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Abstract—For many networked games, such as the
Defense of the Ancients and StarCraft series, the unofficial
leagues created by players themselves greatly enhance
user-experience, and extend the success of each game. Un-
derstanding the social structure that players of these games
implicitly form helps to create innovative gaming services
to the benefit of both players and game operators. But
how to extract and analyse the implicit social structure?
We address this question by first proposing a formalism
consisting of various ways to map interaction to social
structure, and apply this to real-world data collected from
three different game genres. We analyse the implications of
these mappings for in-game and gaming-related services,
ranging from network and socially-aware matchmaking
of players, to an investigation of social network robustness
against player departure.

I. INTRODUCTION

Networked games are games that use advances
in networking and a variety of socio-technical ele-
ments to entertain hundreds of millions of people
world-wide. Unsurprisingly, such games naturally
evolve into Social Networked Games (SNGs): the
many people involved organize, often spontaneously
and without the help of in-game services, into
gaming communities. While typical online social
networks revolve around friendship relations, new
classes of prosocial emotions appear in SNGs. For
instance, adversaries motivate each other and to-
gether may remain long-term customers in an SNG.
Adversarial relationships are one of the implicitly
formed in-game relationships we study. Understand-
ing in-game communities and social relationships
could help improve existing gaming services such
as team formation, planning and scheduling of net-
working resources, and even retaining the game
population.

Few games exhibit a greater need for socially-
aware services than the relatively new genre of
multiplayer online battle arenas (MOBAs) consid-
ered in Section II. Derived from Real-Time Strategy
(RTS) games, MOBAs are a class of advanced
networked games in which equally-sized teams con-
front each other on a map. In-game feam-play,
rather than individual heroics, is required from any
but the most amateur players. Outside the game,
social relationships and etiquette are required to be
part of the successful clans (self-organized groups
of players). Players can find partners for a game
instance through the use of community websites,
which may include services that matchmake players
to a game instance, yet are not affiliated with the
game developer.

In the absense of explicitly expressed relation-
ships, understanding the social networks of cur-
rent SNGs must rely on extracting the implicit
social structure indicated by regular player activity.
However, in contrast to general social networks,
a set of meaningful interactions has not yet been
defined for SNGs. Moreover, in MOBAs, activities
are match- and team-oriented, rather than individual.
We address these challenges, in Section III, through
a formalism for extracting implicit social structure
from a set of SNG-related, meaningful interactions.
We extend our previous work [4] by showing that
the implicit social structure of SNGs is strong, rather
than the result of chance encounters, and that, for
MOBAs, the core of the network (the high-degree
nodes) is robust over time.

In addition, we apply our formalism to RTS and
Massively Multiplayer Online First-Person Shooter
(MMOFPS) games, and, in Section IV, show evi-
dence that RTS games exhibit even stronger team
structure than MOBAs and indicate that modern



MMOFPSs may require operator-side mechanisms
to spurn the formation of meaningful social struc-
ture.

Connecting theory to practice, we also show how
the extracted implicit social graphs can be useful
for improving gameplay experience, and for player
and group retention (Section V), for tuning the
technological platform on which the games operate,
etc.

Last, we identify several challenges and future
opportunities for SNGs, in Section VL.

II. SNGS WITHOUT AN EXPLICIT S

Defense of the Ancients (DotA) is an archety-
pal MOBA game. For DotA, social relationships,
such as same-clan membership and friendship, can
improve the gameplay experience [1]. DotA is a
Sv5-player game. Each player controls an in-game
avatar, and teams try to conquer the opposite side’s
main building. Each game lasts about 40 minutes
and includes many strategic elements, ranging from
team operation to micro-management of resources.

To examine implicit relationships in DotA, we
have collected data for the DotA communities Dota-
League and DotAlicious. Both communities, in-
dependently from the game developer, run their
own game servers, maintain lists of tournaments
and results, and publish information such as player
rankings. We have obtained from these commu-
nities, via their websites, all the unique matches,
and for each match the start time, the duration,
and the community identifiers of the participating
players. After sanitizing the data, we have obtained
for Dota-League (DotAlicious) a dataset containing
1,470,786 (617,069) matches that took place be-
tween Nov. 2008 and Jul. 2011 (Apr. 2010 and Feb.
2012).

III. A FORMALISM FOR IDENTIFYING IMPLICIT
SociAL RELATIONSHIPS

A. Social Relationships in SNGs

A mapping is a set of rules that define the nodes
and links in a graph. Formally, a dataset D is
mapped onto a graph GG via a mapping function
M (D), which maps individual players to nodes
(graph vertices) and relationships between players
to links (graph edges).

