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Controlling Nonlinear Normal Modes of Elastic
Joint Robots

Sahánd Wagemakers, Delft University of Technology

Abstract—Through the use of Eigenmanifold theory, unforced
periodic trajectories called nonlinear normal modes can be
identified and excited in nonlinear mechanical systems. Applying
this to repetitive tasks in robotic systems with elastic components
can drastically reduce energy consumption, as normal modes
in steady-state require no additional control effort. However,
existing control methods for exciting nonlinear normal modes
have so far only assumed full actuation. Consequently, these
techniques are incompatible with series elastic joint robots,
even though they represent a significant subclass of physical
systems with elastic elements. Additionally, the calculation and
parameterization of Eigenmanifolds for high-dimensional systems
generally remains a complex task and is difficult to scale. While
existing literature aims to avoid forced evolutions or model
cancellation, we instead lean into this approach. By rephrasing
Eigenmanifold-based control as a trajectory tracking problem,
standard techniques for elastic joint robot trajectory tracking
control can be employed. Furthermore, obtaining theoretical
guarantees on global stability becomes possible. In this work,
a new modular control architecture is presented that integrates
trajectory tracking feedback control with Eigenmanifold theory
to dynamically generate and track hyper energy-efficient os-
cillatory movements in underactuated systems. This approach
enables the excitation of nonlinear normal modes using standard
trajectory tracking controllers, while preserving energy-efficient
properties desired from Eigenmanifold-based controllers. We
first discuss the theoretical validity and energy-efficiency of this
control architecture, and then test the architecture in simulation
for a variety of use-cases and controllers.

I. INTRODUCTION

THE introduction of elastic elements into robotic systems
instills compliant behaviors in their system dynamics,

allowing for inherently safer environment interactions. This
is especially beneficial for the design of robots that interact
with humans, or operate outside of structured settings like labs
and factories. In addition, since elastic elements are capable of
storing and releasing energy, they can be exploited to reduce
energy expenditure in periodic motions: by matching the task
trajectory to the natural oscillations of the system, the task will
require little energy to sustain. The concept of employing these
”natural motions” for the design of energy-efficient periodic
trajectories has been extensively discussed and researched in
the literature [1]. However, instead of considering natural
motions for specific tasks, a more structured approach can
be taken through the analysis and identification of nonlinear
normal modes (NNMs). The study of NNMs deals with the
identification and discovery of stable periodic evolutions of
unforced nonlinear mechanical systems. While early defini-
tions and research on NNMs date back to the 1960s [2], these
initial frameworks are quite limited in their application, having
been defined only for single-body systems [3]. The modern

Fig. 1: By generating a reference through the real-time
simulation of invariant evolutions of a virtual twin of the
system, the two-layer control architecture allows for the use of
any arbitrary trajectory tracking controller for energy-efficient
nonlinear normal mode excitation.

framework of Eigenmanifold theory [4] for the definition and
identification of nonlinear modes is more general, allowing
for modal analysis of multi-body systems. This makes the
framework especially useful for robotic applications, which
typically entail complex, multi-body systems.
The potential benefits of exciting NNMs to produce energy-
efficient motions have already been demonstrated for a variety
of robotic systems. In the case of pick-and-place tasks, the au-
thors of [5] shape and excite NNMs to achieve directed point-
to-point oscillations. Compared to regular PD control, the
algorithms presented here use 99% less energy in the control
task. Similarly, energy-efficient forward jumping movement is
achieved for single-leg locomotion in [6], exploiting NNMs
as trajectories in the stance phase. Experimental validation on
the excitation of NNMs on has been performed on industrial
manipulators in [7], providing the first step towards practical
applications of Eigenmanifold controllers. Beyond energy-
efficient control, Eigenmanifolds and modes can be used to
obtain new insights into design and modeling. In [8], the
accuracy of finite-dimensional representations of continuum
soft manipulators is analyzed through the similarity of their
Eigenmanifolds.
Though much literature is available on applications of NNM
control in robotic systems [7, 6, 9, 10, 11], this collection of
work is so far limited to fully actuated robotic systems. Exist-
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ing Eigenmanifold controller pose NNM excitation as fulfilling
a set of n− 1 position constraints, n− 1 velocity constraints
and one energy constraint for an n-degrees-of-freedom (dof)
robot. This phrasing of the problem is inherently difficult to
apply to any underactuated system and assumes direct torque
control, further limiting its application. Additionally, accurate
knowledge of the Eigenmanifold is required, which becomes
increasingly time-consuming and difficult to obtain for large-
scale systems [7]. Besides this, existing stability proofs for
Eigenmanifold controllers rely on locality assumptions and
have so far not been extended to global stability [9, 12].
A significant portion of existing robots with elastic elements
actively employ series elastic actuators (SEAs), either for
locomotion [13, 14] or for compliant manipulators [15, 16].
To fully represent the dynamics of a SEA-driven robot, both
the link- and motor-configurations and velocities need to be
considered, resulting in a system that is underactuated by half
the dofs. This presents a highly relevant open challenge: How
can we excite NNMs of series elastic joint robots?
Generally, controlling nonlinear underactuated systems is a
non-trivial problem for many robotic applications [17]. So-
lutions to the underactuated control problem are highly de-
pendent on the exact dynamic properties of the system at
hand, and thus require non-general solutions. However, it is
well known that under common modeling assumptions, SEA-
driven manipulators allow for the design of asymptotically
stable trajectory tracking controllers through static feedback
linearization [18, 19]. Since individual NNMs are essentially
periodic trajectories of the system with special properties,
this implies that for static feedback-linearizable systems, it
is possible to regulate modal trajectories for both the actuated
and unactuated configuration variables.
In this thesis, we synthesize existing knowledge on SEA-
based control with Eigenmanifold theory through rephrasing
the NNM control problem as a trajectory tracking problem,
allowing for NNM excitation of underactuated mechanical
systems. We introduce a modular, provably stable two-layer
architecture that makes use of a digital twin and an Eigen-
manifold generator for the dynamic generation of NNMs as
smooth reference trajectories, and combines this with any
compatible trajectory tracking controller. Figure 1 contains
a visualization of the conceptual approach. Besides elastic
joint systems, the two-layer architecture generalizes both to
standard fully-actuated systems and closed-architecture fully-
actuated robotic systems with no direct access to motor torque
control. Furthermore, stability relies only on the trajectory
tracking controller, meaning that if this subsystem is globally
stable, so is the entire NNM excitation.
While this method does not aim to avoid dynamics cancellation
or forced oscillations, as opposed to existing Eigenmanifold
control methods, we show that the geometric and energy-
efficient properties of Eigenmanifolds are fully preserved. The
contributions of this thesis can be summarized as follows:

– A novel control architecture that allows for provably
(global) stable excitation of NNMs without requiring a
full representation of the Eigenmanifold.

– A reformulation of the Eigenmanifold-based NNM con-

trol problem as a trajectory tracking control problem
that preserves the Eigenmanifold properties, allowing for
NNM control for series elastic joint robots systems and
fully-actuated (closed-architecture) systems.

– Theoretical and numerical validation of the control archi-
tecture on both simplified and realistic robotic systems.

Preliminary concepts and the problem specifications are intro-
duced in section II. Then, the framework is presented in a
general setting alongside more specific examples in section
III. Numerical results are provided in section IV for an exact
state-feedback linearizable subclass of underactuated mechan-
ical systems called series elastic robots, and for a closed-
architecture manipulator with joint-level trajectory control
access.
To the best of our knowledge, this is the first work showing
provably stable excitation of nonlinear normal modes of a
class of underactuated mechanical multi-body systems, namely
SEA-driven actuators. While the contribution relies mostly on
existing theory on Eigenmanifolds and SEA-driven systems,
the innovation of this thesis lies in the novel combination of
these concepts in the proposed control architecture. By moving
away from existing Eigenmanifold controller design principles
and working around specific system limitations, we aim to
provide a different perspective on how hyper energy-efficient
control using NNMs may be achieved.

