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Decisi-o-rama: An open-source Python library for multi-attribute value/ 
utility decision analysis 
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A B S T R A C T   

Environmental decisions are complex as they are multi-dimensional, highly interdisciplinary and not only 
involve multiple stakeholders with conflicting objectives, but also many possible alternatives with uncertain 
consequences. The difficulty lies in making trade-offs between tough value trade-offs on the one hand while 
appreciating uncertain impacts of alternatives on the other. To support decisions tackling such problems, a 
combination of multi-criteria decision analysis (MCDA) and environmental models is promising yet limited by 
the available MCDA software. Here, we present Decisi-o-rama, an open-source Python MCDA library for single 
and sets (portfolios) of alternatives in the context of multi-attribute value/utility theory (MAUT/MAVT). Its 
development was driven by four aspirations that are crucial for usability in the context of environmental 
decision-making: (1) interoperability, (2) uncertainty-awareness, (3) computational efficiency, and (4) integra-
tion with portfolio decisions. The results indicate that these aspirations are met, thus facilitating the adoption of 
MCDA methods by environmental researchers and practitioners.   

1. Introduction 

Environmental decisions are often complex as there are usually many 
courses of action, often conflicting, and uncertain. The reason for this 
complexity lies in how the utilisation of natural resources has sociopo-
litical, environmental, economic, and even ethical implications. At the 
time, these decisions are often supported by uncertain and often 
incomparable data that need to be synthesized. To support decision- 
makers, (multi-criteria) decision-analysis provides a framework to sys-
tematically evaluate decisions, providing transparency, traceability and 
reproducibility in the process. As a result, there has been an increasing 
interest in MCDA methods for environmental decision-making (Kiker 
et al., 2005; Huang et al., 2011; Linkov and Moberg, 2017; Esmail and 
Geneletti, 2018; Ortiz et al., 2018) encompassing: decision support 
(Langhans et al., 2014; Lahtinen et al., 2017; Haag et al., 2019; Kuem-
merlen et al., 2019; Marttunen et al., 2019), constructing ecological 
indicators (Convertino et al., 2013; Cinelli et al., 2014; Langhans et al., 
2014; Zheng et al., 2016; Blattert et al., 2017), and the support of 
planning activities (Joubert et al., 2003; Gómez-Delgado and Tarantola, 
2006; Hajkowicz, 2007; Calizaya et al., 2010; Huang et al., 2011; 
Sa-nguanduan and Nititvattananon, 2011; Lienert et al., 2014; Scholten 
et al., 2015; Scholten et al., 2017). 

Decision analysis aims to formalise “common sense for decision 
problems which are too complex for informal use of common sense” [30, 
p.806]. Decisions can become complex when there are multiple decision 
makers with different views of the issues that need addressing, con-
flicting goals and manifold possible courses of action, uncertainty about 
outcomes of different actions, unfamiliarity especially in case of one-off, 
strategic decisions, high interdisciplinarity, and also different subjective 
valuation of outcomes and risks. Decision-making is further complicated 
by the overall goals that are considered to compare alternative courses 
of action often being incommensurate, and high-dimensional. In this 
context, recurrent decisions with lower stakes and well-defined objec-
tives are generally easier than one-off decisions with high stakes in 
complex decision contexts where the objectives need to be identified 
jointly with the decision-makers in the first place (Keeney, 1982; Bureš 
et al., 2019). Environmental decisions are often of the latter type. 

To account for these complex and inter-related processes in a formal 
context, decision analysis methods that combine problem structuring 
and multi-criteria decision analysis (MCDA) models are often used 
(Marttunen et al., 2017). These methods support the decision-making 
process by structuring the decision problem, systematising the objec-
tives and assessing their fulfilment and measureable attributes, given a 
set of alternatives (individual actions or ‘portfolios’ of actions) (Reichert 
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et al., 2013). This allows to compare among alternatives, thus support-
ing the decision-makers in exploring the decision space and model re-
sults (Voinov and Bousquet, 2010; Voinov et al., 2016). As a result, 
decisions become more transparent, traceable and reproducible. 

MCDA methods are generally classified with respect to how goal 
attainment is defined: (1) overall value (score or rank), (2) goal, refer-
ence or aspiration level, and (3) outranking (Belton and Stewart, 2002; 
Mendoza and Martins, 2006). Summarising value methods indicate the 
preference of an alternative (or portfolios of alternatives) relative to 
others based on a numerical score; these methods include the 
Multi-Attribute Utility and Value approaches (MAUT and MAVT, 
respectively) (Eisenführ et al., 2010). Aspiration level methods assess 
the solutions based on the level of attainment of a set of goals as met or 
not; an example of this is goal programming (Jones and Tamiz, 2016). 
Outranking methods use a pair-wise comparison of alternatives to 
identify a ranking of preferences; examples are ELECTRE (Govindan and 
Jepsen, 2016) and PROMETHEE (Behzadian et al., 2010) family 
methods. For a more detailed overview of MCDA and related methods 
see Figueira et al. (2006). 

MCDA models come into play once the decision problem is struc-
tured. These imply that: (1) there is clarity about who takes part in the 
decision, (2) what objectives and criteria are to be considered, and (3) 
which alternatives are feasible (Mendoza and Martins, 2006). Assuming 
a summarising value approach, it is then necessary to understand and 
quantify the impacts of the alternatives on the attributes (indicators to 
measure the outcomes of alternatives regarding the objectives). The 
impact of different alternatives on the attributes are obtained from the 
assumed cause-effect relationship between alternatives and anticipated 
consequences on the attributes. This can be obtained based on concep-
tual or mathematical models that make these assumed relationships 
explicit, or from estimates obtained directly from data or expert 
knowledge. Here, we use the term ‘assessment model’, to describe the 
mathematical models that are used to map the (portfolios of) alterna-
tives to the expected outcomes on the attributes. 

Next, MCDA models require a preference model to appraise the 
(portfolios of) alternatives, based on the perceived valuation of the 
anticipated outcomes and their trade-offs. This preference model should 
consider the different perspectives of the stakeholders, trade-offs among 
different competing objectives, risk attitudes, and ambiguity attitudes of 
the decision-makers (Keeney, 1982; Reichert et al., 2013; Scholten et al., 
2015). 

