm: Generating stochastic points (fop left), Creating
Voronoi cells (top left second row), Triangulation (top right second row), Generated cellular noise
map (top right), Modifying dunes shape by Bezier graph (bottom left), Creating mesh (bottom left
second row), Smoothening mesh (bottom right second row), Depth map (bottom right)

[mprovedperin
= &

Fig. 2 Step-by-Step Process of Generative Guide Curves for finding random Dune shapes Using
Perlin Noise and Bezier Graphs. Defining dune patterns by using the Perlin Noise function with
the help of the Tundra plugin [8], and defining wind pattern-X direction (leftmost). Extracting dune
curves (middle left), Surface triangulation for elevation (middle right), Modifying dunes shape by
Bezier graph; As the mesh vertices get closer to the extracted lines, their height increases according
to the Bezier curve pattern (rightmost)

Fig. 3 Example of a pattern produced for dunes. Dune + Terrain (fop left), Dune (top middle),
Terrain (top right), Wind X + Y (bottom left), Wind X (bottom middle), Wind Y (bottom right),
Combination of all patterns (rightmost)



136 A. Aslaminezhad et al.

o
%‘%\‘- it
S
RN
R ‘3‘{\.\‘\\\ ST
R
R
T3
R
RS2
R
AR
RN

%
RS
T

R
X

NN q <5
%ﬂﬁﬁﬁgy S/ o S S
e 0 SRRSO S
RSN . ~ B NS5

AR
eSS
A AVAYAVS
L

SO

Fig. 4 Geometric prototyping of mesh. Creating mesh (left), Creating mesh with sharp dune curves
(middle), Creating mesh with soft dune curves (right)

Geometric Prototyping. To cover the diverse geometrical typologies of dunes,
two distinct algorithmic strategies for mesh generation as part of prototyping were
investigated (Fig. 4).

Sharp Dune Curves. In this approach, the meshes are designed with protruding or
more pronounced dune lines to replicate the sharp features observed in certain desert
landscapes.

Soft Dune Curves. This method is aimed to form meshes on which the dunes’ slopes
are soft and grade to each other which is in line with more gradual slopes found in
some desert regions.

Object Scattering. Dubai’s desert was selected as the context of this research. Based
on the observations made, plants and small stones exist in the landscape which need
to be considered in the digital 3D simulations for improved Al model training. To
allow all this, a scattering algorithm was used to distribute planes randomly on the
original mesh. Five different types of plants and rocks were randomized in different
sizes, numbers, and orders across the mesh. The sizes, quantities, rotations, and
distribution patterns were controlled by this algorithm (Fig. 5).

Visualization. The V-Ray plugin was employed due to its advanced rendering capa-
bilities to simulate realistic lighting and material properties, and its full integration as
a plugin in Grasshopper allows automated dataset generation while giving realistic
renderings.



Artificial Intelligence Supported Site Mapping for Building Pop-Up ... 137

SN
R
RN
R
Rt

Fig. 5 Object scattering on terrain. Site plan mesh (/eft), Scattered objects (right)

The material for dataset production was sourced by considering ten different types
of materials found in the desert region of Dubai. The images were rendered with a
resolution of 500 x 500 pixels, using an RGB color channel . Figure 6 shows selected
images of the dataset.

Initially, the dataset was set at 10,000 images. However, 10% of the images were
either corrupted or misclassified which led to the growth of the initial dataset size to
11,000 renderings. All images were automatically V-Ray rendered and saved in the
transition from O to 11,000. At the same time, the Z coordinates of each vertex from
the studied mesh were saved as a separate list in a Comma-separated Values (CSV)
file. The corrupted and incorrect data was manually deleted from the dataset.

Camera Settings. In this model, an algorithm is employed to determine the positions
of the sun and the camera. It creates two points between two spheres with the target
point located at the center of the site plan and on the ground surface, encompassing

Fig. 6 Selected samples from the generated dataset



138 A. Aslaminezhad et al.

Sun position

Sphere 1 o/ NG Cariié"ga‘dirg;9}ion
Sphere 2 i - h Cfimeré‘pgsi ion

Site plane
Mesh vertices

“Camera orientation ™y _/

Sl

Fig. 7 Photography and camera placement model

all points. Some parameters such as the direction of sun and light, the placement
of the camera, site plan, elevation, overall topography, initial noise, and vegetation
coverage will have a significant influence on the model. The Field of View (FOV) of
Apple’s iPhone camera was used, with a value of 54° [9].