II. DYNAMICS & PROBLEM STATEMENT

While the focus of the thesis is on series elastic joint robots,
Eigenmanifold theory has been developed with a broader
applicability. Our goal is to design a control architecture which
retains compatibility with previously studied systems, entailing
fully-actuated conservative nonlinear mechanical systems. To
account for both these cases, we first introduce the necessary
background information in a more general sense. In future sec-
tions, we employ model-specific knowledge when discussing
the individual sets of assumptions.

A. Model dynamics

Consider the general form of the conservative mechanical
system

M(q)q̈ + C(q, q̇)q̇ +G(q) = B(q)u, (1)

where q ∈ X denotes the system configuration on configuration
manifold X ⊆ Rn. Matrix M(q) ∈ Rn×n is the positive
definite inertia matrix, C(q, q̇) ∈ Rn×n is the Coriolis and
centrifugal matrix, G(q) = (∂V (q)

∂q )T ∈ Rn collects the partial
derivatives w.r.t. q of the potential energy V (q) ∈ R. Matrix
B(q) ∈ Rn×m denotes the input coupling matrix, with input
vector u ∈ U ⊆ Rm where U denotes the set of admissible
inputs and m ≤ n. A further assumption is made that this
system contains a stable equilibrium point (q, q̇) = (qeq, 0).
The superscript ‘ ˙ ’ refers to a derivative with respect to time.
We define a solution of the system as (q(t), q̇(t)) ∈ TX, where
TX of dimension 2n is the tangent bundle of the configuration
manifold.
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Fig. 2: A diagram of how the generator relates to the Eigen-
manifold. The Eigenmanifold is a fibre-like structure of NNMs
that extends from one of the two generators (portrayed in red
and blue dotted lines).

In the following sections, we denote the energy of the system
as

E(q, q̇) =
1

2
q̇TM(q)q̇ + V (q). (2)

When considering elastic joint robots, additional modeling
assumptions are made, which are similar to the ones presented
in [18]:
(A) The kinetic energy of the motor is only due to its own

rotation.
(B) Inertial and gravitational effects are independent of the

motor configuration and velocity.
(C) The elastic coupling between the motor and link is linear.
Under these assumptions, the equations of motion (1) now
read

M(ql)q̈l + C(ql, q̇l)q̇l +G(ql) +K(ql − qm) = 0

Jq̈m −K(ql − qm) = u,
(3)

with joint link coordinates ql ∈ Rm and motor link coordinates
qm ∈ Rm. Together, they form the generalized coordinates q =
[ql, qm]T ∈ X. Matrix G(ql) ∈ Rm contains potential effects
only related to ql such as gravity, and K ∈ Rm×m is a positive
definite diagonal matrix collecting the spring constants of the
coupling between the motor and joint coordinates. Finally, J ∈
Rm×m is the positive definite motor inertia matrix.

B. Eigenmanifolds and nonlinear normal modes

For linear conservative oscillatory systems with a state-space
of size 2n, any general evolution can be described as a sum
of n linear normal modes (LNMs) [20, 21]. These LNMs are
characterized by the properties of:

– Invariance: All LNMs are linearly independent, and thus
orthogonal to each other.

– Linear superposition: Any general motion of the system
can be described using a linear combination of the LNMs.

This definition of normal modes holds only for linear sys-
tems, as the linear superposition principle has no nonlinear

Fig. 3: Plots of the configuration and input torque for the
tracking of an NNM and a smooth sinusoidal trajectory. Both
have the same period and maxima, but the former requires no
control effort at steady-state.

equivalent. While multiple frameworks exist that aim to gen-
eralize this concept into the nonlinear domain [2, 3], only
the framework of Eigenmanifold theory [4] is applicable to
multi-body systems i.e. systems for which the mass matrix
depends on q. Here, we introduce the necessary concepts
for understanding Eigenmanifold theory and nonlinear normal
modes expressed in the (q, q̇) coordinates from (1). For a
coordinate-free definition, we refer back to [4].
Within the context of Eigenmanifolds, a nonlinear normal
mode (NNM) can be defined as follows.

Definition 1. (Nonlinear normal mode, adapted from [4]).
An unforced solution (q(t), q̇(t)) ∈ TX of (1) is called a
Nonlinear normal mode when (q(t), q̇(t)) is

a. Periodic: There exists a T ∈ R+ such that (q(t), q̇(t)) =
(q(t+ T ), q̇(t+ T )).

b. Line-shaped: There exist a one-dimensional parameteri-
zation γ(s) for (q(t), q̇(t)), such that s ∈ [0, 1].

Together, specific collections of NNMs levels form smooth,
two-dimensional manifolds called Eigenmanifolds. However,
while Eigenmanifolds always consist of only NNMs, not
every collection of NNMs is an Eigenmanifold. To obtain
a precise definition, one can look at the construction of an
Eigenmanifold, which is done using another geometric object
called the generator. The generator R is a 1-dimensional
submanifold of TX with the following properties:
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Fig. 4: Modes of an Eigenmanifold projected in different coordinates and state variables: (q, q̇) state variables on the left and
y state variables (see 16) on the right. The Eigenmanifold is identical, but may be expressed in various coordinate systems.

Definition 2. (Generator, adapted from [4]).
Consider the 1-dimensional connected submanifold R ⊆ TX
for system (1). This is called a generator if

a. There exists a function G(R) = M that constructs the
2-dimensional invariant manifold M.

b. ∀(q, q̇) ∈ R, then q̇ = 0.
c. The generator contains only one unique equilibrium point

(qeq, 0).

An important property is that a natural parameterization for
the generator is the energy E. Using Definitions 1 and 2, the
Eigenmanifold M can then simply be defined as:

Definition 3. (Eigenmanifold, adapted from [4]).
Consider the 2-dimensional smooth invariant manifold M ⊆
TX for system (1) that is constructed through M =
G(R). This is called an Eigenmanifold if every evolution
(q(t), q̇(t)) ∈ M is a nonlinear normal mode.

The coordinate expression of M is then

M = {(q, q̇) ∈ TX|∃ξm, s.t. Q(ξm) = q, Q̇(ξm) = q̇}, (4)

where (Q(ξm), Q̇(ξm)) is the natural embedding of M into
the associated coordinates (q, q̇) and ξm ∈ R2 is the parame-
terization of the Eigenmanifold. Numerous valid parameter-
izations ξm for the Eigenmanifold exist that can be either
local or global. Figure 2 shows how NNMs, the generator
and the Eigenmanifold are all related. The existence of at
least n Eigenmanifolds emanating from the stable equilibrium
of (1) are guaranteed. These Eigenmanifolds are essentially
extensions of the n Eigenspaces of the linearized version of
the system.
Due to the fact that NNMs are periodic invariant evolutions
of the unforced system, no control effort is required to sustain
them. These properties of invariance and periodicity can be
exploited to design hyper-efficient controllers. Specifically, if
one defines a control input that vanishes on the NNM, the
mode will be self-sustaining once convergence is achieved.
This makes the excitation of NNMs especially advantageous
when tasked with repetitive point-to-point behaviors, as the
energy consumption of the tracking effort is significantly
reduced. An example is shown in Figure 3, where similar
trajectories are tracked, but only the modal trajectory requires
no control effort in steady-state.
Since Eigenmanifolds are geometrical objects, their properties
are retained within any coordinate expression and under any

change of coordinates. This is shown visually in Figure 4.
More formally, we can write this as:

Corollary 1. Given an Eigenmanifold M of system
(1) expressed in TX through the natural embeddings
(Q(ξm), Q̇(ξm)). If there exists an invertible map T : TX →
R2n in neighborhood U and M is defined in this neigh-
borhood, the natural embeddings (Q(ξm), Q̇(ξm)) can be
expressed in the new coordinate system as

(T ◦Q(ξm), T ◦ Q̇(ξm)). (5)

This implies that we can asymptotically force the system
to the Eigenmanifold in any coordinate expression, and we
can switch between the expressions by applying the change
of coordinates to the Eigenmanifold embeddings. With the
prerequisite knowledge introduced, we now specify the goals
of the thesis.

