
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Model-Predictive
Fuzzy Control for
Search-and-Rescue
Path-Planning of
Multi-Agent Systems
Craig Maxwell

Model-Predictive
Fuzzy Control for

Search-and-Rescue
Path-Planning of

Multi-Agent Systems
by

Craig Maxwell

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on Monday January 27, 2025 at 10:00 AM.

Student number: 4735102
Project duration: September 4, 2023 – January 27, 2025
Thesis committee: Dr. A. Jamshidnejad, TU Delft, Supervisor

Dr. E. van Kampen, TU Delft, Chair
Dr. A.A. Nunez Vicencio, TU Delft, Examiner
PhD candidate. M. Baglioni, TU Delft, Additional

Cover: Camp Fire Rages in California, NASA Earth Observatory image
by Joshua Stevens.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

This thesis represents the culmination of a significant chapter in my life, and I would like to share a
snapshot of that journey here. When I first embarked on this research, I was an optimistic student
eager to take the novel proposal I was provided and construct a research project from the ground up.
However, various factors, both within and beyondmy control, culminated during the Covid-19 pandemic
and had a devastating impact on my ability to complete the work, leading to a prolonged struggle with
self-confidence.

Last year, I returned with the ambition to prove tomyself that I could complete this endeavour. Balancing
a full-time position as an aerospace engineer, I evaluated my previous work and started anew. This
allowedme to redefinemy thesis objectivesmore strategically while integrating with and complementing
subsequent research in the department.

During the past year, I have dedicated everything I could to this research. This project has been the
most challenging undertaking of my academic and professional career, forcing me to refine my abilities
as both an engineer and a researcher. Through this journey, I have becomemore confident, critical, and
strategic in my approach. I firmly believe that engineers bear a professional obligation to address the
critical challenges faced by society. For this reason, I chose to apply my thesis to search-and-rescue
operations in response to natural disasters. As climate change accelerates, so does the urgency for
adaptation solutions, and I hope the skills I have developed during this process will enable me to make
meaningful contributions in the future.

I would like to extend my deepest gratitude to Anahita, my daily supervisor. Your expert knowledge,
incisive feedback, and profound technical understanding have been pivotal to the success of this re-
search. You have not only guided me scientifically but also taught me the importance of precision and
critical thinking. I am also immensely grateful to Mirko, for your technical support, stimulating debates,
and constructive feedback throughout this journey. Your encouragement and insights have been in-
strumental in helping me refine both my scientific skills and my personal resilience.

I am deeply thankful to my family for their unwavering encouragement and belief in me throughout
this journey. To my fiancée, whom I met at this institution: without your continued support and belief
in me, I would not have found the strength to return and finish this chapter. Finally, to all the friends
and colleagues at the TU Delft Faculty of Aerospace Engineering: I am continuously inspired by your
achievements and dedication, which motivate me to aim higher.

Craig Maxwell
Delft, January 2025

i

Executive Summary

The research presented in this thesis investigates the formulation, design, application, and analysis of a
novel controller termed a Model Predictive Fuzzy Control (MPFC) controller for the mission-planning of
a multi-agent system in a system with dynamic and uncertain states. The proposed MPFC architecture
integrates supervisory Model Predictive Control (MPC) with Fuzzy Logic Control (FLC) to balance the
predictive planning of MPC and real-time adaptability and simplicity of FLC.

Multi-agent systems operating in complex environments face significant challenges, including the need
for real-time coordination, adaptive control, and decision-making under uncertain conditions. Existing
control strategies exhibit limitations when applied to such scenarios, for instance MPC may struggle
with the size and complexity of the optimisation required while FLC cannot adapt agent behaviour to
the system over time. The primary objective of this research is to explore the suitability of the MPFC
method for this type of system by defining a generic mathematical model for the MPFC controller,
implementing it for a specific case study, and performing performance analysis, sensitivity analysis,
and design exploration of the MPFC by simulation.

The case study is selected as a multi-agent system for victim detection in a Search and Rescue (SaR)
operation in response to a natural disaster. Models are developed for fire propagation, wind dynamics,
and agent dynamics, which include dynamic, unknown, and uncertain states which the multi-agent
system must adapt performance to.

This research delivers several contributions to the field of autonomous control of multi-agent systems.
A generic mathematical formulation of the MPFC for the selected control application is developed, en-
abling the application of this method to other mission-planning case studies. The implementation of
the MPFC model to a SAR case study, in which a specific case study is developed and demonstrated,
combines models used in other fields of research and provides a platform for simulation and analysis
of the controller. The performance analysis of the MPFC against two other controller architectures to
validate the advantages of the MPFC against other control methods in the case study. The sensitivity
analysis of the MPFC in the context of the case study to understand the influence of design parame-
ters on the controller performance. Finally, the design exploration of the MPFC to understand design
choices in the configuration of the controller and their impact on controller performance.

The results show that the MPFC can consistently outperform other control methods in a range of scenar-
ios, and exhibits robust performance under varying conditions in the case study. However, numerous
limitations and challenges in the design of the MPFC are also identified and these present opportunities
for further research and improved applications of the technique. This is still an immature control tech-
nique and there are many opportunities for further research to make improvements and contributions
to this field.

ii

Contents

Preface i

Executive Summary ii

Nomenclature viii

Literature Study xiii

1 Introduction 1
1.1 Problem Statement . 1

1.1.1 Proposed Control Architecture . 1
1.1.2 Applications . 2
1.1.3 Research Context . 2

1.2 Project Scope . 3
1.3 Project Objectives . 3
1.4 Research Questions . 4
1.5 Thesis Structure . 4

2 Mathematical Model 5
2.1 Environment Model Formulation . 5
2.2 Agent Model Formulation . 5
2.3 MPFC Formulation . 6

2.3.1 Controller Architecture . 6
2.3.2 Global Objective Function . 6
2.3.3 Generic MPFC Optimisation Function . 7
2.3.4 Generic FLC Architecture . 7

3 Simulation and Prediction Model 8
3.1 Environment Simulation Model . 8

3.1.1 Fire Model . 9
3.2 Agent Simulation Model . 14

3.2.1 Agent Task Model . 15
3.2.2 Agent Scan Model . 15
3.2.3 Agent Dynamics Model . 15

3.3 Local Controller Model . 16
3.3.1 FLC Local Controller . 16
3.3.2 MPC Local Controller . 22

3.4 Supervisory Controller Model . 22
3.4.1 Global Objective Function . 22
3.4.2 Prediction Horizon . 24
3.4.3 Supervisory Controller Prediction Model . 24
3.4.4 Supervisory Controller Architectures . 25

4 Results 30
4.1 Simulation Configuration . 30

4.1.1 Global Simulation Parameters Configuration . 31
4.1.2 Environment Model Configuration . 31
4.1.3 Agent Model Configuration . 32
4.1.4 Controller Configuration . 33
4.1.5 Standard Results Format . 34

4.2 MPFC Performance Analysis . 34
4.2.1 Two-Agent System in Small Static Disaster Environment 34

iii

Contents iv

4.2.2 Two-Agent System in Small Dynamic Disaster Environment 36
4.2.3 Four-Agent System in Small Dynamic Disaster Environment 38
4.2.4 Decentralised vs centralised MPFC controller architectures 40
4.2.5 Two-Agent System in Complex Dynamic Disaster Environment 43

4.3 MPFC Sensitivity Analysis . 45
4.3.1 Number of Agents . 46
4.3.2 Disaster Environment Size . 46
4.3.3 MPC Step Size . 47
4.3.4 Prediction Horizon . 48

4.4 MPFC Design Exploration . 48
4.4.1 Prediction Modes . 48
4.4.2 Type-1 vs Type-2 FLC . 49
4.4.3 Local Prediction Maps . 52

5 Conclusions and Recommendations 57
5.1 Conclusion . 57

5.1.1 MPFC Performance Analysis (Research question RQ1) 58
5.1.2 MPFC Sensitivity Analysis (Research question RQ2) 58
5.1.3 MPFC Design Exploration (Research question RQ3) 59

5.2 Recommendations . 59
5.2.1 Multi-Objective MPFC . 59
5.2.2 Distributed MPFC Architecture . 60
5.2.3 Stochastic MPFC . 60
5.2.4 Imperfect Predictive Model . 60
5.2.5 Physics-Informed Neural Network MPFC . 60
5.2.6 High-Fidelity Simulation . 60

References 62

A FLC Rule Base 63

B Simulation Configuration Scripts 65

C Simulation Seeds 66

List of Figures

2.1 Centralised MPFC Architecture . 6

3.1 Colour scheme for fire map states . 9
3.2 Chart of Ignition Probability with Burn Time . 10
3.3 Fire Spread over time with M structure . 11
3.4 Variation of F with vwind . 12
3.5 Fire Spread over time with vwind . 13
3.6 Agent travel time, ttravel(slocationa , sm), with vwind . 16
3.7 FLC local controller for agent a . 16
3.8 FIS Input MFs . 19
3.9 Parallel coordinate plot of default FIS Output MFs . 20
3.10 Inputs and Outputs of FLC . 21
3.11 MPC Local Controller . 22
3.12 MPC Controller Sequencing . 24
3.13 Centralised MPFC architecture . 26
3.14 Decentralised MPFC architecture for a single agent . 27
3.15 Centralised MPC architecture . 28
3.16 Decentralised MPC architecture . 29

4.1 Single instance of environment setup for basic small disaster environment, red dots in-
dicate agent positions. Each subplot represents the value of the labelled environmental
state variable for the corresponding cell, from the lower limit (dark blue) to upper limit
(yellow) of the parameter range. 32

4.2 Fire spread progression for basic small dynamic environment, example simulation . . . 32
4.3 Line styles for simulation results . 34
4.4 J(k) for a two-agent system in small static disaster environment, 5 simulations 34
4.5 t

opt for a two-agent system in small static disaster environment, 5 simulations 35
4.6 J(k) for two-agent system in small dynamic disaster environment, 5 simulations 36
4.7 t

opt for a two-agent system in small dynamic disaster environment, 5 simulations 37
4.8 J(k) for four-agent system in small dynamic disaster environment, 5 simulations 38
4.9 t

opt for a four-agent system in small dynamic disaster environment, 5 simulations 39
4.10 J(k) for centralised vs decentralised MPFC with na = 2, 5 simulations 40
4.11 t

opt for centralised vs decentralised MPFC with na = 2, 5 simulations 41
4.12 J(k) for centralised vs decentralised MPFC with na = 4, 5 simulations 42
4.13 t

opt for centralised vs decentralised MPFC with na = 4, 5 simulations 43
4.14 Single instance of environment setup for complex disaster environment, red dots indicate

agent positions. Each subplot represents the value of the labelled environmental state
variable for the corresponding cell, from the lower limit (dark blue) to upper limit (yellow)
of the parameter range. 44

4.15 Single instance of fire spread for complex disaster environment 44
4.16 J(k) for a two-agent system in complex disaster environment, 5 simulations 45
4.17 Sensitivity with number of agents, na, 5 simulations each 46
4.18 Sensitivity with environment size, nx,env · ny,env, 5 simulations each 47
4.19 Sensitivity of MPFC with MPC step, ∆tMPC, 5 simulations each 47
4.20 Sensitivity of MPFC with prediction step, ∆tpred, 5 simulations each 48
4.21 J(k) for prediction modes, ∆kMPC = 30, 5 simulations 49
4.22 Comparison of predictionmodes: sensitivity of centralisedMPFCwith tMPC, 5 simulations

each . 50

v

List of Figures vi

4.23 J(k) for Type-1 vs Type-2 FLC in MPFC architecture, 5 simulations 51
4.24 Mean optimisation time for Type-1 vs Type-2 FLC in MPFC architecture, 5 simulations . 51
4.25 Extraction of local map from global map, where rlocal = 1 52
4.26 J(k) with rlocal, 3 simulations . 53
4.27 Mean optimisation time with rlocal . 53
4.28 Disaster environment setup for local map simulation, red dots indicate agent positions . 54
4.29 Fire spread progression for local map simulation, example simulation 54
4.30 J(k) with rlocal, 3 simulations . 55
4.31 Mean optimisation time with rlocal, 3 simulations . 56

List of Tables

3.1 Definition of fire state, M fire
m (k) . 9

3.2 Building types represented by values in the structure map, M structure
m 10

3.3 MF parameters for FLC inputs. 17
3.4 Default output MF parameters . 19

4.1 Sensitivity Analysis Parameters . 45

B.1 MATLAB Script Handles for Each Simulation . 65

C.1 Simulation Seed List . 66

vii

Nomenclature

viii

Nomenclature

Acronyms

FIS Fuzzy Inference System

FLC Fuzzy Logic Control

MF Membership Function

MPC Model Predictive Control

MPFC Model Predictive Fuzzy Control

SaR Search and Rescue

TSK Takagi-Sugeno-Kang

UAV Unmanned Aerial Vehicle

Agent Model Variables

σ Agent sensor information confidence degradation factor

θtravel Agent travel direction (rad)

ϕagent(k) Agent state vector (all agents) at simulation time step k

ϕsearch(sm, k) Search state vector at cell sm and time k

τ task
a (k) ∈ {0, 1} Current task of agent a at time k (0: travel, 1: scan)

M c,building Coarsened building occupancy map

M c,downwind(k) Coarsened downwind map at simulation time step k

M c,fire(k) Coarsened fire state map at simulation time step k

M c,victim(k) Coarsened victim map at simulation time step k

M scan(k) Scan certainty of each environment map cell at time k

slocationa (k) Location vector of agent a at time k

stargeta (k) Target cell vector of agent a at time k

tscana (k) Remaining scan time for agent a at time k (s)

ttravela (k) Remaining travel time for agent a at time k (s)

∆xsearch Length of cells mapped by the agent in the x-axis (m)

∆ysearch Length of cells mapped by the agent in the y-axis (m)

η ∈ [0, 1] Sensor accuracy of an agent

nqueue Number of target cells that are queued for the agent to visit by MPC

nx,search Number of cells mapped by agents in the x-axis

ny,search Number of cells mapped by agents in the y-axis

tscan-cell Time to scan a cell (s)

vairspeed Agent airspeed (ms−1)

vground Agent ground speed (ms−1)

ix

Nomenclature x

Controller Model Parameters

cobj,1 Objective function non-fire proximity factor

cobj,2 Objective function fire proximity factor

θoutput(k) Vector of FLC/controller parameters at simulation time step k

I FLC input parameters

Matt(a, k) Attraction map for agent a at time k

M fire-risk(k) Fire risk map at simulation time step k

Mpriority(k) Priority map at simulation time step k

M response(a, k) Response time map for agent a at time k

∆kMPC Number of simulation time steps between each MPC prediction

∆kpred Number of simulation time steps in prediction horizon

fagent-action,FLC
a (·) Agent action function from FLC output for agent a

fFLC
a (·) FLC function for agent a

nMF,in Number of input membership functions to the FIS

nMF,out Number of output membership functions

nMPC Number of MPC steps over prediction horizon

ua(k) Control input to agent a at simulation time step k

Environment Model Variables

ϕenv(sm, k) Environment state vector at cell sm and time step k

F (k) Fire spread probability map at simulation time step k

F (k) Fire spread probability map at simulation time step k

Mbuilding Proportion of cell environment map cell occupied by buildings

Mburn-time(k) Burn time of each environment map cell at simulation time step k

M fire(k) Fire map at simulation time step k

M structure Flammability of each environment map cell

M victim Number of victims in each environment map cell

Mwind-direction Wind direction factor in fire spread model

Mwind-distance Wind distance factor in fire spread model

W Wind spread map

∆xenv Length of environment cells in the x-axis (m)

∆yenv Length of environment cells in the y-axis (m)

θwind Wind direction (rad)

cfs1 Fire model base spread probability constant

cfs2 Fire model wind sensitivity constant

cwm1 Wind model wind direction influence constant

cwm2 Wind model wind direction scale constant

cwmd Wind model distance constant

lx,env Length of the disaster environment in the x-axis (m)

Nomenclature xi

ly,env Length of the disaster environment in the y-axis (m)

nc Total number of cells in bounded environment

nx,env Number of environment cells in x-axis

ny,env Number of environment cells in y-axis

pignition Probability of ignition of a cell s at a time step k based on proximity to active fires

rwind Radius of cells in x− and y − axis that an active fire may ignite

tburnout Set time for cell to transition from ’catching fire’ to ’extinguished’ (s)

tburn((s)c) Time since cell ignition (s)

tignition Set time for cell to transition from ’catching fire’ to ’burning’ (s)

vwind wind velocity (ms−1)

Indexes

a Agent index

f Active fire index

k Simulation time step index

m Flattened cell index, m ∈ {1, . . . , nc} where nc = nx · ny

q Task queue index

s Simulation index, s ∈ {1, . . . , nsim}

Mathematical Symbols

·̄ Mean state value

·̂ Predicted state value

F(·) Deterministic environment dynamics function

G(·) Uncertain environment dynamics function

H(·) Agent dynamics function

K(·) Search state update function

Performance Metrics

(J0.025(k), J0.975(k)) 95% confidence interval bounds for mean instantaneous objective

(t
opt
0.025(k), t

opt
0.975(k)) 95% confidence interval bounds for mean optimisation time

f̂obj Predicted objective function at each cell/time step

Ĵ(k) Predicted instantaneous objective at simulation time step k

J(k) Mean instantaneous objective over nsim simulations at simulation time step k

t
opt

(k) Mean optimisation time of MPC or MPFC prediction step over nsim simulations at simulation
time step k

fobj Objective function evaluated at each cell/time step

Js(k) Instantaneous objective for simulation i at time step k

topts (k) Optimisation time of MPC or MPFC prediction step for simulation s at simulation time step k

Simulation Parameters

s Spatial cell location

∆sm Area of a single cell m (m2)

Nomenclature xii

∆t Simulation time step duration (s)

ηfire-spread ∈ [0, 1] Random fire spread probability threshold for ignition

ccoarsen Agent spatial information map coarsening factor

k Simulation time step

k′ Simulation time step dummy variable during prediction

N Total number of time steps in simulation

na Number of agents

nc = nx · ny Total number of cells, for specified grid dimension [nx, ny]

nmax-func-eval Max number of function evaluations for optimisation

nmax-generations Max number of generations for genetic algorithm

nmax-iterations Max number of iterations for optimisation

npopulation Population size for genetic algorithm

nsim Number of simulations used to compute mean and confidence intervals

rlocal Local radius defining the local prediction map size (See section 4.4)

T Simulation end time (s)

Literature Study

xiii

AE4020 Literature Study
Hierarchical Integrated Control for Mission
Planning of Search-and-Rescue Drones

Craig Maxwell

Te
ch
ni
sc
he

U
ni
ve
rs
ite

it
D
el
ft

Contents

1 Introduction 1
1.1 Disaster Environment Overview . 1
1.2 Controller Overview . 1
1.3 Literature Review Overview . 1

2 Quadrotor UAV Search and Rescue Review 3
2.1 Disasters. 3
2.2 Disaster Management . 3
2.3 Urban Search and Rescue . 4
2.4 Search and Rescue Robotics . 4

2.4.1 Robotics Systems for Search . 5
2.4.2 Robotics Systems for Mapping . 5
2.4.3 Robotics Systems for Coverage. 6
2.4.4 Robotics Systems for Logistics . 6
2.4.5 Other Applications of Robotics Systems . 6
2.4.6 Proposed System . 7

2.5 Simulation of USAR Missions . 7
2.6 Summary . 8

3 Control Methods 9
3.1 Model predictive control . 9

3.1.1 Introduction to model predictive control . 9
3.1.2 Development of model predictive control . 11
3.1.3 Fast model predictive control. 12
3.1.4 Stable model predictive control . 12
3.1.5 Linear model predictive control . 12
3.1.6 Nonlinear model predictive control . 17
3.1.7 Robust model predictive control . 19
3.1.8 Hybrid model predictive control . 20
3.1.9 Explicit model predictive control . 21
3.1.10Stochastic model predictive control . 21
3.1.11State-of-the-art . 24

3.2 System Network Structures. 25
3.2.1 Centralised control systems . 26
3.2.2 Decentralised control systems . 26
3.2.3 Distributed Control System. 26
3.2.4 Coordination of autonomous agents . 27
3.2.5 Communication Protocols. 28

3.3 Fuzzy Control . 29
3.3.1 Fuzzy Logic . 29
3.3.2 Fuzzy Logic Control . 30
3.3.3 State-of-the-art . 33

3.4 Adaptive Control . 33
3.4.1 Fuzzy Model Reference Learning Control . 34
3.4.2 State-of-the-art . 34

4 Problem Definition 37
4.1 Problem Statement . 37
4.2 Research Question . 37

Bibliography 39

iii

Nomenclature

Acronyms

Symbol Description Dimensions Units

DMC Dynamical Matrix Control

FANET Flying Ad-hoc Network

FMRLC Fuzzy Model Reference Learning Controller

GPC Generalised Predictive Control

LIDAR Light Detection and Ranging

LTI Linear Time Invariant

MF Membership Function

MIAC Model Identification Adaptive Control

MILP Mixed Integer Linear Programming

MIMO Multiple Input Multiple Output

MPC Model Predictive Control

MRAC Model Reference Adaptive Control

NIST National Institute of Standards and Technology

PID Proportional-Integral-Derivative

PMRAC Predictive Model Reference Adaptive Control

QP Quadratic Programming

SAR Search and Rescue

SfM Structure from Motion

SISO Single Input Single Output

SLAM Simultaneous Localisation and Mapping

UAV Unmanned Aerial Vehicle

UAV Unmanned Ground Vehicle

USAR Urban Search and Rescue

Greek Symbols

Symbol Description Dimensions Units

𝜆 Scalar cost function weight

𝜇 Membership function

v

vi Nomenclature

Σ Model

𝜽 Vector of intelligent controller parameters

Roman Symbols

Symbol Description Dimensions Units

X Universe of discourse

A State matrix

B Input matrix

C Output matrix

D Feedthrough matrix

d Unmeasured disturbances

H Toeplitz matrix

I Identity matrix

u Control inputs

v Measured disturbance

w Sensor measurement noise

W፮ Cost function weighting matrix

W፲ Cost function weighting matrix

x System states

xref Reference system states

y Outputs

𝐽 Cost function

𝐾፝ Derivative gain

𝐾። Integral gain

𝐾፩ Proportional gain

𝑛፮ Control horizon

𝑛፲ Prediction horizon

Superscripts

Symbol Description Dimensions Units

→ Predicted values over prediction horizon

𝑘 Current sampling step

1
Introduction

This literature review is for a thesis project in which a hierarchical predictive adaptive fuzzy control
system for mission-planning of distributed multi-agent systems is proposed. The thesis project pro-
poses the application of this system for the control of a quadrotor system for search-and-rescue (SAR)
missions in an urban disaster zone. The desired property of the control system is that it is able to adjust
the behaviour of the agents by using model-based predictions about the future state of the system.
This should improve performance of the quadrotor system, especially in highly dynamic environments.
The objective of this literature review is to review theory related to the thesis project and detail the
current state-of-the-art in the relevant fields.

1.1. Disaster Environment Overview
The selected operating environment for the system is an urban disaster zone, which contains stochastic
and dynamic states. The objective of the quadrotor system is to ”rescue the maximum number of
victims in the minimum possible time, while minimising risk to rescue personnel”. The quadrotor
system must attempt to maximise this objective while performing the tasks it is required to do.

1.2. Controller Overview
In this review, the proposed controller is named as a ”Predictive Model Reference Adaptive Controller”,
or PMRAC. The PMRAC controller has two loops: an inner loop in which a fuzzy controller controls
the quadrotor to follow the reference state trajectory, and an outer loop in which a model predictive
control (MPC) controller performs online tuning of the intelligent controller parameters. MPC is a
control method in which, at each sampling instance, an optimal sequence of predicted control inputs is
determined that optimise a constrained cost function based on predicted system states over a receding
horizon. The first control step in the sequence is implemented and the process is repeated at the next
sampling instance. In the case of the PMRAC controller, this control step is the set of parameters for
the intelligent controller. Two components make up the MPC controller: a predictive model which is
used to predict future system states and an optimiser which is used to perform an optimisation on a
constrained cost function.

1.3. Literature Review Overview
This literature review is structured as follows: Chapter 2 includes a review of disasters, disaster man-
agement, search-and-rescue, search-and-rescue robotics, requirements for an autonomous multi-agent
quadrotor UAV system for search-and-rescue, and finally the identification of relevant states for the
UAV system in the disaster zone. Chapter 3 reviews relevant control theory for the proposed control
system, including MPC, adaptive control, fuzzy control, and network structures. Finally, in chapter 4,
the problem statement is given, research questions are identified, and the conclusion to the literature
review is made.

1

2
Quadrotor UAV Search and Rescue

Review

2.1. Disasters
Disasters are events which cause major disruption to the functioning of a society, resulting in human,
material, economic, and/or environmental damage [1]. They can be broadly classified into natural dis-
asters, which occur due to natural processes and phenomena, and man-made disasters, which occur
due to human activity. Natural disasters include hydro-meteorological (floods, storms, droughts, wild-
fires), geophysical (earthquakes, volcanic activity, tsunamis, and landslides), and biological (toxins and
pathogenic microorganisms) disasters; while man-made disasters include conflicts, famine, industrial
accidents, and transport accidents [2].

To understand the scale of major disasters, examples from recent history can be inspected. For
instance, the 2010 Haiti earthquake struck near the Port-au-Prince metropolitan region, resulting in
between 122,000 and 316,000 casualties1. The cumulative impact of hydro-meteorological and geo-
physical disasters between 1998 and 2017 is estimated by the UN office for Disaster Risk Reduction
(UNDRR) as responsible for 1.3 million deaths, 4.4 billion people injured, displaced, or homeless, and
US$2,908 billion of economic losses [4].

A bar plot of average annual casualties from natural disasters in each decade is shown in figure 2.1.
Between 1998-2017, earthquakes accounted for 56% of total deaths despite only accounting for 7.8%
of reported disasters [6], making them by far the deadliest type of natural disaster in recent decades2.

2.2. Disaster Management
Disaster management is the preparation for and response to a disaster. The goal of disaster man-
agement is to minimise disruption to the community in the form of casualties, injuries, displacement,
and economic impact when a disaster occurs. The disaster management process can be split into the
following phases:

1. Prevention and mitigation - includes long-term strategies such as risk assessment, simulation and
modelling, structural mitigation (e.g. earthquake-resistant structures), and training.

2. Prediction and warning - includes prediction/diagnosis of a disaster and assembling resources to
mitigate the disaster, such as early warning systems and monitoring systems.

3. Preparedness - involves minimisation of negative impacts of the disaster through planning, such
as resource inventory, logistical, evacuation, and communication planning.

4. Response and Relief - occurs directly after a disaster, and is highly dependent on the type of
disaster. Response involves data collection tasks (situation analysis, damage assessment, crisis

1 Sources vary, with 122,000 - 167,000 casualties estimated according to [3] or 316,000 according to government estimates.
2 In previous decades, droughts have been the deadliest form of natural disaster

3

4 2. Quadrotor UAV Search and Rescue Review

Figure 2.1: Average annual casualties caused by natural disasters per decade [5]

mapping) and logistical tasks (evacuation, dispatching of resources to the disaster zone), while
relief is concerned with saving the lives of those affected by the disaster. This includes search
and rescue, rubble and debris removal, logistics, and delivery of relief supplies.

5. Recovery, reconstruction, and rehabilitation - involves long-term activities that occur after the
disaster, such as reconstruction of infrastructure, housing, communication networks, water and
hygiene systems. Another critical task is evaluation, to determine whether the disaster manage-
ment can be improved for future disasters.

Response and relief is the most critical phase when it comes to saving lives, as the survival rate of
disaster victims is highly dependent on response time. In [7], Barbera and Cadoux claim that victim
survival rates drop off dramatically 48 hours after a disaster, while in [8], Coburn, Spence, and Pomonis
develop a model for victim survival rates after a disaster, and determine that the survival rate is very
sensitive to improvements in rescue efficiency during the first 36 hours, after which the sensitivity
decreases drastically. Methods to improve the efficiency of response and rescue tasks therefore have
a high potential of reducing casualty rates.

2.3. Urban Search and Rescue
Search and rescue (SAR) a task within the relief phase of disaster management, with the objective
to ”rescue the largest number of people in the shortest time, while minimizing risk to rescuers” [9]3.
When carried out in urban environments, it is termed urban search and rescue (USAR). Due to their high
population density and developed infrastructure, urban areas are especially sensitive to disasters, and
have the potential for far greater numbers of victims than other environments. Most victims in disaster
zones are trapped underneath collapsed infrastructure, often in voids with no easy access, making
detection and extrication of victims extremely difficult and hazardous. Additionally, the disaster zone
may present many other hazards to victims and rescuers, and may include unstable rubble/buildings,
sharp metal and glass, fires or explosions, chemicals, ruptures water lines, exposed electrical cables,
and so on.

2.4. Search and Rescue Robotics
Research into search and rescue robotics began in the 1990’s, motivated by the 1995 Great Hanshin
earthquake in Kobe, Japan. The scale of such disasters tends to overwhelm the resources of the USAR
3 This is given in the context of natural disasters.

2.4. Search and Rescue Robotics 5

mission, and robotic systems have the potential to assist with difficult tasks or automate large tasks.
Additionally, as mentioned in section 2.1, disaster zones may contain many hazards which present
danger to rescuers. Robotic systems can be applied to tasks which would put rescuers in danger,
placing the danger on replaceable products instead of valuable human lives. In [10], Tanzi et. al.
identify two main requirements for robotic systems in search and rescue: firstly, they must have a
sufficient level of autonomy as communication with the control centre is likely to be sporadic, and
secondly the system must have a sufficient level of reliability with respect to accidental (safety) or
malicious (security) risks.

In [11], Murphy et al. identify four categories of SAR robotic modality:

• Unmanned ground vehicles (UGVs)

• Unmanned aerial vehicles

• Unmanned water surface vehicles

• Unmanned underwater vehicles

and three categorised of size:

• Man-packable - robot can be completely fitted into several backpacks.

• Man-portable - robot can be carried short distances by several people.

• Maxi - robot must be transported by vehicle.

Each modality is suited to a different operating environment, and has its own set of strengths
and weaknesses. UAVs have the highest manoeuvrability, highest speed, lowest cost, and lowest
complexity. This is because commercial, mass-produced UAVs can operate in disaster environments,
while other modalities, such as UGVs, must be highly specialised and complex to be able to navigate
uneven, unstable terrain. Disadvantages of UAVs include low endurance due to battery limitations
and low payload capacity. Therefore, UAVs are the most suitable choice for large-scale USAR mission
planning systems, and will be the modality considered in this project.

2.4.1. Robotics Systems for Search
Search is the task of searching for and identifying victims in a disaster environment, allowing appropriate
responses to be arranged in order to aid the victims. This is a major focus of SAR robotics research.
In [10], Tanzi et. al. propose a multi-task UAV system with several types of UAV cooperating, in which
a quadrotor system performs autonomous detection and classification of people in a disaster zone.
The quadrotor UAVs are equipped with a visual sensor payload and an image recognition algorithm is
applied to the signal in order to detect and classify people. People are classified into victim or rescuer,
adult or child, and level of injury. Additionally, a signature is applied to each person to keep track
of them. A separate algorithm is proposed to detect groups of victims, determine their direction and
speed, and predict their future positions. Another algorithm is suggested for detection of buried victims
by using a sensor to detect electromagnetic emissions from mobile devices. In [12], Rudol and Doherty
demonstrate an autonomous UAV system which uses a combination of visual and thermal sensors for
the detection and classification of human-sized heat signatures. In [13], Andriluka et al. examine the
performance of several people-detection pattern recognition algorithms, concluding that part-based
models result in higher performance, as they can deal with partially occluded people. In [14], Apvrille
et. al. demonstrate a quadrotor system capable of autonomous navigation in indoors environments
with a single 720p camera sensor. Data from the camera is used to reconstruct the environment for
navigation and to identify, classify, and track people.

Aside from victim detection, work has also focused on feature detection. In [15], Kong et al. use a
multi-agent quadrotor UAV system for the detection of access holes in rubble.