Instead of proposing a graph model, we focus
on formalizing mappings that extract graphs from

real data. Because many metrics of social networks
only apply to unweighted graphs, relations are often
considered as links only if their weight exceeds a
threshold. Thresholding, therefore, has an important
impact on the resulting graph.

Related to our work!, interaction graphs [5] map
users of social applications to nodes, and events
involving pairs of users to links via a threshold-
based rule.

B. Interaction Graphs in MOBAs

A mapping is meaningful if it leads to distinct
yet reasonable views of implicit social networks
appearing in networked games. We identify six
types of player-to-player interactions:

SM: two players present in the Same Match.

SS:  two players present on the Same Side of a
match.

OS: two players present on Opposing Sides of
a match.

MW: two players who Won a match together.

ML: two players who Lost a match together.

PP:  (directed) for a player, when present in

at least % of another player’s matches
(x = 10% in this article). This interaction
is effectively PP(SM). Similarly, we can
define PP(SS), etc.

To extract the social networks corresponding to
various types of relationships, we extract for each
mapping a graph by using a threshold n, which
reflects the minimum number of events that need to
have occurred between two users for a relationship
to exist; e.g., for SM(n = 2), a link exists between
a pair of players iff they were both present in at
least two matches in the input dataset. A second
threshold, 7, limiting the duration-of-effect for any
interaction, is less relevant, as explained in Sec-
tion III-C.

The set of mappings proposed here is not exhaus-
tive. For example, this formalism can support more
complex mappings, such as “played against each
other at least 10 times, connected through ADSL2,
while located in the same country”. The interactions
in the set are also not independent. For example, the
SS mapping can be seen as a specialization of the
SM mapping.

'Related work is discussed throughout this article and in [4].
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Fig. 1: Results for methodological questions Q1 (a-c) and Q2 (d).

C. Application to the Examples

We focus in this article on three methodological
questions:

Q1. Are the relationships we identify the result
of players being simultaneously online by chance?
To answer this question, we first create a reference
model by randomizing, for any window of length
w minutes, the interactions observed in the MOBA
datasets. The randomization of, for example, the
SM mapping is done by taking the players from all
matches that started within the current time window
and randomly assigning them to matches. Since
the SM mapping does not take team information
into account, the match assignment comes down

to forming random groups of 10 players from the
entire list who were active in the time window. A
single player can be in the list multiple times and
the random groups have to consist of 10 different
players.

We run the parameter w from 1 to oo and depict the
results, together with the original data, in Figure 1a.
Whereas the results for w = 1 leave little room for
randomization, the results for w = oo randomize the
entire dataset. In Figure 1a, the curves for w = 1 and
the original data have a powerlaw-like shape. The
curves for various values of w follow the w = 1
(original) curve for link weights of up to about
15 matches played together, but take afterwards
an exponential-like shape, which indicates they are



more likely to be the result of chance than of
intended user behavior. The fact that curves are
markedly different for small time windows shows
that it is very unlikely that players play together
often simply because they happen to be online at
the same time.

The results for the other game genres (genres in-
troduced in Section IV, results depicted in Fig-
ures 1b and 1¢) show similar, yet not so pronounced
behavior. Although players do not play nearly as
often together in other genres’ datasets as in the
MOBA datasets, randomization within only small
time windows lowers the link weights. We conclude
that it is unlikely that the relationships we identify
are the result of chance encounters between players
and, instead, indicate conscious, possibly out-of-
game agreements between players.

Q2. Are players (nodes) preserving their high-
degree property over time? If so, then the networks
these players form may be robust against natural
degradation, with implications for the long-term re-
tention of the most active players. For each MOBA-
community, we first divide its last-year’s gaming
relationships into two parts: the first half year as
training data and the second half year as testing data.
We only use players who appear in both datasets—
about 60% of the training-data players. Then, we
plot in Figure 1d, for different degrees of players
in the training dataset, the average number of links
formed by these players in the testing dataset. From
the high-value and positive correlation-coefficient
(0.6233 for Dota-League), we derive that players
with higher degrees in the training dataset robustly
establish more new links in the testing dataset than
the other players.

Q3. Are the mappings we propose meaningful for
MOBAs? To answer this question, we first extract
the interaction graphs for each of our mappings,
compute for each a variety of graph metrics, and
summarize the results in Table I. We find that:

« Side-specific interactions (SS and OS) are
meaningful. For example, playing on the op-
posing side (OS) is more likely than playing
on the same side (SS), in Dota-League (for
example, higher N and L in Table I); for
DotAlicious, the reverse is true. Game design-
ers could enable OS links by allowing players
to explicitly identify their foes.

o Outcome-specific interactions (MW and
ML) are meaningful. For example, only for

DotAlicious, MW leads to more relationships
being formed. Game operators could exploit
this in matchmaking services.