The distance between the camera and the center of the mesh remains unchanged.
Consequently, because of the randomly chosen shooting angle, the camera is perpet-
ually oriented towards a sphere with a radius of 18.5 m, centered on the mesh that
is being analyzed (Fig. 7). For the mesh to be within the camera’s FOV and be fully
visible, 18.5 m was chosen as the distance between the camera and the examined
mesh.

Sun Position and Intensity. The sun’s position is generated on a large sphere with
aradius equal to the mesh’s overall size. It is designed using a day-and-night system
always to ensure the presence of the sun avoiding nighttime hours. For obtaining this
light intensity and simulating various weather conditions, a sigmoid function that
maps input values to a range between 0 and 1 was employed in the algorithm.

2.2 Preparing Dataset for the AI Model

The dataset images are first amended via Photoshop in batches based on some param-
eters such as hue, saturation, contrast, and histogram, and then the outlier data are
deleted via a developed Python algorithm. Additionally, the images with modeling
or visual errors are removed from the dataset. The 10,000 final images of the desert
landscape generated in the preceding step have been standardized as pictures in JPG
format. Besides that, the vertices of each mesh are simultaneously listed and posi-
tioned in the Z coordinates, kept in a CSV file format to be used for building the Al
model. All images are standardized equally as they are recorded by the same camera



Artificial Intelligence Supported Site Mapping for Building Pop-Up ... 139

settings with a common output size from Grasshopper. This can help improve the
model’s overall performance.

The study produced a primary and a secondary mesh. The primary mesh is the
result of the Generative Guide Curves (GGC) algorithm which is the comprehensive
and seamless reproduction of the natural features of the desert context. The secondary
mesh, which is derived from the primary mesh, is a 10 x 10 square mesh grid whose
vertices are spaced 1m apart and oriented in a way that its center aligns with the
center of the image. This gives the camera real-time updates from the mesh for any
further instant processes.

3 Deep Convolutional Neural Networks for 3D Mesh
Prediction from Site Images

The core of the methodology is the usage of the CNN architecture which is tailored to
allow Z coordinates extraction of 3D mesh vertices from a single 2D site plan image.
CNNs have shown high efficiency in performing Computer Vision tasks like image
classification, image understanding, and image segmentation to object detection [10].
These models can learn complex image feature representations through training,
thereby making them appropriate for this study. The CNN architecture, training, and
evaluation process involves the following steps.

3.1 Data Processing

In this study, the Al model is implementing the data that it has already generated for
training purposes. The image’s pixel values serve as input (X_train), with the mesh
Z coordinates as output (y train). The parameters of the model were adjusted during
the training to minimize the difference in the coordinates between the actual and the
predicted meshes for increased accuracy.

The methodology uses the AI model to detect the required mesh and to navigate
robotic construction in extreme environments in real-time.

The code establishes essential libraries such as Pandas for data manipulation,
Autogyro for numerical calculations, Tensorflow for Deep Learning (DL), and
Python Imaging Library (PIL) for image processing [11]. File references are in the
directory of 3D site plan images of deserts as well as the CSV file for storing 3D
mesh Z coordinates.



140 A. Aslaminezhad et al.

3.2 Loading Images and Coordinate Extraction

The code iterates through each row of the CSV file:

In this step, the code receives the images and turns them into a float-point NumPy
array. This transformation is made to promote efficient information processing at
the neural network’s internal level. The code then gains the 3D mesh Z coordinates
of the image in the current row through the CSV file. This extracted geography
information is added to the “coords” list. Additionally, the processed images are
saved into another list called “images”.

The code arranges the images into 10,000 for its algorithm. Each cell of array
contains a list of three values to represent the RGB channels of each pixel, which is
used as input data. Hence, the pixel values list of the images are referred to as X_
train, and the coordinates of the site plan list are referred to as y_train.