In addressing a complex decision problem, we agree with (Belton and 
Stewart, 2002) in that the purpose of an MCDA model is to provide a 
focus for discussion, not to prescribe the solution. Therefore, MCDA 
models are useful to learn about trade-offs among alternatives, and to 
formulate (‘construct’) decision-maker preferences. Unlike 
optimisation-driven approaches, the purpose of MCDA models is not to 
determine a normatively ‘best strategy’ to choose, given a set of con-
flicting objectives. As decision-making involves judgment and valuation, 
subjectivity cannot be avoided and the responsibility for the decision 
and its consequences remain with the decision-maker(s). 

Generally, MCDA methods are used to evaluate among different al-
ternatives. However, in many cases the actions to be taken go beyond a 
single alternative (e.g. which project to conduct), seeking to identify a 
set of potential alternatives (portfolio) to implement (e.g. a combination 
of several projects (Salo et al., 2006)). The number and combination of 
alternatives in a portfolio is subject to constraints, such as the available 
budget or personnel (Gustafsson and Salo, 2005; Liesiö et al., 2008). 
Also, contingencies and interactions matter regarding which actions can 
be combined and whether the outcomes are independent of each other 
(i.e. add up) or not (e.g. economies of scale, upstream-downstream in-
teractions). Portfolio decision analysis (PDA) integrates portfolio theory 
and multi-attribute value models (Kleinmuntz, 2007; Salo et al., 2011) 
to explore optimal deterministic portfolios, or robust portfolios when 
considering the uncertainty in the decision maker preferences and 
alternative performance (Liesiö et al., 2007, 2008). Applications of PDA 

in MCDA are reported in e.g. Salo et al. (2006), Kleinmuntz (2007), Mild 
and Sahlo (2009), Convertino et al. (2013), Lahtinen et al. (2017). 

To navigate these decision spaces, it is necessary to have tools that 
help in exploring the consequences of different individual or portfolio 
alternatives along with their uncertainties. Therefore, it is necessary that 
modern decision-analysis tools are able to accommodate uncertainty 
and sensitivity analysis (French, 2003; Gómez-Delgado and Tarantola, 
2006; Durbach and Stewart, 2011; Scholten et al., 2015; Esmail and 
Geneletti, 2018). Conventionally, uncertainty and sensitivity analysis 
require considerable computational resources for simulation and model 
evaluation over larger samples of model parameters and inputs, as 
analytical solutions are either too simplified, unavailable, or too 
restrictive regarding the characteristics of each particular model. For 
example, one of us conducted extensive uncertainty and sensitivity 
analysis using an earlier version of the Utility (R) package (Reichert 
et al., 2013), for which it took days to compute the results for a 
real-world decision problem on a high-performance computing cluster 
(Scholten et al., 2015, 2017). That makes on-the-fly exploratory decision 
modelling with stakeholders unviable. Ideally, decision tools should be 
computationally efficient (to produce results in a short time), and 
generic enough to be integrated together with other model exploration 
tools such as optimisation routines and scenario modelling. 

To summarise the identified MCDA modelling needs, we need soft-
ware or software libraries (ideally open-source) that are (1) extensible 
and interoperable with complementary modelling and visualisation 
tools, that (2) support uncertainty-aware MCDA including uncertainty in 
outcomes and preferences, while also being (3) computationally effi-
cient to be used on-the-fly with decision makers and (4) for portfolio 
decisions. First, extensibility and interoperability allows to accommo-
date problem-specific process models, integration into larger decision- 
support frameworks, and use complementary model analysis tools 
(such as optimisation and visualisation). Second, uncertainty-aware 
decision models provide the decision-makers with information about 
the magnitude and sources of the (quantifiable) uncertainty in the 
model. Third, a computationally efficient model allows modelling and 
interaction with decision-makers on-the-fly, providing direct feedback 
on the consequences of the alternatives or portfolios, and preference 
model, supporting discussion. Fourth, by including the possibility to add 
portfolio decisions, it is possible to support realistic MCDA. 

To our surprise, we were not able to find any suitable software 
among the plethora of tools available to support MCDA that was able to 
do so, let alone for our target method MAUT/MAVT for portfolio de-
cisions, see reviews in (Weistroffer and Li, 2016; Mustajoki and Mart-
tunen, 2017; International Society on MCDM, 2020; Cinelli et al., 2020). 
We found that most of these tools are either embedded into 
closed-source decision-support platforms, built over particular data en-
vironments (not without a reason), or as commercial software, making it 
difficult to extend and adapt these to specific needs neither in practice 
nor research. There are a few notable exceptions, including: MCDA 
(Bigaret et al., 2017) (R, Java), and above-mentioned Utility (Reichert 
et al., 2013) (R). The latter do not, however, provide an alternative 
valuation framework, and lack the built-in capability to conduct port-
folio decision analyses. Lastly, given the ubiquity of use of Python for 
mathematical modelling and scientific computing, it is surprising that 
no native MCDA libraries are available for MAVT, MAUT, and PDA. 
Consequently, we see value in developing a decision analysis tool that 
fulfils the identified needs and thus: (1) is extensible and interoperable, 
(2) uncertainty-aware, (3) computationally efficient, and (4) able to 
integrate portfolio decisions. 

In this paper, we present the development and testing of Decisi-o- 
rama, an open-source Python library for MCDA on single-alternatives 
and portfolios, in the context of MAVT/MAUT. The name Decisi-o- 
rama uses the suffix ‘orama’ as in panorama, derived from ancient 
Greek “hórama”, meaning “view” or “spectacle”. The spelling ‘-o-rama’ 
is popularly used to stress the latter meaning thus “decision show” or 
“decision spectacle”, as we aim to provide a platform to expose the story 
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behind a decision by making it transparent, logic, understandable and 
for everyone to see. Decisi-o-rama provides an interoperable, efficient 
and flexible framework to support MCDA using the summarising-value 
type preference modelling for uncertain decision analysis problems. 
This paper is organised as follows: First, a literature review of MAVT/ 
MAUT, and the current preference modelling tools is presented. Second, 
the main features of Decisi-o-rama are presented, exposing the concepts 
behind its functionality. Third, Decisi-o-rama is used to solve two large 
synthetic problems to test its performance. Fourth, a portfolio decision 
analysis problem (as presented in (Lahtinen et al., 2017)) is solved, 
where additional features of Decisi-o-rama are showcased. Lastly, con-
clusions, recommendations and future directions are presented. 