« Relative joint participation (PP) is meaningful.
For example, for PP(SM), the number of nodes
in the graph decreases quickly with the n
threshold. Identifying the players who play al-
most exclusively together can be key to player
retention.

IV. APPLICATION TO OTHER GAME GENRES

Among the most popular genres today, RTS
games ask players to balance strategic and tactical
decisions, often every second, while competing for
resources with other players. Although faster-paced,
MMOFPS games test the tactical team-work of
players disputing a territory. We could expect RTS
and MMOFPS games to lead to similar interaction
graphs as MOBAs: naturally emerging social struc-
tures centered around highly active players. How-
ever, these game genres also have different match-
scales and team-vs-team balance than MOBAs.
Moreover, RTS games can stimulate individualistic
gameplay, while MMOFPS games may have teams
that are too large to be robust.

We collect then analyze two additional datasets:
for the RTS game StarCraft II (SC2) from Mar. 2012
to Aug. 2013, and for the MMOFPS game World
of Tanks (WoT) from Aug. 2010 to Jul. 2013. For
each of these popular games, we have collected over
75,000 matches, played by over 80,000 SC2 and
over 900,000 WoT players. SC2 matches are not
generally played in equally-sized teams, and 92%
of our dataset’s matches are 1vl1-player. In contrast,
98% of WoT matches are 15v15-player, but such
large teams can be much harder to maintain over
time than the teams found in typical MOBAs, due
to inevitable player-churn.

Alone or together? For SC2, the mappings lead
to small graphs, with many small connected com-
ponents. The majority of players participate in 1v1-
player matches, but the 8% of players who do play
in larger groups tend to play against each other
more than together (N = 611 for the OS mapping,
versus 314 for SS). When players do play on the
same side, winning tends to strengthen the teams
(N = 212 for the MW mapping, versus 95 for ML),
just as we saw for the DotaLicious dataset. The
connected components are strongly connected, yet



DotA-League DotAlicious
SM oS SS ML MW PP SM o] SS ML MW PP
N 31,834 26,373 24,119 18,047 18,301 29,500 31,702 11,198 29,377 22,813 21,783 34,523
Nic 27,720 19,814 16,256 6,976 8,078 33 26,810 10,262 20,971 10,795 13,382 3,239
L 202,576 85,581 62,292 30,680 33,289 53,514 327,464 92,010 108,176 43,240 54,009 125,340
Lic 199,316 79,523 54,186 17,686 21,569 120 323,064 91,354 99,063 29,072 44,129 17,213
d (x107% 4.00 2.46 2.14 1.88 1.99 0.62 6.52 14.7 0.49 1.66 2.28 1.05
dic (x10™%) 5.19 4.05 4.10 7.27 6.61 1,100 8.99 17.4 2.51 4.99 4.93 16.4
L 0.0301 0.0114 0.0060 0.0040 0.0032 - 0.0385 0.0403  0.0120 0.0095 0.0194 -
h 4.42 5.40 6.30 8.09 7.67 3.70 4.24 3.97 5.3 6.80 5.95 18.45
D 14 21 24 28 26 9 17 12 19 20 22 74
C 0.37 0.40 0.41 0.41 0.41 - 0.43 0.27 0.47 0.47 0.49 -
P 0.13 0.26 0.25 0.27 0.28 -0.10 0.08 0.01 0.25 0.27 0.29 0.20
B, 0.04 0.09 0.09 0.17 0.12 1.21 0.03 0.05 0.04 0.06 0.06 0.37
Cm 85 55 41 19 22 3 131 68 48 16 20 7
StarCraft II World of Tanks
SM oS SS ML MW SM o SS ML MW
N 907 611 314 95 212 4,340 477 4,251 561 1,824
Nic 31 22 24 9 14 129 118 122 66 57
L 748 404 327 85 200 9,895 3,253 6,543 1,564 2,923
L. 58 21 44 13 24 2,329 1,243 1,160 519 473
d (x107% 18 22 67 190 89 10.51 286.54 724 99.57 17.58
dic (x107%) 1,247 909.10 1,594 3,611 2,637 2,821 1,801 1,572 2420 2,964
D 2 8 3 2 2 6 3 5 4 3
C 0.58 0 0.70 0.65 0.65 0.79 0.10 0.78 0.88 0.87
P -0.46 -0.45 -0.42 -0.58 -0.53 -0.10 -0.12 -0.06 -0.03 -0.10
B, 0.91 0.74 0.84 0.80 0.79 0.09 0.08 0.11 0.20 0.20
Cm 53 11 32 32 32 29 15 14 14 14

