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Individual Scatterer Model Learning for Satellite
Interferometry

Bas van de Kerkhof, Victor Pankratius, Senior Member, IEEE, Ling Chang, Rob van Swol, and
Ramon F. Hanssen, Senior Member, IEEE

Abstract—Satellite-based persistent scatterer SAR interferom-
etry facilitates the monitoring of deformations of the earth’s
surface as well as objects on it. A challenge in the data acquisition
is the handling of large numbers of coherent radar scatterers. The
behavior of each scatterer is time-dependent and is influenced by
changes in deformation as well as other phenomena.

Built environments are especially challenging, since scatterers
may have different signal qualities and deformations may vary
significantly among objects. Thus, the estimation of the actual
deformation requires a functional model as well as a stochastic
model, both of which are typically unknown per scatterer and
observation. Here we present an approach that models the
deformation behavior for each individual scatterer. Our technique
is applied in a post-processing phase following the state-of-the-art
interferometric processing of persistent scatterers. This addition
significantly improves the interpretation of large data sets by
separating the relevant phenomena classes more efficiently. It
leverages more information than other methods from individual
scatterers, which enhances the quality of the estimation and
reduces residuals. Our evaluation shows that this technique can
discriminate objects in terms of similar deformation character-
istics that are independent of the specific spatial position and
temporal complexity. Future applications analyzing large datasets
collected by satellite radars will therefore drastically benefit from
this new capability of extracting categorized types of time series
behavior. This contribution will augment traditional spatial and
temporal analysis and improve the quality of time-dependent
deformation assessments.

Index Terms—Hypothesis Testing, InSAR, Machine Learning

I. INTRODUCTION

SATELLITE radar (SAR) interferometry facilitates the de-
tection and monitoring of deformations of the earth’s sur-

face or objects on it [1], [2], [3], [4], [5], [6], [7], [8], [9]. The
core technique relies on interferometric phase observations of
radar scatterers at different points in time. This data is used
to estimate a set of parameters, such as surface displacement
time series, geometric position, atmospheric delays of the radar
signals, and integer phase ambiguities [10]. In a simple form
that uses only two observations at different points in time, the
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deformation model can be parameterized as a displacement
derived from the difference of two range measurements. How-
ever, the choice for modeling and parametrization can differ
in practice for every scatterer, which is why the analysis of
time series originating from many scatterers and observations
can become challenging.

Conventionally, all points are assumed to have an initial
steady-state displacement signal (linear velocity). This is a
reasonable first-order assumption but excludes points with a
significant non-stationary behavior that are typically found in
built environments. This is why many techniques tend to mask
out the built environment or perform various aggregations, thus
missing out on the opportunity to gain insight on large swaths
of satellite data.

New developments in high-resolution, wide-swath SAR
systems with short revisit times have lead to an explosion
of InSAR measurements. Datasets can now contain millions
of scatterers, each of which can have many associated ob-
servations in time [11], [12], [13], [14], [15]. In urban en-
vironments, it is not uncommon that adjacent scatterers can
exhibit completely different displacement signals, i.e., without
any correlation in space or time. Thus, the analysis of such
scatterers requires substantial effort that can be prohibitive for
manual processing.

Coherent scatterers are strictly required for the estimation of
functional model parameters describing time series of InSAR
data. This implies that the phase noise for a particular scatterer
should be low enough for essential processing steps, such as
phase unwrapping, to be reliable [10]. The problem is that
the estimation of coherence of a particular scatterer over time
requires an a priori estimation of the unknown parameters in
the observed phase. By imposing a simple steady-state model
as a first order assessment of the coherence, scatterers that
do not satisfy this condition will not be considered coherent
and will be excluded from further evaluation. There are two
coherence estimation methods that are typically used. The first
one assumes spatial coherence and requires a spatially close
connected or distributed group of scatterers to exhibit the same
behavior [10], [16]. The second method assumes temporal
coherence and requires temporally close measurements of the
same scatterer to behave in a consistent way [7], [17], [18],
[19].

Both the spatial and temporal coherence assumptions are
sub-optimal for analyses involving similar objects that are
spaced further apart than the respective spatial search window
for coherence. For example, this situation is encountered
with scattered buildings; another situation occurs when nearby
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scatterers express a totally different deformation behavior,
when one scatters off a building and the other one off the
ground nearby. Ideally, analysts would like to assume an
object-based coherence that is categorical rather than spatial
or temporal. Thus, a processing technique is required to detect
and distinguish separate classes of scatterers with unique
deformation behaviors. However, typical approaches in InSAR
processing, [2], [3], [7], [20], [21], [22], [23], [24], [25], [26],
and [27] are not equipped for this task.