2.4.2. Robotics Systems for Mapping
Mapping is the task of building a digital representation of the disaster zone. Most mapping tasks
are performed by UAVs, which have the advantage of high manoeuvrability. In the system proposed
by Tanzi et al. [10], a group of cooperating fixed-wing UAVs equipped with LIDAR (light detection

6 2. Quadrotor UAV Search and Rescue Review

and ranging) sensors are proposed to either build 3D digital surface models of the disaster zone, or
alternatively to build 2D maps using optical sensors. An alternative mapping method involves 3D
reconstructions of buildings, for which quadrotor UAVs are well suited due to smaller mapping areas
and higher required manoeuvrability. Simultaneous Localisation And Mapping (SLAM) is a mapping
method that allows robots to perform 3D mapping and localise themselves in the environment at the
same time, and is commonly used for autonomous navigation. In [16], Schmuck and Chli present a
collaborative multi-agent quadrotor UAV SLAM algorithm, where UAVs navigate and build a local map
of the environment, which is regularly sent to a centralised computer and fused with the local maps
of other agents. The SfM (Structure from Motion) algorithm is used for 3D mapping by using features
extracted from a sequence of images to build a 3D model of the environment. In [17], Verykokou et.
al. compare the performance of commercial and open source image recognition software in an SfM
algorithm to detect features in images of a destroyed building captured from a UAV. They then propose
a fast algorithm for the determination of overlapping images.

2.4.3. Robotics Systems for Coverage
Coverage is the task of optimising sensor coverage of a given area. This can either include optimising
sensor placement and numbers for continuous coverage of a given area or optimising coverage over
a given area while minimising some objective, such as time. This task can be applied to search for
victims, ensuring network coverage, and so on.

2.4.4. Robotics Systems for Logistics
Logistics are another necessary task in search and rescue operations that can be automated, in order to
remove danger from rescuers or to allow workforce to be focused elsewhere. Some such tasks involve
delivery of equipment and supplies to rescue teams or distribution points in the disaster zone. UAVs
are suitable for the transport of high-priority lightweight packages such as small rescue equipment
and medical supplies. In the package delivery industry, DHL, Amazon, FedEx, and Ali Baba are among
companies with ongoing development programmes for autonomous UAV package delivery systems.
Furthermore, commercial solutions for autonomous UAV logistics systems are already available in some
countries. Zipline Inc. [18] is a company that operates a system of autonomous fixed-wing UAVs in
Rwanda and Ghana for fast delivery of urgent medical supplies, such as blood and vaccines, to medical
centres. Their system has achieved success in these countries, as their poor road infrastructure means
that deliveries by land can take upwards of five hours compares to an average delivery time of 30
minutes by their system.

2.4.5. Other Applications of Robotics Systems
Structural inspection could be performed by robotic systems which use specialised sensors to scan
the inside and outside of structures and determine whether they are stable and safe for rescuers to
enter. In [19], Torok, Golparvar-Fard, and Kochersberger present an algorithm for automatic 3D crack
detection from images of damaged buildings. In their paper, they propose the implementation of
their algorithm in a small autonomous ground robot, which will navigate inside the building to perform
structural inspection. In [20], Erdelj et al. mention the use of autonomous UAVs for this purpose.

Suggested autonomous robotic solutions tomedical assessment and intervention tasks include using
agile robots to open communication channels between medical personnel and victims, inspection of the
victim with diagnostic or visual sensors, or provision of life support or medicine to inaccessible victims.

Ground robots could be used for extrication and evacuation of victims, particularly when the disaster
zone poses a safety risk to rescue personnel, such as chemical, biological, and radioactive hazards.

Robotic machinery and exoskeletons could be used for rubble removal, allowing heavier rubble to
be moved faster without requiring heavy machinery, which is difficult to manoeuvre into position when
there is uneven and unstable terrain.

Finally, robotic systems can be used to establish a temporary communications infrastructure to be
used by the search-and-rescue operation, as ground-based networks are often damaged or destroyed
following a disaster. Tanzi et al. [10] propose a system of autonomous blimps operating to establish
a communications backbone above the disaster zone, allowing communication between autonomous
vehicles or rescuers. In [21], Bekmezci, Sahingoz, and Temel survey flying ad-hoc network (FANET)
methods for multi-agent UAV systems. They identify the advantages of this type of communication
infrastructure to be cost, scalability, survivability, and speed.

2.5. Simulation of USAR Missions 7

2.4.6. Proposed System
In this chapter, a top-level review of disasters and disaster management has been performed in sections
2.1 and 2.2, and urbanised environments have been identified as the most critical in terms of saving
lives in the event of a major disaster. In section 2.3, search-and-rescue was identified as a critical stage
of disaster management in which robotic systems could provide assistance. In section 2.4, a review is
provided of academic research in this area, types of search-and-rescue robots, and search-and-rescue
robot tasks. UAVs are identified as the most versatile type of robot in terms of performing search-and-
rescue tasks, and are chosen as the focus of this project. Of the tasks identified in section 2.4.6, UAVs
are a suitable choice for search, mapping, coverage, navigation, logistics, structural inspection, medical
assessment and intervention, and temporary communications infrastructure. The goal of this project is
therefore to develop an autonomous robotic system which can be applied to urban search-and-rescue
missions to perform these tasks. The requirements for the system properties are:

• Scalability - ability to scale well in order to adapt to size of disaster zone. As the disaster zone
can range from individual buildings to entire cities the system must have sufficient performance
in all areas.

• Fault tolerance / stability - loss of autonomous agents must have minimal impact on system
performance.

• Responsiveness - react to changes in the systems state by modifying behaviour. As the disaster
zone is complex and dynamic, the system must be able to adapt its behaviour accordingly to
remain effective.

• Deployability - the system must be able to be deployed quickly in rough terrain.

• Endurance - the system must operate over an extended period of time.

The scalability requirement can be met by distributed and decentralised systems, as the volume
of data that must be communicated or processed for each agent reaches some limit regardless of the
number of agents. The stability requirement can also be met by decentralised or distributed systems,
as they can continue to operate in the event of failures to some nodes. The responsiveness requirement
can be met by designing a suitable controller for the system. The deployability requirement can be met
by using man-portable or man-packable equipment for the system. Finally, the endurance requirement
can be directly met by blimps, or by other forms of UAV that can return to charging points. Quadrotors
are selected as the type of UAV for the search-and-rescue system. This is as they are the most
manoeuvrable type of UAV, are commercially available, and can perform the widest range of required
tasks.

In this thesis project, a decentralised predictive model-based adaptive intelligent controller is pro-
posed for the control of the quadrotor UAVs. No other publications were found in which this type of
controller was used. A block diagram of the proposed controller is shown in figure 2.2. The controller
consists of two loops: an inner loop where an intelligent controller is used to control the quadrotor
inputs, and an outer loop where a model predictive controller (MPC) is used to tune the parameters of
the intelligent controller. A detailed review of the proposed control system and relevant control theory
is provided in chapter 3.

2.5. Simulation of USAR Missions
The control system proposed in the thesis project will be verified through simulation. Therefore, it
is important to build an accurate model of the disaster zone in which the system operates. There is
currently no standardised digital disaster zone simulator for USAR missions, and limited research has
been published on this issue. In [22], Kitano et al. identify the requirements for an accurate SAR
simulation:

• Building and housing damage - simulation of the damage done to buildings.

• Fire - simulation of fires igniting and behaviour of spreading, taking into consideration building
types and weather.

8 2. Quadrotor UAV Search and Rescue Review

Figure 2.2: Model predictive adaptive control (MPAC) block diagram for a single agent. This block diagram does not include
disturbances. u is the vector of control inputs to the quadrotor, x is the vector of system states, xref is the vector of reference

system states, 𝜽 is the vector of intelligent controller parameters, and ፉ is the cost function. The model predictive control
(MPC) block is in the outer loop, shown in the dashed box. The ”predictive model” block makes predictions on future system
states and the ”optimiser” block calculates an optimal set of parameters for the intelligent controller which minimises a cost

function. The inner loop operates at a fast sampling rate in order to control the fast dynamics of the quadrotor while the outer
loop operates at a slower sampling rate due to higher computational complexity and the slower dynamics of the disaster zone.

• Life-line damage - simulation of damage to life-line instrastructure, including roads, electrical
grid, water and gas lines, and so on.

• Victim modelling - simulation of victims and their state after the disaster.

• Refugee behaviour modelling - simulation of large numbers of victims attempting to escape from
disaster site. This can impede traffic from the SAR mission which is attempting to access the
disaster zone.

The National Institute of Standards and Technology (NIST) USAR test facility is a standardised
environment for USAR disaster simulation, and is used to test robotic systems in real environments. In
[23], Wang, Lewis, and Gennari develop a virtual simulation of the NIST USAR test facility using a game
engine, which implements robot dynamics, environment dynamics, and sensor modelling along with
the modelled environment. This environment is designed for ground robotic systems, with features
such as uneven terrain, small spaces, and unstable objects. However, this environment is small and
therefore not suitable for testing multi-agent UAV systems, but it could provide a basis for a full urban
disaster zone simulation.

The simulation of the disaster environment will be built using Gazebo and ROS. ROS is an open-
source robotics simulation framework for developing robot software. Gazebo is an open-source robotics
simulation software, with libraries of robot models, environments, sensor models, and so on. This will
be interfaced with MatLab, where the main control algorithm will be designed, to run the simulation.

2.6. Summary
In this chapter, a multi-agent multi-task quadrotor UAV system has been selected for urban search-
and-rescue missions. The requirements of the system and the relevant disaster zone states were
identified. The concepts of disasters and disaster management were introduced in sections 2.1 and
2.2 respectively. Search-and-rescue was identified as a critical stage of disaster management and
discussed in section 2.3 and urban disaster zones were identified as the environments susceptible
to the greatest number of victims. Types of robotic systems for search-and-rescue were discussed in
section 2.4, and a detailed review of recent literature for different search-and-rescue robotics tasks was
provided. This provided the context for section 2.4.6, where the type of UAV system for autonomous
multi-task search-and-rescue was identified, and finally section 2.5, where the simulation of USAR
missions is discussed.

3
Control Methods

As mentioned, a distributed PMRAC controller is proposed for the cooperative mission-planning of
multi-agent systems. In the controlled system, MPC controllers will be used to perform online tuning
of multiple intelligent controllers in several quadrotors based on predictions of the future system states
and optimisation of an objective function. The system is decentralised, meaning that the information
of system states is based on local measurements and information communicated with nearby agents.
In this review, the controlled system is the system of quadrotors while the control system is the PMRAC
controller which directs the actions of the entire controlled system. This chapter will provide a review
of the theory and the state-of-the-art for the relevant control methods.

3.1. Model predictive control
Model predictive control (MPC) is a control method in which the control law is determined by computing
an optimal sequence of control inputs over a receding horizon at each time step and implementing the
first control input in the sequence. The two elements in a model predictive controller are a predictive
model of the system dynamics and an optimiser. The predictive model predicts the future system states
given the current system states and control input, while the optimiser solves an online optimisation
problem to determine a sequence of future inputs which minimise a cost function.

This section will introduce the theory of MPC and different MPC methods, starting with linear MPC
in section 3.1.5, then nonlinear MPC in section 3.1.6, robust MPC in section 3.1.7, explicit MPC in
section 3.1.9, stochastic MPC in section 3.1.10, and a review of the current state-of-the-art and relevant
aerospace applications in section 3.1.11.

3.1.1. Introduction to model predictive control
First, it is important to establish the mathematical basis of model predictive control. In this report, the
nomenclature 𝑘 is used for the current time step, 𝑛 for the horizon size, and 𝑇 for the time step duration.
The subscripts ← and → denote the past values and predicted future values of a variable respectively
while the notation ~ is used to denote sequences. A simplifying assumption made in this report is that
the system is not multi-rate 1, meaning that sampling and control time steps are synchronised.

The prediction scheme used in MPC is illustrated in figure 3.1, where u፤ is the control input at
time step 𝑘, �̃� is the sequence of system states, and �̃�ref is the sequence of reference system states.
The system states are predicted over the output horizon, [𝑘 + 𝑛፲], and the control input sequence
is predicted over the control horizon, [𝑘 + 𝑛፮], after which the control input is assumed to remain
constant, or Δu፤ = 𝟎 for 𝑘 ∈ 𝑛፮ , … , 𝑛፲. This is an appropriate assumption if the control horizon length
is greater than the settling time for the system.

Figure 3.2 shows a block diagram of an MPC controller at sampling instance 𝑘, where �̄�፤ is the
vector of system states, x፤ is the vector of measured system states, w፤ is the sensor measurement
noise, v፤ is the measured disturbance, d፤ is the unmeasured disturbance, u፤ is the control input vector,
x
→
is the sequence of predicted system outputs, u

→
is the sequence of predicted control inputs, xref

→
is

1 A separate field of MPC is focused on MPC for multi-rate systems, but this is not covered in this review.

9

10 3. Control Methods

Figure 3.1: Illustration of horizons and control input sequence in MPC

Figure 3.2: Model predictive control block diagram at sampling instance ፤.

3.1. Model predictive control 11

the sequence of reference system states, and 𝐽 is the cost function. As previously mentioned, the two
main blocks in an MPC controller are the predictive model and the optimiser.

At sampling instance 𝑘, the predictive model is initialised with the measured disturbances, past
control inputs, and past system states. Using this information, the predictive model predicts the system
states at the next sampling instance, 𝑘 + 1. Based on the predicted system states and the reference
system states, the optimiser then attempts to find an optimal control input at sampling instance 𝑘 + 1
by minimising the cost function 𝐽 subject to constraints. The predicted control input is passed to the
predictive model and this process is repeated over the sequence [𝑘, … , 𝑘 + 𝑛፲]. The first control input
in the predicted control input sequence, u፤ዄኻ, is implemented and the process is repeated at the next
sampling instance.

MPC has numerous advantages over other common control methods:

• Suitability for a wide range of systems due to several factors. Firstly, the optimisation problem
can be customised towards many types of systems, such as non-linear or time-delayed systems.
Additionally, the mathematics can be easily extended from SISO (Single-Input Single-Output)
systems to MIMO (Multiple-Input Multiple-Output) systems. Finally, the model can be customised
for the type of system to be controlled or the desired performance, for instance by including
disturbance models, constraints, nonlinear dynamics, time delays, and so on.

• Constraint handling is integrated into the optimisation problem.

• Stability for linear MPC can be guaranteed under certain weak constraints.

• Good tracking performance is obtainable, as the reference system states over the finite horizon
is considered in the optimisation.

• Adaptation to changing parameters. MPC can be suitable for the control of systems with time-
varying parameters, as it needs only a finite number of future system parameters to compute the
current control law.

• Easier computation compared to infinite horizon control methods.

On the other hand, the main disadvantage of MPC is:

• High computational complexity compared to conventional control methods such as PID. This
may require the use of powerful processors or more efficient optimisation algorithms in order to
implement it in practice.

3.1.2. Development of model predictive control
MPC is a mature control method which was first used in industry in the 1950’s, but first entered
widespread use in the 1980’s. In [24], Lee reviews the progression of MPC from the 1980’s to the
2010’s. The first widely used MPC algorithm was Dynamical Matrix Control (DMC), which was used
in industrial plants in the 1980’s. This method relied on time-domain response models and did not
model disturbances. Around the same time, another MPC method known as Generalised Predictive
Control (GPC) was developed for systems, with the key differences being that is was developed for
SISO systems, used a transfer function model, included stochastic processes, and did not model con-
straints. At the time, these control methods were suitable only for systems with slow dynamics, as the
computational complexity and available hardware limited the controllers to slow sampling times.

In the 1990’s, the state-space model became the most common model used in literature for MPC
controllers. The first nonlinear MPC (section 3.1.6) methods were developed, using nonlinear state-
space models. Robust MPCmethods (section 3.1.7) were also developed, ensuring stability of a system
subject to disturbances with known bounds.

In the 2000’s, the fields of hybrid MPC (section 3.1.8) and explicit MPC (section 3.1.9) emerged.
Additionally, a large volume of research was dedicated to fast MPC, using various tricks to design faster
optimisation algorithms.

12 3. Control Methods

3.1.3. Fast model predictive control
For instance, in [25] Yang and Boyd present an MPC algorithm that calculates the control law online
in the millisecond range, two orders of magnitude faster than in previous methods. This was done by
exploiting the mathematical structure of the quadratic programming (QP) optimisation problem, causing
the number of operations to become linear instead of cubic with respect to the horizon size. Additional
tricks used in their algorithm were warm starting, where the optimisation problem is initialised using
values from the previous sampling instance, and early termination of the optimisation problem after
a several iterations. In [26], Jerez, Goulart, and Richter present several optimisation methods which
allow MPC to be calculated at rates above 1 MHz, again several orders of magnitude faster than the
millisecond-range rates from Yand and Boyd. Whereas the first MPC algorithms could only be used
for systems with slow dynamics such as industrial plants, today the developments of fast optimisation
algorithms and powerful processors have opened opportunities for the application of MPC in systems
with fast dynamics, such as UAVs.

3.1.4. Stable model predictive control
Stability is the ability of a system to retain a bounded output given a bounded input 2. In [27], Mayne
et al. review stability and optimality principles for MPC, where they identify two main approaches to
ensuring stability in MPC. The first is based on using a Lyapunov function, while the second requires
that the state is always shrinking. The main stability methods in MPC are:

• Terminal equality constraint method - the constraint x፤ዄ፧ᑪ = x፟ = 𝟎 is applied to the optimisation
problem, where x፟ is the terminal system state. This was first demonstrated for time-varying,
constrained, nonlinear, discrete-time systems by Keerthi and Gilbert [28]. The drawback to this
is that it may require a large control effort to satisfy the constraint, especially for a small output
horizon 𝑛፲, resulting in poorer performance. Additionally, the constraint may greatly restrict the
set of controllable initial states. The terminal equality constraint is applied to continuous time
systems by Chen and Shaw [29] and unconstrained systems by Magni and Sepulchre [30].

• Terminal cost function method - a terminal cost 𝐹(⋅) is added to the cost function. Bitmead et al.
[31] first applied this method to an unconstrained linear system, using a terminal cost function
with the form 𝐹(x) = 0.5xፓ𝑃 x, where 𝑃 is the terminal value of the Ricatti difference equation.
In an alternative method, Rawlings and Muske [32] chose 𝐹(⋅) to be the cost function for the
stabilising controller 𝑢 = 𝜅፟ ≡ 0.

• Terminal constraint set method - a set of terminal constraints, x፟, which are in the neighbourhood
of the origin and a stabilising controller 𝜅፟(⋅) are employed in the terminal constraint set. This
was first proposed by Michalska and Mayne [33].

• Terminal cost and constraint set method - both a terminal cost and a terminal constraint set are
used. This was first proposed by Sznaier and Damborg [34]. The advantage of this method is
that it can closely approximate the infinite horizon problem for constrained nonlinear systems if
the terminal cost and constraint set are chosen appropriately.

• Contraction constraint method - the constraint ‖x(𝑘 + 1|𝑘)‖ ≤ 𝛼‖x(𝑘)‖, 𝛼 < 1 is imposed, which
ensures the state is reduced at each sampling instance. This was first proposed by Polak and
Yang [35].

3.1.5. Linear model predictive control
Linear MPC is a method of MPC which uses a linear predictive model. The three most common types of
predictive model used in MPC are state-space, transfer function, and finite impulse response models.
State-space models are chosen for the thesis project, as these are the most suitable choice for Multiple-
Input Multiple-Output (MIMO) systems, and this literature review will focus on the use of state-space
models accordingly.

In the design of the predictive model and optimiser, there is a trade-off between accuracy and
computational efficiency. Therefore, it is important to design the model and optimiser to the required
level of detail while maintaining time-steps on the desired time-scale. For the optimiser, this may involve
2 This is one definition of stability in the context of control theory.

3.1. Model predictive control 13

formulation of the cost function, design of the optimisation algorithm, design of the constraints, the
prediction horizon, the control horizon, and the sampling time. For the predictive model, this can
involve selection of the number of parameters, choice of linear or non-linear model, and modelling of
disturbances.

Linear time invariant state-space model
The state-space model for a discrete-time linear time invariant (LTI) system is given by:

⎡
⎢
⎢
⎣

𝑥ኻ(𝑘 + 1)
𝑥ኼ(𝑘 + 1)

⋮
𝑥፧(𝑘 + 1)

⎤
⎥
⎥
⎦

xᑜᎼᎳ

=
⎡
⎢
⎢
⎣

𝑎ኻ,ኻ 𝑎ኻ,ኼ ⋯ 𝑎ኻ,፧
𝑎ኼ,ኻ 𝑎ኼ,ኼ ⋯ 𝑎ኼ,፧
⋮ ⋮ ⋱ ⋮
𝑎፧,ኻ 𝑎፧,ኼ ⋯ 𝑎፧,፧

⎤
⎥
⎥
⎦

A

⎡
⎢
⎢
⎣

𝑥ኻ(𝑘)
𝑥ኼ(𝑘)
⋮

𝑥፧(𝑘)

⎤
⎥
⎥
⎦

xᑜ

+
⎡
⎢
⎢
⎣

𝑏ኻ,ኻ 𝑏ኻ,ኼ ⋯ 𝑏ኻ,፦
𝑏ኼ,ኻ 𝑏ኼ,ኼ ⋯ 𝑏ኼ,፦
⋮ ⋮ ⋱ ⋮
𝑏፧,ኻ 𝑏፧,ኼ ⋯ 𝑏፧,፦

⎤
⎥
⎥
⎦

B

⎡
⎢
⎢
⎣

𝑢ኻ(𝑘)
𝑢ኼ(𝑘)
⋮

𝑢፦(𝑘)

⎤
⎥
⎥
⎦

uᑜ

⎡
⎢
⎢
⎣

𝑦ኻ(𝑘)
𝑦ኼ(𝑘)
⋮

𝑦፧(𝑘)

⎤
⎥
⎥
⎦

yᑜ

=
⎡
⎢
⎢
⎣

𝑐ኻ,ኻ 𝑐ኻ,ኼ ⋯ 𝑐ኻ,፧
𝑐ኼ,ኻ 𝑐ኼ,ኼ ⋯ 𝑐ኼ,፧
⋮ ⋮ ⋱ ⋮
𝑐፥,ኻ 𝑐፥,ኼ ⋯ 𝑐፥,፧

⎤
⎥
⎥
⎦

C

⎡
⎢
⎢
⎣

𝑥ኻ(𝑘)
𝑥ኼ(𝑘)
⋮

𝑥፧(𝑘)

⎤
⎥
⎥
⎦

xᑜ

+
⎡
⎢
⎢
⎣

𝑑ኻ,ኻ 𝑑ኻ,ኼ ⋯ 𝑑ኻ,፦
𝑑ኼ,ኻ 𝑑ኼ,ኼ ⋯ 𝑑ኼ,፦
⋮ ⋮ ⋱ ⋮
𝑑፥,ኻ 𝑑፥,ኼ ⋯ 𝑑፥,፦

⎤
⎥
⎥
⎦

D

⎡
⎢
⎢
⎣

𝑢ኻ(𝑘)
𝑢ኼ(𝑘)
⋮

𝑢፦(𝑘)

⎤
⎥
⎥
⎦

uᑜ

(3.1)

or, in compact form:

x፤ዄኻ = Ax፤ +Bu፤
y፤ = Cx፤ +Du፤

(3.2)

Where 𝑘 is the discrete time index (sampling instance); x፤ ∈ ℝ፧ᑩ , u፤ ∈ ℝ፧ᑦ , and y፤ ∈ ℝ፧ᑪ are
the system state, control input, and system output vectors respectively; and A, B, C, and D are the
state matrix, input matrix, output matrix, and feed-forward matrices respectively.

The linear state-space model can be modified to include disturbances modelled as integrated white
noise, d፤, where d፤ዄኻ = d፤+𝑣፤ and 𝑣፤ is unknown and zero-mean. The linear state-space model with
output disturbances is given by:

x፤ዄኻ = Ax፤ +Bu፤; y፤ = Cx፤ +Du፤ + d፤ (3.3)

with the augmented model given by:

z፤ዄኻ = �̃�z፤ + �̃�u፤; y፤ = 𝐂z፤ +Du፤ + 𝑣፤ (3.4)

where

z፤ዄኻ = [
x፤ዄኻ
d፤ዄኻ

] ; �̃� = [A 𝟎
𝟎 I

] ; �̃� = [B𝟎] ; 𝐂 = [C I] (3.5)

and an observer must provide estimates on x and d.
Alternatively, the state-space model with state disturbances is given by:

x፤ዄኻ = Ax፤ +Bu፤ + Fd፤; y፤ = Cx፤ +Du፤ (3.6)

with the augmented model given by:

z፤ዄኻ = �̃�z፤ + �̃�u፤; y፤ = 𝐂z፤ +Du፤ + 𝑣፤ (3.7)

where

z፤ዄኻ = [
x፤ዄኻ
d፤ዄኻ

] ; �̃� = [A F
𝟎 I

] ; �̃� = [B𝟎] ; 𝐂 = [C 𝟎] (3.8)

14 3. Control Methods

Prediction for linear model predictive control
The general form prediction equation is given by:

y
→፤
=HΔu

→፤ዅኻ
+ P x

←፤
(3.9)

Where H is a Toeplitz matrix3 of the system step response and P is a matrix dependent on the
model parameters. Using the state-space model, the vector of future predictions is given by:

⎡
⎢
⎢
⎢
⎣

x፤ዄኻ
x፤ዄኼ
x፤ዄኽ
⋮

x፤ዄ፧ᑪ

⎤
⎥
⎥
⎥
⎦

x
→ᑜ

=
⎡
⎢
⎢
⎢
⎣

𝐴
𝐴ኼ
𝐴ኽ
⋮
𝐴፧ᑪ

⎤
⎥
⎥
⎥
⎦

Pᑩᑩ

x፤ +
⎡
⎢
⎢
⎢
⎣

𝐵 0 0 ⋯
𝐴𝐵 𝐵 0 ⋯
𝐴ኼ𝐵 𝐴𝐵 𝐵 ⋯
⋮ ⋮ ⋮ ⋱

𝐴፧ᑪዅኻ𝐵 𝐴፧ᑪዅኼ𝐵 𝐴፧ᑪዅኽ𝐵 ⋯

⎤
⎥
⎥
⎥
⎦

Hᑩ

⎡
⎢
⎢
⎢
⎣

u፤
u፤ዄኻ
u፤ዄኼ
⋮

u፤ዄ፧ᑪዅኻ

⎤
⎥
⎥
⎥
⎦

u
→ᑜᎽᎳ

(3.10)

and

⎡
⎢
⎢
⎢
⎣

y፤ዄኻ
y፤ዄኼ
y፤ዄኽ
⋮

y፤ዄ፧ᑪ

⎤
⎥
⎥
⎥
⎦

y
→ᑜ

=
⎡
⎢
⎢
⎢
⎣

𝐶𝐴
𝐶𝐴ኼ
𝐶𝐴ኽ
⋮

𝐶𝐴፧ᑪ

⎤
⎥
⎥
⎥
⎦

P

x፤ +
⎡
⎢
⎢
⎢
⎣

𝐶𝐵 0 0 ⋯
𝐶𝐴𝐵 𝐶𝐵 0 ⋯
𝐶𝐴ኼ𝐵 𝐶𝐴𝐵 𝐶𝐵 ⋯
⋮ ⋮ ⋮ ⋱

𝐶𝐴፧ᑪዅኻ𝐵 𝐶𝐴፧ᑪዅኼ𝐵 𝐶𝐴፧ᑪዅኽ𝐵 ⋯

⎤
⎥
⎥
⎥
⎦

H

u
→፤ዅኻ

(3.11)

or, in compact form:

x
→፤
= P፱፱x፤ +H፱u→፤ዅኻ

y
→፤
= Px፤ +Hu

→፤ዅኻ
(3.12)

The control law is calculated from the minimisation of a cost function. The cost function is typically
formulated as either an 𝑙ኻ, 𝑙ኼ, or 𝑙ጼ-norm of the tracking error and control input rate. The 𝑙ኻ-norm is
the sum of all individual terms in a vector, the 𝑙ኼ-norm is the square root of the sum of all individual
terms in a vector squared, and the 𝑙ጼ-norm is the largest absolute value of the terms in a vector. Any
of these norms can be used in the cost function, although the 𝑙ኼ-norm is the most common one to use.

Generalised Predictive Control Algorithm
One of the earliest popular MPC algorithms was the Generalised Predictive Control (GPC) algorithm,
developed by Clarke, Mohtadi, and Tuffs [36, 37]. In the GPC algorithm, the control law is determined
from the minimisation of an 𝑙ኼ-norm cost function over a finite horizon.

𝐽 =
፧ᑪ

∑
።዆ኺ
‖r፤ዄ። − y፤ዄ።‖

ኼ
ኼ + 𝜆

፧ᑦዅኻ

∑
።዆ኺ

‖Δu፤ዄ።‖
ኼ
ኼ

=
፧ᑪ

∑
።዆ኺ
‖e፤ዄ።‖

ኼ
ኼ + 𝜆

፧ᑦዅኻ

∑
።዆ኺ

‖Δu፤ዄ።‖
ኼ
ኼ

(3.13)

where r is the reference system output, Δu is the change in control input, e = r−y is the tracking
error, and the subscript 2 denotes the 𝑙ኼ-norm. This is applicable to SISO and MIMO systems, although
an alternative formulation for MIMO systems is given by:
3A Toeplitz matrix is a matrix in which the descending diagonals are all constant.

3.1. Model predictive control 15

𝐽 =
፧ᑪ

∑
።዆ኺ
‖W፲(r፤ዄ። − y፤ዄ።)‖

ኼ
ኼ + 𝜆

፧ᑦዅኻ

∑
።዆ኺ

‖W፮(Δu፤ዄ።)‖
ኼ
ኼ

=
፧ᑪ

∑
።዆ኺ
‖W፲(e፤ዄ።)‖

ኼ
ኼ + 𝜆

፧ᑦዅኻ

∑
።዆ኺ

‖W፮(Δu፤ዄ።)‖
ኼ
ኼ

(3.14)

Where 𝜆 is a scalar weight and W፲, and W፮ are weighting matrices which can be tuned to get the
desired response 4. As mentioned previously, it is assumed that the control rates beyond the control
horizon are zero, or Δu፤ዄ።|፤ = 0 for 𝑖 ≤ 𝑛፮. Another formulation which avoids the use of control input
increments is:

𝐽 =
፧ᑪ

∑
።዆ኺ
‖e፤ዄ።‖

ኼ
ኼ + 𝜆

፧ᑦዅኻ

∑
።዆ኺ

‖u፤ዄ። − uፒፒ‖
ኼ
ኼ (3.15)

where uፒፒ is the deviation from the steady-state control input. In compact form, the cost function
from equation 3.13 is:

𝐽 = ‖r
→
− y
→
‖
ኼ

ኼ
+ 𝜆‖Δu

→
‖
ኼ

ኼ

‖e
→
‖
ኼ

ኼ
+ 𝜆‖Δu

→
‖
ኼ

ኼ

(3.16)

The control law is calculated by determining an optimal future control rate input sequence Δu
→

which

minimises the cost function:

min
ጂu→

𝐽 = ‖e
→
‖
ኼ

ኼ
+ 𝜆‖Δu

→
‖
ኼ

ኼ
(3.17)

The control law is implemented as u፤ = u፤ዅኻ + Δuኺ|፤. A problem with the GPC algorithm is that
stability is not guaranteed as the optimisation is performed over a finite horizon, and may not be stable
afterwards. Therefore to ensure stability, methods such as those discussed in section 3.1.4 must be
applied.

Generalised Predictive Control using State-Space Model
There are two formulations of the GPC algorithm for state-space models: with or without state aug-
mentation. In the augmented state-space method, the augmented state-space model is defined as:

[x፤ዄኻ
u፤

] = [A B
𝟎 I

]

�̂�

[x፤
u፤ዅኻ

]

�̂�

+ [B
I
]

�̂�

Δu፤

y፤ = [C D]

�̂�

[x፤
u፤ዅኻ

] +DΔu፤ + d፤

(3.18)

Implementing the GPC algorithm following the same steps as before, the cost is given by:
4 The weighting matrices are positive definite and diagonal.

16 3. Control Methods

min
u→

𝐽 = ‖r
→
−HΔu

→
− P �̂�፤ −Ld‖

ኼ
+ 𝜆‖Δu

→
‖
ኼ

(3.19)

Where L is a vector of ones. The control law can be calculated to be:

Δu፤ = eፓኻ(HፓH + 𝜆I)ዅኻHፓ[r
→
− [P ,L] [�̂�𝐤

d
]]

= P፫r→
− �̂� [�̂�𝐤

d
]

(3.20)

Where �̂� = eፓኻ(HፓH +𝜆I)ዅኻHፓ[P ,L], P፫ = eፓኻ(HፓH +𝜆I)ዅኻHፓ, d is the disturbance estimate,
eፓኻ = [I , 𝟎, … , 𝟎], and L = [I , I , ⋯]ፓ.

