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a b s t r a c t 

Finding automatically multiple lesions in large images is a common problem in medical image analysis. 

Solving this problem can be challenging if, during optimization, the automated method cannot access 

information about the location of the lesions nor is given single examples of the lesions. We propose a 

new weakly supervised detection method using neural networks, that computes attention maps reveal- 

ing the locations of brain lesions. These attention maps are computed using the last feature maps of a 

segmentation network optimized only with global image-level labels. The proposed method can gener- 

ate attention maps at full input resolution without need for interpolation during preprocessing, which 

allows small lesions to appear in attention maps. For comparison, we modify state-of-the-art methods to 

compute attention maps for weakly supervised object detection, by using a global regression objective 

instead of the more conventional classification objective. This regression objective optimizes the number 

of occurrences of the target object in an image, e.g. the number of brain lesions in a scan, or the number 

of digits in an image. We study the behavior of the proposed method in MNIST-based detection datasets, 

and evaluate it for the challenging detection of enlarged perivascular spaces – a type of brain lesion – in 

a dataset of 2202 3D scans with point-wise annotations in the center of all lesions in four brain regions. 

In MNIST-based datasets, the proposed method outperforms the other methods. In the brain dataset, the 

weakly supervised detection methods come close to the human intrarater agreement in each region. The 

proposed method reaches the best area under the curve in two out of four regions, and has the lowest 

number of false positive detections in all regions, while its average sensitivity over all regions is similar 

to that of the other best methods. The proposed method can facilitate epidemiological and clinical studies 

of enlarged perivascular spaces and help advance research in the etiology of enlarged perivascular spaces 

and in their relationship with cerebrovascular diseases. 

© 2020 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Weakly supervised machine learning methods are designed to

e optimized with limited amounts of labelled data and are very

romising for a large number of medical image analysis problems.

s medical expertise is scarce and annotation time expensive, un-

upervised ( Schlegl et al., 2017 ) and weakly supervised methods
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 Qi et al., 2017; Bortsova et al., 2018 ) are most suited to extract in-

ormation from large medical databases, in which labels are often

ither sparse or non-existent. In this article, we use attention maps

or weakly supervised detection of brain lesions. Attention maps

an be computed to reveal discriminative areas for the predictions

f neural networks that process images such MRI, CT or X-ray.

ost attention maps computation methods have originally been

esigned to make deep networks more explainable ( Zhang et al.,

018; Oktay et al., 2018; Zhang and Zhu, 2018; Hwang and Kim,

016 ). As those methods do not require annotations for the opti-

ization of the networks but only global labels such as biomark-
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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ers or phenotypes ( Wang et al., 2019 ), they can also be optimized

using only counting objectives such as the number of lesions in a

brain region, and subsequently predict the location of these lesions

during test time. 

We propose a novel weakly supervised detection method, using

attention maps computed from the feature maps of a segmenta-

tion network architecture optimized with global labels. By using

the last feature maps of such an architecture, attention maps can

be computed at full input resolution, and small structures can be

detected more accurately. In this article, we focus on weak supervi-

sion with regression neural networks for counting. Regression net-

works have widely been optimized with local labels such as voxel

coordinates ( Redmon et al., 2016 ), distance maps ( Xie et al., 2018a;

2018b ) or depth maps ( Laina et al., 2016 ). 

Less frequently, regression networks have been used to pre-

dict global labels, such as age ( Cole et al., 2017; Wang et al.,

2019 ), brain lesion count ( Dubost et al., 2017 ), pedestrian count

( Seguí et al., 2015 ), or car count ( Mundhenk et al., 2016 ). Other

researchers have also optimized neural networks to infer count.

Ren and Zemel (2017) combined a recurrent network with an at-

tention model to jointly count and segment the target objects, but

need pixel-wise ground truths for the optimization. In bioimaging,

methods inferring count have often been applied to cell count-

ing in 2D images ( Lempitsky and Zisserman, 2010; Walach and

Wolf, 2016; Xie et al., 2018a; Tan et al., 2018; Alam and Islam,

2019 ). These approaches are often optimized to regress distance

or density maps computed from dot annotations at the center of

the target objects. Instead of regressing density maps, Paul Co-

hen et al. (2017) performed cell counting by regressing pixel-wise

labels that represent the count of cells in the neighborhood. In

our approach, pixel-wise labels are not needed for training: only

the image-level count are used. Earlier, Seguí et al. (2015) have

also optimized networks using image-level count labels alone for

digit and pedestrian count and visualized the attention of the net-

works. However, they did not quantify the performance of the re-

sulting weakly supervision detection. Xue et al. (2016) performed

cell counting also using regression network optimized with patch-

wise cell count, computed density maps, but did not quantify the

performance on the pixel level. In this article, we optimize regres-

sion networks using image-level count labels, but use this as a

means for detection. 

We compare the proposed method to four state-of-the-art

methods ( Simonyan et al., 2014; Springenberg et al., 2015; Schlem-

per et al., 2018; Selvaraju et al., 2017 ). Other weakly super-

vised detection methods have been proposed relying, for exam-

ple, on latent support vector machines (SVMs) ( Felzenszwalb et al.,

2010 ), a reformulation of the multiple instance learning mi-SVMs

( Andrews et al., 2003 ), or more recently, on multiple instance

learning with attention-based neural networks ( Ilse et al., 2018 ),

and on iterative learning with neural networks classifiers, where

the training set is made of subsets of most reliable bounding boxes

from the last iteration Sangineto et al. (2018) . 

We evaluate the methods using two datasets: a MNIST-based

detection dataset and a dataset for the detection of enlarged

perivascular spaces, a type of brain lesion that is associated with

cerebral small vessel disease. On 1.5T scans, perivascular spaces be-

come visible when enlarged. Following the neuroimaging standards

proposed by Wardlaw et al. (2013) , we use the consensus term

perivascular space (PVS) throughout the manuscript without al-

ways referring to their enlargement. PVS is an emerging biomarker,

and ongoing research attempts to better understand their etiol-

ogy and relation with neurological disorders ( Adams et al., 2014;

Duperron et al., 2019; Gutierrez et al., 2019 ). Most of the research

on perivascular spaces is based on quantification of PVS burden

using visual scores based PVS counts ( Adams et al., 2014; Potter

et al., 2015 ). Next to overall PVS burden, the location of PVS can
ave a clinical significance that varies depending on the brain re-

ion (midbrain, hippocampi, basal ganglia and centrum semiovale)

nd also within a brain region. For example PVS are thought to be

enign when observed where perforating vessels enter the brain

egion ( Jungreis et al., 1988 ), such as PVS in the lower half of the

asal ganglia. Understanding more precisely how the specific lo-

ations of PVS can relate with determinants of PVS and outcomes

an aid neurology research. Automatically quantifying and detect-

ng PVS is challenging, because PVS are very small (at the limit of

he scan resolution) and can easily be confused with several other

ypes of lesions ( Dubost et al., 2019b; Adams et al., 2013; Sudre

t al., 2018; Brown et al., 2018 ). Recently, automated methods have

een developed to address PVS quantification ( Ballerini et al., 2018;

udre et al., 2018; Sepehrband et al., 2019; Boespflug et al., 2018 ),

ut these methods were not evaluated in large datasets or for the

etection of individual PVS. The proposed method only requires

VS visual scores for its optimization and is evaluated for the de-

ection of individual PVS. In most of the large imaging studies, PVS

re quantified using visual scores based on counts. Considering the

eneralizability issues of neural networks, using networks that re-

uire only PVS count for their optimization can consequently be

onsidered to have more practical impact than networks that re-

uire annotations for their optimization. 