C. Problem statement

We consider the Eigenmanifold control problem as a trajectory
control problem. For both (1) and (3), we denote an arbitrary
NNM as (qm(t), q̇m(t)) ∈ M. We aim to find a controller
u = k(q, q̇, qm(t), q̇m(t)) compatible with (1) and (3) such
that

lim
t→∞

q = qm(t)

lim
t→∞

q = qm(t)

lim
t→∞

u = 0.

(6)

Essentially, this means that the proposed controller should re-
quire zero energy expenditure during the steady-state phase of
the system. We avoid the pre-computation of NNMs as motion
primitive trajectories, as this approach does not properly utilize
the geometric properties that Eigenmanifold theory introduces.
Finally, we assume perfect knowledge of the dynamics and
system states.
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III. TWO-LAYER CONTROL ARCHITECTURE

When one considers any underactuated system such as an
elastic joint robot, a new challenge appears: having full control
over all system dofs cannot be guaranteed in general, as it
entails dealing with a configuration space (X) with higher rank
than the actuation space. Existing Eigenmanifold controllers
frame the control task as controlling n − 1 configuration
constraints, n−1 velocity constraints and one energy constraint
[4, 9, 11]. As such, this approach appears infeasible when
considering systems that are not fully actuated.
Alternatively, we propose to tackle NNM excitation as a
trajectory tracking problem. Existing literature on nonlinear
systems [22, 19] discuss certain conditions under which a
coordinate transformation exists such that a mechanical system
may be fully feedback linearized, making trajectory tracking
control possible. As elastic joint robots described through (3)
fulfill these conditions [18], it follows that trajectory control is
possible. While there is a wide array of existing methods for
general underactuated control, such as underactuated backstep-
ping [23], transverse orbital stabilization [24, 25], and sliding
mode control [26], the feedback linearizability of elastic joint
robots provides the main motivation to express Eigenmanifold
control as a trajectory tracking task.
In the rest of this section, we present our two-layer control
architecture. By considering NNM excitation as a trajectory
tracking problem, we are able to separate control into a NNM
generation task (general for nonlinear mechanical systems),
and the trajectory tracking task, which is system- and actuator-
specific. First, we employ a virtual system that is used to gen-
erate a reference trajectory of the selected NNM in real-time.
Then, a trajectory controller with asymptotically convergent
properties is used to track this reference. A schematic overview
of the architecture can be found in Figure 5.
The two-layer architecture is modular and can be used with
any reference trajectory controller. Thus, the architecture
is compatible with both underactuated and fully actuated
mechanical systems that permit such a controller. Although
feedback linearization is used as a main motivator, other viable
trajectory tracking methods, such as sliding mode control, can
also be applied.
While this approach moves away from existing Eigenmani-
fold control methods, which focus on minimizing dynamics
cancellation and forced evolutions, we believe the essential
benefits of Eigenmanifold control are properly preserved. As
discussed later in this section, the two-layer architecture relies
on the geometric properties of the Eigenmanifold and NNM
structure for trajectory generation and is able to achieve highly
energy-efficient modal control.
We start with the following assumption:

Assumption 1. Suppose there exists a change of state vari-
ables θ = h(q, q̇), such that the dynamics (1) turn into

θ̇ = f(θ) + g(θ)u (7)

where θ can be controlled to be

lim
t→∞

θ = θd, (8)

for any arbitrary desired state θd.

Note that under this assumption, we do not put any restrictions
on the (non-)linearity of θ̇. Rather, we state that a base
requirement is that there exists a controllable system (θ)
which is feedback equivalent to (q, q̇). In the case of a fully-
actuated system, this change of state variables is the identity
θ = [q, q̇]T . In the case of an elastic joint robot, the change of
state variables denotes the link position, velocity, acceleration,
and jerk. This will be discussed in more detail in subsection
III-B.
We provide an elementary definition for feedback equivalence
as a one-to-one invertible transformation between g(θ)u and
B(q)u over the same time interval (tb, te). A formal definition
of feedback equivalence can be found in [27].
Next, we discuss the two layers of the control architecture.

A. Trajectory generation through virtual dynamics

Generating a valid trajectory {(qd(t), q̇d(t)) ∈ R2n, t ∈
[tb, te]} for an underactuated system requires that it is a
viable solution of the system dynamics. This means that the
reference trajectory should not only be smooth, but also have
an associated control sequence {u(t), t ∈ [tb, te]} that is within
the span of permissible inputs u(t) ∈ U . This is always
the case for an NNM, as the associated control sequence is
the trivial zero control u(t) = 0 for the entire trajectory.
While trivially proven, this is a relevant property for the
trajectory generation, and is thus formally written down as
the proposition below.

Proposition 1. Any NNM (qm(t), q̇m(t)) ∈ M is a viable
solution of (3) or (1) with any arbitrary input coupling matrix
B(q) ∈ Rn×m.

While it is possible to parameterize the NNM trajectory using
time, this requires precomputing an accurate parameterization
of the desired mode. If the goal is to control a variety of
NNMs for high-dimensional systems, this needs to be done for
each mode. Given that high energy NNMs do not necessarily
resemble sinusoids, choosing the right parameterization for
each energy level can be challenging. When a closed form of
the entire Eigenmanifold is necessary, the task becomes even
more difficult and time-consuming. In [7], a point cloud-based
Eigenmanifold construction and control strategy was designed
to explicitly avoid dependence on a closed parameterization
of the Eigenmanifold, as this is believed to be more feasible
for higher-dimensional systems. Either way, the requirement
of having a full, accurate estimate of the Eigenmanifold is
nontrivial for large systems.
Instead, recall that Eigenmanifold M is invariant, so any open-
loop solution that starts on the Eigenmanifold will stay there
indefinitely. Since we only consider conservative systems,
the solution {(qd(t), q̇d(t)), t ∈ [0,∞], (qd(0), q̇d(0) ∈ M)}
will track the NNM of Eigenmanifold M at energy level
E(qd(0), q̇d(0)).
Thus, the reference trajectory can be computed in real-time
by integrating the dynamics (1) starting from any state on the
Eigenmanifold with the desired energy level. This digital twin
of the dynamics will be referred to as the virtual system with
state (qd, q̇d).



6

Fig. 5: Schematic representation of the two-layer architecture. The trajectory tracking sub-diagram is interchangeable for any
arbitrary reference trajectory tracking controller.

To select the initial state, we use the generator R ⊂ M used
to construct the Eigenmanifold. Since R can be parameterized
by energy E, an initial state (qd(0), q̇d(0) = 0) ∈ RQ(E) will
result in the desired reference trajectory. Here, RQ(E) ∈ TX
denotes the coordinate expression of R in state space (q, q̇)
parameterized by energy E.
Generating a reference trajectory of the desired NNM through
the virtual dynamics only requires us to know the model
dynamics and the generator R of M. Thus, we do not require
a parameterization of the full Eigenmanifold. While the virtual
system requires accurate knowledge of the system dynamics,
this is not more restrictive compared to other Eigenmanifold
controllers, since the calculation of M depends on a similarly
high level of accuracy. Under a model parameter mismatch,
periodic oscillations are still excited, but the steady-state
control effort will not fully converge to zero [9].

B. Trajectory tracking

Under Assumption 1 and Proposition 1, we can claim that
there exists a controller that can asymptotically converge
the system state to ((qd(t), q̇d(t)) ∈ M. Furthermore, the
energy-efficient properties are similar to other Eigenmanifold
controllers. These facts are as follows.