Without state augmentation, the optimisation problem is given by:

min
u→

𝐽 = [x
→
− x፬፬]ፓQ[x→ − x፬፬] + [u→ − u፬፬]ፓR[u→ − u፬፬] (3.21)

Where x፬፬ and u፬፬ are estimates of the steady-state values of the state and input vectors. This can
be rearranged to:

min
u→

𝐽 = [P፱፱x+H፱u]ፓQ[P፱፱x+H፱u→
] + u

→
ፓRu

→
(3.22)

The optimal control law is then given by:

u
→
= −[Hፓ

፱QH፱ +R]ዅኻHፓ
፱QP ፱፱x = −Kx (3.23)

The optimal control law is then given by:

uk − u፬፬ = −eፓኻ[Hፓ
፱QH፱ +R]ዅኻHፓ

፱QP ፱፱(x− x፬፬) (3.24)

Constrained Generalised Predictive Control Algorithm
Constraints may be applied to control inputs, control input rates, and outputs. In this paper, the
underline notation is used to signify minimum constraints (e.g. u) and the overline to signify maximum
constraints (e.g. u). The control input rate, control input, and output constraints at sampling instance
𝑘 are given by:

Δu ≤ Δu፤ ≤ Δu; u ≤ u፤ ≤ u; y ≤ y፤ ≤ y (3.25)

The matrix of constraints from sampling instance 𝑘 to the prediction horizon for the input rate,
input, and output constraints are given by:

⎡
⎢
⎢
⎣

Δu
Δu
⋮
Δu

⎤
⎥
⎥
⎦

ጂU

≤
⎡
⎢
⎢
⎣

Δu፤
Δu፤ዄኻ
⋮

Δu፤ዄ፧ᑦዅኻ

⎤
⎥
⎥
⎦
≤
⎡
⎢
⎢
⎢
⎣

Δu
Δu
⋮
Δu

⎤
⎥
⎥
⎥
⎦

ጂU

;
⎡
⎢
⎢
⎣

u
u
⋮
u

⎤
⎥
⎥
⎦

U

≤
⎡
⎢
⎢
⎣

u፤
u፤ዄኻ
⋮

u፤ዄ፧ᑦዅኻ

⎤
⎥
⎥
⎦
≤
⎡
⎢
⎢
⎣

u
u
⋮
u

⎤
⎥
⎥
⎦

U

;
⎡
⎢
⎢
⎢
⎣

y

y

⋮
y

⎤
⎥
⎥
⎥
⎦

Y

≤
⎡
⎢
⎢
⎣

Δy፤
Δy፤ዄኻ
⋮

Δy፤ዄ፧ᑪዅኻ

⎤
⎥
⎥
⎦
≤
⎡
⎢
⎢
⎣

y
y
⋮
y

⎤
⎥
⎥
⎦

Y

(3.26)

In compact form, these equations are given by:

ΔU ≤ Δu
→
≤ ΔU ; U ≤ u

→
≤ U ; Y ≤ y

→
≤ Y (3.27)

The constraints can be rearranged into a single set:

3.1. Model predictive control 17

CΔu
→
− d፤ ≤ 0 (3.28)

where

C =

⎡
⎢
⎢
⎢
⎢
⎣

I
−I
Cፈ/ጂ
−Cፈ/ጂ
H
−H

⎤
⎥
⎥
⎥
⎥
⎦

; d =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ΔU
−ΔU

U −Lu፤ዅኻ
−U −Lu፤ዅኻ

Y −QΔu
←
− Py

←
−Y −QΔu

←
− Py

←

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.29)

These can then be implemented into the optimisation problem.
In many situations, it may be infeasible to satisfy all desired constraints at once. In this case, the

constraints can be reformulated into an optimisation problem, and a weighting matrix applied to the
constraints to allow for soft and hard constraints:

min
ጂu→

W‖CΔu
→
− d፤‖

ጼ
(3.30)

This allows soft constraints to be relaxed in order to find a feasible solution. The weighting matrix
W has values W።,፣ = ∞ for hard constraints and W።,፣ = 0 for satisfied constraints. The stability of
a constrained controller cannot be guaranteed, even if the unconstrained controller is stable. If the
prediction horizon and control horizon is large enough, however, the constrained controller performance
should be similar to the unconstrained case.

3.1.6. Nonlinear model predictive control
Nonlinear MPC uses a nonlinear prediction model. This causes the optimisation problem to become
non-convex and more challenging to solve from an optimality and stability viewpoint. Grüne and Pannek
[38] give the nonlinear constant reference MPC algorithm as:

Algorithm 1: Basic nonlinear MPC algorithm for a constant reference xref ≡ x∗ at each sampling
instance 𝑘
1 Measure the system state x(𝑘) ∈ 𝕏
2 Set xኺ = x(𝑘) and solve the optimal control problem:

min 𝐽(xኺ,u(⋅)) =
፧ᑪ

∑
።዆ኺ
𝑙(x፮(𝑖,xኺ),u(𝑖)) (3.31a)

with respect to u(⋅) ∈ 𝕌፧ᑪ(𝑥ኺ) (3.31b)
subject to x፮(0,xኺ) = xኺ, (3.31c)

x፮(𝑖 + 1,xኺ) = 𝑓(x፮(𝑖,xኺ),u(𝑖)) (3.31d)

and denote the obtained optimal control sequence by u∗(⋅) ∈ 𝕌፧ᑪ(xኺ)
3 Implement the NMPC control law 𝜇፧ᑪ(x(𝑛)) = u∗(0) ∈ 𝕌 at the next sampling instance.

where the stage cost, 𝑙, is the 𝑙ኼ-norm:

𝑙(x,u) = ∫
ፓ

ኺ
𝐿(𝜌(𝑡, 0,x,u),u(𝑡))𝑑𝑡 = ‖x‖ኼኼ + 𝜆‖u‖

ኼ
ኼ (3.32)

An assumption made by this algorithm is that an optimal control sequence u∗(⋅) exists. This algorithm
also assumes that the first term in the sequence, u∗(0), is implemented while the others are discarded,

18 3. Control Methods

though in reality the predicted control input sequence is often used to initialise the optimisation algo-
rithm for faster convergence. Constraints can be implemented in the optimisation problem in the same
way as usual.

The basic nonlinear MPC algorithm for a time varying reference is given by:

Algorithm 2: Basic nonlinear MPC algorithm for a time varying reference xref at each sampling
instance 𝑘.
1 Measure the system state x(𝑘) ∈ 𝕏
2 Set xኺ = x(𝑘), solve the optimal control problem:

min 𝐽(𝑘,xኺ,u(⋅)) =
፧ᑪ

∑
።዆ኺ
𝑙(𝑘 + 𝑖,x፮(𝑖,xኺ),u(𝑖)) (3.33a)

with respect to u(⋅) ∈ 𝕌፧ᑪ(xኺ) (3.33b)
subject to x፮(0,xኺ) = xኺ, (3.33c)

x፮(𝑖 + 1,xኺ) = 𝑓(x፮(𝑖,xኺ),u(𝑖)) (3.33d)

and denote the obtained optimal control sequence by u∗(⋅) ∈ 𝕌፧ᑪ(xኺ).
3 Implement the NMPC control law 𝜇፧ᑪ(𝑛,x(𝑛)) = u∗(0) ∈ 𝕌 at the next sampling instance.

The extended nonlinear MPC algorithm includes dependencies of 𝑓 and 𝕏 on 𝑘:

Algorithm 3: Extended nonlinear MPC algorithm for a constant reference xref at each sampling
instance 𝑘.
1 Measure the system state x(𝑘) ∈ 𝕏
2 Set xኺ = x(𝑘), solve the optimal control problem:

min 𝐽(xኺ,u(⋅)) =
፧ᑪ

∑
።዆ኺ
𝜔፧ᑪዅ።𝑙(x፮(𝑖,xኺ),u(𝑖)) + 𝐹(x፮(𝑛፲ ,xኺ)) (3.34a)

with respect to u(⋅) ∈ 𝕌፧ᑪ(xኺ) (3.34b)
subject to x፮(0,xኺ) = xኺ, (3.34c)

x፮(𝑖 + 1,xኺ) = 𝑓(x፮(𝑖,xኺ),u(𝑖)) (3.34d)

and denote the obtained optimal control sequence by u∗(⋅) ∈ 𝕌፧ᑪ(xኺ).
3 Implement the NMPC control law 𝜇፧ᑪ(𝑛,x(𝑛)) = u∗(0) ∈ 𝕌 at the next sampling instance.

The extended nonlinear MPC algorithm for a time varying reference is given by:

3.1. Model predictive control 19

Algorithm4: Extended nonlinear MPC algorithm for a time varying reference 𝑥ref at each sampling
instance 𝑘.
1 Measure the system state x(𝑘) ∈ 𝕏
2 Set 𝑥ኺ = 𝑥(𝑘), solve the optimal control problem:

min 𝐽(𝑥ኺ, 𝑢(⋅)) =
፧ᑪ

∑
።዆ኺ
𝜔፧ᑪዅ።𝑙(𝑘 + 𝑖, 𝑥፮(𝑖, 𝑥ኺ), 𝑢(𝑖)) + 𝐹(𝑘 + 𝑛፲ , 𝑥፮(𝑛፲ , 𝑥ኺ)) (3.35a)

with respect to 𝑢(⋅) ∈ 𝕌፧ᑪ(𝑥ኺ) (3.35b)
subject to 𝑥፮(0, 𝑥ኺ) = 𝑥ኺ, (3.35c)

𝑥፮(𝑖 + 1, 𝑥ኺ) = 𝑓(𝑥፮(𝑖, 𝑥ኺ), 𝑢(𝑖)) (3.35d)

and denote the obtained optimal control sequence by 𝑢∗(⋅) ∈ 𝕌፧ᑪ(𝑥ኺ).
3 Implement the NMPC control law 𝜇፧ᑪ(𝑛, 𝑥(𝑛)) = 𝑢∗(0) ∈ 𝕌 at the next sampling instance.

As can be seen, depending on the control task, an appropriate nonlinear MPC algorithm can be
formulated.

3.1.7. Robust model predictive control
The basic MPC algorithm makes the assumption that the model Σ is exactly the same as the system
Σኺ. This can result in sub-optimal performance for real systems subject to uncertainties. Robustness
is the property of being able to maintain stability and achieve control objectives for all permutations
of a bounded uncertainty [39]. Robust MPC is a method of MPC in which an optimal sequence of
control inputs is calculated while ensuring that constraints will be satisfied for all future permutations
of bounded uncertainties. The robust MPC state-space model includes an unmeasured noise w፤ in the
model:

Σ ∶ {
x፤ዄኻ = Ax፤ +Bu፤ +Hw፤

y፤ = Cx፤ +Du፤ +Kw፤
(3.36)

where uncertainty sets w፤ ∈ 𝒲 and Σኺ ∈ 𝒮 are the input set and covered5 set respectively. The
cost function requires one instance of the model Σ and disturbance w፤. To formulate a cost function
for a model which includes disturbances, the cost function can then be formed in two ways. With the
first method, a nominal model Σ̂ and nominal disturbance �̂�፤ are defined. The nominal cost is then
given by:

min
U

̂𝐽(U ,x፤ , Σ̂, �̂�፤) (3.37)

With the second method, the cost function is formulated as a min-max problem:

min
U

max
ጐ∈𝒮

{wᑜᎼᑚ}
ᑟᑪᎽᎳ
ᑚᎾᎲ ⊆𝒲

𝐽(U ,x፤ , Σ, �̂�፤) (3.38)

This optimisation attempts to minimise the maximum cost obtained from all possible permutations
of the uncertainty variables. Compared to the nominal optimisation, the min-max optimisation is more
computationally intensive and can be more conservative.

Robust MPC is useful for the control of safety-critical systems subject to disturbances with known
bounds, as it will find a sequence of control inputs which guarantees constraints will be met if there
is one. A disadvantage of robust MPC is that it can be overly conservative and may not lead to the
optimal control performance for systems.
5 Set of LTI systems.

20 3. Control Methods

3.1.8. Hybrid model predictive control
Hybrid MPC is focused on the design of MPC controllers for hybrid systems, which are systems that
have both continuous and discrete dynamics. This can be caused by dynamics such as switching,
logical conditions, and discrete variables. Some examples of hybrid systems include and systems
which combine digital and analogue components, such as embedded systems and aviation systems.

Hybrid Systems Models
The general hybrid system state-space model is be given by:

x፤ዄኻ = 𝑓(x፤ ,u፤ ,v፤)
y = 𝑔(x፤ ,u፤ ,v፤) (3.39)

Where 𝑓(⋅) and 𝑔(⋅) are nonlinear noncontinuous functions. The two most commonly used types
of hybrid systems models are piecewise affine (PWA) models and mixed logical and dynamical (MLD)
models [40]. The PWA model is given by:

x፤ዄኻ = A።x፤ +B።u፤ + f ።

y፤ = C።x፤ + g።
for [x፤

u፤
] ∈ 𝒳። (3.40)

where 𝒳። is a partition of the state space given by:

𝒳። ≜ {[
xk

u፤
] |R። [xk

u፤
] ≤ r።} (3.41)

Each subsystem 𝕊። is a component in the PWA system defined by (A። ,B። ,C። ,f ። , g። ,R። , r።) for
𝑖 ∈ {1, 2, ..., 𝑆}. C። ∈ ℝ፫×፧, R። ∈ ℝ፩ᑚ×(፧ዄ፦), f ።, g።, and r። are constant vectors, 𝑛 is the number of
states,𝑚 is the number of inputs, 𝑟 is the number of outputs, and 𝑝። is the number of hyperplanes in𝒳።.

The MLD model integrates logical dynamics by modelling them as constraints. This model is given
by:

x፤ዄኻ = Ax፤ +Bኻu፤ +Bኼ𝜹፤ +Bኽ𝜻፤ (3.42a)
y፤ = Cx፤ +Dኻu፤ +Dኼ𝜹፤ +Dኽ𝜻፤ (3.42b)

Eኻx፤ +Eኼu፤ +Eኽ𝜹፤ +Eኾ𝜻፤ ≤ g (3.42c)

where x፤ = [xፓ፜ (𝑘) xፓ፛(𝑘)] ∈ ℝ፧ᑔ × {0, 1}፧ᑓ is the state vector (with continuous part xፓ፜ (𝑘) and
discrete part xፓ፛(𝑘)), u፤ = [uፓ፜ (𝑘) uፓ፛(𝑘)] ∈ ℝ፦ᑔ × {0, 1}፦ᑓ is the input vector, y፤ = [yፓ፜ (𝑘) yፓ፛(𝑘)] ∈
ℝ፩ᑔ × {0, 1}፩ᑓ is the output vector, and 𝜻፤ ∈ ℝ፫ᑔ and 𝜹፤ ∈ {0, 1}፦ᑓ are the binary and continuous
auxiliary variables respectively, and are defined by equation 3.42c 6.

Hybrid model predictive control algorithm
Stability of hybrid MPC controllers can be ensured with a terminal cost and constraint set method [41].
The cost function is given as:

𝐽(x,u,v) =
፧ᑪ

∑
።዆ኺ
‖y። − yref‖

ኼ
ፐ + ‖u። − uref‖

ኼ
ፑ + ‖v። − vref‖

ኼ
ፓ + 𝐽 (x፧ᑚ − xref) (3.43)

where 𝐽 (x) is the terminal cost function, which is added on for stability. This gives the following
optimisation problem:
6 Auxiliary variables are introduced while transforming logic relations into the model.

3.1. Model predictive control 21

min
u,v

𝐽(x,u,v)

Subject to x(𝑖 + 1) = 𝑓(x። ,u። ,v።)
y። = 𝑔(x። ,u። ,v።)
ℎ(x። ,u። ,v።) ≤ 0
[xፓ። , 𝑢ፓ።]ፓ ∈ 𝑍
x(𝑛፲) ∈ 𝑋፟

(3.44)

where 𝑋፟ is the terminal region. From the optimisation problem, the control law can be established
as usual. The resulting optimisation problem contains a set of linear constraints and discrete integer
decision variables.

3.1.9. Explicit model predictive control
Explicit MPC is focused on solving the MPC optimisation problem offline. This involves partitioning the
state-space into a set of polyhedral regions by defining intervals across the range of the various system
states. The optimisation problem is solved for each combination of system states using multiparametric
programming and the solutions are implemented in a lookup table, reducing the control law to the
piecewise linear function:

u(x) = {
𝐹ኻx+𝑔ኻ if 𝐻ኻx ≤ 𝑘ኻ

⋮ ⋮
𝐹ፌx+𝑔ፌ if 𝐻ፌx ≤ 𝑘ፌ

The online computation is then reduced to determining the polyhedral region associated with the
current system state and applying the associated controller input.

For some systems, explicit MPC can be implemented to have much faster rates than traditional MPC
methods, making it particularly useful in systems with fast dynamics. Additionally, software certification
is easier for this type of controller as the behaviour of the controller is explicitly defined, which is
important for safety critical systems.

The drawbacks of explicit MPC are that the number of control laws scales exponentially with the
number of parameters (states and reference signals), the number of constraints (which is dependent
on the control horizon 𝑛፮ and output horizon 𝑛፲), and so on; meaning that for certain systems it can
become too large and time-consuming to calculate and implement in a look-up table. In [42], Alessio
and Bemporad state that the typical size of problem that explicit MPC is suitable for has somewhere
between 1 − 2 inputs, 5 − 10 states, and an output horizon ≤ 4.

Several approaches have been developed to reduce the number of computations required in ex-
plicit MPC. The most popular approach is suboptimal multiparametric quadratic programming (mp-QP),
where approximate solutions to the mp-QP problem can be determined, and a trade-off is made be-
tween optimality and the number of polyhedral regions. This was first proposed by Bemporad and
Filippi [43], who calculate suboptimal mp-QP solutions by relaxing the Karush-Kuhn-Tucker optimality
conditions. In [44], Johansen and Grancharova propose an alternative method in which an orthogonal
search-tree structure is imposed on the polyhedral region. In [45], Bemporad and Filippi propose a
recursive algorithm which approximates the cost function.

3.1.10. Stochastic model predictive control
As detailed in section 3.1.7, robust MPC requires that constraints are satisfied for all possible values
of uncertain parameters. This results in robust MPC treating all values of an uncertain parameter
with equal importance, even if they have very different likelihoods. This is not always desirable, as
in reality, the system may contain stochastic uncertainties with a known or identifiable probability
distribution. Stochastic MPC is an MPC method which attempts to account for uncertainty distributions
in the system. The advantages of this are that it can result in more optimal control performance as it
is less conservative than robust MPC. Stochastic uncertainties can be incorporated into the MPC model
in two ways:

22 3. Control Methods

• Stochastic variables are implemented in the cost function and the optimisation problem becomes
a minimisation of the expected cost given the probability distributions of the stochastic variables.

• Stochastic variables are implemented in the constraints, requiring that the constraints are satisfied
a certain proportion of the time. These are known as joint chance constraints.

In [46], Kouvaritakis and Cannon propose a stochastic MPC controller for industrial wind turbines.
The goal of supervisory controllers for industrial wind turbines is to maximise service life by controlling
the nacelle rotation to minimise the accumulation of fatigue damage in the tower. In order to maximise
electrical output, these constraints may be allowed to be violated a certain percentage of times due to
changes in wind speed. By modelling the wind speed with probability distributions, probabilistic con-
straints can be applied on the system to get the desired control behaviour. Stochastic MPC controllers
have also been applied in literature to building climate control [47], telecommunications network traffic
control [48], and other uses.

The general stochastic MPC state-space model is given as:

x፤ዄኻ = 𝑓(x፤ ,u፤ ,w፤) (3.45)
y፤ = ℎ(x፤ ,u፤ ,v፤) (3.46)

where w፤ ∈ ℝ፧ᑨ and v፤ ∈ ℝ፧ᑧ are the disturbance and measurement noise with probability distri-
butions P፰ and P፯ respectively. The cost function is defined as:

𝐽(x፤ ,u፤) = E፱ᑜ [
፧ᑪ

∑
።዆ኺ
𝐽፜(�̂�። ,u።) + 𝐽 (�̂�፧ᑪ)] (3.47)

where 𝐽፜ and 𝐽 are the cost-per-stage function and the terminal cost function respectively. �̂�። is
the predicted state vector at time step 𝑖 with the initial state vector �̂�ኺ = x፤. The general form of joint
chance constraints is given by:

Pr፱ᑜ[𝑔፣(�̂�።) ≤ 0, for all 𝑗 = 1,… , 𝑠] ≥ 𝛽, for all 𝑖 = 1,… , 𝑛፲ (3.48)

where 𝑠 is the number of inequality constraints and 𝛽 ∈ (0, 1) is the minimum probability of con-
straint satisfaction. Equation 3.48 can be extended to include multiple joint chance constraints. The
constrained stochastic MPC cost function is given by:

𝐽∗(x፤) = min
u
𝐽(x፤ ,u፤)

Subject to �̂�።ዄኻ = 𝑓(�̂�። ,u። ,w።)
�̂�። = ℎ(�̂�። ,u።)
u።(⋅) ∈ 𝕌
Pr፱ᑜ[𝑔፣(�̂�።) ≤ 0, for all 𝑗 = 1,… , 𝑠] ≥ 𝛽
w። ∼ P፰
�̂�ኺ = x፤

(3.49)

This applies to linear and nonlinear prediction models. Alternatively, a linear prediction model can
be used. For the case of independent, identically distributed stochastic variables, the linear prediction
model is given by:

x፤ዄኻ = Ax፤ +Bu፤ +Dw፤
y፤ = Cx፤ + Fv፤

(3.50)

For the case of multiplicative stochastic variables, the linear prediction model is given by:

x፤ዄኻ = Ax፤Bu፤ +
፪

∑
፣዆ኻ
(�̄�፣x፤ + �̄�፣u፤)w፤,፣ (3.51)

3.1. Model predictive control 23

wherew፤,፣ is a vector of stochastic variables. Various formulations of the optimiser exist for stochas-
tic MPC. The stochastic tube method is used for prediction models with additive and bounded distur-
bances using the cost function:

𝐽ጼ(x፤ ,u፤) = E፱ᑜ [
ጼ

∑
።዆ኺ
‖�̂�።‖

ኼ
ፐ + ‖u።‖

ኼ
ፑ] (3.52)

The state vector is given by x፤ = z፤ + e፤, where z፤ is the deterministic part and e፤ is the random
part of the state vector.

The auto-regressive moving average state-space model for a stochastic predictive model with ad-
ditive disturbances is:

x፤ዄኻ = A፤x፤ +B፤u፤ +Dw፤ (3.53)

where w፤ ∈ ℝ፧ᑨ is the disturbance input. In [46], it is assumed that A፤, B፤, and w፤ are given
by:

(A፤ ,B፤ ,w፤) = (A(ኺ),B(ኺ)0) +
፩

∑
፣዆ኻ
(A(፣),B(፣),w(፣))𝑞(፣)፤ (3.54)

where 𝑞(፣)፤ is a random scalar with a known probability distribution, with q = (𝑞(ኻ)፤ , … , 𝑞(᎞)፤) and
𝔼(q፤) = 0 and 𝔼(q፤qፓ፤) = 𝐼. The 𝑙ኼ-norm cost function is given by:

̂𝐽(x፤ ,u፤ , q፤) =
፧ᑪ

∑
።዆ኺ
(‖x።‖

ኼ
Q + ‖u።‖

ኼ
R) + ‖x፧ᑪ|፤‖

ኼ

Wᑋ
(3.55)

where Q and R are the cost function weighting matrices and Wፓ is the terminal cost weighting
matrix. A deterministic cost, 𝐽(x፤ ,u፤), can be determined from the stochastic cost, ̂𝐽(x፤ ,u፤ , q፤), based
on assumptions made about q፤. The nominal cost is given by:

𝐽(x፤ ,u፤) = ̂𝐽(x፤ ,u፤ , 0) (3.56)

The worst-case cost is given by:

𝐽(x፤ ,u፤) = max
qᑜ∈𝒬×⋯×𝒬

̂𝐽(x፤ ,u፤ , q፤) (3.57)

where the stochastic uncertainty has known bounds 𝑞፤ ∈ 𝒬. The expected cost is given by:

𝐽(x፤ ,u፤) = 𝔼፤ (̂𝐽(x፤ ,u፤ , q፤))

=
፧ᑪ

∑
።዆ኺ
𝔼፤ (‖x።|፤‖

ኼ
Q
+ ‖u።|፤‖

ኼ
R
) + 𝔼፤ (‖x፧ᑪ‖

ኼ

Wᑋ
)

(3.58)

where 𝔼፤(⋅) is the expectation at sampling instance 𝑘. The dual-mode prediction algorithm is
another stochastic MPC method used to predict state and control matrices over an infinite prediction
horizon. This is useful for ensuring stability.

Stochastic constraints can be formulated in several ways. In terms of expected values, constraints
are given by:

𝔼፤(Fx። +Gu።) ≤ 𝟏; 𝑖 = 1,… , 𝑛፲ (3.59)

In terms of probabilities, constraints are given by:

Pr፤(Fx። +Gu። ≤ 𝟏, 𝑖 = 1,… , 𝑛፲) ≥ 𝑝 (3.60)

where 𝑝 is the minimum probability of the constraint being fulfilled and Pr፤(𝒜) is the probability of
event 𝒜 at sampling instance 𝑘. This also allows integration of robust constraints by setting 𝑝 = 1.

24 3. Control Methods

Depending on the required controller performance, other methods of stochastic MPC can be applied.
The dual-mode method is used to ensure stability, with the cost function given by:

𝐽(x፤ , c፤) =
ጼ

∑
።዆ኺ
𝔼፤(‖x።|፤‖

ኼ
ፐ + ‖u።|፤‖

ኼ
ፑ − 𝑙፬፬) (3.61)

where c፤ = (𝑐ኺ, … , 𝑐፧ᑪ). The steady state cost, 𝑙፬፬, is given by:

𝑙፬፬ = lim።→ጼ𝔼፤(‖x።|፤‖
ኼ
ፐ + ‖u።|፤‖

ኼ
ፑ − 𝑙፬፬) (3.62)

The gain 𝐾 is related to the future control input sequence by u።|፤ = 𝐾x።|፤ + c።|፤, 𝑖 = 0, 1, …, where
the decision variable matrix, c፤ ∈ ℝፍᑟᑦ is given by c፤ = (𝑐ኺ|፤ , … , 𝑐ፍዅኻ|፤).

Another formulation of the stochastic MPC cost function is the mean-variance predicted cost.

3.1.11. State-of-the-art
The main methods of MPC have been reviewed in the above sections. This section will review the
relevant state-of-the-art research that these methods have been applied in.

In [49], Xi, Li, and Lin review the ongoing challenges of MPC, in which they identify the major
ongoing focuses of research in MPC to be development of improved optimisation algorithms, focus on
practical applications, focus on nonlinear and stochastic MPC, and extending MPC to other fields.

In the context of improved optimisation algorithms, research is focused on structural improvements,
strategic improvements, and algorithmic improvements. Research in the structural level is focused on
applying MPC to large-scale systems by using hierarchical and distributed control structures. The
challenges include large numbers of variables and complex models, which make it infeasible to solve
a global optimisation problem. Solutions to this problem have used multi-layer hierarchical structures
with either the same or different models on each layer or distributed structures in which the optimisation
problem is decomposed into multiple local optimisation problems. The main challenges of distributed
MPC methods includes subsystem coupling, communication between subsystems, and stability. The
strategic level focuses on strategic improvements to MPC controllers. One such example is the ”off-
line design and online synthesis” strategy, where some of the online computations are instead moved
to off-line to reduce computational burden during operation. Various explicit MPC methods use this
strategy, as discussed in section 3.1.9. The algorithmic level is focused on increasing the speed of
optimisation algorithms, either though improvements or suitable simplifications to the algorithm.

Additionally, Xi, Li, and Lin identify several problems with MPC theory. Firstly, the effectiveness of
MPC algorithms is mainly limited by the computational burden of solving the online optimisation prob-
lems. Secondly, they claim there is a gap between academics and practical applications, where there
is a lack of academic focus on MPC design and algorithms with regard to performance and computa-
tional limitations. Thirdly, they claim there is a limitation on the usability of current MPC algorithms
which are based on general description and general solving methods of constrained optimisation control
problems.

Aerospace
A significant field of research has investigated the applications of MPC in aerospace. In [50], Eren et
al. review this field of research, where they identify the technical challenges of MPC with regards to
aerospace applications to be adaptive MPC, hybrid MPC, networked MPC, fault-tolerant MPC, MPC for
time-delayed systems, MPC for agile systems, and MPC subject to uncertainties.

Adaptive MPC methods are used for the control of systems in which the model is subject to uncer-
tainties. In [51], Chowdhary et al. develop a concurrent learning adaptive-optimal controller, in which
the model is learned online and the model is automatically switched to once the algorithm determines
that the model is sufficiently tuned. The MPC method is applied to the trajectory tracking of a fighter
aircraft in the presence of uncertain wing rock dynamics to demonstrate the ability to control systems
with fast dynamics.

The challenges presented by hybrid MPC are that the optimisation problem can quickly become too
complex to solve in real-time, creating the requirement for specialised optimisation algorithms.

3.2. System Network Structures 25

Networked MPC is necessary for the collaborative control of multiple aerospace systems, such as
formations and cooperating UAVs. The challenges in aerospace are that the complexity of the opti-
misation problem increases exponentially with the number of agents and must operate with limited
information of other agents. Therefore, there is a need for MPC methods using decentralised and
distributed network architectures which can guarantee the required controller properties.

A number of papers have applied nonlinear MPC to the control of aerospace vehicles for various
tasks, such as [52–56], which apply nonlinear MPC methods for spacecraft attitude control, formation
flight, and trajectory control.

Robust MPC has been applied extensively to aerospace tasks. In [57], Alexis et al. apply a robust
MPC controller for the trajectory tracking of a quadrotor UAV subject to wind disturbances and collision
avoidance constraints. In [58], Shekhar, Kearney, and Shames apply a variable-horizon robust MPC
method for trajectory tracking with waypoints of a fixed-wing UAV subject to wind disturbances. In
[59], Alexis et al. use an MPC controller to perform a path-planning and physical interaction task,
applied to a quadrotor for aerial contact-based inspection. In [60], Richards and How use robust
variable-horizon MPC for a spacecraft rendezvous problem in which robustness is guaranteed through
the use of constraint tightening. In [61], Kim, Shim, and Sastry use robust MPC for the control of a
helicopter UAV.

Research in stochastic MPC applications in aerospace is more limited, but some studies have at-
tempted to do this. In [62], Blackmore et al. develop a stochastic model predictive control method
where the uncertain system state is approximated by a finite number of particles which are used to
reformulate the control problem to a deterministic one. This method is applied to the control of an
aircraft subject to turbulence, where it is found to solve in less time than other stochastic MPC meth-
ods. In [63], Lyons, Calliess, and Hanebeck use stochastic MPC for a multi-agent system with chance
constraints on the probability of collisions between agents.

In [64], Hegrenæs, Gravdahl, and Tøndel use explicit MPC for spacecraft attitude control using a
constrained linear model and a short prediction horizon, 𝑛፲ = 2.

In [65], Borrelli, Keviczky, and Balas propose a decentralised MPC architecture for the formation
flight of a multi-agent quadrotor system. The scheme ensures collision avoidance through calculation of
a collision avoidance manoeuvre which is executed if necessary. In [66], Richards and How implement
robust decentralised MPC for the control of a multi-UAV path-planning task using an MILP model [66].
In [67], Shim and Kim present a decentralised nonlinear MPC method for the trajectory tracking of
multiple helicopter UAVs subject to input and state constraints.

Deori et al. used linear MPC for the control of a quadrotor UAV [68]. More recently, Wang et al.
applied nonlinear MPC for the control of a quadrotor UAV using a more accurate model [69]. Baca et
al. used MPC for the broader application of trajectory tracking and disturbance rejection for multiple
quadrotor UAVs [70]. They demonstrated this system experimentally for the formation flight of three
quadrotors tracking a sine trajectory with a receding horizon of 2.2s. Havez et al. applied MPC to
control multiple UAVs for the problem of dynamic encirclement [71]. A nonlinear MPC controller is used
in simulation for a nonlinear UAV system, and a combination of linear MPC and feedback linearisation
is used for real-time implementation of the control method. In [72], Ji et al. demonstrate MPC for
the path tracking of a collision avoidance manoeuvre for an autonomous vehicle, using a nonlinear
vehicle dynamics model and Hildreth’s quadratic programming procedure in the optimiser [72]. Previous
path tracking methods had relied on fuzzy logic, sliding-mode, or robust control, which all neglected
nonlinear characteristics of vehicles. In [73], Di Cairano, Park, and Kolmanovsky demonstrate MPC for
rendezvous docking with a tumbling platform.

3.2. System Network Structures
The network structure used in a system of autonomous agents determines how information is com-
municated between agents. In the context of networks, ”node” refers to an agent and a ”connection”
refers to exchange of information between the two nodes. There are three main types of network
structure:

• Centralised - one node is connected to all other nodes.

• Decentralised - connections are spread evenly across all nodes, with each node typically having
multiple connections.