.1. State-of-the-art for attention map computation 

All state-of-the-art methods investigated in this article are

ased on convolutional neural networks (CNNs) that compute a

seudo-probability map which indicates the locations of the tar-

et objects in the input image. In the rest of the article, we call

his map the attention map . The methods can be divided into three

ategories: methods using class activation maps (CAMs), methods

ased on the gradient of the output of the network, and methods

sing perturbations of the input of the network. 

CAM methods This category consists of variants of the class acti-

ation maps (CAMs) method proposed by Zhou et al. (2016) . CAMs

re computed from the deepest feature maps of the network. These

eature maps are followed by a global pooling layer, and usually

ne or more fully connected layers to connect to the output of the

etwork. CAMs are computed during inference as a linear combi-

ation of these last feature maps, weighted by the parameters of

he fully connected layers learnt during training. If the last fea-

ure maps have a much lower resolution than the input – as is the

ase in deep networks with multiple pooling layers – the result-

ng attention maps can be very coarse. This is suboptimal when

mall objects need to be localized, or when contours need to be

egmented precisely. To alleviate this issue, Dubost et al. (2017) ;

chlemper et al. (2018) proposed to include finer-scale and lower-

evel feature maps in the computation of the attention maps.

ubost et al. (2017) combined higher and lower level feature

aps via skip connections and concatenation similarly to U-Net

 Ronneberger et al., 2015 ), while Schlemper et al. (2018) used gated

ttention mechanisms, which rely on the implicit computation of

nternal attention maps. Selvaraju et al. (2017) proposed to gen-

ralize CAM to any network architecture, using weights computed

ith the derivative of the output. Unlike other CAM methods, the

ethod by Selvaraju et al. (2017) does not require the presence of

 global pooling layer in the network, and can be computed for

ny layer of the network. 

Gradient methods Simonyan et al. (2014) proposed to compute

ttention maps using the derivative of a classification network’s

utput with respect to the input image. These attention maps are

ne-grained, but often noisy. Springenberg et al. (2015) reduced

his noise by masking the values corresponding to negative entries

f the top gradient (coming from the output of the network) in the

eLU activations. Gradients methods can be applied to any CNN. 
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Fig. 1. Principle of CAM methods for regression. GP stands for Global Pooling. f k 
correspond to the feature maps of the last convolutional layer. Disks correspond 

to scalar values. w k are the weights of the fully connected layer. Left: the architec- 

ture of the network during training. Right: the architecture at inference time, where 

the global pooling is removed. During training, the network outputs a scalar value 

which is compared to the image level label to compute the loss and update the 

network’s parameters. During testing, the global pooling layer is removed. Conse- 

quently, the network outputs an image. This image is computed as the linear com- 

bination of feature maps of the layer preceding the global pooling layer using the 

weights of the following fully connected layer. 
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Perturbation methods Perturbation methods compute attention

aps by applying random perturbations to the input and observe

he changes in the network output. These methods are model-

gnostic, they can be used with any prediction model, not even

ecessarily restricted to neural networks. One of the simplest and

ost effective implementations of such methods was recently pro-

osed by Petsiuk et al. (2018) with masking perturbations. The in-

ut is masked with a series of random smooth masks, before being

assed to the network. Using a linear combination of these masks

eighted by the updated network classification scores, the au-

hors could compute attention maps revealing the location of the

arget object. This method relies on a mask sampling technique,

here the masks are first sampled in a lower dimensional space,

nd then rescaled to the size of the full image. Earlier, Fong and

edaldi (2017) proposed several other perturbation techniques in-

luding replacing a region with a constant value, injecting noise,

nd blurring the image. Perturbation methods are the most gen-

ral as they can also be applied to other classifiers than CNN. We

o not study perturbation models in this paper, because their op-

imization was more challenging than that of other methods, espe-

ially for the detection of small objects. 

.2. Contributions 

The contribution of this work is fourfold. First, we propose a

ovel weakly-supervised detection method, named GP-Unet . The

rinciple of the method is to use a segmentation architecture with

kip connections to compute attention maps at full input resolu-

ion to help the detection of small objects. A preliminary version

f this work was presented in ( Dubost et al., 2017 ). 

Second, the proposed method is compared to five previously

ublished methods ( Dubost et al., 2017; Schlemper et al., 2018;

elvaraju et al., 2017; Simonyan et al., 2014; Springenberg et al.,

015 ). 

Third, we assess in MNIST-based ( LeCun et al., 1998 ) datasets

hether a classification or regression objective performs best for

he weakly supervised detection. 

Fourth, we evaluate the methods both in MNIST-based detection

atasets and in the 3D detection of enlarged perivascular spaces.

he MNIST datasets is used as a faster and more controlled experi-

ental setting to study methodological differences between atten-

ion map computation methods, optimization objectives, and archi-

ectures. We evaluate the best methods in a real-world practical

ask with clinical relevance: the detection of PVS. The current work

s the largest study to date to evaluate automated PVS detection in

 large dataset (four regions and 2202 scans) using center locations

f PVS. 

. Methods 

We implemented seven methods for weakly supervised de-

ection with CNNs: (a) GP-Unet (this article), (b) GP-Unet no

esidual ( Dubost et al., 2017 ) the first proposed version of GP-

net, (c) Gated Attention ( Schlemper et al., 2018 ), (d) Grad-CAM

 Selvaraju et al., 2017 ), (e) Grad ( Simonyan et al., 2014 ), (f) Guided-

ackpropgation ( Springenberg et al., 2015 ), and (g) an intensity

hresholding method for brain datasets only. For all methods, the

NNs are designed to output a single scalar ˆ y ∈ R and are trained

ith mean squared error using only global labels: the number of

ccurrences of target objects y ∈ N . Then for a given input image

 the attention map M is computed at inference time. Below, we

etail the computation of these attention maps for each method. 
.1. Computation of the attention maps 

.1.1. CAM methods 

The principle of all CAM methods is to use the feature maps –

r activation maps – of the network to compute attention maps.

AM methods usually exploit the feature maps of the last con-

olutional layer of the network, as they are expected to be more

losely related to the target prediction than feature maps of in-

ermediate layers. Zhou et al. (2016) first proposed to introduce

 global pooling layer after the last convolution. The global pool-

ng layer projects each feature map f k to a single neuron, resulting

n a vector of N scalar values, where N is the number of feature

aps f k in the last layer. The global pooling layer is followed by a

ully connected layer to a number of neurons corresponding to the

umber of classes (for classification), or to a single neuron repre-

enting the output ˆ y ∈ R (for regression). The network can then be

rained with image-level labels using, for example, a cross-entropy

r mean squared error loss function. During inference the global

ooling layer can be removed, and the attention map is then com-

uted as a linear combination of the feature maps f k (before global

ooling) using the weights of the fully connected layer w k : 

 CAM 

= 

N ∑ 

k 

w k f k . (1) 

The computation of CAM attention maps is illustrated in Fig. 1 . 

GP-Unet In the approach by Zhou et al. (2016) the attention map

s computed from the last feature maps of the network, which are

ften downsampled with respect to the input image due to pool-

ng layers in the network. To alleviate this problem, we use the

ame principle with the architecture of a segmentation network

U-net from Ronneberger et al. (2015) ), i.e. with an upsampling

ath, where the feature maps f k of the last convolution layer - be-

ore global pooling (GP) - have the same size as the input image

 (see architectures in Fig. 2 and Section 2.2 ). The attention maps

re still computed with Eq. 1 . 

