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Executive Summary

The transition to a sustainable energy system has accelerated the integration of renewable energy
sources (RES), such as wind and solar power, into electricity markets and infrastructures. While these
sources contribute significantly to the decarbonization of the energy sector, their inherent variability
and limited predictability introduce operational challenges for maintaining system balance and ensuring
cost-effective grid utilization. Additionally, the geographic distribution of RES, often located in remote
areas, has exacerbated issues of grid congestion, leading to limitations in grid access, rising curtailment
levels, and deferred renewable projects. In response to these challenges, Hybrid Power Plants (HPPs),
which co-locate RES with Battery Energy Storage Systems (BESS), have emerged as a viable solution
offering increased operational flexibility, improved forecast error mitigation, and enhanced economic
performance, while utilizing one grid connection point.

This study evaluates the added economic and energetic value of co-locating a BESS with a RES under
the Dutch electricity market structure. A multi-stage stochastic optimization framework is developed
to simulate HPP participation across the day-ahead, intraday, and imbalance markets. The model
incorporates power forecast uncertainty through scenario generation and reduction techniques, and
captures the physical constraints of energy systems, including battery operations and capacity, RES
capacity, and restricted grid connection capacity. Optimization is conducted on a rolling horizon to
reflect the sequential nature of market decision-making.

Three configurations are analyzed: a standalone RES system, a standalone BESS, and a co-located
HPP. These systems are evaluated based on simulated operations over four weeks each representing
a season using real market prices and wind power data. The co-located HPP demonstrates superior
performance in terms of both economic return and renewable energy utilization. By enabling time-
shifting of generation, reducing curtailment, and participating more effectively in short-term markets,
the HPP captures additional value that standalone systems cannot access. Moreover, the ability to
operate flexibly within a fixed grid export limit allows the HPP to relieve grid congestion, using storage
to shift energy dispatch in line with the needs of the electricity system, indicated by price signals, thereby
reducing strain on network infrastructure.

A comprehensive analysis investigates the impact of key assumptions regarding price and power fore-
casts and operational parameters, such as battery size, technology characteristics, grid connection
capacity, and reoptimization frequency. Results indicate that system performance is highly dependent
on the quality of imbalance price forecasts and the ability to respond dynamically to power forecast
updates and market prices. This has been demonstrated by a comparison between no foresight, per-
fect foresight and using the day-ahead clearing price as imbalance forecast. Moreover, allowing the
HPP to withdraw energy from the grid, results in signficant economic gains, however, this comes at the
cost of renewable energy utilization. Although the study excludes capital and degradation costs, the
findings underscore the operational advantages of co-locating RES and BESS under uncertainty and
grid limitations.

Overall, this research contributes to a deeper understanding of how flexible, market-responsive HPPs
can support the transition to a resilient and economically efficient low-carbon power system. It high-
lights the importance of integrated modeling approaches for optimizing renewable dispatch strategies
in evolving electricity markets, while also demonstrating how HPPs can contribute to better utilizing grid
connection capacity and enabling greater renewable integration.
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Pcharge,j,t Battery charging power [MW]
Pdischarge,j,t Battery discharging power [MW]
Pcurtail,t Curtailed renewable generation [MW]
Prealized,curtail,t Realized curtailed power due to grid or storage limits [MW]
Pmax-source Installed renewable capacity [MW]
Pmax-battery Battery charge/discharge power limit [MW]
Pgrid-feed-in Maximum export capacity to the grid [MW]
Pgrid-withdraw Maximum import capacity from the grid [MW]
Ebattery,j,t Battery energy (SoC) in scenario j at time t [MWh]
Estart,i Battery energy at start of iteration i [MWh]
Einitial Initial SoC at beginning of simulation [MWh]
Emax-battery Maximum battery energy capacity [MWh]
EDoD Minimum energy (depth of discharge limit) [MWh]
ηbattery Round-trip battery efficiency [–]
C C-rate — reciprocal of time to fully (dis)charge battery at

max power
[h−1]

t Timestep index [–]
dt Duration of a timestep [h]
Nt,i Number of time steps of optimization window i [–]
Tsim Total simulation time horizon [h]
tupdate Update interval between optimizations [–]
tcurrent,i Time step at which the ith optimization of intraday bidding

and expected imbalance is performed
[–]

i Optimization iteration index (re-optimization loop) [–]
Ni Total number of re-optimization iterations [–]
s Scenario index [–]
Ns Total number of generated forecast scenarios [–]
j Scenario cluster index [–]
Nc Number of representative scenario clusters [–]
M Big-M constant for binary constraint enforcement [–]
ucharging,j,t 1 if battery is charging in j, t; 0 otherwise [–]
uregulation,t 1 if system is in surplus; 0 if in shortage at t [–]
uID,t 1 if intraday trade executed at t; 0 otherwise [–]
ubuy-possible,t 1 if intraday buying is possible at t [–]
usell-possible,t 1 if intraday selling is possible at t [–]
εj,t Forecast error in scenario j at time t (ARMA residual) [MW]
εhistorical,t Historical forecast error used for ARMA training [MW]
ϕi i-th AR coefficient in ARMA(p, q), i = 1, ..., p [–]
θi i-th MA coefficient in ARMA(p, q), i = 1, ..., q [–]
µ Mean level of ARMA forecast error process [–]
p Order of autoregressive process in ARMA(p, q) [–]
q Order of moving average process in ARMA(p, q) [–]
λID,t Intraday market price [€/MWh]
λIM,j,t Realized imbalance price in scenario j at t [€/MWh]
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1
Introduction

This chapter introduces the context and motivation for the research, offering a foundation for under-
standing the challenges and opportunities related to hybrid power plant (HPP) operation in electricity
markets. Section 1.1 outlines the background and key developments driving the need for HPP inte-
gration in the current energy system. This is followed by a literature review in Section 1.2, which sum-
marizes recent advancements and identifies gaps in current research. Based on these insights, the
research objectives are defined in Section 1.3, and the scope and limitations of the study are detailed
in Section 1.4.

1.1. Context and Background
In recent years, the energy transition has gained significant momentum, driven by climate goals and
the push toward sustainable energy systems. As a result, electricity production is shifting away from
fossil fuels toward renewable energy sources (RES), such as wind and solar power [1]. In the Nether-
lands and surrounding countries, this has led to the large-scale development of wind farms (WF) and
photovoltaic (PV) parks. While the integration of these technologies contributes to a cleaner energy
mix, it also introduces a set of challenges that must be addressed to ensure a reliable and cost-effective
electricity system [2].

One of the central challenges stems from the mismatch between where and when electricity is gener-
ated versus when and where it is needed. Geographically, wind and solar installations are typically built
in remote locations with favorable weather conditions, far from the urban or industrial centers where
electricity demand is concentrated. This increases the strain on transmission networks and contributes
to growing grid congestion [3]. Temporally, RES generation does not always align with demand. As
illustrated in Figure 1.1, wind and solar profiles follow natural patterns that rarely match consumption
load profiles. This mismatch leads to inefficient use of grid infrastructure, which must be sized for peak
capacity but is often underutilized.

Asmore RES are connected to the grid, grid access becomes a limiting factor. In many regions, network
operators are unable to approve new RES projects due to lack of capacity. Moreover, curtailment of
renewable generation is already occurring, and grid tariffs are rising as network upgrades struggle
to keep pace. At the same time, market volatility increases: prices fluctuate more sharply due to
the variability of weather conditions, and power forecasts become more uncertain [5]. This uncertainty
results in deviations between day-ahead forecasts and actual production, leading to system imbalances
that require costly balancing services and increase the need for flexible, controllable resources [6].

A promising solution to address these interconnected challenges is the deployment of HPPs, where
renewable generation assets are co-located with battery energy storage systems (BESS). This system
design can help mitigate several of the previously mentioned problems. First, by combining generation
and storage under one grid connection, infrastructure can be used more efficiently, reducing peak loads
and relieving grid congestion. Second, the BESS component provides steerable capacity, allowing op-
erators to shift energy in time and balance short-term mismatches between supply and demand. Third,
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Figure 1.1: Example of variable load profiles for wind, solar, and demand over one day, showing the temporal mismatch
between demand and supply of renewable energy sources [4]

batteries enable compensation for forecast errors, allowing the plant to manage its own imbalance
position and reduce reliance on, and cost associated with, external reserve capacity.

In addition to technical innovations, the design of electricity markets is evolving to better accommodate
the characteristics of intermittent generation. One important development is the transformation of the
intraday market, where trading is now allowed up to the moment of delivery. Previously, cross-border
intraday trading was restricted to one hour before delivery, but recent reforms have extended trading
closer to real-time. This enables market participants to continuously update their positions based on
the latest forecasts and price signals, thereby reducing forecast errors and improving operational ef-
ficiency [7]. Figure 1.2 illustrates the increasing trading volumes and liquidity in the intraday market,
emphasizing its growing relevance for flexible assets such as HPPs.

Figure 1.2: Traded volume on the intraday market per country [TWh/year] [7]

In parallel, the day-ahead market design is also undergoing changes. One anticipated shift is the
transition from hourly bids to quarter-hourly bids, a reform aimed at aligning market operation more
closely with the fluctuating nature of renewable energy production [8]. Such developments highlight
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the increasing importance of forecasting accuracy and operational flexibility, further reinforcing the role
that HPPs can play in supporting a reliable and efficient electricity system.

These developments highlight a clear need for renewable energy systems that are not only clean,
but also flexible, responsive, and grid-compatible. HPPs offer a promising pathway to meet these
requirements. However, their value depends on how well they can operate under uncertainty, manage
grid constraints, and exploit market opportunities. This study investigates the operational and economic
potential of HPPs by modelling their behavior in a stochastic optimization framework and evaluating
their performance in realistic market conditions.

1.2. Literature Review
The integration of BESS with a RES, forming a HPP, has been extensively studied in recent years.
The literature identifies several core themes in optimizing the economic and operational performance
of HPPs: the role of BESS in operations and in multi-market participation strategies, the modeling of
uncertainty, and scenario-based approaches for decision-making. This section reviews each theme,
highlights current trends, and identifies remaining research gaps.

1.2.1. Operational and Economic Role of BESS in Hybrid Power Plants
The integration of a BESS with a RES into HPP enhances both operational flexibility and economic
value. BESS technology enables HPPs to shift energy delivery in time, thereby increasing operational
flexibility, offering services such as forecast error mitigation, energy arbitrage, and participation in re-
serve markets. The ability to provide several services simultaneously with a single asset is commonly
referred to as value stacking.

A consistent theme across the literature is that value stacking substantially improves the profitability
of BESS systems [9, 10, 11, 12]. For instance, Gomes et al. [9] investigate a combined wind and
solar HPP and find that using BESS solely in the day-ahead market to mitigate imbalance does not
yield an economically viable outcome. They stress the importance of exploiting additional services
to fully realize the potential of hybrid systems. In a related study, Heredia, Cuadrado, and Corchero
[10] show that while imbalance mitigation is essential for operational feasibility, further economic value
is unlocked through energy arbitrage and the provision of balancing capacity. Their results indicate a
10.4% increase in profit due to arbitrage, with even greater gains when balancing services are included.

Other studies further support the positive impact of stacking services. Zhu et al. [11] and Ledro et al.
[12] confirm that participating in multiple markets increases revenue, but also highlight the technical and
operational constraints that limit this potential. Notably, the grid connection capacity plays a pivotal role
in determining the dispatch flexibility of an HPP. A restricted export limit may cause overproduction and
curtailment, increase battery cycling, and lead to accelerated degradation. The interaction between grid
constraints and optimal BESS scheduling introduces trade-offs between economic gain and asset wear.
Overplanting, where the combined output of the RES and BESS exceeds the nominal grid connection
capacity, can further complicate this balance.

Beyond technical operation, the market participation strategy of HPPs is a major determinant of their
economic value. Several studies evaluate participation across multiple electricity markets, including
the day-ahead, intraday, and balancing markets, an elaborate explanation of these markets can be
found in Chapter 2. In the day-ahead market, producers submit bids based on forecasted generation,
but deviations in real-time introduce imbalances. BESS systems enable HPPs to compensate for these
deviations, reducing imbalance costs and increasing revenue. Das et al. [13] report a 10% increase in
day-ahead market revenue through BESS-supported forecast error compensation, though they do not
consider degradation costs. Similarly, Ledro et al. [12] find that joint HPP operation reduces imbalances
by 35.6%, but results in a 2.37% decrease in profit compared to separate operation, highlighting the
complexity of co-optimizing multiple value streams.

Participation in the intraday market offers additional flexibility, as trading closer to the time of delivery
allows actors to adjust schedules based on updated forecasts. Studies by Martinez-Rico et al. [14],
Ayón, Moreno, and Usaola [15], Crespo-Vazquez et al. [16], and Silva, Pousinho, and Estanqueiro
[17] demonstrate that intraday trading can significantly reduce imbalances and improve profitability.
For example, Crespo-Vazquez et al. [16] show a 6.2% income increase with intraday trading, while
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Silva, Pousinho, and Estanqueiro [17] report a 63.8% imbalance reduction and a 10.1% profit increase.
Importantly, the impact of intraday participation increases with higher forecast uncertainty, as shown
by Martinez-Rico et al. [14] and Ayón, Moreno, and Usaola [15].

Among all market types, balancing markets typically offer the highest revenue potential for flexible
assets. Both Heredia, Cuadrado, and Corchero [10] and Gonzalez-Garrido et al. [18] find that balancing
market participation leads to substantially higher profits compared to wholesale markets. Heredia,
Cuadrado, and Corchero [10] observe that the inclusion of balancing services increases profit by nearly
four times, with returns scaling proportionally to BESS capacity. Likewise, Gonzalez-Garrido et al. [18]
report profit increases up to ten times higher in balancing markets compared to the auction-based
intraday market.

While the literature firmly establishes the value of BESS-enabled flexibility and multi-market participa-
tion, several important gaps remain. Most existing studies focus on auction-based intraday trading,
while the continuous intraday market, particularly as implemented in the Dutch system, has received
little attention. Given the shift toward continuous trading with shorter gate closure times and higher
liquidity, this market represents a critical and underexplored opportunity for HPPs.

Another underdeveloped area is the interaction between forecast uncertainty, value stacking, and grid
constraints. While most models include basic grid export limits, few explicitly analyze how uncertainty
and grid limitations jointly affect optimal dispatch and economic outcomes. This interaction is especially
relevant in systems with overplanting and limited grid capacity. Further research is needed to capture
these complexities and to assess the economic and operational sustainability of HPPs under real-world
conditions.

1.2.2. Modeling and Mitigating Uncertainty
Uncertainty is a critical challengemarket participation of HPPs. The operational schedule is based upon
forecasts for both power production and market prices, which are associated with uncertainty. Logically,
research has been done on the gains of a stochastic, over the deterministic approach. Across literature
both Stochastic Optimization (SO) and Robust Optimization (RO) have been explored.

The objective of robust optimization is to find a solution that is feasible for all possible realizations of
uncertain parameters, gathered in an uncertainty set. To establish such an uncertainty set the variety
of stochastic parameters is described by their distributional bounds, therefore this set represents all the
possible values the parameters can take [19]. To ensure feasibility for all these possible realizations, the
optimization finds the solution for the worst case making it robust. While being an effective method to
incorporate stochastic behavior into the decisionmaking process, it leads to amore conservativemarket
participation strategy. Therefore, it ensures reliability, but performs less on profitability compared to
other optimization techniques [20].

In the research of Mohamed, Jin, and Su [21] the optimal operation of a wind park with BESS from
a system operator point of view, showing an increased robustness when using the of a RO approach
compared to the conventional approach. The increased robustness results in a 95% power output
increase and additionally a 11.5% profit increase for the wind park and energy storage operators, com-
pared to the conventional approach. Rahimiyan and Baringo [22] investigated a wind farm, energy
storage and demand cluster with an energy management system ruled by a robust optimization. Two
case studies have been conducted demonstrating the impact of risk taking on bidding strategy, power
traded and utility. Based upon the risk appetite, the uncertainty set is defined. The article concludes
the optimal risk strategy depends on the difference between day-ahead and real-time markets. With a
correct prediction of this difference less conservative strategy yields higher results.

Another widely adopted optimization method is stochastic optimization (SO). SO assumes that uncer-
tain parameters follow a probability distribution, which is used to describe the possible realizations of
the system. By weighing these realizations according to their probability, often represented as discrete
scenarios, the optimal solution to the problem is determined [23]. While SO emphasizes profitability,
this can come at the cost of feasibility across all realizations [20].

In the context of HPPs this would come down to profit maximization at the cost of adhering operational
and market constraints, which lead to deviations from trade commitments. Studies like [12, 10, 9,
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17] demonstrate the effectiveness of SO in incorporating uncertainties in power generation and market
prices. These uncertainties are typically represented by scenarios, which enable adaptive bidding
strategies that optimize expected economic value across multiple markets. For example, Ledro et al.
[12] evaluate an HPPwith limited grid capacity and show that using a stochastic model reduces curtailed
energy by 35% compared to a deterministic approach.

When optimizing across multiple electricity markets, multi-stage stochastic optimization has proven to
be especially effective [10, 24, 15, 25]. This approach models different decision moments, such as
day-ahead and intraday bidding, as separate stages. Each stage reflects the information available at
that time, based on the realization of uncertain parameters. For instance, day-ahead market bids are
made under price and acceptance uncertainty, whereas intraday decisions can incorporate updated
forecasts and known day-ahead outcomes. Additionally, different market rules apply at each stage,
further justifying the use of a multi-stage framework.

SO is particularly well-suited for supporting decision-making in dynamic and uncertain environments [26].
However, its effectiveness depends on the quality of the underlying probability distributions and sce-
nario generation methods, which can be difficult to define accurately in high-uncertainty settings [23].

1.2.3. Scenario Modeling
Scenario-based stochastic optimization is a widely used approach to capture uncertainty in system be-
havior by representing possible realizations of stochastic variables through a finite set of scenarios with
associated probabilities [26]. The main objective is to model uncertainty accurately while maintaining
computational tractability. However, increasing the number of scenarios improves the representation of
uncertainty but significantly raises the computational complexity of multi-stage optimization problems,
as each scenario path must be evaluated at every decision stage [10].

To address this trade-off, scenario reduction techniques are employed to retain representative system
behavior while limiting the number of scenarios. A commonly used approach in the literature is clus-
tering, particularly k-means clustering [27, 28, 16]. This technique groups similar scenario trajectories
into clusters and selects a representative centroid for each cluster. The resulting reduced scenario set
preserves the key statistical properties of the original ensemble while reducing computational burden.
For instance, Gulotta et al. [27] first generate a large ensemble of wind power scenarios using an ARMA
model and then apply k-means clustering to extract a limited number of representative profiles. The
reduced scenario set allows for a real-time rolling horizon dispatch with only a marginal increase (12
seconds per timestep) in computational effort compared to a deterministic model.

Similarly, Wozabal and Rameseder [28] apply k-means clustering to renewable energy production data,
assigning probabilities to clusters using maximum likelihood estimation. Their results demonstrate
that the resulting high-dimensional stochastic optimization problem can be solved within minutes, well
within operational timeframes for intraday auction trading, highlighting the practicality of such scenario
modeling techniques in time-constrained market environments.

Moreover, scenario generation methods have also evolved through the integration of machine learning.
For example, Crespo-Vazquez et al. [16] propose a hybrid framework combining multivariate k-means
clustering algorithm with recurrent neural networks to generate energy generation and energy price sce-
narios that better capture temporal dependencies and uncertainty. These advanced methods demon-
strate the growing importance of both accurate scenario generation and computational efficiency in the
design of stochastic optimization frameworks for power system applications.

1.2.4. Conclusion of Literature Review
The existing literature demonstrates substantial progress in modeling and optimizing the operation of
HPPs within electricity markets. It is broadly acknowledged that a BESS participating only in the day-
ahead market is insufficient to justify its investment economically. To fully exploit the BESS’s flexibility,
it must engage in multiple markets, thereby enabling value stacking across multiple services.

Furthermore, incorporating uncertainty through stochastic optimization has been shown to significantly
improve operational decision-making in short-term electricity markets. However, the resulting increase
in model complexity poses a computational challenge. To address this, k-means clustering is widely ap-
plied as a scenario reduction technique, allowing the construction of representative yet computationally
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manageable scenario sets.

Grid connection constraints are also identified in the literature as a critical factor influencing HPP oper-
ation. Yet, their effect on bidding behavior and market performance under uncertainty is not sufficiently
explored. While many studies examine auction-based markets, continuous intraday markets, despite
their growing relevance, remain underrepresented in current research. Additionally, few studies offer
a comparative perspective on different asset configurations (e.g., standalone RES, standalone BESS,
and co-located HPPs) under forecast uncertainty. These gaps highlight the need for further research
into the interaction between uncertainty, market dynamics, and grid constraints in short-term HPP op-
erations.

1.3. Research Objective
As outlined in this chapter, the growing integration of renewable energy sources into the energy system
introduces significant reliance on uncertain generation forecasts. This creates a need for advanced
dispatch strategies, in which the co-location of a BESS with RES can enhance flexibility, support market
participation, and mitigate the impact of forecast errors.

The primary objective of this research is to quantify the economic and energetic added value of co-
locating a BESS with a wind or photovoltaic (PV) asset. The analysis is conducted under conditions
of forecast uncertainty and limited grid connection capacity, and considers participation in the Dutch
day-ahead, intraday, and imbalance markets. A comparative analysis is carried out across three config-
urations: standalone RES, standalone BESS, and a co-located HPP, with the aim of identifying optimal
operational strategies.

This objective is addressed through the following sub-objectives:

• Develop a multi-stage stochastic optimization framework that integrates power forecast uncer-
tainty into market bidding strategies.

• Validate the framework by testing the influence of assumptions regarding imbalance price fore-
casts and power forecast scenarios.

• Compare the economic performance and energy utilization of a co-located HPP with standalone
RES and standalone BESS systems.

• Perform a sensitivity analysis on key HPP parameters, including grid connection capacity, battery
size, battery technology, and optimization frequency.

These efforts aim to answer the overarching research question:

What is the added energetic and economic value of BESS co-location for a Hybrid Power Plant partic-
ipating in the Dutch day-ahead, intraday, and imbalance markets, when using a bidding strategy that
accounts for power forecasting uncertainty?

To address this question, the research builds upon the existing literature by:

• Implementing a multi-stage stochastic optimization framework for HPP participation in multiple
short-term electricity markets.

• Providing a mathematical definition of the optimization problem.
• Modeling forecast uncertainty using scenario generation and reduction techniques.