26 3. Control Methods

Figure 3.3: Example centralised control structure for a two-input two-output system. One controller is used for the control of
both systems.

Figure 3.4: Example decentralised control structure for a two-input two-output system [74]

• Distributed - the network is divided into sub-groups of centralised nodes, with all sub-groups
connected.

3.2.1. Centralised control systems
A centralised control structure uses one controller for the control of all parts of the system. This requires
one node to process all of the information in the system, allowing the controller to act with perfect
information but placing a high load on it. Additionally, connections are required between all nodes and
the centralised node, whereas it is assumed that agents in the proposed system will have limited and
sporadic communication with neighbours, which may only be a few at a time or even none at all.

3.2.2. Decentralised control systems
In decentralised networks, each node operates independently of the control input and outputs of other
nodes, but is influenced by the system states. The controllers therefore operate independently, using
only local information. This architecture is useful for simplifying the control of large-scale systems,
requiring controllers to to be designed for smaller, less complex subsystems. This type of architecture
assumes little or no coupling between the variables of one subsystem and another, and larger coupling
can result in instability or degraded performance of the system as a whole. Figure 3.4 shows an example
of a decentralised control architecture for a system which is divided into two subsystems (nodes) with
one control input and output variable each.

3.2.3. Distributed Control System
In distributed control networks, there is an exchange of information between controllers. In the context
of distributed MPC controllers, this may be in the form of measured states and control inputs or in the
form of predicted states and control inputs. The controllers then include information received from
other controllers in their predictions. Figure 3.5 shows an example of a distributed control architecture
for a two-input, two-output system, where the dashed lines represent communication of information
from the local controller. Distributed control architectures can be further sub-classified based on the

3.2. System Network Structures 27

Figure 3.5: Example distributed control structure for a two-input two-output system [74]

structure:

• Fully-connected algorithms - nodes communicate information to all other controllers.

• Partially-connected algorithms - nodes communicate information to some nearby controllers.

The protocols for information communication between controllers can also be classified:

• Non-iterative algorithms - controllers exchange information once each sampling instance.

• Iterative algorithms - local controllers exchange information multiple times each sampling in-
stance.

Iterative algorithms typically have higher performance, as controllers can converge to an agreed
optimal solution while non-iterative algorithms use outdated information from nearby agents. However,
iterative algorithms take longer to reach a solution as information must be communicated and the
optimisation run multiple times at each sampling instance. Algorithms can also be classified based on
the cost function:

• Independent algorithms - controllers optimise a local cost function.

• Cooperating algorithms - controllers optimise a global cost function.

The controllers may aim to optimise either a local or global cost function. This local cost function is
based purely on the local agent and is easier to calculate, while the global cost function accounts for
interaction between agents and considers the performance of the entire system.

3.2.4. Coordination of autonomous agents
Some MPC methods have been developed for systems with multiple autonomous agents which are
entirely independent of each other. This can be achieved by attempting to minimise a global cost
function or dividing the network into multiple sub-networks and minimising a local cost function for
each sub-network, with suitable exchange of information between sub-networks.

In [75], Dunbar and Murray develop a distributed MPC method for the control of multiple agents
with decoupled dynamics and constraints, where agents have nonlinear dynamics. A cost function
is designed specifically for multiple vehicle formation stabilisation, which couples the state vectors of
agents. This cost function is decomposed and implemented in each subsystem, which make predictions
about the states of neighbouring agents over the prediction horizon to use in the local cost function.
Each subsystem optimisation problem has a compatibility constraint, which helps to keep the difference
between the predicted and actual state vector trajectories of other agents below a defined threshold.
This constraint is key to ensuring stability of the system. Dunbar and Murray note that this system is not
technically decentralised, since the optimisation is synchronised across the entire system, requiring a
centralised timing mechanism in the system. In [76], Franco et al. consider the same control problem,
but propose a solution using delayed information exchange between agents. The future developments
which Franco et al. highlight as necessary for this research are for developing robust methods and
developing methods which can handle disturbances in the communication between agents.

28 3. Control Methods

Figure 3.6: Communication protocols between two agents. The dotted lines represent an instance in which the control input is
implemented, and arrows represent exchange of information.

An alternative task for multi-agent control systems in the consensus problem, where agents must
negotiate the optimal control policy. This is applicable to flocking, rendezvous, and formation control
problems; all of which are useful tasks for autonomous UAV systems. In [77], Johansson et al. propose
an MPC method for a team of cooperating agents that guarantees consensus in a fixed amount of
time. In [78–80], Ferrari-Trecate et al. propose discrete distributed MPC control schemes for the
consensus problem of autonomous agents modelled by single or double integrator dynamics and prove
that consensus is reached.

3.2.5. Communication Protocols
Communication protocols define the way in which information is exchanged between agents. These can
be categorised as asynchronous or synchronous schemes and as single iteration or multiple iteration
schemes. Furthermore, synchronous schemes can be categorised as parallel or serial schemes. In
asynchronous schemes, agents transmit data intermittently and without considering other agents, while
in synchronous schemes, agents transmit data concurrently at regular intervals. In single iteration
schemes, agents transmit data once before control inputs are implemented, while in multiple iteration
schemes, data is transmitted multiple times before control inputs are implemented. Finally, in parallel
schemes, agents transmit data at exactly the same time and perform calculations simultaneously,
while in serial schemes, agents wait after sending information so that only one agent is performing
calculations at a given time. Examples of these communication protocols are illustrated in figure 3.6.
Each of these schemes have their own advantages:

• Asynchronous - agents perform actions without waiting for other agents.

• Single iteration - less communication is required between agents, and control inputs are calculated
faster.

• Multiple iteration - agents obtain information about the optimal predicted actions of neighbours,
allowing them to update their actions accordingly to improve performance and satisfy constraints.

• Serial - the most recent information is received from neighbours.

• Parallel - the most recent information received may be outdated, but calculations are performed
faster as multiple agents can make control calculations at once.

Communication protocols are very important in the mathematical formulation of the MPC controller.
In [81], Camponogara and Talukdar propose methods for synchronous and asynchronous communica-
tion in distributed MPC architectures. In [82], Negeborn, De Schutter, and Hellendoorn propose a serial
communication scheme for multi-agent distributed MPC architectures and compare the performance
against a parallel scheme for the control of an electric power network.

3.3. Fuzzy Control 29

Figure 3.7: Distributed MPC architecture

Figure 3.8: Example set of triangular membership functions for variable ፞(፭) In this case, the set of linguistic values are
represented by the vector [ዅኼ,ዅኻ, ኺ, ኻ, ኼ], which could be equivalent to [”large negative”, ”small negative”, ”negligible”, ”small

positive”, ”large positive”]. Based on diagram from Passino [84].

3.3. Fuzzy Control
As previously mentioned, a fuzzy controller was selected for the inner loop of the PMRAC controller.
Fuzzy control is a branch of control theory concerned with the design of controllers which use fuzzy
logic. Fuzzy logic is a form of logic created by Zadeh in his formative paper [83] as a method of imple-
menting heuristic knowledge from natural languages into a logical system. Fuzzy controllers have been
applied for complex tasks such as flight control, engine control, navigation, satellite attitude control,
autonomous vehicle control, and robotics path planning. This section will introduce the fundamental
theory of fuzzy logic and fuzzy controllers before reviewing the current state-of-the-art research in
aerospace and adaptive fuzzy control.

3.3.1. Fuzzy Logic
Fuzzy logic is an infinite-valued logical system based on degrees of membership, which define to
what degree an item belongs in a set. Fuzzy sets are a set of real numbers which have degrees of
membership described by fuzzy logic, as opposed to crisp sets in which memberships are typically
described by Boolean (binary) logic. The degrees of membership of an item in a fuzzy set are mapped
by a membership function in the range [0, 1], where 0 indicates no membership and 1 indicates full
membership of the fuzzy set. Usually, fuzzy sets are named by linguistic values which describe a certain
set within a linguistic variable. The set of all numbers over which a linguistic variable exists is termed
the universe of discourse. Figure 3.8 shows a set of membership functions for the set of linguistic
values for a linguistic variable.

For instance, the linguistic variable ”temperature” could have linguistic values ”cold”, ”warm”, and
”hot” described by fuzzy sets. Clearly, these linguistic values are better represented by fuzzy sets
rather than crisp sets as there is no clear distinction between when a temperature should be classified
as ”warm” instead of ”hot”. The universe of discourse for this linguistic variable may be ℝጻ𝟘 = {𝑥 ∈
ℝ|𝑥 ≥ 0} Kelvin, or the full range of possible temperatures in Kelvin.

Next, the mathematical notation for fuzzy logic and fuzzy sets is introduced. The fuzzy set, 𝑀, is

30 3. Control Methods

Figure 3.9: Example triangular membership function for the linguistic value ”small positive” Based on diagram from Passino
[84].

described by:

𝑀 = {(𝑥, 𝜇ፌ(𝑥)) ∶ 𝑥 ∈ 𝒳} (3.63)

where𝒳 is the universe of discourse and 𝜇ፌ is themembership functionwhich maps𝒳 to the degree
of membership in the range [0, 1]. Membership functions can have any shape, but the most common
types of membership function are the triangular, singleton and Gaussian membership functions.

The triangular membership function is defined by the piecewise equation:

𝜇(𝑥) = {

፱ዅፚ
፦ዅፚ for 𝑎 < 𝑥 ≤ 𝑚
፛ዅ፱
፛ዅ፦ for 𝑚 < 𝑥 ≤ 𝑏
0 otherwise

(3.64)

where 𝑎 is the lower bound, 𝑏 is the upper bound, and 𝑚 is the mid-point of the membership
function. The singleton membership function is equal to unity at one point and zero at all other points:

𝜇(𝑥) = {1 for 𝑥 = 𝑏
0 otherwise

(3.65)

The Gaussian membership function is defined by:

𝜇(𝑥) = exp (−12 (
𝑥 − 𝑐
𝜔)

ኼ
) (3.66)

where 𝑐 is the mean and 𝜔 is the standard deviation. Figure 3.9 shows a triangular membership
function 𝜇 for the input variable 𝑒(𝑡) for the linguistic value ”small positive”.

3.3.2. Fuzzy Logic Control
Fuzzy logic controllers can generally be categorised as using type-1 or type-2 fuzzy logic. Type-1 fuzzy
logic uses fuzzy sets which are certain while type-2 fuzzy logic uses fuzzy sets which are also described
by fuzzy membership functions [85]. This review will mostly focus on type-1 fuzzy logic controllers as
they are the most common.

Fuzzy controllers have several advantages over other control methods. These are:

• It is a model-free method, meaning that it does not rely on a mathematical model of the system
or process. This is useful for complex systems where it is hard to identify an accurate model of the
system. Other model-free control methods include PID control and nonlinear adaptive control.

• Fuzzy logic provides a means to translate linguistic control information from human operators into
machine-readable control code. This is useful where information, such as a mathematical model
of the system, is not available or when the human operater expertise is superior.

• Fuzzy controllers are generally nonlinear, meaning that they can be made to perform any nonlin-
ear control action.

3.3. Fuzzy Control 31

Figure 3.10: Fuzzy PID control block [86]

PID control is one of the oldest and most widespread control techniques today. PID controllers
calculate an error value 𝑒(𝑡) which is the difference between the setpoint and the system output, and
apply a correction based on proportional, integral, and derivative terms7. The time-domain control
signal for a PID controller is given as:

𝑢ፏፈፃ(𝑡) = 𝐾፩𝑒(𝑡) + 𝐾።∫
፭

ኺ
𝑒(𝑡)𝑑𝑡 + 𝐾፝

𝑑𝑒(𝑡)
𝑑𝑡 (3.67)

In which 𝑒(𝑡) is the error between the setpoint and the system output, 𝑢ፏፈፃ is the control signal,
and 𝐾፩, 𝐾።, and 𝐾፝ are the gains for the proportional, integral, and derivative parts of the controller
respectively. A drawback with conventional PID controllers is that they are only suitable for a narrow
range of operating conditions due to the fixed parameters. Fuzzy-PID controllers allow PID parameters
to be tuned online through the addition of a fuzzy control component, in which one fuzzy tuner is used
to tune each PID gain.

The fuzzy tuners follow the equation:

𝐾ፚ = 𝐾ፚኺ + 𝑈ፚΔ𝐾ፚ , 𝑈ፚ ∈ [0, 1] (3.68)

Where 𝑎 denotes 𝑝, 𝑖, or 𝑑 and 𝑈ፚ is the output from the fuzzy controller. The structure of the fuzzy-PID
controller is shown in figure 3.10.

The fuzzy controllers receive inputs |𝑒(𝑡)| and |𝑑𝑒(𝑡)|. The triangular membership functions are
defined by the piecewise equation:

𝑓፣።(𝑥) =
⎧⎪
⎨⎪⎩

1 + (፱ዅፚᑛᑚ)
፛Ꮍᑛᑚ

if (−𝑏ዅ፣።) ≤ (𝑥 − 𝑎፣።) ≤ 0

1 − (፱ዅፚᑛᑚ)
፛Ꮌᑛᑚ

if 0 ≤ (𝑥 − 𝑎፣።) ≤ (𝑏ዄ፣።), 𝑗 = 1, 2, … , 𝑁
0 otherwise

(3.69)

where for each input 𝑖, 𝑁 membership functions are defined. 𝑏ዅ፣። forms the left-side, 𝑏ዄ፣። the right-
side, and 𝑎፣። the centre of the triangle.

7Which is where the name Proportional-Integral-Derivative (PID) controller comes from

32 3. Control Methods

Figure 3.11: Fuzzy controller block diagram. Based on diagram from Passino [84]

Mamdani Fuzzy Inference Systems
It has been proven that any MIMO fuzzy system with 𝑛 inputs and 𝑚 outputs can be separated into 𝑚
multiple-input-single-output (MISO) fuzzy systems [87].

Decision making is implemented in fuzzy controllers through the use of a rule base. This is a list
of rules that defines the actions to take based on linguistic values. For example, a simple temperature
regulation problem may have the rule ”if the temperature is hot and the rate of temperature change is
small positive then the temperature regulation is large negative” in the rule base. The rule base is con-
structed for all relevant combinations of input variables and linguistic values, and can be implemented
in look-up tables or matrices. The majority of rules used in fuzzy control take the general form:

If �̃�ኻ is �̃�፤ኻ and … and �̃�፧ is �̃�፦፧ , then �̃� is �̃�፣ (3.70)

where the notation, ∼, is used to indicate fuzzy sets representing memberships of linguistic vari-
ables. The linguistic variable �̃�ኻ and the linguistic value �̃�፤ኻ are defined on the universe of discourse 𝒳,
and the linguistic variable �̃� and the linguistic value �̃�፣ are defined on the universe of discourse 𝒴.

Figure 3.11 shows a block diagram of a fuzzy controller. A fuzzy controller contains four components:
the rule-base, the inference mechanism, the fuzzification interface, and the defuzzification interface.
The fuzzy controller takes an error, e(𝑡) = y(𝑡)−r(𝑡), as an input, and chooses the control input, u(𝑡),
so that the control objectives are met.

The fuzzification stage converts the crisp inputs, which are typically system states, into fuzzy sets
using the membership functions associated with each input variable. Membership functions are cho-
sen based on heuristic knowledge of the system states. If the states are assumed to be accurate
then singleton membership functions may be chosen, while if the states are assumed to have some
disturbances, triangular or Gaussian membership functions may be chosen.

The inference block takes the fuzzy sets from the fuzzification block and outputs a fuzzy set of the
implied controller actions. The inference block has two main stages. The first stage is matching, where
the degree of firing of each rule in the rule base given the inputs is determined. In the second stage,
an implied fuzzy set is created containing the controller outputs recommended by all active rules. Rules
are weighted according to their priority when deciding on the final controller output. The implied fuzzy
set �̂�፣ for rule 𝑅፣ with the universe of discourse 𝒴 has the membership function:

𝜇ፐ̂ᑛ(y) = 𝜇፣(x) ∗ 𝜇ፐ
ᑛ(y) (3.71)

where the ∗ operation is known as the T-norm, which is the fuzzy intersection between 𝜇፣(x) and
𝜇ፐᑛ(y). 𝜇፣(x) is the degree to which the rule is fired and 𝜇ፐᑛ is the degree to which the recommendation
of rule 𝑅፣ is attenuated.

The final part of the fuzzy controller is the defuzzification block. In this step, the crisp controller
output with the highest certainty is calculated from the implied fuzzy set. The most common meth-
ods for defuzzification are the centre of gravity and centre average methods. The centre of gravity
defuzzification method uses the equation:

𝑦crisp፪ =
∑ፑ።዆ኻ 𝑏

፪
። ∫፲ᑢ 𝜇ፁ̂ᑚᑢ(𝑦፪)𝑑𝑦፪

∑ፑ።዆ኻ ∫፲ᑢ 𝜇ፁ̂ᑚᑢ(𝑦፪)𝑑𝑦፪
(3.72)

3.4. Adaptive Control 33

where 𝑅 is the number of rules, 𝑏፪። is the centre of area under of the membership function, 𝜇ፁ̂ᑚᑢ
is the membership function for the implied fuzzy set �̂�።፪, and ∫፲ᑢ 𝜇ፁ̂ᑚᑢ(𝑦፪)𝑑𝑦፪ gives the area under the
membership function. This method requires that the area under the membership functions is finite.

The centre average method is based on the centres of the membership functions and the certainty
of the recommended rule:

𝑦crisp፪ =
∑ፑ።዆ኻ 𝑏

፪
። sup፲ᑢ{𝜇ፁ̂ᑚᑢ(𝑦፪)}

∑ፑ።዆ኻ sup፲ᑢ{𝜇ፁ̂ᑚᑢ(𝑦፪)}
(3.73)

where ”sup” denotes the ”supremum”, which is the least upper bound. A challenging task in the
design of fuzzy controllers is the tuning of parameters, which include the number, shapes, and spacing
of membership functions, and the number and type of rules.

Takagi-Sugeno Fuzzy Inference Systems
In Takagi-Sugeno fuzzy inference systems, the consequents of the rules are memoryless functions 𝑓።(⋅).
For a system with rules of the form:

If 𝑥ኻ is 𝑃ፊኻ and ⋯ and 𝑥፧ is 𝑃ፌ፧ , then 𝑞። = 𝑓።(⋅) (3.74)

The output is a crisp piecewise affine function of the input variables:

𝑦crisp =
∑ፑ።዆ኻ 𝑞።𝜇።(x)
∑ፑ።዆ኻ 𝜇።(x)

(3.75)

Takagi-Sugeno fuzzy inference systems have a wider range of applications than Mamdani fuzzy
inference systems and can be used for applications such as fuzzy identification and adaptive fuzzy
control.

3.3.3. State-of-the-art
In [88], Wang demonstrates an adaptive fuzzy controller, where a feedback control law is used to
tune the fuzzy controller membership function parameters online. In [89], Amoozgar, Chamseddine,
and Zhang demonstrate a fuzzy gain-scheduled PID controller. Their controller uses a fuzzy inference
system to tune the gains of a PID controller online based on the tracking error and rate of tracking
error. In [90], Gong and Yao develop a neural network adaptive control method for the control of
systems with unknown and unrepeatable disturbances. A multi-layer neural network is tuned online
using a set of adaptation laws. Constraints are added to the tuning range of neural network weights at
any time in order to avoid divergence. Gong and Yao apply their control method to the motion control
of a linear motor drive system, which has non-negligible disturbances. In simulations, the controller is
found to have fast convergence and a good overall tracking error, with the worst tracking performance
being for the noncontinuous dynamics.

3.4. Adaptive Control
Adaptive control is a control method in which parameters of a controller are tuned due to system states
being initially unknown or time-varying. An adaptive controller consists of two loops: a normal feedback
loop and a parameter adjustment loop. There are many different types of adaptive control, such as
model identification adaptive control (in which system identification is performed online), iterative
learning control, multiple models, and gain scheduling, but the focus of this review will be on model
reference adaptive control (MRAC).

A block diagram of a MRAC controller is shown in figure 4.1. In a MRAC controller, the reference
model has already been built (using some form of system identification), and is fed into the adjustment
mechanism along with the plant inputs and outputs. There are many types of parameter adjustment
law that may be used for the adjustment mechanism, but the two most commonly used ones are
the steepest descent method and the Lyapunov stability method [91], which apply for both linear and
nonlinear systems.

The steepest descent method formulates the problem as an approximate gradient descent optimi-
sation of the error squared performance parameter. We can then use the criterion:

34 3. Control Methods

Figure 3.12: Model Reference Adaptive Control block diagram

𝐼(𝛽) = 1
2𝑒

ኼ (3.76)

where 𝛽 is the parameter vector and 𝑒 is the error between the system and the reference outputs.
From this, the adaptation law can be formulated as:

𝑑𝛽
𝑑𝑡 = −𝛾

𝜃𝑒
𝜃𝛽 sgn(𝑒) (3.77)

Where sgn(𝑒) is the known signum function and 𝛾 is the tuning parameter. The Lyapunov-based
adaptation law instead assumes that the error 𝑒(𝑡) converges to zero as 𝑡 → ∞. The general form
adaptation law derived using the Lyapunov stability criterion is:

�̇� = 𝛾𝜓𝑒 (3.78)

where 𝜓 is a known function depending on 𝑣 and 𝑦.

3.4.1. Fuzzy Model Reference Learning Control
The fuzzy model reference learning controller (FMRLC) is a version of MRAC which uses a fuzzy con-
troller, first proposed by Layne and Passino in [92]. The FMRLC is termed a learning controller as
the past parameter values are used in the tuning process, allowing the controller to quickly adapt to
previous operating states.

Figure 3.13 shows a block diagram of the FMRLC. The fuzzy controller receives the error 𝑒(𝑘𝑇) and
error rate 𝑐(𝑘𝑇) = 𝑑𝑒(𝑘𝑇)/𝑑𝑡 as inputs. 𝑔፜, 𝑔፞, and 𝑔፮ are the scaling gains for the error, error rate,
and controller output respectively. These are initially tuned heuristically and then tuned online.

The membership functions for the inputs to the fuzzy controller are pre-defined and are not tuned
by the learning mechanism, whereas the membership functions for the output are tuned.

The task of the learning mechanism is to observe the outputs from the plant (𝑦፦(𝑘𝑇)), reference
model (𝑦(𝑘𝑇)), and fuzzy controller and make adjustments to the rule-base accordingly. The two parts
to the mechanism are the fuzzy inverse model and the knowledge-base modifier. The fuzzy inverse
model performs an inverse mapping of the output error 𝑦 (𝑘𝑇) to the plant inputs and determines the
required changes to reduce the error to zero. The knowledge-base modifier then uses this data to
make the required changes to the rule-base. At each sampling instance, changes are made only to the
necessary rules in order to reduce the output error to zero.

3.4.2. State-of-the-art
Adaptive control has been applied to complex tasks in aerospace. In [93] Dydek, Annaswamy, and
Lavretsky applied model reference adaptive control for the control of a quadrotor UAV. The reference
model is built using linearised quadrotor dynamics and a linear baseline controller. Flight test experi-
ments showed improved performance against a linear baseline controller for actuator and loss-of-thrust
failures. In [94], Sadeghzadeh et al. applied a model reference adaptive controller using the gradient
descent rule for trajectory tracking of a quadrotor, and compared performance to a gain-scheduling
PID controller, in which simulations showed improved performance for the former. In [95], Coza and
Macnab apply an adaptive-fuzzy control method for the stabilisation of a quadrotor UAV subject to

3.4. Adaptive Control 35

Figure 3.13: Fuzzy model reference learning controller block diagram

wind disturbances. Robustness of the controller is demonstrated by a Lyapunov stability analysis, and
simulations show improved performance compared to neural network control and robust sliding-mode
control.

Distributed
Limited research was found on the topic of multi-agent or distributed model reference adaptive

control. In [96], Kim et al. used partial differential equation-based model reference adaptive control
with a Lyapunov adaptation law for the control of heterogeneous multi-agent networks with parameter
uncertainty. In a subsequent study [97], Kim et al. then extended their work to include disturbance
rejection capabilities by implementation of a third loop containing a disturbance observer. In [98], Peng
demonstrate a distributed model reference adaptive control method for a cooperative tracking control
task for multi-agent systems subject to unknown disturbances.

4
Problem Definition

In chapter 2, the challenges of search-and-rescue missions and the applications of autonomous UAV
systems were discussed. The tasks which multi-agent quadrotor UAV systems can perform were iden-
tified and the requirements for such as system were identified. In chapter 3, a review was provided
of relevant control theory. This included control system architectures, model predictive control, fuzzy
control, and adaptive control.

4.1. Problem Statement
The following problem statement is proposed for the thesis:

Search-and-rescue missions are executed in complex and dynamic environments and must
be completed as fast as possible. Previous research has shown multi-agent networks of
cooperating quadrotor UAVs to have a lot of potential in the automation of critical tasks for
search-and-rescue missions, including search, mapping, identification, and logistics. The
mission environment contains many uncertain and stochastic variables, which may influ-
ence the objectives and optimal performance of an automatic search-and-rescue system.
Therefore, an automated search-and-rescue system should be able to adapt its behaviour
online in order to maximise performance. A distributed predictive model reference adaptive
control system is proposed for the autonomous control of a swarm of quadrotors to perform
search-and-rescue missions. This controller contains an outer loop with a model predictive
controller which performs online tuning of the parameters of an intelligent fuzzy controller
for each quadrotor.

4.2. Research Question
With the problem statement defined, the following research questions arise:

• How to design the model predictive controller? One challenge of this is identification of an appro-
priate model which can take the intelligent controller parameters of nearby quadrotors as inputs
and output predictions on the future system states. Another challenge of this is to design an
appropriate cost function which takes the predictions on future system states as an input and
outputs a number representing the overall performance.

• How to implement the decentralised control architecture for the multi-agent system? The chal-
lenges of this include designing appropriate communication schemes between quadrotors, such
as whether to use non-iterative or iterative MPC algorithms, or whether to use asynchronous or
synchronous MPC algorithms. Further challenges include deciding how many other agents each
agent should communicate with, how many quadrotor intelligent controllers are tuned by each
MPC, and how to deal with communication issues which arise, such as one agent being unable
to communicate with any other agents.

37

38 4. Problem Definition

Figure 4.1: Top: Structure of proposed system. Bottom: Model reference adaptive control block diagram. The dashed lines
between controllers represent exchange of local information between quadrotors.

• How to design the disaster environment model? The challenges of this task are designing an
appropriate disaster environment model for simulating autonomous search-and-rescue missions.
The model must include relevant disaster zone features, such as damaged buildings, victims,
hazards, smoke, and so on. The model must also be an appropriate size, and allow evaluation of
the scalability of the control system and of the number of agents required based on the size of the
disaster area. Most importantly, the environment model must provide an accurate representation
of reality so that simulations can verify the performance of the control system. Other challenges
include selection of the quadrotor model, including dynamics, sensors, and so on.

• How to design the fuzzy controller? The fuzzy controller must be designed to control quadrotors
to perform search tasks in the disaster environment given measurements of the local system
state from nearby agents. These controllers must also have parameters which can be tuned to
alter the control behaviour.

• Is the control system and simulation computationally feasible? The purpose of the control system
is to perform in real-time during a disaster mission using the limited computational resources
available for quadrotors.

This project has several possible contributions to the fields of control engineering, swarm intelli-
gence, and search-and-rescue:

• A new type of controller is proposed, termed a predictive model reference adaptive controller in
this review, which is theorised to be suitable for adaptive control in environments with uncertain
and stochastic parameters. This project will attempt to design, implement, and evaluate the
performance of this controller against alternative control methods.

• This project will also attempt to implement the controller in a distributed architecture for the
control of a multi-agent robotic system. Possible contributions could be advancing understanding
of how to implement distributed control for coordination of quadrotor swarms, particularly for
search-and-rescue, and how to use the proposed controller for a distributed system.

• The multi-agent system and controller will be simulated for a search-and-rescue mission in an
urban disaster zone. This research could advance understanding of how to simulate and assess
the performance of autonomous robotic systems performing search-and-rescue missions, and
provide a benchmark for future research.

Bibliography

[1] U. O. for Disaster Risk Reduction, Terminology, (2019).

[2] A. Khorram-Manesh, Handbook of disaster and emergency management, Gothenburg, İsveç:
Kompendiet. Kasım 15, 2018 (2017).

[3] E. Cavallo, A. Powell, and O. Becerra, Estimating the direct economic damages of the earthquake
in haiti, The Economic Journal 120, F298 (2010).

[4] P. Wallemacq and R. House, Economic losses, poverty & disasters: 1998-2017, (2019).

[5] H. Ritchie and M. Roser, Ofda/cred international disaster data, (2019).

[6] E. E. D. (EM-DAT), Em-dat _ the international disasters database, (2019).

[7] J. A. Barbera and C. G. Cadoux, Search, rescue, and evacuation, Critical care clinics 7, 321 (1991).

[8] A. W. Coburn, R. J. Spence, and A. Pomonis, Factors determining human casualty levels in
earthquakes: mortality prediction in building collapse, in Proceedings of the First International
Forum on Earthquake related Casualties. Madrid, Spain, July 1992 (1992).

[9] U. N. H. C. for Refugees (UNHCR), Handbook for emergencies (United Nations High Commissioner
for Refugees, 2007).

[10] T. J. Tanzi, M. Chandra, J. Isnard, D. Camara, O. Sebastien, and F. Harivelo, Towards” drone-
borne” disaster management: future application scenarios, in XXIII ISPRS Congress, Commission
VIII (Volume III-8), Vol. 3 (Copernicus GmbH, 2016) pp. 181–189.

[11] R. R. Murphy, S. Tadokoro, D. Nardi, A. Jacoff, P. Fiorini, H. Choset, and A. M. Erkmen, Search
and rescue robotics, Springer handbook of robotics , 1151 (2008).

[12] P. Rudol and P. Doherty, Human body detection and geolocalization for uav search and rescue
missions using color and thermal imagery, in 2008 IEEE aerospace conference (Ieee, 2008) pp.
1–8.

[13] M. Andriluka, P. Schnitzspan, J. Meyer, S. Kohlbrecher, K. Petersen, O. Von Stryk, S. Roth, and
B. Schiele, Vision based victim detection from unmanned aerial vehicles, in 2010 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IEEE, 2010) pp. 1740–1747.

[14] L. Apvrille, T. Tanzi, and J.-L. Dugelay, Autonomous drones for assisting rescue services within
the context of natural disasters, in 2014 XXXIth URSI General Assembly and Scientific Symposium
(URSI GASS) (IEEE, 2014) pp. 1–4.

[15] A. R. Kolbe, R. A. Hutson, H. Shannon, E. Trzcinski, B. Miles, N. Levitz, M. Puccio, L. James,
J. R. Noel, and R. Muggah, Mortality, crime and access to basic needs before and after the haiti
earthquake: a random survey of port-au-prince households, Medicine, conflict and survival 26,
281 (2010).

[16] P. Schmuck and M. Chli, Multi-uav collaborative monocular slam, in 2017 IEEE International Con-
ference on Robotics and Automation (ICRA) (IEEE, 2017) pp. 3863–3870.

[17] S. Verykokou, C. Ioannidis, G. Athanasiou, N. Doulamis, and A. Amditis, 3d reconstruction of
disaster scenes for urban search and rescue, Multimedia Tools and Applications 77, 9691 (2018).

[18] Zipline, (2019).

39

40 Bibliography

[19] M. M. Torok, M. Golparvar-Fard, and K. B. Kochersberger, Image-based automated 3d crack
detection for post-disaster building assessment, Journal of Computing in Civil Engineering 28,
A4014004 (2013).

[20] M. Erdelj, E. Natalizio, K. R. Chowdhury, and I. F. Akyildiz, Help from the sky: Leveraging uavs
for disaster management, IEEE Pervasive Computing 16, 24 (2017).

[21] I. Bekmezci, O. K. Sahingoz, and Ş. Temel, Flying ad-hoc networks (fanets): A survey, Ad Hoc
Networks 11, 1254 (2013).

[22] H. Kitano, S. Tadokoro, I. Noda, H. Matsubara, T. Takahashi, A. Shinjou, and S. Shimada, Robocup
rescue: Search and rescue in large-scale disasters as a domain for autonomous agents research,
in IEEE SMC’99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man,
and Cybernetics (Cat. No. 99CH37028), Vol. 6 (IEEE, 1999) pp. 739–743.

[23] J. Wang, M. Lewis, and J. Gennari, Emerging areas: urban operations and ucavs: a game engine
based simulation of the nist urban search and rescue arenas, in Proceedings of the 35th conference
on Winter simulation: driving innovation (Winter Simulation Conference, 2003) pp. 1039–1045.

[24] J. H. Lee, Model predictive control: Review of the three decades of development, International
Journal of Control, Automation and Systems 9, 415 (2011).