TABLE I: Results for methodological question Q3. Metrics [4] for n = 10: (top) Data for MOBA games:
the Dota-League and DotAlicious datasets [4]. (bottom) Data for other game genres: StarCraft I (RTS)
and World of Tanks (MMO and FPS). The metrics we present: number of nodes N, number of nodes in
largest connected component N;., number of links L, number of links in largest connected component
L., link density d, link density of largest connected component d,., algebraic connectivity p, average hop
count h, diameter D, average clustering coefficient C, assortativity p, maximum betweenness B,,, and

maximum COreness c,,.

small. The connected components of the mappings
extracting same-team graphs are highly clustered,
whereas the largest component for the OS mapping
is even a tree. The clustering coefficients observed
in the various RTS networks indicate much stronger
team relationships in RTS games than in MOBAs.
Because RTS games have not shown a trend of
greatly increasing the number of players in the same
instance, over the last decade, we hypothesize that
RTS games will continue to spawn tightly-coupled
teams that always play together; such teams are
naturally vulnerable to player departures.

For WOT, the large team-size makes it diffi-
cult to organize teams well: the largest connected
components for all mappings are not very large.
Similarly to SC2 and DotaLicious, in WoT the
players who do play often together do so on the
same team and, again, players who play together
are more likely to win rather than lose together. As
modern FPS games tend to be played in increasingly

larger teams, with 32v32-player games now not
uncommon, we conclude that MMOFPS games will
require additional mechanisms if they are to develop
any form of robust social structure. Moreover, even
more so than in the SC2 datasets, many players
play only one or a few games: 69% of the more
than 900,000 players played only once or twice.
This is another area where developers could use the
emerging social structures among their players to
increase the number of players who keep on playing
the game.

We conclude that our formalism can be applied
to other game-genres, for which it leads to new find-
ings vs MOBAs, and suggest that even communities
of popular networked games could benefit from new
mechanisms that foster denser interaction graphs.

V. APPLICATION TO SNG SERVICES

“How can social-networking elements be lever-
aged to improve gaming services?” We present in
this section two exemplary answers.



Team 1 Team 2
Player | Cluster Player | Cluster
a 1 f 2
b 2 g 5
c 1 h 3
d 3 [ 6
e 4 j 3

(a) Example of scoring for a match. Team 1 consists of players
‘a’ to ‘e’, as can be seen in the column labeled ‘Player’; team
2 consists of players ‘f” to ‘j°. The column labeled ‘Cluster’
records the cluster identifier for each player. A match receives
one point for every same-cluster player present in the match,
when at least 2 same-cluster players are present. In this example,
2 points are given for player ‘a’ and ‘c’ (cluster 1), and for
players ‘b’ and ‘f’ (cluster 2); 3 points are given for players
‘d’,‘h’, and j’ (cluster 3). Players ‘e’,‘g’, and ‘i’ have no fellow
cluster-members in the match and will be assigned O points. In
total, this match is assigned 7 points.
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(b) Average match scores for various matchmaking approaches.
When considering network latency, matches with players on
several continents score 0 points; the others use the scoring
exemplified in Figure 2a. “Random” denotes matches obtained
via randomly matching players who are online during each time
interval. “Original”/“O-latency” denote matches observed in the
real (raw) datasets without/with network latency considerations.
“Matchmaking”/“M-latency” denote matches obtained with our
proposed matchmaking algorithm without/with network latency
considerations.

Fig. 2: Matchmaking results for MOBAs.

A. Socially and Network-Aware Matchmaking

Matchmaking players at the start of a game
can significantly impact the gameplay experience.
Gaming services that perform matchmaking while
taking into consideration network latency are al-
ready deployed by game operators. In contrast, a
socially-aware matchmaking service assigns players

to matches, trying to ensure that players in the
same social, rather than latency-based, cluster play
together. We revisit the example of a socially-
aware matchmaking service presented in [4], by also
considering network latency.

Socially-aware matchmaking algorithm First, for
each sliding window (7 10 min. interval), the
algorithm builds a list of all the players who are
online. Second, from the social graph the algorithm
computes the cluster membership for each player.
Third, from the largest online players’ cluster to the
smallest, all online players from the same cluster
are assigned to new matches if size permits; oth-
erwise, the cluster will be divided into two parts
and players from one part will be assigned into new
scheduled matches. Figure 2a sketches the algorithm
for computing the score for an exemplary match.
To favour small clusters, which can lead to novel
human emotions [3], our scoring system does not
consider the largest cluster when assigning points.