To address this problem, we introduce the Individual Scat-
terrer Model Learning method (ISML), a framework which
attempts to model scatterers individually. ISML demonstrates
that the use of machine learning algorithms can lead to
significant improvements of parameter estimates and thus to a
more accurate data interpretation. In Section II we describe the
ISML method. Section III presents an in-depth case study on a
dataset of TerraSAR-X data over the Netherlands. Section IV
provides a conclusion and a discussion.

II. METHODOLOGY

The key idea of our approach is to group together time series
that “behave” similarly over time. Machine learning algorithms
allow for such analysis of large InSAR data volumes. Thus,
a whole group of scatterers can be analyzed at once, thereby
facilitating the model selection for each individual scatterer
and obtaining enhanced estimates. To this end, we use (i)
a dimensionality reduction technique [28], (ii) a clustering
algorithm [29], and (iii) a functional model selection tech-
nique [30], [31].

A. Dimensionality reduction

t-Distributed Stochastic Neighbor Embedding (t-SNE) [28]
is an unsupervised machine learning algorithm for dimen-
sionality reduction. It is a variant of Stochastic Neighbor
Embedding (SNE) as introduced by Hinton and Roweis in
2003 [32]. t-SNE converts a high-dimensional dataset into a
low (e.g., two or three) dimensional representation by using
the similarity between points in the high-dimensional dataset
and comparing these with the similarity of the corresponding
points in the low-dimensional representation. The aim of t-
SNE is to minimize the mismatch between the similarity of
points in the high-dimensional dataset and the similarity of the
corresponding points in the low-dimensional representation.

Let xi and xj be points in the high-dimensional dataset
and let yi and yj be the corresponding points in the low-
dimensional representation respectively. The similarity of point
xi to point xj equals the probability that xi would choose xj to
be its neighbor according to a Gaussian distribution centered at
xi. The similarity of the corresponding points yi and yj equals
the probability that yi would choose yj to be its neighbor
according to a Student-t distribution centered at yi. Now, the
similarity of each point xi in the high dimensional dataset
to all other points xj in this dataset can be compared to the
similarity of the corresponding point yi to all other points yj
in the low-dimensional representation. The mismatch between
these similarities is minimized by using a cost function derived
from the Kullback-Leibler divergence [33]. As a result, a

large cost is introduced for representing nearby points in
the high-dimensional dataset by largely separated points in
the low-dimensional representation. In contrast, the cost of
representing widely separated points in the high-dimensional
dataset by nearby points in the low-dimensional representation
is small, leading t-SNE to retain the local structure of the data.
In order to minimize the cost function, the points in the low-
dimensional representation move around in these dimensions
accordingly during consecutive iterations using a gradient
descent algorithm. For more detailed information regarding
t-SNE see [28]. Results presented in [28] show that t-SNE
is able to find a two or three dimensional representation of
a high dimensional dataset in which the information-loss is
minimized. This property of t-SNE makes it a suitable tech-
nique for our purpose of modeling each scatterer individually.
It allows us to distinguish characteristic features of the data,
both concerning the overall behavior over the entire domain
as well as more detailed characteristic local features.

B. Clustering

The t-SNE method produces a point map that reveals useful
information in a low-dimensional space. In our context, for
instance, points that are close together represent similar time
series, which suggests that their behavior might be subject
to similar functional models. For this reason, applying a
clustering technique will automatically identify groups of time
series with similar physical behavior and free human analysts
from the burden of checking each data set individually.

We employ the Density-Based Spatial Clustering of Ap-
plications with Noise algorithm (DBSCAN) [29] to identify
clusters of time series with similar behavior. DBSCAN assigns
points to a cluster when a given density is satisfied, and merges
adjacent density components that are less than an ε measure
apart. In contrast to other clustering algorithms like k-means,
[34], or Gaussian Mixture Models, [35], DBSCAN does not
require the number of clusters to be explicitly specified.

C. Functional model selection

Our ultimate objective is to select an optimal functional
model for each individual scatterer, i.e., an optimal param-
eterization of the temporal displacement time series of the
scatterer. In [31], MHT is based on a steady-state (constant
velocity) null-hypothesis is tested using an overall model test
(F-test). If rejected, it is tested against a library of alternative
parameterizations using Baarda’s B-method of testing [30].
This method is computationally intensive as it repeats the same
sequence of testing independently for each scatterer against a
large number of alternative hypotheses.