Lemma 1. Consider system (1) and suppose Assumption
1 holds. Then, any NNM (qd(t), q̇d(t)) ∈ M of can be
asymptotically stabilized as

lim
t→∞

q = qd

lim
t→∞

q̇ = q̇d.
(9)

Additionally,

lim
t→∞

u = 0. (10)

Proof. Using corollary 1, we may transform (qd(t), q̇d(t)) to

θd = h(qd, q̇d(t)). (11)

As assumption 1 tells us of the existence of v such that
limt→∞ θ = θd, we can then apply the inverse transformation
h−1 to obtain

lim
t→∞

h−1(θ) = h−1(θd)

= ( lim
t→∞

q = qd, lim
t→∞

q̇ = q̇d).
(12)

Now, casting this into the full equations of motion (1) results
in

lim
t→∞

M(qd)q̈d + C(qd, q̇d)q̇d +G(qd) = B(qd)u. (13)

Due to the uniqueness of solutions to the Cauchy problem, we
know that there is only one valid solution for q = qd, q̇ = q̇d,
which is

M(qd)q̈d + C(qd, q̇d)q̇d +G(qd) = 0 (14)

as (qd(t), q̇d(t)) ∈ M. Since B(q, q̇) is not the trivial zero
matrix, this means

lim
t→∞

u = 0, (15)

concluding the proof.

Lemma 1 tells us that the control effort of any arbitrary
trajectory tracking controller must go to zero if the reference
trajectory is an NNM. Thus, the property of energy-efficiency
is guaranteed for any choice of trajectory tracking controller
using the two-layer control architecture.

Elastic joint robots

For SEA-driven manipulators described by (3), it is well
established [18] that there exists a change of state variables
Ty : TX → R2n from (q, q̇) to y = [y1, y2, y3, y4]

T

y1 =Ty1(q, q̇) = ql

y2 =Ty2(q, q̇) = q̇l

y3 =Ty3(q, q̇) = q̈l

y4 =Ty4(q, q̇) =
...
q l

(16)

which fulfills Assumption 1. Within these coordinates, we
can design asymptotically stable trajectory tracking controllers
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such as a pole-placement controller through feedback lin-
earization, which is defined as

u =− JK−1M(ql)F (q, q̇) + JK−1M(ql)v

v =ẏd4(t) + k1(yd1(t)− y1) + k2(yd2(t)− y2)

+ k3(yd3(t)− y3) + k4(yd4(t)− y4)

(17)

where F (q, q̇) collects all terms of ....
q l not related to u. The

scalars [k1, k2, k3, k4] are strictly negative gains chosen such
that the eigenvalues of ẏ are negative definite and yd(t) =
Ty ◦ (qd(t), q̇d(t)) denotes the modal trajectory expressed in
the y coordinates. Note that instead of (17), other controllers
such as sliding mode control may also be used. The controller
derivations of these two examples are left out of the main
thesis body and are instead presented in Appendix A, as they
do not contain any novel knowledge.

(Closed-architecture) fully actuated manipulators

As the two-layer architecture only requires the existence of a
converging trajectory tracking controller, this method can also
be applied to fully actuated systems. In this case, the transfor-
mation h(q, q̇) described in assumption 1 simply denotes the
identity transform I . This is particularly useful when dealing
with a robotic system using a closed control architecture.
For closed architecture systems, it is only possible to send
commands to the robot through input channels provided by the
manufacturer. If these channels do not include torque control,
existing manifold controllers cannot be used. However, as
long as there is access to a trajectory tracking controller, the
two layer architecture can be employed while preserving the
energy-efficient properties that are desired when using modal
control. For example, if a closed architecture robot provides a
simple PID joint controller defined as

u =Kp(qd(t)− q(t)) +Kd(q̇d(t)− q̇(t))

+Ki

∫ t

0

(qd(τ)− q(τ))dτ
(18)

with access to the scalar gains Kp,Kd,Ki and reference
input qd(t), q̇d(t), Lemma 1 still holds true as long as the
gains are chosen such that the trajectory tracking controller is
asymptotically convergent.

C. Extension to other classes of underactuated systems

Looking at Assumption 1 and Lemma 1, there is the im-
plication that the two-layer architecture may be applied on
any underactuated system that permits both an Eigenmanifold
and a trajectory tracking controller. An example of such a
system is an planar n-dimensional joint robot with n ≥ 3
where the last link is unactuated. For such a system, it is
known that trajectory tracking control can be designed with
a combination of partial feedback linearization and dynamic
feedback linearization [28]. Do note that the introduced co-
ordinate transformation is local, and thus does not have any
global convergence guarantees. However, the question is raised
whether this larger class of underactuated systems extends
beyond elastic joint robots far enough to have any relevant
or practical applications. Nonetheless, while a formal proof

Fig. 6: The planar double pendulum with series elastic actua-
tors.

for the system introduced in [28] is beyond the scope of this
work, we provide a small set of initial simulations to back
up our claim in section IV. In this section, we also consider
the cases of the elastic joint manipulator and fully actuated
PID joint controller in simulation to verify whether numerical
results match the theoretical performance.

IV. NUMERICAL VALIDATION

To validate the theoretical results provided in the previous
section, we consider the example cases of the elastic joint
manipulator and fully actuated PID joint controller in simula-
tion. The goal is to show the properties of global asymptotic
stability, scalability to larger systems, and modularity of the
system through numerical simulation. While not the main con-
tribution of this thesis, energy-efficiency and modal switching
are also considered, as they are important motivations for
exciting NNMs in mechanical systems.
In total, three case studies are considered: a series elastic
actuated double pendulum, a 6-degree-of-freedom manipu-
lator with series elastic joints and a fully actuated closed-
architecture 6-degree-of-freedom manipulator with rotational
springs located in the joints. The equations of motion used
for simulation and the Eigenmanifold calculation are obtained
analytically for the double pendulum and numerically for both
the 6-degree-of-freedom manipulators. In addition to the three
main case studies, we provide some initial results on modal
excitation of a planar manipulator model as described in [28]
with additional parallel springs.
In the fully-actuated simulation, a comparison is made with
the PD-like modal controller of [9]. This comparison cannot
be made in the other simulations, as existing Eigenmanifold-
based controllers are not designed for application to underac-
tuated systems. The considered Eigenmanifolds are assumed
to be prolongations of the Eigenspace of the linearized system
around the equilibrium. To calculate the generator, an imple-
mentation of the procedure described by [29] in Matlab2022b
is used. For validation of the virtual system dynamics, the
full Eigenmanifolds embeddings are estimated by a 5x5 2-
dimensional polynomial surface fit using the sfit function. Note
here that depending on the complexity of the Eigenmanifold,



8

either a higher or lower degree polynomial fit may be more
effective. In the case studies, we aim to present a variety of
modes of various Eigenmanifolds at different energy levels.
For all simulations, the gravity constant is set to be g =
[0, 0, 9.81]T m/s2 described in 3-dimensional Euclidean
space.

Simulation 1: Series elastic actuated double pendulum

Physical model: We consider a planar double pendulum
with series elastic actuated joints such that n = 4. The
system’s physical parameters are found in Table I. The co-
ordinates are set up such that qeq = [0, 0, 0, 0]T denotes
the stable equilibrium configuration with a potential energy
E(qeq, 0) = 0 J . A visual representation of the system is
displayed in Figure 6.

TABLE I: Physical parameters of double pendulum.

Link 1 2
Mass (kg) 1 1

Length (m) 1 1
Motor inertia (kg m2) 1 1
Motor stiffness (N/m) 10 10

Controllers: To show the modularity of the two-layer con-
trol architecture, two different trajectory tracking controllers
are used: exact state-feedback linearization [18] (FFL) and
sliding-mode control [30] (SMC), which are both generally
accepted control methods for trajectory tracking of elastic joint
manipulators.

(a) Average joint rise time and settling time.

(b) Average energy and joint overshoot.

Fig. 7: Performance metrics for simulation 1.