We compare our matchmaking algorithm with the
algorithms observed in practice in MOBAs in terms
of average scores (utility), and show selected results
in Figure 2.

Expectedly, random matchmaking, which is still
employed by many gaming communities, leads to
very low utility. Surprisingly, our simple socially-
aware matchmaking algorithm also exceeds the per-
formance of the matchmaking algorithm employed
by the operators of DotAlicious; this is because the
limited community tools available in practice do not
make all players aware that some of their friends
are online and thus allow them to join other, lower-
utility, matches.

Including network characteristics We use the geo-
graphical location gleaned from MOBA datasets to
estimate possible latency conflicts, e.g., same-match
players located in Germany and Asia. We analyze
the impact of network latency on the score of our
matchmaking algorithm and depict the resulting
score in Figure 2b. In this scenario, a significant
part of the matchmaking score is lost due to recom-
mendations not taking into account network latency
(yet our matchmaking algorithm still outperforms
the original matchmaking). We conclude that com-
bining social and network awareness is important
for networked gaming services.
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Fig. 3: Results of match and hub attacks on the
social network, for n = 28 and K € [1,1000].

B. Assessing Social Network Robustness

Because social relationships are important in
player retention [3], the strength of the social struc-
ture may be indicative for the survival chances of
the community. If the network starts dismantling,
people might lose interest in the game and stop
playing. Operators need to assess both the strengths
and weaknesses of their games’ social structure, to
be able to stimulate growth or to prevent a collapse.
Conversely, competitors could try to lure away key
players (hubs), who in turn could sway others.

The anatomy of an attack: To assess the social-
network robustness, we conduct a threshold-based
degree attack on the network: for each mapping,
we iteratively remove the top-K players, according
to their degrees in the extracted graph, in decreasing
order. Removing a player either also removes their
matches (match-attack) or also removes their entire

connected component (hub-attack). Then, we re-
apply the mapping to the remaining matches to get a
new network, and output the size of the new network
and largest component. We perform match and hub-
attacks on DotAlicious and DotA-League and depict
selected results in Figure 3. (We do not conduct
experiments in which players form new clans (net-
work rewiring), which represents the opposite of
our scenario; in our experience as gamers, when a
member of a strongly connected group leaves (for
another game), the whole group departs as well.)

The aftermath of an attack: We find that both
match and hub-attacks on MOBAs are very efficient.
For match-attacks (Figure 3a), removing the top-
1,000 players (1.5%) can reduce the size of the
network by 15% up to 60% of its initial size, and
the size of largest component to below 10. For
hub-attacks (Figure 3b), removing only the top-
100 players can cause the network to implode. A
social-network collapse also implies the collapse of
network traffic, which may lead to waste of pre-
provisioned networked resources.

We conclude that understanding the social rela-
tionships between players can help a game operator
improve the social-network robustness, by identify-
ing and motivating the key players. Our formalism
provides important tools for the former, but the latter
remains open.

VI. ON CURRENT AND FUTURE SNGS

Many current networked games provide limited
social-networking features, yet rely on their players
to self-organize. For example, games in the popular
class of MOBA-networked games have fostered the
creation of many communities of players. In this
work, we have shown how a general formalism
can be used to extract social relationships from
the interactions that occur between networked-game
players. We have investigated their implicit social
structures based on six types of interactions, using
community traces that characterize the operation of
four popular MOBA, RTS, and MMOFPS games,
and provided hints on improving gaming-experience
through two socially-aware services.

The field of social-networks research applied
to networked games is rich and could lead to
important improvements in gameplay, with direct
repercussions to networked-resource consumption
and quality-of-experience. We identify several chal-
lenges and opportunities related to our study:



1) Expanding the formalism: The mappings-set
could be expanded, to provide a richer frame-
work for implicit relationships. The frame-
work could focus on temporal aspects such
as loose (dense) interactions over long (short)
periods of time.

2) Complementing our work with social/other
theory: The pro-social emotions appearing in
games may have important implications. It
would be beneficial to explore them. From
our datasets one could infer finer-grained re-
lationships from the combination of explicit
friendship relationships and implicit interac-
tion graphs, and to test them against theories
developed for complex networks, sociology
and psychology.

3) Applying the formalism to networked-game
services: The main purpose of this work is
to provide support for (future) social game-
services. We anticipate use in: player man-
agement and retention, through matchmaking
recommendations and identification of key
players; the design and tuning of capacity
planning and management systems, through
prediction of graph evolution; etc.

VII. DATASETS

Our datasets are available through the Game
Trace Archive [2].
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