GP-Unet no residual 

In our earlier work, we proposed another version of GP-Unet

 Dubost et al., 2017 ) based on a deeper architecture without resid-

al connections (see architectures in Fig. 2 and Section 2.2 ). Ex-

eriments showed that such deep architecture was not needed

 Dubost et al., 2019a ), and could slow the optimization. We
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Fig. 2. Architectures. A is GP-Unet’s architecture. B is Gated Attention architecture. C is the base architecture used for Grad, Guided-backpropagation, and Grad-CAM. D is 

GP-Unet no residual architecture. GAP stand for global average pooling layer, FC for fully connected layer, and A for attention gate. All architectures are detailed in Section 2.2 . 

In architecture A, we showed in red the blockwise skip connections. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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refer to this approach as GP-Unet no residual in the rest of

the paper. To detect hyperintense brain lesions in MRI data

Dubost et al. (2017) also rescaled the attention map values to [0,1]

and summed them pixel-wise with rescaled image intensities. This

is not needed in the new version of GP-Unet above because resid-

ual connections between the input and output of two successive

convolutional layers allow the network to learn this operation. 

Gated Attention While we proposed to upsample and concate-

nate features maps of different scales ( Dubost et al., 2017 ) as ad-

vised for segmentation networks by Ronneberger et al. (2015) ,

Schlemper et al. (2018) proposed instead a more complex gated at-

tention mechanism to combine information from different scales.

This gated attention mechanism relies on attention units – also

called attention gates – that compute soft attention maps and use

these maps to mask irrelevant information in the feature maps.

Here, global pooling is applied at every scale s and the results are

directly linked to the output by a fully connected layer aggregating

information across scales. Schlemper et al. (2018) proposed three

aggregation strategies: concatenation, deep supervision ( Lee et al.,

2015 ), and fine-tuning by training the network for each scale sepa-

rately. With the fine tuning strategy, the authors reached a slightly

higher performance than concatenation and deep supervision. For

the sake of simplicity, we employed the concatenation strategy in

our experiments. See Fig. 2 for an illustration of the architectures

of Gated Attention and of GP-Unet. The attention maps M Gated of

the gated attention mechanism method are computed as: 

M Gated = 

∑ 

s 

N s ∑ 

k 

w 

s 
k f 

s 
k , (2)

where w 

s 
k 

are the weights of the last fully connected layer for the

neurons computed from the feature maps f s 
k 

at scale s . 

Grad-CAM Finally, Grad-CAM ( Selvaraju et al., 2017 ) is a general-

ization of CAM Zhou et al. (2016) to any network architecture. The

computation of the attention map is similar to Eq. 1 , but instead

of the weights w , uses new weights α in the linear combination.
k k 
he weights αk are computed with the backpropagation algorithm.

ith this technique the global pooling layer is not needed any-

ore, and attention maps can be computed from any layer in any

etwork architecture. More precisely, each weight αk is computed

s the average over all voxels of the derivative of the output ˆ y with

espect to the feature maps f k of the target convolution layer. In

ur case, we use the feature maps of the last convolution layer

receding global pooling, and the weights are computed as: 

k = 

1 

Z 

∑ ∂ ̂  y 

∂ f k 
, (3)

here Z is the number of voxels in the feature map f k . The atten-

ion map M Grad−CAM 

is then computed as a linear combination of

he feature maps weighted by the αk , and upsampled with linear

nterpolation to compensate the maxpooling layers: 

 Grad−CAM 

= 

N ∑ 

k 

αk f k . (4)

n their original work, Selvaraju et al. (2017) proposed to compute

ttention maps from any layer in the network. While this approach

as the advantage of generating several explanations for the net-

ork’s behavior, choosing which layer should be used to compute

he global attention of network becomes less obvious and objec-

ive. In our experiments, we observed that attention maps com-

uted from the first layers of the network highlight large brain

tructures, and are not helpful for the detection tasks. To be more

omparable to the other approaches, we used the feature maps f k 
f the last convolution layer. 

.1.2. Gradient methods 

Grad Simonyan et al. (2014) proposed to compute attention

aps by estimating the gradient of the output with respect to the

nput image. Gradients are computed with the backpropagation al-

orithm. This method highlights pixels for which a small change

ould affect the prediction ˆ y by a large amount. The attention map
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 Grad is computed as: 

 Grad = 

∂ ̂  y 

∂ I 
. (5) 

Guided-backpropagation The attention maps obtained by Grad

an highlight fine detail in the input image, but often display noise

atterns. This noise mostly results from negative gradients flow-

ng back in the rectified linear unit (ReLU) activations. In the-

ry these negative gradients should relate to negative contribu-

ions to the network prediction, in practice they deteriorate at-

ention maps and are believed to interact with positive gradients

ccording to an interference phenomenon ( Korbar et al., 2017 ).

ith the standard backpropagation algorithm, during the back-

ard pass, ReLU nullifies gradients corresponding to negative en-

ries of the bottom data (input of the ReLU coming from the in-

ut to the CNN), but not those that have a negative value in the

op layer (which precedes the ReLU during the backward pass).

pringenberg et al. (2015) proposed to additionally mask out the

alues corresponding negative entries of the top gradient in the

eLU activations. This is motivated by the deconvolution approach,

hich can been seen as a backward pass through the CNN where

he information passes in reverse direction through the ReLU acti-

ations ( Simonyan et al., 2014; Springenberg et al., 2015 ). Masking

ut these negative entries from the top layer effectively clears the

oise in the attention maps. 

.1.3. Intensity method – for brain datasets only 

PVS appear as hyperintense areas in the T2-weighted images. In

ome regions – especially midbrain, and to some extent basal gan-

lia – the image intensity can often be discriminative enough and

an be used as a crude attention map. We therefore include the

aw image intensity as one of the attention maps in our compari-

on, and, after non-maximum suppression, use the lesion count n

redicted using the base architecture (see Section 2.2 ) to select the

hreshold. 

.2. Architectures 

In total, four architectures were implemented to evaluate all

ix methods. These architectures are illustrated in Fig. 2 . Grad,

uided-backpropagation, and Grad-CAM use the same neural net-

orks (same architecture and weights), but differ in the compu-

ation of the attention maps during inference. The other methods

equire different architectures, and are trained separately. In the

ollowing section, we detail the components of each architecture

n 3D. 

We perform experiments on 2D CNNs for the MNIST dataset

nd on 3D CNNs for the brain dataset. The 3D CNNs use 3D convo-

utional layers with 3x3x3 filters with zero-padding, and 3D max-

ooling layers of size 2x2x2. Similarly, the 2D CNNs use 2D con-

olutional layers with 3x3 filters with zero-padding, and 2D max-

ooling layers of size 2x2. The 2D CNNs always use four times

ewer features maps than their 3D counterpart to allow faster ex-

erimentation. After the last convolution layer, each feature map

s projected to a single neuron using global average pooling. These

eurons are connected with a fully connected layer to a single neu-

on indicating the output of network ˆ y ∈ R . Rectified linear unit

ReLU) activations are used after each convolution. We use skip

onnections by concatenating the feature maps of different layers

and not by summing them). 

GP-Unet architecture (A in Fig. 2 ) 

GP-Unet architecture is that of small segmentation network,

ith an encoder and a decoder part. The architecture starts with

wo convolutional layers with 32 filters each. The output of these

wo layers is concatenated with the input. Then follows a max-

ooling layer and two convolutional layers with 64 filters each.
he feature maps preceding and following these two layers are

oncatenated. In order to combine of features at different scales,

hese low dimension feature maps are upsampled, concatenated

ith features maps preceding the maxpooling layer, and given to

 convolutional layers of 32 filters. Then follows a global average

ooling layer, from which a fully connected layer maps to the out-

ut. This architecture is simple (308 705 parameters for the 3D

ersion), fast to train (less than one day on 1070 Nvidia GPU), and

llows computing attention maps at the full resolution of the input

mage. 