General performance: In Figure 7, numeric performance
metrics of the controllers starting from the equilibrium state
are presented. The metrics are collected and averaged over the
excitation of a range of modes with energy levels from E = 1J
to E = 15J . To gain more insight into the relative performance
of the modes itself, the rise time and settling time are presented
as relative percentages of the NNM period. Including some
variance between controllers, rise times and settling times
of about half a modal period can easily be achieved. More
interestingly, sub-figure 7b shows a large difference in relative
overshoot between SMC and FFL control. While there was
no simulation in which convergence to the desired mode did
not occur for either controller, this does imply that general
performance is still highly dependent on the selected reference
controller. These differences in performance are also apparent
in Figure 8, which shows excitation from the equilibrium for
modes around E = 10J of the system Eigenmanifolds. As
expected, while the transient state is unpredictable, asymp-
totic convergence to the NNM is clearly achieved. However,
a limitation of the naive implementation of the two-layer
architecture is seen in the excitation of manifold 3: due to
a high initial distance from the reference trajectory in state-
space, the controller input starts with infeasible input actions.
We believe that this can be improved either through controller
gain tuning, or first exciting lower energy modes and then
slowly increasing the desired energy.

Global stability: To verify global convergence, 256 sim-
ulations are performed from randomly sampled initial con-
ditions within the interval q(0) ∈ [−0.5π, 0.5π], q̇(0) ∈
[−0.25π, 0.25π] for a specific energy level E = 1J . While
this sampling space does not encapsulate the theoretical full
state space, we believe this to be a sufficiently large interval
to capture a wide variety of initial conditions. The Euclidean
norm ||q − qmi(t)|| of the error is presented in Figure 9
for both the FFL and SMC controller. While there is a
clear variance in error over time, the eventual asymptotic
convergence is consistent over all individual simulations. As
the period for the selected Eigenmode is around T = 1.2s,
the error only truly disappears after multiple oscillations. It
is expected that more aggressive controller tunings might
decrease the convergence time, but doing so would be at
the expense of required input torque. Similar results were
achieved for different Eigenmanifolds and energy levels. As
we are primarily interested in verifying whether the energy
consumption goes to zero when asymptotically close to the
reference trajectory, the input torque is considered when at
a steady-state. The control effort for both FFL and SMC, as
seen in Figure 8, converges to zero as the modal trajectory is
successfully tracked, validating the theoretical findings of the
previous section.

Modal switching: Without requiring any additional im-
plementation work, modal switching can be performed by
resetting the state of the virtual system to a state on the
generator at the new desired energy level. Checking whether
we are nearby the generator is easily done by looking at the
total system velocity, which is only zero on the generator. To
test this, the simulation is initialized from the equilibrium,
and the desired energy is increased every 12 seconds. To save
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Fig. 8: Excitation of the Eigenmanifolds of the double pendulum with desired energy E = 10J for each of the system
manifolds, starting from the equilibrium position.

(a) FFL

(b) SMC

Fig. 9: average error of the configuration over time for a mode
of E = 1J of the first Eigenmanifold.

space, we only discuss the results of Eigenmanifold 1 in Figure
10.

Fig. 10: Modal switching of the first Eigenmanifold for
simulation 1.

Simulation 2: 6-dof series elastic actuated manipulator

We show how the control architecture may be applied to more
realistic systems without severely impacting performance or
scalability. Due to the complexity of the system, the equations
of motion are derived numerically. Nonetheless, results are
similar to the theoretically perfect case. Since the goal of
this section is to show whether the system may be scaled up
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Fig. 11: An image of the 6-dof manipulator in Matlab. The
same design is used for both the series-elastic actuated and
stiff joint experiments.

rather than to revalidate the results of the double pendulum
system, we will only discuss the general performance and
modal switching on a single Eigenmanifold.

Physical model: The manipulator is tested with joint stiff-
nesses ranging between 50Nm/rad and 850Nm/rad, which
is based on feasible joint stiffness range used in physical
elastic joint robots [31]. Virtual parallel torsion springs on the
motor joints are modeled to allow for selection convex energy
minimum at a larger range of manipulator configurations.
This virtual spring stiffness is selected to be kvspring =
[30, 30, 20, 20, 20, 15]Nm/rad, which is around 5-10% of the
elastic link torsional stiffness. The justification for the virtual
spring is the expectation that a manipulator will be tasked
with point-to-point operations which might not include the
true convex potential energy minimum. The virtual spring
allows us to manipulate the local energy minimum and is
easily implementable through an additional control action on
the motor link. The exact parameters used can be found in
Table II. Here, we provide the motor inertia of each joint
as the diagonal entries of J as described in (3), meaning
Ji = m2

motor i∗Imotor i. The equations of motion are obtained
by the Robotics System Toolbox. An image of the workspace
can be found in Figure 11.

TABLE II: Physical parameters of the 6-dof manipulator.

Link 1 2 3 4 5 6 7

Mass (kg) 2 1 1 1 0.5 0.5 0.5

Length (m) 0.125 0.125 0.25 0.25 0.25 0.25 0.125

Inertia (kg m2) 0.5 0.5 0.5 0.5 0.5 0.5 x

Stiffness (Nm/rad) 800 600 400 200 100 50 x

Considered controllers: The intention of simulation 2 is to
show how the two-layer control architecture performs for high-
dof systems. To reduce the amount of figures that do not show

Fig. 12: Excitation of the 6-dof manipulator mode with the
desired energy E = 20J of the second Eigenmanifold. Each
color corresponds to a different joint coordinate.

any novel or different results, the choice is made to limit the
results to FFL control.

General performance: As seen in Figure 12, the results
are similar to the double pendulum case, with convergence
towards the virtual system achieved successfully. However,
convergence time is considerably slower compared to the
double pendulum. While this might be improved by more
aggressive tunings of the trajectory reference controller, this
would come at the cost of higher control efforts. Nonethe-
less, the simulation does highlight how the modular control
architecture may be scaled to significantly more complicated
systems without issues related to determining the Eigenman-
ifold parameterization. While only the second Eigenmanifold
is shown, simulations for the other eleven Eigenmanifolds and
energy levels showed similar results.

Modal switching: In Figure 13, the controller successfully
brings the system to the new desired energy level. While
the trajectory is non-smooth at the transition moment, the
configuration variables stay stable in the transient period.

Simulation 3: Closed architecture fully actuated 6-dof manip-
ulator

Here, the aim is to show that in the case of a closed architec-
ture, where there is only access to joint-level reference control,
similar theoretical guarantees for Eigenmode control may be
presented using the two-layer architecture. Additionally, since
we consider a fully actuated system, it becomes possible to
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Fig. 13: Modal switching for the 6-dof series elastic joint
manipulator.

compare the control architecture with existing Eigenmanifold-
based controllers. We conclude the case study by performing
this comparative analysis.

Physical model: Consider a 6-dof manipulator with a
stiff motor-link coupling, leaving a configuration manifold
of X ⊆ R6, which is fully actuated. The equations of
motion of this system can be described by (1) with a full-
rank input coupling matrix B(q) ∈ R6×6. We assume ro-
tational springs located in each joint with spring stiffness
k = [50, 50, 20, 20, 15, 5]Nm/rad. Besides this, the system
properties are identical to the elastically actuated case, and
can be found in Table II.

Considered controllers: For the closed-architecture system,
we consider a simple PID trajectory tracking controller de-
scribed by (18) using the two-layer architecture. The PID
controller is manually tuned with gains Kp = 1Nm,Kd =
0.5Nm ·s,Ki = 1Nm

s , where Kp,Kd,Ki respectively denote
proportional, derivative and integral gain. A comparison is
made with the standard PD-like Eigenmanifold controller
presented in [9], which is defined as

u =um + ue

um =M(q)
(
αp(q −Q(ξm) + αd(q̇ − Q̇(ξm)

)
ue =γM(q)

(
Ed − E(q, q̇)

)
q̇

(19)

where αp, αd denote scalar proportional and derivative gains
respectively and (Q(ξm), Q̇(ξm)) denote the natural embed-
dings of M into the tangent space TX, as explained in
section II. The positive scalar γ denotes a gain for the energy
regulating controller, where Ed is the desired energy of the

(a) Average joint rise time and settling time.