The proposed approach aims to offer a realistic and flexible framework for HPP bidding strategies,
with the goal of maximizing economic returns and quantifying energy performance while accounting for
physical constraints such as grid export limits, BESS and RES operations.

1.4. Scope
This study focuses on the operational and economic potential of a HPP participating in the Dutch elec-
tricity markets, specifically, the day-ahead, intraday, and imbalance markets. For the intraday market
only 15-minute products are considered. The analysis is conducted from the perspective of an individ-
ual HPP located in the Netherlands, excluding portfolio effects and aggregated bidding strategies.
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The HPP is modeled as a price taker, assuming its bidding volume is too small to influence market
prices or dynamics. The renewable energy source used in this study is wind, and stochastic behavior
is incorporated for its power forecast using scenario-based uncertainty modeling. A similar approach
could also be implemented for PV power source. Stochastic behavior is considered only for power
generation, while electricity prices are treated deterministically.

Bidding in the day-ahead market is based on a deterministic forecast without the BESS. In contrast,
the BESS is included in the intraday and imbalance markets, where it can be used to mitigate forecast
errors and perform arbitrage. Battery operation is subject to technical constraints, such as power limits,
energy capacity, and round-trip efficiency, although battery degradation and lifecycle costs are not
modeled.

The model accounts for grid connection limitations by enforcing a fixed export limit on the HPP. Over-
planting is permitted, whichmay result in curtailment of renewable output or restricted battery (dis)charging.
The time resolution used in the optimization corresponds to the market granularity (e.g., 15-minute in-
tervals), and simulations are performed over one week per season.

This study does not consider capital or operational expenditures, policy incentives, or participation
in ancillary services beyond the imbalance market. As such, the results are interpreted in terms of
operational revenue potential rather than full techno-economic feasibility.



2
Electricity Markets

This chapter provides an overview of the structure and functioning of the electricity markets relevant
to this study. Section 2.1 introduces the key market participants and their roles within the electricity
system. Section 2.2 describes the operation of the Dutch short-term wholesale markets, including
the day-ahead and intraday markets. This is followed by a discussion of the balancing markets in
Section 2.3, and the imbalance settlement mechanism in Section 2.4. A thorough understanding of
these market mechanisms is essential for designing effective bidding strategies and optimizing the
participation of hybrid power plants.

2.1. Actors within the Electricity Market
In the Dutch electricity market, various actors play crucial roles, each with distinct responsibilities to
maintain balance within the system. This section focuses on three key roles: the Transmission System
Operator (TSO), the Balance Responsible Party (BRP), and the Balance Service Provider (BSP).

First, the Transmission System Operator (TSO) is responsible for operating and maintaining the elec-
tricity transmission network. In the Netherlands, this role is carried out by TenneT, which manages the
high-voltage transmission system. TenneT ensures a continuous balance between electricity demand
and supply in the Netherlands while working with other European TSOs to harmonize the European
electricity market [29]. Furthermore, TenneT manages the infrastructure in terms of transmission ca-
pacity, voltage control, reactive power and congestion.

Second, Balance Responsible Parties (BRPs) are electricity producers or consumers connected to
the transmission grid. They are required to provide the TSO with an energy program (e-program)
containing their position, which is a forecast for 24-hours of the electricity they expect to feed into or
withdraw from the grid during each Imbalance Settlement Period (ISP), a 15-minute interval. The TSO
monitors the actual consumption or production against this forecast to identify any imbalances. BRPs
are held accountable for not adhering their e-program [29].

Finally, Balance Service Providers (BSPs) offer their capacity or energy to TenneT to address unfore-
seen imbalances. These imbalances can arise from factors such as inaccurate forecasts or power plant
failures. Balancing services provided by BSPs are traded in the balancing markets, which are further
discussed in 2.3.

In this research, the HPP will exclusively take on the role of a BRP. As such, the HPP is responsible for
generating power forecasts and to form its energy program. Although outside the scope of this study,
the HPP could potentially operate as a BSP by offering balancing services such as battery (dis)charging
or renewable curtailment.

2.2. Wholesale Markets
The purpose of wholesale electricity markets is to provide a platform that connects electricity producers
with consumers to buy and sell their energy. The energy is traded in three different markets: forward
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Figure 2.1: Overview of the timeline for relevant Dutch short-term electricity markets, showing the auction closing times, order
book opening times, market operators, and accepted bid types.

and futures market, day-ahead market and intraday market. Consecutively, these markets are closer to
the time of delivery. In this study the focus will be on short term electricity markets, leaving the forward
and futures market out of scope.

2.2.1. Day-ahead Market
In the day-ahead market, all BRPs can participate by submitting hourly bids for electricity consumption
or production for the following day. The auction closes at 12:00 noon one day before delivery, as can
be seen in Figure 2.1. Next, all the bids are combined into a merit order, putting bidded volumes for
demand in descending price order and for supply in ascending price order. After this process, the
market clearing point is determined, which is the point where supply meets demand as shown in Figure
2.2. All supply and demand bids to the left of the market clearing point are accepted against the market
clearing price.

Figure 2.2: Example of market clearing principal for day-ahead market with supply and demand curves, the market clearing
point is indicated together with the market clearing price and quantity [30]

Participants whose bids are accepted must buy or sell electricity at the market clearing price and are
required to adhere to their submitted energy program in terms of power output for the specified period.
Failing to comply with the agreed-upon program results in imbalances, which typically incur unfavorable
costs to offset the discrepancy, which will be discussed in Section 2.4.
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2.2.2. Intraday Market
On the intraday market, BRPs can make trades after the day-ahead market is cleared. Since forecasts
typically become more accurate closer to the time of delivery, it is often beneficial to adjust purchased
or sold volumes based on these updated forecasts.

In the Netherlands, there are two types of intraday markets: the intraday auction and the continuous
intradaymarket. In both markets, quarter-hourly, half-hourly, and hourly contracts can be traded. Cross-
border intraday trading is facilitated through the XBID platform, with bids submitted via Nominated
Electricity Market Operators (NEMOs) such as Nordpool and EPEX [31].

In the continuous intraday market, trades are executed immediately once a supply bid matches a de-
mand bid. Transactions are settled on a pay-as-bid basis, ensuring prompt execution [32]. The ex-ante
market allows to adjust the position before themoment of the delivery, whereas the ex-post allows BRPs
to balance imbalance positions with other BRPs, which can be particularly useful during a regulation
state 2 (discussed further in Section 2.3). Figure 2.1 shows the time at which continuous intraday trades
can be made:

• Ex-ante market: Open from 15:00 D-1 until the start of the delivery ISP.
• Ex-post market: Opens immediately after physical delivery and remains active until 09:30 on
D+1.

The intraday auction (IDA) market operates on a pay-as-cleared principle, providing structured trading
opportunities. Three auction gates are held daily as depicted in Figure 2.1, each covering specific
timeframes [32]:

• IDA 1: Closes at 15:00 D-1, accepting bids for delivery from 00:00 to 24:00 on the following day.
• IDA 2: Closes at 22:00 D-1, accepting bids for delivery from 00:00 to 24:00 on the following day.
• IDA 3: Closes at 10:00 D, accepting bids for delivery from 12:00 to 24:00 on the same day.

The continuous intraday market offers the advantage of immediate execution and the transparency of
order books, which enables dynamic and responsive trading. Conversely, the auction-based intraday
market facilitates more structured trading strategies.

For the HPP, fast and adaptive trading is particularly relevant due to the uncertain nature of renewable
generation. The battery enables the system to react quickly to new forecasts and market opportunities.
Therefore, this study focuses on the continuous ex-ante intraday market as part of the trading strategy.
Only the 15-minute product is considered in this analysis, leaving trading opportunities for 30-minute
and hourly products underexplored.

2.3. Balancing Markets
The purpose of balancing markets is to maintain the grid frequency stable at 50 Hz at all times. As
mentioned before, BRPs put in an e-program one day before delivery. However, deviations from these
schedules occur often and can create imbalance. Such an imbalance between demand and supply
will disturb the grid frequency, driving the frequency up in case of power surplus and down in case
of power shortage. Too large deviations from 50 Hz could lead to outages or damage to the grid.
Therefore, separate markets have been established, varying in response time, minimum capacity and
traded product, being either energy or capacity as shown in Table 2.1. As can be seen in Figure 2.3,
the first market to be activated is Frequency Containment Reserve (FCR) being operational for a short
time, followed by automatic Frequency Restoration Reserve (aFRR) and thereafter manual Frequency
Restoration Reserve (mFRR). Only BSPs can participate in these markets.

Although balancing markets are essential for maintaining system stability, they are not included in this
study, as the HPP is assumed to operate solely as a BRP. Participating in FCR, aFRR, or mFRR requires
capacity bids to be submitted one day in advance, often over a longer period of time (e.g. 4 hours, full
day). This time frame presents challenges due to the uncertainty in power forecasts from renewable
energy sources. However, since the aFRRmarket influences the settlement of imbalance prices, which
directly affect BRPs, it is included in this overview.
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Figure 2.3: Timeline of activation of balancing markets after occurrence of imbalance, indicated by a frequency deviation from
50 Hz [33]

Market Response time Minimum capacity Traded product
FCR (primary) <30 sec 1 MW upward and downward contracted capacity
aFRR (secondary) 1 – 15 min 1 MW upward or downward contracted capacity & activated energy
mFRR (tertiary) >15 min 1 MW upward or downward contracted capacity

Table 2.1: Balancing market types and their properties regarding response time, minimum capacity and direction, and traded
product [33]

2.3.1. Automatic Frequency Restoration Reserve
The Automatic Frequency Restoration Reserve is designed to handle imbalances over a longer time
horizon than FCR market but shorter than mFRR market. This reserve is the second product activated
to restore balance in the event of system deviations. The aFRR market consist out of two auctions, the
aFRR capacity and aFRR energy market.

The aFRR capacity market is auctioned one day before delivery as is shown in Figure 2.1. BSPs submit
bids for upward and/or downward aFRR capacity to TenneT. These bids form the basis for two separate
merit orders, one for upward regulation and another for downward regulation. The volume of capacity
required determines which bids are accepted. The auction for aFRR capacity operates under a pay-as-
bid mechanism, meaning BSPs receive payment based on the price they specify in their accepted bids.
Accepted BSPs are contracted for the full 24-hours of the next day, during which they must ensure the
availability of the agreed-upon capacity.

In addition to capacity bidding, BSPs also submit energy bids to participate in the aFRR energy market.
BSPs accepted in the aFRR capacity auction are obligated to make bids for the whole day, while
other BSPs can make bids voluntarily up to 25 minutes before delivery (Figure 2.1). For each ISP,
separate merit orders are created for upward and downward energy bids, as can be seen in Figure 2.4.
Upward bids (yellow) are sorted in increasing price order, while downward bids (blue) are arranged in
decreasing price order. The activation of energy bids within the ISP follows a pay-as-cleared pricing
principle. This means all accepted upward bids are paid the price of the highest accepted upward bid,
while all accepted downward bids receive the price of the lowest accepted downward bid.

The establishment of the balancing price in the aFRR market is illustrated in Figure 2.4. Additionally,
a mid-price is calculated by averaging the highest downward bid and the lowest upward bid. This
mid-price is occasionally used to determine the imbalance price, which will be discussed in Section
2.4.

Overall, the aFRR market plays a critical role in maintaining system stability, ensuring that imbalances
are addressed efficiently while providing economic incentives for BSPs to participate [34]. While the
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Figure 2.4: Example of balance price setting for a single ISP. Activated downward bids are shown in blue and upward bids in
yellow, each representing a combination of volume (MW) and price (€/MWh). The merit order is established per direction, and
the clearing price determines the payment flow: either from the BSP to TenneT or vice versa, depending on the sign. [35]

aFRR market is essential for system operations, its capacity product presents a challenge for HPPs
due to long commitment periods and forecast uncertainty. The aFRR energy product, traded closer to
delivery and over shorter durations, would better suit an HPP. However, because the plant is modeled
purely as a BRP, participation in this market falls outside the scope of this study.

2.4. Imbalance Market
In the occasion that a BRP does not follow its e-program, these deviations are financially settled via
the imbalance market. This is not a real market but provides a settlement of imbalances. TenneT
publishes the balance delta containing the imbalance volume, direction and price every minute, with 5
minute-delay. This determines the regulation state and accordingly the imbalance price.

Imbalance prices are closely linked to aFRR prices within the same ISP and vary depending on the
regulation state. The regulation state reflects whether upward or downward balancing energy was
activated during the ISP, or if both directions were required. The regulation state and a BRP’s position
jointly influence whether a BRP’s imbalance is penalized or rewarded.

The regulation state is determined by the type of steering the TSO activates within one ISP:

• Regulation state 0 occurs when TenneT does not perform any upward or downward regulation
during an ISP.

• Regulation state +1 occurs when TenneT exclusively regulates upward during an ISP.
• Regulation state -1 occurs when TenneT exclusively regulates downward during an ISP.
• If both upward and downward regulation occur within an ISP, the progression of balance deltas
within the ISP determines the regulation state:

– If the balance deltas within the ISP consistently increase or remain unchanged, regulation
state +1 is assigned.
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– If the balance deltas within the ISP consistently decrease or remain unchanged, regulation
state -1 is assigned.

– If the balance deltas within the ISP show both increasing and decreasing trends, regulation
state 2 is assigned.

A BRP’s position can be either as surplus (injecting more or withdrawing less power than planned) or
as shortage (injecting less or withdrawing more power than planned). This determines the direction
of financial settlement. In general, positions that help restore grid balance may be rewarded, while
positions that worsen grid imbalance are penalized [35]. The payment mechanics are described in
Table 2.2.

BRPs can engage in a strategy known as passive imbalance steering, where they adjust their positions
to align with favorable imbalance prices. For instance, during upward regulation, a BRP with a battery
asset could discharge power to create a surplus position, earning the upward balancing price while
helping mitigate grid imbalances. Conversely, BRPs with shortage positions during upward regulation
are required to pay the upward balancing price, reflecting their negative contribution to grid stability.

However, excessive reliance on passive imbalance steering can destabilize the system. If many BRPs
react simultaneously, overcompensation may occur, leading to frequent oscillations between upward
and downward regulation triggering a regulation state 2 and resulting in extreme imbalance price volatil-
ity. To discourage such behavior, the upward and downward price are flipped. For example if a BRP
has a shortage position during regulation state 2, it receives the upward price (instead of the downward
price), as shown in Table 2.2. In this way any imbalance of an BRP during regulation state 2 is unfa-
vorable. During regulation state 2, the surplus and shortage price are not the same, and therefore it
can be beneficial to trade away imbalances in the ex-post intraday market since both BRP surplus and
shortage can mitigate their losses [35].

The imbalance market thus serves as an essential mechanism for maintaining grid stability. It incen-
tivizes BRPs to minimize deviations while providing financial signals that align with operational require-
ments, ensuring a balanced and reliable electricity system.

The imbalance market is relevant for HPPs when they commit to positions in the day-ahead market
based on forecasts. Uncertainties are inherent to forecasts and can cause HPPs to deviate from their
initial positions. If these deviations are not compensated for by taking a position in other markets, such
as the intraday market, the imbalance price will apply. Consequently, passively steering on imbalance
emerges as a viable strategy to compensate for forecasting errors or by providing flexibility with the
BESS.



2.4. Imbalance Market 14

Table 2.2: Overview of imbalance settlement rules as defined by TenneT for each regulation state. The figure outlines how the
imbalance price and payment direction depend on the BRP’s imbalance position (shortage or surplus), the prevailing regulation
state (0, ±1, or 2), and the condition and resulting imbalance price including sign (derived from the aFRR balance price). The

sign of the price determines the payment direction, either from the BRP to the TSO or vice versa. [35]

Regulation State BRP Position Imbalance Price Direction of Payment
Condition Applied aFRR Price (sign)

State 0
Shortage – Pmid(+) BRP → TSO

– Pmid(−) TSO → BRP

Surplus – Pmid(+) TSO → BRP
– Pmid(−) BRP → TSO

State +1
Shortage – Pup(+) BRP → TSO

– Pup(−) TSO → BRP

Surplus – Pup(+) TSO → BRP
– Pup(−) BRP → TSO

State -1
Shortage – Pdown(+) BRP → TSO

– Pdown(−) TSO → BRP

Surplus – Pdown(+) TSO → BRP
– Pdown(−) BRP → TSO

State 2

Shortage

Pup ≥ Pmid Pup(+) BRP → TSO
Pup(−) TSO → BRP

Pup < Pmid Pmid(+) BRP → TSO
Pmid(−) TSO → BRP

Surplus

Pdown ≤ Pmid Pdown(+) TSO → BRP
Pdown(−) BRP → TSO

Pdown > Pmid Pmid(+) TSO → BRP
Pmid(−) BRP → TSO



3
Methodology

This chapter outlines the methodological approach used to evaluate the economic and energetic value
of co-locating a BESS with a renewable energy asset. Section 3.1 introduces the overall optimization
framework, followed by the model structure and its mathematical formulation in Sections 3.2 and 3.3.
Scenario generation and reduction techniques used to model power forecast uncertainty are discussed
in Section 3.4. Section 3.5 defines the performancemetrics used to assess outcomes, while Section 3.6
describes the case study configurations. Model evaluation methods are detailed in Section 3.7, and
implementation aspects are addressed in Section 3.8.

3.1. Modeling Framework
To effectively address the research question, amulti-stage stochastic optimization framework is adopted.
This approach is well-suited for modeling the sequential and uncertain nature of HPP operations in elec-
tricity markets. It enables the integration of multiple trading stages, each governed by different rules,
timeframes, and uncertainties, into an optimization model. Additionally, it captures the stochastic be-
havior of renewable energy generation, such as wind power, through probabilistic scenario modeling.
By formulating the problem as an optimization, the model ensures optimal operation aimed at maximiz-
ing economic value.

The multi-stage structure of the optimization model mirrors the sequential nature of market participation,
aligning with the operational timelines of the day-ahead, intraday, and imbalance markets as detailed
in Chapter 2. Each stage represents a distinct market environment with its own constraints, prices,
and decision rules, and depends on decisions made in preceding stages. In Section 3.2 an in depth
description of each stage is given.

The optimization problem is formulated as a Mixed Integer Linear Program (MILP), allowing the system
dynamics to be expressed through a set of linear constraints, integer variables and objective function.
MILP offers a computationally efficient framework while accommodating binary decisions, such as the
(dis)charging status of the battery. Physical properties of the system such as power limits, energy stor-
age capacity, and efficiency, as well as market participation rules are captured using linear equations.
The objective of the optimization is to maximize market revenues. The full mathematical formulation of
the MILP, including all decision variables and constraints, is provided in Section 3.3.

To represent forecast uncertainty, the model utilizes a scenario-based stochastic framework. Power
forecasts are modeled as discrete probabilistic scenarios, each associated with a likelihood of occur-
rence, as described in Section 3.4. This enables the model to evaluate a range of possible future
outcomes and derive an operational strategy that generates most economic value weighing all realiza-
tions. By incorporating stochastic elements, the model becomes more robust to deviations in forecasts,
improving its ability to adapt to real-world volatility.

15
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3.2. Model Definition
This section details the structure of the proposed model, including the configuration of the HPP, the se-
quential market stages, and their interdependencies. The operational logic of each stage is described,
after which the full system is formulated as a MILP problem. The aim is to provide a comprehensive
mathematical representation that captures the physical constraints, market rules, and optimization ob-
jectives defined in the methodology. An overview of key characteristics of each optimization stage are
given in Table 3.1

3.2.1. Model Configuration
The operation of the HPP determines the power flows within the system, as illustrated in Figure 3.1.
In this model, a distinction is made between physical and traded power, intersecting at the HPP’s grid
connection point (PHPP). The stochastic variable P̂source represents the forecasted power output of
renewable energy source, which is modeled through discrete scenarios. The actual power generation
can be controlled by curtailment, with Pgenerated representing the controllable output. This energy can
either be injected into the grid or used to charge the battery. Charging is denoted by a negative Pbattery,
discharging by a positive value. The battery can only draw power from the RES. The total output to or
from the grid is denoted by PHPP.

All power exchanged with the grid must be settled via market transactions. Power sold or bought
through the day-ahead (DA) and intraday (ID) markets is represented by PDA and PID respectively,
while any deviation is resolved through the imbalance (IM) market via PIM. By convention, feed-in
to the grid is positive and withdrawal is negative. As a result sold power on an electricity market is
considered positive, whereas power bought is negative.

Figure 3.1: Definition hybrid power plant (HPP) configuration with the definition of physical and traded power flows consisting
of day-ahead (DA), intraday (ID) commitments and resulting imbalance position (IM)

To determine the optimal flow of power within the HPP and trading activities the model optimizes using
3 stages as depicted in Figure 3.2. Each stage with its own decision variables, objective function and
constraints. The definition of each stage will be discussed next.

3.2.2. Day-ahead Bidding
The first stage captures participation in the day-ahead market. The bids are put in against marginal cost
of the asset, since the day-ahead market operates under a pay-as-cleared principle. The day-ahead
auction takes place once a day, therefore this optimization is also performed one time a day. In Figure
3.3 the evolution of the optimization time horizons for one day have been illustrated. Figure 3.4 shows
a more detailed picture of the timelines associated with two different optimizations. Hourly bids are
submitted before day-ahead market closure at 12:00 on the day before delivery, represented by the
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Figure 3.2: Three stages in the multi-stage stochastic optimization, showing the objective (blue boxes), the decision variables,
the input for the next stage, events separating the stages (vertical boxes). The intraday bidding and real time operation stages

are repeatably performed adopting a rolling horizon.

yellow box/dot in Figure 3.3 and 3.4.

In this stage the acceptance of hourly day-ahead bids (uaccepted,t) as a result of the market clearing is
the decision variable, this time horizon is denoted by the pink box in Figure 3.3 and 3.4 spanning from
00:00 - 23:45. This time horizon starts 11 hours after the publication of day-ahead results, thus 11

dt time
steps.

The day-ahead bids are submitted as if the RES operates independently, excluding the BESS from day-
ahead market bidding. This approach is supported by literature, which indicates that battery storage
systems generate greater economic value through participation in intraday and balancing markets [9,
10]. The bids are put in against its marginal cost (MACRES) of the RES, excluding subsidies. Moreover,
this stage considers the power forecast as a deterministic and does not consider strategic bidding (e.g.
reserving energy to trade in other markets).