Although the time series representation of points in a
cluster grouped by DBSCAN may actually belong to spatially
dispersed scatterers, they are related through their similar time
series behavior. In order to find a model representative for
the general behavior of each cluster, we apply MHT on the
average time series of each cluster. Next, we use this cluster
representative model as null hypothesis while selecting the
functional model for each point in the corresponding cluster
using MHT. By using this cluster-dependent null hypothesis
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in MHT instead of the steady-state model like the approach
in [31], it is less likely to be rejected. This approach has two
advantages. First, the fact that a cluster consists of a large num-
ber of points that exhibit similar behavior makes it more likely
that we are not erroneously fitting a model to noise. Thus, the
determined model may be more “physically realistic”. Second,
this approach significantly reduces the computational burden,
because the number of alternative hypotheses to be tested is
reduced.

D. Individual Scatterer Model Learning

The Individual Scatterer Model Learning (ISML) method
combines the techniques from sections II-A, II-B and II-C
to select the optimal functional model for each individual
scatterer. ISML estimates the chosen parameters and the
quality for those parameters.

Let D be a dataset containing persistent scatterer points,
each having a displacement time series ti, with i = 1, . . . , |D|
and |D| being the number of elements in D. Using t-SNE,
the ISML method reduces the dimensionality of each time
series from the number of measurements per time series to just
two. This way, a map can be visualized to reveal structures in
the data. DBSCAN clusters points whose associated time se-
ries representations exhibit similar behavior. A representative
model is selected for each of the clusters using MHT. Next, an
optimal functional model is selected for all points using MHT
while leveraging their respective cluster-representative model.
Finally, the parameters of the selected model are estimated,
as well as their quality. The workflow of the ISML method
is depicted in Figure 1, a formalized algorithm is outlined in
Algorithm 1.

ISML Method
Input: Displacement time series

Apply t-SNE(1)

Define clusters using DBSCAN(2)

Find H0 per ’cluster’(3)

Apply hypothesis testing(4)

Estimate a posteriori quality(5)

Output: Functional model, estimated pa-
rameters, and quality of estimate per point

Repeat for
all clusters

Fig. 1. Workflow of the ISML method.

Algorithm 1 ISML method
1: Let D = {t1, . . . , t|D|} be a dataset containing time series
ti, i = 1, . . . , |D|. With |D| being the number of elements
in D.

2: Let mi
j , j = 1, . . . , |ti|, i = 1, . . . , |D|, be the j-th

measurement of the i-th time series being the displacement
in the line of sight direction. Note ti = {mi

1, . . . ,m
i
|ti|}.

3: Apply t-SNE on dataset D resulting in a two-dimensional
map P = {p1, . . . , p|D|}. With pi being the two-
dimensional representation of the time series ti,∀i =
1, . . . , |D|.

4: Set ε and Nmin and apply DBSCAN on P resulting in
a set of clusters C = {C1, . . . , C|C|}, where ∃k : pi ∈
Ck,∀i = 1, . . . , |D|.

5: for k = 1 to |C| do
6: Calculate T̄k, being the average over ∀ti ∈ Ck

7: Apply hypothesis testing on T̄k using a steady-state null
hypothesis resulting in Hk

0 being the selected functional
model.

8: end for
9: for k = 1 to |D| do

10: Apply hypothesis on ti using Hk
0 with k such that ti ∈

Ck resulting in the functional model of ti.
11: Calculate a posteriori sigma which is a quality metric

for the selected functional model.
12: end for
13: return Functional model and quality of estimate per

scatterer.

III. CASE STUDY

We present an in-depth case study to demonstrate the
capabilities of our method. The study uses a data set consisting
of over one million scatterers with 95 observations each. This
dataset was obtained by the TerraSAR-X satellite in StripMap
mode in descending orbit between June 2013 and June 2016
and covers a part of the province Groningen, the Netherlands.
We use the line-of-sight displacement measurements derived
from unwrapped phase measurements processed using Per-
sistent Scatterer Interferometry (PSI) processing, DePSI [23].
Contextual information (e.g., weather data and gas production
data, when available) are used to interpret and validate the
ISML method.