(b) Average energy and joint overshoot.

Fig. 14: Performance metrics for the closed-architecture ma-
nipulator for Eigenmanifold 4.

system. The gains are manually tuned and are set to be
αp = 100 1

s2 , αd = 8.5 1
s , γ = 5 1

Js .
General performance: Figure 14 shows the performance

metrics of the controllers in a similar fashion to simulation
1, with metrics again being collected and averaged over the
excitation of a range of modes with energy levels from E = 1J
to E = 15J . Since the NNM trajectories of joints q2, q4, q6
are zero, the percentage joint overshoot is not included due
to singular values. Results are similar to simulation 1, with
average rise time and settling time being shorter than a full
manifold period. However, the configuration overshoot of joint
q3 is significantly larger in comparison to the other joints,
being seven times higher. While no exact match, Figure 15
does show an initial overshoot of joint q3, which is relatively
large compared to the steady-state amplitude of the mode.
Besides this, results do match the theory, with the control
effort converging to zero and the system energy converging
to the intended modal energy.

Global stability: Similar to simulation 1, the system is
initialized from a number of different random states and tasked
with tracking the E = 1J NNM. Due to the increased
complexity of the model, 32 initial conditions are tested,
the results of which are shown in Figure 20. Even with
the reduced sample size, results are similar to simulation
1. However, compared to the elastic joint simulation, the
decrease is both slower and not exponentially convergent. This
is expected, as the PID controller does not guarantee any
degree of exponential convergence compared to FFL or SMC
control. Results for modal switching are shown in Figure 18,
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Fig. 15: Modal excitation of the NNM mode E = 11J for the
fully actuated manipulator using PID control.

Fig. 16: Average error for the closed-architecture PID-
controlled manipulator.

which match the other simulation results.

Comparison with PD-like Eigenmanifold control

To ensure fairness, the comparative analysis is performed
on the same Eigenmanifold for both the PD-like controller
and our proposed controller. A total of 32 simulations are
performed with varying initial states sampled from q(0) ∈
[−0.5π, 0.5π], q̇(0) ∈ [−0.25π, 0.25π] for desired energy level
E = 1J . As such, controller gains are manually tuned for
optimal performance on E = 1J .

Global stability: Similar to previous simulations, Figure 19
displays the Euclidean normed distance to the Eigenmanifold
over time. While the PD-like controller does not have global
stability guarantees, the results indicate that in practice, the

(a) PID two-layer architecture
controller.

(b) PD-like Eigenmanifold
controller [9].

Fig. 17: Excitation of the fully actuated 6-dof manipulator
NNM with the desired energy E = 1J of the fourth Eigen-
manifold.

Fig. 18: Modal switching for the closed-architecture PID
controller.

region of convergence is sufficiently large. When comparing
this to Figure 20, the results are very similar, with asymptotic
convergence successfully being achieved from every sampled
initial state. While the mean normalized convergence time as
shown in Table IV is larger by a factor 2.5, more aggressive
tunings might improve this.

Modal switching: For modal switching, the desired modal
energy is increased by 1J every 4 seconds. While the PD-like
manifold controller is able to successfully switch and converge
to low energy modes, instability occurs roughly at Edes = 4J .
The mean energy ( averaged over an interval of 5 times
the manifold period) is also displayed, but does not achieve
the desired energy. A possible explanation is that the energy
regulating sub-controller and the Eigenmanifold stabilization
sub-controller sufficiently interfere with each other, such that
neither task is achieved. However, due to the lack of global
stability guarantees for the controller, it is difficult to pinpoint
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Fig. 19: Average error for the closed-architecture PD-like
controlled manipulator.

Fig. 20: Modal switching for the PD-like manifold controller.

the exact reason. To verify whether instability occurs due to
inaccuracy of the Eigenmanifold estimation, the mean squared
error between Q(ξm) and the sample data used to estimate M
is calculated and shown in Table III, which implies that the
accuracy of the Eigenmanifold estimation is not the cause of
instability at energy levels above E = 4J . Another explanation
for the failure is the locality of the Eigenmanifold parame-
terization, which is discussed in greater detail in Appendix
B. Meanwhile, the two-layer architecture controller using PID
tracking is able to perform stably where the PD-like controller
fails, as seen in Figure 18. Additional simulations on modal
switching have shown that this holds at least for excitation of
modes with an energy level up until Edes = 15J .

TABLE III: Mean squared error of the manifold fit.

Conf. variable MSE
q1 1.6223 · 10−11

q2 7.5142 · 10−24

q3 3.0620 · 10−11

q4 3.3234 · 10−23

q5 3.4418 · 10−12

q6 2.8683 · 10−23

Comparative table: We summarize the results of the com-
parative analysis in Table IV. Convergence time is calculated
as the time at which the system energy is within 5% of the
desired energy Edes = 1J and the normalized error of all

TABLE IV: Results of comparative analysis.

Control method PD-like[9] Ours
Mean convergence time/Tman 6.9 2.0
Mean energy expenditure/E(0) 0.9932 1.808

Required parameterization (Q(ξm), Q̇(ξm)) R(E)
SEA control no yes

Globally provably stable no possible

configuration variables is less than 5% of the maximum nor-
malized error over the entire time series. Energy expenditure is
calculated as

∫ Tt

0
q̇T (t)τdt(t) where Tt denotes the transient

time. Due to the large variance in initial energy conditions,
the energy expenditure is normalized through dividing by the
initial energy E(0).
The mean convergence time of the proposed two-layer ar-
chitecture is significantly shorter. However, this comes at the
cost of having an energy expenditure that is roughly twice as
large during the transient period. Since both convergence time
and energy expenditure are greatly impacted by the selected
controller tunings, the absolute difference in performance can-
not easily be measured. Nonetheless, our control method has
distinct advantages, allowing for provable global stability and
the excitation of modes in elastic joint robots. Furthermore, the
two-layer architecture requires a less complex representation
of the Eigenmanifold, which is advantageous for large-scale
or complex systems. Since both considered control methods
theoretically require zero control effort at steady state, the two-
layer architecture is expected to be a better choice when the
considered system bears any of the aforementioned properties.
In the case that either control method can be employed, the
choice is less straightforward.

Modal excitation for a planar n-joint link with an unactuated
last link

In the previous section, we implied that the two-layer
control architecture might be extended to more general classes
of underactuated systems that allow a trajectory tracking
controller. Here, we consider a three-link planar manipulator
where the last link is unactuated, resulting in 1 degree of un-
deractuation. A trajectory tracking controller is designed using
partial feedback linearization, followed by a dynamic feedback
linearization procedure on the remaining zero dynamics. For
a detailed explanation and derivation, we refer back to [28].
The system dynamics are represented in the (local) coordinate
system q = [x3, y3, θ], which denote the cartesian position
of the root of the last link and its angle w.r.t. the ground in
radians. Eigenmanifolds are calculated and described in this
coordinate system. It is expected that calculating the modes in
a global coordinate system and using Corollary 1 will yield
similar results, with the modes more accurately representing
the true modal behaviour of the system. However, theoretical
proof and simulations for this are out of scope for the current
work. Figure 21 displays the modal excitation of an arbitrary
mode of the first Eigenmanifold. Convergence to the desired
mode is clearly achieved, with the control effort disappearing
when steady state is reached. Similar to previous findings,
the initial control effort is unrealistically high, and would
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require more careful controller tunings or some adaptive tra-
jectory generation scheme to solve. Nonetheless, these results
do indicate that the two-layer control architecture might be
generalized to a larger class of underactuated systems.

Fig. 21: Modal excitation for a three-link planar manipulator
with an unactuated last link.