GP-Unet no residual architecture (D in Fig. 2 ) 

The architecture of GP-Unet no residual was proposed by

 Dubost et al., 2017 ). In this work, we only changed the global

ooling layer from maximum to average to make comparisons be-

ween methods more meaningful. This network is a segmentation

etwork with a downsampling and upsampling path. The down-

ampling path has two convolutional layers of 32 filters, a max-

ooling layer, two convolutional layers of 64 filters, a maxpooling

ayer, and one convolutional layer of 128 filters. The upsampling

ath starts with an upsampling layer, concatenates the upsampled

eature maps with the features maps preceding the maxpooling

ayer in the downsampling path, computes a convolutional layer

ith 64 filters, and repeat this complete process for the last scale

f feature maps, with a convolutional layer of 32 filters. After that,

omes the global pooling layer, and fully connected layer to a sin-

le neuron. 

The difference with architecture (A) ( Dubost et al., 2017 ) is that

he feature maps are downsampled twice instead of once, and that

here are no skip connections between sets of two consecutive

onvolutions (blockwise skip connection in red in Fig. 2 ). Conse-

uently, the last convolution layer does not have access to the in-

ut image intensities. We believe these residual connections make

he design of GP-Unet more flexible than this architecture, by fa-

ilitating for instance the network to directly use the input inten-

ities and locally adjust its predictions. This can be crucial for the

orrect detection of brain lesions. This architecture has twice more

arameters (637 185 parameters for the 3D version) than that of

P-Unet. 

Gated Attention architecture (B in Fig. 2 ) We adapted the

rchitecture of the Gated Attention network proposed by

chlemper et al. (2018) to make it more comparable to the

ther approaches presented in the current work. Here, the Gated

ttention architecture is the same as GP-Unet architecture (A)

xcept for two differences: to merge the feature maps between

he two different scales, instead of upsampling, concatenation

nd convolution, we use the attention gate as described by

chlemper et al. (2018) . The other difference is that, in this archi-

ecture (B), the downsampled feature maps are also projected to

ingle neurons with global pooling. The neurons corresponding to

he two different scales are then aggregated (using concatenation)

nd connected to the single output neuron with a single fully

onnected layer. This architecture has 198 580 parameters for the

D version. 

The attention gate computes a normalized internal attention

ap. In their implementation, Schlemper et al. (2018) proposed a

ustom normalization to prevent the attention map from becoming

oo sparse. We did not experience such problems and opted for the

tandard sigmoid normalization. 

Similarly to GP-Unet, Gated Attention computes attention maps

t the resolution of the input image. However it combines multi-

evel information with a more complex process than GP-Unet. 

Base architecture (C in Fig. 2 ) 

The network architecture used for Grad, Guided-

ackpropagation, and Grad-CAM is kept as similar as possible

o that of GP-Unet for better comparison of methods. It starts

ith two convolutional layers with 32 filters each. The output
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Fig. 3. Examples of PVS in the centrum semiovale. This is a crop of a T2-weighted 

image in axial view. PVS are indicated with blue arrows. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version 

of this article.) 
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of these two layers is concatenated with the input. Then follows

a maxpooling layer and two convolutional layers with 64 filters

each. The output of these two layers is concatenated with the

feature maps following the maxpooling layer, and is given directly

to the global average pooling layer. In other words, we apply

global pooling to the original image (after maxpooling) and the

feature maps after the second convolution at each scale - so on

1+32+64 feature maps. This architecture has shown competitive

performance on different types of problems in our experiments

(eg. in brain lesions in ( Dubost et al., 2019b )). With this archi-

tecture, unlike GP-Unet, Grad-CAM produces attention maps at a

resolution twice smaller than that of the input image, and could

miss small target objects. This architecture has 196 418 parameters

for the 3D version. 

3. Experiments 

In this work, we compare our proposed method to five

weakly supervised detection methods. We use the MNIST datasets

( LeCun et al., 1998 ) to compare regression against classification

for weak supervision. We compared performance of the different

methods – using regression objectives – on weakly supervised le-

sion detection in a large brain MRI dataset. 

3.1. MNIST Datasets 

We construct images as a grid of 7 by 5 randomly sam-

pled MNIST digit images. Examples are shown in Figs. 4 and

5 . Each digit is uniformly drawn from the set of all train-

ing/validation/testing digits, hence with a probability 0.1 to be a

target digit d . To avoid class imbalance, we adapt the dataset to

each target digit d by sampling 50% of images with no occurrence

of d , and 50% of images with at least one occurence of d , resulting

in ten different datasets. 

3.2. Brain datasets 

Brain MRI was performed on a 1.5-Tesla MRI scanner (GE-

Healthcare, Milwaukee, WI, USA) with an eight-channel head coil

to obtain 3D T2-contrast magnetic resonance scans. The full imag-

ing protocol has been described by Ikram et al. (2015) . In total, our

dataset contains 2202 brain scans, each scan being acquired from

a different subject. 

An expert rater annotated PVS in four brain regions: in the

complete midbrain and hippocampi, and in a single slice in axial

view in the basal ganglia (the slice showing the anterior commis-

sure) and the centrum semiovale (the slice 10 cm above the top of

the lateral ventricle). The annotation protocol follows the guide-

lines by Adams et al. (2014) and Adams et al. (2013) for visual

scoring of PVS, with the difference that Adams et al. (2014) only

counted the number of PVS, while in the current work, all PVS

have been marked with a dot in their center. Fig. 3 shows exam-

ples of PVS in the centrum semiovale. 

3.3. Aim of the experiments 

In the MNIST datasets, the objective is to detect all occurrences

of a target digit d . During optimization, the regression objective is

to count the number of occurrences of d , while the classification

objective is to detect the presence of at least one occurence of d . 

In the experiments on 3D brain MRI scans, the objective is to

detect enlarged perivascular spaces (PVS) in the four brain regions

described in Section 3.2 . For these datasets we investigate only re-

gression neural networks. These networks are optimized using the

number of annotated PVS in the region of interest as the weak

global label, as proposed in our earlier work Dubost et al. (2019b) .
he location of PVS are only used for the evaluation of the detec-

ion during inference. 

.4. Preprocessing 

MNIST data We scale the image intensity values in the MNIST

rid images between zero and one to ease the learning process. 

Brain scans We first apply the FreeSurfer multi-atlas segmenta-

ion algorithm ( Desikan et al., 2006 ) to locate and mask the mid-

rain, hippocampi, basal ganglia and centrum semiovale in each

can. For each region, we then extract a fixed volume centered on

he center of mass of the region. For midbrain (88x88x11 voxels),

ippocampi (168x128x84 voxels) and basal ganglia (168x128x84

oxels) these cropped volumes contain the full region. The centrum

emiovale is too large to fit in the memory of our GPU (graphics

rocessing unit), so for this region we only extract the slices sur-

ounding the slice that was scored by the expert rater (250x290x14

oxels). Consequently, we apply a smooth region mask to nullify

alues corresponding to other brain regions. Finally, we scale the

ntensity values between zero and one to ease the learning pro-

ess. The preprocessing and extraction of brain regions is presented

n more details in previous work ( Dubost et al., 2019b ). 