3.3 Data Splitting

The lists representing these arrays get converted into Numpy arrays, which will be
referred to as X and y. X represents the list of input images and y represents the
corresponding 3D vertices, i.e., Z coordinates of the mesh. Training and testing
dataset partitioning is achieved via sklearn’s train_test_split function with test_size
of 0.2 which includes 20% of the data being tested and 80% being trained. The
splatted datasets are X_train, X_test, y_train, and y_test. The splitting allows the
model to demonstrate its performance for any unseen datasets while being tested
thus estimating the data generalizability.

3.4 Data Normalization

A Keras’s ImageDataGenerator object helps to perform data standardization by
normalizing the image data. This operation is quite valuable in improving the model
performance and training process. The idea of normalization focuses on pixelation
by scaling and zeroing down the values. However, the range is factored in between 0
to 1. Hence, the variations impact in image illumination and intensity are minimized
which provides a smoother learning process for CNN.

3.5 CNNs Architecture

Convolutional Neural Networks (CNN5s) as one of the best networks for image recog-
nition are used. CNNs which were trained on the synthetic dataset to identify and



Artificial Intelligence Supported Site Mapping for Building Pop-Up ... 141

predict 3D forms of the terrain from the 2D images, were carefully designed to extract
macro features of the desert. This led to high and precise 3D mesh modeling.

Demonstrating the core of the system as a deep CNN model, made with a Sequen-
tial API from Keras. API makes provision for sequential deposition of layers which
in turn is a platform for the creation of complex neural network architectures.

The CNN architecture is thoroughly designed to process the input images and
extract the essential features that indicate the 3D forms in the site plans. This
architecture consists of several layers, each with a specific function:

Input Layer. The first layer describes the shape of each input image data. This layer
provides information about the size and the number of channels e.g., RGB in the
model.

Convolutional Layers. The model consists of two convolutional layers of 32 and 64
filters with 3 x 3 size, respectively. Convolutional layers are the building blocks of
CNNs. They perform an operation of convolution, extracting spatial features from
the raw data and input images [12]. Every filter detects a small detail, such as an edge,
texture, or pattern present in the image. The size of these filters plays an important
role in high-resolution details in the network. After every convolutional operation, a
function such as Rectified Linear Unit (ReLU) is involved to generate non-linearities
in the model. This allows the model to learn complex relationships between the
features.

Pooling Layers. Two pooling layers with a pooling size of 2 x 2 are used after
each convolutional layer. The filtering layers are used for pooling the feature maps
and reducing the resolution, thus retaining only the most important features while
providing invariance to features’ position in the input image as well as reducing the
computational load for the next layers. This approach assists in keeping the model
from being complex and in avoidance of overfitting. Figure 8 shows selected pooling
feature extraction samples.

Filter 31 Filter 17 Filter 28
— >

Fig. 8 Feature maps extracted from CNN layers: visualization after applying filters and pooling
operations



142 A. Aslaminezhad et al.

Flatten Layer. This layer converts the two-dimensional feature maps generated by
the convolutional and pooling layers to a one-dimensional vector. This gives a lower-
dimension representation of the input data making it operational for the next layers
that are only working with one-dimensional data.

Dense Layers. The fully connected layers integrate the locally learned features there-
after to make universal predictions about the content of the images. In the context of
3D mesh prediction, these layers produce coordinates that help build the structure of
the meshes. The fully connected dense layers that are employed in the later stages
of the network execute a matrix multiplication between the flattened feature vector
and the weights assigned to each neuron. The first two dense layers are followed by
each other with 100 neurons and the ReLLU activation function. As a result, the model
can further improve more complex relationships between the extracted features. The
last dense layer has 100 neurons and softmax activation function while its output
dimension corresponds to the size of the Z coordinates for each vertex of the 3D
mesh.

4 Model Training and Evaluation

4.1 Model Compilation

The model.compile function configures the model for training by specifying the
following:

Loss Function. In terms of 3D mesh prediction, which is a regression task, a usual
choice is the MSE (Mean Squared Error) (1) measure to assess the squared mean
differences of the predicted and given accurate values for training data. Reduction
of the MSE via training leads the model to be as precise as it can, while making
predictions that are as close to the true values as possible. This, in turn, investigates
the model to reconfigure its inner parameters during the training process (weights
and biases) to minimize the differences.