A. Power plant behavior

We applied steps 1–4 of the ISML method, Algorithm 1,
on a regional subset of 7500 scatterers. Using t-SNE, the
dimensionality of this subset is reduced from 95 to 2. Each
time series is mapped to a single point in a 2D map. The
clusters found by the DBSCAN algorithm are shown in
different colors; for some clusters Figure 2 also depicts the
corresponding time series. The computation time of this result,
using Python 3.4 and a C++ Barnes-Hut t-SNE implementa-
tion, was approximately 2 minutes on a laptop computer with
a 1.90 GHz processor.

Figure 2 illustrates that time series that are grouped in
the same cluster indeed seem to behave in similar ways,
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Fig. 2. Visualization of the combined output from t-SNE and DBSCAN for
7500 scatterers. Each point represents a time series of measurements. The
cluster labels for each point are shown in different colors. Time series of line
of sight displacement from different clusters are shown in black, whereas the
average time series of a cluster is shown in yellow.

whereas different clusters capture other behaviors. Therefore,
it is beneficial to derive a well-tuned functional model for the
average time series behavior of each cluster, rather than deriv-
ing individual models for each time series. A default steady-
state model will not capture the typical behavior per cluster.
That approach would lead to larger residues between the model
and the observations, thus resulting in an underestimation of
the actual quality of the measurements.

Figure 3 illustrates an example of the spatial location of
time series picked from distinctly different clusters. Figure 3A
shows an aerial photo of the observed Eemscentrale power
plant, with a top-down view in Figure 3B. The latter shows
that all the points are in close proximity of each other on the
same building. While the red points are located on part of the
roof, the blue points are located on a structure which is on top
of this roof. This structure is an air inlet system which acts as a
filter unit to transfer air from outside to inside the power plant.
This structure is mounted on a steel frame on top of the roof.
The corresponding time series in figures 3C and 3D clearly
demonstrate that the conventional assumption that all points
behave in a similar way is invalid in this case. The red points
show a linear subsiding behavior with a slope of −1 mm/year
while the blue points show the same linear behavior as well as
a seasonal dependence with an amplitude of 4 mm. The black
line in figure 3D shows the daily average temperature of the
closest weather station at 30 km distance. Visual comparison
of this temperature behavior to the displacement behavior leads
to the hypothesis that the displacement behavior of the blue
points is temperature dependent.

Figure 3 illustrates the capability of ISML to distinguish
different between types of scatterers in an automated way,
regardless of their spatial location or temporal behavior.

B. Quality of estimated model

Following the functional model selection of ISML (steps
5–13 in Algorithm 1) we derive a functional model for all
scatterers in cluster 1 as shown in Figure 2. All the blue points
from Figure 3 are also included in this cluster. The cluster
contains 240 points whose related time series are shown in

the bottom right of Figure 2. The “average” time series is
shown in yellow.

For the average time series of the cluster, using a linear
steady-state functional model as the null hypothesis, an a priori
sigma of 1 mm and a confidence level of 97.5%, leads to
the null hypothesis being rejected. The a priori sigma is a
measure of the expected quality of observations. The sustained
alternative hypothesis is a periodic and temperature dependent
model. All 240 points within the cluster were tested using
this temperature dependent functional model, with a more
conservative a priori sigma of 2 mm and a confidence level
of 97.5%. Of the 240 points, 227 points sustained the null
hypothesis and 13 points rejected the null hypothesis. Finally
the quality of the selected model was calculated for each point.
This a posteriori sigma is shown in Figure 4. The median
value of the a posteriori sigma using ISML is 0.36 mm. For
comparison, an alternative a posteriori sigma was calculated
using the conventional hypothesis testing approach where a
linear steady-state functional model is used as null hypothesis
together with an a priori sigma of 2 mm and a confidence
level of 97.5%, also shown in Figure 4. The distribution of
the a posteriori sigma is wider, and the median value is 0.71
mm. Using this conventional approach, only 35 out of the 240
points sustained the temperature dependent model.

The results demonstrate that selecting the optimal functional
model improves the interpretation and simultaneously in-
creases the quality of the estimates. In this example, the ISML
method performs two times better than the approach used
in [31]. Indeed, the InSAR data is in fact much more precise
than assumed before. Additionally, the computational burden
of the hypothesis testing is reduced. The use of a cluster-
dependent null hypothesis reduces the number of hypotheses to
test, thereby reducing the computational time of the hypothesis
testing in comparison to the approach following [31].

