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I. Introduction

L OSS of control in-flight (LOC-I) is an off-nominal flying con-
dition where the aircraft deviates from the normal flight enve-

lope and is a leading cause of accidents in commercial aviation [1].
With the increasing trend toward autonomous and complex systems,
one can expect an increasing trend of such LOC-I incidents unless

proactive measures are taken. Developing an integrated fault-tolerant
resilient flight control law (FCL) is imperative to enhance safety
under off-nominal conditions, addressing parametric failures and

abnormal flight scenarios. Main challenges in designing such a
controller include low confidence in the aircraft model post failure,
which degrades the model-dependent controller performance, non-
linearities in the model post failure, and the need for rapid adaptation

of the controller to restore the aircraft within the safe flight envelope.
Self-learning adaptive flight control system (FCS) algorithmswere

initially tested in the 1960s on the X-15 research aircraft [2]. Some of
the open challenges in realizing adaptive FCS include sample effi-
ciency and convergence, controller robustness, and interpretability of

the controller’s adaptive mechanism [3]. Reinforcement learning
(RL), a bio-inspired machine learning approach, has been used for
adaptive flight control since the early 2000s, e.g., thework fromEnns

and Si on helicopter control using neuro-dynamic programming [4]
or the work from Ferrari and Stengel on applying RL for control of a
business jet type of aircraft [5]. An advantage of RL is that it can be
used as a model-free controller, meaning that no information about

the plant that is to be controlled has to be known before the start of

training. Another advantage is that it is by definition an adaptive
controller, and hence can be used when online adaptation is required,
for example after a fault or failure of a part of the aircraft. More recent
applications of RL to flight control can be seen in [6,7], where RL
controllers are designed that make use of an incremental model of
the plant, which is identified online.Nevertheless, RL’s application in
flight control has thus far been limited to validating control laws on
models of the target system rather than real aircraft. A key challenge
that limits the adoption of RL-based methods for flight control is
validation through flight testing on a CS-25-class aircraft, which
could aid in the certification of RL-based FCL for fault tolerance [8].
Although several variants of RL-based FCL’s were developed

[7,9], practical verification and validation (V&V) constraints guided
the choice of this RL-based FCL design. The following desirable
features for the control method are defined as follows: a simpler
control design strategy with fewer and more interpretable learning
parameters, the ability to adapt in real-time to fast-changing non-
linear dynamics of aircraft in case of a failure, an algorithm that is
sample efficient [10,11] and fast to converge on the conventional
flight control computer (FCC). In this regard, Incremental Approxi-
mate Dynamic Programming (iADP)-based FCS [12] is a good
choice among the RL-based FCS with practical interests. This
algorithm identifies a local linearized incremental model online to
estimate and minimize an infinite horizon quadratic cost-to-go,
exclusively using the collected aircraft state data [13–17]. The iADP
algorithm demonstrated effective online adaptation for a F-16 air-
craft model, with good tracking performance both in normal and
failure conditions [18].
The main contributions of this paper are an RL-based iADP FCS

design for a CS-25-class aircraft and a validation of this RL-based
FCS design through flight tests on the PH-LAB Research Aircraft
shown in Fig. 1. The outcome from the flight test campaigns is
detailed, viz., the ability of the controller to capture pitch and roll
rate tasks without a priori knowledge of aircraft model or any pre-
training of the controller, stable continuous learning of the controller,
adaptability of the controller to aircraft configurations assessed by
comparing the adapting parameters across different configurations,
and finally a discussion on observed challenges of some flight test
trials. The technical scope of this study is limited to V&V, excluding
the interaction of the pilot with the adaptive system.
The structure of the paper is organized as follows: Section II

contains the iADP FCL Architecture Design for the Cessna
Citation-II Aircraft, FCL evaluation strategy, software and hardware
Integration of the controller, and a summary of V&V procedures for
the FCL clearance for flight tests. Section III delves into the valida-
tion of controller functionality, focusing extensively on the results
obtained from the flight test campaign. Lastly, Sec. IV includes
concluding remarks and a note on how this research could aid
aviation safety. A detailed explanation of the methodology behind
the iADP algorithm, its extensions for flight control, and a discussion
on flight testing experiences, challenges, features, and limitations of
the iADP FCL is provided in [19]. The process of clearing this online
adaptive FCL for flight testing on CS-25-class Citation-II aircraft,
including V&V, using various tools, methods, and a framework is
detailed in [20], which underpins this work.