2. Multi-criteria valuation models 

Multi-attribute decision analysis models (including MAVT and 
MAUT, and referred to only as MAUT from this point on as common in 
the literature while noting that only the former warrants measurable 
value functions (Dyer and Sarin, 1979)), next to many integrated 
assessment models, aim to estimate the utility (or attainment) of an 
objective, given a set of hierarchically structured attributes (or criteria) 
(Nardo et al., 2008; Singh et al., 2012; Scholten et al., 2017). MAUT 
implies that a score can be constructed by aggregating different attri-
butes, which require the construction (elicitation) of a preference model 
(Keeney and Howard, 2002; Cinelli et al., 2014). Among its more 
interesting features are its conceptual simplicity and its suitability to 
include risky choices (Dyer, 2005; Eisenführ et al., 2010). 

Preference models following multi-attribute value theory are based 
on three main elements, including an objectives hierarchy, the assess-
ment of the marginal utilities (or values), and trade-offs among its 
different objectives. The objectives hierarchy makes a top-down 
assessment, where the overall objective of the decision is broken down 
into intermediate objectives, which can be further disaggregated either 
into other intermediate objectives, or into lowest-level objectives for 
each of which measurable (or estimable) attributes are defined. It is 
important that only fundamental objectives are included in the hierar-
chy. Further reading regarding the formulation of objectives and 
structuring of objective hierarchies can be found in Eisenführ et al. 
(2010). 

Once the objective hierarchy is defined, the marginal valuation 
functions over the attributes and the trade-offs among the attributes and 
objectives are to be elicited. The valuation functions either include the 
risk preferences of the decision-makers (utility functions) or not (value 
functions), regarding the attributes and objectives. The trade-offs are 
elicited by understanding what are the desirable trade-offs (often 
expressed as importance weights) among the attributes and how these 
should be aggregated to represent these trade-offs (value or utility ‘ag-
gregation function’). This elicitation process yields uncertain parame-
ters of the preference model, as a consequence of the conceptual 
simplicity of the preference models, preference instability (e.g. Lienert 
et al. (2016)) and limited interaction with the decision-makers, among 
other reasons (Scholten et al., 2015). 

To summarise, we can represent the components of portfolio de-
cisions in the MAVT/MAUT as presented in Fig. 1. These components 
also represent the type of problems that Decisi-o-rama addresses. 
Starting from the top, it is possible to identify the preference model 
(orange box), the assessment model (blue box) and the alternative 
portfolios (white box). In the preference model, G represents the overall 
objective, O1 and O2 are intermediate objectives, with utilities (values) 
of O1 constructed by aggregating the attributes AT1 and AT2 and O2 
being quantified by AT3. The overall objective is defined by aggregating 
O1 and O2. Continuing, the assessment model permits mapping the 
consequences of each portfolio (P) of alternatives to attributes outcomes 
and respective valuation in light of the given preference model. Finally, 
the alternatives (A) are defined as either single actions, or a collection of 
actions (portfolios) that are selected (= 1) or not (= 0) as candidates in 

the MCDA model. 

2.1. Constructing MAVT and MAUT models 

Once the objectives and their hierarchy are defined a MAUT pref-
erence model needs to be specified to valuate the alternatives based on 
the assessment model outputs with regard to the objectives. 

2.1.1. Valuating objectives - marginal valuation functions 
Valuating an objective in the objectives hierarchy requires defining a 

value or a utility function. The value of the objective represents the 
subjective desirability of its level of attainment under certainty. The 
utility function combines the risk attitude of the decision-maker and the 
subjective desirability of attaining some level on a particular attribute or 
objective with quantifiable probability (‘risk’) (Dyer, 2005). For MCDA 
with MAUT, utility preferences are modeled through Expected Utility 
Theory (EUT) (Von Neumann and Morgenstern, 2007). 

In EUT, the risk preferences are reflected in von Neumann and 
Morgenstern-type utility functions obtained from elicitation of prefer-
ences over lotteries, according to which the decision-makers are either 
risk-averse, risk-seeking or risk-neutral. This utility is characterised by 
relating the value of attributes and utilities to monotonic mappings, in 
which the utility is absolute, assuming a rational decision (Von Neu-
mann and Morgenstern, 2007). To model the utility of an objective, 
several approximations have been used in the context of EUT. Common 
models of utility are the exponential and power model, which corre-
spond to a constant relative and absolute risk aversion respectively. Both 
approximations use a single parameter (r or p) to indicates the 
risk-attitude. In Fig. 2 the exponential and power utilities are presented 
for different risk attitudes, where convexity (r > 0 and p < 1) represents 
risk aversion and concavity (r < 0 and p > 1) represents risk seeking. 

2.1.2. Aggregating objectives - overall valuation function 
Once the utilities for attributes and objectives are assessed, the 

utilities corresponding to the attribute levels are aggregated in the in-
termediate objectives, and later aggregated towards the overall objec-
tive. This aggregation requires the definition of the relative importance 
weights of each attribute (or objective) and the aggregation function. 
The relative importance of each of the attributes (or objectives) is rep-
resented by its weight. The aggregation function determines how to 
compute an overall score across the individual attributes, representing 
the trade-offs among attributes (and objectives). 

Fig. 1. Representation of the components of portfolio decisions in the MAVT/ 
MAUT context. Here portfolios (sets of actions) are represented in the bottom 
box. The assessment model is defined by the users, and maps the actions into 
the attributes of the preference model (middle box). The attributes are hierar-
chically aggregated in the preference model towards the overall objective 
(upper box). 
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To explore the consequences of different aggregation functions and 
their impact, we consider aggregation models that represent different 
preferences regarding compensation between objectives. On the one 
hand, compensatory models are defined by the existence of a trade-off 
between the different attributes to be integrated; in other words, a loss 
in value due to changes in one attribute can be compensated by the gains 
in another. On the other hand, non-compensatory aggregation models 
are used to indicate that is not possible to compensate the losses in a 
given attribute by improving another. An example of compensatory at-
tributes is revenue, in contrast to non-compensatory aggregation such as 
bio-diversity indicators (Langhans et al., 2014). The mathematical 
formulation of some of the most used aggregation functions can be found 
in (Reichert et al., 2013). 