[25] Y. Wang and S. Boyd, Fast model predictive control using online optimization, IEEE Transactions
on control systems technology 18, 267 (2009).

[26] J. L. Jerez, P. J. Goulart, S. Richter, G. A. Constantinides, E. C. Kerrigan, and M. Morari, Em-
bedded online optimization for model predictive control at megahertz rates, IEEE Transactions on
Automatic Control 59, 3238 (2014).

[27] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. Scokaert, Constrained model predictive control:
Stability and optimality, Automatica 36, 789 (2000).

[28] S. a. Keerthi and E. G. Gilbert, Optimal infinite-horizon feedback laws for a general class of con-
strained discrete-time systems: Stability and moving-horizon approximations, Journal of optimiza-
tion theory and applications 57, 265 (1988).

[29] C. Chen and L. Shaw, On receding horizon feedback control, Automatica 18, 349 (1982).

[30] L. Magni and R. Sepulchre, Stability margins of nonlinear receding-horizon control via inverse
optimality, Systems & Control Letters 32, 241 (1997).

[31] R. Bitmead, Adaptive optimal control, The thinking man’s GPC (1990).

[32] J. B. Rawlings and K. R. Muske, The stability of constrained receding horizon control, IEEE trans-
actions on automatic control 38, 1512 (1993).

[33] H. Michalska and D. Q. Mayne, Robust receding horizon control of constrained nonlinear systems,
IEEE transactions on automatic control 38, 1623 (1993).

[34] M. Sznaier and M. J. Damborg, Suboptimal control of linear systems with state and control in-
equality constraints, in 26th IEEE Conference on Decision and Control, Vol. 26 (IEEE, 1987) pp.
761–762.

[35] E. Polak and T. Yang, Moving horizon control of linear systems with input saturation and plant
uncertainty part 1. robustness, International Journal of Control 58, 613 (1993).

[36] D. W. Clarke, C. Mohtadi, and P. Tuffs, Generalized predictive controlঁpart i. the basic algorithm,
Automatica 23, 137 (1987).

[37] D. W. Clarke, C. Mohtadi, and P. Tuffs, Generalized predictive controlঁpart ii extensions and
interpretations, Automatica 23, 149 (1987).

Bibliography 41

[38] L. Grüne and J. Pannek, Nonlinear model predictive control, in Nonlinear Model Predictive Control
(Springer, 2017) pp. 45–69.

[39] A. Bemporad and M. Morari, Robust model predictive control: A survey, in Robustness in identi-
fication and control (Springer, 1999) pp. 207–226.

[40] E. F. Camacho, D. R. Ramírez, D. Limón, D. M. De La Peña, and T. Alamo, Model predictive control
techniques for hybrid systems, Annual reviews in control 34, 21 (2010).

[41] M. Lazar, W. Heemels, S. Weiland, and A. Bemporad, Stabilizing model predictive control of hybrid
systems, IEEE Transactions on Automatic Control 51, 1813 (2006).

[42] A. Alessio and A. Bemporad, A survey on explicit model predictive control, in Nonlinear model
predictive control (Springer, 2009) pp. 345–369.

[43] A. Bemporad and C. Filippi, Suboptimal explicit receding horizon control via approximate multi-
parametric quadratic programming, Journal of optimization theory and applications 117, 9 (2003).

[44] T. A. Johansen and A. Grancharova, Approximate explicit constrained linear model predictive con-
trol via orthogonal search tree, IEEE Transactions on Automatic Control 48, 810 (2003).

[45] A. Bemporad and C. Filippi, An algorithm for approximate multiparametric convex programming,
Computational optimization and applications 35, 87 (2006).

[46] B. Kouvaritakis and M. Cannon, Model predictive control, Switzerland: Springer International Pub-
lishing (2016).

[47] F. Oldewurtel, A. Parisio, C. N. Jones, M. Morari, D. Gyalistras, M. Gwerder, V. Stauch, B. Lehmann,
and K. Wirth, Energy efficient building climate control using stochastic model predictive control
and weather predictions, in Proceedings of the 2010 American control conference (IEEE, 2010)
pp. 5100–5105.

[48] J. Yan and R. R. Bitmead, Incorporating state estimation into model predictive control and its
application to network traffic control, Automatica 41, 595 (2005).

[49] X. Yu-Geng, L. De-Wei, and L. Shu, Model predictive controlঁstatus and challenges, Acta Auto-
matica Sinica 39, 222 (2013).

[50] U. Eren, A. Prach, B. B. Koçer, S. V. Raković, E. Kayacan, and B. Açıkmeşe, Model predictive
control in aerospace systems: Current state and opportunities, Journal of Guidance, Control, and
Dynamics 40, 1541 (2017).

[51] G. Chowdhary, M. Mühlegg, J. P. How, and F. Holzapfel, Concurrent learning adaptive model
predictive control, in Advances in Aerospace Guidance, Navigation and Control (Springer, 2013)
pp. 29–47.

[52] T. Templeton, D. H. Shim, C. Geyer, and S. S. Sastry, Autonomous vision-based landing and terrain
mapping using an mpc-controlled unmanned rotorcraft, in Proceedings 2007 IEEE International
Conference on Robotics and Automation (IEEE, 2007) pp. 1349–1356.

[53] S. Gros, R. Quirynen, and M. Diehl, Aircraft control based on fast non-linear mpc & multiple-
shooting, in 2012 IEEE 51st IEEE Conference on Decision and Control (CDC) (IEEE, 2012) pp.
1142–1147.

[54] W. B. Dunbar, M. B. Milam, R. Franz, and R. M. Murray, Model predictive control of a thrust-
vectored flight control experiment, IFAC Proceedings Volumes 35, 355 (2002).

[55] J. Shin and H. J. Kim, Nonlinear model predictive formation flight, IEEE Transactions on Systems,
Man, and Cybernetics-Part A: Systems and Humans 39, 1116 (2009).

[56] J. L. Crassidis, F. L. Markley, T. C. Anthony, and S. F. Andrews, Nonlinear predictive control of
spacecraft, Journal of Guidance, Control, and Dynamics 20, 1096 (1997).

42 Bibliography

[57] K. Alexis, C. Papachristos, R. Siegwart, and A. Tzes, Robust model predictive flight control of
unmanned rotorcrafts, Journal of Intelligent & Robotic Systems 81, 443 (2016).

[58] R. C. Shekhar, M. Kearney, and I. Shames, Robust model predictive control of unmanned aerial
vehicles using waysets, Journal of Guidance, Control, and Dynamics 38, 1898 (2015).

[59] K. Alexis, G. Darivianakis, M. Burri, and R. Siegwart, Aerial robotic contact-based inspection:
planning and control, Autonomous Robots 40, 631 (2016).

[60] A. Richards and J. P. How, Robust variable horizon model predictive control for vehicle maneu-
vering, International Journal of Robust and Nonlinear Control: IFAC-Affiliated Journal 16, 333
(2006).

[61] H. J. Kim, D. H. Shim, and S. Sastry, Nonlinear model predictive tracking control for rotorcraft-
based unmanned aerial vehicles, in Proceedings of the 2002 American Control Conference (IEEE
Cat. No. CH37301), Vol. 5 (IEEE, 2002) pp. 3576–3581.

[62] L. Blackmore, M. Ono, A. Bektassov, and B. C. Williams, A probabilistic particle-control approxi-
mation of chance-constrained stochastic predictive control, IEEE transactions on Robotics 26, 502
(2010).

[63] D. Lyons, J.-P. Calliess, and U. D. Hanebeck, Chance constrained model predictive control for
multi-agent systems with coupling constraints, in 2012 American Control Conference (ACC) (IEEE,
2012) pp. 1223–1230.

[64] Ø. Hegrenæs, J. T. Gravdahl, and P. Tøndel, Spacecraft attitude control using explicit model
predictive control, Automatica 41, 2107 (2005).

[65] F. Borrelli, T. Keviczky, and G. J. Balas, Collision-free uav formation flight using decentralized
optimization and invariant sets, in 2004 43rd IEEE Conference on Decision and Control (CDC)(IEEE
Cat. No. 04CH37601), Vol. 1 (IEEE, 2004) pp. 1099–1104.

[66] A. Richards and J. How, Decentralized model predictive control of cooperating uavs, in 2004 43rd
IEEE Conference on Decision and Control (CDC)(IEEE Cat. No. 04CH37601), Vol. 4 (IEEE, 2004)
pp. 4286–4291.

[67] D. H. Shim, H. J. Kim, and S. Sastry, Decentralized nonlinear model predictive control of multiple
flying robots, in 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.
03CH37475), Vol. 4 (IEEE, 2003) pp. 3621–3626.

[68] L. Deori, S. Garatti, and M. Prandini, A model predictive control approach to aircraft motion
control, in 2015 American Control Conference (ACC) (IEEE, 2015) pp. 2299–2304.

[69] Y. Wang, A. Ramirez-Jaime, F. Xu, and V. Puig, Nonlinear model predictive control with constraint
satisfactions for a quadcopter, in Journal of Physics: Conference Series, Vol. 783 (IOP Publishing,
2017) p. 012025.

[70] T. Baca, G. Loianno, and M. Saska, Embedded model predictive control of unmanned micro
aerial vehicles, in 2016 21st International Conference on Methods and Models in Automation and
Robotics (MMAR) (IEEE, 2016) pp. 992–997.

[71] A. T. Hafez, A. J. Marasco, S. N. Givigi, M. Iskandarani, S. Yousefi, and C. A. Rabbath, Solving
multi-uav dynamic encirclement via model predictive control, IEEE Transactions on control systems
technology 23, 2251 (2015).

[72] J. Ji, A. Khajepour, W. W. Melek, and Y. Huang, Path planning and tracking for vehicle collision
avoidance based on model predictive control with multiconstraints, IEEE Transactions on Vehicular
Technology 66, 952 (2016).

[73] S. Di Cairano, H. Park, and I. Kolmanovsky, Model predictive control approach for guidance of
spacecraft rendezvous and proximity maneuvering, International Journal of Robust and Nonlinear
Control 22, 1398 (2012).

Bibliography 43

[74] R. Scattolini, Architectures for distributed and hierarchical model predictive control–a review, Jour-
nal of process control 19, 723 (2009).

[75] W. B. Dunbar and R. M. Murray, Distributed receding horizon control for multi-vehicle formation
stabilization, Automatica 42, 549 (2006).

[76] E. Franco, L. Magni, T. Parisini, M. M. Polycarpou, and D. M. Raimondo, Cooperative constrained
control of distributed agents with nonlinear dynamics and delayed information exchange: A sta-
bilizing receding-horizon approach, IEEE Transactions on Automatic Control 53, 324 (2008).

[77] B. Johansson, A. Speranzon, M. Johansson, and K. H. Johansson, Distributed model predictive
consensus, in International Symposium on Mathematical Theory of Networks and Systems, Kyoto,
Japan, July 24-28 2006 (2006) pp. 2438–2444.

[78] G. Ferrari-Trecate, L. Galbusera, M. P. E. Marciandi, and R. Scattolini, A model predictive control
scheme for consensus in multi-agent systems with single-integrator dynamics and input con-
straints, in 2007 46th IEEE Conference on Decision and Control (IEEE, 2007) pp. 1492–1497.

[79] G. Ferrari-Trecate, L. Galbusera, M. P. E. Marciandi, and R. Scattolini, Contractive distributed mpc
for consensus in networks of single-and double-integrators, IFAC Proceedings Volumes 41, 9033
(2008).

[80] G. Ferrari-Trecate, L. Galbusera, M. P. E. Marciandi, and R. Scattolini, Model predictive control
schemes for consensus in multi-agent systems with single-and double-integrator dynamics, IEEE
Transactions on Automatic Control 54, 2560 (2009).

[81] E. Camponogara and S. N. Talukdar, Distributed model predictive control: Synchronous and asyn-
chronous computation, IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and
Humans 37, 732 (2007).

[82] R. R. Negenborn, B. De Schutter, and J. Hellendoorn, Multi-agent model predictive control for
transportation networks: Serial versus parallel schemes, Engineering Applications of Artificial In-
telligence 21, 353 (2008).

[83] L. A. Zadeh, Fuzzy logic, Computer 21, 83 (1988).

[84] K. M. Passino, S. Yurkovich, and M. Reinfrank, Fuzzy control, Vol. 42 (Citeseer, 1998).

[85] P. A. Birkin and J. M. Garibaldi, A comparison of type-1 and type-2 fuzzy controllers in a micro-robot
context, in 2009 IEEE international conference on fuzzy systems (IEEE, 2009) pp. 1857–1862.

[86] K. K. Ahn and D. Q. Truong, Online tuning fuzzy pid controller using robust extended kalman filter,
Journal of Process Control 19, 1011 (2009).

[87] X.-J. Zeng and M. G. Singh, Approximation theory of fuzzy systems-mimo case, IEEE Transactions
on Fuzzy Systems 3, 219 (1995).

[88] L.-X. Wang, Stable adaptive fuzzy control of nonlinear systems, IEEE Transactions on fuzzy systems
1, 146 (1993).

[89] M. H. Amoozgar, A. Chamseddine, and Y. Zhang, Fault-tolerant fuzzy gain-scheduled pid for a
quadrotor helicopter testbed in the presence of actuator faults, IFAC Proceedings Volumes 45,
282 (2012).

[90] J. Gong and B. Yao, Neural network adaptive robust control of nonlinear systems in semi-strict
feedback form, Automatica 37, 1149 (2001).

[91] S. G. Tzafestas, Introduction to mobile robot control (Elsevier, 2013).

[92] J. R. Layne and K. M. Passino, Fuzzy model reference learning control, Journal of Intelligent &
Fuzzy Systems 4, 33 (1996).

44 Bibliography

[93] Z. T. Dydek, A. M. Annaswamy, and E. Lavretsky, Adaptive control of quadrotor uavs: A design
trade study with flight evaluations, IEEE Transactions on control systems technology 21, 1400
(2012).

[94] I. Sadeghzadeh, A. Mehta, Y. Zhang, and C.-A. Rabbath, Fault-tolerant trajectory tracking control
of a quadrotor helicopter using gain-scheduled pid and model reference adaptive control, in Annual
Conference of the Prognostics and Health Management Society, Vol. 2 (2011).

[95] C. Coza and C. J. Macnab, A new robust adaptive-fuzzy control method applied to quadrotor
helicopter stabilization, in NAFIPS 2006-2006 Annual Meeting of the North American Fuzzy Infor-
mation Processing Society (IEEE, 2006) pp. 454–458.

[96] J. Kim, K.-D. Kim, V. Natarajan, S. D. Kelly, and J. Bentsman, Pde-based model reference adaptive
control of uncertain heterogeneous multiagent networks, Nonlinear Analysis: Hybrid Systems 2,
1152 (2008).

[97] J. Kim, V. Natarajan, S. D. Kelly, and J. Bentsman, Disturbance rejection in robust pde-based
mrac laws for uncertain heterogeneous multiagent networks under boundary reference, Nonlinear
Analysis: Hybrid Systems 4, 484 (2010).

[98] Z. Peng, D. Wang, H. Zhang, G. Sun, and H. Wang, Distributed model reference adaptive con-
trol for cooperative tracking of uncertain dynamical multi-agent systems, IET Control Theory &
Applications 7, 1079 (2013).

1
Introduction

Mission planning for multi-agent systems presents a significant challenge when applied to systems op-
erating in dynamic, complex, and uncertain environments. These systems must coordinate and adapt
their actions in real time to achieve complex objectives, often in the face of uncertain environmental
states and incomplete information. Effective mission planning requires balancing the need for predic-
tive planning to anticipate future states with the ability to make rapid adjustments based on real-time
feedback.

Another major challenge in real-time control problems is the limitation of computational resources. Con-
troller architectures such as Model Predictive Control (MPC) require extensive computation to predict
future states and optimise control actions; however, the computational resources available and the
real-time nature of the control problem impose challenges, necessitating efficient algorithms that can
operate within these limits.

Finally, traditional approaches for supervisory control also face several limitations, often relying on ei-
ther purely predictive or reactive control strategies, which can result in sub-optimal system performance.
Purely predictivemodels may struggle to adapt to uncertain environments, while reactive strategies can-
not anticipate future events. Additionally, they may not be able to accurately account for coordination
between agents, for which the optimal actions may depend on the actions of other agents in the system.
Additionally, scaling these systems to operate in larger environments or with more agents can be chal-
lenging. Therefore, more sophisticated approaches are needed to handle the inherent complexities of
multi-agent coordination and environmental variability.

Predictive control strategies, such as MPC, rely on predicting future states and optimising control ac-
tions based on these predictions. While MPC can effectively handle constraints and anticipate future
events, it requires extensive computational resources. Conversely, reactive control strategies, such
as Fuzzy Logic Control (FLC), adjust actions based on current state feedback without predicting future
states. FLC is computationally efficient and robust but cannot plan for future actions.

1.1. Problem Statement
1.1.1. Proposed Control Architecture
This thesis proposes a novel control architecture, termed Model Predictive Fuzzy Control (MPFC), for
the mission planning of multi-agent systems. MPFC addresses many of the challenges in dynamic,
complex, and uncertain environments by combining the predictive capabilities of Model Predictive Con-
trol (MPC) with the flexibility of Fuzzy Logic Control (FLC).

In this architecture:

• A supervisory MPC is used to optimise the output Membership Function (MF) parameters of the
local FLC mission planning controllers for each agent.

1

1.1. Problem Statement 2

• The FLC controllers enable autonomous mission planning for individual agents, while the MPC
tunes agent behaviour over time according to predicted future states.

By leveraging this hybrid approach, MPFC reduces the set of optimisation variables required by tradi-
tional MPC while maintaining effective agent coordination and mission planning autonomy.

1.1.2. Applications
MPFC has potential applications in various domains where multi-agent systems operate in dynamic
and uncertain environments, including:

• Search and Rescue (SaR): Coordinating agents to locate and assist victims in disaster response
scenarios.

• Surveillance Operations: Monitoring and tracking targets in real-time.
• Traffic Management: Optimising agent cooperation to improve system performance in urban traf-
fic networks.

1.1.3. Research Context
This research complements recent advancements in mission planning and control for multi-agent sys-
tems. The studies outlined below demonstrate the state of the art of the various avenues of research
touched on in this thesis.

Hierarchical frameworks have been explored by de Koning and Jamshidnejad [6], who investigate hi-
erarchical cooperative mission planning for non-homogeneous autonomous SaR robots, focusing on
optimising victim search behaviour in multi-agent systems. Similarly, Esteves et al. [3] explore the co-
operation of aerial and ground robots for camera-based SaR, integrating vision-based pose estimation
and motion tracking of victims.Cao et al. [2] propose a multi-agent reinforcement learning framework
that improves efficiency in SAR tasks involving unknown, dynamic targets. By employing adaptive
learning strategies, this approach enhances agent collaboration in uncertain and evolving conditions.

Planning in dynamic environments necessitates adaptive, robust control methods. Baglioni and Jamshid-
nejad [1] introduce a control technique for mission planning under dynamic conditions, incorporating
victim evacuation models and positional uncertainties. Toumieh and Lambert [14] present a frame-
work that combines MPC with time-aware safe corridors to increase multi-agent planning efficiency.
Papaioannou et al. [11] detail a distributed search-planning framework for 3D environments that can
handle a dynamically varying number of agents. This flexibility strengthens its capacity to manage
changing mission parameters.

Robust performance in dynamic environments depends on effective disturbance management. Surma
and Jamshidnejad [13] develops a state-dependent dynamic tube MPC approach that models and
learns disturbance behaviours via fuzzy models. This strategy reduces the conservatism typical of
traditional robust control methods, improving feasibility and stability in challenging settings. Sarbaz
et al. [12] propose a hierarchical, optimisation-based MPC framework for large-scale discrete fuzzy
systems, explicitly addressing time-varying delays and disturbances. By incorporating time-varying
disturbance models, their method enhances overall stability and performance.

Scalability is an important topic when it comes to real-world implementation of multi-agent systems. Lu
et al. [7] present DrMaMP, a distributed, real-time algorithm tailored for mission planning in cluttered
environments. Their solution improves scalability and optimises agent coordination under resource
constraints and dynamic conditions. Zhou et al. [15] introduce a distributed reinforcement learning
strategy for multi-robot systems, demonstrating heightened adaptability and coordination in complex
3D environments. Their findings illustrate effective implementation of reinforcement learning to address
scalability concerns in multi-agent operations.

On the topic of adaptive fuzzy models, Grosset et al. [5] implement a fuzzy multi-agent simulator for
battery recharge management in autonomous industrial vehicles, utilising adaptive fuzzy logic to guide
agent decision making among dynamic conditions.

Building on this body of work, this thesis introduces MPFC as a method for achieving robust and com-
putationally efficient mission planning in multi-agent systems.

1.2. Project Scope 3

1.2. Project Scope
In order to limit the project scope it is necessary to specify the bounds for the definition of the control
problem. These top-level assumptions form the initial constraints used to then build and implement the
research.

AS1: The system is in discrete time and in discrete 2D space in the x and y-planes.
This assumption allows all modelling to use discrete dimensions and simplifies the planar
dimension to represent a 2D physical area of land in which the system must operate.

AS2: The system is fully bounded within the environment and does not interface with any other
external systems.
This assumption limits the system to be fully-contained within the environment, and does
not interact with, for example, external data sources or other autonomous systems.

AS3: All agents in the system are identical.
This assumption constrains the all agents in the system to be homogeneous, and do not
have differing designs, such as battery life, velocities, and sensors.

AS4: The control problem is formulated as a single-objective optimisation, with the objective
function calculated using environment parameters and parameters influenced by agent
actions.
With this assumption, the control problem is simplified to a single objective and requires
that the environment states and actions of the agents influence the optimisation.

AS5: Information transfer is instantaneous and perfect.
Here, it is assumed that any information transfer between agents, controllers, and the
environment, does not result in any latency, loss or corruption of data.

AS6: The prediction step of MPFC is instantaneous in relation to the system model and does
not need to be scheduled ahead of time.
This assumption simplifies the scheduling of the MPFC controller, which is dependent
on hardware and introduces complexities in the optimisation step and updating of FLC
parameters.

AS7: In the MPFC architecture, the optimisation variables are the parameters of the fuzzy mem-
bership functions used to generate the output of the FIS.
This limits the scope by rejecting several other FLC parameters that may be selected as
the optimisation variables of MPFC, including the input MF parameters, number and shape
of input and output MFs, and the rule base itself.

AS8: MPFC has a perfect representative model of the system.
This assumption means that there is no difference between the MPFC prediction model
and the system itself, even if MPFC cannot perfectly predict the values of future proba-
bilistic states.

AS9: At any time step, MPFC has perfect knowledge of all agent states at that time step.
Finally, this assumption means that MPFC has perfect knowledge of the states of all other
agents at a given time step, even though agents may not communicate information with
each other directly.

1.3. Project Objectives
Based on the assumptions and problem statement, a series of objectives for this research are now
formulated.

OB1: Specify a generic mathematical definition of the MPFC controller.
With the top-level assumptions defined, the first objective is to define a generic mathe-
matical description of the MPFC controller independent of the case study for which it is
implemented.

OB2: Define and implement the MPFC controller model for a specific case study in simulation.
Afterwards, the next objective is to apply this mathematical description to a specific case
study and implement it in a simulation.

1.4. Research Questions 4

OB3: Validate the performance of MPFC against alternative controller architectures via exten-
sive computer-based simulations.
This simulation will then be used to assess MPFC against other methods.

OB4: Analyse the sensitivity of the MPFC controller to various design parameters.
A linear sensitivity analysis will then be performed a for a range of MPFC controller design
parameters.

OB5: Explore design improvements to the basic MPFC controller implemented.
The final objective is to perform a design exploration of the initial MPFC controller imple-
mentation in order to understand what improvements can be made.

1.4. Research Questions
To address the project objectives, three research questions are formulated.

RQ1: How does MPFC perform compared to traditional MPC and FLC controllers in a dynamic
environment?
This research question forms the objective of theMPFC performance analysis, and selects
two alternative controller architectures against which to measure performance.

RQ2: Which design parameters drive the performance of MPFC and how can they be optimised?
This research question targets the sensitivity analysis to identify the most influential design
parameters of MPFC and understand how they should be defined when configuring an
MPFC to optimise performance.

RQ3: What design choices can be made then configuring an MPFC and in which cases should
they be made?
This research question targets the design exploration to identify strengths andweaknesses
of certain design choices which must be made when configuring MPFC.

1.5. Thesis Structure
This thesis is structured a follows. In Chapter 2, a generic mathematical description of MPFC in the
context of mission planning for a multi-agent system is created according to the assumptions made in
the project scope (Section 1.2). This involves building the environment model (Section 2.1), the agent
model (Section 2.2), and the controller models (Section 2.3). In Chapter 3, these mathematical models
are applied to build a simulation in which we apply MPFC to a SaR mission scenario. In Chapter 4, the
performance of MPFC is assessed via simulation. This includes a performance analysis in which the
performance of MPFC is compared against alternative controllers (Section 4.2), a sensitivity analysis in
which the sensitivity of MPFC performance to certain design parameters is analysed (Section 4.3), and
a design exploration in which various design choices for MPFC are assessed (Section 4.2). In Chapter
5, the findings of the thesis are summarised and a series of recommendations for future research are
identified.

2
Mathematical Model

This section introduces the general mathematical model of MPFC applied to the mission planning of
a multi-agent autonomous system in a bounded geographical area. This model comprises three com-
ponents: the environment model, describing the physical domain; the agent model, governing agent
dynamics; and the MPFC controller model, implementing the control architecture.

To describe the spatial domain of themodel, we define a spatial coordinate parameter, s, and a flattened
cell index, m.

The parameter s represents the spatial coordinates (i, j) of a cell in a discrete 2D grid, where i and
j denote the row and column indices, respectively. The indices satisfy i ∈ {1, 2, . . . , nx} and j ∈
{1, 2, . . . , ny}, where nx and ny are the total numbers of rows and columns in the grid.

The flattened cell index, m, is given by m ∈ {1, 2, . . . , nc}, where nc = nx · ny, and is used as an index
for matrix-based operations.

With this notation, the spatial coordinates (i, j) of a cell indexed by m are denoted as sm.

2.1. Environment Model Formulation
We define an environment model that describes the evolution of the environment states in discrete
time over a 2D space in the x and y-dimensional planes. The state vector for the environment model
is introduced as ϕenv(sm, k), where sm = (i, j) indicates the spatial cell coordinates and k is the dis-
crete simulation time step. Note that the terminology ”simulation time step” and ”time step” is used
interchangeably in this thesis. They evolve according to a discrete-time model with both deterministic
and uncertain components:

ϕenv(sm, k + 1) = ϕenv(sm, k) + ∆t (F(ϕenv(sm, k), sm, k) + G(ϕenv(sm, k), sm, k)) (2.1)

where ϕenv(sm, k) is the environment state vector at cell sm and simulation time step k. We introduce a
generic functional notation to represent potentially complex models, where the function F(·) captures
deterministic environmental dynamics, the function G(·) represents uncertain dynamics, and ∆t is the
simulation time-step size.

2.2. Agent Model Formulation
We define an agent model for the multi-agent system that describes the evolution of the agent states
and agent spatial information (spatial data which is measured or estimated by the agents, including
measurements of environment states) in discrete time over a 2D spatial domain. The state vector for
the agent model (for all agents) is given by ϕagent(k) and the state vector for agent spatial information
is given by ϕsearch(sm, k).

The agent model is given by:

5

2.3. MPFC Formulation 6

ϕagent(k + 1) = ϕagent(k) + ∆tH(ϕagent(k),ϕsearch(sm, k)) (2.2)

where ϕagent(k) is the state vector of the agents at simulation time step k, ϕsearch(sm, k) is the agent
spatial information at cell coordinates sm and simulation time step k, and∆t is the simulation time step
size.

The search states, represented by ϕsearch(sm, k), are computed via a deterministic function of the agent
states ϕagent(k) and the environment states ϕenv(sm, k). The search states evolve according to:

ϕsearch(sm, k + 1) = ϕsearch(sm, k) + ∆tK(ϕagent(k),ϕenv(sm, k)) (2.3)

where ϕsearch(sm, k) is the state vector of the search map at spatial cell coordinates sm and simulation
time step k, ϕagent(k) is the state vector of the agents at simulation time step k, and∆t is the simulation
time step size.

2.3. MPFC Formulation
In this section a generic MPFC controller model is formulated for the mission planning of a multi-agent
homogeneous system.

2.3.1. Controller Architecture

Figure 2.1: Centralised MPFC Architecture

The generic MPFC controller architecture for a system with na agents is displayed in Figure 2.1. In the
figure, the supervisory MPC controller is within the upper dashed box, and the individual FLC controllers
for each agent are within the lower dashed box. The MPC controller part contains an Optimiser block
in which the optimisation is performed, and a Prediction Model block, in which future system states are
predicted.

2.3.2. Global Objective Function
The global objective function quantifies the performance of the system in a bounded 2D area over a
discrete time step. First, we define the objective at a single time step k as the sum of the cell-level
objective contributions over all cells:

J(k) =

nc∑
m=1

fobj (ϕenv(sm, k),ϕsearch(sm, k),ϕagent(k)
)
∆sm (2.4)

2.3. MPFC Formulation 7

where J(k) is the objective function value at simulation time step k, fobj(·) is the objective function
evaluated at cell sm and simulation time step k. The inner sum

∑nc

m=1 represents the sum over all
spatial cells in the discretised 2D spatial domain, where nc is the total number of cells and ∆sm is the
cell area.

2.3.3. Generic MPFC Optimisation Function
The MPFC optimisation function is formulated as a prediction of the global objective function (Equation
2.4) over the prediction horizon. First, the MPFC calculates an estimated objective function

Ĵ(k) =

nc∑
m=1

fobj
(
ϕ̂env(sm, k), ϕ̂search(sm, k), ϕ̂agent(k),θoutput(k)

)
∆sm (2.5)

where ϕ̂env is the estimated environment state vector, ϕ̂agent is the estimated agents state vector, ϕ̂search

is the estimated agent spatial information state vector, and θoutput(k) is the vector of FLC output param-
eters across all agents.

The optimisation function for the MPFC is then defined as:

max
θoutput(k)

N∑
k=1

Ĵ(k)∆t (2.6)

where we set the vector of FLC output parameters, θoutput(k), as the optimisation variable. The optimisa-
tion constraints are not defined for now as these are defined in the specific implementations formulated
later.

2.3.4. Generic FLC Architecture
The FLC may be implemented with any choice of the type of FIS, inputs and outputs, number and
shapes of input and output MFs, and the design of the rule base.

The FLC outputs an attraction map, Matt
a (k), of dimensions (nx,search, ny,search). Each cell’s value indi-

cates its attraction to the agent, used by the mission planning algorithm to assign appropriate cells to
the agent tasks.

Matt
a (k) = fFLC

a

(
ϕenv(sm, k),ϕagent

a (k)
)

(2.7)

where fFLC
a is a function representing the FLC for agent a, and the FLC receives as inputs the measured

environment state vector ϕenv(·) and the agent state vector ϕagent
a (·).

ua(k) = fagent-action,FLC
a

(
Matt

a (k)
)

(2.8)

where fagent-action,FLC
a is the mission planning function for agent a and ua(k) is the control input to the

agent local controller.

3
Simulation and Prediction Model

The mathematical model defined in section 2 is non-explicit and cannot be mathematically solved for
an optimal control solution. Therefore, we assess the performance of MPFC for a selected control
application through simulation focused on a selected use case.

As stated in Assumption AS8, we assume the predictive controller has perfect models of the system.
Consequently, these models are used directly in the prediction stage.

In this section, we take the generic mathematical model defined in section 2 and define a specific
case study to implement in the simulation environment. As a top-level assumption, we reduce the n-
dimensional space to a 2D space in the x and y-dimensional planes so that sm = (i, j), where i is the
x-axis coordinate and j is the y-axis coordinate.

3.1. Environment Simulation Model
The environment is defined with dimensions (lx,env, ly,env), which is divided into a grid of cells of dimen-
sions (∆xenv,∆yenv). At each simulation time step, any environment state ϕenv(sm, k), is represented
by an (nx,env, ny,env) matrix, where nx,env and ny,env are the respective numbers of environment cells
along the x and y axes.

The set of environment model states, ϕenv(sm, k), for each cell with coordinates sm in the disaster
environment are given by:

1. The victim map, M victim, is a matrix of the number of victims in each cell, where the elements
M victim

m ∈ Z+.
2. The building map, Mbuilding, is a matrix of the proportion of each cell occupied by buildings,

where the elements Mbuilding
m ∈ [0, 1].

3. The fire map, M fire(k), is a matrix of the fire state in each cell at simulation time step k, where
the elements M fire

m (k) ∈ {0, 1, 2, 3, 4}.
4. The burn time map, Mburn-time(k), is a matrix of the amount of time since a cell has caught fire

at simulation time step k, where the elements Mburn-time
m (k) ∈ R.