II. The iADP-Based Flight Control System Design

A. Control Law Architecture

The iADP algorithm is used to design the FCL for the inner loop,
tracking desired pitch and roll rate commands using three control
surfaces: aileron, elevator, and rudder, as shown in Fig. 2.As this FCL
is solely sensor-based, signal processing of sensor measurements is
performed to reduce the impact of noisy sensor signals. Smooth
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sensor measurements are obtained by low-pass filtering relevant
aircraft states and actuator position measurements. Aerodynamic
angles, namely, angle of attack and sideslip angle, are acquired
through a boom with attached vanes on the aircraft. Complementary
filtering of these angles is executed by combining themwith inertial-
reference sensors. The signal processing block does not contain any
knowledge of the aircraft model, ensuring a model-free and aircraft-
independent inner loop control structure. Pilot-in-the-loop studies are
excluded from this flight control design, and thus, the desired pitch
and roll rate commands are generated automatically. However, the
iADP controller is not aware of these reference commands a priori.
Direct control over the aircraft’s attitude angles is absent, as the cost

function does not consider attitude angle errors, as only the one-step
rate errors are fed back as the reward signal. Additionally, airspeed and
altitude information is excluded from the state vector due to slower
local variations, which could impact incremental model identification
and subsequent value function approximation.Decoupled longitudinal
and lateral controllers are designed: the longitudinal control loop
tracks a pitch rate command using the elevator, while the lateral control
loop tracks a roll rate command using the aileron and/or rudder. Only
one axis is controlled during a maneuver, which means during the
evaluation of the longitudinal task, aileron and rudder maintain the
trimmed control input and vice versa.

B. The iADP Control Law Evaluation Strategy

The iADP controller operates in real-time through three phases:
model learning, controller training, and controller assessment, as
illustrated in Fig. 3. Model learning provides the latest model
estimates using the RLS algorithm. Controller training evaluates
(Vπ) the control policy using incremental model estimates and one-
step cost. Controller assessment takes actions and improves control
policy (π)-based on policy evaluation. The frequency at which each
subsystem on the flight control computer runs is indicated at the
bottom.

During the model learning phase, the controller estimates incre-
mental model parameters using the RLS approach. These estimates
are fed to the controller training phase, where, using the latest
available model estimates and control policy, the value function
(cost-to-go) estimate is improved. This value function provides a
measure of goodness of the underlying control policy. To enable
smoothness in parameter update, the value function update is done
batchwise considering data over awindow of “x” number of samples.
The optimal window length is determined from offline simulation
analysis and based on how much computational load the FCC could
handle using HIL ground tests. The controller assessment phase
evaluates the controller against a commanded reference signal using
the converged control parameters obtained from the controller train-
ing phase.
Two experimental approaches are considered for controller evalu-

ation, as shown in Figs. 4a and 4b:
1) Sequential learning approach (SLA): This approach runs each

phase sequentially, starting with the model learning phase, followed
by the controller training and controller assessment phases. The
model learning phase is open loop and lasts for 20–25 s.
2) Continuous learning approach (CLA): In this approach, all

three phases run concurrently. The controller updates its policy at
every time step using the latest model parameters from the model
learning loop and controller parameters from the controller training
loop. The controller assessment loop runs concurrently, allowing the
controller to update the model and control along the commanded
trajectory defined for the controller assessment. To facilitate the
learning process, the model learning phase operates in an open loop
for the first 20–25 s of the trial. Subsequently, it adjusts the model
parameters, taking into account the influence of the controller in
the loop.

Fig. 2 Incremental approximate dynamic-programming-based flight control law (FCL) architecture for inner-loop rate tracking.

Fig. 1 CessnaCitation II (PH-LAB) research aircraft captured by Alan
Wilson. Image licensed under CC BY-SA 2.0.