The objective in this stage is to to maximize expected day-ahead revenue. Therefore, the full forecasted
generation is bid into the day-ahead market, based upon the latest available forecast at 12:00 D-1.
Once the market clears at approximately 13:00 D-1 (orange box/dot in Figure 3.3 and 3.4), the model
evaluates whether the bids are accepted, assuming the RES to be a price-taker, meaning the price
bid does not impact the market clearing price. Thus, in the case that the marginal cost of the asset
are equal to or below the clearing price, the bid is accepted. The accepted volumes PDA,t form the
foundation for subsequent decision-making.

3.2.3. Intraday Bidding and Expected Imbalance
The second stage involves HPP participation in the continuous intraday market, which opens at 15:00
on the day before delivery (D-1). In this stage, both the RES and the BESS are engaged. The objective
is to maximize combined revenue from intraday trading and expected passive imbalance settlement by
dynamically adjusting to updated forecasts and real-time market signals.

Intraday and expected imbalance revenues are related because trades executed on the intraday mar-
ket can alter the system’s imbalance position relative to its day-ahead commitments. Consequently,
any intraday trading action must consider the potential imbalance settlement outcome. While intraday
prices are available at the time of optimization, the actual imbalance price is still unknown. As accurate
imbalance price forecasting lies outside the scope of this study, the day-ahead market clearing price is
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Figure 3.3: Time line of rolling horizon of optimization shifting forward one hour per iteration and dynamically adjusting
optimization window length. Demonstrating the open markets and market events considered in the each optimization iteration.

used as a forecast for the imbalance price (λIM-forecast,t) to incorporate the expected economic impact of
imbalance positions. The implications of this approximation are further discussed in Section 4.3. During
this stage, the dual-pricing scheme of the imbalance market is simplified: the model assumes symmet-
rical pricing (i.e., the same value for upward and downward regulation), with only the payment direction
varying. This corresponds to assuming only Regulation States -1 and +1, as outlined in Chapter 2.

To avoid excessive speculative behavior arising from simplified imbalance price forecasts, the model
applies imbalance constraints following the approach of Heredia, Cuadrado, and Corchero [10]. This
limits the volume of allowed imbalance positions to reflect physical feasibility and market realism.

The BESS plays a crucial role in this phase by leveraging its operational flexibility for short-term ar-
bitrage, mitigating RES forecast errors, and responding to real-time market opportunities. This op-
timization evaluates the trade-offs between economic gains from market participation and physical
constraints, such as state-of-charge (SoC) limits, grid export capacity, and battery efficiency. Notably,
the model assumes that the battery only charges from the RES and not from the grid. Battery degra-
dation is also neglected at this stage, an assumption that simplifies the analysis but may result in an
overestimation of the BESS’s long-term arbitrage potential.

Because the intraday market operates in close proximity to the delivery time, with trading allowed up
until the start of the Imbalance Settlement Period (ISP), forecast accuracy improves substantially. This
enhanced precision increases the operational value of the BESS and enables the HPP to refine its
market position usingmore accurate and timely data. To exploit this feature, themodel employs a rolling
horizon optimization strategy. At fixed intervals (tupdate), hourly in this study, the model incorporates the
most recent renewable generation forecasts along with updated data from the intraday market order
book. These are indicated in Figure 3.3 and 3.4 by the purple and red boxes/dots respectively.

The order book provides real-time information on the best available trading prices. It is assumed that
the HPP can transact at the most advantageous prices available at the time of bidding. More precisely,
the lowest available sell price is used for buying transactions, and the highest available buy price is
used for selling. This assumption reflects an ideal but plausible execution scenario.

In Figure 3.4 the bottom bar presents one optimization from the rolling horizon, including the intraday
bidding and expected imbalance stage. Such an optimization consist of three sequential steps: first,
the realization of real-time operation (Section 3.2.4) indicated by the blue bar, second, the integration of
updated forecast (purple) and intraday market data (red), and third, a re-optimization horizon of future
intraday trades (green), constrained by prior market commitments and physical limitations. Depending
on the current time (tcurrent,i), it is determined which markets are open, and thus the length of the
optimization horizon (Nt,i). This iterative process enables the HPP to continuously adapt its operational
strategy to evolving system conditions.
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Figure 3.4: Illustrative time horizons (bars) and events (dots) of two optimization iterations. The upper optimization (bar)
consist of the Real time operation optimization (bar) and the Day-ahead bidding optimization. The bottom optimization consist

of the Real time operation optimization and Intraday bidding and expected imbalance optimization.

While Figure 3.3 illustrates a single operational day, which causes the optimization window to shrink with
each passing iteration, the actual model implements a rolling multi-day horizon. After tcurrent has passed
13:00, when the results of the day-ahead market for the next day are published, the window expands to
include new commitments until the following midnight to schedule its operations accordingly. Similarly,
from 15:00 onward, intraday trading for the next day becomes available. This dynamic adjustment of the
horizon reflects the real operational environment of an HPP engaging in sequential market participation.

3.2.4. Real-time Operation
The third stage of the optimization framework concerns real-time operation and imbalance settlement.
During this stage, market positions from earlier bidding stages are fixed, but actual renewable energy
production may deviate from forecasts, leading to imbalances. The objective is to steer real-time power
flows to maximize imbalance market revenue while maintaining feasibility under technical and market
constraints. The real-time delivery window is covering the time between the start of the current (tcurrent,i)
and previous optimization (tcurrent,i−1). This interval consist of tupdate time steps and is illustrated as the
blue bar in Figure 3.3 and 3.4.

Within this stage, the model performs strategic curtailment and battery (dis)charging to exploit favorable
imbalance prices or mitigate penalties. Since the intraday market is closed during real-time delivery, all
adjustments are executed physically and are financially settled through the imbalance market.

This stage assumes perfect foresight of imbalance prices within the real-time delivery window. Although
this assumption simplifies the optimization and allows for price-responsive dispatch, it introduces a de-
gree of optimism in estimated imbalance revenues. In practice, TenneT publishes upward and down-
ward regulation prices with a five-minute delay, offering operators only a partial indication of the final
imbalance price used for settlement. While this reduces uncertainty, the actual settlement price de-
pends on the regulation state, which is determined only after the Imbalance Settlement Period (ISP)
has ended. To prevent unrealistic arbitrage under perfect foresight, speculative behavior is restricted
in earlier stages of the model. In the real-time stage, however, these constraints are lifted since trades
are no longer speculative: the intraday market has closed, and operational actions must be based on
physical delivery within the current ISP.

The real-time operation stage and the intraday bidding and expected imbalance stage are solved si-
multaneously. Therefore, decisions during the real-time operation stage take the scheduling for the
expected future timesteps into account. This design ensures continuity across decision stages: the re-
alized operation not only determines the actual imbalance revenues, but also sets the initial conditions
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for subsequent intraday bidding, particularly the battery’s state of charge (Estart). Thus, consistency
is maintained between short-term execution (real-time operation stage) and longer-term planning hori-
zons (intraday bidding and expected imbalance stage).

In summary, this final stage completes the three-stage stochastic MILP framework. By integrating real-
time realizations with forecast-based decision-making and market constraints, the model provides a
comprehensive and realistic representation of HPP participation in short-term electricity markets. It en-
ables robust operational strategies that balance profitability with system reliability, while acknowledging
the inherent uncertainties of renewable generation.

3.3. Mathematical Formulation
This section presents the mathematical formulation of the model introduced previously. The problem
is formulated as a MILP. An overview of the input variables, type of power forecast, objective, decision
variables, output variables and optimization frequency and timelines of the three optimization stages
are given in Table 3.1 at the end of this section. Next follows a description of the decision variables,
and the mathematical formulation of the objective functions and associated constraints for each stage
of the optimization in dedicated subsections.

3.3.1. Day-ahead Bidding
The objective of the day-ahead bidding stage is to maximize revenues from the day-ahead market,
as defined in Equation 3.1. The decision variable is the acceptance of day-ahead bids (uaccepted,t) for
each hour. This is determined based on the bid volume PDA-bid,t, which is set equal to the deterministic
forecast (Pforecast,t) available at 12:00 on the day prior to delivery (Equation 3.2). Since day-ahead
market clearing happens at 13:00 one day before delivery, the next day will be 11 hours later. Thus the
number of time steps from the current time to the start of day-ahead bidding time horizon is defined as
tcurrent,i +

11
dt as indicated in Figure 3.4. The acceptance of the bids determines the commitment to the

day-ahead market as described in Equation 3.3.

The RES has amarginal costMACRES, and bids are accepted if the market clearing price λDA,t exceeds
this cost. This is enforced through the binary variable uaccepted,t and the big-M formulation provided in
Equation 3.4.

maximize
Nt∑

t=11/dt

ΠDA =

Nt∑
t=11/dt

PDA,t · λDA,t (3.1)

w.r.t. uaccepted

subject to PDA-bid,t = Pforecast,t t =
11

dt
, ..., Nt (3.2)

PDA,t = PDA-bid,t · uaccepted,t t =
11

dt
, ..., Nt (3.3)

−M · (1− uaccepted,t) ≤ λDA,t −MACRES ≤ M · uaccepted,t t =
11

dt
, ..., Nt (3.4)

The accepted volumes PDA,t are carried forward as fixed parameters into the intraday bidding and ex-
pected imbalance stage. Additionally, the clearing prices λDA,t are used as a forecast for the imbalance
price.

3.3.2. Intraday Bidding and Expected Imbalance
This stagemodels the intraday bidding strategy of the HPP under forecast uncertainty and evaluates the
economic impact of passive imbalance exposure. At each iteration, the model makes decisions based
on the current system state, which includes the existing intraday market commitments PID-commit,t and
the battery state of charge Ebattery,t=tcurrent inherited from previous iterations. The MILP of this stage is
defined by Equations 3.5–3.20.
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maximize Ej∈[1,Nc]

[
Nt∑
t=1

(ΠIM-forecast,j,t +ΠID,t)

]
(3.5)

w.r.t. ΠID, ΠIM-forecast, Pgenerated, PID, PIM-forecast, Pcharge

Pdischarge, Ebattery, PHPP, ucharging, uID

subject to −M(1− uID,t)ubuy-possible,t ≤ PID,t ≤ MuID,tusell-possible,t t = 1, ..., Nt (3.6)
−MuID,t ≤ ΠID,t − λID-buy,tPID,tdt ≤ MuID,t t = 1, ..., Nt (3.7)
−M(1− uID,t) ≤ ΠID,t − λID-sell,tPID,tdt ≤ M(1− uID,t) t = 1, ..., Nt (3.8)
Pgenerated,j,t − PDA,t ≤ PIM-forecast,j,t ≤ PDA,t − Pgenerated,j,t t = 1, ..., Nt ∧ j = 1, ..., Nc

(3.9)
ΠIM-forecast,j,t = PIM-forecast,j,t · λIM-forecast,t t = 1, ..., Nt ∧ j = 1, ..., Nc

(3.10)

0 ≤ Pgenerated,j,t ≤ P̂source,j,t t = 1, ..., Nt ∧ j = 1, ..., Nc

(3.11)

Ebattery,j,t+1 = Ebattery,j,t + Pcharge,j,tdt · ηbattery −
Pdischarge,j,tdt

ηbattery
t = 1, ..., Nt + 1 ∧ j = 1, ..., Nc

(3.12)
0 ≤ Pcharge,j,t ≤ ucharging,j,tPmax-battery t = 1, ..., Nt ∧ j = 1, ..., Nc

(3.13)
0 ≤ Pdischarge,j,t ≤ (1− ucharging,j,t)Pmax-battery t = 1, ..., Nt ∧ j = 1, ..., Nc

(3.14)
Pbattery,j,t = Pdischarge,j,t − Pcharge,j,t t = 1, ..., Nt ∧ j = 1, ..., Nc

(3.15)
EDoD ≤ Ebattery,j,t ≤ Emax-battery t = 1, ..., Nt ∧ j = 1, ..., Nc

(3.16)
Ebattery,j,tcurrent = Estart j = 1, ..., Nc (3.17)
PHPP,j,t = Pgenerated,j,t + Pbattery,j,t t = 1, ..., Nt ∧ j = 1, ..., Nc

(3.18)
− Pgrid-withdraw ≤ PHPP,j,t ≤ Pgrid-feed-in t = 1, ..., Nt ∧ j = 1, ..., Nc

(3.19)
PIM-forecast,j,t = PHPP,j,t − (PDA,t + PID-commit,t + PID,t) t = 1, ..., Nt ∧ j = 1, ..., Nc

(3.20)

The objective of each optimization problem is to maximize the expected value of passive imbalance
revenue forecast (ΠIM-forecast,j,t) and intraday revenue (ΠID,t), aggregated across all time steps t =
1, .., Nt and scenarios j = 1, . . . , Nc, as shown in Equation 3.5, while satisfying all operational and
market constraints across all considered scenarios.

The decision variables in this stage include the realized intraday traded power (PID,t), expected power
imbalance (PIM-forecast,j,t), and the resulting realized intraday revenue (ΠID,t) and expected imbalance
revenue (ΠIM-forecast,j,t). Additionally, the model forecasts the physical power flows: forecast for RES
generation accounting for curtailment (Pgenerated,j,t), charging and discharging powers (Pcharge,j,t and
Pdischarge,j,t), the battery state of charge (Ebattery,j,t), and the total power output of the hybrid power
plant (PHPP,j,t). Binary variables ucharging,j,t and uID,t ensure correct battery operation and pricing logic,
respectively, based on power flow directions. It is important to note that in this optimization stage only
the intraday trades and revenues are fixed and realized, while all other decisions are based on forecasts
and thus expected values. This is explicitly defined in Table 3.1.

The constraints are organized into intraday market participation, imbalance settlement, generation,
battery operation, and power balance categories, as detailed below.
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Intraday Market Constraints
Market liquidity limitations are captured using binary variables usell-possible,t and ubuy-possible,t, which are
defined during data pre-processing. These variables indicate whether buying or selling is possible in a
given time step based on the order book and are enforced by Equation 3.6.

Intraday revenue is computed as the product of traded power PID,t and the applicable market price
λID,buy,t or λID,sell,t, multiplied by the duration of the market product, one timestep of 15 minutes in this
study (dt). A binary variable uID,t determines whether a trade is a buy or a sell, ensuring the correct
price is applied via big-M formulations in Equations 3.7 and 3.8.

Imbalance Market Constraints
To prevent speculation based upon a simplistic imbalance price forecast, the power traded on the imbal-
ance market is restricted following the same logic as Heredia, Cuadrado, and Corchero [10]. This limits
the expected imbalance power to the difference between actual generation and previously committed
trades, as formulated in Equation 3.9.

The imbalancemarket handles discrepancies between actual power delivery and committed trades. Us-
ing the day-ahead clearing prices as an imbalance price forecast (λIM-forecast,t) results in approximated
imbalance revenues (ΠIM-forecast,j,t), as described in Equation 3.10.

Power Generation Constraints
The generated RES output in each scenario is defined by Equation 3.11. This defines the expected
curtailed generation, where the upper bound for each scenario is set by the expected available RES
power of that scenario (P̂source,j,t).

BESS Operation Constraints
Battery energy dynamics are governed by Equation 3.12, which accounts for charging and discharging
losses represented by the battery efficiency (ηbattery). The expected charging and discharging power
flows are separately defined in Equations 3.13 and 3.14. A binary variable ucharging,j,t ensures that
charging and discharging do not occur simultaneously, while Equation 3.15 computes the net battery
power.

The state of charge is bounded between the minimum depth of discharge (EDoD) and the maximum
capacity (Emax-battery) (Equation 3.16). The initial battery state at the beginning of each iteration is
specified in Equation 3.17.

Power Balance Constraints
The physical power expected to be exchanged with the grid (PHPP,j,t) must match the net output of
the RES and the battery, as specified in Equation 3.18. This output must lie within the grid connection
capacity limits defined in Equation 3.19. Here, the power to withdraw from the grid (Pgrid-withdraw) and to
feed into the grid (Pgrid-feed-in) are defined separately as the grid connection can be asymmetrical.

Finally, the market balance constraint is given in Equation 3.20, which states that the residual between
physical output and total market commitments constitutes the imbalance volume.

The above formulation is applied at each optimization iteration. For simplicity, the mathematical for-
mulation is not explicitly indexed by the optimization iteration (i = 1, . . . , Ni). However, input variables
follow from previous optimization iterations. From the intraday bidding and expected imbalance stage,
the resulting intraday commitments (PID, commit,i,t) from each optimization serve as input for the subse-
quent real-time imbalance optimizations as well as the next intraday bidding and expected imbalance
optimizations. The updated intraday commitment is defined as the intraday trade actions from the most
recent optimization (PID,i,t), added to the commitments made in the previous iterations (PID-commit,i−1,t),
as shown in Equation 3.21.

PID-commit,i,t = PID-commit,i−1,t + PID,i,t i = 1, . . . , Ni ∧ t = 1, ..., Nt,i (3.21)
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3.3.3. Real-time Operation
The final stage of the multi-stage optimization framework addresses the real-time operation of the HPP,
during which physical power delivery occurs. Therefore, the model decisions result in realized output,
rather than expected output. At this point, no further trades can be made in the intraday market. The
mathematical formulation of the MILP is described by Equation 3.11–3.19 and 3.22 – 3.23. This stage
is implemented over the most recent delivery window, as represented by the blue box in Figure 3.3 and
3.4. Mathematically this is defined as t = tcurrent − tupdate, . . . , tcurrent, where tcurrent is the current time
and tupdate is the interval between rolling iterations. Within this window, actual physical generation and
battery operations are decided. As these values are known, scenario-based forecasting is no longer
used.

maximize
tupdate∑

t=tcurrent−tupdate

ΠIM,t (3.22)

w.r.t. ΠIM, PIM, Pgenerated, Pcharge, Pdischarge, Ebattery, PHPP, uregulation

subject to PIM,t = PHPP,t − (PDA,t + PID-commit,t) t = tcurrent − tupdate, . . . , tcurrent
(3.23)

−M(1− uregulation,t) ≤ PIM,t ≤ Muregulation,t t = tcurrent − tupdate, . . . , tcurrent
(3.24)

−M(1− uregulation,t) ≤ ΠIM,t − λIM,long,tPIM,tdt ≤ M(1− uregulation,t) t = tcurrent − tupdate, . . . , tcurrent
(3.25)

−Muregulation,t ≤ ΠIM,t − λIM,short,tPIM,tdt ≤ Muregulation,t t = tcurrent − tupdate, . . . , tcurrent
(3.26)

Eq. (3.11)–(3.19) t = tcurrent − tupdate, . . . , tcurrent

The objective of this stage is to steer real-time power flows to maximize realized revenue on the imbal-
ance market (ΠIM,t), as formulated in Equation 3.22. This optimization is based on realized physical
output and the most recent system information available at the time of delivery. The dual pricing mech-
anism of the Dutch imbalance market is considered, assuming perfect foresight of imbalance prices.

The decision variables include the imbalance power (PIM,t) and the regulation direction (uregulation,t),
which together determine the imbalance revenue (ΠIM,t). Additional real-time decisions include for
curtailment corrected RES output (Pgenerated,t), battery charging and discharging powers (Pcharge,t) and
(Pdischarge,t), the battery state of charge (Ebattery,t), and the total HPP output (PHPP,t).

The realized imbalance volume is calculated as the difference between physical output and prior market
commitments from the day-ahead and intraday stages, as shown in Equation 3.23.

The Dutch imbalance market uses a dual pricing mechanism where the applicable imbalance price
depends on the HPP’s system position, as described in Chapter 2. The binary variable uregulation,t
indicates this: uregulation,t = 1 for surplus and uregulation,t = 0 for shortage. This relationship is enforced
by the big-M formulation in Equation 3.24.

The realized imbalance revenue also depends on the imbalance price associated with the regulation po-
sition. When in surplus, the long imbalance price (λIM,long,t) is applied; in shortage, the short imbalance
price (λIM,short,t) is applied. These cases are captured by Equations 3.25 and 3.26.

All physical constraints on generation and storage, originally defined in Equations 3.11–3.19, remain
applicable in this stage but are enforced deterministically based on realized trajectories. Thus the
decision on power flows are executed during this stage, rather than used as a forecast as in the intraday
bidding and expected imbalance stage.

Crucially, the realized operation in this stage not only determines imbalance revenues, but also estab-
lishes the initial conditions for the next intraday bidding (Equation 3.28) and real-time operation stages.
For the real-time operation stage, the battery state of charge (Estart,i) at the beginning of the real-time
operation optimization (t = tcurrent,i− tupdate) must match the final battery energy level from the previous
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iteration (i− 1). This consistency is enforced by Equation 3.27, which ensures that energy trajectories
align across successive optimization windows.

Estart,RTO,i = Estart,i,t=tcurrent,i−tupdate = Ebattery,i−1,t=tcurrent,i−1
i = 1, . . . , Ni (3.27)

Moreover, the energy in the battery at the start of the intraday bidding and expected imbalance stage
(IDB) is defined by the real-time operation within the same iteration (i), as is given by Equation 3.28.
Since the two stages are solved simultaneously this is carried over to the next stage within the same
optimization iteration.

Estart,IDB,i = Ebattery,i,t=tcurrent i = 1, . . . , Ni (3.28)
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Table 3.1: Stage-wise overview of the multi-stage optimization framework. For each stage the table details the input variables
and their sources, forecast type, objective, decision and output variables (distinguishing realized from forecasted), as well as

the optimization frequency and time horizon.