V. DISCUSSION & FUTURE WORK

This paper introduced a modular control architecture that
allows for NNM excitation of both series elastic joint robots
and fully actuated conservative mechanical systems. Through
rephrasing the Eigenmanifold control problem as trajectory
tracking task, it becomes possible to employ existing trajectory
control methods. This has opened up the way for controlling
an additional class of systems, namely series elastic joint
robots. While such systems are incompatible with existing
Eigenmanifold control methods due to their underactuation, we
have demonstrated through theory and numerical simulation
that our proposed control architecture is successful in exciting
NNMs of these elastic joint robots. Furthermore, we were able
to dynamically generate modal reference trajectories using
only the system equations of motion and the Eigenmani-
fold generator. Using a fully-actuated system, we compared
our control architecture with more traditional Eigenmanifold-
based control in simulation. While both control methods
achieved similar levels of performance for lower energy levels,
our proposed control architecture performed better at higher
energy levels.
Although this direction is different compared to existing
Eigenmanifold controllers, we believe the essence of modal
control is present due to the explicit dependence on the
geometric properties of the Eigenmanifold for the virtual
system trajectory generation. Furthermore, the energy efficient
properties, which are a main motivating factor for NNM
control, are preserved.
A key advantage of the two-layer architecture is that only an
accurate representation of the generator is needed, rather than
the entire Eigenmanifold representation. Not only does this
simplify offline computations, it also improves scalability. This

is demonstrated in simulation by applying the architecture to
a 6-degree-of-freedom manipulator. The control architecture
is also compatible with fully actuated systems and does not
require torque control, which allows for the application to
closed-architecture robotic systems.
Good model knowledge is an unavoidable requirement for this
architecture, but this is not a new restriction when compared
to other Eigenmanifold-based controllers. While our work
is so far limited to elastic joint robots and fully actuated
robots, initial explorations suggest that this method can be
applied to other unactuated systems permitting a trajectory
tracking controller. We briefly discussed modal excitation on
a dynamically feedback linearizable underactuated system. In
future work, the extent to which trajectory-based Eigenman-
ifold control is generalizable can be investigated. Another
promising research direction is the experimental validation of
our control architecture on a physical elastic joint robot, as
experimental results of applied Eigenmanifold control in the
literature are limited.
The biggest limitation of this work is that the trajectory
generator does not take into account the system state, which
can cause the transient response of the system to have un-
realistically high control inputs torques. Currently, avoiding
this requires careful controller tuning and a slow increase in
desired energy. A possible solution would be to introduce
adaptive trajectory generation to counteract this behaviour,
which can be explored in the future.
In summary, the two-layer architecture provides a new per-
spective and use-case for the application of Eigenmanifold-
based control, without losing the important properties that
make Eigenmanifold-based control beneficial. We believe this
work is a first step in expanding the range of robotic systems
for which Eigenmanifold-based control can be applied.
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APPENDIX A
TRAJECTORY TRACKING CONTROLLER DESIGN OF AN

ELASTIC JOINT ROBOT

In this appendix, we will briefly show the procedure per-
formed in [18] to develop a exact state-feedback linearizing
controller for a SEA-driven manipulator with the equations
of motion (3). Then, we prove the general lemma 1 for this
specific application. First, substituting (3) into (16) gives

y1 =Ty1(q, q̇) = ql

y2 =Ty2(q, q̇) = q̇l

y3 =Ty3(q, q̇) = q̈l

=−M(ql)
−1(C(ql, q̇l)q̇l +G(ql) +K(ql − qm))

y4 =Ty4(q, q̇) =
...
q l

=− d

dt
M(ql)

−1(C(ql, q̇l)q̇l +G(ql) +K(ql − qm))

−M(ql)
−1

(
q̇l
(∂C(ql, q̇l)

∂ql
q̇l

− ∂C(ql, q̇l)

∂q̇l
M(ql)

−1
(
C(ql, q̇l)q̇l +G(ql) +K(ql − qm)

)
− C(ql, q̇l)

(
M(ql)

−1(C(ql, q̇l)q̇l

+G(ql) +K(ql − qm)
)
+

∂G(ql)

∂ql
q̇l +K(q̇l − q̇m)

)
=f4(ql, qm, q̇l) +M(ql)

−1Kq̇m.
(20)

Here, f4(ql, qm, q̇l) collects all terms not related to q̇m to
simplify the notation.
To look at how the system evolves, we take the derivative

ẏ1 =y2

ẏ2 =y3

ẏ3 =y4

ẏ4 =
∂f4(ql, qm, q̇l)

ql
qm

+
∂f4(ql, qm, q̇l)

qm
−M(ql)

−1(C(ql, qm)qm +G(ql) +K(qm − q̇l))

+
∂f4(ql, qm, q̇l)

q̇l
q̇m +

d

dt
M(ql)

−1(Kq̇m)

+M(ql)
−1K

(
J−1(ql − q̇l) + J−1u

)
=F (q, q̇) +M(ql)

−1KJ−1u

(21)

where F (q, q̇) collects all terms not related to u. We can see
that by setting u to be

u = −JK−1M(ql)F (q, q̇) + JK−1M(ql)v (22)

with v ∈ Rm defined as a new control input, the system
transforms into a chain of four integrators

ẏ1 =y2

ẏ2 =y3

ẏ3 =y4

ẏ4 =v

(23)

for which we can more easily design state-feedback control
laws by defining v. We preserve a certain mechanical intuition
of the system as this transformation implies that we can fully
represent (3) using the position, velocity, acceleration, jerk,
and snap of the joint coordinates ql. However, although every
exact state feedback linearizable system results in a chain of
integrators, the output variable y = λ(x) might not have any
mechanical meaning for every system. Nonetheless, as long
as the transformation is valid and defined in the region of
a selected Eigenmanifold of the original system, the general
structure and properties of the Eigenmanifold are preserved
as implied by corollary 1, meaning we can exploit these
properties in our new controller v.
While this derivation is shown specifically for (3), the same
procedure holds true for any system that has a solution for the
state space exact linearization problem. For more technical
details for general systems, we refer back to [19].

A. Trajectory tracking

For an elastic joint manipulator, we can employ exact
state-feedback linearization to develop an exponentially sta-
ble trajectory tracking controller using simple pole-placement
control. If we then subsequently use the previously introduced
reference trajectory (qd(t), q̇d(t)) = (qm(t), q̇m(t)), we show
that the system state converges to the desired mode.
To show that this trajectory can be transformed into the new
change of state variables and is still state-based, smooth, and
viable, we present the following proposition.

Proposition 2. Any nonlinear normal mode (qd(t), q̇d(t))
of Eigenmanifold M can be expressed in normal form of
the system as yd(t) through application of map Ty , and
its derivative ẏd(t) is only dependent on the original state
variables (qd(t), q̇d(t)).

Proof. While the initial statement of this proposition is triv-
ially proven resulting from the fact that map Ty is globally
defined, for completeness we briefly show this fact to be true.
Recall that modal orbits are thus governed by the unforced
evolution of (3) where u = 0 such that

M(ql)q̈l + C(ql, q̇l)q̇l +G(ql) +K(ql − qm) = 0

Jq̈m −K(ql − qm) = 0.
(24)

As transformation Ty : (q, q̇) → y is globally defined,
we apply this to the expression of the mode (qd(t), q̇d(t)),
resulting in

yd1 =qdl

yd2 =q̇dl

yd3 =−M(qdl)
−1

(
C(qdl, q̇dl)q̇dl +G(qdl)

+K(qdl − qdm)
)

yd4 =f4(qdl, qdm, q̇dl) +M(qdl)
−1Kq̇dm

ẏd4 =F (qd, q̇d).

(25)
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Its derivative is defined as
ẏd1 =yd2

ẏd2 =yd3

ẏd3 =yd4

ẏd4 =F (qd, q̇d),

(26)

where we see the dependency on u disappears for ẏd4, which
is an important property which we can employ later in our
control design to fully cancel out any nonlinearities through a
feed-forward term.