In Fig. 3 we present the impact of different aggregation functions and 
weights on the trade-off between two attributes, as in (Langhans et al., 
2014). These figures show the compensation rate for two attributes 
(represented in the horizontal and vertical axes), while the contour lines 
indicate iso-aggregated values. If the lines are vertical or horizontal, 
then there is no compensation between attributes; if there is a gradient, 
it describes the degree of compensation between them. Here it is 
possible to see how aggregation functions like the additive (linear) 
model are fully compensatory (the trade-off is independent of the value 
of the attributes), while either the maximum and minimum aggregation 
functions are non-compensatory. Other functions such as the geometric 
and harmonic mean indicate a varying (non-linear) compensation where 
the degree of compensation varies with the value on the respective at-
tributes. Depending on the characteristics of the trade-offs, other con-
ventional (e.g.multiplicative utility (Keeney and Howard, 2002)), mixed 
(Scholten et al., 2015), or unconventional aggregation functions could 
be used (Reichert et al., 2019). 

2.1.3. Alternatives and portfolios 
Alternatives and portfolios are the building blocks of any decision 

analysis system, as the problems are framed to evaluate their prefera-
bility. Alternatives are potential actions that will be decided upon in the 
decision analysis system. In this respect, a portfolio can be seen as a 
collection of actions that are simultaneously carried out (Salo et al., 
2011). 

In many decision-analysis problems, the alternatives correspond to a 
set of potential actions that can be carried out to affect the system. The 
characteristics of these actions are specific to each problem, and are 
typically proposed by teams of experts. Once all the potential alterna-
tives are set, portfolios of alternatives can be constructed by combining 
individual alternatives and their corresponding actions, where a port-
folio of potential alternatives is to be selected. 

It is necessary to note that the preferability of a given portfolio 

cannot be interpreted as the sum (or weighted sum) of its components. 
The reason for this relates to the non-linearity of the preference and 
assessment models. This non-linearity can be seen in the form of in-
teractions among alternatives in the resulting attributes (as estimated by 
the assessment model), utilities in the intermediate objectives of the 
preference model, and potential constraints (e.g. competition for 
resources). 

3. Decisi-o-rama: features and reference 

Decisi-o-rama is an open-source Python library that supports the 
development of MCDA models for MAVT and MAUT to compare alter-
natives or portfolios. Decisi-o-rama encompasses the development of the 
preference models, as well as pre- and post-processing tools to support 
the MCDA process relying on common Python objects. These features 
make the integration with attribute (performance) assessment models 
straight forward, permitting transparent workflows in the implementa-
tion of a diverse range of MAVT/MAUT models. In addition, the tool is 
focused on simplicity and extensibility, allowing the users to implement 
user-defined components in the framework, without necessarily modi-
fying the source code. 

One of the main features of Decisi-o-rama is the recursive execution 
of the objectives hierarchy. This allows to: (1) execute large models with 
minimum impact on memory usage, and (2) flexibly evaluating only 
parts of the objective hierarchy without model redefinition. As a 
consequence, it is suitable for the implementation of large decision 
models in conventional hardware configurations, making on-the-fly 
model exploration in group settings feasible. 

The construction of the objectives hierarchy is separated in two in-
stances: (1) the creation of the individual objectives (nodes), and (2) the 
creation of the hierarchy of objectives. In Decisi-o-rama, nodes in the 
objectives hierarchy including the attributes, intermediate objectives, 
and overall objective are conceptualised as objectives, thus simplifying 
model construction. The creation of the nodes requires defining attri-
butes, weights, value and aggregation functions. In case the node cor-
responds to an attribute, the aggregation function will not be 
considered; in the same way, if the node is an objective (intermediate or 
overall), its value will be calculated from the aggregation of the lower- 
level objectives. 

The attributes are the outcome of an alternative and can be defined 
either as a fixed value (deterministic), vector (representing samples from 
a probability distribution function (PDF) in a Monte Carlo experiment), 
or generators (routines that yield PDF samples instead of the samples 
themselves, by storing only the generation rule and its parameters, see 
(Yee and van Rossum, 2001)). These outcomes are the result of the 
mapping of the anticipated outcomes of the alternatives on the 

Fig. 2. Exponential and Power utility functions. Positive curvature (r) in the exponential utility and exponent (p) less than 1.0 in the power utility represent risk- 
averse attitudes. Values of r = 0 and p = 1 represent risk neutrality. Negative r and p larger than 1.0 represent risk seeking attitudes. 
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attributes, which is often carried out using an assessment model (which 
is problem-dependent and therefore, out of the scope of this document). 
The objective hierarchy is constructed by mapping the attributes to the 
lower-level objectives, which again are mapped (aggregated) to the 
higher-level objectives. Consequently, the execution model will deter-
mine the value of each objective as either the value of its attributes, or 
the aggregated value of its sub-objectives, where the latter overrides the 
former. 

The aggregation functions are defined for each objective, indicating 
how the lower-level objectives will be aggregated. Weights are also 
defined for each objective, indicating their relative importance 
regarding the other objectives at the same level. This is to always ensure 
a one-to-many relationship between higher-level and lower-level ob-
jectives, as there may only be one single weight for each objective in the 
hierarchy. 

A schematic overview of the objective class is presented in Fig. 4. It 
shows that for each objective in the hierarchy it is required to obtain the 
(1) Value/Utility (V/U), we require to define the (2) weight and utility 

function (if any) for each objective. The value of the objective can be 
calculated either by (3. a) re-scaling the attributes to the [0–1] interval, 
of the (4. a) attributes in their natural scale. Alternatively, the objec-
tive’s value can be calculated from the (3. b) aggregation of the (4. b) 
value of its sub-objectives with their own defined weights. 

3.1. Attribute valuation functions 

Currently, exponential and power utility functions (Keeney and 
Howard, 2002) are implemented in Decisi-o-rama as marginal valuation 
functions over the individual attributes. The exponential utility function 
corresponds to a constant absolute risk aversion, while the power utility 
function to a constant relative risk aversion (Eisenführ et al., 2010). 
Setting the respective risk attitude parameter, these models simplify to 
respective marginal value functions, being r = 0 for the exponential and 
p = 1 for the power utility function. Both formulations assume that 
utilities can be measured based on the absolute magnitude of the out-
comes, and that probabilities are weighted linearly (i.e. a reduction in 

Fig. 3. Aggregated value for different aggregation functions as in (Langhans et al., 2014), using different normalized aggregation weights (w1) for the attribute x1 on 
x-axis, and (w2 = 1 − w1) for the attribute x2 on the y-axis. 
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risk of 5% is valued equally, no matter if this concerns risk reduction 
from 50 to 45% or from 5 to 0%). 