Day-ahead bidding
stage

Intraday bidding and
expected imbalance
stage

Real-time operation
stage

Input
variables

External:
MACRES
λDA,t
Pforecast, tcurrent = PDA,bid

DA bidding stage:
PDA,t
Real-time IM stage:
Estart,IDB
External:
λIM-forecast,t = λDA,t
λID,buy,t
λID,sell,t
uID-buy-possible,t
uID-sell-possible,t
Pforecast,t
ARMA(2, 2)

DA bidding stage:
PDA,t
ID bidding and IM
forecast stage:
PID-commit,t
Previous real-time IM
optimization stage:
Estart,RTO
External:
Pforecast,t
λIM,short,t
λIM,long,t

Type of
power
forecast

Deterministic Stochastic Perfect foresight

Objective Maximize DA revenue Maximize ID revenue and
forecasted IM revenue Maximize IM revenue

Decision
variables uaccepted,t

ΠID,t
ΠIM-forecast,j,t
Pgenerated,j,t
PID,t
PIM-forecast,j,t
Pbattery,j,t
Ebattery,j,t
PHPP,j,t
ucharging,j,t
uID,t

ΠIM,t

PIM,t

Pgenerated,t
Pbattery,t
Ebattery,t
PHPP,t
uregulation,t
ucharging,t

Output
variables

Realized:
ΠDA,t
PDA,t

Realized:
ΠID,t
PID-commit,t
uID,t
Forecasted:
ΠIM-forecast,j,t
PIM-forecast,j,t
Pgenerated,j,t
Pbattery,j,t
Ebattery,j,t
PHPP,j,t
ucharging,j,t

Realized:
ΠIM,t

PIM,t

Pgenerated,t
Pbattery,t
Ebattery,t
PHPP,t
uregulation,t
ucharging,t

Optimization
frequency Once per day Every ’tupdate · dt’ hours Every ’tupdate · dt’ hours

Time
horizon

[tcurrent,i +
11
dt ,

tcurrent,i +Nt,i] [tcurrent,i, tcurrent,i +Nt,i] [tcurrent,i − tupdate,i, tcurrent,i]
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3.4. Scenario Generation and Reduction Methodology
The uncertainty associated with power forecasts is addressed by introducing stochastic variables into
the model. A widely adopted method to represent these variables is through discrete set of scenar-
ios associated with probability of realization. To comprehensively capture the stochastic behavior of a
system, a large set of scenarios is required. However, with an increasing number of scenarios, the com-
putational burden grows, demanding a careful trade-off between accuracy and computational efficiency.
Therefore, clustering of scenarios is often used.

In this study, power generation forecast (P̂sourcej,t) is treated as a stochastic variable for the intraday
bidding and expected imbalance optimization stage. Each scenario cluster is represented by a rep-
resentative scenario that corresponds to a realization of this stochastic variable. In the optimization
decision variables are determined depending on the power available. These decision variables are
defined in Section 3.3.2. To generate representatives for scenario clusters first scenarios must be
generated. The generation and clustering of these scenarios will be discussed next.

3.4.1. Scenario Generation
To account for the uncertainty in renewable power production, this study uses historical data to generate
stochastic scenarios for future generation. The scenario generation is based on a combination of a
deterministic forecast and a statistical model of historical forecasting errors as described by Conejo,
Carrión, and Morales [26].

The historical forecasting error is defined as the difference between the day-ahead forecast used to
submit market bids and the actual realized power generation. In this study, the day-ahead forecast is
based on weather data published at 9:00 on the day prior to delivery (t = 9:00 D − 1), representing a
realistic operational setting where approximately three hours are required to generate a power forecast
from the published weather data. As a result, the forecast used spans delivery periods from 00:00 to
23:45 on day D, implying a lead time range of approximately 15 to 39 hours depending on the specific
delivery time. The historical forecast error ϵhistorical,t is then computed as the difference between this
fixed day-ahead forecast and the realized generation at time t, as shown in Equation 3.29:

ϵhistorical,t = Pforecast,DA-bids − Prealized,t (3.29)

While this method does not explicitly model the effect of lead time on forecast accuracy, it captures the
realistic operational error associated with day-ahead bidding. Given that the emphasis of this study
lies in optimizing market participation under forecast uncertainty rather than developing a detailed fore-
casting model, this approximation is considered sufficient for generating representative stochastic input
scenarios.

To represent the statistical properties of the forecast error, an autoregressive moving average (ARMA)
model is employed, similar to methods used by Gulotta et al. [27] and Ayón, Moreno, and Usaola [15].
The ARMA model is well-suited to describe time series data with temporal dependencies and residual
structure, making it an appropriate choice for modeling forecasting error dynamics.

An ARMA model consists of two key components and is mathematically defined by Equation 3.30. The
Autoregressive (AR) component captures the relationship between the current value of the error and its
previous values (lags). The number of lag terms included is denoted by the parameter p. Additionally,
the Moving Average (MA) component captures the relationship between the current error and past
white noise terms (i.e., residuals from a lagged error process). The number of these terms is denoted
by the parameter q.

yt = µ+

p∑
m=1

ϕmyt−m + εt −
q∑

n=1

θnεt−n (3.30)

In Equation 3.30, yt represents the forecast error at time t, and µ is the constant mean level around
which the process fluctuates. The parameters ϕm are the autoregressive (AR) coefficients that quantify
the influence of past errors yt−m on the current value, with m = 1, . . . , p. The term εt denotes a white
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noise error term at time t, assumed to be independently and identically distributed with zero mean.
The parameters θn are the moving average (MA) coefficients that capture the influence of past shock
terms εt−n, where n = 1, . . . , q. Together, these elements allow the ARMA model to describe both the
temporal structure of the error process and its stochastic fluctuations.

To apply the ARMA(p, q) model for scenario generation, the appropriate model order is selected based
on the historical error series, sampled over a full year with 15 minute time intervals. The values of p and
q are determined using the Akaike Information Criterion (AIC), which balances model fit with complexity.
Next, the ARMA model is fitted to the historical forecast errors. The model parameters are estimated
by performing a maximum likelihood estimation (MLE), resulting in values for µ, ϕm, and θn.

The calibrated ARMA model is then used to simulate multiple future realizations of forecast errors
(ϵsimulated). These simulated error paths are added on the deterministic forecast (Pforecast) to construct
a set consisting of Ns stochastic power generation scenarios (P̂source,s,t), as defined in Equation 3.31.
Each realization represents a plausible trajectory of future power output that reflects both forecast
uncertainty and temporal error structure. To ensure the power forecast scenarios adhere the physical
bounds of the RES, the upper and lower bounds are defined by Equation 3.32, where Pmax-power-source
is the maximum power of the RES.

P̂source,s,t = Pforecast,t + ϵsimulated,s,t t = 1, ..., Nt ∧ s = 1, ..., Ns (3.31)

0 ≤ P̂source,s,t ≤ Pmax-power-source t = 1, ..., Nt ∧ s = 1, ..., Ns (3.32)

An example of the generated power forecast scenarios is shown in Figure 3.5. These scenarios are
created by superimposing ARMA(2,2)-simulated forecast errors onto the latest available deterministic
forecast, which in this case is based on weather data published at 05:00 and processed into a forecast
by 08:00. This results in a lead time ranging from 3 to 19 hours. The deterministic forecast is shown in
orange, five stochastic scenarios in blue, and the realized power in green.

Figure 3.5: Five forecast scenarios with a lead time of 3-19 hours generated by imposing ARMA(2,2) sampled errors. The
deterministic forecast is taken as one scenario. The realized power output is also shown.

Figure 3.5 illustrates a key limitation of the scenario generation process: the realized power falls outside
the bounds of the scenario ensemble during multiple periods. This underrepresentation of extreme
values suggests that, although the ARMA model captures central tendencies and temporal structure,
it fails to represent distribution tails adequately. As a result, the stochastic optimization may overlook
high-impact deviations, potentially leading to suboptimal bidding decisions, increased imbalance costs,
or missed trading opportunities.
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Capturing rare but impactful events is essential for robust scenario design. One strategy is to generate
a larger pool of scenarios and apply clustering to select a representative subset. This can broaden
the range of outcomes considered while keeping the problem computationally tractable. The clustering
procedure used in this study to address this trade-off is discussed in the next section.

While the ARMA approach offers transparency and low computational cost, several caveats should be
noted. It assumes stationarity and linearity, which may not hold in practice, especially under rapidly
changing weather conditions. The model also treats forecast error characteristics as uniform across
lead times, potentially underestimating short-term accuracy and overstating longer-term variability. Fi-
nally, applying errors directly to power output, rather than to underlying meteorological inputs like wind
speed, can distort physical realism, particularly in non-linear regions of the power curve.

Despite these limitations, the ARMA-based scenario generation remains a pragmatic approach for
representing forecast uncertainty in the context of market-based optimization.

3.4.2. Scenario Clustering
To manage computational complexity while preserving the essential variability in forecast uncertainty,
this study applies scenario clustering to reduce the dimensionality of the generated scenario set. Specif-
ically, k-means clustering is used to group similar power trajectories and select a representative sce-
nario for each cluster, which is then assigned a corresponding probability.

K-means clustering is widely used in energy system modeling due to its simplicity and computational
efficiency [28, 27, 16]. Each scenario is treated as a time series vector, where each time step is a
feature. The algorithm partitions the full set of Ns generated scenarios into Nc clusters by minimizing
the total within-cluster variance, using Euclidean distance as a similarity metric. This ensures that
scenarios within the same cluster exhibit similar temporal patterns, which is important for capturing
consistent operational dynamics over the optimization horizon.

Let pj denote the probability assigned to cluster j, defined as the proportion of scenarios allocated to
it. The representative scenario P̂source,j,t is then the centroid of each cluster, and pj is computed as
follows:

pj =
1

Ns

Ns∑
s=1

I (s assigned to cluster j) (3.33)

Figure 3.6 illustrates 50 generated power scenarios in blue, along with five representative cluster cen-
troids in red. The deterministic forecast and realized power are also shown in orange and green, respec-
tively. Compared to the 5-scenario representation in Figure 3.5, the 50-scenario set more frequently
captures the realized trajectory. This suggests improved coverage of plausible outcomes, which is
essential for the optimization. The divergence of clustered scenarios with time from the deterministic
forecast also reflects the ARMA-based error generation, where deviations naturally grow with lead time.

However, several limitations must be acknowledged. First, the representative scenarios are notably
similar, especially during the early hours of the day. This limited diversity reflects both the ARMA
model’s tendency to generate scenarios that concentrate around the deterministic forecast and the be-
havior of the k-means algorithm, which minimizes intra-cluster variance. As a result, extreme but rare
events, such as large forecast deviations observed in the realized power, may be underrepresented.
This underrepresentation can bias the optimization toward overly confident or aggressive market strate-
gies, reducing resilience to adverse conditions.

Moreover, k-means clustering assumes that the central tendency (centroid) of each cluster is an ad-
equate representation of that cluster’s dynamics. While effective for capturing average behavior, this
approach does not necessarily retain edge cases or non-linear transitions, especially when the original
scenario set is already centered around a common deterministic baseline. Additionally, the Euclidean
distance metric may underweight rare but operationally significant variations, such as sharp ramps
or cut-in/cut-out conditions typical in wind generation. Despite these limitations, the use of clustering
allows for a tractable yet probabilistically informed optimization model.
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Figure 3.6: Example of 50 forecast scenarios with 5 representative scenarios. Additionally, the deterministic forecast and the
realized power output are shown.

3.5. Performance Results
The optimization results in revenues generated and absolute traded energy which are calculated for
each market separately. To come to the cumulative revenues, absolute traded energy and physically
generated energy, the results have to be summed up over all iterations (i = 1, . . . , Ni) covering the
time period of the numerical experiments.

Realized Revenues
The realized revenues for day-ahead and imbalance market are calculated over the real-time operation
window, as defined in Section 3.3.3 (t = [tcurrent,i−tupdate, tcurrent,i]). During this stage the final decisions
are made on imbalance positions. In this way, also the day-ahead revenue are only accounted for once.
On the other hand, the decisions and thus revenues on the intraday market are made acrosss mutliple
optimizations. Therefore, the revenues should be accumulated over all optimizations that cover the a
specific time step.

From the day-ahead optimization stage, the accepted bid volume and clearing price are determined,
and the corresponding revenue is calculated as defined in Equation 3.1. The realized day-ahead rev-
enue (ΠDA,realized)is then calculated by summing the hourly revenues over the real-time window of each
iteration, as shown in Equation 3.34.

ΠDA, realized =

Ni∑
i=1

 tupdate∑
t=tcurrent,i−tupdate,i

ΠDA,i,t

 (3.34)

Similarly, the imbalancemarket revenue is computed by summing the realized imbalance revenues over
the real-time window across all iterations. The revenue ΠIM,i,t at each timestep is decided during the
real-time operation stage using the pricing logic in Equations 3.25 and 3.26. The cumulative imbalance
revenue is given by:

ΠIM, realized =

Ni∑
i=1

 tupdate∑
t=tcurrent,i−tupdate,i

ΠIM,i,t

 (3.35)
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As a result of the rolling horizon approach intraday trades can be executed across multiple iterations
for a single delivery period, at different prices. Therefore, intraday revenues must be accumulated over
all past optimizations that contain trades affecting the current real-time window. The intraday revenue
for the real-time window of iteration i is computed as:

ΠID,realized,i =

Ni-current∑
k=1

 tupdate∑
t=tcurrent,i−tupdate,i

ΠID,k,t

 (3.36)

Here, Ni-current represents the set of iterations k that executed trades for the delivery window covered
in iteration i. The total intraday revenue across all iterations is then given by:

ΠID,realized =

Ni∑
i=1

ΠID,realized,i (3.37)

Together, these calculations yield the total realized revenue (Πtotal,realized) for the HPP across these
short-term electricity markets, which is defined by Equation 3.38.

Πtotal,realized = ΠDA, realized +ΠIM, realized +ΠID,realized (3.38)

Realized Energy
In addition to financial performance, it is also important to track the absolute volume of energy traded
in each market. This provides insight into the level of market participation and the operational flexibility
exercised by the HPP. Here, the focus is specifically on traded energy, representing both purchases
and sales, and report absolute values to capture total market activity regardless of direction.

The absolute traded energy in the day-aheadmarket is calculated by summing the product of committed
power and time interval dt over the real-time window for each iteration. The absolute value ensures
that both positive and negative trades are included. The cumulative day-ahead traded energy is given
by:

EDA, realized =

Ni∑
i=1

 tupdate∑
t=tcurrent,i−tupdate,i

|PDA,i,t · dt|

 (3.39)

A similar approach is applied to the imbalance market. The realized imbalance energy reflects devia-
tions from market commitments that were settled financially in real time. It is computed as:

EIM, realized =

Ni∑
i=1

 tupdate∑
t=tcurrent,i−tupdate,i

|PIM,i,t · dt|

 (3.40)

For the intraday market, trades affecting a given delivery period may be executed across multiple earlier
iterations. Therefore, the realized intraday energy for iteration i aggregates trades from all relevant prior
iterations k = 1, . . . , Ni-current. The total intraday traded energy is calculated in two steps:

EID,realized,i =

Ni-current∑
k=1

 tupdate∑
t=tcurrent,i−tupdate,i

|PID,k,t · dt|

 (3.41)

EID,realized =

Ni∑
i=1

EID,realized,i (3.42)
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The total absolute traded energy is defined as the sum of the traded energy in each market (Equation
3.43).

Etotal-traded = EDA, realized + EIM, realized + EID,realized (3.43)

These metrics offer a comprehensive overview of the HPP’s engagement across the short-term electric-
ity markets and complement the revenue-based performance indicators. By reporting absolute energy
values, the model captures both trading intensity and system responsiveness under uncertainty.

Additionally, the total physical energy that is fed into the grid as well as the energy that is lost due to
curtailment are calculated. The physical energy is determined by summing the power fed into the grid
per timestep (PHPP,i,t) in the real time operation over all iterations, subtracting the difference between
initial energy in the battery (Ebattery-initial: i = 1, t = 1) from the energy in at the end of the optimization
(Ebattery-end: i = Ni, t = tcurrent). This is all reflected in Equation 3.18.

Ephysical,realized =

Ni∑
i=1

 tupdate∑
t=tcurrent,i−tupdate,i

Pgenerated,i,t · dt

 (3.44)

The losses associated with the battery energy storage are defined by Equation 3.45.

Ebattery-loss,t =

Ni∑
i=1

 tupdate∑
t=tcurrent,i−tupdate,i

((1− η2battery)Pcharge,i,t) · dt

 (3.45)

Furthermore the energy lost due to curtailment is given by Equation 3.46. Subtracting the potential
power that the source could provide

Ecurtailed,realized =

Ni∑
i=1

 tupdate∑
t=tcurrent,i−tupdate,i

(Psource,i,t − Pgenerated,i,t) · dt

 (3.46)

3.6. Case Studies
To validate the model and evaluate the added value of co-locating a BESS with a photovoltaic (PV)
or wind asset, three case studies are conducted: HPP, stand alone RES and stand alone BESS. The
specifications of the system components and simulation setup are summarized in Table 3.2, 3.3 and
3.4. The physical properties are derived from assets operated by Vandebron.

3.6.1. HPP Case
The HPP case represents the full co-located configuration, consisting of both a RES and a BESS, as
modeled in detail throughout this chapter. It serves as the reference configuration for evaluating the
added value of hybrid operation.

All model components, day-ahead bidding, intraday trading, and real-time balancing, are active, with
both wind generation and battery flexibility contributing to market participation. This configuration forms
the basis from which the RES-only and BESS-only cases are derived by selectively disabling the cor-
responding subsystems.
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Component Specification
Wind Power Plant (RES) Capacity: Pmax-power-source = 7.21 MW
Battery Energy Storage System (BESS) Capacity: Emax-battery = 5 MWh

Depth of discharge EDoD = 0.5 MWh
Initial SoC: Estart,i=1 = 0.5Emax-battery= 2.5 MWh
C-rate: C = 0.5 hour−1

Power: Pmax-battery = Emax-batteryC = 2.5 MW
Battery efficiency: ηbattery = 94.9%

Grid Connection Feed-in limit: Pgrid-feed-in = 7.21 MW
Withdrawal limit: Pgrid-withdraw = 0 MW

Forecast Scenarios Number of scenarios: Ns = 50
Number of clusters: Nc = 5
Time series model for error simulation: ARMA(2,2)

Simulation Parameters Time step: dt = 0.25 hour
Re-optimization interval: tupdate = 1 hour
Optimization duration: Tsim = 168 hour
Optimization iterations: Ni =

Tsim
tupdatedt

= 168 iterations

Table 3.2: Specifications of the assets and simulation setup used in the HPP case study

3.6.2. RES Case
The RES case represents a standalone wind power plant operating without a BESS. It serves as the
baseline configuration. In this case, all battery-related dynamics and constraints, specifically those
defined in Equations 3.12 to 3.17, are disabled in both the intraday bidding and real-time operation
stages. Additionally, battery power flows are set to zero (Pbattery = 0), ensuring that only wind generation
contributes to market participation. This is summarized in Table 3.3.

Component Specification
Wind Power Plant (RES) Capacity: Pmax-power-source = 7.21 MW
Grid Connection Feed-in limit: Pgrid-feed-in = 7.21 MW

Withdrawal limit: Pgrid-withdraw = 0 MW
Forecast Scenarios Number of scenarios: Ns = 50

Number of clusters: Nc = 5
Time series model for error simulation: ARMA(2,2)

Simulation Parameters Time step: dt = 0.25 hour
Re-optimization interval: tupdate = 1 hour
Optimization duration: Tsim = 168 hour
Optimization iterations: Ni =

Tsim
tupdatedt

= 168 iterations

Table 3.3: Specifications of the assets and simulation setup used in the stand-alone RES case study

3.6.3. BESS Case
The BESS case isolates the operation of a battery system participating in the electricity markets without
any co-located renewable generation. The day-ahead bidding stage is omitted by setting the committed
power to zero (PDA,t = 0). RES-related constraints, namely Equation 3.11, are disabled in both the
intraday and real-time stages.

Since no renewable source is modeled, (stochastic) scenarios are not required. This case is there-
fore solved deterministically (Nc = 0), with the generated power set to zero (Pgenerated,t = 0). To allow
charging from the grid, the grid withdrawal constraint is relaxed to Pgrid-withdraw = Pmax-battery. This con-
figuration highlights the standalone value of flexible storage capacity under current market conditions.
The parameters associated with this case can be found in Table 3.4.
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Component Specification
Battery Energy Storage System (BESS) Capacity: Emax-battery = 5 MWh

Depth of discharge EDoD = 0.5 MWh
Initial SoC: Estart,i=1 = 0.5Emax-battery= 2.5 MWh
C-rate: C = 0.5 hour−1

Power: Pmax-battery = Emax-batteryC = 2.5 MW
Battery efficiency: ηbattery = 94.9%

Grid Connection Feed-in limit: Pgrid-feed-in = 2.5 MW
Withdrawal limit: Pgrid-withdraw = 2.5 MW

Simulation Parameters Time step: dt = 0.25 hour
Re-optimization interval: tupdate = 1 hour
Optimization duration: Tsim = 168 hour
Optimization iterations: Ni =

Tsim
tupdatedt

= 168 iterations

Table 3.4: Specifications of the assets and simulation setup used in the stand-alone BESS case study

3.6.4. Performance Metrics
The case studies are evaluated based on their operational and economic performance over four weeks,
each selected from a different season to reflect varying weather conditions and market conditions.
The following performance metrics are used to quantify and compare the performance of the different
system configurations:

• Total Revenue [€]: The realized revenue per market, as well as the total revenue, reflects the
overall economic return from participation in the day-ahead, intraday, and imbalance markets.
This metric serves as an indicator of the total market value captured by the system. In addition,
it provides insight into the relative contribution of each market to the total earnings. The corre-
sponding revenue calculations are defined in Equations 3.34 to 3.38.

• Absolute Traded Energy [MWh]: This metric quantifies the total traded energy volumes, regard-
less of direction (buy or sell), across all markets. It serves as a measure of trading activity and
market engagement. The associated equations are given in Equations 3.39, 3.40, 3.42, and 3.43.

• Revenue per Unit of Physical Energy [€/MWh]: This metric evaluates the economic efficiency
of each configuration by normalizing total revenue over the total physical energy delivered to the
grid. It isolates the monetary value generated per unit of renewable output, offering insight into
the profitability of each MWh of green energy. It is defined as:

Revenue per Physical MWh =
Πtotal,realized

Ephysical,realized
(3.47)

• Revenue per Unit of Traded Energy [€/MWh]: This metric relates total revenue to the total
traded volume, reflecting the economic efficiency of the system’s market actions. It captures the
effectiveness of trading strategies by indicating the return per unit of energy traded, regardless
of its physical origin:

Revenue per Traded MWh =
Πtotal,realized

Etotal-traded
(3.48)

• Physical Energy Output and Utilization: This metric includes the total renewable energy gen-
erated (Equation 3.44), the curtailed energy (Equation 3.46), and energy losses due to storage
inefficiencies (Equation 3.45). Together, they characterize the system’s energetic efficiency and
utilization. In addition, the grid connection utilization factor is reported to assess the extent to
which available export capacity is used:

Grid Connection Utilization Factor =
Ni∑
i=1

 tupdate∑
t=tcurrent,i−tupdate,i

PHPP,i,t

Pgrid-feed-in

 (3.49)
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Together, these performance metrics support a systematic comparison of the case studies and provide
insight into both the operational behavior and economic impact of the proposed stochastic bidding
strategy. Moreover, they enable a quantitative assessment of the value added by co-locating battery
storage with renewable generation assets.