1 n )
MSE = E;(Yi - 1) (1)

Optimizer. The Adaptive Moment Estimation optimizer is a learning algorithm that
iteratively improves the model by repeated weight and bias adjustment of parameters
according to the calculated loss at each step of the training process. It strives to select
the weights that minimize the amount of loss among all the training instances over
all the sets of training datasets. The Adam optimizer was used in its default mode in
the Tensorflow library with a learning rate of 0.001.



Artificial Intelligence Supported Site Mapping for Building Pop-Up ... 143

Evaluation Metrics. It is the metrics argument that enables the observation of the
extra parameters while the trainers and evaluators are working without the need
for a third party. The mean absolute error (MAE) (2) metrics are adapted here to
measure consistently the average absolute discrepancy between predicted and real
coordinates. This gives a detailed look at how the model performed compared to the
loss function.

l — .
MAE:ZZ|Y,~—Y,-‘ 2)

i=1

4.2 Model Training and Evaluation Criteria

Training a convolutional neural network (CNN) requires many steps which include
adjusting the network’s weights according to data, which is needed for the model to
learn. During this process, i.e., the backpropagation, the goal is to reduce the value of
the loss function—this step plays an important role in guiding the training process.
The prime issues are the choice of loss function and the evaluation metrics. Moreover,
the training process includes a hyperparameter setting, which implies the process of
adjusting parameters like learning rate, batch size, and the number of epochs. These
hyperparameters inevitably make a profound impact on the training process which
eventually may contribute to the final performance quality of the model.

Model Training Process. The model.fit function is the main starting point of the
training process. During training, the function iterates through the training data (X_
train, y_train) in batches and performs the following steps within each epoch:

Forward Pass. The input image of the batch sample in the current processing is
carried out by the network, producing a predicted outcome for the corresponding 3D
coordinate mesh.

Loss calculation. The loss function evaluates the gaps between the model’s predicted
coordinates and the actual coordinates.

Backward Pass. An increased loss is then propagated to the network using the back-
propagation method, and the model thereby can modify its weights and biases to
minimize the loss in subsequent passes.

Weight Update. The optimizer updates the weights and the bias of the model
depending on the gradients computed during the backward pass.

Model Evaluation Process. The model’s performance is periodically evaluated on a
special set of validation data during training to verify its generalization capabilities
and avoid overtraining. This means that the model can be trained with the data which
is not seen by the model during training and then it can be used to test the predictions.



144 A. Aslaminezhad et al.

The model.evaluate function will give an overview of the model’s performance on
the unseen testing data by using (X_test, y_test). The respective loss values (test_
loss) and MAE (test_mae) are calculated and printed to provide insights into the
estimation of how well the model is performing against an unknown dataset. Ideally,
both values should be as minimum as possible.

4.3 Model Optimization

The model is trained based on the evaluation results. Appropriate modifications are
made to the architecture or the training parameters and hyperparameters towards the
model’s enhancement.

4.4 Model Saving

The model.save function is used to save the optimized and trained model. This makes
the model capable of keeping the knowledge it learns for future use.

4.5 Model Loading

The load_model function is used to load the previously saved model from the given
path. Hence, the trained model can be used for the prediction of new images.

5 Prediction of New Images

To generate 3D mesh coordinates on a new image, the trained model undergoes a
systematic process: loading the image and then preprocessing it to the model input
template. Following this, the model.predict function is introduced to compute the
mesh coordinates which are subsequently organized as an output list. Finally, the
data is shown as a mesh in Grasshopper. Figure 9 shows three ideal predicted images.
Flags represent predicted points.



Artificial Intelligence Supported Site Mapping for Building Pop-Up ... 145

Fig. 9 The ideal predicted samples. X_Predicts (fop row), y_Predicts (bottom row)

6 Results and Discussion

The algorithm ran several times to evaluate the model’s performance based on its
accuracy and loss metrics on both training and validation datasets. The evaluation is
based on the training epochs and the experiment results as shown in Figs. 10 and 11.
Due to the lack of real data, Human Evaluation and Statistical Comparison (Pixel-
level comparison) methods are used to validate the dataset. The Human Evaluation
includes Expert evaluation and Perceptual studies that generate acceptable similar-
ities between them by examining the computer-generated dataset. In the Statistical
Comparison, 400 generated images were compared against 20 real desert images
using a Python algorithm and the results show that computer-generated images are
similar to the real ones in terms of brightness and variance however, there are some
differences in terms of details and diversity. So, to avoid an imbalanced dataset, the
V-Ray rendering settings and preprocessing operations need further improvements.