.5. Training of the networks 

All regression networks are optimized with Adadelta

 Zeiler, 2012 ) to minimize the mean squared error between

heir prediction ˆ y ∈ R and the ground truth count y ∈ N . The

lassification networks in our MNIST experiments were optimized

ith Adadelta and the binary cross-entropy loss function. 

Weights of the convolution filters and fully connected layers are

nitialized from a Gaussian distribution with zero mean and unit

ariance, and biases are initialized to zero. 

A validation set is used to prevent over-fitting. The optimiza-

ion is stopped at least 100 epochs after the validation loss stopped

ecreasing. We select the model with the lowest validation loss.

or the MNIST datasets, the models are trained on a set of 500

mages (400 for training and 100 for validation). For the brain

atasets, the models are trained on a set of 1202 scans (10 0 0 for

raining and 202 for validation). During training, we use on-the-fly

ata augmentation with a random combination of random trans-

ations of up to 2 pixels in all directions, random rotations up

o 0.2 radians in all directions, and random flipping in all direc-

ions. For the MNIST datasets, the batch size was set to 64. For
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Fig. 4. Examples of attention maps of the different weakly supervised detections methods for the detection of digit 4. Top-left: MNIST image. All methods with 

optimized with regression objectives. 

Fig. 5. Examples of attention maps of GP-Unet for the detection of digit 4 and optimized with classification and regression objectives. Left: MNIST image, middle: 

attention map generated from a classification network, right: attention map generated from a regression network. The first row displays an image without digit 4. The 

second row displays an image with seven occurences of the digit 4. For the classification method, in the first row we notice more false positives than for the regression 

method. On the second row, the two digits 4 at the top are less highlighted than the other digits 4 in the image. It is not the case for the regression attention map. This 

observation supports the hypothesis that attention maps computed from classification objectives tend to focus more on the most obvious occurence of the target object, 

instead of equally focusing on all occurrences. On the right, we show the difference between the attention maps for regression and classification. 
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he brain datasets, because of GPU memory constraints, the net-

orks are trained per sample: each mini-batch contains a single

D image. As the convergence can be slow in some datasets, we

rst trained the networks on the smallest and easiest region (mid-

rain), and fine-tune the parameters for the other regions, similarly

o Dubost et al. (2019b) . 

We implemented our algorithms in Python in Keras

 Chollet et al., 2015 ) with TensorFlow as backend, and ran

he experiments on a Nvidia GeForce GTX 1070 GPU and Nvidia

esla K40 1 The average training time was one day. 

.6. Negative values in attention maps 

Attention maps can have negative values, which meaning can

iffer for CAM methods and gradient methods. For CAM methods,

egative values could highlight objects in the image which pres-

nce is negatively associated with the target objects. For gradient

ethods, they correspond to areas where increasing the intensity

ould decrease the predicted count (or where decreasing the in-
1 We used computing resources provided by SurfSara at the Dutch Cartesius clus- 

er. 

g  

a  

o  

a  
ensity would increase the predicted count, these are the same ar-

as). 

For image understanding, keeping negative values in attention

aps seems most appropriate as the purpose is to discover which

arts of the image contributed either negatively or positively to

he prediction, and how a change in their intensity could affect

he prediction. For detection, the purpose is to find to find all

ccurrences of the target object in the image and ignore other

bjects. In the literature, two approaches have been proposed to

andle negative values for object detection: either setting them

o zero, or taking the absolute value. CAM methods ( Zhou et al.,

016; Selvaraju et al., 2017 ) nullify negative values of the attention

aps to mimic the behavior of ReLU activations. Gradient meth-

ds ( Simonyan et al., 2014; Springenberg et al., 2015 ) focus on the

agnitude of the derivative and thus compute the absolute value. 

In our case, we aim to solve a detection problem in datasets

here the target objects are among the highest intensity values in

he image. For gradient methods, this implies that negatives val-

es in the attention maps do not indicate the location of the tar-

et object in our case. We can therefore ignore negative values,

nd decided to nullify them. For CAM methods, we follow the rec-

mmendation of the literature, and also nullify negative values in

ttention maps. Consequently, we nullified negative values for all
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methods. Nullifying negative values actually only impacts the vi-

sualization of the attention maps, and not the detection metrics,

as we select only candidates with highest values in the attention

maps ( Section 3.7 ). On the contrary taking the absolute value could

increase the number of detections and would impact our detection

metrics. 

3.7. Performance evaluation 

The output of all weakly-supervised detection methods pre-

sented in Section 2 are attention maps. We still need to obtain the

coordinates of the detections, and evaluate the matching with the

ground truth. 

After setting negative values to zero ( Section 3.6 ), we apply

non-maximum suppression on the attention maps using a 2D

(MNIST, centrum semiovale and basal ganglia) or 3D (hippocampi

and midbrain) maximum filter of size 6 voxels (which corresponds

to 3 mm in axial plane, the maximum size for PVS as defined

by Adams et al. (2013) – we used the same value for the MNIST

datasets) with 8 neighborhood in 2D or 26 neighborhood in 3D.

This results in a set of candidates that we order according to their

value in the attention map. The candidates with highest values are

considered the most likely to be the target object. 

For the basal ganglia and the centrum semiovale, our dataset

does not contain full 3D annotations, but only provides annotations

for a single 2D slice per scan (see Section 3.2 ). As annotations were

only available in a single slice, we evaluated the attention maps

only in the annotated slice, although we can compute attention

maps for the complete volume of these regions. For our evaluation

we extract the corresponding 2D slice from the attention map prior

to post-processing and compute the metrics only for this slice. In

case no lesion was annotated, we selected the middle slice of the

attention map as a reasonable approximation of the rated slice. 

As we aim to solve a detection problem, we need to quan-

tify the matching between two sets of dots: the annotators dots,

and the algorithms’ predictions. We used the Hungarian algorithm

( Kuhn, 1955 ) to create an optimal one-to-one match between each

detected lesion or digit to the closest annotation in the ground

truth. For the brain dataset, we counted a positive detection if

a detection was within at most 6 voxels from the corresponding

point in the ground truth. This corresponds to the maximum di-

ameter of PVS in the axial view, as defined in Adams et al. (2013) .

For the MNIST datasets, we counted a positive detection if a detec-

tion fell inside the 28 ∗28 pixels wide original MNIST image of the

target digit. 

As the algorithms output candidates with confidence scores, we

can compute free-response receiver operating characteristic (FROC)

curves ( Bandos et al., 2009 ) that show the trade-off between high

sensitivity and the number of false positives, in our case more pre-

cisely the average number of false positives per scan (FPavg). To

draw these curves, we varied the number of selected candidates.

For each network in our experiments, we report the area under

the FROC curve (FAUC) computed from 0 to 5 FPavg for MNIST

and from 0 to 15 FPavg for brain lesion detection. We also show

the standard deviation of the FAUC, computed by bootstrapping the

test set. 

In addition to the attention maps, the regression networks also

predict the number of target objects in the image. For the detec-

tion of brain lesions, we use this predicted count rounded to an

integer n to select the top- n candidates with highest scores, and

compute the corresponding sensitivity and FPavg, and the average

number of false negative per scan (FNavg). For statistical signifi-

cance of difference of FAUCs, we performed a bootstrap hypothesis

testing and consider statistical significance for p-value lower than

0.05. For FPavg, FNavg and Sensitivity we performed Wilcoxon tests

using p-value lower than 0.05. 
.8. Intra-rater variability of the lesion annotations 

Intra-rater variability has been measured in each region using

 separate set of 40 MRI scans acquired and annotated with the

ame protocol. The rater annotated PVS twice in each scan with

wo weeks of interval, and in a different random order. 