3.7. Assumption Testing and Model Sensitivity
To assess the robustness and applicability of the proposed optimization framework, the model is eval-
uated along two dimensions. First, the impact of key modeling assumptions is examined, focusing on
how the accuracy of power and imbalance price forecasts influences system behavior, dispatch deci-
sions, and resulting market outcomes. This includes testing cases of perfect foresight and no foresight
of the imbalance price to benchmark the value of improved forecasting. Second, a sensitivity analysis
is conducted on a range of design parameters that define the physical and operational characteristics
of the system. These include BESS size, storage technology, grid connection constraints, and the
re-optimization frequency. Together, these analyses provide insight into how forecast assumptions
and system parameters shape the energetic and economic performance of the HPP under real-world
market conditions.

Imbalance Price Forecasting
Imbalance prices are highly volatile and strongly influenced by real-time system conditions, making
them difficult to predict accurately. In the base case of this study, the day-ahead market clearing price
is used as a proxy for the imbalance price during the intraday bidding and expected imbalance stage.
While this simplification does not capture sudden price spikes, it provides a useful directional estimate
that supports market optimization, as explained in Section 3.2.3.

To assess the sensitivity of the model to this assumption, two alternative forecasting configurations are
evaluated:

• Perfect foresight: The model has full knowledge of future imbalance prices during the intraday
bidding and expected imbalance stage. This scenario serves as an upper bound for potential
revenue and highlights the theoretical value of perfect imbalance price forecasting.

• No foresight: The model performs intraday bidding without any information about imbalance
prices. This isolates the effect of imbalance price uncertainty on market decisions. More specif-
ically, the model only optimizes for intraday revenues, rather than weighing them against the
expected imbalance revenues.

Renewable Power Forecasting
The second assumption tested concerns the treatment of renewable generation uncertainty. In the base
model, power forecasts are represented using 50 stochastic scenarios, which are clustered into five
representative trajectories. To evaluate the benefit of using such scenario-based forecasting, the model
is also run under a perfect foresight configuration, where the realized renewable generation is known
in advance and thus one deterministic forecast is used. This comparison illustrates the operational
and economic value of improved accuracy of one deterministic power forecast, compared to stochastic
power forecasts.

3.7.1. Sensitivity Analysis – System Design Parameters
To evaluate the influence of key physical and operational parameters on the performance of the HPP
compared to the stand-alone BESS and RES, a series of sensitivity analyses were conducted. These
analyses aim to test how variations in BESS sizing, storage technology, grid connection capacity, and
re-optimization frequency affect both economic and energetic outcomes under market uncertainty.

The BESS size is a fundamental design choice that directly determines the system’s storage capacity
and power rating, which in turn governs its flexibility to shift energy temporally and participate in multiple
electricity markets. Additionally the Vanadium-Redox Flow Battery technology is also considered, as
different technical characteristics such as round-trip efficiency and C-rate affect system responsiveness
and energy losses.

Given the increasing relevance of grid congestion, the grid connection capacity is another critical con-
straint. Different configurations are assessed, including unrestricted connections and cases where
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feed-in or withdrawal are individually limited, to explore how directional constraints shape market ac-
cess and renewable energy utilization. Due to the asymmetrical nature of the constraints, the grid
connection utilization is split into feed-in and withdrawal components, as defined in Equations 3.50
and 3.51.

Grid Connection Utilization Factor (Feed-in) =
Ni∑
i=1

 tupdate∑
t=tcurrent,i−tupdate,i

max(PHPP,i,t, 0)

Pgrid-feed-in

 (3.50)

Grid Connection Utilization Factor (Withdrawal) =
Ni∑
i=1

 tupdate∑
t=tcurrent,i−tupdate,i

|min(PHPP,i,t, 0)|
Pgrid-withdraw

 (3.51)

Finally, the frequency of re-optimization, the interval at which new market forecasts are incorporated
and updated decisions are made, affects the HPP’s ability to respond to changing system conditions.
This rolling horizon feature of the multi-stage framework is tested across two additional update intervals
to evaluate the trade-off between responsiveness and stability.

The cases tested are summarized in Table 3.5. Each parameter is varied while holding other variables
constant to isolate its individual impact. Together, these tests provide insight into how design decisions
influence system value creation, trading strategy, and renewable integration under uncertainty.

Table 3.5: Model Sensitivity Parameters Overview

Category Variable Base Test case 1 Test case 2 Test case 3
BESS Size Sensitivity
BESS Size Ebattery-max 5 MWh 2.5 MWh 10 MWh
BESS Technology Characteristics - Vanadium Redox Flow Battery
Round-trip Efficiency ηbattery 90% 75%
C-rate Crate 0.5 0.25
Depth of Discharge EDoD 0.5 MWh 0 MWh
Grid Connection Sensitivity
Feed-in Capacity Pfeed-in 7.21 MW 9.71 MW 7.21 MW 9.71 MW
Withdrawal Capacity Pwithdraw 0 MW 2.5 MW 2.5 MW 0 MW
Reoptimization Frequency Sensitivity
Update Interval tupdate 4 (1h) 2 (30min) 8 (2h)

3.8. Implementation
The implementation of the model described in this chapter is structured into three main components,
as illustrated in Figure 3.7. Each step is briefly explained below.

The first step is data gathering. This model is implemented as a backward-looking simulation using
historical data. Vandebron provided hourly updated power forecasts and realized power production per
ISP from one of their on-shore renewable assets, located in Drenthe, the Netherlands. The processing
time between the KNMI weather report publication [36] and forecast availability was also considered by
introducing a 3 hour delay in forecast access. Therefore the lead time of the forecast has a minimum
3 hours for the first hour and up to maximum of 36 hours. Additionally, day-ahead and imbalance
price data were supplied by Vandebron. Intraday order book data was sourced from EnAppSys [37],
structured as snapshots capturing the best buy and sell orders per product type (quarter-hourly, half-
hourly, hourly) and ISP.

The optimal ARMA(p, q) structure is selected by the auto_arima function of pmdarima package [38],
determining the values of p and q. This is followed by fitting the ARMA(p, q) model to the historical
forecast errors of 2024 by using the ARIMA function of the statsmodels [39], to generate power forecast
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Figure 3.7: Schematic overview of model implementation

uncertainty scenarios. The resulting ARMA(2,2) model with the coefficients displayed in Table 3.6. After
generating 50 scenarios, these are clustered into 5 representative clusters using a k-means clustering
algorithm which is implemented using the scikit-learn Python package [40].

Parameter Coefficient
ϕ1 1.62
ϕ2 -0.63
θ1 -0.63
θ2 -0.10
µ 0.0974

Table 3.6: Fitted ARMA(2,2) parameters and values

The second component is the looping structure through iterations. Each iteration begins by retriev-
ing data specific to the current optimization window (as described in Section 3.2.3). Scenarios are
then generated based on the most recent forecast and the fitted ARMA model, followed by clustering.
Meanwhile, the intraday data is formatted to be compatible with the optimization process.

To prepare the intraday order book data, a tradeable resolution of 5 minutes is assumed. This reflects
the assumption that the best available trades within this timeframe could realistically be captured by
the plant. Consequently, not all ISPs contain a valid trading opportunity, which is encoded in the binary
variables usell-possible,t and ubuy-possible,t.

All relevant data, including market signals, power forecasts, and operational parameters, is merged into
a single time zone-aware pandas DataFrame. This alignment ensures accurate synchronization across
all inputs. Additionally, plant design parameters (e.g., BESS size, grid limits), simulation parameters
(e.g., time step size, solver settings), and iteration settings (e.g., forecast update frequency) serve as
input for the optimization.

The optimization problem, formulated as a MILP, is implemented using Pyomo [41] and solved with the
Gurobi Optimizer [42]. Linear formulation significantly improves computational performance compared
to quadratic formulations. Gurobi was selected over alternatives like Mosek due to its faster solving
time and enhanced debugging features, especially useful for diagnosing infeasibility issues during de-
velopment.

For each iteration, the optimizer produces two sets of results: one scenario-independent (e.g., intraday
bids, intraday revenues, day-ahead commitments) and one scenario-dependent (e.g., power forecast
paths, imbalance power, imbalance revenues). These outputs are stored as a list of DataFrames, with
one list per iteration. The intraday market position per timestep, final battery state of charge at the end
of the real-time operation stage, and updated time window are passed to the next iteration, ensuring
continuity.

The final step involves performance metric calculations. Once all optimization iterations have been
completed, the results are aggregated to compute key performance metrics including revenues, traded
energy volumes, and physically delivered energy. These metrics are used to evaluate model behavior
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and answer the research questions.

In summary, the implemented framework effectively integrates data preprocessing, scenario genera-
tion, and optimization into a robust iterative structure, enabling realistic modeling of hybrid power plant
behavior under market uncertainty.



4
Results

This chapter presents the outcomes of the proposed model. Model performance is assessed on two
levels. First, Section 4.1 provides an operational validation at 15-minute resolution, evaluating the
system’s responsiveness to market signals and its compliance with physical constraints. Second, Sec-
tion 4.2 analyzes cumulative performance across the four weeks, each from a different season, on
economic and energetic outcomes. Together, these analyses assess both the internal consistency of
the model and the added value of the three cases. Section 4.3 further evaluates model performance by
examining the effects of power and price forecast quality and conducting a sensitivity analysis. Lastly,
Section 4.4 offers a critical discussion of the findings.

4.1. Model Validation
To validate the model’s operation, optimization results are examined at the 15-minute resolution. This
step-by-step evaluation shows how the system responds to dynamic price signals while ensuring com-
pliance with technical and physical constraints. As the trading logic is identical for all configurations,
the HPP case is used as the primary validation example. The stand-alone RES and BESS cases are
included for comparison, illustrating how the absence of certain assets affects physical system behav-
ior.

Figure 4.1 shows a stacked bar chart illustrating the energy flows per timestep for the first iteration of
the HPP case, on day 06-09. The graph is constructed from the perspective of the grid connection
point, where physical production, battery operation, and market interactions are aggregated. Positive
values indicate feed-in to the grid, originating either from RES production, battery discharge, or net
energy purchased on the market. Conversely, negative values represent energy withdrawals, including
battery charging, or net sold energy. The flows displayed in Figure 4.1 are the cumulative outcome of
the three-stage rolling optimization framework. Each stage contributes specific decisions.

The day-ahead bidding stage, determines commitments to the day-ahead market based solely on RES
forecasts. This optimization has taken place on the day before delivery (05-09 13:00), and the opti-
mization window covers the full day from 06-09 00:00 to 23:45. Only sell bids are allowed, represented
in the graph by blue bars in Figure 4.1. These commitments remain fixed for the delivery day.

In the intraday bidding and expected imbalance stage, decisions are based on updated RES energy
forecasts and updated intraday orderbook. In Figure 4.1, this optimization stage covers the period from
06-09 01:00 to 23:45. The forecast of RES production is shown in dark green. Discrepancies between
updated forecasts and DA commitments lead to expected imbalance positions, represented in orange.
For instance, between 03:00 and 04:00, the updated RES forecast falls short of DA commitments,
resulting in an imbalance shortage (positive orange bar). At 17:30, the forecast indicates a RES surplus,
reflected by a negative orange bar. It is important to note that these decisions are not fixed, but expected
actions based upon forecast. Thus, these actions could change in next optimizations within the rolling
horizon.

38
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Figure 4.1: HPP case: Energy flows per timestep for the first iteration on 06-09. Positive bars indicate energy delivered or
purchased; negative bars represent charging, or energy sold.

During this stage, the model also makes intraday market trades. Intraday buy actions are shown in
positive bright green bars, while sell actions appear as negative bright green bars. For example, a
buy trade is seen at 05:00, and a sell at 13:00. These trades are considered fixed once executed, but
subsequent optimizations may adjust the net intraday position. For instance, an initial buy of +1 MWh
followed by a sell of 1.5 MWh would result in a net position of -0.5 MWh (i.e., a net sell).

The model also includes forecasts for battery operation during the intraday bidding and expected im-
balance stage. Charging actions are shown as negative pink bars, while discharging is represented by
positive pink bars. These actions remain flexible until the start of the delivery window, at which point
they are decided upon in the real-time optimization.

The final stage, real-time operation, determines and executes the actual power flows for the upcoming
delivery window (e.g., 00:00–01:00 in Figure 4.1). In this stage, the realization, rather than expectation,
of all variables is decided. This includes RES generation, battery (dis)charging, and imbalance volumes.
The realized outcome reflects a combination of prior forecasts and committed trading actions, providing
a consistent and feasible execution of the planned strategy.

Together, the decisions across all three stages result in the comprehensive flow representation in Fig-
ure 4.1. These visualizations are used throughout the results chapter to interpret and verify model
behavior.

4.1.1. Energy Balance
As discussed in Chapter 3, all energy injected into the grid must be accounted for through one of the
three markets: day-ahead, intraday, or imbalance. Day-ahead commitments are fixed per delivery day,
while intraday trades and (expected) imbalance volumes are updated each iteration. On the physical
side, energy flows are determined by RES availability, curtailment, and battery (dis)charging, subject
to grid limits. These traded and physical flows must balance at every timestep.

Crucially, for every timestep, the sum of all positive and negative bars equals zero, confirming that all
energy is either traded or internally balanced. This balance is illustrated at 16:30 in Figure 4.1. At this
moment, power is sold on both the DA and ID markets, indicated by the negative blue and bright green
bars, respectively. To fulfill these market commitments, physical energy is supplied by RES generation
(dark green) and battery discharge (pink). However, the total physical output does not fully cover the
sold volume, resulting in a shortage that must be settled through the imbalance market, shown as the
orange bar.
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Cumulatively, the volume committed in the DA and ID markets equals the sum of RES output, BESS
discharge, and the imbalance shortfall. This energy balance, with equal total positive and negative
contributions, is consistently maintained across the entire optimization horizon displayed.

In the RES case (Figure 4.2), the battery is disabled. As a result, less flexibility is available, which is
reflected in the reduced participation in the intraday market. In contrast, the BESS case (Figure 4.3)
operates without RES or day-ahead commitments. Here, the system consists solely of the battery,
which charges from the grid and discharges based on price signals. In all three cases, the model
maintains energy balance while operating within physical and market constraints.

Figure 4.2: RES case: Energy flows per timestep for the first iteration on 06-09. Positive bars indicate energy delivered or
purchased; negative bars represent charging, or energy sold.

Figure 4.3: BESS case: Energy flows per timestep for the first iteration on 06-09. Positive bars indicate energy delivered or
purchased; negative bars represent charging, or energy sold.
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4.1.2. Price Signal Response
In addition to maintaining energy balance and respecting the physical limits of the RES, BESS, and
grid connection, the model must also respond effectively to market price signals. Figure 4.4, 4.5, 4.6
illustrate one iteration of the rolling horizon optimization for the HPP case. In this iteration, the real-time
operation stage spans from 00:00 to 00:45, while the intraday bidding stage covers the period from
01:00 to 23:45. During the intraday bidding stage, the model aims to maximize revenue by acting on
updated forecasts and expected prices in both the intraday and imbalance markets.

Forecast Error Mitigation
A key function is to minimize the cost associated to deviations to the e-program. In the event of an
oversupply, the model can curtail production, charge the battery, or sell in the most profitable market.
In the case of a shortage, it can discharge the battery or purchase energy at the most economical
market price.

An example of this behavior occurs between 02:30 and 03:45. The updated power and price input
data for this interval of the optimization can be found in Table 4.1. As can be seen the updated power
forecasts indicates a shortage relative to the day-ahead commitment. Since the intraday buy price is
higher than the imbalance price forecast (Figure 4.4), the model prefers to absorb the shortage through
an imbalance position rather than buy on the intraday market (Figure 4.5).

Table 4.1: Energy per ISP (15-minutes) and electricity market price input data for one optimization

Timestamp PDA [MWh/ISP] E[Pforecast][MWh/ISP] λIM,forecast[€/MWh] λID,buy[€/MWh]

02:30 1.27 0.905 50.06 156.15
02:45 1.30 0.871 50.06 198.93
03:00 1.29 1.00 48.83 897.83
03:15 1.33 1.13 48.83 368.38
03:30 1.36 1.21 48.83 131.27
03:45 1.41 1.32 48.83 842.86

In addition to error mitigation, the model exploits two types of arbitrage to generate additional revenue:
arbitrage between markets and temporal arbitrage.

Arbitrage Between Markets
Revenue can be enhanced by exploiting price differences between the intraday and imbalance markets.
Arbitrage is favorable when energy can be sold in one market at a higher price than it is bought in an-
other. At 05:00, the intraday selling price (91.46 €/MWh) exceeds the expected imbalance price (70.00
€/MWh) (Figure 4.4). Themodel responds by executing an intraday sell (negative) while simultaneously
taking a shortage position in the imbalance market (positive), as shown in Figure 4.5.

Without a constraint on speculative trading (Equation 3.9), this arbitrage opportunity could theoretically
lead to unbounded trading. However, due to the uncertainty of imbalance prices, simplicity of the price
forecast and uncertainty of the power forecasts, the model restricts the imbalance volume. Conse-
quently, the intraday sell is partially backed by discharging the battery. This trade results in a positive
net revenue (Figure 4.6), where the intraday gain outweighs the imbalance loss.

Temporal Arbitrage Within an Iteration
Temporal arbitrage can occur within a single optimization iteration by shifting energy dispatch through
storage. For example, energy may be bought at a lower price and stored, then later discharged and sold
at a higher price within the same optimization iteration window. This occurs at 16:00 to 16:30, where
the battery is charged by energy bought from the intraday and later discharged at a more favorable
intraday selling price, resulting in a net revenue gain (Figure 4.6). While in this example this buy and
sell both happen in the intraday market, this can also be performed between markets.

Executing both the buy and sell within the intraday market has the advantage of locking in the profit,
since both actions are based on known prices and commitments. In contrast, participating in the im-
balance market introduces uncertainty, as no commitments are made and final outcomes depend on
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real-time system conditions such as, forecast deviations, and imbalance price volatility. As a result,
decisions involving imbalance positions are deferred to the real-time operation window, where delivery
takes place and final decisions on the operation are made based on most recent information.

Figure 4.4: Day-ahead and intraday price signals with approximated imbalance prices. The optimization stage covering the
time horizon is indicated.

Figure 4.5: HPP traded and physical power per timestep. Positive bars indicate energy delivered or purchased; negative bars
represent charging, or energy sold. The optimization stage covering the time horizon is indicated.
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Figure 4.6: Resulting market revenues for the HPP over the optimization iteration. The optimization stage covering the time
horizon is indicated.

Re-optimization Arbitrage
Arbitrage on the intraday market can also occur across multiple optimization iterations due to the rolling
horizon framework. In this case, energy is bought in one iteration and sold in a subsequent one, capi-
talizing on price differences between intraday orderbooks retrieved at different times. This strategy is
commonly referred to as asset-backed trading.

To illustrate this phenomenon, the results of two consecutive optimization iterations are shown in Fig-
ure 4.7. In iteration 8 (Figures 4.7a and 4.7c), the real-time operation window spans from 07:00 to
07:45, and the optimization window for intraday bidding and expected imbalance runs from 08:00 to
23:45. In iteration 9 (Figures 4.7b and 4.7d), these windows shift forward by one hour, covering 08:00
to 08:45 for real-time operations, and 09:00 to 23:45 for the intraday and imbalance stages. Each figure
displays the optimized (expected) power flows and the corresponding (expected) revenues.

In iteration 8, at timestep 10:15, an ID buy position has been progressively built up over all preceding
optimization iterations, to charge the BESS (Figure 4.7a). This stored energy is used for temporal
arbitrage. Charging the BESS results in a negative ID revenue at 10:15 (Figure 4.7c), but this energy
is sold at 11:15 at a higher intraday price, resulting in a net profit.

In the subsequent iteration 9, updated forecasts and an updated intraday orderbook are retrieved.
Based on these, the model reverses the previous ID buy action by executing a ID sell of twice the
volume previously bought. This flips the net ID position at timestep 10:15 from a buy to a sell, now
supported by battery discharge (Figure 4.7b). This change yields a positive revenue at the same time
(Figure 4.7d), demonstrating successful re-optimization arbitrage. Essentially, this reflects virtual charg-
ing and discharging behavior across iterations without corresponding physical delivery.

In this example, the arbitrage takes place entirely through re-optimization and virtual trading, rather
than through actual energy shifting via the BESS. A similar approach could be applied using RES
curtailment and later generation. However, such strategies involve greater uncertainty due to variability
in renewable output.
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(a) Energy position resulting from optimization iteration 8 (b) Energy position resulting from optimization iteration 9

(c) Intraday revenue resulting from optimization iteration 8 (d) Intraday revenue resulting from optimization iteration 9

Figure 4.7: Demonstration of temporal arbitrage across two iterations using rolling horizon optimization. The bars demonstrate
energy flows within one ISP (15 min). Negative bars are energy sold or power consumed within the configuration from the RES.

Positive bars are energy bought or power fed into the grid

Real-Time Operation Validation
In contrast to the intraday bidding and expected imbalance stage, where imbalance positions are
shaped using power and price forecasts, the real-time operation stage assumes perfect foresight of
imbalance prices and power forecast. During this phase, final operational adjustments are made using
actual RES output and published price signals to maximize imbalance revenues.

As illustrated in Figure 4.7, the imbalance position during the real-time window of iteration 9 (08:00–
08:45) differs from that of iteration 8, as shown in Figures 4.7b and 4.7a. This shift in dispatch leads to
a revenue increase in iteration 9 (Figure 4.7d) compared to iteration 8 (Figure 4.7c) over this real-time
operation window (08:00–08:45).

This behavior aligns with expectations based on the updated real-time conditions. As shown in Fig-
ure 4.8b, the realized RES generation (green line) exceeds the clustered forecast scenarios (red) that
were used in the intraday bidding stage of iteration 8. This surplus in generation creates an oppor-
tunity to deliver additional energy to the grid. The imbalance long price is more favorable than the
short price, since it results in a payment rather than a cost. In this case, the long price is also positive,
meaning that creating a surplus is more profitable than avoiding an imbalance altogether. As confirmed
by Figure 4.8a, favorable long prices persist throughout the delivery window. The model responds by
adjusting its operation to deliver the excess energy by RES generation and battery discharge creating
a surplus position in the imbalance market (Figure 4.7b), thereby capturing additional imbalance rev-
enues. This confirms that the real-time stage reacts appropriately to updated system conditions and
economic incentives.



4.2. Cumulative Results 45

(a) Imbalance price signals during real-time operation in iteration 9.
(b) Comparison of power forecasts scenarios, clusters and realized

RES generation in iteration 9.