Training Accuracy. The training accuracy has been improved from 0.025 to 0.246.
This improvement indicates that the model can learn the characteristics in the training
dataset and becomes more accurate in predicting.

Validation Accuracy. The validation accuracy has also increased from 0.015 to
0.194. Although this shows progression, the fact that it is much lower than the dataset
accuracy indicates that the model most likely overfits the training data. This occur-
rence arises when a model prioritizes memorizing training data specifics rather than



146 A. Aslaminezhad et al.

0.35 1 Train accuracy

0.3 1 —e&— Validation accuracy

Accuracy
=l
D
.

0 5 10 15 20 25 30 35 40
Epoch

Fig. 10 Training and validation accuracy diagrams within 40 epochs

Train Loss
1200 A

—@— Validation Loss

900 A

Loss

600 1

300 1

T T T T T T

0 5 10 15 20 25 30 35 40
Epoch

Fig. 11 Training and validation loss diagrams within 40 epochs

learning generalizable patterns. Hence, the model excels in performing on training
data.

Figure 11 shows the model’s learning curves during the training. The difference
between the training and validation accuracy curves shows a potential overfitting.

Training Loss. The training loss has been significantly minimized from 1330.103
to 1.2537. This decrease in loss implies that the model is increasingly learning from
each instance in the training data and as a result, its predictive accuracy is improving
with each iteration.

Validation Loss. The validation loss has also decreased from 1343.344 to 2.3436.
This indicates that the model is improving its precision of prediction on the validation
set.

Overall, the model shows exponential growth in the learning curve with increasing
accuracies and decreasing losses. Nevertheless, the difference between the perfor-
mance on training and validation reveals the possibility of overfitting. An enhanced
model can be made by adding strategies such as regularization, data augmentation,



Artificial Intelligence Supported Site Mapping for Building Pop-Up ... 147

and incorporating a complex validation set. Regular tracking of these metrics will be
essential for tweaking and enhancing the performance of the model.

Based on the results from the model’s output, the AI model is currently not very
reliable, and the results cannot be taken as proven. Nevertheless, it is revealed through
the assessment that CNN algorithms likely improve the performance detection of the
mesh using images, and the results are promising. Since the purpose of mesh detection
in this study is for the construction of pop-up habitats, a difference error between
an actual and predicted coordinate of a few centimeters is acceptable. For instance,
if all points have a prediction difference of 0.05, the loss value would be 0.0025.
Therefore, the next step for improving this research is to minimize the loss value that
can be further studied.

The inherent difference between the synthetic dataset and the real-world terrains
will cause inaccuracies in the predictions. The training of the model should be updated
with high-resolution height map scans of real-world terrains, in combination with
real photographs, so the model’s reliability can be improved. These benchmarking
scans represent the true or ground truth surfaces and allow the model’s true error to
be identified and can therefore be reduced. Because the model has been trained on
synthetic datasets, the amount of real-world scanning data is significantly reduced.
The error between the true landscape and the predicted meshes needs to be within
production tolerances to make the model usable for in-situ production. Since there
will always be an irreducible error between the predicted meshes and the true land-
scape, some flexibility and adaptability need to be built into the (semi)-robotic on-site
production process.

7 Conclusion

This study provides an essential point in the scheme of data processing. The
successful implementation of real-time 3D mesh detection for in-situ 3D printing in
desert terrains exhibits how Al can change the problems of harsh and unpredictable
environments.

The creative utilization of CNNs as add-ons and computer simulations has led to
great advancements in Computer Vision and robotics.