C. Eemscentrale validation

We check the plausibility of the temperature dependency of
the time series in Figure 3D. Assuming this is the most likely
functional model, we calculate the estimated deformation
signal of the building’s air inlet filter due to thermal expansion.
These time series are also included in the time series in
the bottom right of Figure 2. The air inlet filter rests on a
steel frame, and we assume that the sinusoidal deformation as
observed is due to thermal expansion of this frame. e subtract
the mean deformation signal of the building on which the steel
frame is mounted in order to remove this signal. Hence we
subtract the mean of the red time series as shown in Figure 3C
from the blue time series in Figure 3D. These corrected time
series now show the deformation behavior of the air inlet
system alone. The (linear) thermal expansion can be described
as αL = 1

L
dL
dT , with αL the linear expansion coefficient, L the

length of the particular object and dL
dT the rate of change of

that linear dimension per unit change, [36]. Using a linear
expansion coefficient of 17 · 10−6K−1, [36], and the average
daily temperature as measured by the closest weather station,
we can estimate the deformation signal in direction of the line
of sight.
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Fig. 3. A: Eemscentrale power plant building. B: Top-down aerial image. Points from different clusters from the t-SNE output in red and blue are located
on the same building but show significantly different line of sight displacement behavior as shown in C and D. The black line in D shows the daily average
temperature, which supports the hypothesis that the deformation behavior of the blue points is temperature-dependent.

Fig. 4. Histograms of a posteriori sigmas using the conventional method and
our ISML method. We can see an improvement in the estimation quality due
to the smaller and narrower distribution of the a posteriori sigmas using the
ISML method.

We calculate the estimated deformation signal in horizontal
and vertical direction as well as the corresponding line of sight
displacement (see Figure 5). The corrected time series with
their average are shown along with the estimated deformation
signal in Figure 6. By visual inspection we can see that
the average time series and the estimated deformation time
series are very similar. They both show displacements between
roughly −2 mm and 2 mm. This supports the plausibility of
our hypothesis on the temperature dependence of the building’s
air inlet filter.

D. Gas storage field

Next, we applied the ISML method to a larger subset con-
taining 250,000 scatterers each consisting of 95 observations
in order to show the applicability of our approach to a larger
dataset.

Fig. 5. Schematic drawing of the power plant in Figure 3. It shows the
measurement geometry with ~h (horizontal displacement) and ~v (vertical
displacement), ~hL and ~vL the corresponding projection of the displacement
in the line of sight, and i as the incidence angle of the satellite.

Among the clusters we found two clusters of which the
time series show a periodic behavior. Figure 7B includes the
average time series of both clusters (with different scales of
the y-axis). The blue line shows a linear trend with a slope
of −3 mm/year and a periodic behavior with an amplitude
between 2 mm and 4 mm. The red line shows a linear trend
with a slope of −0.6 mm/year and a periodic behavior with an
amplitude of 0.3 mm. The spatial locations of a representative
subset of the points within the two clusters are shown in
Figure 7A. All the points in the blue cluster of the t-SNE
output are also close in a spatial sense. It turns out that most
of these points are located on the Norg gas storage field which
is shown in Figure 7A.

The displacement behavior of the points in the blue cluster
can be explained by the change in gas volume within the Norg
gas storage field. When the volume increases or decreases
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Fig. 6. Time series of Figure 3D corrected by subtracting the mean of the time
series from Figure 3C. The resulting average time series is shown together
with the estimated line of sight displacement signal due to thermal expansion.

the surface lifts or subsides, respectively. This phenomenon
is observed 100 days after the actual change of volume, a
delay in reacting to the gas injection, see Figure 7B. The gas
volume change is shown as the black line in Figure 7C. Not all
blue points are confined to the dimensions of the gas storage
field (depicted in green in Figure 7A). This suggests that some
points not far outside this region also behave in a similar
fashion due to the volume change in the gas storage field.
Thus, ISML automatically detected regions with scatterers that
behaved in a similar fashion.