In addition, Decisi-o-rama supports user-defined utility functions. 
These functions map a normalized attribute value to a utility value on 
the range [0, 1]. The function signature receives two parameters: (1) the 
scalar value in the natural range of the variable (by default [0–1]), and 
(2) a data structure containing the additional function parameters. 
These characteristics allows the implementation to be scaleable and 
generalisable. 

3.2. Multi-attribute aggregation models 

Decisi-o-rama includes some fundamental aggregation models used 
to aggregate across multiple attributes. These include: additive 
(weighted sum), geometric mean (also known as Cobb-Douglas), har-
monic mean, power, split power, maximum and minimum aggregation 
(Langhans et al., 2014). The definition of these basic functions are 
equivalent to those in the ‘R’ package utility (Reichert et al., 2013). Also, 
it is possible to include user-defined aggregation functions. 

In addition, a meta-function is defined to mix different aggregation 
functions, as suggested by (Langhans et al., 2013) and (Scholten et al., 
2015). This flexibility supports the development of custom aggregation 
models, which may help in the generalisation and representation of the 
desirability of objectives (Reichert et al., 2019). As an example, it is 
possible to define a utility function as the minimum between the addi-
tive model and the geometric mean, or make an additive aggregation of 
the power, split power and geometric means. 

3.3. Uncertainty-aware preference and outcome modelling 

Next to quantifying the anticipated outcomes of the alternatives on 
the attributes, one of the main challenges is the elicitation of a prefer-
ence model. Consequently, this is represented in uncertain estimates of 
model parameters and aggregation functions. These uncertain parame-
ters propagate through the model, yielding uncertain estimates of the 
value of objectives at a higher place in the hierarchy, leading to un-
certain estimates of the overall valuation of each alternative. 

One of the approaches to quantify model uncertainty is Monte Carlo 
simulation. The implementation of this approach is generally straight- 
forward, yet comes at the cost of considerable processing resources. 
Therefore, to avoid the overload of a Monte Carlo, we developed an 
execution model considering three main principles: (1) using generators 
to sample the PDF’s of the parameters (of the utility, aggregation 
functions and weights) and attribute value (where applicable) for each 
node, (2) a vectorised execution model of marginal utility and multi- 

attribute aggregation functions, and (3) on-demand (lazy) model 
execution. 

First, using random number generators (Yee and van Rossum, 2001) 
has a significant impact on memory efficiency, as only a representation 
of the PDF is kept, instead of a sample of random values. This feature 
allows to dispose intermediate results, keeping only its representation, 
and making the required PDF samples for the Monte Carlo analysis only 
available at node execution time. Alternatively, to provide flexibility in 
the parameterisation of the models (at the cost of memory performance), 
it is possible to directly pass the random samples of the uncertain inputs 
or parameters in the analysis. 

Second, using a vectorised execution model (van der Walt et al., 
2011; Virtanen et al., 2020) for the node operations (attribute valuation 
and value/utility aggregation) allows considerable speed-up with 
respect to looped implementations, by making use of modern hardware 
architecture. This vectorisation is possible as the node operations are 
relatively simple, which can be integrated into linear algebra frame-
works. As a consequence, it is possible to exploit the single-instruction 
multiple-data processing framework (present in modern processors), 
allowing to simultaneously compute several instructions within the 
same CPU cycle. 

Third, an lazy execution (Watt, 2006) of the objectives hierarchy 
permits executing only the required operations to modify only those 
parts of the problem at the time that are of interest, providing flexibility 
in the re-evaluation of specific branches. This flexibility permits that 
nodes are evaluated separately, such as for in-depth analysis of partic-
ular parts of the hierarchy, without re-defining the problem. In practical 
applications, it means that only values or utilities for lower-level ob-
jectives are calculated, without executing any of the higher-level ob-
jectives, leading to more efficient evaluation of the objectives hierarchy 
for model exploration. 

With these features, it is possible to efficiently execute probabilistic 
preference models with conventional computing power. This feature 
also allows to use Decisi-o-rama to explore the impact of different 
preferences on valuation and outcome computation on the fly. In addi-
tion, the library does not require the use of specific data models, making 
the integration with other applications (such as models for determining 
the outcome of alternatives, or the implementation of visualisation 
tools) straight forward. 

3.4. Evaluating results 

The architecture of Decisi-o-rama separates the execution and the 
post-processing of results. This allows for different analyses to be carried 
out without re-executing the model, thus ensuring consistency in the 
analyses. To support these analyses, we introduce the Evaluator class. 
The Evaluator permits to create a container for both: aggregated valua-
tion scores for each alternative, and the performance metrics that 
summarise the results. 

The valuation scores corresponds to the results of the value and 
utility of the hierarchical objectives, while the performance metrics are 
the different functions that are used to summarise these results into 
point values (i.e. mean, median, standard deviation, coefficient of 
variation). Containing the results into a specific class ensures consis-
tency when applying different performance metrics, and provides a 
common ground to obtain result analysis tools such as Pareto front 
identification, and alternative rankings. Similarly to the other compo-
nents of Decisi-o-rama, the Evaluator class also supports user-defined 
performance metrics. 

3.5. Visualising objective hierarchies 

Commonly, hierarchical objectives are visualised through trees. This 
representation provides a logical connection between the hierarchies of 
nodes, and have been frequently used in different decision-analysis tools 
to visualise the results and states of a given preference model (Reichert 

Fig. 4. A conceptual representation of the objective class showing how values/ 
utilities are calculated from attributes (a) or from sub-objectives (b). 

J.C. Chacon-Hurtado and L. Scholten                                                                                                                                                                                                      



Environmental Modelling and Software 135 (2021) 104890

7

et al., 2013). These trees serve as a representation of the objective hi-
erarchy, but do not enable to simultaneously highlight model parame-
ters, and results. In addition, using trees to represent a hierarchical 
model, uses a vast amounts of empty screen (or paper), as the geometric 
structure its pyramidal, leaving at least half of the available space 
unused. 

To overcome these limitations, we rely on a variant of a sunburst 
diagram 5. Here, we can visualise several features of the objective hi-
erarchy, including: (1) its structure, (2) weights, and (3) values and/or 
utilities. The structure of the objective hierarchy is represented in 
concentric circular wedges, where the internal wedge represents the 
upper-level objective, while an external wedge represents a lower-level 
objective. In this direction, the circle in the centre corresponds to the 
highest-level objective. The weights (w) are represented with the pro-
portional relative area of the wedge (higher weights are represented 
with wider wedges). The values and utilities are represented using a 
concentric bar within the wedge that is limited between the 10 (p10) and 
90 (p90) percentile, oriented in the anti-clockwise direction, and scaled 
to the relative width of each wedge. For the particular case of the overall 
objective, the value of zero is located over the right side of the horizontal 
axis (in 0◦ position). The mean value/utility of each objective is repre-
sented by the color of the wedge, with lighter colors indicating lower 
mean values/utilities, while darker colors indicate higher values/utili-
ties. The visualisation in Fig. 5 represents one of the portfolios of the 
sample problem presented in Fig. 8. 