The study proves that there is a potential for much wider implications of Al in
construction than the immediate applications. The knowledge obtained may be used
to build on further innovations, facilitating architects to develop habitats in extreme
environments where accessibility is challenging. It shows the prospect of employing
advanced technologies such as Computer Vision and Deep Learning in the construc-
tion of pop-up habitats in extreme environments, i.e., deserts. Using synthetic datasets
generated by computer simulations, Convolutional Neural Networks are a promising
method for predicting the 3D mesh coordinates from 2D images of desert landscapes.
Despite the large amount of progress being made towards the improvement of factors
such as the training process along with finding out the accuracy of loss, some chal-
lenges like the overfitting that occurs between synthetic and real-world scenarios



148 A. Aslaminezhad et al.

during implementation need to be addressed to simplify and enhance the processes
for better practical use. Using real-world data such as high-quality height map scans
and actual photos, for instance, can improve the training process as well as the consis-
tency of the model in producing results and minimizing inaccuracies. As a result, two
major assets needed to aid in this process include resilience and adaptability, both of
which help accommodate for unexpected errors between a predicted mesh and the
true landscape, ensuring a very usable and practical process for the real world.

Acknowledgements This study was developed by the contribution of researchers from the
University of Antwerp, Delft University of Technology, and Universita d’ Annunzio.

References

1. P.K. Vinodkumar, D. Karabulut, E. Avots, C. Ozcinar, G. Anbarjafari, Deep learning for 3D
reconstruction, augmentation, and registration: a review paper. Entropy (Basel, Switzerland)
26(3), 235 (2024). https://doi.org/10.3390/e26030235

2. 0O.Olsonetal., Visual terrain mapping for mars exploration. Comput. Vis. Image Understanding
105(1) (2007). https://doi.org/10.1016/j.cviu.2006.08.005

3. M. Pieraccini et al., Terrain mapping by ground-based interferometric radar. IEEE Trans.
Geosci. Remote Sens. 39(10) (2001). https://doi.org/10.1109/36.957280

4. V.L.Mulder et al., The use of remote sensing in soil and terrain mapping—a review. Geoderma
162(1-2), 1-19 (2011). https://doi.org/10.1016/j.geoderma.2010.12.018

5. G. Calabrese, A. Hidding, H. Bier, C. Engelenburg, S. Kahdemi, A. Aslaminezhad, Computer
vision for terrain mapping and 3D printing in-situ of extra/-terrestrial habitats, in Intelligent
Systems Conference (IntelliSys) (2024)

6. S. Worley, A cellular texture basis function, in Proceedings of the 23rd Annual Conference on
Computer Graphics and Interactive Techniques (1996)

7. A.Jain, A. Sharma, Rajan, Adaptive & multi-resolution procedural infinite terrain generation
with diffusion models and Perlin noise, in Proceedings of the Thirteenth Indian Conference on
Computer Vision, Graphics and Image Processing (2022)

8. (Miroljub), Tundra. Food4Rhino (2019, February 16). https://www.food4rhino.com/en/app/
tundra

9. FieldOfView, Apple developer documentation (n.d.). Retrieved 2 April 2024, from https://dev
eloper.apple.com/documentation/modelio/mdlcamera/1391726-fieldofview

10. M. Egmont-Petersen, D. de Ridder, H. Handels, Image processing with neural networks—
a review. Pattern Recogn. 35(10), 2279-2301 (2002). https://doi.org/10.1016/s0031-320
3(01)00178-9

11. W.Ballard, Hands-On Deep Learning for Images with TensorFlow: Build Intelligent Computer
Vision Applications Using TensorFlow and Keras (Packt Publishing, 2018)

12. S. Bhattacharyya, V. Snasel, A. Ella Hassanien, S. Saha, B. Tripathy, Deep Learning: Research
and Applications (De Gruyter, Berlin, Boston, 2020). https://doi.org/10.1515/9783110670905


https://doi.org/10.3390/e26030235
https://doi.org/10.1016/j.cviu.2006.08.005
https://doi.org/10.1109/36.957280
https://doi.org/10.1016/j.geoderma.2010.12.018
https://www.food4rhino.com/en/app/tundra
https://www.food4rhino.com/en/app/tundra
https://developer.apple.com/documentation/modelio/mdlcamera/1391726-fieldofview
https://developer.apple.com/documentation/modelio/mdlcamera/1391726-fieldofview
https://doi.org/10.1016/s0031-3203(01)00178-9
https://doi.org/10.1016/s0031-3203(01)00178-9
https://doi.org/10.1515/9783110670905