Figure 4.8: Validation of real-time operation: updated power realization and corresponding imbalance price signals.

4.2. Cumulative Results
Now that the model has been validated, the performance of the different cases over four weeks, one
for each season, is assessed using the performance indicators described in Chapter 3. These met-
rics quantify absolute economic gain, total traded energy, physical renewable energy utilization, and
normalized revenue.

4.2.1. Absolute Economic Gain
Figure 4.9a presents the cumulative revenue contributions from the DA, ID, and IM markets for each of
the three configurations: HPP, RES-only, and BESS-only. The figure clearly shows that the HPP yields
the highest total revenue over the four-week simulation period, totaling €164k. This represents a 29.5%
increase compared to the RES-only configuration (€127k) and a 76.7% increase over the BESS-only
configuration (€92.8k).

The RES case shows negative intraday revenues, which correspond to predominantly negative intraday
power, indicating that the system is mostly buying energy on the intraday market. This behavior allows
the RES to fulfill its day-ahead commitments or off-set expected imbalance while relying less on its own
generation, as intraday purchases substitute for uncertain or scenario-dependent RES output.

Notably, the cumulative intraday position remains a net buy position throughout the horizon. Any intra-
day sell action is only taken to offset earlier intraday buy actions for the same time step. In this way,
the RES never takes a net sell position. This conservative trading strategy stems from the inherent un-
certainty in RES output across power scenarios. Since curtailment is reliably feasible across all power
scenarios, whereas fulfilling a forward sell commitment with RES generation is not always guaranteed
or economically viable, the model tends to favor intraday buying. This behavior is in line with an asset
backed intraday trading pilot for a RES performed at Vandebron. Without the balancing capability of a
BESS to back up RES availability, the model avoids forward intraday selling, resulting in lower flexibility
and reduced intraday market gains.

The BESS-only case, on the other hand, earns its revenue exclusively through ID and IM markets,
generating €76.6k from ID and €16.1k from IM. The BESS achieves substantial intraday (ID) revenues,
primarily due to its operational flexibility and the absence of day-ahead (DA) commitment constraints.
Unlike the HPP configuration, the BESS in this case is not limited by grid connection constraints. It
can charge freely from the grid, making its operation independent of RES availability, and it can always
discharge without competition for grid access, since there is no RES feed-in to occupy the connection.
This unconstrained bidirectional access enables the BESS to respond optimally to price signals.

Despite this, the DA revenues for both RES and HPP are identical due to identical bidding strategies,
while, as expected, the BESS configuration earns no DA revenue. It is important to note that the IM
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revenues are optimistic, since perfect foresight on the imbalance price is assumed during real time
operation.

(a) Cumulative realized revenue per market for each
configuration over four weeks

(b) Total absolute traded energy per market per configuration
over four weeks

Figure 4.9: Cumulative results of the market revenues and absolute traded energy of the HPP, RES and BESS. In case of
negative revenues, the cumulative revenue is indicated.

To validate the cumulative results of this study, the BESS results have been compared with a report
by KYOS Energy Analytics. [43]. An average of €330k/MW revenue has been reported for a stand
alone BESS on the intraday and imbalance market over a full year, allowing for 730 cycles. In this
study the BESS revenues come from 2.5 MW power over 4 weeks with approximately 100 cycles
(

∑
|Pbattery|

2(Ebattery-max−EDoD)
). Extrapolating these 4 weeks over a full year comes down to €480k/MW, while ex-

trapolating over the number of cycles €270k/MW. Therefore, it can be concluded that the absolute
BESS revenues are within the same order of magnitude of this benchmark.

Examining the absolute weekly revenues per case, as shown in Figure A.1, it is evident that the HPP
consistently outperforms the other configurations across the different months. The RES case follows,
while the BESS generates the lowest revenues.

Monthly revenues range from €23.3k in March to €59.9k in September, largely driven by market con-
ditions given in Table A.1. In particular, higher intraday and imbalance price volatility in September,
with standard deviations of €346/MWh and €301/MWh for short and long imbalance prices respec-
tively, contributed to greater revenue opportunities compared to the more stable conditions observed
in March, where standard deviations were €244/MWh and €236/MWh. Additionally, September exhib-
ited higher average imbalance prices (short: €126/MWh, long: €66.8/MWh) compared to March (short:
€106.1/MWh, long: €81.7/MWh). September also saw greater average energy production (0.507 MWh
per ISP) than March (0.267 MWh per ISP), further amplifying the potential for market participation. This
trend is similarly reflected in the RES and BESS cases.

For the HPP, revenues from the intraday compared to the imbalance market within one week are gen-
erally of the same order of magnitude, with the exception of the week in March. The BESS case
consistently earns most of its revenue through the intraday market. In contrast, the RES configuration
does not show a clear market-specific revenue pattern, reflecting its limited operational flexibility and
greater exposure to forecast uncertainty due to its non-steerabel dispatch nature.

4.2.2. Trading Activity
Figure 4.9b presents the absolute traded energy per market for the three configurations over the four
weeks. The HPP case exhibits the highest total traded energy at 5.44 GWh, followed by the BESS with
3.83 GWh and the RES with 3.46 GWh. This corresponds to a 57.9% increase in traded volume for
the HPP compared to the RES and a 42.2% increase compared to the BESS. The HPP’s engagement
across the day-ahead (1.24 GWh), intraday (3.26 GWh), and imbalance (0.942 GWh) markets high-
lights the benefit of combining dispatchable storage with renewable generation to actively steer energy
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flows and participate in multiple markets.

Notably, the intraday (ID) traded volumes of the BESS and HPP cases are similar in magnitude. How-
ever, the ID revenue for the BESS case (Figure 4.9a) is approximately 2.5 times higher than that of the
HPP. This suggests that the BESS engages in more profitable intraday trades. The increased efficiency
can be attributed to the absence of grid access limitations and day-ahead commitments, allowing the
BESS to fully exploit intraday price fluctuations.

In the imbalancemarket, the BESS trades around 75%of the volume observed in the HPP case, yet only
captures about 30% of the corresponding revenue. This disparity indicates less effective participation,
likely due to the BESS operating without forecasted RES generation that could create larger balancing
deviations and thus greater IM opportunities.

The RES case trades roughly 40% of the intraday volume compared to the HPP, reflecting a more
conservative strategy driven by its limited flexibility. Without the support of storage, the RES model
tends to avoid forward ID selling, relying instead on purchasing to cover potential shortfalls, resulting in
a 153% decline of ID revenues. This reduced revenue highlights the challenges of participating in the
ID market without the flexibility provided by a BESS, as the RES can no longer be dynamically steered.
Instead, the only available control action is curtailment, which limits the ability to respond optimally to
deviations in from the power forecast. However, in the imbalance market, the RES achieves 88% of
the HPP’s traded volume however it shows an increase of 49.4% in IM revenues. This increase in IM
revenues, while reducing the traded volumes demonstrates the impact of less ID commitments, leaving
more flexible dispatch capacity available during real-time operation stage.

In Appendix A the generated revenues and traded volumes per week of the HPP, RES and BESS are
shown. The traded volumes in the intraday and imbalance markets for the HPP, RES, and BESS are
generally of the same order of magnitude across the four weeks, with the notable exception of March,
as shown in Figure A.2. In that week, all configurations exhibit noticeably lower traded volumes in both
markets. This consistent drop suggests reduced market activity or fewer opportunities for adjustment.
This decrease is mostly observed in the HPP and RES case and is a result of lower energy production
(Table A.1).

4.2.3. Absolute Added Energetic Value
The results in Figure 4.10 show the total renewable energy utilized and curtailed for each case. Co-
locating a battery with the RES, as in the HPP configuration, significantly reduces curtailment by 30.5%
and thus increases the utilization of available renewable generation. Moreover, the energy lost due
to storage in the BESS only accounts for 1.8% of the total energy generated RES. Additionally, the
utilization of the grid connection capacity is increases from 16.3% to 18.2% when co-locating a BESS.
Implying more optimal use of the grid connection capacity.

Although the HPP does not eliminate curtailment entirely, it enables improved integration of renewable
energy by storing excess production that would otherwise be curtailed. As expected, the BESS case
reports zero renewable output since it does not include a energy generating asset. However, about 29
MWh is lost due to storage losses, which is an 70.6% increase compared to the HPP case.

Regarding grid connection utilization, the BESS achieves the highest efficiency with a utilization factor
of 0.291. This superior performance stems not only from its active trading behavior but also from its
bidirectional grid access and relatively smaller connection capacity, which enhances the relative usage.
In comparison, the HPP reaches a utilization of 0.182, while the RES records the lowest at 0.163. The
addition of the BESS in the HPP configuration thus leads to a 10.4% increase in grid utilization over
the RES alone, highlighting the benefit of co-locating storage to make more effective use of limited grid
capacity.
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Figure 4.10: Total renewable energy utilized, curtailed and lost due to energy storage per configuration.

Table 4.2: Grid utilization factor of the three configuration cases

HPP RES BESS
Utilization factor 0.182 0.163 0.291

4.2.4. Normalized Added Economic Value
Figure 4.11 presents two perspectives on cost efficiency: Figure 4.11a shows revenue per traded MWh,
which is a metric for the effectiveness of a trading action. Figure 4.11b shows revenue per unit of
physically delivered renewable energy, quantifying the economic value of each generated energy unit.

When normalized by traded volume, the RES case achieves the highest revenue with €36.7/MWh,
followed by the HPP at €30.1/MWh and the BESS at €24.2/MWh. This means the RES outperforms
the HPP by 21.9% and the BESS by 51.7%. The higher trading efficiency of the RES can be attributed
to its lower number of trades, which are more selectively placed in the most profitable market windows.
In contrast, the HPP performs a larger number of trades due to its flexible hybrid structure, which results
in a lower efficiency but higher absolute cumulative performance.

On the other hand, when normalizing revenue by physically delivered energy, the HPP demonstrates
superior performance with €183.9/MWh, compared to €160.3/MWh for the RES, an increase of 14.7%.
The BESS case scores €0/MWh, as it does not produce physical energy. These results highlight the
added value of co-locating storage with renewable generation, as the HPP is better able to capture rev-
enue and reduce curtailment. The hybrid setup thus not only increases total revenue but also improves
the economic return per unit of green energy.
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(a) Revenue per traded energy. (b) Revenue per physical energy.

Figure 4.11: Normalized economic performance across all three configurations: HPP, RES and BESS.

4.3. Assumption Testing and Model Sensitivity
This section evaluates the robustness and realism of the proposed optimization framework by analyz-
ing how different assumptions influence economic and energetic outcomes. Key model components,
including assumptions on imbalance price forecasting, power forecasting, and system design param-
eters such as battery size, technology, and grid constraints, are tested through a series of sensitivity
analyses. Each subsection isolates a specific factor to assess its impact on bidding decisions, traded
volumes, curtailment, and overall revenue. These insights are essential for understanding the perfor-
mance limits and design trade-offs of hybrid power plants operating under uncertainty in short-term
electricity markets. An overview of the results of all the analysis performed can be found in Appendix
B. Showing the absolute performance metrics (Table B.1, B.3 and B.5) and relative change compared
to the base case (Table B.2, B.4 and B.6) .

4.3.1. Imbalance Price Forecasting
Figure 4.12 presents the impact of imbalance price forecast quality on both revenue and traded energy
volumes for each configuration: HPP, RES, and BESS. Since the DA bidding phase is independent of
the imbalance price forecast, the revenue and traded energy in this market is not considered in this
analysis. The three tested forecasting strategies include: (1) a base case using day-ahead prices as
a proxy for imbalance forecasts, (2) perfect foresight of imbalance prices, and (3) no imbalance price
forecast. Subfigures 4.12a, 4.12c, and 4.12e show the revenue breakdown between ID and IM market
per configuration, while subfigures 4.12b, 4.12d, and 4.12f show the corresponding traded volumes in
the ID and IM market. Additional results can be found in Appendix B.

In the base case, the DA clearing price is used as a forecast for the IM price during the intraday bidding
and expected imbalance stage. This approach allows some anticipation of imbalance value without
relying on perfect future knowledge. In the perfect foresight scenario, the actual IM price is assumed
to be known during bidding, which leads to speculative yet highly profitable market behavior. The no-
forecast case removes IM price forecasting altogether: IM revenues are excluded from the objective
function during ID bidding, leaving them to be considered only in the real-time operation stage.

Across all configurations, perfect foresight of the IM price consistently yields the highest total revenue.
Although speculative behavior was limited through constraints, market benchmarks consider the re-
sulting imbalance revenues to be unrealistically high [43]. For the HPP, total revenue increases from
€58.2k in the base case to €130k under perfect foresight, a 123% improvement (Figure 4.12a). Inter-
estingly, the revenue gains under perfect foresight stem primarily from increased IM revenues, while ID
revenues remain relatively constant. This suggests that perfect foresight enables more effective inter-
market arbitrage, allowing the model to strategically balance intraday positions against more favorable
imbalance prices. The RES configuration shows the most dramatic relative increase, with combined
ID and IM revenues rising from €20.8k to €68.6k, a 230% gain, again mainly due to improved perfor-



4.3. Assumption Testing and Model Sensitivity 50

mance in the IM market (Figure 4.12c). The BESS configuration also benefits substantially, with total
revenue growing from €92.8k to €195k, a 111% increase (Figure 4.12e). For the BESS, both IM and
ID revenues increase under perfect foresight, though the majority of the improvement is attributed to
the IM market. Logically following from the improved price forecast and no exposure to power forecast
uncertainty.

By contrast, excluding any IM forecasts leads to significantly lower revenues. The RES case is partic-
ularly impacted, with total negative revenue dropping by 130% relative to the base case and turning
negative due to poor imbalance market performance. The HPP sees a 33.4% decline in revenue com-
pared to the base case, while the BESS revenue falls by only 12.3%, indicating its lower dependence
on imbalance forecasting due to the absence of RES-related forecast deviations and ability to adjust
positions during the real-time operation stage with perfect foresight on the imbalance price.

The trading actions on the ID are decided upon, based on this imbalance price forecast, while the
final decision on imbalance position is made during real-time operation stage (with perfect imbalance
foresight). Therefore, the ID traded energy is most relevant to analyze with respect to the imbalance
price forecast. From the results shown in Figures 4.12b, 4.12d, and 4.12f, it is evident that traded
volumes vary less significantly than revenues and do not consistently increase with improved forecast
accuracy. For the HPP, intraday traded energy decreases slightly from 3.26 GWh in the base case to
3.07 GWh under perfect foresight, and increases to 3.72 GWh without any forecast. A similar trend
is observed for the BESS, where traded volume drops from 3.11 GWh in the base case to 2.77 GWh
under perfect foresight and rises to 3.70 GWh in the no forecast scenario. The RES case also shows a
decline in intraday trading volumes for both cases: from 1.36 GWh in the base case to 1.15 GWh under
perfect foresight, and down to 0.565 GWh without any forecast. These results suggest that for the HPP
and BESS better price foresight enables more selective, higher-value trades rather than increasing
trading volume. In contrast, the absence of a forecast may trigger excessive or inefficient trading in
an attempt to hedge uncertainty. The RES is unable to respond similarly due to the lack of flexible
dispatchable capacity from a BESS.

Apart from a reduction in curtailment for the HPP and RES configurations under the no imbalance price
forecast scenario (−15.5% and −11.3%, respectively), the energetic performance is not significantly
impacted by the quality of the imbalance price forecast (Appendix B). For the BESS configuration,
grid utilization decreases by 20.2% under perfect imbalance price foresight, indicating fewer but more
targeted and effective trading actions.

In summary, better imbalance price forecasting enhances economic performance across all configura-
tions, with the greatest value realized by the HPP. The HPP and RES are especially sensitive to forecast
quality due to their exposure to variability and deviation penalties, whereas the BESS demonstrates
more robust performance but still benefits in its ID bidding strategy from improved foresight.



4.3. Assumption Testing and Model Sensitivity 51

Base case Perfect foresight No foresight
Case

0

25

50

75

100

125

150

175

200
Re

ve
nu

e 
[k

]

32.7 38.4 39.6

25.5

91.5

-0.927

ID
IM

(a) HPP — Revenue breakdown (b) HPP — Absolute traded energy

(c) RES — Revenue breakdown (d) RES — Absolute traded energy

Base case Perfect foresight No foresight
Case

0

25

50

75

100

125

150

175

200

Re
ve

nu
e 

[k
]

76.6

117

66.6

16.1

78.3

14.8

ID
IM

(e) BESS — Revenue breakdown (f) BESS — Absolute traded energy

Figure 4.12: Impact of imbalance price forecasting strategy on revenue and traded energy for HPP, RES, and BESS
configurations. Three forecasting assumptions are compared: day-ahead prices (base), perfect foresight, and no forecast. In

case of negative revenues, the cumulative revenue is indicated.
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4.3.2. Power Forecast Assumption
The impact of using multiple stochastic power forecasts is assessed by comparing the model’s perfor-
mance to a case with perfect power foresight. In this alternative setup, only one power forecast is used,
where P̂source = Prealized. Only the HPP and RES case are evaluated, since the BESS operations are
independent of power forecasts. The results of realized revenue and absolute traded energy of this
analysis are presented in Figure 4.13a and 4.13b. The additional results are given in Appendix B.

For the HPP case, the combined ID and IM revenue is €65.7k which is an 13.0% increase, driven
primarily by a rise in IM market revenue, while ID revenues decline slightly. The traded energy volumes
show a similar trend. Energetic performance remains constant, with no change in RES generation or
curtailed energy. As a result, both the revenue per traded volume and revenue per unit of physical
energy increase. This improvement is explained by the enhanced ability to takemore accurate positions
in the intraday market and the BESS’s flexibility to respond to real-time imbalance prices.

In contrast, the RES case shows a decline in both ID and IM revenues under perfect power foresight.
The cumulative ID and IM revenue is €1.43k which is a 93.1% decline from the stochastic scenarios
revenues. While this outcome may appear counterintuitive, it is driven by the rigid bidding strategy
necessitated by relying on a single deterministic forecast. Since all constraints must be satisfied for
this single forecast scenario, rather than across multiple stochastic ones, the intraday market bidding
becomes more aggressive. However, these bids are made against an imbalance price forecast whose
uncertainty is not explicitly considered during the optimization process.

As a result of this reduced forecast uncertainty, the RES configuration commits more volume in the
intraday market, reflected by a 16.0% increase in traded ID energy, which is often offset by subsequent
imbalance positions. When the actual imbalance prices deviate from the forecast, these positions
can lead to unfavorable costs, as intraday commitments are fixed and cannot be adjusted. Moreover,
without a BESS, the RES lacks the operational flexibility to respond effectively to real-time imbalance
signals, further reducing its economic performance despite a perfectly accurate generation forecast.

From these findings, it can be concluded that perfect power forecast information adds economic value
for the HPP, particularly in the imbalance market, where flexibility through the BESS enables better
real-time imbalance price response. However, in the RES case, perfect foresight does not improve
and even reduces economic value due to increased ID commitments and lack of flexibility. In both
cases, the energetic performance remains relatively unaffected.

(a) Perfect power forecast — Revenue (b) Perfect power forecast — Absolute traded energy

Figure 4.13: Sensitivity of the model performance to power forecasting assumptions. Revenue and traded energy outcomes
are shown for each configuration case. In case of negative revenues, the cumulative revenue is indicated.

4.3.3. Sensitivity Analysis
To evaluate the robustness of the proposed optimization framework, a series of sensitivity analyses
are conducted. These analyses isolate key model parameters and assumptions, such as BESS size,
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technology type, grid connection capacity, and re-optimization frequency, to assess their impact on
economic performance, traded energy volumes, and physical system behavior. By systematically vary-
ing these inputs, the analysis provides insights into the model’s responsiveness and highlights critical
design trade-offs for hybrid power plant operation under uncertainty.

BESS Size Sensitivity
The size of the BESS, denoted as Ebattery-max, is a key design parameter in the HPP. Since the C-rate
is kept constant, an increase in storage capacity also leads to a proportional increase in the maximum
power output. As the RES configuration does not include a BESS, only the HPP and stand-alone BESS
configurations are evaluated for this sensitivity.

Table 4.3: Design Parameters for BESS Size Sensitivity

Variable Base Smaller Larger
BESS Size Ebattery-max 5 MWh 2.5 MWh 10 MWh

Table 4.4: Results of sensitivity analysis for BESS size cases for the HPP and stand-alone BESS case

Absolute Revenue [k€] Traded Energy [GWh] Physical [GWh] Grid Utilization [-] Normalized [€/MWh]
Scenario ID IM ID + IM ID IM ID + IM Generated Curtailed Battery Loss Rev/Traded Rev/Physical

HPP case
Base Case 32.7 25.5 58.2 3.26 0.942 4.20 0.891 0.271 0.016 0.182 30.1 184
BESS Size 10 MWh 64.5 33.6 98.1 4.17 1.06 5.22 0.924 0.229 0.026 0.190 31.6 221
BESS Size 2.5 MWh 10.8 21.2 32.0 2.47 0.870 3.34 0.854 0.315 0.010 0.175 30.1 161
BESS case
Base Case 76.6 16.1 92.8 3.11 0.723 3.83 – – 0.029 0.291 24.2 –
BESS Size 10 MWh 153 32.2 185 6.21 1.45 7.66 – – 0.055 0.292 24.2 –
BESS Size 2.5 MWh 38.4 8.08 46.5 1.55 0.362 1.92 – – 0.014 0.292 24.3 –

Table 4.4 presents the absolute values and relative change in performance metrics for two alternative
BESS sizes: 10 MWh and 2.5 MWh, as reported in Table 4.3. The relative change compared to the
base case are reported in Appendix B. In the 10 MWh configuration, both traded energy volumes
and revenues increase by approximately 100%, whereas they decrease by approximately 50% in the
2.5 MWh case. These results show that for the stand-alone BESS, the relationship between storage
capacity and economic performance is nearly linear. This can be explained by the fact that more power
becomes available due to the higher energy content and unchanged C-rate, allowing similar trading
patterns with doubled or halved volume. This is further supported by the near-zero change in revenue
per traded MWh, indicating stable trading efficiency.

In contrast, this linearity does not fully hold for the HPP configuration. When the BESS size is doubled
to 10 MWh, ID revenues nearly double to €64.5k, while IM revenues increase by about 32% (€33.6k).
This results in a total combined revenue increase of 68.7% from these two markets. A similar pat-
tern can be observed for traded energy volumes, where ID trades increase more significantly than IM
trades. Additionally, curtailment is reduced by around 15%, which improves the energetic performance
of the HPP. Overall, the revenue per unit of physically generated renewable energy increases by 20%,
indicating a higher economic return on green energy.