To further understand the proposed visualisation, we will use the 
example in Fig. 5. Here, we can observe that the average weights for 
each of the sub-objectives is about 0.25, being represented by wedges of 
the same size. It can also be seen that climate is the sub-objective with the 
highest variability in value, while n2 and p have the lowest (indicated by 
smaller orange wedge within the wedge of the respective sub-objective). 
Regarding mean values, it is possible to observe that p and n2 have the 
highest values (thus darker color), while climate has the lowest among 
the sub-objectives. Additionally, we see that the overall objective (the 
circle in the centre), has a mean value approximately of 0.5 (180◦

counter-clockwise from the horizon on the right), with a p10 on 0.46 and 
p90 on 0.55. 

3.6. Decisi-o-rama for solving portfolio problems 

One of the main features of Decisi-o-rama is the possibility to explore 
portfolios of alternatives that are linked to a preference model. To this 
end, it is possible to use Decisi-o-rama in three different ways. First, it is 
possible to assess the attributes of the lowest-level objectives directly by 

computing the consequences of the outcomes of individual alternatives. 
Second, if additivity of the alternatives can be assumed, the portfolio 
valuation model can be fed with the consequences of each action in line 
with how portfolio decision problems are often framed. Third, it is 
possible to pass the results of an assessment model directly into the at-
tributes of the preference model. In this context, it is possible to deter-
mine not only the portfolio solutions in terms of binary values (present 
or not), but also as a fraction of a given action or more complex in-
teractions between alternatives (provided by the assessment model). 

3.7. Implementation and software availability 

Decisi-o-rama has been implemented as an open-source project. As 
such, we have decided that Decisi-o-rama is published under the MIT 
license, making it available as it is, without restriction to access, 
modification or commercialisation. The intention of this licensing is to 
develop a community of users and collaborators to further advance its 
development, making MCDA accessible to practice and research. 

Decisi-o-rama is available in Python 3. x, making use of only few 
commonly used libraries, ensuring its sustainability in time, including 
NumPy (Oliphant, 2006), Numba (Lam et al., 2015) and SciPy (Virtanen 
et al., 2020). NumPy is used for mathematical and linear algebra oper-
ations, Numba is used to interface to the LLVM compiler (Lattner and 
Adve, 2004), thus supporting performance and scaleability, while SciPy 

Fig. 5. Visualisation of a hierarchical objective system using the proposed 
modified sunburst diagram. On the left, the overall objective is represented by 
the circle in the middle of the plot, while its sub-objectives are represented by 
concentric wedges. The mean value of the objective is represented by the color 
of the circle/wedge (darker is higher). The orange bars represent the values of 
percentile 10 and 90, in the scale 0–1 as indicated in the zoomed figure on the 
right side (larger uncertainty is represented by a longer orange bar). (For 
interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 

Fig. 6. Computational run time for the evaluation of binary (top) and quinary 
(bottom) objective hierarchies for differently sized random samples from the 
distribution of the attributes. 
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is limited to its use in calculating percentile statistics in the 
post-processing (Evaluator class). 

4. Demonstration 

In this section we will explore the performance and usability of 
Decisi-o-rama. To test its computational performance, we will use it to 
solve two large synthetic problems with a varying number of levels and 
nodes in homogeneous objective hierarchies (with the same number of 
sub-objectives); these types of problems are easily scaleable, and provide 
information about the capabilities of the tool to solve large problems. 
Following, the usability of the tool is showcased in modelling the port-
folio problem presented in (Lahtinen et al., 2017). 

The benchmarks and simulations are carried out in conventional 
settings. The tests in this implementation were carried out using Python 
3.7.7. The benchmark is performed in an Intel Core™ i5-3320M CPU @ 
2.60 GHz, with 8 GB of memory using Ubuntu (Linux) 18.04 64-bits. 
Tests in a Windows environment yielded similar results. The scripts to 
obtain these results are included in the documentation of Decisi-o-rama. 

4.1. Computational performance 

To test the computational performance, we are solving a hierarchical 
aggregation problem using perfect binary (2 sub-objectives) and quinary 
(5 sub-objectives) trees, for which each additional layer (depth level) in 
the hierarchy will yield an exponentially growing number of nodes. The 
analysis is carried out for 2 to 12 depth levels in a binary tree (thus 
ranging from 3 to 4095 nodes), and for 2 to 6 depth levels in a quinary 
tree (6–3906 nodes). Although in practice the use of such large objective 
hierarchies is unrealistic, we present these here as limiting cases for the 
sake of performance testing. 

The evaluation is set to use uniform random values for the attributes 
in the lowest-level objectives. For the test, we use a varying number of 
random samples from 100 (102) to 100 000 (105). In addition, we es-
timate the marginal utility at each node using an exponential utility 
function with fixed parameters for the lowest-level objectives, while 
using an additive aggregation function to estimate the joint utility at the 
intermediate and overall objectives. 

We used common indicators of computational performance, namely 
wall time (Fig. 6) and memory usage (Fig. 7), obtained on an Intel Core 
i5 at 2.6 Ghz. The results in (Fig. 6) indicate that the computational run 
time for the experiment is low, even for large problems (100 000 random 
runs in more than 4000 nodes), with evaluations being computed in the 
fraction of a second. 

To help summarising the information about the performance, two 
different experiments were carried out. For the run-time analysis 
(Fig. 6), we calculated the time that it took to run each tree, at different 
depth levels (from 2 to 12 for the binary, and from 2 to 6 for the quinary 
tree), for different number of random samples (from 100 to 100 000). 
For the memory usage (Fig. 7), we use a sequential run, indicating that 
over the same number of random samples, the trees at different depths 
are run in the same experiment, yielding a single line over time. It has to 
be noted that the run-times in Fig. 7 do not perfectly match those on 
Fig. 6, as it includes the definition of the problem and not only the 
execution time. 