Fig. 7. A: Spatial location of clusters with periodic behavior. Scatterers in
the blue cluster are located on the Norg gas storage field, which is shown in
green. B: Average line of sight displacement time series of both clusters. C:
All line of sight displacement time series of the blue cluster with gas volume
change in the Norg field, shifted by 100 days

Next, we selected the functional model following steps 5–
13 of ISML (Algorithm 1) for the points in the red cluster
of Figure 7A. The periodic behavior of the time series in this
cluster seems to have the same period as that of the time
series in the bottom right of Figure 2 of which we hypothesize
they are temperature dependent. However, the amplitude of
this periodic behavior is smaller (0.3 mm) with respect to the

the other (2 mm).
We continue by applying hypothesis testing using a linear

steady-state functional model as null hypothesis, with an a
priori sigma of 1 mm and a confidence level of 97.5% on the
average time series with the smaller amplitude. This cluster is
shown in red in Figure 7A. The null hypothesis is sustained,
thus supporting that a linear steady state model fits this average
time series. However, when all 248,364 points within the
cluster are tested using a temperature-dependent functional
model as null hypothesis (with an a priori sigma of 2 mm and a
confidence level of 97.5%) we find that 150,359 points sustain
this (temperature dependent) null hypothesis, and the median
of the a posteriori sigma equals 0.90 mm. By comparison,
calculating this value using the hypothesis testing approach
where a linear steady-state functional model is used as null
hypothesis together with an a priori sigma of 2 mm and a
confidence level of 97.5%, we obtain a median value of the
a posteriori sigma of 0.92 mm. However, only 4,173 points
sustained a temperature dependent model.

The results suggest that we do see an increase in quality
using a temperature-dependent model as null hypothesis. How-
ever, its improvement is not as dramatic as for the example
in Section III-B. Due to the small amplitude of the periodic
signal, a steady state functional model does fit reasonably
well. Nevertheless, more than 60% of all scatterers are now
estimated with a more suitable functional model, which clearly
shows the improvement on model selection using the ISML
method.

E. Electricity posts

Another cluster from the output of the ISML method applied
to the dataset as chosen in Section III-D reveals an interesting
structure related to the corresponding spatial location of the
scatterers (Figure 8A and B). The scatterers in the blue cluster
are forming spatial linear structures. After further investigation
of these linear structures, we concluded that these are in fact
electricity posts (shown in Figure 8B and 8C).

Fig. 8. A: t-SNE output. B: Blue highlighted cluster show scatterers on
electricity posts with all electricity posts in the area of interests in gray. C:
An example of a row of electricity posts.

This example demonstrates that scatterers may exhibit a
similar behavior even when they are be spatially dispersed.
This example contrasts the previous example of the gas
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storage field where scatterers behave in a similar way and
are spatially close (Figure 7). This kind of observations,
spatially distributed scatterers showing similar behavior, are
not captured using the conventional InSAR analysis approach
due to the limited spatial search window. Therefore, being
able to find such points is a significant novel result. It leads
to a categorical notion of coherence rather than spatial or
temporal, thereby augmenting traditional spatial and temporal
analysis. Not all electricity posts are included in the cluster
due to the fact that the time series are a superposition of
the underlying physical mechanisms. Both the behavior of
the electricity post as well as the behavior of the underlying
ground are superposed in a single time series. The ground
behaves differently for different spatial locations, so our
method separates the electricity posts accordingly.

Results from the case study in Section III show the pos-
sibilities of the ISML method for increased information ex-
traction from large InSAR datasets. The method provides a
framework which leads to the categorization of scatterers. This
categorization is based on clusters where each of the clusters
has characteristic features. These characteristic features are not
necessarily a result from the displacement signal only. They
can also be other phenomena such as phase unwrapping errors
that are consistent in time. These results demonstrate the wide
applicability and versatility of the ISML method.

IV. CONCLUSION

Individual Scatterer Model Learning enhances information
extraction from large InSAR datasets. It provides an unsuper-
vised and automated way of selecting an optimal parameteriza-
tion of the temporal displacement time series for each individ-
ual scatterer. Our method leads to significant improvements in
data interpretation, parameterization, as well as to an increase
in the quality of the estimated parameters. Thereby it improves
the quality of time-dependent deformation assessments and
generates new geophysical insights. Traditional analyses can
now be performed in a less compute-intensive manner by
analyzing groups of scatterers with similar behavior all at once
rather than one-by-one. In addition, the proposed method is
independent of the spatial location and temporal properties of
the data and can be generally applied to all kinds if InSAR
time series. Leveraging information in new ways also suggests
that collected InSAR data seems to be more precise than
previously assumed. Thus it opens up new possibilities in
performing a categorical analysis that augments traditional
spatial and temporal analyses. We expect that our methodology
will contribute to an easier handling of Big Data in the satellite
radar community, thereby improving information extraction
from large satellite radar datasets.
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