When the BESS capacity is reduced to 2.5 MWh in the HPP configuration, a stronger impact is also
observed on intraday revenues and traded energy compared to the imbalance market. The combined
revenues from the intraday and imbalance markets decrease by 45%. Due to the associated increase
in curtailment, the revenue per unit of physically delivered energy falls by only 12.3%. Notably, trading
efficiency remains unaffected, as reflected by the unchanged revenue per traded MWh.

In conclusion, the size of the BESS has the greatest influence on the ID revenues and traded volumes
in the HPP configuration. In contrast, the stand-alone BESS configuration exhibits a proportional and
uniform effect across all performance metrics. Increasing the BESS size enhances both the economic
and energetic value of the system, while reducing the size leads to lower flexibility, higher curtailment,
and a corresponding decline in value.
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BESS Technology Sensitivity
To assess the impact of different storage technologies, a Vanadium Redox Flow Battery (VRFB) was
tested as an alternative to the lithium-ion battery. The VRFB configuration is based on specifications
from E22 Energy Storage Solutions. [44], of which the values are shown in Table 4.5. The results
for both the HPP and BESS configurations are presented in Table 4.6. The relative change in results
compared to the base case can be found in Appendix B.

Table 4.5: Design Parameters for BESS Technology Characteristics

Technology Variable Base: Li-ion Battery Vanadium Redox Flow Battery
Round-trip Efficiency ηbattery 90% 75%
C-rate Crate 0.5 0.25
Depth of Discharge EDoD 0.5 MWh 0 MWh

Table 4.6: Results of sensitivity analysis for an alternative BESS technology (Vanadium Redox Flow Battery) for the HPP and
stand-alone BESS case

Absolute Revenue [k€] Traded Energy [GWh] Physical [GWh] Grid Utilization [-] Normalized [€/MWh]
Scenario ID IM ID + IM ID IM ID + IM Generated Curtailed Battery Loss Rev/Traded Rev/Physical
HPP case
Base Case 32.7 25.5 58.2 3.26 0.942 4.20 0.891 0.271 0.016 0.182 30.1 184
VRFB 19.0 19.0 38.0 2.29 0.858 3.14 0.869 0.297 0.014 0.174 32.8 166
BESS case
Base Case 76.6 16.1 92.8 3.11 0.723 3.83 – – 0.029 0.291 24.2 –
VRFB 42.4 8.41 50.8 1.46 0.353 1.81 – – 0.019 0.291 28.1 –

In the BESS case, traded volumes and revenues decline by approximately 50%. This is primarily due to
the lower C-rate, which limits the maximum power output, and the reduced round-trip efficiency, which
increases energy losses.

For the HPP configuration, the combined intraday and imbalance revenues fall by 34.7% and 24.2%,
respectively, with the intraday market showing the largest loss in both revenue and trading activity.
Additionally, curtailed energy increases, indicating a decline in energetic performance.

In summary, both the economic and energetic performance of the BESS and HPP are negatively im-
pacted by the lower C-rate and round-trip efficiency of the Vanadium Redox Flow Battery. This under-
scores the importance of carefully selecting storage technologies when designing hybrid systems, as
technical specifications directly influence both value creation and renewable energy utilization. How-
ever, the overall performance of the HPP still surpasses that of the standalone RES and BESS cases,
indicating that other storage technologies also add value to the system.

Grid Connection Capacity Sensitivity
The grid connection capacity is a limiting parameter only for the HPP configuration case. Therefore, the
sensitivity of HPP performance with respect to grid connection limits is evaluated. Since grid constraints
can differ for withdrawal and feed-in directions, three cases are considered: an unconstrained grid
connection, a feed-in constrained grid, and a withdrawal constrained grid, the values associated with
these cases are reported in Table 4.7. The results for these cases are presented in Table 4.8. For the
relative change in results compared to the base case please refer to Appendix B.

Table 4.7: Design Parameters for Grid Connection Sensitivity

Variable Base Unconstrained Feed-in
Constrained

Withdrawal
Constrained

Feed-in Capacity Pfeed-in 7.21 MW 9.71 MW 7.21 MW 9.71 MW
Withdrawal Capacity Pwithdraw 0 MW 2.5 MW 2.5 MW 0 MW
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Table 4.8: Results of sensitivity analysis for three alternative grid connection capacity constraints for the HPP.

Absolute Revenue [k€] Traded Energy [GWh] Physical [GWh] Grid Utilization [-] Normalized [€/MWh]
Scenario ID IM ID + IM ID IM ID + IM Generated Curtailed Battery Loss Feed-in Withdraw Rev/Traded Rev/Physical

HPP case
Base Case 32.7 25.5 58.2 3.26 0.942 4.20 0.891 0.271 0.016 0.182 – 30.1 184
Grid Unconstrained 65.9 45.0 111 4.40 1.57 5.97 0.785 0.365 0.029 0.189 0.285 30.0 276
Grid Feed-in Constrained 67.0 32.4 99.4 4.37 1.49 5.87 0.761 0.389 0.028 0.247 0.277 28.9 270
Grid Withdrawal Constrained 31.2 34.8 66.0 3.32 0.982 4.30 0.919 0.242 0.018 0.140 – 31.0 187

In the unconstrained grid connection case, the battery is allowed to both charge from the grid and dis-
charge without restriction from RES feed-in. This increased operational flexibility leads to substantial
gains in ID and IM market revenues, increasing by 90.6% and 42.6%, respectively. However, because
the BESS can now charge from the grid, less energy from the RES is used, resulting in a 34.7% in-
crease in curtailed energy. The revenue per traded volume remains nearly constant, while the revenue
normalized by the physically produced energy increases by 50.1%, due to higher revenues and reduced
RES generation.

In the case with only a feed-in constraint, revenues and traded volumes also rise significantly, by 70.9%
and 39.5%, respectively. Compared to the unconstrained case, intraday revenues are similar, while
imbalance revenues and traded volumes are lower. Energetic performance is worse than in both the
base and unconstrained cases, as indicated by a 43.5% increase in curtailed energy. While the revenue
normalized by traded volume shows a slight decrease (4.0%), the revenue per unit of physical RES-
generated energy increases by 46.6%.

When the HPP is constrained only in its withdrawal capacity, meaning the BESS can charge only from
the RES, a more modest improvement is observed: total revenue grows by 13.5%while traded volumes
remain rather stable (+2.4%). While intraday revenues decrease slightly, they are offset by a rise in
imbalance market revenues. Notably, this configuration results in improved energetic performance,
with curtailed energy reduced by 10.7%. Moreover, both revenue per traded volume and revenue per
physical energy show a insignificant changes (<3%).

In the unconstrained case, feed-in utilization remains constant. Meanwhile, withdrawal capacity utiliza-
tion increases to 0.285, representing 151% of the original feed-in utilization. In the feed-in constrained
case, feed-in capacity utilization increases by 35.5%, while withdrawal utilization, previously zero, rises
to 0.277, equal to 148% of the original feed-in reference. By contrast, increasing only the feed-in ca-
pacity results in a 23.5% decrease in utilization, indicating less efficient use of available infrastructure.

In summary, economic value increases with greater grid connection capacity, regardless of the direc-
tion. However, allowing withdrawal capacity contributes more than five times the additional revenue
compared to unconstraining only the feed-in capacity. Overall, the unconstrained configuration yields
the highest revenue. From an energy perspective, restricting only the withdrawal capacity leads to
improved RES energy utilization and reduced curtailment. In contrast, expanding feed-in capacity or
fully removing grid constraints increases curtailment and battery losses, which diminishes the energetic
contribution of the HPP. Moreover, the most efficient utilization of the grid connection occurs in the case
where only the feed-in capacity is constrained.

Re-optimization Frequency
The implemented multi-stage optimization framework uses a rolling horizon approach, where both the
intraday bidding and expected imbalance stage and the real-time operation stage are iteratively solved.
The time window shifts forward by tupdate timesteps after each iteration. This timestep interval not only
defines the frequency of re-optimization but also sets the length of each real-time operation phase. To
evaluate the impact of this parameter, two additional configurations were tested: a shorter interval of
30 minutes (tupdate = 2) and a longer interval of 2 hours (tupdate = 8), as showed in Table 4.9. Results
are presented in Table 4.10. The relative change compared to the base case can be found in Appendix
B.
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Table 4.9: Design Parameters for Reoptimization Frequency Sensitivity

Variable Base: 1 hour 30 minutes 2 hours
Update Interval tupdate 4 2 8

Table 4.10: Results of sensitivity analysis for two alternative re-optimization frequencies for the HPP, the stand-alone RES and
stand-alone BESS.

Absolute Revenue [k€] Traded Energy [GWh] Physical [GWh] Grid Utilization [-] Normalized [€/MWh]
Scenario ID IM ID + IM ID IM ID + IM Generated Curtailed Battery Loss Rev/Traded Rev/Physical

HPP case
Base Case 32.7 25.5 58.2 3.26 0.942 4.20 0.891 0.271 0.016 0.182 30.1 184
Re-optimization Every 30 min 38.8 22.8 61.6 5.29 0.961 6.25 0.877 0.290 0.022 0.187 22.4 191
Re-optimization Every 2 Hours 19.9 24.4 44.2 2.07 0.902 2.97 0.918 0.248 0.013 0.181 35.7 163

RES case
Base Case -17.3 38.1 20.8 1.36 0.847 2.21 0.789 0.390 – 0.163 36.7 160
Re-optimization Every 30 min -8.74 14.2 5.42 2.21 0.847 3.05 0.781 0.398 – 0.166 25.9 142
Re-optimization Every 2 Hours -10.3 -3.50 -13.8 0.884 0.785 1.67 0.803 0.376 – 0.161 31.6 114

BESS case
Base Case 76.6 16.1 92.8 3.11 0.723 3.83 – – 0.029 0.291 24.2 –
Re-optimization Every 30 min 87.6 6.47 94.1 4.53 0.702 5.24 – – 0.043 0.301 18.0 –
Re-optimization Every 2 Hours 63.5 23.3 86.8 2.15 0.768 2.92 – – 0.019 0.294 29.7 –

For the case with a 30-minute re-optimization interval, the HPP configurations show an increase in
combined ID and IM revenue of 5.96%. This improvement is primarily driven by increased activity in
the ID market, where more frequent updates allow for quicker response to changing forecasts and
market prices. This increase in ID revenue partially cannibalizes IM revenues, however the net effect
remains positive. Moreover, the higher ID activity reduces the revenue per traded volume, indicating
a decline in trading efficiency. The curtailed energy rises slightly by 7.0%, and the gain in revenue
more than compensates, resulting in an improved revenue per unit of RES-generated energy. When
the re-optimization interval is extended to 2 hours, the opposite trend is observed for the HPP. Com-
bined ID and IM revenues decline by a factor roughly four times greater than the increase achieved
with the 30-minute case (-24.0%). Although the drop in traded volume is less pronounced, the total
economic performance declines. Interestingly, curtailed energy decreases in this scenario, improving
the energetic performance of the HPP.

For the BESS case, increasing the optimization frequency does not significantly affect the total com-
bined revenues. However, the composition of revenue sources shifts notably. ID revenue increases by
14.3%, accompanied by a 46.0% rise in traded volume, while IM revenue and traded volume decline
by 59.9% and 2.9%, respectively. This shift indicates a transition toward more secure and predictable
revenue streams, as the BESS becomes less reliant on the uncertainty associated with imbalance
prices. An opposite effect is observed when the re-optimization interval is extended to two hours. In
this setting, ID market participation decreases in both activity and revenue, while IM revenues rise. Un-
like the higher-frequency optimization, the 2-hour interval results in a reduction in total revenue from
ID and IM markets, showing a 6.5% overall decline. This suggests that lower update frequencies limit
the system’s ability to respond effectively to evolving ID market conditions, reducing overall economic
efficiency.

The RES case responds differently to changes in re-optimization frequency. The highest combined
revenue is achieved in the baseline case with an hourly re-optimization. In both the 30-minute and
2-hour configurations, intraday revenues increase only marginally, but imbalance revenues fall signifi-
cantly. This imbalance underperformance outweighs any intraday market gains, leading to net revenue
decreases of 73.9% and 166.5%, respectively. However, traded volumes show similar trends to the
HPP and BESS cases, with ID activity increasing slightly while IM volumes remain stable. Also the
physical RES generated energy remains stable over the three cases.

In summary, increasing the re-optimization frequency improves economic performance for configu-
rations with storage (HPP and BESS), mainly by enabling more responsive and effective ID trading.
This shift toward the ID market supports more stable and predictable revenue streams, while slightly
reducing trading efficiency and increasing curtailment. In contrast, longer update intervals limit respon-
siveness and reduce overall revenue, particularly for the HPP. The RES-only case performs best at the
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default 1-hour interval, with both shorter and longer intervals leading to lower revenues due to its lack of
operational flexibility. Overall, the impact on energetic performance is modest across all configurations.

4.4. Discussion
The results presented in this study provide valuable insight into the operational potential of HPPs un-
der uncertainty in market prices and renewable generation forecasts. However, several simplifications
and assumptions have been made in the modeling framework that influence the interpretation of the
outcomes. This section critically evaluates the key modeling choices, such as the exclusion of bat-
tery degradation, simplifications in scenario generation, the treatment of imbalance prices, and the
definition of economic value as revenue. The implications of these assumptions on the results are
discussed, along with recommendations for improving model accuracy and extending the analysis in
future research.

4.4.1. Battery Degradation
Value has been added by the integration of a storage in the HPP and BESS case. However, in this
model the degradation of the battery is not considered, nor are associated costs incorporated in the
economic optimization. This assumption introduces an important simplification that impacts both the
energetic and economic interpretation of the results.

Battery degradation occurs as a result of charge and discharge cycles, depth of discharge, temperature
fluctuations, and calendar aging. Physically, the capacity of a battery deteriorates over time, reducing its
ability to store and dispatch energy effectively. Operationally, this means that a battery’s performance,
and therefore its contribution to reducing RES curtailment, diminishes over its lifetime.

Economically, degradation imposes a cost that should be factored into any dispatch decision. Each
charging or discharging action effectively consumes a portion of the battery’s useful life, representing a
hidden operational cost. Ignoring degradation in the optimization model allows for more frequent and
aggressive battery cycling, which overestimates both the frequency and economic viability of trading
actions. As a result, the model likely produces an optimistic estimate of the added value of co-locating
a BESS.

In terms of energetic value, the absence of degradation constraints enables the BESS to capture more
curtailed RES generation than would be feasible under realistic operating conditions. If battery wear
were considered, the system would need to prioritize higher-value charging and discharging events,
reducing the total energy throughput from RES to the grid.

From an economic perspective, including degradation costs would require that each battery cycle yields
a net profit that exceeds the associated wear cost. This would reduce the number of economically
justified dispatch actions. Consequently, the added economic value observed in the HPP and BESS
cases may be overstated under the current modeling assumptions.

Future research should incorporate a battery degradation model. This could be achieved by including a
degradation cost function, based on empirical cycle aging models or manufacturer data, within the opti-
mization. Another approach would be to limit the cycles per day, reducing the number of cycles. Doing
so would enable a more realistic assessment of long-term profitability and operational sustainability.
Furthermore, assessing the trade-off between short-term arbitrage gains and long-term degradation
costs would provide valuable insight for investment and operational strategy in hybrid power plant de-
velopment.

4.4.2. Power Forecast Scenarios
To capture the uncertainty inherent in renewable power generation forecasts, this study adopts a
scenario-based approach using an ARMA(2,2) model to generate forecast errors. These synthetic
errors are sampled and superimposed onto deterministic power forecasts to produce multiple forecast
trajectories, which feed into the stochastic optimization model. The ARMA model is trained on histori-
cal forecast errors with a lead time of 15 to 39 hours, representative of the typical range between the
day-ahead forecast and delivery.

While this approach captures some statistical features of historical forecast errors, it introduces several
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important limitations that affect the realism of the resulting scenarios and, by extension, the optimization
outcomes. First, ARMA models are linear and assume stationarity, meaning they cannot fully capture
the nonlinear, regime-dependent behavior of wind or solar power forecast errors. In reality, error char-
acteristics are not constant but vary with the forecasted power level, atmospheric conditions, and time
of day. For instance, low wind power regimes typically show higher relative forecast uncertainty, which
ARMA tends to underestimate. This may lead to an overly narrow distribution of scenarios in these
regimes, underrepresenting curtailment risk and operational variability.

Secondly, the use of a fixed lead time range (15–39 hours) across all optimization stages simplifies
the temporal structure of forecast uncertainty. Forecasts made closer to real-time (e.g., during intraday
bidding) generally exhibit lower errors and reduced volatility. By training the ARMA model on a broad
lead time window and applying it uniformly, the model may overstate uncertainty closer to delivery while
understating it for delivery times further away, thereby distorting the expected value of trading flexibility.

A further simplification lies in the method of scenario construction itself. Errors are imposed on the
power output rather than on the input variables to the power forecasting process (e.g., wind speed).
While convenient, this approach does not preserve physical consistency. In reality, the transformation
from wind speed to power output is nonlinear, especially between the rated and cut-out wind speed.
For example, imposing a ±1 m/s wind speed error between cut-in and rated wind speed causes a much
larger deviation in output power than the same error near the between rated wind and cut out speed.
This effect is not captured when errors are applied directly to the power forecast. As a result, the sce-
nario set may misrepresent forecast uncertainty depending on the operating regime of the renewable
asset.

Additionally, Figure 4.14 shows that the historical error distribution has a non-zero mean, indicating a
systematic bias in the deterministic forecast model. This suggests that, on average, the forecast tends
to overpredict wind power. Since this bias is not explicitly corrected in the scenario generation process,
it may skew optimization outcomes toward overly optimistic expectations of available renewable energy,
thereby overstating both energetic and economic value, particularly for BESS dispatch and curtailment
reduction in HPP configuration.

To reduce the number of scenarios while preserving their statistical characteristics, Euclidean distance-
based clustering is applied to the set of forecast errors generated by the ARMAmodel. These simulated
errors follow a normal distribution, which is a typical property of ARMA processes. However, as shown
in Figure 4.14, the clustered error distribution approximates the historical error profile more closely than
the underlying normal distribution. While the normal distribution captures the central tendencies well, it
fails to account for the heavier tails observed in reality, where rare but high-impact forecast deviations
occur. Consequently, the clustering approach improves realism, but some skewness remains, and
extreme under- or overproduction events may still be underrepresented in the optimization.

Figure 4.14: Error distribution of historical and clustered sampled errors, with a fitted normal distribution

The implications of these assumptions are twofold. On the energetic side, the underrepresentation of
low-probability but high-impact deviations can result in an overestimation of the curtailment reduction
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potential of the BESS, as the model does not fully explore worst-case misalignment between production
and dispatch. On the economic side, if uncertainty is understated, particularly early intraday stages,
then the optimization may over-commit energy sales, leading to optimistic revenue projections. Con-
versely, if uncertainty is overstated during short lead times, the model may become too conservative
in leveraging intraday opportunities, thereby missing profitable actions.

Despite these limitations, the clustered ARMA-based scenario generation provides a tractable and
transparent method for representing uncertainty. However, it falls short of capturing the full conditional
and temporal dynamics of forecast errors. Future work should explore non-linear, heteroskedastic mod-
els, such as GARCH or machine learning-based probabilistic forecasting techniques (e.g., quantile
regression forests), which allow forecast uncertainty to vary with forecast value and lead time. Fur-
thermore, adopting lead time-specific error models could significantly improve the realism of scenario
generation across the multi-stage optimization framework.

Finally, a promising direction for future research is the representation of scenarios as a scenario tree
rather than independent scenarios. A scenario tree allows for conditional branching at decision stages
and can represent a greater number of possible future outcomes with fewer nodes, for example com-
bining probabilistic power and price scenarios. This improves computational efficiency and realism in
sequential decision-making contexts. An example of this concept is described by Heredia, Cuadrado,
and Corchero [10]. However, such a structure has not been implemented in the current study.

4.4.3. Imbalance Price Forecast
In this study, the day-ahead market clearing price is used as a forecast for imbalance prices in the
stochastic optimization framework. This simplification enables the model to estimate potential imbal-
ance revenues without relying on complex real-time price forecasting. However, it introduces significant
limitations that impact both the realism of price dynamics and the validity of the optimization results.

Figure 4.15 shows the time series of the day-ahead price alongside the imbalance prices in both surplus
(long) and shortage (short) directions over one simulation week. While the day-ahead price follows the
general trend of the imbalance prices, due to shared underlying system conditions, it fails to capture the
short-term volatility and extreme price excursions that occur under system stress, particularly during
regulation state 2 events.

Figure 4.15: Day-ahead, imbalance long and imbalance short prices [€/MWh] over one simulation week. While trends align,
large deviations and spikes in imbalance prices are not captured by the day-ahead proxy.

This observation is supported quantitatively in Figure 4.16, which presents the distribution of forecast
errors when using the day-ahead price as a forecast for imbalance settlement, over the four weeks
experimented in this sturdy. The distribution is sharply peaked around zero but exhibits heavy tails,
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indicating the presence of large errors during a limited number of high-impact events. The mean fore-
cast error over the simulation period is –65.76 €/MWh, reflecting a consistent underestimation bias.
Furthermore, the root mean square error (RMSE) for the combined long and short imbalance prices is
372.59 €/MWh, highlighting that the forecast errors are not only biased, but also large in magnitude.

This high RMSE points to the inherent unpredictability of imbalance prices and the inadequacy of day-
ahead prices as reliable proxies. The inability to anticipate sharp imbalance price peaks leads to an
underrepresentation of arbitrage opportunities in the optimization model. As a result, the economic
value of dispatch flexibility, particularly from BESS assets, is underestimated, especially during periods
of market imbalance when the potential gains are most significant.

Figure 4.16: Histogram of the error between imbalance price forecasts (based on day-ahead price) and realized imbalance
prices over the simulation period. Note the heavy-tailed distribution and underestimation bias. RMSE (combined): 372.59

EUR/MWh.

As demonstrated in Section 4.3, enhanced imbalance price forecasting yields a substantial improve-
ment in economic performance, validating the importance of this modeling component. Capturing the
value of extreme price signals is critical for optimal participation in the imbalance market.