To compute the sensitivity and FPavg for the Intra-rater vari-

bility, one of the two series of annotations has to be set as ref-

rence to define true positives, positives and false positives. We

uccessively set the first and second series of annotations as refer-

nce, leading to two different results. All results for all regions are

isplayed next to the FROC curves in Fig. 7 . 

. Results 

.1. Regression vs classification objectives - MNIST datasets 

The methods were evaluated on left-out test sets of 500 images,

alanced as described in Section 3.1 . Fig. 6 compares the FAUC

f regression and classification networks, for all MNIST digits, and

or all methods. Additional results such as FROC curves, sensitivity,

Pavg and FNavg are given in Appendix A and Appendix B . Over-

ll, regression methods reach a higher detection performance than

lassification methods. For all digits, regression GP-Unet no resid-

al reaches the best performance. The second best method for all

igits is regression GP-Unet. Both GP-Unet regression methods are

onsistently better than any other method for all digits. Regression

rad-CAM comes third, and regression Guided-backpropagation

ourth. Grad and Gated Attention come last. The ordering of best

lassification methods is different than that of the best (regression)

ethods: Guided-backpropagation comes first, Grad-CAM second

nd GP-Unet no residual third. 

Fig. 4 shows an example of the attention maps obtained for

ll weakly supervised methods optimized with regression objec-

ives. As expected, Grad produces noisy attention maps with many

igh values, for both classification and regression objectives, and

uided-backpropagation corrects these mistakes. Gradient meth-

ds seems to highlight multiple discriminating features of the digit

 (e.g. its top branches), while CAM methods highlight a single

arger, less detailed region. This may suggest that gradients meth-

ds may be more suited to weakly supervised segmentation, al-

hough judging from the figure, none of the methods seems capa-

le of correctly segmenting digits. 

Fig. 5 compares attention maps of GP-Unet optimized with re-

ression and classification. We noticed two interesting differences.

irst, when the target digit is present on the image, the regres-

ion attention map highlights each occurrence of the target dig-

ts with a similar intensity, while the classification attention map

ighlights more strongly the most obvious occurrences of the tar-

et digit. Second, when the target digit is not present in the image,

ontrary to the regression attention map, the classification atten-

ion map may highlight many false positives, possibly resulting in

 significant drop in the detection performance. 

Regression Guided-backpropagation vs Grad. Regression Guided-

ackpropagation detects of all digits more accurately than regres-

ion Grad. The same comparison holds for classification Guided-

ackpropagation versus classification Grad. However Regression

rad sometimes performs as well (digits 4, 6, 7) or better (digits

, 9) than Classification Guided-backpropagation, which underlines

he added-value of optimizing weakly supervised detection meth-

ds with regression objectives instead of classification objectives. 

.2. Variations of the architecture of GP-Unet - MNIST datasets 

In this section we studied the influence of the skip connections

etween sets of two consecutive convolutions (blockwise skip con-
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Fig. 6. FAUCs ( Section 3.7 ) on the MNIST dataset for all methods. Each subplot corresponds to the detection of a different digit. Results for regression networks are 

displayed in light blue, and results for classification networks are displayed in indigo. FAUCs are displayed with standard deviations computed by bootstrapping the test set. 

A is GP-Unet, B GP-Unet no residual, C Gated Attention, D Grad-CAM, E Grad and F Guided-backpropagation. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

Fig. 7. FROC curves of enlarged perivascular spaces detection in the brain MRI in four different regions. The average number of false positives per scan is displayed on 

the x-axis, and the sensitivity on the y-axis. Axes have been rescaled for better visibility. The green triangles indicate intra-rater agreement (on a smaller set) as described 

in Section 3.8 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 8. Attentions maps in the midbrain. The top left image shows the slice of an example image of the midbrain after preprocessing, with PVS indicated with red circles. 

The other images correspond to attention maps computed for that same slice. Red values correspond to high values in the attention maps. The intensity baseline method 

in the bottom right corner is actually the same as the image in the upper left corner but with a different color map. Values in attention maps are not bounded, and 

the maximum varies between images and methods. For the visualization, we chose the scaling of attention maps to best show the range of values in each image. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s  

h  

p  

p  

h  

t  

p

 

n  

g  

g  

i  

i  

g  

t  

l  

a  

i  

s

1  

t  

t  

s  

p  

M  

2

5

 

d  

t  

m  

t  

t  
nections, in red in Fig. 2 ) in GP-Unet’s architecture and the influ-

ence of the type of global pooling in GP-Unet’s architecture on the

detection performance. Removing the blockwise skip connections

did not make the detection worse for most digits (except digit 1

and 7 where having the blockwise skip connections helped). Using

global max pooling instead of global average pooling led to worse

detection performance for all digits. For all digits the optimization

was better with the proposed architecture. Removing skip con-

nections or using global max pooling made the optimization take

longer to converge, made loss curves not as smooth and made the

loss converged to a higher value. The corresponding FROC curves,

FAUC barplot, and FAUC, FPavg, FNavg and Sensitivity Tables are

given in Appendix C . 

4.3. Detection of brain lesions 

In the brain dataset, we compare the performance of the weakly

supervised methods for the detection enlarged perivascular spaces

(PVS) by evaluating them on the left-out test set of 10 0 0 scans,

and in four brain regions: midbrain, hippocampi, basal ganglia, and

centrum semiovale. 

Figs. 8 – 11 show attention maps for all methods in the four

regions. Fig. 7 shows FROC curves for all methods in the brain

datasets. Table 1 shows the corresponding FAUCs. Table 2 and

Table 3 show the sensitivity and FPavg measured at the operating

point chosen for each method as described in Section 3.7 . Table 4

shows the average number of false negatives. 

Judging from Tables 1, 2, 3 and 4 , the methods achieving the

best results are GP-Unet, Grad-CAM and Guid-backpropagation.

Unlike the results on MNIST datasets, there is no method con-

sistently better than others for all regions. In the midbrain and

basal ganglia, Guided-backpropagation reaches the best results of

all methods, and in all three metrics, with the exception of FPavg

in the basal ganglia. In the hippocampi, GP-Unet reaches the best

results of all methods, and in all four metrics. In the centrum
emiovale, GP-Unet and Grad-CAM achieve the best results, and

ave a similar performance. Intensity thresholding reaches a com-

etitive performance in the midbrain and basal ganglia, but com-

letely fails in the hippocampi and centrum semiovale because it

ighlights many false positives, corresponding to other hyperin-

ense structures. Surrounding cerebrospinal fluid, white matter hy-

erintensities, and sulci are examples of these structures. 

In Fig. 7 , the sensitivity and FPavg between two series of an-

otations of the same scans from the same rater (green trian-

le) gives an idea of the difficulty of detecting PVS in each re-

ion. In the midbrain and hippocampi, PVS are relatively easy to

dentify, as they are the only hyperintense lesions visible on T2

mages. On the contrary, the detection of PVS in the basal gan-

lia and centrum semiovale is much more challenging, because in

hose regions other hyperintense structures that look similar to en-

arged perivascular spaces. In all regions, the performance of the

utomated methods come close to the intra-rater agreement. This

ntrarater agreement was however computed on a substantially

maller set – 40 vs 10 0 0 scans – and shorter annotation period –

 week vs several months. Interestingly, several methods highlight

he same false positives. After visual checking by experts, many of

hese false positives appear to be PVS annotated by the rater. In the

et of 40 scans used the intrarater measures, 68 percent of false

ositive detections of GP-Unet in the centrum semiovale were PVS.

ore precisely, 39 percent of false positives were enlarged PVS and

9 percent were slightly enlarged PVS. 