5. The structure map, M structure, is a matrix of the flammability of each cell, where the elements
M structure

m ∈ [0, 1].
6. The wind velocity, vwind, is the velocity of the wind (ms−1) in the disaster environment, where

vwind ∈ R is modelled as a constant over time and over the disaster environment for simplicity.
7. The wind direction, θwind, is the direction of the wind (rad) in the disaster environment, where

θwind ∈ [−π, π] is modelled as a constant over time and over the disaster environment for simplicity.

8

3.1. Environment Simulation Model 9

3.1.1. Fire Model
We choose to introduce an uncertain dynamic environment state which can influence the objective
function evaluated by the system. To achieve this, we define the fire map M fire(k), and introduce a
discrete cellular automata model for the fire map dynamics defined by Ohgai et. al. [10] and Freire and
DaCamara [4].

The meanings of the fire map parameter values are defined in Table 3.1.

Table 3.1: Definition of fire state, M fire
m (k)

Value State Description
0 Non flammable The cell cannot catch fire
1 Flammable The cell is not burning but can catch fire
2 Catching fire The cell is catching fire but cannot spread fire
3 Burning The cell is on fire and can spread fire
4 Extinguished The cell is extinguished and cannot spread fire

For visualisation of the fire map, the colour scheme in Figure 3.1 is established.

Figure 3.1: Colour scheme for fire map states

At each simulation time step, the fire map is updated according to Equation 3.1.

M fire
m (k) =


2 if M fire

m (k − 1) = 1 and Fm(k) ≥ ηfire-spread

3 if M fire
m (k − 1) = 2 and Mburn-time

m (k) ≥ tignition

4 if M fire
m (k − 1) = 3 and Mburn-time

m (k) ≥ tburnout

M fire
m (k − 1) otherwise

(3.1)

where tignition = 120 s is the time for a cell to ignite, tburnout = 600 s is the time for a cell to burn out,
and ηfire-spread ∈ [0, 1] is a randomly generated number for each instance of Equation 3.1, which is
compared against the probability of fire spread to determine whether a cell is ignited or not. The fire
spread probability map, F (k), is a matrix of the probability of fire spreading to each cell at simulation
time step k, where the elements Fm ∈ [0, 1].

The probability of ignition for cells in the neighbourhood of an active fire f at cell sf = (p, q) is given by
Equation 3.2.

3.1. Environment Simulation Model 10

pignitionf (k) =


0 if Mburn-time

f (k) > tburnout

4
tburnout−tignition

Mburn-time
f (k) + 0.2tburnout−4.2tignition

tburnout−tignition
if Mburn-time

f (k) ≤ tburnout−tignition

5 + tignition

5
4(tburnout−tignition)

(−Mburn-time
f (k) + tburnout) otherwise

(3.2)

Figure 3.2 displays the relationship between pignitionf and burn time, tburn, when tignition = 120 s and
tburnout = 600 s. After a cell begins catching fire, the probability of ignition increases rapidly from below
0 before the ignition time to a maximum value of 1 during the start of the burn phase, then slowly
decreasing until the burnout time.

Figure 3.2: Chart of Ignition Probability with Burn Time

For each active fire, the fire spread probability is calculated based on wind influence and environmental
conditions:

Fm(k) = cfs1(M structure
m ·Mbuilding

m) ·Wm(k)c
fs2
· pignitionf (k) (3.3)

where M structure
m is the flammability of each cell as defined in Table 3.2, where a value of 0 indicates a

non-flammable cell and a value of 1 indicates a fully-flammable cell, identified as wooden buildings in
the model. For our study, we allow any values within the range [0, 1]. The parameter cfs1 is a scaling
factor that influences how much the structure and building environment contribute to the fire spread
probability, and cfs2 is an exponent that modifies the influence of the wind direction on the fire spread
probability.

Table 3.2: Building types represented by values in the structure map, Mstructure
m

Value Description
0 Fireproof buildings
0.6 Fire prevention wooden buildings
1 Wooden buildings

Figure 3.3 displays the correlation between fire spread andM structure for an example environment where
vwind = 0ms−1, where cells with active fires are given as green and cells with have burnt out are given
as yellow. Higher values of M structure greatly increase the speed at which the fire propagates.

The wind direction factor, Mwind-direction
m , defines the influence of wind direction on the spread of fire

from one cell to another based on the angle between the wind direction and the direction from the fire

3.1. Environment Simulation Model 11

Figure 3.3: Fire Spread over time with Mstructure

3.1. Environment Simulation Model 12

source to the target cell according to the following equation:

Mwind-direction
m = exp

(
vwind

(
cwm1 + cwm2

(
cos(θwind − θfire(sm))− 1

)))
(3.4)

where cwm1 and cwm2 are constants.

The wind distance factor, Mwind-distance
m , is given by:

Mwind-distance
m = exp

(
cwmd

√
(sm(i)− sf (p))

2
+ (sm(j)− sf (q))

2

)
(3.5)

where sf = (p, q) is the fire cell at coordinates (p, q) and sm = (i, j) is the environment cell at coordi-
nates (i, j).

The wind spread map used in Equation 3.3 is given by the product of the wind direction and wind
distance modifiers:

Wm = Mwind-direction
m ·Mwind-distance

m (3.6)
for all cells within the radius rwind of the active fire.

Finally, Algorithm 1 is used to calculate the fire spread probability for all active fires at each time step
k and consolidate them into a single fire spread probability map parameter, F .

Algorithm 1 Update Fire Spread Probability

1: Input: F , W , P ignition, cfs1, cfs2, M structure, Mbuilding, nx,env, ny,env, rwind
2: Output: F
3: for each active fire cell sf in the environment do
4: Compute row range: Rrow ← [max(1, p− rwind),min(nx,env, p+ rwind)]
5: Compute column range: Rcol ← [max(1, q − rwind) : min(ny,env, q + rwind)]
6: Update fire spread probability:
7: F (Rrow, Rcol)← F (Rrow, Rcol)+ cfs1 ·

(
M structure(Rrow, Rcol) ·Mbuilding(Rrow, Rcol)

)
·W cfs2 · pignitionf

8: end for

In Figure 3.4, an example of F for a range of values of vwind is shown for a disaster environment of size
nx,search, ny,search = 9, where an active fire is initialised in the centre, M fire(5, 5) = 3. In this example,
we set rwind = 3 and θwind = π

4 . For this example, we can see that there is zero possibility of the fire
spreading further than the wind range from the active fire.

Figure 3.4: Variation of F with vwind

Figure 3.5 demonstrates the relationship between fire spread and wind velocity. In this simulation,
a fire is initiated in the centre of a (20 × 20) cell disaster environment with the wind direction set as
θwind = π

4 rad and M structure = 0.2 · 120×20, where 120×20 is a matrix of ones of size 20. It can be seen
that the correlation between fire spread and wind direction is greater at higher wind velocities, however,
the behaviour of this model may be tuned using the constants defined in the equations above1.

1In this example we set cfs1 = 0.1, cfs2 = 1.2, cwm1 = 0.15, cwm2 = 1, and cwmd = 1.

3.1. Environment Simulation Model 13

Figure 3.5: Fire Spread over time with vwind

3.2. Agent Simulation Model 14

3.2. Agent Simulation Model
The agent spatial information states, ϕsearch(sm, k), represents spatial information measured by the
agents over the same area represented by the environment states, but divided into a smaller grid
of cells of dimensions (nx,search, ny,search), where we define nx,search) = nx,env)/ccoarsen and ny,search) =
ny,env)/ccoarsen for a coarsening factor, ccoarsen ∈ Z+.

To reduce the number of variables in the MPFC andMPC prediction and optimisation steps and tune the
computational load, we define a coarsening factor, ccoarsen, which is a constant used to consolidate the
environment parameters measured by the agents in a ccoarsen · ccoarsen grid of cells in the environment
model to a single cell in the agent measurement model. Note that if ccoarsen = 1, then the agent
measurement model will map one-to-one with the environment model.

The coarsened search map states can be calculated from the environment map states using the follow-
ing function:

M c
m =

1

(ccoarsen)2

ccoarsen∑
p=1

ccoarsen∑
q=1

M(ccoarsen(i−1)+p,ccoarsen(j−1)+q) (3.7)

where M is a generic matrix and M c is the corresponding coarsened matrix.

The agent spatial information states, ϕsearch(sm, k), form an nx,search × ny,search matrix, representing
data measured or estimated by the agents on environment spatial parameters, and can be viewed as
coarsened versions of the corresponding environment state matrices:

• Coarsened scan map, M scan, representing the certainty of the multi-agent system regarding
environment state values in each cell, where M scan

m ∈ [0, 1].
• Coarsened building search map, M c,building, representing the proportion of each cell occupied
by buildings, where M c,building

m ∈ [0, 1].
• Coarsened fire searchmap,M c,fire, representing themean fire state in each cell, whereM c,fire

m ∈
[0, 4].

• Coarsened victim search map, M c,victim, indicating the number of victims in each cell, where
M c,victim

m ∈ Z+.
• Coarsened downwind map,M c,downwind, indicating the downwind factor (e.g., wind influence) in
each cell, where M c,downwind

m ∈ [0, 1].

The agent model describes the parameters of the multi-agent system. The multi-agent system is
assumed to be homogeneous, where all agents have the same parameters and initial values. Each
agent, a, consists of a motor, which allows movement in a two-dimensional plane; a sensor, which
allows the agent to measure all environment states in the surrounding area; and a local controller,
which allows the agent to choose actions to perform.

The agent model states, ϕagent(k), are defined as:

• Sensor accuracy, η: the accuracy of the agent sensor when measuring environment states,
where η ∈ [0, 1].

• Cell scan time, tscan-cell: the total time for an agent to scan a cell in the search map, where
tscan-cell ∈ R.

• Agent airspeed, vairspeed: the airspeed of the agent when moving between locations, where
vairspeed ∈ R.

• Number of agents, na: the number of agents in the system, where na ∈ Z+.
• Agent queue length, nqueue: the number of target cells the agent can schedule in advance, where
nqueue ∈ Z+, and is used in the MPC controller architectures (Equations 3.31 and 3.32).

• Agent travel time, ttravela (k): the remaining time for agent a to travel to its target cell, where
ttravela (k) ∈ R, ∀a ∈ {1, . . . , na}.

• Agent scan time, tscan(k): the vector of remaining scan times for each agent, where tscana (k) ∈
[0, tscan-cell], ∀a ∈ {1, . . . , na}.

3.2. Agent Simulation Model 15

• Agent task, τ task(k): the vector of current agent tasks, where τ task
a (k) ∈ {0, 1}, ∀a ∈ {1, . . . , na}.

• Agent location, slocation(k) = [slocation1 (k), . . . , slocationna (k)]: the vector of agent locations, where
slocationa (x) ∈ {0, 1, · · · , nx,search}, slocationa (y) ∈ {0, 1, · · · , ny,search}, ∀a ∈ {1, . . . , na}.

• Agent target, starget(k) = [starget1 (k), . . . , stargetna (k)]: the vector of agent target cells, where stargeta (x) ∈
{0, 1, · · · , nx,search} and stargeta (y) ∈ {0, 1, · · · , ny,search}, ∀a ∈ {1, . . . , na}.

3.2.1. Agent Task Model
The agent task parameter τ task

a (k) is defined as follows:

τ task
a (k) =

{
0 if the current task for the agent is to travel to a new cell
1 if the current task for the agent is to scan the cell it is in

(3.8)

This parameter is used in the MPFC/FLC agent action algorithm (Algorithm 3) and the MPC agent
action algorithm (Algorithm 4) to track the current task of each agent.

3.2.2. Agent Scan Model
For the scanmap, we define a model in which the certainty of the multi-agent system of the environment
states increases when a cell is scanned and degrades linearly over time due to dynamics or uncertain-
ties in the environment states. This parameter is used as a component in the global and predicted
objective functions (Equations 3.19 and 3.23).

The scan map is updated using the following model:

M scan
m (k) =

{
max{M scan

m (k − 1)− σ, 0} if cell c is not scanned at time step k

max{M scan
m (k − 1)− σ, η} if cell c is scanned at time step k by agent a

(3.9)

where η is the agent sensor accuracy and σ is the degradation in confidence at each time step.

3.2.3. Agent Dynamics Model
A simple dynamics model is adapted to model agent movement. When moving, it is assumed that the
agent moves in a straight direction from the centre of its current cell in the search map to the centre of
its target cell in the search map.

The agent’s ground velocity vground is given by:

vground(s1, s2) =

√√√√(
vairspeed cos

(
θtravel(s1, s2)

)
+ vwind cos(θwind)

)2
+
(
vairspeed sin

(
θtravel(s1, s2)

)
+ vwind sin(θwind)

)2 (3.10)

The travel direction θtravel is given by:

θtravel(s1, s2) = arctan 2
(
s2(j)− s1(j), s2(i)− s1(i)

)
, (3.11)

where i and j represent the indices for the x-axis and y-axis indices respectively.

The travel time of an agent between two coordinates is given by:

ttravel(s1, s2) =
∥s1 − s2∥

vground(s1, s2)
, (3.12)

where s1 and s2 are the initial and final coordinates respectively.

Figure 3.6 displays an example of the travel times of an agent to each cell in the disaster environment
at differing wind velocities. In this example vairspeed = 5ms−1, θwind = π

4 , l
x,env = ly,env = 10m. The

agent is positioned in cell (5, 5), represented by the red circle.

3.3. Local Controller Model 16

Figure 3.6: Agent travel time, ttravel(slocationa , sm), with vwind

3.3. Local Controller Model
The local controller model is used to model the behaviour of the local controllers for each agent, man-
aging which tasks are allocated to each agent and which actions are performed by each agent. The
local controller is assumed to be isolated for each agent and does not transfer data between other local
controllers, therefore each local controller will make decisions without considering the actions of other
agents.

3.3.1. FLC Local Controller

Figure 3.7: FLC local controller for agent a

The FLC local controller is used as the local controller in the MPFC supervisory controller architecture.
The architecture is shown in Figure 3.7, where the input to the local controller is the set of FLC out-
put parameters that is determined via the supervisory MPC layer for the agent, θoutput

a , and the agent
states, ϕagent

a . The FLC then calculates the attraction map,Matt(a, k), which is input to the agent action
algorithm (Algorithm 3). The output of the agent action algorithm is then the set of control inputs to the
agent model, ua.

FLC Model
We define a Type-1 TSK (Takagi-Sugeno-Kang) FIS (Fuzzy Inference System) for the FLC, with one
output, Matt(a, k), which is a matrix representing the attraction of each cell in the search map for an
agent, a:

Matt(a, k) = FLCa

(
Ia(k),θ

output
a (k)

)
(3.13)

where FLCa is the FLC for agent a, with inputs, Ia, and output MFs, θoutput
a . The input MFs and rule

base are made to be constant so they can be considered as part of the function FLCa. The following
inputs are selected for the FLC:

1. The response time map, M response(a, k), is the time required for agent a at time step k to reach
each each cell in the search map (Equation 3.14), where M response(a, k) ∈ [0, 1].

2. The priority map,Mpriority(k), is the priority of each cell in the search map (Equation 3.17), repre-
senting the priority of each cell for agent visitation at simulation time step k, where Mpriority

m (k) ∈
[0, 1].

3. The fire risk time map,M fire-risk, is an input representing the relative risk of cells to nearby active
fires (Algorithm 2).

3.3. Local Controller Model 17

4. The scan map, M scan, is a measure of the certainty of the system on the values of the states
measured in each cell (Equation 3.9), where M scan ∈ [0, 1].

For each agent a, the response time map M response(a, k) is calculated for every cell sm in the map:

M response
m (a, k) =

f response(slocationa , stargeta , sm, tscan)

tresponse,max , (3.14)

where f response is given by:

f response(slocationa , stargeta , sm, tscan, τ task
m)

=

{
ttravela + tscana + ttravel(stargeta , sm) if τ task

a = 0,

tscana + ttravel(stargeta , sm), if τ task
a = 1.

(3.15)

where ttravela is the remaining travel time of agent a and ttravel(·) is a function which returns the travel
time for an agent between cells stargeta and slocationa (Equations 3.10 - 3.12).

The maximum response time, tresponse,max, is defined as the longest time an agent would require to
travel between any two cells in the map and perform a scan:

tresponse,max = max
s1,s2,s3∈s

(
ttravela (s1, s2) + tscan + ttravela (s2, s3)

)
. (3.16)

The priority map is set as the predicted victim map defined in Equation 3.26:

Mpriority(k) = M̂ c,victim(k) (3.17)

The fire risk time map parameter is given by Algorithm 2. The fire risk time map is a non-dimensional
parameter that indicates the risk of each cell catching fire, given its proximity to an active fire. This
parameter was selected as an input to the FLC over the downwind map used in the objective function
evaluation (Equation 3.19), as when both were tested, the fire risk time demonstrated superior per-
formance. The advantage of the fire risk time map is that it is non-linear while the downwind map is
linear.

In Algorithm 2, we initialise M fire-risk with a high value so that any cells outside of the maximum radius
considered are considered not at risk of fire by the attraction calculation (Equation 3.13).

The choice of input parameters for the FLC is important as these inputs allow the agent to tune its
behaviour to react to them. Therefore, it is necessary to provide the correct set of inputs such that the
desired agent behaviour can be achieved. Several other input parameters were also explored when
designing the FLC, including the distance of each cell from other agents, which could have allowed
agents to manage the distance between each other, and the cell coordinates, which could allow agents
to tune behaviour according to the cell geographical location.

A standard structure for the FLC is defined, which is used for all simulations in Section 4. We set the
number of input MFs, nMF,in = 3, the number of output MFs, nMF,out = 3. All input MFs are set as
triangular MFs and initialised with linear spacing across the range of the input, as shown in Table 3.3,
where the parameters represent the vertices of each of the MFs. This results in the full set of input MFs
shown in Figure 3.8.

Name Type Parameters
low Triangular [0, 0, 0.5]

medium Triangular [0, 0.5, 1]
high Triangular [0.5, 1, 1]

Table 3.3: MF parameters for FLC inputs.

3.3. Local Controller Model 18

Algorithm 2 Fire Time Risk Calculation

1: Input: Fire map M fire, wind velocity vwind

2: Output: Fire time risk map M fire-risk

3: Initialise M fire-risk ← 100 for all cells
4: for each cell, m do
5: for r ∈ {1, 2, 3} do
6: Get neighbours in radius r around m
7: Extract valid neighbours within grid bounds
8: Apply fire rules:
9: if vwind = 0 then

10: if any neighbour in radius 1 has M fire
m = 3 then

11: M fire-risk
m ← 0

12: else if any neighbour in radius 1 has M fire
m = 2 then

13: M fire-risk
m ← min(M fire-risk

m , 2)
14: else if any neighbour in radius 2 has M fire

m = 3 then
15: M fire-risk

m ← min(M fire-risk
m , 2)

16: else if any neighbour in radius 2 has M fire
m = 2 then

17: M fire-risk
m ← min(M fire-risk

m , 4)
18: else if any neighbour in radius 3 has M fire

m = 3 then
19: M fire-risk

m ← min(M fire-risk
m , 4)

20: else if any neighbour in radius 3 has M fire
m = 2 then

21: M fire-risk
m ← min(M fire-risk

m , 6)
22: end if
23: else if vwind ≤ 5 then
24: if any neighbour in radius ≤ 2 has M fire

m = 3 then
25: M fire-risk

m ← 0
26: else if any neighbour in radius ≤ 2 has M fire

m = 2 then
27: M fire-risk

m ← min(M fire-risk
m , 2)

28: end if
29: else if vwind > 5 then
30: if any neighbour in radius ≤ 3 has M fire

m = 3 then
31: M fire-risk

m ← 0
32: else if any neighbour in radius 1 has M fire

m = 2 then
33: M fire-risk

m ← min(M fire-risk
m , 2)

34: end if
35: end if
36: end for
37: end for

3.3. Local Controller Model 19

Figure 3.8: FIS Input MFs

The rule base is then defined manually according to the assumption that the attraction of cells should
be higher for a lowerM response(a, k), lowerM fire-risk, lowerM scan, and higherMpriority(k) (Appendix A).

The output MFs are chosen to be linear and are initialised as shown in Table 3.4 and Figure 3.9.

Name Type Parameters (coefficients)
low linear −1, 1,−1,−1, 0

medium linear −1, 1,−1,−1, 0.5
high linear −1, 1,−1,−1, 1

Table 3.4: Default output MF parameters

3.3. Local Controller Model 20

Figure 3.9: Parallel coordinate plot of default FIS Output MFs

Figure 3.10 displays an example of the inputs to and resulting output of the FLC for an agent a. In
the example, the agent spatial information of the disaster environment is represented in a (4× 4) grid.
We can see from the fire-risk input, M fire-risk, that there are active fires in the centre of the disaster
environment The current agent position in cell (2, 2) is visible inM response(a, k). In the outputMatt(a, k)
it can be seen that the next cell the agent will prioritise will be cell (3, 2). Inspecting the inputs, this
does not appear to be the logical cell to prioritise, as the cell already has a high scan certainty. Under
these conditions, MPFC may conclude that the FLC should raise the weighting of scan certainty and
reduce the influence of response time, potentially causing the agent to select cell (3, 2) as its next target
instead.

3.3. Local Controller Model 21

Figure 3.10: Inputs and Outputs of FLC

FLC Agent Action Model
We define the agent action algorithm fagent-action,FLC, which executes the agents’ tasks. The function
operates as follows:

Algorithm 3 Agent Action Algorithm for MPFC/FLC, fagent-action,FLC

Require: Matt(a, k), stargeta , τ task
a (k), tscana , ttravela , k

1: if τ task
a (k) = 0 and ttravela > 0 then

2: ttravela (k + 1)← ttravela (k)−∆t
3: else if τ task

a (k) = 0 and ttravela ≤ 0 then
4: τ task

a (k)← 1
5: slocationa ← stargeta

6: ttravela ← ttravel(slocationa , stargeta (q))
7: else if τ task

a (k) = 1 and tscana (k) > 0 then
8: tscana (k + 1)← tscana (k)−∆t
9: else if τ task

a (k) = 1 and tscana (k) ≤ 0 then
10: τ task

a (k)← 0
11: stargeta ← argmaxMatt(a, k)
12: tscana (k)← tscan-cell

13: end if

where argmaxMatt(a, k) returns the index of the cell with the maximum value in the attraction map
Matt(a, k). An agent task of τ task

a (k) = 0 represents travel while an agent task of τ task
a (k) = 1 represents

scanning. At each simulation time step, this algorithm reduces the remaining time for the agent to
complete its current task by the simulation time step size, ∆t. If an agent completes a travel task, the
agent location is updated and the agent travel time is reset for the next target cell. Otherwise, when

3.4. Supervisory Controller Model 22

an agent completes a travel task, the agent scan map is updated and the agent scan time is reset to
tscan-cell. The algorithm then assigns the next task for the agent.

3.3.2. MPC Local Controller
The MPC local controller is to execute the agent actions for the MPC supervisory controller. This
consists of a simple function which directs the agent to travel to and scan each cell in the agent target
vector, stargeta . We define the agent action function fagent-action,MPC, which updates the agent’s task and
position.

Algorithm 4 Agent Action Algorithm for MPC, fagent-action,MPC

Require: stargeta , τ task
a (k), tscana , ttravela , q = 1, k

1: if τ task
a (k) = 0 and ttravela > 0 then

2: ttravela (k + 1)← ttravela (k)−∆t
3: else if τ task

a (k) = 0 and ttravela ≤ 0 then
4: τ task

a (k)← 1
5: slocationa ← stargeta (q)
6: q ← q + 1
7: ttravela ← ttravel(slocationa , stargeta (q))
8: else if τ task

a (k) = 1 and tscana (k) > 0 then
9: tscana (k + 1)← tscana (k)−∆t

10: else if τ task
a (k) = 1 and tscana (k) ≤ 0 then

11: q = q + 1
12: τ task

a (k)← 0
13: tscana (k)← tscan-cell

14: end if

TheMPC controller algorithm functions in a similar way to theMPFC algorithm, however when assigning
the next target cell, this is taken from the target queue, stargeta , by incrementing the queue position index,
q. The target queue is output from the MPC optimisation and is the list of cell indexes for the agent to
scan over the MPC prediction horizon.

Figure 3.11: MPC Local Controller

Figure 3.11 shows the MPC local controller architecture. The input to the local controller is the target
queue, and the output of the local controller is the set of control inputs to the agent model, ua.

3.4. Supervisory Controller Model
Based on the mathematical models built for the supervisory controllers in section 2.3, we define several
implementations of an MPFC and MPC supervisory controller.

3.4.1. Global Objective Function
We then define the global objective function as each simulation time step as the sum over the search
area of a function of the search map states, fobj(ϕsearch(sm, k)):

J(k) =

nc∑
m=1

fobj(ϕsearch(sm, k)) (3.18)

where N is the total number of time steps in the simulation window.

3.4. Supervisory Controller Model 23

We formulate the objective function to maximise the information measured by the agents for the maxi-
mum number of victims possible weighted against their exposure to fire. This results in two components
to the objective function.

fobj(ϕsearch
m (k)) = M c,victim

m (k) ·M scan
m (k) ·

(
cobj,1 − cobj,2 ·M c,downwind

m (k)
)

(3.19)

where M c,downwind is coarsened from the downwind map, Mdownwind, given in Algorithm 5. cobj,1 is a
constant to weight the non-fire proximity factor and cobj,2 is a constant to weight the fire proximity factor.

The first component contains M c,victim
m (k) ·M scan

m (k) which multiplies cell scan certainty by the victim
map to prioritise maximisation of the cell scan certainty per victim. The second component contains
M c,downwind

m (k) ·M c,victim
m (k) ·M scan

m (k) which de-prioritises cells which are further away from active fires
and prioritises cells which are closer to active fires.

This objective function incorporates the victim map, which the agents can measure; the search map,
which they can directly influence by scanning cells; and the downwind map, an uncertain dynamic state
that the agents can predict.

The downwind map is a non-dimensional parameter which represents the relative proximity of each
cell in the disaster environment to an active or catching fire, normalised in the range [0, 1]. This is
constructed in a similar way to the fire spread probability parameter (Equation 3.3) by building direction
and distance parameters, but is done for the entire disaster environment for each fire and then combined
into a single parameter.

The downwind direction parameter is calculated according to Equation 3.20:

Mdownwind-direction
m = exp

(
vwind

(
cwm1 + cwm2

(
cos(θwind − θfire)(sm)− 1

)))
(3.20)

We define the angle θ(sm)fire as the angle between the cell sm in the disaster environment and the
location of an active fire at cell sf . Here, the angle is computed using the two-argument arctangent
function, atan2, which determines the angle in the correct quadrant.2

θ(sm)fire = atan2(sm(j)− sf (q), sm(i)− sf (p)) (3.21)

The above equation calculates θ(sm)fire for all cells sm in the disaster environment grid with indices
i ∈ {0, 1, · · · , nx,env} and j ∈ {0, 1, · · · , ny,env}, for an active fire located at sf .

The downwind distance map for each cell in the environment is given by:

Mdownwind-distance
m = 1−

√
(sm(i)− sf (p))2 + (sm(j)− sf (q))2√

(nx,env)2 + (ny,env)2
(3.22)

The downwind map is then generated according to Algorithm 5.

The MPFC and MPC predict the objective function over the prediction horizon. The dummy variable k′

is introduced to represent each future simulation time step within the prediction horizon. The predicted
objective function is then given by:

Ĵ(k′) =

nc∑
m=1

M̂ c,victim
m (k′) ·M scan

m (k′) ·
(
cobj,1 − cobj,2 · M̂ c,downwind

m (k′)
)

(3.23)

where M̂ c,victim(k′) and M̂ c,downwind
m (k′) are estimated by the predictive controller.

2atan2(y, x) is a variant of the inverse tangent function that takes into account the signs of both x and y to return an angle in
the range [−π, π].

3.4. Supervisory Controller Model 24

Algorithm 5 Downwind Map Algorithm, fdownwind

Require: M fire, nx,env, ny,env, cwm1, cwm2, θwind, vwind
Ensure: Mdownwind

1: Initialise Mdownwind as a zero matrix of size nx,env × ny,env

2: for p = 1 to nx,env do
3: for q = 1 to ny,env do
4: if M fire

f = 2 or M fire
f = 3 then ▷ Active or burning fire

5: CalculateMdownwind-direction andMdownwind-distance using Equations 3.20 and Equation 3.22
6: Mdownwind = max

(
Mdownwind,Mdownwind-direction ·Mdownwind-distance)

7: end if
8: end for
9: end for

10: Mdownwind = 1−Mdownwind ▷ Invert the downwind effect
11: return Mdownwind

3.4.2. Prediction Horizon
The prediction horizon of the supervisory controllers is illustrated in Figure 3.12. As mentioned in
assumption AS6, the supervisory controller prediction is assumed to be instantaneous in relation to the
system model and does not need to be scheduled ahead of time. Therefore, at the beginning of each
MPC step at the current time step, the supervisory controller prediction is executed and used to update
the control parameters at that time step. In reality, due to the computational resources required to
perform the prediction and optimisation, this would need to be scheduled ahead of the planned time to
update the control parameters and an additional time constraint would be placed upon the optimisation.

k k + 1 k + 2 k + 3 k + 4 k + 5 k + 6 k + 7 k + 8 k + 9

MPC step size ∆kMPC

Prediction horizon ∆kpred

Figure 3.12: MPC Controller Sequencing

Figure 3.12 illustrates the sequencing of the MPFC controller. In general, MPFC may be configured to
use any form of sequencing which is desired for the various design criteria. For simplification, we fix
the values for all of the sequencing design criteria instead of using variable values, and therefore use
regular intervals for MPFC scheduling.

Scheduling parameters include the prediction horizon, ∆kpred, is the number of time steps ahead of
the current time step over which the prediction is performed; the MPC step size, ∆kMPC, which is the
number of time steps in each MPC step. At the beginning of each MPC step, MPFC is able to update
the FLC with a new set of parameters. The number of MPC steps, nMPC, is the number of MPC steps
over the prediction horizon. Finally, we set the MPFC frequency, which is the number of time steps
between each execution of the MPFC controller, equal to the MPFC step size.

In the example given in Figure 3.12, ∆kpred = 9, ∆kMPC = 3 and ∆nMPC = 2. At the beginning of each
MPC step, a new set of output parameters, θoutput(k), are output from the controller. In the illustration,
two sets of FLC parameters will be output from the optimisation, θoutput(k) for the current MPC step,
and θoutput(k +∆kMPC) for the next MPC step. This is explained further in section 3.4.4.

3.4.3. Supervisory Controller Prediction Model
In this section, we describe the models used in the prediction step of the predictive controllers.

Two top-level assumptions shape the formation of the prediction model. Firstly, as defined in assump-
tion AS9, we assume that at any time step k, the predictive controller has perfect knowledge of all

3.4. Supervisory Controller Model 25

environment and agent states at that time step, acquired, for example, via satellite imagery and ad-
vanced models and datasets, apart from the victim locations which is only known once measured by
an agent. Secondly, as defined in AS8, we assume that the predictive controller has a perfect repre-
sentative model of the system, so that outside of uncertainties, it can predict future states of the system
perfectly.

Prediction Modes Formulation
We define two simple generic approaches for estimating uncertain future states by the predictive con-
trollers, which we term prediction modes. More advanced prediction modes are used in methods such
as Stochastic MPC, where probabilistic uncertainty models are inserted into the prediction of system
dynamics, but these are not implemented within the scope of this paper.

The probability threshold prediction mode assumes the most probable state transition always occurs.
For a system with state vector ϕ(k) and function F , the predicted state at the next time step k + 1 is
given by:

ϕ̂(k + 1) = F(ϕ(k)) (3.24)

whereF is a deterministic function that maps the current state ϕ(k) to the most likely next state ϕ̂(k+1).

The exact prediction mode assumes perfect prediction of future states:

ϕ̂(k + 1) = ϕ(k + 1) (3.25)

This method is introduced to provide a baseline for the best possible prediction against which to mea-
sure the performance of other prediction modes. The simulation results are presented in section 4.4.1.

Victim Map Estimation
As mentioned above, the victim map is one of the parameters unavailable to the multi-agent system
until measured by the agents.

The victim map estimation is given by:

M̂ c,victim
m (k)

{
M c,victim

m (k) if the cell is scanned
cpopulation ·Asearch ·M c,building

m if the cell is not scanned
(3.26)

where cpopulation is the average population density of the disaster environment and Asearch is the cell
area.

Fire Model Estimation
The fire model parameters must also be estimated due to the uncertain parameters present in the fire
model.