Future research should therefore focus on developing more accurate and dynamic imbalance price
forecasting methods. One direction is to incorporate additional explanatory variables such as real-
time system load, renewable infeed levels, BRP positions, or the aFRR bid ladder. These variables
could provide better context for short-term price volatility and regulation needs. Another avenue is
the use of machine learning techniques, including recurrent neural networks, gradient boosting trees,
or hybrid models, that can learn complex temporal and nonlinear relationships in the data. In addition,
probabilistic forecasting approaches that explicitly account for regulation state uncertainty and its impact
on pricing would offer more robust insights into price risk. Integrating such methods would enable the
optimization framework to more effectively anticipate market behavior, improving both the economic
valuation of flexibility and the robustness of scheduling decisions.

Improving imbalance price predictions would allow the optimization to better anticipate high-reward
events, resulting in more effective use of BESS flexibility and more realistic profitability assessments.

4.4.4. Revenue Optimization
In this study, the objective function of the optimization model is formulated to maximize total operational
revenue from participation in electricity markets, including the day-ahead, intraday, and imbalance mar-
kets. While this provides insight into the trading potential of different system configurations, the revenue
definition used in the model introduces several simplifying assumptions that limit its applicability for as-
sessing true economic viability.
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First and foremost, no cost components are included in the revenue calculation. The results are there-
fore based solely on gross revenues from market participation, without accounting for capital expendi-
tures (CAPEX), operational and maintenance costs (OPEX), or battery degradation costs. Additionally,
the model does not incorporate discounting of future cash flows, implicitly assuming that revenues
generated at any point in the time horizon are equally valuable. These assumptions are suitable for
assessing the relative flexibility and market participation behavior of different configurations, but they
can lead to misleading conclusions when interpreted in an investment or business case context.

The absence of costs is particularly relevant when comparing the standalone RES system to hybrid
configurations with co-located BESS. As the results show, the HPP configuration consistently gener-
ates higher operational revenue due to its ability to reduce curtailment and perform market arbitrage.
However, without incorporating the significantly higher capital and operational costs associated with
BESS systems, this conclusion cannot be interpreted as evidence of superior economic performance.
In scenarios with high battery costs or limited support schemes, the net profitability of the HPP could
fall below that of a simpler RES-only setup.

Beyond direct capital and operating costs, several other financial factors influence the real-world eco-
nomic viability of hybrid energy systems. For example, grid connection and reinforcement costs can
be substantial for large-scale systems, particularly when high-power charging and discharging is in-
volved. Similarly, the eligibility for and value of subsidies (e.g., feed-in tariffs, investment grants, or
capacity payments) can materially alter the revenue landscape, particularly for emerging technologies
such as BESS. These external revenues or charges are not considered in the current model but may
significantly affect technology choice and system sizing.

In summary, while the revenue-maximizing approach used in this study offers useful insights into the
operational potential of HPPs under uncertainty, it does not constitute a full techno-economic assess-
ment. Future research should extend the current model by incorporating cost structures, investment
decision-making frameworks, and possibly multi-objective formulations that jointly consider profit, risk,
and system performance. Only then can a comprehensive conclusion be drawn regarding the net value
and long-term feasibility of hybrid energy systems.
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Conclusion

This study set out to quantify the added economic and energetic value of co-locating a Battery Energy
Storage System (BESS) with a renewable energy source (RES), forming a Hybrid Power Plant (HPP),
in the context of the Dutch electricity markets. Motivated by increasing shares of intermittent renewable
generation, evolving electricity market structures, and growing grid congestion, the research aimed to
evaluate how hybrid systems can improve system flexibility and support amore efficient and sustainable
energy transition. The research intends to answer the following research question:

What is the added energetic and economic value of BESS co-location for a Hybrid Power Plant partic-
ipating in the Dutch day-ahead, intraday, and imbalance markets, when using a bidding strategy that
accounts for power forecasting uncertainty?

To answer this question, a multi-stage stochastic mixed-integer linear programming (MILP) model with a
rolling horizon was developed, that quantifies the economic and energetic value. The model simulates
the sequential market participation of an HPP in the day-ahead (DA), intraday (ID), and imbalance (IM)
markets. It incorporates renewable power forecast uncertainty through scenario modeling and applies
realistic market rules and technical constraints, including grid connection limits. A model validation has
been performed, demonstrating the validity of the model in its response to price signals and adherence
of physical limits. Three system configurations were compared: a stand-alone RES, a stand-alone
BESS, and a co-located HPP. Additionally the response of themodel to several assumptions and design
variables have been tested, such as imbalance price forecasts, power forecast accuracy, BESS size,
BESS technology, grid constraints and optimization frequency of the rolling horizon.

The results demonstrate that the HPP configuration consistently outperforms the standalone RES and
BESS cases in terms of total revenue and traded volume. The HPP generated 29.5% more revenue
than the RES system and 76.7% more than the standalone BESS, demonstrating the added economic
value of the HPP. While the standalone BESS excelled in intraday market trading due to its flexibility,
it lacked the base revenue contribution from RES generation and associated DA market participation.
Conversely, the standalone RES shows to be more dependent on the uncertainty of the power forecast,
creating a more conservative ID bidding strategies required to avoid imbalance penalties, leading to
underutilization of market opportunities. The hybrid configuration enabled coordinated bidding that
capitalized on the generation potential of the RES and the flexibility of the BESS.

The results further show that the HPP’s economic performance is highly sensitive to assumptions about
imbalance price forecasting. Perfect foresight of imbalance prices during the intraday bidding stage
yielded the highest revenue, but using day-ahead prices as a forecast still enabled substantial gains.
Grid connection design also plays a crucial role: enabling grid withdrawal significantly improved prof-
itability by increasing trading opportunities, while larger BESS sizes and higher re-optimization frequen-
cies contributed positively to market responsiveness and revenue.

Beyond economic performance, the HPP also demonstrated energetic benefits. The inclusion of a
BESS reduced curtailment of RES generation by 30.5%, and storage-related losses were limited to

62



63

only 1.8% of total renewable output. This led to a more efficient use of green energy, demonstrating
the added economic value. The hybrid configuration also improved grid utilization: feed-in capacity
was used more consistently, and overall utilization rates increased by 12%. This is particularly relevant
in the Dutch context, where net congestion is a growing concern, and acquiring grid connection is
becoming a bottleneck for the green transition. The ability to withdraw energy from the grid increased
flexibility of energy dispatch and utilization of the grid connection capacity for energy feed-in as well as
withdrawal.

Notably, this study reveals that economic and energetic objectives can be in tension. Allowing grid with-
drawal significantly enhances economic value by unlocking new trading opportunities, but it also results
in increased curtailment, thereby reducing the energetic performance of the system. A similar pattern
is observed with changes in the re-optimization frequency: shorter intervals improve revenue through
faster intraday market responses, yet lead to higher levels of curtailment. Conversely, longer intervals
reduce economic value but improve energy utilization. These opposing effects highlight a fundamental
tension between maximizing profitability and optimizing the use of renewable energy. As such, en-
ergy producers, traders, and system operators must carefully balance these objectives in operational
strategies and policy design.

The findings of this study are highly relevant in light of current societal, political, economic, and techno-
logical developments shaping the energy transition. Societally, the transition toward a carbon-neutral
energy system hinges on the effective integration of RES. HPPs, by reducing curtailment and enhanc-
ing market responsiveness, enable a more efficient use of green electricity and thereby contribute to
decarbonization goals. Their ability to dispatch renewable energy more flexibly strengthens both the
sustainability and reliability of the electricity system.

From a political and regulatory perspective, this research underscores the importance of revisiting grid
connection policies and market access rules. In particular, the study demonstrates that permitting
grid withdrawal for HPP, even without expanding total grid capacity, unlocks considerable economic
value. Policy makers aiming to stimulate BESS investment and optimize renewable integration could
consider targeted reforms. For example, enabling grid connection upgrades that allow bi-directional
flow, without increasing contracted capacity, may accelerate HPP deployment without exacerbating
congestion. Conversely, if the policy goal is to maximize green energy utilization rather than market
value, restricting grid charging while promoting co-located BESS capacity offers a better pathway. The
findings therefore provide concrete input for designing differentiated policy instruments that align with
specific regulatory objectives.

Economically, the model results reveal that the co-location of BESS and RES can substantially en-
hance revenue potential and market responsiveness, suggesting improved monetization of renewable
energy under current market structures. The added flexibility of the HPP increases revenue streams,
particularly in the ID and IM markets. This makes HPPs attractive to private investors and commercial
aggregators, provided that market structures reward flexibility and uncertainty management. Traders
and market participants should note that much of the HPP’s added value is derived from short-term
market responsiveness, particularly the ability to anticipate and react to ID and IM price signals. Invest-
ments in price forecasting and bidding automation are likely to be financially beneficial in this context.

For grid operators, the study provides insight into how grid connection points can be used more effi-
ciently. A key recommendation is to prioritize the regulatory adaptation of existing RES grid connection
points to accommodate co-located storage. This may involve allowing bi-directional flows or granting
partial additional access for storage components. Doing so could defer the need for costly grid rein-
forcements while enabling local flexibility and supporting system stability. Moreover, HPPs equipped
with appropriately sized BESS can play a key role in congestion management and balancing services,
provided that market mechanisms and grid codes evolve to allow for such participation.

Technologically, this research highlights the growing need for advanced tools that support real-time
optimization under uncertainty. The demonstrated model framework integrates multi-market decision-
making, stochastic power forecasting, and rolling re-optimization tools that are increasingly essential
in an electricity system dominated by variable renewables. To fully leverage this technological poten-
tial, future developments should focus on improving forecast accuracy, reducing model runtimes, and
enabling integration with live market data streams.
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In conclusion, the value of HPPs lies not only in their market performance but also in their potential
to support the structural transformation of the electricity system. To realize this potential, stakeholders
across the energy sector, including policy makers, investors, grid operators, and technology providers,
must act in coordination to create an enabling environment for flexible and integrated energy solutions.

While this study demonstrates the added value of hybrid power plants under uncertainty, several oppor-
tunities remain for further research. Incorporating battery degradation would allow for a more realistic
assessment of long-term operational strategies and economic viability. More advanced methods for
power and imbalance price forecasting, potentially using machine learning or probabilistic approaches,
could enhance the model’s responsiveness to short-term market dynamics. Additionally, extending
the revenue-based analysis to include investment costs, subsidies, grid fees, and battery wear would
enable a more comprehensive techno-economic evaluation. Lastly, future studies could explore the
system-level impact of HPPs on grid stability and congestion, informing regulatory frameworks that
support their deployment.
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Appendix

Table A.1: Summary statistics of imbalance prices and power production, grouped by the month in which each week falls

Month Short Price
Mean

[€/MWh]

Short Price
Std Dev
[€/MWh]

Long Price
Mean

[€/MWh]

Long Price
Std Dev
[€/MWh]

Energy
Production

Mean
[MWh/15

min]
March 106.11 243.62 81.73 236.49 0.267
June 114.66 174.87 97.67 182.72 0.271
September 126.02 345.83 66.83 300.51 0.507
December 174.84 288.77 145.80 290.03 0.710
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(a)Weekly breakdown of HPP revenues, grouped by the month in which each week falls.

(b)Weekly breakdown of RES revenues, grouped by the month in which each week falls.

(c)Weekly breakdown of BESS revenues, grouped by the month in which each week falls.

Figure A.1: Per week revenue (in a month) for the three different cases: HPP, RES and BESS. Broken down by the three
electricity markets: day-ahead (DA), intraday (ID) and imbalance (IM). In case of negative revenues, the cumulative revenue is

indicated
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(a)Weekly breakdown of HPP absolute traded energy, grouped by the month in which each week falls.

(b)Weekly breakdown of RES absolute traded energy, grouped by the month in which each week falls.

(c)Weekly breakdown of BESS absolute traded energy, grouped by the month in which each week falls.

Figure A.2: Per week absolute traded energy (in a month) for the three different cases: HPP, RES and BESS. Broken down by
the three electricity markets: day-ahead (DA), intraday (ID) and imbalance (IM)
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Table B.1: Sensitivity analysis for HPP case: comparison of scenarios based on absolute revenue, traded energy, physical metrics, and normalized performance.

Absolute Revenue [k€] Traded Energy [GWh] Physical [GWh] Grid Utilization [-] Normalized [€/MWh]
Scenario ID IM ID + IM ID IM ID + IM Generated Curtailed Battery Loss Feed-in Withdraw Rev/Traded Rev/Physical

BASE CASE 32.7 25.5 58.2 3.26 0.942 4.20 0.891 0.271 0.016 0.182 – 30.1 184
BESS Size 10 MWh 64.5 33.6 98.1 4.17 1.06 5.22 0.924 0.229 0.026 0.190 – 31.6 221
BESS Size 2.5 MWh 10.8 21.2 32.0 2.47 0.870 3.34 0.854 0.315 0.010 0.175 – 30.1 161
Grid Unconstrained 65.9 45.0 111 4.40 1.57 5.97 0.785 0.365 0.029 0.189 0.285 30.0 276
Grid Feed-in Constrained 67.0 32.4 99.4 4.37 1.49 5.87 0.761 0.389 0.028 0.247 0.277 28.9 270
Grid Withdrawal Constrained 31.2 34.8 66.0 3.32 0.982 4.30 0.919 0.242 0.018 0.140 – 31.0 187
Imbalance Price - Perfect Foresight 38.4 91.5 130 4.72 0.926 5.65 0.900 0.261 0.017 0.185 – 44.8 262
Imbalance Price - No Foresight 39.6 -0.927 38.7 3.07 0.960 4.03 0.932 0.229 0.018 0.191 – 24.5 155
Perfect Power Forecast 25.1 40.6 65.7 2.84 1.03 3.86 0.893 0.270 0.016 0.183 – 33.6 192
Reoptimization Every 30 mins 38.8 22.8 61.6 5.29 0.961 6.25 0.877 0.290 0.022 0.187 – 22.4 191
Reoptimization Every 2 Hours 19.9 24.4 44.2 2.07 0.902 2.97 0.918 0.248 0.013 0.181 – 35.7 163
Vanadium Redox Storage 19.0 19.0 38.0 2.29 0.858 3.14 0.869 0.297 0.014 0.174 – 32.8 166
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Table B.2: Sensitivity analysis for HPP case: comparison of scenarios based on absolute revenue, traded energy, physical metrics, and normalized performance.

Absolute Revenue Traded Energy Physical Grid Utilization Normalized
Scenario ID IM ID + IM ID IM ID + IM Generated Curtailed Battery Loss Feed-in Withdraw Rev/Traded Rev/Physical

BESS Size 10 MWh 97.4% 31.9% 68.7% 27.7% 12.1% 24.2% 3.70% -15.5% 62.5% 4.06% – 4.98% 20.0%
BESS Size 2.5 MWh -67.0% -16.7% -45.0% -24.2% -7.64% -20.5% -4.15% 16.2% -37.5% -4.00% – 0.00% -12.3%
Grid Unconstrained 102% 76.5% 90.6% 35.0% 66.7% 42.1% -11.9% 34.7% 81.2% 3.57% – -0.33% 50.1%
Grid Feed in Constrained 105% 27.1% 70.9% 34.0% 58.6% 39.5% -14.6% 43.5% 75.0% 35.5% – -4.00% 46.6%
Grid withdrawal Constrained -4.49% 36.6% 13.5% 1.84% 4.25% 2.38% 3.14% -10.7% 12.5% -23.5% – 2.99% 1.58%
Imbalance price - perfect foresight 17.5% 259% 123% 44.8% -1.70% 34.4% 1.01% -3.69% 6.25% 1.26% – 48.8% 42.4%
Imbalance price - no foresight 21.4% -104% -33.5% -6.04% 1.91% -4.26% 4.60% -15.5% 12.5% 4.94% – -18.6% -15.8%
Perfect power forecast -23.1% 59.2% 13.0% -13.0% 8.92% -8.09% 0.22% -0.37% 0.00% 0.33% – 11.6% 4.40%
Reoptimization every 30 mins 18.9% -10.6% 5.96% 62.0% 2.02% 48.6% -1.57% 7.01% 37.5% 2.47% – -25.6% 3.75%
Reoptimization every 2 hours -39.1% -4.50% -23.9% -36.7% -4.25% -29.4% 3.03% -8.49% -18.8% -0.88% – 18.6% -11.2%
Vanadium Redox storage -41.7% -25.7% -34.7% -30.0% -8.92% -25.2% -2.47% 9.59% -12.5% -4.61% – 8.97% -10.0%
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Table B.3: Sensitivity analysis for RES case: absolute revenue, traded energy, physical metrics, and normalized performance.

Revenue [k€] Traded Energy [GWh] Physical [GWh] Grid Utilization [-] Normalized [€/MWh]
Scenario ID IM ID + IM ID IM ID + IM Generated Curtailed Battery Loss Rev/Traded Rev/Physical

BASE CASE -17.3 38.1 20.8 1.36 0.847 2.21 0.789 0.390 – 0.163 36.7 160
BESS Size 10 MWh – – – – – – – – – – – –
BESS Size 2.5 MWh – – – – – – – – – – – –
Grid Constrained – – – – – – – – – – – –
Grid Feed-in Constrained – – – – – – – – – – – –
Grid Withdrawal Constrained – – – – – – – – – – – –
Imbalance Price - Perfect Foresight -9.33 77.9 68.6 0.565 0.736 1.30 0.795 0.384 – 0.164 54.5 219
Imbalance Price - No Foresight 7.03 -13.3 -6.31 1.15 0.814 1.96 0.832 0.347 – 0.172 39.2 120
Perfect Power Forecast -26.7 28.1 1.43 1.58 0.830 2.41 0.792 0.386 – 0.163 29.4 135
Reoptimization Every 30 mins -8.74 14.2 5.42 2.21 0.847 3.05 0.781 0.398 – 0.166 25.9 142
Reoptimization Every 2 Hours -10.3 -3.50 -13.8 0.884 0.785 1.67 0.803 0.376 – 0.161 31.6 114
Vanadium Redox Storage – – – – – – – – – – – –
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Table B.4: Sensitivity analysis for RES case: percentage change relative to base case, across revenue, traded energy, physical metrics, and normalized performance.

Revenue Traded Energy Physical Grid Utilization Normalized
Scenario ID IM ID + IM ID IM ID + IM Generated Curtailed Battery Loss Rev/Traded Rev/Physical

BESS Size 10 MWh – – – – – – – – – – – –
BESS Size 2.5 MWh – – – – – – – – – – – –
Grid Unconstrained – – – – – – – – – – – –
Grid Feed-in Constrained – – – – – – – – – – – –
Grid Withdrawal Constrained – – – – – – – – – – – –
Imbalance Price - Perfect Foresight -46.0% 105% 230% -58.4% -13.1% -41.0% 0.76% -1.54% – 0.68% 48.5% 36.9%
Imbalance Price - No Foresight -141% -135% -130% -15.5% -3.90% -11.0% 5.45% -11.0% – 5.41% 6.81% -25.5%
Perfect Power Forecast 54.5% -26.1% -93.1% 16.0% -2.01% 9.07% 0.38% -1.03% – 0.37% -19.9% -15.6%
Reoptimization Every 30 mins -49.4% -62.8% -73.9% 62.3% 0.00% 38.4% -1.01% 2.05% – 1.72% -29.4% -11.2%
Reoptimization Every 2 Hours -40.2% -109% -167% -35.0% -7.32% -24.3% 1.77% -3.59% – -1.04% -13.9% -28.6%
Vanadium Redox Storage – – – – – – – – – – – –
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Table B.5: Sensitivity analysis for BESS case: absolute revenue, traded energy, physical metrics, and normalized performance.

Revenue [k€] Traded Energy [GWh] Physical [GWh] Grid Utilization [-] Normalized [€/MWh]
Scenario ID IM ID + IM ID IM ID + IM Generated Curtailed Battery Loss Rev/Traded Rev/Physical

BASE CASE 76.6 16.1 92.8 3.11 0.723 3.83 – – 0.029 0.291 24.2 –
BESS Size 10 MWh 153 32.2 185 6.21 1.45 7.66 – – 0.055 0.292 24.2 –
BESS Size 2.5 MWh 38.4 8.08 46.5 1.55 0.362 1.92 – – 0.014 0.292 24.3 –
Grid Unconstrained – – – – – – – – – – – –
Grid Feed-in Constrained – – – – – – – – – – – –
Grid Withdrawal Constrained – – – – – – – – – – – –
Imbalance Price - Perfect Foresight 117 78.3 195 3.70 0.720 4.42 – – 0.025 0.233 49.2 –
Imbalance Price - No Foresight 66.6 14.8 81.4 2.77 1.20 3.97 – – 0.029 0.297 18.4 –
Perfect Power Forecast – – – – – – – – – – – –
Reoptimization Every 30 mins 87.6 6.47 94.1 4.53 0.702 5.24 – – 0.043 0.301 18.0 –
Reoptimization Every 2 Hours 63.5 23.3 86.8 2.15 0.768 2.92 – – 0.019 0.294 29.7 –
Vanadium Redox Storage 42.4 8.41 50.8 1.46 0.353 1.81 – – 0.019 0.291 28.1 –
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Table B.6: Sensitivity analysis for BESS case: percentage change relative to base case, across revenue, traded energy, physical metrics, and normalized performance.

Revenue Traded Energy Physical Grid Utilization Normalized
Scenario ID IM ID + IM ID IM ID + IM Generated Curtailed Battery Loss Rev/Traded Rev/Physical

BESS Size 10 MWh 100% 99.2% 99.9% 99.9% 101% 100% – – 89.7% 0.07% 0.00% –
BESS Size 2.5 MWh -49.9% -49.9% -49.9% -50.0% -49.9% -50.0% – – -51.7% 0.10% 0.41% –
Grid Unconstrained – – – – – – – – – – – –
Grid Feed-in Constrained – – – – – – – – – – – –
Grid Withdrawal Constrained – – – – – – – – – – – –
Imbalance Price - Perfect Foresight 52.8% 385% 111% 19.2% -0.41% 15.5% – – -13.8% -20.2% 103% –
Imbalance Price - No Foresight -13.2% -8.11% -12.3% -10.9% 66.0% 3.66% – – 0.00% 1.96% -24.0% –
Perfect Power Forecast – – – – – – – – – – – –
Reoptimization Every 30 mins 14.3% -59.9% 1.41% 46.0% -2.90% 36.8% – – 48.3% 3.26% -25.6% –
Reoptimization Every 2 Hours -17.2% 44.2% -6.48% -30.7% 6.22% -23.7% – – -34.5% 0.96% 22.7% –
Vanadium Redox Storage -44.7% -47.9% -45.3% -53.1% -51.2% -52.8% – – -34.5% -0.17% 16.1% –
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