. Discussion 

Overall, results showed that weakly supervised methods can

etect PVS almost as well as expert raters. The performance of

he best detection methods was close to the intrarater agree-

ent. The interrater agreement is also probably lower than this in-

rarater agreement. Finally, further visual inspection also revealed

hat many of the false positives correspond to PVS that were not
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Fig. 9. Attentions maps in the hippocampi. 

Fig. 10. Attentions maps in the basal ganglia. 
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nnotated by the human rater. We especially noticed that annotat-

ng all PVS was difficult for the expert rater in scans with many

VS. 

We compared six weakly supervised detection methods in two

atasets. We showed that the proposed method could be used with

ither 2D or 3D networks. For all methods, 2D networks in the

NIST datasets converged substantially faster (hours) than the 3D

etworks in the brain dataset (days). In MNIST datasets for regres-

ion, GP-Unet no residual ( Dubost et al., 2017 ) and GP-Unet (this

rticle) perform significantly better than all other methods, prob-

bly because they can combine the information of different scales

ore effectively than other methods. For GP-Unet no residual, part

f this performance difference can also be explained by the larger

umber of parameters and larger receptive field ( Section 2.2 ). On

he contrary, for GP-Unet, the number of parameters is comparable

o that of the other methods. In the brain dataset, the best meth-

ds are Guided-backpropagation ( Springenberg et al., 2015 ) with

4.1 average FAUC over regions, GP-Unet with 72.0 average FAUC,

nd Grad-CAM Selvaraju et al. (2017) with 70.5 average FAUC. As

P-Unet performs either similarly to or better than Grad-CAM de-

ending on the region, given a new weakly supervised detection
A  
ask, we would consequently recommend Guided-backpropagation

nd GP-Unet. 

Grad-CAM and GP-Unet reach similar FAUCs ( Table 1 ) in the

asal ganglia and centrum semiovale. However, GP-Unet outper-

orms Grad-CAM in the midbrain and by a large margin in the

ippocampi. In these two regions, at the operating point Grad-

AM suffers from more false positives than GP-Unet, while hav-

ng a similar or worse sensitivity ( Table 3 and 2 ). The attention

aps of the hippocampi ( Fig. C.16 ) – and to some extent those of

he midbrain ( Fig. 8 ) – show that GP-Unet is less distracted by the

urrounding cerebrospinal fluid than Grad-CAM – or the methods

mphasizing intensities (GP-Unet no residual, Intensities). The at-

ention maps of Grad-CAM and GP-Unet share most of the false

ositive detections. Most of these false positives are PVS that were

ot annotated by the rater. Overall, the attention maps of GP-Unet

re also sharper than the ones of Grad-CAM, probably because GP-

net can compute attention maps at a higher resolution: the reso-

ution of the input image. 

The motivation of Gated Attention ( Schlemper et al., 2018 ) is

imilar to that of GP-Unet: combining multiscale information in the

omputation of attention maps. In the MNIST datasets, while Gated

ttention and GP-Unet reach a similar detection performance when
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Fig. 11. Attentions maps in the centrum semiovale. Contours of the brain have been delineated in white for better visualization. 
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optimized with classification objectives, contrary to GP-Unet, Gated

Attention rarely benefits from the regression objective. More gen-

erally, Gated Attention seems to benefit less often from the re-

gression objective than the other methods. These results suggest

that gate mechanisms may harm the detection performance for

networks optimized with regression objectives, and that a simple

concatenation of feature maps should be preferred. In the brain

datasets, Gated Attention works better than the intensity baseline,

Grad ( Simonyan et al., 2014 ), and GP-Unet no residual, but per-

forms significantly worse than Grad-CAM, Guided-backpropagation,

and GP-Unet. One should also keep in mind that Gated Attention

was originally proposed for deeper networks. In case of shallow

networks, this method may not reach its full potential, as it bene-

fits only from few (two on our case) different feature scales. 

We mentioned above that the attention maps of GP-Unet are

sharper than those of Grad-CAM. In Appendix C , we investigate

the influence of the architecture and compare attention maps of

GP-Unet, GP-Unet without blockwise skip connections (GP-Unet No

Skip) and GP-Unet with global max pooling instead of global aver-

age pooling (GP-Unet Max Pool). Removing the skip connections

does not seem to make the attention less compact. Using global

max pooling does make the attention maps more compact but in-

creases the number of false negatives. GP-Unet may have more

compact attention maps than Grad-CAM on the basic architecture

thanks to the upsampling path in GP-Unet. To compute the atten-

tion at full input resolution with Grad-CAM, the attention maps

need to be interpolated, resulting in les compact attention maps.

GP-Unet may have more compact attention maps than Gated At-

tention because concatenating feature maps might be more effi-

cient (maybe easier to optimize) in combining multiscale features

than using the gated attention. 

Due to the special properties of the PVS detection problem in

the brain datasets, intensity thresholding provides a simple ap-

proach to solving the same problem. Although intensity threshold-
ng yields the worst results in hippocampi, basal ganglia, and cen-

rum semiovale, it achieves the second best FAUC in the midbrain.

his high performance results from the effective region masking

pecific to the midbrain: because PVS are almost always in the

enter of this region, we can erode the border of the region mask,

nd eliminate the hyperintense cerebrospinal fluid surrounding the

idbrain. As there are no other visible lesions in the midbrain, all

emaining hyperintensities correspond to PVS. 

In the datasets where the intensity method achieved good

r reasonable results (midbrain and basal ganglia), Guided-

ackpropagation performed best. In the datasets where the inten-

ity method failed (hippocampi and centrum semiovale), GP-Unet

eached the best performance (similar to that of Grad-CAM in the

entrum semiovale). More generally, gradients methods seem to

ork best when the target objects are also the most salient ob-

ects, while CAM methods work best when saliency alone is not

iscriminative enough. This observation can also be extended to

he MNIST datasets, where saliency alone is not sufficient, and re-

ression CAM methods (Gated Attention excluded) outperform re-

ression gradient methods. 

Recently Adebayo et al. (2018) showed that, for Guided-

ackpropagation, classification networks trained with random la-

els obtained similar attention maps as networks trained with the

orrect labels, hinting that attention maps method may focus more

n salient objects in the image than the target object. In these ex-

eriments, attention maps computed with Grad and Grad-CAM ob-

ained better results. Adebayo et al. warn of the evaluation of at-

ention maps by only visual appeal, and advocate more rigorous

orms of evaluation. This fits exactly with the purpose of the cur-

ent article, in which we aimed to quantify the detection perfor-

ance of attention maps in large real world datasets. 

For the evaluation of the detection of PVS, images were anno-

ated by a single rater. With the same resources, we could also

ave had multiple raters annotating fewer scans and use their con-
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Table 1 

FAUCs for the detection of brain lesions. To compute the these FAUCs, we integrate the FROC ( Fig. 7 ) between 0 and 15 ( Section 3.7 ). The best performance in each region is indicated in bold. 