The results show a slightly better performance for the quinary over 
the binary tree (Figs. 6 and 7). These results are explained by the fact 
that the binary tree in this experiment is deeper than the quinary tree, 
thus requiring the allocation of a larger number of stacks before the 
calculations are executed. Due to the architecture of Python, stacks tend 
to be rather big (in comparison to other lower-level programming lan-
guages) thus accounting for a more noticeable impact on memory use 
and run-times, than the amount of samples used in the experiment. 
However, run-time and memory used in computing both of the experi-
ments show an almost negligible impact (below 7 MB) for current-day 
hardware configurations. 

Fig. 7. Memory used in the evaluation of binary (top) and quinary (bottom) 
objective hierarchies for differently sized random samples from the distribution 
of attributes (this does not account for the memory use in launching 
the process). 

Fig. 8. Summary of the portfolio decision model. A1 … 9 alternatives, P1 and 
P2, some potential alternative portfolios. 
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These results show that Decisi-o-rama allows to handle large prob-
lems using little resources. The size of the models depends largely on the 
number of objectives, and not on the number of random samples that are 
drawn in the Monte Carlo experiment (Fig. 7). This leads to large models 
being stored with almost negligible memory footprint, making it suitable 
for analysis on nowadays standard hardware configurations. 

4.2. Using Decisi-o-rama in a portfolio decision analysis problem 

In this section we use Decisi-o-rama to the portfolio decision analysis 
problem as presented in Lahtinen et al. (2017). A detailed description is 
given in the original reference. Here, we will only describe those aspects 
which are relevant for demonstrating Decisi-o-rama for this decision 
problem. 

The decision problem is to support the selection of a portfolio of 
alternatives to reduce the water demand in the city of Bass. The overall 
objective consists not only in the saving of water volume (%), but also 
considers long-term financial effects (Million Australian Dollars, 
MAUD), climate change related impacts (Score) and consequences for 
the local water system (reduction in Phosphorous and Nitrogen Ton/yr). 
The problem is represented based on six attributes (Table 1): 

In this example, the cost and water demand are used as constraints to 
create portfolios, as a water saving target of 50% should be achieved, 
given a budget of 45 MAUD. Therefore, the value model is constructed 
over the remaining attributes in the model. To identify the best portfolio 
given these 6 objectives, 9 potential alternatives to reduce water de-
mand in the area are considered (Table 2): 

The consequences of these alternatives are given in Table 3, 
assuming a uniform distribution of the attributes within the given ranges 
in the brackets. 

In addition, a series of constraints define which alternatives can be 
combined into a potential solution portfolio (Table 4): 

As a result, the problem can be conceptualised as hierarchical esti-
mation of the overall value based on aggregation of four attributes, see 
Fig. 8. The alternatives are binary, indicating that they are executed 
(value of 1), or not (value of 0), to create the vector representing a 
portfolio. In Fig. 8, we present only two of the possible portfolios for 
illustration where in the first portfolio (P1) only alternative 1 is 
considered, and in the other (P2) alternative 1 and 2 are selected in 
combination. 

In the original decision problem, the weights are assumed equal. 
Here, we add uncertainty to the weights, assuming that these come from 
the same normal distribution where wĩN(0.25,0.05). Additionally, the 
attributes of the alternatives are modeled using a normal distribution 
within the upper and lower bounds as described in Table 3. 

Let us assume that the preferred portfolio is then the one with the 
highest expected value and smallest uncertainty (and ignore more 
complex preferences with regard to uncertainty in the outcomes). The 
optimal set of solutions in a multi-objective optimisation problem are 
found in the non-dominated (Pareto) set, where each of the solutions is 
better on at least one objective and at least equal over the other 
(dominated) solutions. The expected value is calculated using the mean 
of the distribution, while its uncertainty is expressed by the interquartile 
range (difference between the percentile 25 and 75, IQR, Fig. 9). To 
complement the analysis, we add another metric of variation in the form 

of coefficient of variation (COV, Fig. 9). In this particular case, several 
non-dominated solutions (meaning that are optimal in the multi- 
objective optimisation sense) can be found in the set. 

In addition, we include the proposed visualisation of the solutions in 
the non-dominated set (Fig. 10). Here we can observe the characteristics 
of the model structure, the results for the main and intermediate ob-
jectives, with an indication of its uncertainty. For example, it is possible 
to see that about half of the non-dominated solutions tend to produce 
low scores in the climate scenario, as indicated by the orange segments 
representing its value, being close to the start line in portfolios P2, P3, 
P5, P6 and P7 (remember that the value increases in counter-clockwise 
direction within each segment). Of the non-dominated portfolios, P8 
clearly outperforms (by mean) the others as indicated by the darker 
color of the circle at the centre and position of the orange wedge within 
the circle (over 270◦ from origin). 

We acknowledge the limitations in visualising many features 
simultaneously. Therefore, this visualisation proposes a way for the 
decision analyst of having an overall picture of the problem in terms of 
structure (weights, and hierarchy), results (values or utilities) and its 
uncertainty. We acknowledge that by no means this visualisation is 
aimed to obtain exact values (as wedges are scaled), and therefore, we 
see the benefits of presenting this figure alongside tables that describe 
the exact values of interest in the objectives, or by using interactive 
visualisations (such as mouseover displays or dynamic legends). 

Table 1 
Attributes of the test problem.  

Attribute Description Symbol Units 

1 Reduction in P release P Ton/yr 
2 Reduction in N2 release N2 Ton/yr 
3 Climate change impacts Climate Score 
4 Long-run savings Savings MAUD 
5 Implementation costs Cost MAUD 
6 Reduction in water demand Water %  

Table 2 
Alternatives of the test problem.  

Alternative Description 

1 Toilets with reduced water consumption 
2 Showers and faucets with reduced water consumption 
3 Washing machines with reduced water consumption 
4 Raintanks for toilet and garden water use (3 kl) 
5 Increment of the previous action with additional capacity (1.5 kL) 
6 Raintanks for residential hot water (3 kL) 
7 Small scale recycling for irrigation 
8 Aquifer usage for irrigation of public open space 
9 Dual reticulation system for recycling water  

Table 3 
Consequences of the alternatives in the sample problem.  