Fig. 3 Structure of the reinforcement learning agent of iADP flight
control law (FCL).
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III. Flight Tests

Controller validation involves assessing the performance of the
FCL’s against predefined criteria. iADP FCL validation occurred
through flight tests on the PH-LAB research aircraft, conducted in
November 2022 and August 2023, departing from Rotterdam The
Hague Airport.

A. Experimental Objectives and Setup

Flight control design specifications act as a guide for control
engineers, directing them in the design process to verify that the
controller meets specific criteria [21]. For iADP FCL validation,
the following FCS design requirements are formulated to ensure
the controller commands the aircraft to follow pitch and roll rates,
rate tracking in different operating conditions (altitude and velocity
changes), consistent controller behavior under similar conditions
(reproducibility), stable continuous learning over longer maneu-
vers, and rate tracking through parameter adaptation in different
aircraft configurations.
The dimensions of the available airspace for the tests were

decided preflight, in consultation with pilots. Operating conditions
for which the aircraft equipment is certified, in consultation with
technicians, provided estimates on the boundaries of the flight
envelope. These factors determined the higher limit on the trial’s
duration. The lower limit on trial duration was determined by the
minimum time/samples required for the iADP algorithm to con-
verge, determined through offline desktop simulations and HIL
tests. To test adaptability, a set of feasible aircraft configurations
was decided preflight. These configurations should be observable
by the iADP controller and sufficiently alter the aircraft’s dynamics
to assess FCL’s adaptability. For these tests, the higher limit on the

airspeed is imposed by the fact that landing gear and flap maxi-
mum extension configurations can be deployed only below a
certain airspeed.

B. The iADP-Based Control Law Flight Performance

Table 1 provides a summary of all the flight test trials, offering a
concise overview of the outcomes along with the operating condition
at which the aircraft is trimmed before the beginning of the flight trial.
The trials are listed chronologically, and the trial ID follows the
notation: N22 for November 2022, A23 for August 2023, F# indi-
cates the flight test day, and T# indicates the trial number. The
Axis indicates the actively controlled channel of the aircraft via the
FBW during the trial.VTAS represents true airspeed, and h represents
altitude. The Outcome column reflects whether the controller
response aligned with the design specifications. Config. denotes
aircraft configuration.
SLA is adopted from trial N22-F2-T1 to A23-F1-T2, and all

subsequent trials have adopted CLA. SLA takes precedence to
identify and assess converged parameters, addressing issues such
as the ideal open-loop aircraft identification input signal, determining
acceptable phase durations for parameter convergence, and refining
the reference signals to ensure the aircraft stays within airspace
limits. The controller parameters, including model parameters, are
reset after each trial. Consequently, no information about the aircraft
model or controller parameters from previous flight tests is retained
or transferred to subsequent attempts. For stable parameter conver-
gence in the RLS algorithm, we combine frequency-rich persistently
exciting signals with the calculated control input [22]. The selected
persistent excitation signal for the iADP FCL is a sinusoidal signal
with a small amplitude.

a) Sequential Learning b) Continuous Learning
Fig. 4 Comparison of controller learning approaches.

Table 1 Overview of the iADP controller flight testing campaigns

Trial ID Axis VTAS, m∕s h, m Brief description Outcome

N22-F2-T1 Pitch 101 3600 Oscillatory response; convergence in model prediction ✓

N22-F2-T2 Pitch 106 3650 Off-nominal flight; inverted incremental model parameters ×
N22-F2-T3 Pitch 104 3650 First success; decent tracking; slight elevator oscillations ✓

N22-F2-T4 Pitch 105 3550 Inverted controller commands; inverted model parameters ×
N22-F2-T5 Pitch 94 3500 Better tracking; increased elevator oscillations ✓

N22-F3-T1 Pitch 102 2100 Decent tracking; high model prediction error ✓

N22-F3-T2 Roll 91 2150 Oscillatory response; high model prediction error ×
N22-F3-T3 Roll 96 2000 Aircraft deviated from level flight post model learning phase ×
A23-F1-T1 Pitch 99 2750 Oscillatory response; model learning duration too short ✓