The downwind map estimation is given by Algorithm 5:

M̂ c,downwind(k′) = fdownwind(M̂ c,fire(k′)) (3.27)

where:
M̂ c,fire(k′) = f coarsen(M̂ fire(k′)) (3.28)

where f coarsen represents Equation 3.7 and the estimated fire map, M fire(k′), is given by Equation 3.1.

3.4.4. Supervisory Controller Architectures
As mentioned previously, we define two types of supervisory controllers: MPFC and MPC. Additionally,
for each controller, we define a centralised architecture, in which a single predictive controller optimises
the actions of all agents in the system, and a decentralised architecture, in which a separate predictive
controller optimises the actions of each agent.

3.4. Supervisory Controller Model 26

Centralised MPFC
In the centralised MPFC supervisory controller architecture (Figure 3.13), a single MPC is used to tune
the output parameters of all agents in the system. This architecture is suitable for cases where agents’
behaviour is coupled, as the interaction of agents can be taken into account in the optimisation, but
has a factor na more optimisation variables than the decentralised architecture.

The optimisation is given by:

max
θoutput(k)

k+∆tpred∑
k′=k

Ĵ(k′)

where θoutput(k) = [θ1, . . . , θna]
⊤

θa =
[
θa,1,1,1, . . . , θa,nMPC,nMF,out,nMF,in+1

]⊤ ∀ a ∈ {1, . . . , na},

θl,m,n(k) ∈ [θmin, θmax]

∀ a ∈ {1, . . . , na}, l ∈ {1, . . . , nMPC}, m ∈ {1, . . . , nMF,out},
n ∈ {1, . . . , nMF,in + 1}.

(3.29)

where θoutput is the vector of FLC output parameters across all agents, nMPC is the number of MPC steps,
nMF,out is the number of output MFs, nMF,in is the number of input MFs, θmin is the minimum constraint on
the FLC output parameters, and θmax is the maximum constraint on the FLC output parameters. The
number of optimisation variables is given by: na · nMPC · nMF,out · nMF,in + 1.

Figure 3.13: Centralised MPFC architecture

The controller architecture is displayed in Figure 3.13. The predictive controller is shown in the upper
dashed box, which outputs the set of optimisation variables, θoutput(k) across all FLCs, [FLC1, · · · ,FLCna].
The local controllers are shown in the lower dashed box. Each local controller is composed of the FLC
module and agent action algorithm module.

Decentralised MPFC
In the decentralised MPFC supervisory controller architecture (Figure 3.14), a separate MPC is used to
tune the output parameters of each agent in the system. This architecture is suitable for cases where
agents’ behaviour is not strongly coupled. The optimisation is given by:

3.4. Supervisory Controller Model 27

For each a ∈ {1, . . . , na}, max
θoutput
a (k)

k+∆tpred∑
k′=k

Ĵa(k
′)

where θoutput
a (k) =

[
θa,1,1,1, θa,1,1,2, . . . , θa,nMPC, nMF,out, nMF,in+1

]⊤
,

θa,l,m,n(k) ∈ [θmin, θmax]

∀l ∈ {1, . . . , nMPC}, m ∈ {1, . . . , nMF,out}, n ∈ {1, . . . , nMF,in + 1}.

(3.30)

where θoutput
a is the vector of FLC output parameters across a single agent. The number of optimisation

variables is given by: nMPC · nMF,out · nMF,in + 1.

Figure 3.14: Decentralised MPFC architecture for a single agent

The decentralised MPFC controller architecture for a single agent a is displayed in Figure 3.14. The
predictive controller is shown in the upper dashed box, which outputs the set of optimisation variables,
θoutput(k) for a single FLC, FLCa, shown in the lower dashed box for the local controller.

Centralised MPC
Likewise, several architectures of MPC supervisory controllers are implemented as a baseline refer-
ence to compare against the performance of the MPFC supervisory controllers. In the centralised
MPC supervisory controller architecture (Figure 3.15), a single MPC tunes the target cells of all agents
over the prediction horizon. The optimisation is given by:

max
starget(k)

k+∆tpred∑
k′=k

Ĵ(k′)

where starget(k) =
[
starget1 , . . . , stargetna

]⊤
,

stargeta (k) =
[
stargeta,1 , . . . , stargeta,nqueue

]⊤ ∀a ∈ {1, . . . , na},

stargeta,q (k)(1) ∈ {1, . . . , nx,search}, ∀a ∈ {1, . . . , na}, ∀q ∈ {1, . . . , nqueue},

stargeta,q (k)(2) ∈ {1, . . . , ny,search}, ∀a ∈ {1, . . . , na}, ∀q ∈ {1, . . . , nqueue}.

(3.31)

where starget is the vector of target cell indexes over the prediction horizon across all agents. Each
target cell index is a pair of cell indexes constrained as an integer in the range {0, 1, · · · , nx,search} for

3.4. Supervisory Controller Model 28

the x-axis index and {0, 1, · · · , ny,search} for the y-axis index. The number of optimisation variables is
given by: 2 · na · nqueue. Note that nqueue must be large enough such that the agent cannot run out of
cells to scan between MPC steps, or will otherwise be stuck idling until the next MPC step.

Figure 3.15: Centralised MPC architecture

The controller architecture for the centralised MPC is displayed in Figure 3.15. The predictive controller
is shown in the upper dashed box, which outputs the set of optimisation variables, starget(k) across all
agent local controllers. The output parameters, starget(k), are a list of target cells for each agent to
scan over the prediction horizon. Due to the fixed MPC time step approach implemented in this paper,
the list or target cells must be assigned a length equal to the maximum number of cells which may be
visited within the prediction horizon. This is defined by the number of sequential cells each agent could
scan over the prediction horizon to minimise travel time. The downside to this approach for the MPC is
that if the optimal solution is not to scan sequential cells, there are many more optimisation variables
than necessary, which can degrade the performance of the controller. An alternative approach that may
improve performance would be to introduce a fixed number of cells in the target cells matrix and run a
variable-time step MPC. However, it should be noted that the downside to this approach in a real-world
implementation is that if the agents were to run out of target cells before the next MPC step, they would
not have any decision-making capability in their local controller to continue performing tasks.

Decentralised MPC
A decentralised MPC supervisory controller architecture is also defined, where a separate MPC is used
to tune the output parameters of each agent in the system. The optimisation is given by:

3.4. Supervisory Controller Model 29

For each a ∈ {1, . . . , na} : max
stargeta (k)

k+∆tpred∑
k′=k

Ĵa(k
′)

where stargeta (k) =
[
stargeta,1 (k), . . . , stargeta,nqueue

]⊤
,

stargeta,q (k)(1) ∈ {1, . . . , nx,search} ∀q ∈ {1, . . . , nqueue},

stargeta,q (k)(2) ∈ {1, . . . , ny,search} ∀q ∈ {1, . . . , nqueue}.

(3.32)

where stargeta is the vector of target cells for agent a. The number of optimisation variables is given by:
2 · nqueue.

Figure 3.16: Decentralised MPC architecture

The decentralised MPC controller architecture for a single agent a is displayed in Figure 3.16. The
predictive controller is shown in the upper dashed box, which outputs the set of optimisation variables,
starget(k) for a local controller.

4
Results

The parameters selected to analyse the performance of the controller are the global objective function,
J(k) (Equation 3.18) and the optimisation time, topt, which is the time required for the predictive con-
troller optimisation to complete. These parameters are recorded as time series data throughout each
simulation.

Due to the probabilistic nature of the environment model and optimisation algorithm, the performance
of the multi-agent system is inherently variable over repeated simulations. Therefore, we evaluate the
mean values and confidence intervals on the performancemetrics to quantify the expected performance
and variability over multiple simulations. The objective function evaluated for each simulation, s, is
denoted as Js. The instantaneous mean objective function, J(k), over multiple simulations, nsim, is
given by:

J(k) =
1

nsim

nsim∑
s=1

Js(k) (4.1)

where nsim is the total number of simulations.

Similarly, the instantaneous mean optimisation time, topt, over multiple simulations is given by:

t
opt

(k) =
1

nsim

nsim∑
s=1

topts (k) (4.2)

We calculate 95% confidence intervals by taking the mean time series and adding/subtracting 1.96 ×
SEM, where SEM is the standard error of the mean. We denote these intervals as (J0.025(k), J0.975(k))

and (t
opt
0.025, t

opt
0.975(k)), respectively.

To ensure a fair comparison between different controller architectures, we define a sequence of simula-
tion seeds for each set of simulations. These seeds are used to initialise the random number generator
for each controller architecture in each simulation, guaranteeing that the probabilistic environment vari-
ables remain consistent across equivalent simulations for each controller architecture.

To illustrate, if we set nsim = 5 and simulate the system using both MPFC and MPC, the first simulation
for each controller will use the first simulation seed, the second simulation will use the second simulation
seed, and so on. This method allows us to directly compare the performance of different controllers
under identical conditions.

4.1. Simulation Configuration
For each simulation, we rely on a dedicated set of configuration scripts to define all simulation parame-
ters. The full set of configuration scripts alongside the software code can be found in the 4TU repository

30

4.1. Simulation Configuration 31

[8] or the GitHub repository [9], and the table of configuration scripts for each simulation can be found in
appendix B. The case study is implemented in MATLAB and all simulations are run on an AMD Ryzen
5 3500U CPU.

Within the simulation environment, we reformat the objective function so that a lower value is considered
better (Equation 3.19), therefore all optimisations become minimisations (Equations 3.19, 3.29, 3.30,
3.31, and 3.32).

4.1.1. Global Simulation Parameters Configuration
A standard setup for the global simulation parameters is used across all simulations with the only
exceptions being the simulation time, T ; the MPC step size, ∆kMPC; and prediction horizon, ∆kprediction.
The purpose of the various simulations performed in this case study is not to explore the influence of
these parameters, even though they can significantly impact the overall performance of the system and
the results of the simulation.

The simulation step size is set as∆t = 15 s, the coarsening factor is set as ccoarsen = 5, and the objective
function constants are set as cobj,1 = 1 and cobj,2 = 1 (Equation 3.19).

4.1.2. Environment Model Configuration
The standard environment model configuration is defined as:

• Environment cell length, ∆xenv = ∆yenv = 10m.
• Building occupancy map, Mbuilding = 0.5 · 1nx,search×ny,search .
• Structure map, M structure = 1nx,search×ny,search .
• Wind velocity, vwind = 0ms−1.
• Wind direction, θwind = −π

4

• Fire spread constants, cfs1 = 0.2 and cfs2 = 0.2.
• Ignition time, tignition = 120 s.
• Burnout time, tburnout = 600 s.
• Wind spread radius, rwind = 3.
• Wind model constants, cwm1 = 0.1, cwm2 = 0.1, and cwmd = 0.4.
• Max number of victims per search map cell, nvictim = 5.

Given the environment model dimensions (nx,env, ny,env), a standard initialisation for environment map
parameters is also defined. Here, we illustrate a small disaster environment where nx,env = ny,env = 40.
This initialisation is scaled appropriately for larger disaster environments unless otherwise noted.

4.1. Simulation Configuration 32

Figure 4.1: Single instance of environment setup for basic small disaster environment, red dots indicate agent positions. Each
subplot represents the value of the labelled environmental state variable for the corresponding cell, from the lower limit (dark

blue) to upper limit (yellow) of the parameter range.

Figure 4.1 shows the initialisation of the environment map parameters for the basic small environment
with two agents. As shown, uniform distributions for M structure and Mbuilding are defined. The figure
shows one instance of the coarsened victim map, M victim, where it can be seen that the distribution
of victims is random over the disaster environment due to the uniform building map, however, this
parameter varies with each simulation seed. Agents are initialised in a row of adjacent search maps
cells in the bottom left hand corner of the disaster environment.

Figure 4.2: Fire spread progression for basic small dynamic environment, example simulation

Static environments are initialised with the fire map as a matrix of ones M fire = 1nx,search×ny,search so that
there are no active fires during the simulation and there is no fire spread.

Likewise, Figure 4.2 shows the propagation of the fire model for one simulation. The fire map is ini-
tialised with a uniform distribution of flammable cells, and an active fire is initialised for four cells, where
M fire[20 : 21, 20 : 21] = 3.

This setup ensures the fire remains active in each simulation, rather than extinguishing prematurely.

4.1.3. Agent Model Configuration
We define the following standard agent model configuration:

• Agent airspeed, vairspeed = 5ms−1.

4.1. Simulation Configuration 33

• Agent scan time per square metre, tscan = 0.01 sm−2.
• Agent sensor accuracy, η = 0.9.
• Scan certainty loss per time step, σ = 0.01.
• Agent tasks, τ task = 1nx,search×ny,search .

With MPFC, the agent target cells are initialised as the current agent locations, stargeta = [slocationa]. In
contrast, for the MPC controller, the first set of target cells are initialised as the current agent locations
and the remaining cells are set as ones, stargeta = [slocationa , 1nx,search×ny,search].

4.1.4. Controller Configuration
Three separate controller configurations are selected for the simulations, including an MPFC, MPC,
and Pre-tuned FLC.

The various equations defining the optimisation step of the predictive controllers are set in section 3.4.3.
To implement these optimisations in the simulation, we must select an appropriate solver, implement
the optimisation bounds, and define the optimisation constraints.

In real-time control problems, a key constraint is the optimisation computation time, which must be
completed before determining the next set of control inputs. Therefore, a set of optimisation constraints
are imposed to reflect this and limit the time spent for each optimisation.

MPFC Configuration
The MPFC controller optimisation is configured to use a classic pattern search algorithm, which is
selected due to its suitability for handling non-smooth, non-linear, and discontinuous optimisation prob-
lems without requiring gradient information. This makes it particularly well-suited for the complex and
probabilistic nature of the environment model used in our simulations.

The key constraints for the optimisation are defined by the maximum number of function evaluations,
nmax-func-eval = 100 and the maximum number of iterations, nmax-iterations = 100. The optimisation bounds
are set as lb = −1 and ub = 1, where lb is the set of lower bounds, ub is the set of upper bounds, and
1 is a vector of ones.

MPC Configuration
The MPC controller optimisation is configured to use a genetic algorithm, which is selected over pat-
tern search due to its ability to handle discrete optimisation problems effectively and is well-suited for
optimisation problems where the search space is large, complex, and discontinuous.

The key constraints for the optimisation are defined by the maximum number of function evaluations,
nmax-generations = 100 and the population size, npopulation = 100. The optimisation constraints are set as
lb = [1, 1] and ub = [nx,search, ny,search], where lb is the set of lower bounds and ub is the set of upper
bounds.

Pre-tuned FLC Configuration
The Pre-tuned FLC is configured as defined in Section 3.3, with the Fuzzy Rule base as given in A. The
Pre-tuned FLC parameters are fixed throughout the simulation and provide the baseline performance
for a simple local agent controller.

4.2. MPFC Performance Analysis 34

4.1.5. Standard Results Format
The simulation parameters are displayed using line plots for each of the simulation cases. To establish
consistency across the visualisation of simulation results, we define a standard results format for each
controller type and controller architecture, as shown in Figure 4.3 for sections 4.2 and 4.3. A solid line
is used for centralised controllers, and a dashed line is used for decentralised controllers. FLC results
are coloured green, MPFC results are coloured orange, and MPC results are coloured purple.

FLC

MPFC

MPC

Decentralised

Centralised

Figure 4.3: Line styles for simulation results

4.2. MPFC Performance Analysis
In the MPFC Performance Analysis, MPFC is simulated and assessed against the MPC and Pre-tuned
FLC. This is done by beginning with simple simulation cases to isolate controller performance from the
modelling complexities and gradually introducing more complex simulations.

4.2.1. Two-Agent System in Small Static Disaster Environment

Figure 4.4: J(k) for a two-agent system in small static disaster environment, 5 simulations

Figure 4.4 presents the instantaneous objective function of the centralised MPFC, centralised MPC,
and Pre-tuned FLC controllers for a two-agent system in a small static environment, simulated over

4.2. MPFC Performance Analysis 35

T = 5000 s. In the static scenario, the objective function starts around 5000, then rapidly decreases as
agents scan cells and stabilises once most cells have been observed.

This illustrates the effect of the sensor accuracy component of M scan (Equation 3.9) in the objective
function (Equation 3.19), which has a high overall contribution to the objective function at the start of the
simulation as all cells begin unscanned, and reaches a stable state when there is a balance between the
rate that agents scan cells and the rate of degradation ofM scan due to the sensor accuracy component.

The Pre-tuned FLC demonstrates the poorest mean performance at 2925, followed by the centralised
MPFC with 2705 (−7.5%) and the centralised MPC with 2440 (−16.6%).

Note that the initial performance of the Pre-tuned FLC is very close to the centralised MPFC, suggesting
that the initial tuning of the FLC is well-chosen. The Pre-tuned FLC also does not manage to reach
a stable objective function value, with two clear peaks, while both centralised MPFC and centralised
MPC manage to reach a stable performance as they can adapt the performance of the local controllers.

Figure 4.5: topt for a two-agent system in small static disaster environment, 5 simulations

Although centralised MPFC does not outperform centralised MPC, most of the difference in perfor-
mance is during the first 1000 s of the simulation, where the centralised MPC is able to optimise the
initial cells, while both stabilise around a similar objective function value over the remainder of the sim-
ulation. Additionally, the confidence intervals for centralised MPFC are much tighter. Figure 4.5 shows
the computational optimisation time for each MPC step over the simulation. Centralised MPFC has a
mean of 48 s, almost half of the mean of 93 s of the centralised MPC. The optimisation time remains
stable for both control methods over the simulation.

4.2. MPFC Performance Analysis 36

4.2.2. Two-Agent System in Small Dynamic Disaster Environment

Figure 4.6: J(k) for two-agent system in small dynamic disaster environment, 5 simulations

Figure 4.6 presents the instantaneous objective function of the centralised MPFC, centralised MPC,
and Pre-tuned FLC controllers for a two-agent system in a small dynamic environment, simulated over
5000 s. The effect of the fire propagation can be seen in the objective function, with active fires reaching
a peak at around 2000 s and most fires burning out at around t = 3500 s.

In this case, the centralised MPC has a mean objective function of 2618, followed by the Pre-tuned FLC
with 2490 (−4.9%) and the centralised MPFC with 2375 (−9.3%). With the introduction of the uncertain
fire spread component, the performance of the centralised MPC has degraded relative to the Pre-tuned
FLC, while the centralised MPFC achieves the greatest performance.

4.2. MPFC Performance Analysis 37

Figure 4.7: topt for a two-agent system in small dynamic disaster environment, 5 simulations

Figure 4.7 shows the computational optimisation time for each MPC step over the simulation. Cen-
tralised MPFC has a mean optimisation time of 56 s while centralised MPC has as optimisation time
of 122 s (+118%). The optimisation times for all control methods are higher due to the additional com-
plexity of predicting fire spread. Unlike the static case, the optimisation time is highly variable for the
centralised MPC, while the centralised MPFC maintains a stable optimisation time over the course of
the simulation.

4.2. MPFC Performance Analysis 38

4.2.3. Four-Agent System in Small Dynamic Disaster Environment

Figure 4.8: J(k) for four-agent system in small dynamic disaster environment, 5 simulations

In this simulation, the number of agents is increased to na = 4 for the same configuration defined
above in section 4.2.2. As shown in Figure 4.8, the Pre-tuned FLC demonstrates the poorest mean
performance at 2176, followed by the centralisedMPCwith 2044 (−6.1%) and the centralisedMPFCwith
1849 (−15.0%). By introducing more agents in the same disaster environment, the objective function
values are lower than in the two-agent case. Due to the introduction of more agents in the same size
of environment, the agent actions become more closely coupled and the performance of the MPC and
MPFC methods is improved relative to the Pre-tuned FLC, as they are able to optimise individual agent
behaviours against the predicted future states.

4.2. MPFC Performance Analysis 39

Figure 4.9: topt for a four-agent system in small dynamic disaster environment, 5 simulations

Figure 4.9 shows that the centralised MPFC has a mean optimisation time of 97 s while centralised
MPC has as optimisation time of 148 s (+53%). Compared to the two-agent case, the centralised MPC
optimisation time is closer to the centralisedMPFC due to the greater increase in number of optimisation
variables for the centralised MPFC versus the centralised MPC.

4.2. MPFC Performance Analysis 40

4.2.4. Decentralised vs centralised MPFC controller architectures
Maintaining the same basic small dynamic disaster environment model, the centralised MPFC and
decentralised MPFC architectures are simulated to compare performance.

Centralised vs Decentralised MPFC for Two-Agent System

Figure 4.10: J(k) for centralised vs decentralised MPFC with na = 2, 5 simulations

Figure 4.10 presents the instantaneous objective function of the centralised MPFC and decentralised
MPFC controllers for a two-agent system in a small dynamic environment, simulated over 5000 s. The
Pre-tuned FLC demonstrates the poorest mean performance at 2599, followed by the decentralised
MPFC with 2320 (−10.7%), and the centralised MPFC with 2275 (−12.5%). In this case both archi-
tectures achieve a similar performance, but there is a trade-off between the number of optimisation
variables due to the number of agents in the system.

4.2. MPFC Performance Analysis 41

Figure 4.11: topt for centralised vs decentralised MPFC with na = 2, 5 simulations

Figure 4.11 shows that the centralised MPFC has a mean optimisation time of 601 s while decentralised
MPFC has as optimisation time of 604 s (+0.5%).

4.2. MPFC Performance Analysis 42

Centralised vs Decentralised MPFC for Four-Agent System

Figure 4.12: J(k) for centralised vs decentralised MPFC with na = 4, 5 simulations

In this simulation, the number of agents is increased to na = 4 for the same configuration defined above
in section 4.2.4.

As shown in Figure 4.12, the Pre-tuned FLC demonstrates the poorest mean performance at 2176,
followed by the centralised MPFC with 1849 (−15.0%) and the decentralised MPFC with 1807 (−17.0%).
Likewise, Figure 4.13 shows that the centralised MPFC has a mean optimisation time of 97 s while
decentralised MPFC has as optimisation time of 93 s (−4%).

4.2. MPFC Performance Analysis 43

Figure 4.13: topt for centralised vs decentralised MPFC with na = 4, 5 simulations

In this case, the decentralised MPFC outperforms the centralised MPFC in both metrics despite the
fact that agent behaviour is more coupled. This likely comes down to a trade-off between the degree
of coupling between agent actions and the number of optimisation parameters which must be solved,
which for centralised MPFC scales with the number of agents in the system.

4.2.5. Two-Agent System in Complex Dynamic Disaster Environment
In the previous performance analysis simulations, the environment variables were simplified as much
as possible to isolate controller performance in a controlled environment. In this simulation, we anal-
yse controller performance under more complex conditions by introducing more complex environment
parameters.

Figure 4.14 shows the environment set up for a single simulation seed. We initialise M structure as a
Perlin noise matrix to emulate clusters of buildings with different flammabilities, and Mbuilding is de-
fined by three probability density functions representing several population centres across the disaster
environment.

4.2. MPFC Performance Analysis 44

Figure 4.14: Single instance of environment setup for complex disaster environment, red dots indicate agent positions. Each
subplot represents the value of the labelled environmental state variable for the corresponding cell, from the lower limit (dark

blue) to upper limit (yellow) of the parameter range.

The wind velocity is set as vwind = 1ms−1 and the wind direction is set as θwind = π
4 rad. The fire model

is configured to increase the influence of wind direction and velocity on fire spread and to slow down fire
spread throughout the simulation. This is achieved by setting the constants of the fire and wind models
as cfs1 = 0.8, cfs2 = 2.5, cwm1 = 0.1, cwm2 = 1.5, and cwmd = 0.9. The fire map, M fire, is initialised with
two active fires in random cells in the disaster environment.

Figure 4.15 shows the fire spread over time for a single simulation seed. In this case, we can see that
several fire fronts form and spread more strongly with the wind direction to the Northeast, while some
cells do not catch fire due to their low flammability.

Figure 4.15: Single instance of fire spread for complex disaster environment

In this simulation case, fire spread occurs over the entire duration of the simulation, and does not
have a clear peak early on as in previous simulations. As shown in Figure 4.16, the Pre-tuned FLC
demonstrates the poorest mean performance at 7181, followed by the centralised MPFC with 6437
(−10.4%) and the decentralised MPFC with 6283 (−12.5%).

The centralised MPC achieves more stable performance over the entire simulation. This may be due to
the MPC having direct control over agent target cells, which allows it to always respond to active fires
regardless of the positions of the fires or agents, while MPFC can only control agent actions indirectly
via the output parameters of the FLC. This highlights the importance of the design of the FLC. For
instance, by choosing alternative input parameters, it may be possible for MPFC to tune agents to
prioritise certain geographical areas of the disaster environment.

4.3. MPFC Sensitivity Analysis 45

Figure 4.16: J(k) for a two-agent system in complex disaster environment, 5 simulations

4.3. MPFC Sensitivity Analysis
The objective of the sensitivity analysis is to investigate the performance of the supervisory controllers
over a range of values for a given design parameter and identify the strengths and weaknesses of
MPFC compared to the alternative controller architectures.

Four parameters are selected, each of which is a key design parameter in the sizing of the prediction
step of the supervisory controllers, and an individual sensitivity analysis is performed for each parameter
across a defined range of values.

It should be noted that many other parameters influence the overall controller performance that are
outside the scope of this sensitivity analysis. For simplicity, we did not conduct a multi-parameter
sensitivity analysis that explores multiple parameters simultaneously.

This method may provide additional insight into controller design if the design parameters are coupled.
All sensitivity analyses are performed for the basic dynamic environment initialisation defined previously,
with the design parameters adjusted according to Table 4.1.

Table 4.1: Sensitivity Analysis Parameters

Parameter Range

Number of Agents (na) 2, 3, 4

Disaster Environment Size (nxenv · nyenv) 20, 40, 60

MPC Step Size (∆tMPCs) 30, 75, 225, 450, 675, 900

Prediction Horizon (∆kpreds) 450, 675, 900, 1125

4.3. MPFC Sensitivity Analysis 46

(a) Normalised Mean objective function, J(k) (b) Mean optimisation time, t̄(k)

Figure 4.17: Sensitivity with number of agents, na, 5 simulations each

4.3.1. Number of Agents
Figure 4.17a presents the normalised instantaneous objective function for decentralised and centralised
MPC and MPFC architectures with the number of agents in the range na = [2, 3, 4]. The objective
function values are normalised against the results for a Pre-tuned FLC controller and expressed as
the percentage difference from the Pre-tuned FLC mean. The individual data points for each set of
simulations are denoted by coloured dots, and the 95% confidence intervals are represented by error
bars. To differentiate between controller architectures, centralised controller results are displayed using
circular points and wider error bar tips, while decentralised controller results are displayed using square
points and narrower error bar tips. Additionally, a first-order polynomial trend line is fitted to the results
of each architecture to visualise the correlation with the number of agents. A solid line is used for
centralised architectures and a dashed line is used for decentralised architectures.

All predictive controller configurations exhibit improved objective function performance relative to the
Pre-tuned FLC with na. As seen in the previous simulations, the decentralised MPFC architecture
slightly outperforms the centralised MPFC architecture, and likewise for the decentralised and cen-
tralised MPC controller architectures. All controller architectures demonstrate relatively similar trends
with the number of agents, although it is difficult to assert whether there is more or less correlation with
the number of agents for a given controller architecture due to the range of the confidence intervals.
For the full range of na tested, centralised MPFC consistently outperforms centralised MPC by around
10% and decentralised MPFC consistently outperforms decentralised MPC by around 5%.

Figure 4.17b shows the mean optimisation times for the simulated architectures. The optimisation
time for decentralised architectures remains stable with the number of agents, however decentralised
architectures also require na separate optimisations to be performed instead of a single optimisation.
Therefore, if these optimisations can be performed in parallel they may be more efficient than if they
must be performed on the same processor. The overall optimisation time for the decentralised MPFC
corresponds closely to the overall optimisation time for the centralised MPFC, while the optimisation
time for the decentralised MPC per agent is close to the overall optimisation time for the centralised
MPC, meaning that the overall optimisation time is in fact several times (equivalent to the number of
agents) greater. The confidence intervals also clearly show that the variability in optimisation times is
far lower for the MPFC architectures than for the MPC architectures.

4.3.2. Disaster Environment Size
Figure 4.18a presents the normalised instantaneous objective function for the centralised MPC and
MPFC controller architectures against the number of cells in the disaster environment. MPFC demon-
strates around a fairly consistent 10% improvement over the Pre-tuned FLC, while the MPC performs
better in large disaster environments than smaller ones. The trend line for the MPC does not intersect
the data point confidence intervals at 1600 cells, so it may not be a strictly linear relationship.

4.3. MPFC Sensitivity Analysis 47

The mean optimisation times for this sensitivity analysis (Figure 4.18b) show that both have a linear
correlation with the number of environment cells and do not demonstrate a clear difference in scalability
between them.

(a) Normalised Mean objective function, J(k) (b) Mean optimisation time, t̄(k)

Figure 4.18: Sensitivity with environment size, nx,env · ny,env, 5 simulations each

4.3.3. MPC Step Size
In our simulation, the MPC step size dictates the interval at which control parameters are updated, as
well as the interval at which the MPC is called. In this sensitivity analysis, the MPC step size, kMPC, is
varied while the prediction horizon is maintained as kpred = kMPC + 15.

(a) Mean objective function, J(k) (b) Mean optimisation time, t̄(k)

Figure 4.19: Sensitivity of MPFC with MPC step, ∆tMPC, 5 simulations each

The results appear to indicate roughly even performance in the range 100 s to 300 s, with the MPFC
performance degrading when the MPC step size is increased further.

Figure 4.18 demonstrates a strong linear correlation with optimisation time, although a decreased MPC
time step will also require more frequent optimisations. An optimal selection of kMPC may be to minimise
it while selecting a value in the range that achieves the best overall objective function performance, pos-
sibly in the range 100 s to 300 s according to our results. The optimal range may have many influencing
factors, including the response time of the agent, the environment dynamics, the accuracy of the pre-
diction model, and many more.

4.4. MPFC Design Exploration 48

4.3.4. Prediction Horizon
In this sensitivity analysis, the prediction horizon, kpred, is varied while the MPC step size is constrained
to kMPC = 30. This results in the prediction horizon defining how far beyond the control horizon the
MPC or MPFC controller performs its prediction.

(a) Mean objective function, J(k) (b) Mean optimisation time, t̄(k)

Figure 4.20: Sensitivity of MPFC with prediction step, ∆tpred, 5 simulations each

Figure 4.20 shows no clear correlation between the global objective function with the prediction time
step size for a strong linear correlation with the mean optimisation time (Figure 4.20). This suggests
that extending the prediction horizon beyond the control horizon is of little value for the simulation
implemented in this case study, but this correlation may be different in systems where agent actions
have a stronger influence on the optimal future actions of the system.

4.4. MPFC Design Exploration
This section investigates potential design choices for MPFC, which may enhance its performance and
computational efficiency or understand configuration options for the controller.

4.4.1. Prediction Modes
As mentioned in Section 3.4.3, two prediction modes are implemented. The probability threshold pre-
diction mode is used for all simulations in the analysis as we assume the controller cannot predict
future probabilistic states perfectly. In this simulation, we assess the performance of the controller with
the probability threshold versus the exact prediction mode for a two-agent system in a small disaster
environment. A large MPC step size is chosen to compare prediction modes as errors are more likely
to accumulate over longer prediction horizons with the probability threshold prediction mode.

4.4. MPFC Design Exploration 49

Figure 4.21: J(k) for prediction modes, ∆kMPC = 30, 5 simulations

The performance for two MPFC controllers using each prediction mode is shown in Figure 4.21. The
predicted objective function remains consistent across both prediction modes, with both results within
the confidence interval of the other.

The probability threshold prediction mode performs slightly better, with a mean objective function of
2191.77 against the mean objective function of 2211.91 for the exact prediction mode. The largest
discrepancy between prediction modes is seen during the start of the simulation, when the most fire
spread is occurring. The exact prediction mode achieves a better overall performance during the first
900 s of the simulation, corresponding to the first two MPC steps, however this may have placed the
agents in a less optimal situation for the remainder of the simulation.

To understand the relative difference in controller performance between these two prediction modes,
a sensitivity analysis is run against tMPC for centralised MPFC in the range [450 s, 900 s]. Figure 4.22
shows the objective function evaluation for each prediction mode, normalised against the performance
of a Pre-tuned FLC.

Both achieve a relative decrease in objective function of around 15% when tMPC = 450 s, degrading to
around 14% when tMPC = 900 s, however the confidence intervals remain wide.

As discussed previously, the probability threshold prediction mode outperforms the exact prediction
mode in the simulations for tMPC = 450 s, however as expected the performance regrades relative to
the exact prediction mode as the prediction horizon is increased due to the accumulation of prediction
errors.