With this in mind, we present the following control candi-
date lemma:

Lemma 2. Given the system described in (3) that permits an
Eigenmanifold M containing modes (qd(t), q̇d(t)), with i ∈
N+ the controller

u =− JK−1M(q1)F (q, q̇) + JK−1M(q1)v

v =ẏd4(t) + k1(yd1(t)− y1) + k2(yd2(t)− y2)

+ k3(yd3(t)− y3) + k4(yd4(t)− y4),

(27)

where [k1, k2, k3, k4] are negative definite gains chosen such
that that all the poles of (23) are negative definite and yd(t) =
[yd1, yd2, yd3, yd4]

T denotes the nonlinear modes expressed in
y by Ty ◦ (qd(t), q̇d(t)), will (exponentially) asymptotically
stabilize the selected mode (qd(t), q̇d(t)) expressed in q with
the input u vanishing to zero, meaning

lim
t→∞

q = qd(t)

lim
t→∞

q̇ = q̇d(t)

lim
t→∞

u = 0.

(28)

Proof. Because y is linear, determining stability of the con-
troller can be done by considering the eigenvalues of the
closed-loop system. We take the error space of y by perform-
ing a linear change of coordinates e(t) = yd(t) − y, which
changes the system to

ė1 =e2

ė2 =e3

ė3 =e3

ė4 =k4e4 + k3e3 + k2e2 + k1e1

(29)

For stability, the eigenvalues of this system should be strictly
negative, which can be checked by looking at det(e− λ) = 0
which is

λ4 − k4λ
3 − k3λ

2 − k2λ− k1 = 0 (30)

From this, we gather that we can select any combination of
{k1, k2, k3, k4} which are positive and result in all negative
eigenvalues. An example of this could be selecting gains such
that the characteristic polynomial is equal to (λ+ 1)4, which
would require gains [k1, k2, k3, k4] = [−1,−4,−6,−4].
If all eigenvalues of (29) are negative, we may thus state

lim
t→∞

e = 0

lim
t→∞

ė = 0

lim
t→∞

y = yd(t)

lim
t→∞

ẏ = ẏd(t).

(31)

After applying the inverse map T−1
y ◦ y

lim
t→∞

q = qd(t)

lim
t→∞

q̇ = q̇d(t),
(32)

which we may insert into v as

lim
t→∞

v =ẏd4(t). (33)

Taking the limit of the original control u, we then obtain

lim
t→∞

u = −JK−1M(qdl)F (qd, q̇d) + JK−1M(qdl)ẏd4(t)

(34)
and thus

lim
t→∞

u =− JK−1M(qdl)F (qd, q̇d)

+ JK−1M(qdl)F (qd, q̇d)

=0,

(35)

therefore showing that state (q, q̇) indeed asymptotically con-
verges to the selected mode (qd(t), q̇d(t)) and that the input
torque u simultaneously vanishes to zero.

B. Sliding mode control

As sliding mode control is presented alongside full feedback
linearization in the numerical validation section, we perform
the same steps for a simple sliding mode controller. A proce-
dure similar to [30] is applied.

Lemma 3. Given the system described in (3) that permits
an Eigenmanifold M containing modes (qd(t), q̇d(t)), the
controller

u =− JK−1M(y1)
(
c1(yd2 − y2) + c2(yd3 − y3)

+ c3(yd4 − y4)− F (y) + ẏd4 + S
)

S =ϵsat(s) + αs

s =c1(yd1 − y1) + c2(yd2 − y2)

+c3(yd3 − y3) + (yd4 − y4)

(36)

where ϵ,α, c1, c2, c3, c4 are strictly positive scalars and
[yd1, yd2, yd3, yd4]

T = Ty ◦ [qd(t), q̇d(t)]T denotes the selected
normal mode expressed in the y state variables from (16),
will asymptotically stabilize the selected mode (qd(t), q̇d(t))
expressed in q with the input u vanishing to zero, meaning

lim
t→∞

q = qd(t)

lim
t→∞

q̇ = q̇d(t)

lim
t→∞

u = 0.

(37)

Proof. We start by once again introducing the change of state
variables (16) to (3). In these new state variables, we introduce
the time-varying surface

s(t) =c1(yd1 − y1) + c2(yd2 − y2)

+c3(yd3 − y3) + (yd4 − y4),
(38)

which is invariant when y = yd(t), meaning ṡ(t) =
0|y(t)∈yd(t). As such, the control problem can be rephrased
to be

lim
t→∞

s(t) = 0, (39)
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which can be achieved exponentially by looking for the desired
control behaviour

ṡ(t) = S(t) = −
(
ϵsign(t) + αs(t)

)
(40)

where ϵ and α are both strictly positive scalar gains. the
discontinuous function sign(s) is defined as

sign(s) =


1 , s > 0

0 , s = 0

−1 , s < 0

(41)

To circumvent possible chattering behaviour introduced by this
function, we can replace sign(s) by the continuous saturation
function

sat(s) =


1 , s > 1

s ,−1 ≤ s ≤ 1

−1 , s < 1

(42)

Asymptotic stability of this behaviour for s(t) can be verified
by defining a Lyapunov function

V (s, t) =
1

2
s(t)T s(t) ≥ 0, (43)

which is only equal to zero in the equilibrium point s(t) = 0.
Then checking for the derivative

V̇ (s, t) =−
(
ϵsat(s) + αs

)
s

=− (ϵsat(s)s+ αs2) ≤ 0|s(t)̸=0

(44)

which shows asymptotical Lyapunov stability for s(t) = 0.
However, since V (s, t) is time-varying, we also need to look
at the second derivative

V̈ (s, t) = −(ϵsat(2s)− 2αs) (45)

which is bounded when s(t) is bounded, and thus fulfills
Barbalat’s lemma [22]. Note that the statement d

dtsat(s)s =
sat(2s) can be trivially verified by writing out (42).
Then, looking at the derivative of s(t), we obtain

ṡ(t) =c1(yd2 − y2) + c2(yd3 − y3)

+c3(yd4 − y4) + ẏd4

−F (y) +M(y1)
−1KJ−1u,

(46)

where ẏ4 is replaced by the expression already derived in
(21). Subsequently reordering this equation and inserting (40)
results in the control law

u =− JK−1M(y1)
(
c1(yd2 − y2) + c2(yd3 − y3)

+ c3(yd4 − y4)− F (y) + ẏd4 + S
)

S =ϵsat(s) + αs

s =c1(yd1 − y1) + c2(yd2 − y2)

+c3(yd3 − y3) + (yd4 − y4)

(47)

Subsequently verifying that limt→∞ u = 0 is done by setting
y = yd(t) in (47) and seeing that all terms vanish in this case,
thus concluding our proof.

Fig. 22: A projection of the 1st Eigenmanifold of the system
considered in simulation 3.

APPENDIX B
LOCALITY OF THE EIGENMANIFOLD PARAMETERIZATION

For the PD-like manifold controller, A closed parame-
terization ξm of the Eigenmanifold is required to calculate
(Q(ξm), Q̇(ξm)). A challenge which can occur at higher
energy levels is the potential locality of ξm. In the simulations,
the tangent parameterization as introduced in [4] is employed,
with the parameterization being

ξm = (qm, q̇m)

qm = cT q

q̇ = cT q̇

(48)

where c denotes the Eigenvector that defines an Eigenspace
of the linearized system. Specifically, we assume that M is a
prolongation of this Eigenspace. However, as this is a local
parameterization, only a subset of the full Eigenmanifold can
be considered. This is illustrated in Figure 22, where self-
intersection of the Eigenmanifold projection occurs at higher
energy levels. To obtain a closed form parameterization of
M, it subsequently becomes necessary to consider multiple
tangent spaces to the Eigenmanifold, rather than only qm, q̇m,
increasing the complexity of the parameterization. Another
natural parameterization of the Eigenmanifold is energy and
arclength, but in this case at least two charts are required due
to the S1 topology of the arclength [4]. While Eigenmanifold-
based controllers exist that do not require a closed parame-
terization of M [7], our control method trivializes the entire
problem by only requiring a projection of the generator R into
the tangent bundle TX.