A23-F1-T2 Roll 101 2800 Deviated from level flight; model learning duration too short ×
A23-F1-T3 Pitch 102 2750 First success with continuous learning; decent tracking ✓

A23-F1-T4 Pitch 101 2800 Reproducible continuous learning; better tracking ✓

A23-F1-T5 Roll 100 2800 First success in lateral with continuous learning ✓

A23-F1-T6 Roll 101 2800 Reproducible continuous learning; good tracking response ✓

A23-F2-T1 Pitch 97 3050 Stable continuous learning; decent tracking response ✓

A23-F2-T2 Roll 101 3050 Nominal config.; reproducible continuous learning ✓

A23-F2-T3 Roll 95 3100 Nominal config.; reproducible continuous learning ✓

A23-F2-T4 Roll 97 3100 Nominal config.; reproducible continuous learning ✓

A23-F2-T5 Roll 97 3050 Landing gear down config.; stable continuous learning ✓

A23-F2-T6 Roll 97 3050 Flaps 15° config.; stable continuous learning ✓

A23-F2-T7 Roll 98 3100 Flaps 40° config.; slightly oscillatory tracking ✓
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1. Longitudinal Controller Assessment: Sequential Learning Approach

The first successful trial of the iADPalgorithm for longitudinal rate

control is presented in Fig. 5. The left-aligned plots illustrate the
model learning phase, an open-loop periodwhere a 3211maneuver is
commanded by the elevator. The online RLS algorithm updates
model parameters at each time step during this 20 s phase, with fixed
parameters subsequently passed to the controller training phase.
The choice of the 3211 signal is based on its proven effectiveness
in previous system identification flight tests on the Citation aircraft.
Control over the system’s excited frequency can be achieved by
adjusting the duration of individual step commands in the 3211
signal. The 3211 signal also serves the functionality of a persistently
exciting signal. The forgetting factor (γRLS) is tuned using the Multi-

Objective Parameter Synthesis (MOPS) tool [23]. Results comparing
measured longitudinal states against predictions from the RLS algo-
rithm show a good fit. Although model parameters seem to converge
quickly, some oscillations are observed.
The right-aligned plots depict results from the controller training

and assessment phase. Parameters for this phase, including the dis-
count factor (γ) andweightingmatrices (Q andR), are tuned using the
MOPS tool. The controller training phase lasted for 40 s (from 20 to
60 s), during which the controller loop is closed and internally a pitch
rate reference command to evaluate the policy is generated. The
controller, along with model parameters estimated from the model
learning phase and observed one-step error in pitch rate tracking, has

to improve its estimates of the cost-to-go function. Controller param-
eters are updated during a brief 5 s phase (55–60 s). This computa-
tionally intensive phase updates kernel matrix parameters using data
collected over a 20 swindow (data from35–55 s is used for the update
from 55th second onward). This loop is running at a much lower
20 Hz due to real-time constraints. After the controller training phase
concludes, the parameters are fixed and passed to the subsequent
controller assessment phase.
During the controller assessment phase, an internal pitch rate

command is generated, and the controller’s objective is to track this
reference command. The results, from 60 to 100 s, show the aircraft
effectively tracking a pitch rate command, which can also be inter-
preted as a reduction in the cost-to-go plot. The tracking performance
improved with higher values of Q, but this made the controller
response more oscillatory (from flight trial N22-F2-T5 in Table 1).

2. Lateral Controller Assessment: Continuous Learning Approach

Figures 6 and 7 depict the flight test results from trial A23-F2-T2,
focusing on achieving a roll rate tracking task with a CLA.
The controller’s objective is to command the aircraft to follow a

roll rate reference and demonstrate stable continuous learning
capability. Figure 6 illustrates the performance of the incremental
model identification stage. Doublets are initially commanded at the
aileron and rudder to aid the identification process. A sinusoidal
signal is superimposed on commanded aileron and rudder to ensure
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Fig. 5 Flight test data (trial ID : N22-F2-T3), PH-LAB performing a longitudinal maneuver: iADP flight control law (FCL) designed for pitch rate
capture. Sequential learning approach (SLA) with fixed parameters post model learning and controller training.
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RLS parameter convergence. When comparing the measured state
variable with the prediction, the RLS algorithm appears to offer a
good fit in state prediction throughout the maneuver. However, after
30 s, error in predicting certain states was observed to have an
increasing trend, likely attributed to sharp control inputs occurring
around the moment the control loop was closed at 20 s.
The performance of the controller training and assessment stage