Overall, the performance of the probability threshold prediction mode correlates closely with the exact
prediction mode, indicating it is a suitable estimation method for this simulation.

4.4.2. Type-1 vs Type-2 FLC
In this simulation, we implement MPFC in a dynamic environment with a Type-2 TSK FLC and compare
it against our previous formulation using a Type-1 FLC. Type-1 FLCs use crisp MFs where each input
is associated with a single degree of membership. This simplicity allows for efficient computations

4.4. MPFC Design Exploration 50

Figure 4.22: Comparison of prediction modes: sensitivity of centralised MPFC with tMPC, 5 simulations each

and straightforward implementation. In contrast, Type-2 FLCs employ fuzzy MFs, which means that
each input is associated with a range of degrees of membership, which can improve performance and
robustness when faced with uncertain variables at the expense of more complex computations.

The results show that there is no clear difference in performance between the Type-1 FLC and the Type-
2 FLC for the selected simulation scenario. A Type-2 FLC may be more suitable in scenarios where
additional uncertain parameters are introduced or if the optimal system behaviour due to uncertain
parameters were more complex.

Notably, the Type-1 configuration has a mean optimisation time of 700 s versus 654 s for the Type-2 con-
figuration. This decrease in optimisation times with the Type-2 FLC may be due to faster convergence
during optimisation due to the range of degrees of membership associated with each input.

4.4. MPFC Design Exploration 51

Figure 4.23: J(k) for Type-1 vs Type-2 FLC in MPFC architecture, 5 simulations

Figure 4.24: Mean optimisation time for Type-1 vs Type-2 FLC in MPFC architecture, 5 simulations

4.4. MPFC Design Exploration 52

4.4.3. Local Prediction Maps
As discussed in section 4.3.2, a significant weakness of MPFC is that the optimisation time is highly
dependent on the environment and search map dimensions. Due to the configuration of the control
problem introduced in this case study, an agent will prioritise nearby cells over distant cells due to the
lower response time to reach them. Therefore, we can assume that the FLC does not need to consider
cells outside a given radius, rlocal, in the x and y axis around the agent.

To address the issue of long optimisation times for large environments, a local map model is proposed
to improve controller performance by limiting predictions to the local cells within a given radius of each
agent, thereby reducing the computational complexity of the prediction step.

In this method, during the prediction step, a slice with dimensions [2 · rlocal + 1, 2 · rlocal + 1] centred on
the agent is taken for each search map state, ϕsearch(sm, k). A local attraction map is then calculated
and restored to the global map before the agent target cell assignment. Figure 4.25 illustrates the local
map extraction. With this method, the computational complexity of the MPFC prediction is effectively
decoupled from the search map size.

Global Map

Agent

Local Map (3x3)
Local Map Extract

Local Map

1 2 3 4 5

1

2

3

4

5

1 2 3

1

2

3 Agent

Figure 4.25: Extraction of local map from global map, where rlocal = 1

4.4. MPFC Design Exploration 53

Local Prediction Maps with Small Static Disaster Environment

Figure 4.26: J(k) with rlocal, 3 simulations

Figure 4.27: Mean optimisation time with rlocal

First, the performance of the local map model is analysed for a two-agent system in a small static

4.4. MPFC Design Exploration 54

disaster environment of dimensions nx,env = ny,env = 20. We simulate MPFC and Pre-tuned FLC using
both the global and local maps models with rlocal = 5. The results in Figure 4.26 show that MPFC
can maintain a similar performance using local maps to the Pre-tuned FLC using global maps, while
the mean optimisation time is reduced from 48.2 s to 40.7 s. The optimisation times are also far more
consistent for the local maps model. The results in this simulation validate the potential for local maps
to reduce optimisation times without a significant decrease in the objective function; therefore, the
following simulation focuses on exploring the performance using this method for a range of values of
rlocal in a larger complex dynamic disaster environment.

Local Prediction Maps with Large Dynamic Disaster Environment
In this simulation, the local map model implementation is assessed for a two-agent system in a large
simulated disaster environment of dimensions nx,env = ny,env = 200. MPFC is simulated using the local
maps model for the range rlocal = [3, 5, 7].

The initialisation of the environment and agent states is shown in Figure 4.28, where red circles show
the initial agent locations. The building map, Mbuilding, is initialised with two population centres with
Gaussian distributions; the structure map, M structure is fixed to ones; and the victim map M victim is
initialised according to the building distribution.

Figure 4.28: Disaster environment setup for local map simulation, red dots indicate agent positions

Figure 4.29: Fire spread progression for local map simulation, example simulation

The fire map is initialised with active fires in the bottom left corner. The progression of the fire spread

4.4. MPFC Design Exploration 55

over one of the simulations is shown in Figure 4.29. Due to the size of the disaster environment and the
building map, the fire spread rapidly propagates out from the initial active fire point with a wide radial
active fire front.

Figure 4.30: J(k) with rlocal, 3 simulations

The results shown in Figure 4.30 show the objective function evaluated over the first 1400 s of the
simulation, which was restricted due to the computational load of running global map simulations with
this size of disaster environment. The objective function appears to increase continuously due to the
size of the disaster environment compared to the number of agents and the propagation of the fire at
the start of the simulation, resulting in an increasing objective function evaluated at each time step.

As expected, MPFC using global maps demonstrated the best mean performance of 70923. The re-
maining local map MPFC controllers achieve a performance of 71163 for rlocal = 3 (−0.3%), and the
other local map MPFC controllers performing worse than the Pre-tuned FLC. These results, combined
with the confidence interval ranges, mean there is no clear trend we can extract between the value of
rlocal and mean performance.

This may be due to several contributing factors; including the limited snap-shot we are able to simulate
for a disaster environment with this size, the fact that the beginning of the simulation is dominated by fire
spread from a single source, meaning that the cells with the highest priority are likely neighbouring cells
which have active fires at any one time, and the configuration of the weights in the objective function.

Despite the lack of correlation with rlocal, all MPFCs using local maps demonstrated similar or improved
performance than the Pre-tuned FLC with far lower optimisation times than MPFC using global maps,
as shown in Figure 4.31. The second-best performing controller, MPFC with rlocal = 3, has a mean
optimisation time of 108 s compared to 794 s using global maps, a reduction of 86%.

These initial results indicate that this may be a feasible solution to implement MPFC which is scalable
independent of the disaster environment size.

In further simulations, it may be possible to demonstrate an optimal value of rlocal, which balances the
prediction time against the radius of the local map. This may be achieved by investigating the mean
performance for a given MPFC configuration over an entire SaR operation and initialising multiple

4.4. MPFC Design Exploration 56

Figure 4.31: Mean optimisation time with rlocal, 3 simulations

smaller fires across the disaster environment throughout the simulation. Further research may also
explore other similar ideas in simplifying the computational intensity of the prediction.

5
Conclusions and Recommendations

Having discussed the performance, sensitivity, and design exploration of MPFC, this chapter consoli-
dates our findings and outlines potential directions for future research. First, we summarise how each
research objective was met and provide concise answers to the research questions posed in Sec-
tion 1.4. We then consolidate the insights into MPFC gained from the simulation results and before
presenting prioritised recommendations for future research on this topic.

5.1. Conclusion
In this research, MPFC is applied for the mission planning of a homogeneous multi-agent UAV sys-
tem. We evaluated the controller’s performance relative to alternative control methods, performed a
sensitivity analysis of key design parameters, and explored various MPFC design configurations. To
achieve this, assumptions and simplifications were made in order to limit the scope of the modelling
and simulation work required to a feasible size.

The findings validate the feasibility and value of MPFC for certain applications against alternative control
methods, providing clear insights into the design of an MPFC controller for multi-agent mission planning.

This project set out with clearly defined objectives and research questions aimed at advancing the
understanding and application of MPFC, as outlined in Section 1.3. The following objectives were
defined:

OB1: Specify a generic mathematical definition of the MPFC controller.
OB2: Define and implement the MPFC controller model for a specific case study in simulation.
OB3: Validate the performance of MPFC against alternative controller architectures via exten-

sive computer-based simulations.
OB4: Analyse the sensitivity of the MPFC controller to various design parameters.
OB5: Explore design improvements to the basic MPFC controller implemented.

To achieve these objectives, the project defined three research questions presented in Section 1.4:

RQ1: How does MPFC perform compared to traditional MPC and FLC controllers in a dynamic
environment?

RQ2: Which design parameters drive the performance of MPFC and how can they be optimised?
RQ3: What design choices can be made then configuring an MPFC and in which cases should

they be made?

To address these questions, we defined and implemented MPFC for a mission planning case study,
structuring the results into three sections:

57

5.1. Conclusion 58

• MPFC Performance Analysis (addressing RQ1): This study benchmarked the performance of
MPFC against MPC and Pre-tuned FLC, providing insights into its advantages and potential limi-
tations in dynamic settings.

• MPFC Sensitivity Analysis (addressing RQ2): This study conducted a sensitivity analysis to un-
derstand the influence of various design parameters on the performance of MPFC.

• MPFC Design Exploration (addressing RQ3): This study explored design considerations for im-
plementing MPFC in multi-agent control scenarios, and understanding how to optimise MPFC
configuration based on the needs of the use case.

Through this structured approach, the project both validates the capabilities of MPFC and provides an
understanding of how its design and parameters can be fine-tuned to achieve superior performance in
complex, dynamic environments.

5.1.1. MPFC Performance Analysis (Research question RQ1)
Simulations in Section 4.2 demonstrated that MPFC consistently achieved lower or comparable objec-
tive function values while maintaining tighter confidence intervals and reduced mean optimisation times.
This was especially notable in environments where fire spread and other stochastic factors influenced
agent behaviour.

When the number of agents was increased, MPC scaled more efficiently in both objective function per-
formance and optimisation time, although MPFC continued outperform both methods. In comparing
centralised and decentralised MPFC architectures, a clear trade-off emerged when increasing the num-
ber of agents. On one hand, centralised architectures can more effectively optimise behaviour when
there is high inter-agent coupling, while on the other hand decentralised architectures limit the number
of optimisation variables.

In highly dynamic and complex environments, the FLC design emerged as a potential bottleneck, since
its output parameters constrain the extent to which agents can adapt their actions.

Note that an additional strength of MPFC not explored in this paper is that if communication between
the supervisory controller and the agents is lost, MPFC will allow agents to continue their tasks while
MPC would require agents to switch to an alternative control scheme.

Overall, these findings indicate the effectiveness of MPFC in the scenarios simulated in this case study,
while demonstrating the necessity to carefully balance factors such as agent coupling, computational
constraints, and FLC design.

5.1.2. MPFC Sensitivity Analysis (Research question RQ2)
Four sensitivity analyses were conducted to examine the effects of varying the number of agents, the
number of environment cells, the MPC step size, and the prediction step size. In all tests, MPFC
displayed more consistent optimisation times and achieved better performance than MPC within the
simulated parameter ranges.

When increasing the number of agents, both MPC and MPFC improved their mean objective function
relative to the Pre-tuned FLC, although centralised architectures exhibited high sensitivity in mean
optimisation time, whereas decentralised approaches remained more stable. Larger environment sizes
produced similar findings, except that centralised MPFC maintained a consistent objective function
result relative to the Pre-tuned FLC and scaled less dramatically in optimisation time compared to
centralised MPC.

The sensitivity analysis on MPC step size indicated that for the case study, MPFC demonstrated fairly
consistent performance initially, before degrading in performance as the MPC step size was increased
further. The results indicate that for a given case, there should be an optimal MPC step size, how-
ever more extensive simulations would be required to identify the optimal MPC step size for this case
study. By contrast, the prediction step size showed no clear effect on the objective function in these
simulations.

Note that in all cases, the scope of each sensitivity analysis was limited to several points with 5 simu-
lations each due to the high computational load required to conduct each set of simulations, and more

5.2. Recommendations 59

extensive sensitivity analyses may extract improved understanding of these relationships.

5.1.3. MPFC Design Exploration (Research question RQ3)
This study explored various design configurations of MPFC to understand if they enhance MPFC per-
formance and scalability.

Two prediction modes—probability threshold and exact—were evaluated to investigate whether pre-
dicting the most likely outcome at each step provides acceptable performance of MPFC. Both modes
yielded similar results, although the probability threshold mode exhibited some performance degrada-
tion for larger MPC steps, primarily due to error accumulation over extended prediction horizons.

MPFC was also implemented with a Type-2 TSK FIS, and comparison against the Type-1 TSK FIS
configuration from earlier simulations.

The results showed a negligible difference in mean objective function between the two, although the
Type-2 variant demonstrated a significant decrease in optimisation times.

Finally, the concept of local prediction maps was implemented and tested to improve system scalability
in large environments. The results demonstrated large reductions (of up to 86%) in the optimisation
time when using local prediction maps versus global maps with a small degradation in mean objective
function (−0.3% in the best case scenario). However, results were mixed for the large dynamic simula-
tion case and further research would be required to understand the optimal radius selection and mean
performance in large simulation environments.

In summary, we showed that MPFC is a robust and computationally feasible alternative to standard
MPC in multi-agent mission planning, particularly when carefully tuned for the problem size, expected
environmental dynamics, and available computational resources.

5.2. Recommendations
It is the recommendation of this paper that any further research focuses on exploring the design and
performance of MPFC in more detailed and complex control applications in order to further validate the
feasibility and understand all of the design requirements before application with hardware in a physical
lab setting or deployment in the field. In this section, several high priority research topics are identified.

5.2.1. Multi-Objective MPFC
In this case study, MPFC was applied to a single-objective optimisation problem, formulated as a mis-
sion planning for a SaR mission.

Further research with this simulation environment could explore the intricacies of MPFC design in rela-
tion to the interaction of the fire and wind models, the agent dynamics models, and more.

In reality, the system may be required to perform more complex operations. For example, in our se-
lected case study, the multi-agent system may be required to deliver payloads to victims in the form of
medical supplies and sustenance and deliver payloads to combat hazards such as active fires.

Agents may also need to consider more constraints, including monitoring their battery level and return-
ing to recharge stations when necessary, hazards which could cause loss of the agent, and loss of
signal while navigating the disaster environment.

Finally, the system may not operate in isolation within the SaR mission but also need to interface with
other systems, such as directing the operations of ground teams, receiving data from external systems
such as rescue helicopters or satellite imagery, and cooperating with other autonomous systems such
as ground robots.

Various approaches may be taken in designing the MPFC controller to achieve this more complex
system behaviour. One method could be to implement a multi-objective optimisation, in which a Pareto
front of optimal solutions may be calculated against various objectives and a solution selected by the
optimisation algorithm, which may the behaviour of each agent to be defined according to the predicted
need. For instance, if the optimisation predicts a greater need for the delivery of medical supplies,
several agents could be tuned for this behaviour, while fewer are tuned for lower-priority tasks. Likewise,

5.2. Recommendations 60

to facilitate more complex behaviour, more complex FLCs could be defined with the required inputs and
multiple output functions to determine the priority of each behaviour.

5.2.2. Distributed MPFC Architecture
In the MPFC model which was implemented, the simulations demonstrate that agent actions are more
highly coupled when in closer proximity. They also show that the number of agents is a driving fac-
tor in the scalability of the system. Therefore, a distributed control architecture may be implemented
for the predictive controller where agents within a certain radius of each other are clustered together,
and each cluster is assigned a separate MPFC controller. This distributed control architecture may
demonstrate an optimal balance between clustering radius and optimisation time that can outperform
the decentralised and centralised architectures explored in this thesis.

5.2.3. Stochastic MPFC
In this thesis, a simple method was implemented for the prediction of future probabilistic environment
states, which we termed probability threshold prediction mode (Equation 3.24).In this method, the
prediction assumes themost likely outcome of any uncertain model at any time step. Instead, if stochas-
tic MPC was implemented within MPFC, the controller may be more able to make optimal decisions for
the agent behaviour depending on the range of possible outcomes of uncertain processes. This could
also be baselined against a random prediction mode to use as a frame of reference for other prediction
modes.

5.2.4. Imperfect Predictive Model
In assumption AS8, it is assumed that while MPFC can not exactly predict uncertain states, it does
have a perfect predictive model of the environment and system.

In reality, the predictive model would be a non-perfect representation of the actual system and would
accumulate prediction errors over the prediction horizon. A further study could formulate non-perfect
mathematical models based on Ordinary Differential Equations, which model the actual system per-
formance and validate the performance of MPFC with these predictive models. This would also allow
the trade-off between high-fidelity and fast prediction time models to be assessed in the context of an
MPFC controller.

5.2.5. Physics-Informed Neural Network MPFC
Physics-Informed Neural Networks (PINNs) are neural network architectures in which the neural net-
work is guided by prior domain knowledge. This is implemented via imposing soft constraints based
on mathematical models of a system, usually defined by Ordinary Differential Equations, during the
training of the neural network. Compared to mathematical models, PINNs can be of higher fidelity with
a lower prediction time while requiring far less training data than traditional neural networks.

As a predictive model within MPFC, PINNs could speed up model evaluations while maintaining high
fidelity in, for instance, fire spread simulations. Future studies might benchmark PINN-based MPFC
against purely mathematical or data-driven predictive models to measure trade-offs in computational
cost and accuracy.

5.2.6. High-Fidelity Simulation
Finally, analysing MPFC using a higher-fidelity simulation would more closely approximate real opera-
tions. This could include 3D space models, continuous space models, detailed UAV agent dynamics
and control models, UAV sensor modelling, data latency, communications models between agents and
supervisory controllers, and many more. Demonstrating MPFC in such simulations is crucial to vali-
date performance gains and ensure that assumptions scale to practical use cases, before eventually
validating MPFC on physical hardware.

Closing Remarks
In conclusion, MPFC demonstrates substantial promise for the control of multi-agent systems in un-
certain and dynamic environments, largely owing to the synergy between predictive control and fuzzy
logic control. With further development and understanding of MPFC design considerations, alongside

5.2. Recommendations 61

the recommendations identified in this section, MPFC has potential to be a viable, robust, and agile
control method for multi-agent systems in complex real-world scenarios.

References

[1] Mirko Baglioni and Anahita Jamshidnejad. “A Novel MPC Formulation for Dynamic Target Track-
ing with Increased Area Coverage for Search-and-Rescue Robots”. In: Journal of Intelligent &
Robotic Systems 110.4 (2024), p. 140.

[2] Xiao Cao et al. “HMA-SAR: Multi-Agent Search and Rescue for Unknown Located Dynamic Tar-
gets in Completely Unknown Environments”. In: IEEE Robotics and Automation Letters (2024).

[3] Bernardo Esteves Henriques, Mirko Baglioni, and Anahita Jamshidnejad. “Camera-based map-
ping in search-and-rescue via flying and ground robot teams”. In:Machine Vision and Applications
35.5 (2024), p. 117.

[4] Joana Gouveia Freire and Carlos Castro DaCamara. “Using cellular automata to simulate wildfire
propagation and to assist in fire management”. In: Natural hazards and earth system sciences
19.1 (2019), pp. 169–179.

[5] Juliette Grosset et al. “Fuzzy Multi-Agent Simulation for Collective Energy Management of Au-
tonomous Industrial Vehicle Fleets”. In: Algorithms 17.11 (2024), p. 484.

[6] Christopher de Koning and Anahita Jamshidnejad. “Hierarchical integration of model predictive
and fuzzy logic control for combined coverage and target-oriented search-and-rescue via robots
with imperfect sensors”. In: Journal of Intelligent & Robotic Systems 107.3 (2023), p. 40.

[7] Zehui Lu, Tianyu Zhou, and Shaoshuai Mou. “Drmamp: Distributed real-time multi-agent mission
planning in cluttered environment”. In: arXiv preprint arXiv:2302.14289 (2023).

[8] C. Maxwell. Code for Model-Predictive Fuzzy Controller for Search-and-Rescue Path-planning of
Multi-agent Systems. https://doi.org/10.4121/8050f9cb-d0b0-4149-bd24-02f13c2410db.
v1. 2024.

[9] C. Maxwell. Integrated Model Predictive Fuzzy Control for Disaster Victim Detection Path Plan-
ning in MATLAB. https://github.com/craigmax-dev/Integrated-Model-Predictive-Fuzzy-
Control-for-Disaster-Victim-Detection-Path-Planning-in-MATLAB. 2024.

[10] Akira Ohgai, Yoshimizu Gohnai, and Kojiro Watanabe. “Cellular automata modeling of fire spread
in built-up areas—A tool to aid community-based planning for disaster mitigation”. In: Computers,
environment and urban systems 31.4 (2007), pp. 441–460.

[11] Savvas Papaioannou et al. “Distributed search planning in 3-d environments with a dynamically
varying number of agents”. In: IEEE Transactions on Systems, Man, and Cybernetics: Systems
53.7 (2023), pp. 4117–4130.

[12] Mohammad Sarbaz et al. “Hierarchical optimization-based model predictive control for a class of
discrete fuzzy large-scale systems considering time-varying delays and disturbances”. In: Inter-
national Journal of Fuzzy Systems 24.4 (2022), pp. 2107–2130.

[13] Filip Surma and Anahita Jamshidnejad. “State-dependent dynamic tube MPC: A novel tube MPC
method with a fuzzy model of model of disturbances”. In: International Journal of Robust and
Nonlinear Control (2024).

[14] Charbel Toumieh and Alain Lambert. “Decentralized multi-agent planning using model predictive
control and time-aware safe corridors”. In: IEEE Robotics and Automation Letters 7.4 (2022),
pp. 11110–11117.

[15] Meng Zhou et al. “Multi-Robot Cooperative Target Search Based on Distributed Reinforcement
Learning Method in 3D Dynamic Environments”. In:Drones and Autonomous Vehicles 1.4 (2024),
p. 10012.

62

https://doi.org/10.4121/8050f9cb-d0b0-4149-bd24-02f13c2410db.v1
https://doi.org/10.4121/8050f9cb-d0b0-4149-bd24-02f13c2410db.v1
https://github.com/craigmax-dev/Integrated-Model-Predictive-Fuzzy-Control-for-Disaster-Victim-Detection-Path-Planning-in-MATLAB
https://github.com/craigmax-dev/Integrated-Model-Predictive-Fuzzy-Control-for-Disaster-Victim-Detection-Path-Planning-in-MATLAB

A
FLC Rule Base

This appendix contains the fuzzy rule base configuration used in the FLC.

Mfire-risk Mresponse Mscan Mpriority Matt

low low low low high
low low low medium medium
low low low high medium
low low medium low medium
low low medium medium medium
low low medium high medium
low low high low medium
low low high medium medium
low low high high medium
low medium low low high
low medium low medium high
low medium low high medium
low medium medium low high
low medium medium medium medium
low medium medium high medium
low medium high low medium
low medium high medium medium
low medium high high medium
low high low low high
low high low medium high
low high low high high
low high medium low high
low high medium medium high
low high medium high medium
low high high low high
low high high medium medium
low high high high medium

medium low low low medium
medium low low medium medium
medium low low high medium
medium low medium low medium
medium low medium medium medium
medium low medium high medium
medium low high low medium
medium low high medium medium

63

64

Mfire-risk Mresponse Mscan Mpriority Matt

medium low high high low
medium medium low low high
medium medium low medium medium
medium medium low high medium
medium medium medium low medium
medium medium medium medium medium
medium medium medium high medium
medium medium high low medium
medium medium high medium medium
medium medium high high medium
medium high low low high
medium high low medium high
medium high low high medium
medium high medium low high
medium high medium medium medium
medium high medium high medium
medium high high low medium
medium high high medium medium
medium high high high medium
high low low low medium
high low low medium medium
high low low high medium
high low medium low medium
high low medium medium medium
high low medium high low
high low high low medium
high low high medium low
high low high high low
high medium low low medium
high medium low medium medium
high medium low high medium
high medium medium low medium
high medium medium medium medium
high medium medium high medium
high medium high low medium
high medium high medium medium
high medium high high low
high high low low high
high high low medium medium
high high low high medium
high high medium low medium
high high medium medium medium
high high medium high medium
high high high low medium
high high high medium medium
high high high high medium

B
Simulation Configuration Scripts

This appendix provides a comprehensive list of the MATLAB configuration scripts used to initialise each
simulation.

Table B.1: MATLAB Script Handles for Each Simulation1

Simulation Main Script Environment Agent FLC Controller
4.2.1 h_s_victim_model_5000 h_env_static_40 h_a_repeat_2 h_init_fis_mirko_4 h_arch_fis

h_arch_mpfc_output_prediction
h_a_repeat_2_mpc h_arch_mpc_prediction

4.2.2 h_s_victim_model_5000 h_env_dynamics_40 h_a_repeat_2 h_init_fis_mirko_4 h_arch_fis
h_arch_mpfc_output_prediction

h_a_repeat_2_mpc h_arch_mpc_prediction
4.2.3 h_s_victim_model_5000 h_env_dynamics_40 h_a_repeat_4 h_init_fis_mirko_4 h_arch_fis

h_arch_mpfc_output_prediction
h_a_repeat_2_mpc h_arch_mpc_prediction

4.2.4 h_s_victim_model_5000 h_env_dynamics_40 h_a_repeat_2 h_init_fis_mirko_4 h_arch_fis
h_a_repeat_4 h_arch_mpfc_output_prediction
h_a_repeat_2_mpc h_arch_mpfc_output_prediction_decentralised
h_a_repeat_4_mpc

4.2.5 h_s_victim_model_5000 h_env_dynamics_60_complex h_a_repeat_2 h_init_fis_mirko_4 h_arch_fis
h_arch_mpfc_output_prediction

h_a_repeat_2_mpc h_arch_mpc_prediction
4.3.1 h_s_victim_model_5000 h_env_dynamics_40 h_a_repeat_2 h_init_fis_mirko_4 h_arch_fis

h_a_repeat_3 h_arch_mpfc_output_prediction
h_a_repeat_4 h_arch_mpfc_output_prediction_decentralised
h_a_repeat_2_mpc h_arch_mpc_prediction
h_a_repeat_3_mpc h_arch_mpc_prediction_decentralised
h_a_repeat_4_mpc

4.3.2 h_s_victim_model_5000 h_env_dynamics_30 h_a_repeat_2 h_init_fis_mirko_4 h_arch_fis
h_env_dynamics_40 h_arch_mpfc_output_prediction
h_env_dynamics_60 h_a_repeat_2_mpc h_arch_mpc_prediction

4.3.3 h_s_victim_model_mpc_2_pred_17 h_env_dynamics_60 h_a_repeat_2 h_init_fis_mirko_4
h_s_victim_model_mpc_5_pred_20 h_arch_mpfc_output_prediction
h_s_victim_model_mpc_15_pred_30 h_arch_mpfc_output_prediction
h_s_victim_model_mpc_5000 h_arch_mpfc_output_prediction
h_s_victim_model_mpc_45_pred_60 h_arch_mpfc_output_prediction
h_s_victim_model_mpc_60_pred_75 h_arch_mpfc_output_prediction

4.3.4 h_s_victim_model_mpc_2_pred_17 h_env_dynamics_60 h_a_repeat_2 h_init_fis_mirko_4 h_arch_fis
h_s_victim_model_mpc_30_pred_30 h_arch_mpfc_output_prediction
h_s_victim_model_mpc_5000 h_arch_mpfc_output_prediction
h_s_victim_model_mpc_30_pred_60 h_arch_mpfc_output_prediction
h_s_victim_model_mpc_30_pred_75 h_arch_mpfc_output_prediction

4.4.1 h_s_victim_model_mpc_60_pred_75 h_env_dynamics_40 h_a_repeat_2 h_init_fis_mirko_4 h_arch_mpfc_output_exact
h_arch_mpfc_output_prediction

4.4.2 h_s_victim_model_mpc_60_pred_75 h_env_dynamics_40 h_a_repeat_2 h_init_fis_mirko_4 h_arch_mpfc_output_prediction
h_init_fis_mirko_4_type2

4.4.3 h_s_victim_model_5000 h_env_static_20 h_a_repeat_2 h_init_fis_mirko_4 h_arch_fis
h_s_victim_model_5000_local_map_r5 h_arch_mpfc_output_prediction

4.4.3 h_s_victim_model_5000 h_env_dynamics_200_dualCentre h_a_repeat_2 h_init_fis_mirko_4 h_arch_fis
h_s_victim_model_5000_local_map_r3 h_arch_mpfc_output_prediction
h_s_victim_model_5000_local_map_r5
h_s_victim_model_5000_local_map_r7

1The full set of initialisation files alongside the software code can be found in the 4TU Software Repository: https://doi.or
g/10.4121/8050f9cb-d0b0-4149-bd24-02f13c2410db.v1 [8] or the GitHub repository [9].

65

https://doi.org/10.4121/8050f9cb-d0b0-4149-bd24-02f13c2410db.v1
https://doi.org/10.4121/8050f9cb-d0b0-4149-bd24-02f13c2410db.v1

C
Simulation Seeds

Table C.1: Simulation Seed List

Simulation Parameter Seeds nsim

4.2.1 - 6586, 9364, 1009, 3473, 9463 5
4.2.2 na = 2 265, 5052, 9173, 1171, 7530 5
4.2.3 na = 4 1755, 8611, 6476, 3092, 5726 5
4.2.4 na = 2 265, 5052, 9173, 1171, 7530 5
4.2.4 na = 4 1755, 8611, 6476, 3092, 5726 5
4.2.5 na = 2 803, 6063, 5333, 9967, 9982 5
4.3.1 na = 2 265, 5052, 9173, 1171, 7530 5

na = 3 3866, 348, 8024, 8344, 1252 5
na = 4 1755, 8611, 6476, 3092, 5726 5

4.3.2 nx,env · ny,env = 400 4767, 2357, 6936, 3167, 6246 5
nx,env · ny,env = 1600 265, 5052, 9173, 1171, 7530 5
nx,env · ny,env = 3600 8721, 7857, 1151, 9093, 6561 5

4.3.3 tMPC = 30s 5417, 2296, 8891, 3647, 6783 5
tMPC = 75s 9334, 9739, 826, 6031, 2898 5
tMPC = 225s 717, 624, 4521, 174, 5110 5
tMPC = 450s 9933, 4258, 9696, 6016, 7584 5
tMPC = 675s 9933, 4258, 9696, 6016, 7584 5
tMPC = 900s 9933, 4258, 9696, 6016, 7584 5

4.3.4 tpred = 450s 2239, 7961, 6896, 8912, 833 5
tpred = 675s 2239, 7961, 6896, 8912, 833 5
tpred = 900s 2239, 7961, 6896, 8912, 833 5
tpred = 1125s 2239, 7961, 6896, 8912, 833 5

4.4.1 - 8904, 6149, 5712, 3194, 6791 5
4.4.2 - 9359, 4746, 839, 2634, 8288 5
4.4.3 Static Environment 3717, 2940, 4349 3
4.4.3 Dynamic Environment 8675, 2155, 278 3

66

	Preface
	Executive Summary
	Nomenclature
	Literature Study
	Introduction
	Problem Statement
	Proposed Control Architecture
	Applications
	Research Context

	Project Scope
	Project Objectives
	Research Questions
	Thesis Structure

	Mathematical Model
	Environment Model Formulation
	Agent Model Formulation
	MPFC Formulation
	Controller Architecture
	Global Objective Function
	Generic MPFC Optimisation Function
	Generic FLC Architecture

	Simulation and Prediction Model
	Environment Simulation Model
	Fire Model

	Agent Simulation Model
	Agent Task Model
	Agent Scan Model
	Agent Dynamics Model

	Local Controller Model
	FLC Local Controller
	MPC Local Controller

	Supervisory Controller Model
	Global Objective Function
	Prediction Horizon
	Supervisory Controller Prediction Model
	Supervisory Controller Architectures

	Results
	Simulation Configuration
	Global Simulation Parameters Configuration
	Environment Model Configuration
	Agent Model Configuration
	Controller Configuration
	Standard Results Format

	MPFC Performance Analysis
	Two-Agent System in Small Static Disaster Environment
	Two-Agent System in Small Dynamic Disaster Environment
	Four-Agent System in Small Dynamic Disaster Environment
	Decentralised vs centralised MPFC controller architectures
	Two-Agent System in Complex Dynamic Disaster Environment

	MPFC Sensitivity Analysis
	Number of Agents
	Disaster Environment Size
	MPC Step Size
	Prediction Horizon

	MPFC Design Exploration
	Prediction Modes
	Type-1 vs Type-2 FLC
	Local Prediction Maps

	Conclusions and Recommendations
	Conclusion
	MPFC Performance Analysis (Research question RQ1)
	MPFC Sensitivity Analysis (Research question RQ2)
	MPFC Design Exploration (Research question RQ3)

	Recommendations
	Multi-Objective MPFC
	Distributed MPFC Architecture
	Stochastic MPFC
	Imperfect Predictive Model
	Physics-Informed Neural Network MPFC
	High-Fidelity Simulation

	References
	FLC Rule Base
	Simulation Configuration Scripts
	Simulation Seeds