Alt P N2 Climate Savings Cost Water 

[T/yr] [T/yr] [-] [MAUD] [MAUD] [%] 

1 [0.9, 1.1] [0.09, 0.11] [0.0, 0.0] [1.8, 2.2] 1.0 3.0 
2 [1.1, 1.3] [0.09, 0.11] [0.0, 0.0] [1.8, 2.2] 1.0 7.0 
3 [1.3, 1.7] [0.14, 0.17] [0.5, 1.5] [1.8, 2.2] 2.0 4.0 
4 [0.0, 0.0] [0.00, 0.00] [-1.5, − 0.5] [1.8, 2.2] 10. 15. 
5 [0.0, 0.0] [0.00, 0.00] [0.0, 0.0] [0.9, 1.1] 8.0 10. 
6 [0.0, 0.0] [0.00, 0.00] [0.5, 1.5] [9.0, 11.] 11. 38. 
7 [0.5, 0.6] [0.00, 0.00] [0.0, 0.0] [32., 40.] 43. 15. 
8 [0.0, 0.0] [0.00, 0.00] [0.0, 0.0] [14., 18.] 23. 34. 
9 [4.0, 4.8] [0.40, 0.48] [-2.5, − 1.5] [3.5, 4.5] 20. 46.  

Table 4 
Portfolio constraints in the test problem.  

Constraint type Description 

Follow-up Alternative 5 can only be included if Alternative 4 is included 
Mutual 

exclusivity 
Alternative 4 and Alternative 6 cannot be simultaneously 
present 

Mutual 
exclusivity 

Alternative 7 and Alternative 8 cannot be simultaneously 
present 

Mutual 
exclusivity 

Alternative 7 and Alternative 9 cannot be simultaneously 
present 

Budget constraint Overall cost should be less than 45 MAUD 
Water target Overall water reduction should be greater than 50%  
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4.3. Limitations and potential for future extension 

The current version of Decisi-o-rama includes only basic MAVT and 
MAUT models. While these are generally sufficient for exploratory 
research and applications, future users (including ourselves) can 
implement user-defined preference structures that current preference 
models cannot handle (Langhans et al., 2014; Langhans and Lienert, 
2016; Reichert et al., 2019). More specifically, MAVT and MAUT assume 
rational decision makers, linear probability weighting and evaluation of 
alternatives on an absolute scale. These contradict observed 
decision-making behaviour which suggests, for example, presence of 
reference points, non-linear weighting of probabilities or ambiguous 
outcomes as well as different valuation of outcomes depending on 
whether these are framed as gains or losses, as reflected in Cumulative 
Prospect Theory (Stott, 2006). Beyond the modelling of preferences 
about outcomes and attached risks and uncertainties, incorporation of 
time-dependent preferences (Andreoni et al., 2015; Hermann and 
Musshoff, 2016) or social preferences (Chuang and Schechter, 2015; 
Galizzi and Navarro-Martinez, 2019) would also be necessary to 
advance the MCDA field both in terms of theory and practice. 

Beyond preference modelling for individual actions, further de-
velopments will be needed to encompass more complicated portfolio 
preferences, such as multi-linear value functions for robust portfolio 
modelling (Liesiö, 2014) and portfolio-level measures of risk and regret 
(Liesiö et al., 2007; Vilkkumaa et al., 2014). Also, the example we pre-
sented did assume additivity (i.e. independence) between the value of 
actions in a portfolio. Further, more involved assessment models on 
attribute level will be needed to reflect dependencies in portfolio per-
formance and contingencies in portfolio creation (Gustafsson and Salo, 
2005; Liesiö et al., 2008). 

Decisi-o-rama has two main limitations (that we can foresee) in the 
scope of its implementation that constraint its applicability in the view 
of more generic processes, or approches, to the MAVT/MAUT problem. 
First, Decisi-o-rama does not support correlated or conditioned random 
variables in its generators, as instances of the generated random vari-
ables are created on the fly; however, this can be circumvented by 
passing complete vectors to represent the samples of the random vari-
able instead of generators. Second, Decisi-o-rama only handles uncer-
tainty in the form of probability distribution functions, and not in other 
encoding such as fuzzy sets or possibilistic distributions. 

In the close future of Decisi-o-rama, we expect to add other features 
including sensitivity analysis and optimisation routines. In sensitivity 
analysis we see utility in developing local (one-at-a-time) and global 
sensitivity analysis for single portfolio, and model assessment respec-
tively. In the optimisation routines, we expect to integrate heuristic 
optimisation methods that support exploring the potential portfolios 
(thus implying binary optimisation), as well as integer, continuous, and 
mixed-integer optimisation using linear and non-linear approaches. 

The Decisi-o-rama library has been built keeping these possible de-
velopments in mind, ensuring flexibility to all types of extension and 

Fig. 9. Non-dominated (Pareto-optimal) portfolios based on expected value (mean), interquantile range (IQR), and coefficient of variation (COV).  

Fig. 10. Visualisation of the set of non-dominated (Pareto-optimal) solutions 
using the proposed visualisation alternative, for explanation see Fig. 5. 
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efficiency in computation. We explicitly invite the community to build it 
further and to explore its usability in real world applications. 

5. Conclusions 

We have introduced Decisi-o-rama, an open-source Python library 
for MCDA on single-alternative and portfolio approaches, in the context 
of multi-attribute utility/value theory. We have demonstrated the ca-
pabilities of the tool to efficiently manage large multi-criteria decision 
analysis problems that include uncertain attributes and preference pa-
rameters using conventional hardware. Therefore, it can be used for 
exploratory modelling of decision alternatives with decision-makers on- 
the-fly. Also, due to its high computational efficiency, it can be used to 
support robust portfolio modelling applications, alternative optimisa-
tion algorithms, and sensitivity analysis, that may enrich the decision 
analysis process. 

In addition, Decisi-o-rama offers a flexible implementation that 
supports user-defined preference models. In this respect, it is possible to 
define non-customary marginal value or utility functions as well as ag-
gregation functions. Also, it is possible that the users specify uncertain 
parameters of the preference model through their user-defined distri-
butions. These features ensure straightforward extensibility for different 
types of models and users. 

Keeping in mind that accessibility and extensibility are paramount 
for future usability of Decisi-o-rama, it is offered to the community as 
open-source. This same principle was maintained through the develop-
ment of the tool, reducing the number of third-party libraries for its 
execution and supporting the readability and maintainability of the 
code. Furthermore, the tool operates with regular Python objects, 
making its integration with other applications such as different attribute 
assessment (process) models and visualisation tools. With these de-
cisions, we hope that this tool will be used in different settings and for 
different user groups, facilitating the adoption of MCDA methods by 
researchers and practitioners alike. 
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