is presented in Fig. 7. Comparing the reference to the measured roll
rate output in the first row, a good tracking response is observed. The
bottom two plots show the reduction in the cost-to-go estimate and
the evolution of the controller parameters, respectively.

3. Adaptability to Different Aircraft Configurations

To assess the adaptability of the iADP controller, five flight test
trials were conducted with varying aircraft configurations. The
controller’s objective is to track roll rate commands using a CLA.
The operating conditions (trimmed aircraft velocity and altitude)
are consistent across all trials. The controller objective, approach,
operating conditions, and hyper-parameters of the iADP controller
are kept constant, enabling an evaluation of controller performance
solely against changes in aircraft configuration. Four aircraft con-
figurations are considered:

1) Nominal (N): Landing gear up, flaps completely retracted
(0° extension), similar to a normal cruise flight.
2) Landing gear down (G-D): Landing gear down, flaps com-

pletely retracted (0° extension).
3) Flaps 15° extension (F-15): Landing gear up, flaps extended

to 15°.
4) Flaps 40° extension (F-40): Landing gear up, flaps extended

to 40°.
Each configuration change is introduced one at a time, allowing an

assessment of adaptability to individual changes. Pilots change the

aircraft configuration by deploying landing gear or extending flaps

first, and the aircraft is trimmed in each configuration before engag-

ing the iADP controller. Following each configuration change, the

iADP FCL undergoes three phases: model learning, controller train-

ing, and controller assessment phase.
Two trials, designated as N-1 and N-2, were conducted in the

nominal configuration, followed by the deployment of landing gear

(G-D) and flap extensions (F-15 and F-40). The adaptability test aims

to evaluate differences inmodel/controller parameters with respect to

configuration changes. Figure 8 illustrates the controller’s perfor-

mance across these configurations. Plots show performance from

controller training and assessment phase across different aircraft
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Fig. 6 Flight test data (trial ID : A23-F2-T2), PH-LAB performing a lateral maneuver: plots compare the predictions from the incremental model to the
measured states. The iADP flight control law (FCL) designed for roll rate capture. Continuous learning approach (CLA) with real-time parameter
adaptation.
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configurations.Model and controller parameters undergo continuous

updates at each time step, i.e., CLA. When comparing Nominal-1

configurationwith others, the tracking performance exhibits themost

significant difference with the landing gear and 40° flaps extension,

while showing similar performance with Nominal-2 and 15° flaps

extension configurations. The controller response appears oscillatory

when flaps are at their maximum (40°) extension, likely due to the

substantial alteration in the aircraft’s aerodynamic properties. Flap

deployment modifies the aerodynamic forces on thewings, influenc-

ing the rolling moment of the aircraft. The landing gear-down con-

figuration also results in a different controller response, possibly due

to the changes in themoment of inertia about the roll axis due tomass

redistribution, consequently affecting the lateral stability character-

istics of the aircraft. Aileron effectiveness is expected to be impacted

by both flap extension and landing gear down configurations.
Despite the variations in aircraft configurations, it is interesting

to observe that the controller, despite being unaware of these model

changes, effectively guides the aircraft in the lateral axis throughout

the entire maneuver. Additionally, the controller parameter updates

exhibit stability throughout the entire maneuver across all four

configurations.
To quantify the adaptability of the controller further, time-evolving

parameters are compared against different configurations. Four dif-

ferent metrics are considered for comparison:

1) Tracking error: Evaluates controller tracking performance,
assessing the control objective.
2) Incremental model state matrix ( ~Ft): Measures identified in-

cremental model parameters related to state transitions, containing
state derivatives.
3) Incremental model control effectiveness matrix ( ~Gt):Measures

identified incremental model parameters related to control effective-
ness, containing control derivatives.
4)Kernel matrix ( ~P): Measures learned control policy parameters.
For an accurate comparison, flight test data is aligned, and values

are smoothed using a Gaussian-weighted moving average filter to

remove noise artifacts. Additionally, only data from 35 to 100 s is

utilized in this analysis to mitigate the impact of transients. The

Frobenius norm of the difference in matrices is selected to assess

the similarity of these values. Although nuclear and spectral norms are

considered as alternatives for comparison, the results appear insensi-

tive to the choice of the norm, and only Frobenius norm-based

evaluation is presented. For example, the norm for comparing N-1

configuration data with flap 15 configuration is defined as follows:

kΔPkF � kPN1 − PF15kF

The evolving matrix kΔPkF, sized according to each trial’s dura-

tion, represents a time-dependent parameter. A cumulative sum of this
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Fig. 7 Flight test data (trial ID : A23-F2-T2), PH-LAB performing a lateral maneuver: plots show performance from controller training and assessment
phase. The iADP flight control law (FCL) designed for roll rate capture. Continuous learning approach (CLA) with real-time parameter adaptation.
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value serves as a metric indicating the similarity between PN1

and PF15 parameters. This similarity measure is depicted for various

values and compared across different aircraft configurations in Fig. 9.

Configuration labels denote N-1 (first trial in nominal configuration),

N-2 (second trial in nominal configuration),G-D (landing gear down),

F-15 (flaps 15° extension), and F-40 (flaps 40° extension)

Comparing the first column of all four plots, i.e., comparing N-1 to

{N-2, G-D, F-15, and F-40}, the difference in the tracking error

seems to be minimum between N-1 and N-2. However, examining

the kΔ ~PkF plot indicates that the similarity is least between N-1 and

F-40, contrasting with the N-1 and N-2 comparison. This observation

suggests that controller parameters undergo updates to accommodate
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Fig. 8 Flight test data (trial ID :A23-F2-T3 toA23-F2-T7), PH-LABperforming lateralmaneuvers: experimental setup to test the controller adaptability

to change in aircraft configurations.
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Fig. 9 Quantifying similarity index of adaptive control parameters using Frobenius norm across aircraft configurations.
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aircraft configuration alterations. The k ~FtkF plot indicates the greatest
difference in the state derivative matrix during the F-40 configuration,
as expected due to significant changes in the aircraft’s aerodynamic
properties during maximum flap extension. The variability of the

control effectiveness matrix ~Gt appears high, making comparisons

challenging. But k ~GtkF plot indicates the lowest similarity when
comparing {N-1, N-2} with F-40, and G-D. This suggests the model
learning phase adapting to identify the control derivative parameters
specific to F-40 and G-D configurations. To summarize, kernel matrix

parameters ~P are correlated to aircraft configurations, indicating adap-
tation of control policy by the RL agent. State transition matrix

parameters ( ~Ft) from the Incremental Model are correlated to configu-
rations, from high sensitivity to Flaps 40° Extension.

IV. Conclusions

This paper presents the RL-based iADP FCL design for a CS-25-
class aircraft and reports the findings from the maiden flight test
campaign of this controller. The flight tests validate the FCL for
the stable longitudinal axis through pitch rate captures and the
unstable lateral axis through roll rate captures. Postflight compari-
son of adaptive parameters indicates the capability of the controller
to adapt to different configurations while retaining parameter inter-
pretability. The outcome of flight tests was reviewed, encompass-
ing discussions on challenges faced, potential improvements to the
FCL, and scenarios for future fault tolerance validation through
flight tests. With the aim of tackling the LOC-I problem in aircraft,
this research initially focuses on designing a model-free FCL and
subsequently developing the necessary toolchains to V&V these
FCLs. Furthermore, the toolchains and routines developed for V&V
processes could be extended to other online learning-based control
laws, accelerating the development of fault-tolerant FCS. This
model-free and adaptive FCS could work as a potential lifeline in
flight emergencies, complementing traditional FCS and aiding air-
craft in fault recovery when facing controllable failures, with online
adaptive fault-tolerant control capabilities.
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