GP-Unet (this paper) GP-Unet no residual 

Dubost et al. (2017) 

Gated Attention 

Schlemper et al. (2018) 

Grad-CAM 

Selvaraju et al. (2017) 

Grad 

Simonyan et al. (2014) 

Guided-backprop 

Springenberg et al. (2015) 

Intensities Section 4.3 

Midbrain 81.5 (80.1 - 82.8) 73.4 (72.0 - 74.8) 72.7 (71.1 - 74.4) 79.8 (78.5 - 81.1) 84.5 (83.5 - 85.4) 89.2 (88.3 - 90.2) 87.1 (86.1 - 88.1) 

Hippocampi 85.8 (84.8 - 86.7) 55.1 (53.5 - 56.7) 80.2 (79.1 - 81.3) 80.1 (78.9 - 81.3) 71.5 (70.4 - 72.6) 83.3 (82.2 - 84.3) 8.3 (7.5 - 9.0) 

Basal Ganglia 69.6 (68.1 - 71.2) 64.4 (63.0 - 65.9) 64.8 (63.4 - 66.4) 70.6 (69.3 - 72.0) 73.5 (72.2 - 74.9) 75.6 (74.3 - 76.8) 61.7 (59.9 - 63.5) 

Centrum Semiovale 51.3 (50.1 - 52.6) 37.9 (36.8 - 39.2) 46.2 (45.0 - 47.5) 51.5 (50.2 - 52.7) 31.9 (30.7 - 33.2) 48.1 (46.9 - 49.3) 4.7 (4.2 - 5.2) 

Average 72.0 + /- 13.3 57.7 + /- 13.1 66.0 + /- 12.7 70.5 + /- 11.6 65.4 + /- 19.9 74.1 + /- 15.7 40.5 + /- 35.2 

Table 2 

Sensitivity in the brain datasets. Best performance are indicated in bold. 

GP-Unet (this paper) GP-Unet no residual 

Dubost et al. (2017) 

Gated Attention 

Schlemper et al. (2018) 

Grad-CAM 

Selvaraju et al. (2017) 

Grad 

Simonyan et al. (2014) 

Guided-backprop 

Springenberg et al. (2015) 

Intensities Section 4.3 

Midbrain 71.1 (69.5 - 72.7) 63.8 (62.1 - 65.5) 64.6 (62.8 - 66.3) 71.5 (69.8 - 73.1) 51.5 (49.6 - 53.3) 75.4 (73.8 - 77.0) 69.6 (67.9 - 71.4) 

Hippocampi 69.8 (68.2 - 71.3) 46.8 (45.2 - 48.4) 64.6 (62.9 - 66.2) 66.1 (64.5 - 67.6) 36.1 (34.5 - 37.6) 63.8 (62.2 - 65.5) 4.2 (3.6 - 4.8) 

Basal Ganglia 56.8 (55.0 - 58.5) 51.9 (50.1 - 53.6) 53.3 (51.6 - 55.0) 58.9 (57.2 - 60.6) 56.8 (55.1 - 58.5) 60.3 (58.6 - 62.0) 50.1 (48.3 - 52.0) 

Centrum Semiovale 50.6 (49.3 - 52.0) 42.0 (40.7 - 43.4) 48.8 (47.5 - 50.2) 53.0 (51.6 - 54.3) 35.0 (33.9 - 36.1) 49.0 (47.7 - 50.3) 5.7 (5.2 - 6.3) 

Average 62.1 + /- 8.7 51.1 + /- 8.1 57.8 + /- 6.9 62.4 + /- 7.0 44.8 + /- 9.5 62.1 + /- 9.4 32.4 + /- 28.3 
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Table 3 

Average number of false positives per scan in the brain datasets. Best performances are indicated in bold. 

GP-Unet (this paper) GP-Unet no residual 

Dubost et al. (2017) 

Gated Attention 

Schlemper et al. (2018) 

Grad-CAM 

Selvaraju et al. (2017) 

Grad 

Simonyan et al. (2014) 

Guided-backprop 

Springenberg et al. (2015) 

Intensities Section 4.3 

Midbrain 1.03 (0.99 - 1.07) 1.19 (1.15 - 1.24) 1.04 (0.99 - 1.09) 1.10 (1.05 - 1.15) 1.40 (1.34 - 1.45) 0.99 (0.94 - 1.03) 1.11 (1.06 - 1.15) 

Hippocampi 1.12 (1.06 - 1.17) 1.96 (1.88 - 2.03) 1.13 (1.06 - 1.19) 1.16 (1.10 - 1.22) 2.16 (2.06 - 2.25) 1.23 (1.16 - 1.29) 3.34 (3.22 - 3.45) 

Basal Ganglia 1.95 (1.88 - 2.01) 2.33 (2.27 - 2.39) 2.16 (2.10 - 2.23) 2.02 (1.95 - 2.09) 2.06 (1.98 - 2.13) 1.98 (1.91 - 2.04) 2.28 (2.21 - 2.35) 

Centrum Semiovale 5.24 (5.04 - 5.43) 6.66 (6.46 - 6.86) 6.23 (6.02 - 6.44) 5.63 (5.44 - 5.82) 7.30 (7.03 - 7.57) 5.92 (5.71 - 6.12) 9.91 (9.62 - 10.21) 

Average 2.33 + /- 1.71 3.04 + /- 2.13 2.64 + /- 2.12 2.48 + /- 1.86 3.23 + /- 2.37 2.53 + /- 1.99 4.16 + /- 3.41 

Table 4 

Average number of false negatives per scan in the brain datasets. Best performances are indicated in bold. 

GP-Unet (this paper) GP-Unet no residual 

Dubost et al. (2017) 

Gated Attention 

Schlemper et al. (2018) 

Grad-CAM 

Selvaraju et al. (2017) 

Grad 

Simonyan et al. (2014) 

Guided-backprop 

Springenberg et al. (2015) 

Intensities Section 4.3 

Midbrain 0.77 (0.71 - 0.83) 0.98 (0.91 - 1.05) 0.94 (0.87 - 1.00) 0.77 (0.71 - 0.82) 1.06 (1.00 - 1.12) 0.65 (0.60 - 0.71) 0.77 (0.72 - 0.83) 

Hippocampi 1.14 (1.07 - 1.22) 2.12 (2.01 - 2.23) 1.33 (1.25 - 1.41) 1.32 (1.24 - 1.41) 2.32 (2.21 - 2.43) 1.39 (1.31 - 1.47) 3.50 (3.36 - 3.64) 

Basal Ganglia 2.00 (1.85 - 2.14) 2.11 (1.97 - 2.25) 2.08 (1.94 - 2.21) 1.92 (1.78 - 2.06) 1.96 (1.82 - 2.09) 1.88 (1.74 - 2.01) 2.18 (2.03 - 2.33) 

Centrum Semiovale 5.83 (5.50 - 6.17) 6.67 (6.30 - 7.03) 5.98 (5.64 - 6.32) 5.63 (5.30 - 5.96) 7.30 (6.92 - 7.68) 5.92 (5.58 - 6.26) 9.91 (9.44 - 10.38) 

Average 2.44 + /- 2.01 2.97 + /- 2.18 2.58 + /- 2.00 2.41 + /- 1.90 3.16 + /- 2.43 2.46 + /- 2.04 4.09 + /- 3.50 
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ensus for the evaluation, which may reduce the risk of mislabel-

ng. We preferred to evaluate the detection using more scans to

etter encompass the anatomical variability, and we quantified the

erformance of the single rater by computing her intra-rater agree-

ent on a smaller set. 

In our preliminary work on PVS detection in the basal gan-

lia using GP-Unet no residual ( Dubost et al., 2017 ) we ob-

ained slightly different results than what is presented in the cur-

ent work. This reflects differences in the test data set, the an-

otations, method and postprocessing. Our previous annotations

 Dubost et al., 2017 ) were done directly on the segmented and

ropped basal ganglia, while the annotations of the current work

ere done on the full scan. The rater sometimes annotated lesions

t the borders of the basal ganglia which are barely visible after

reprocessing. In addition, the current work also includes scans

ithout annotations (because the rater found no lesion), where

here could have been errors in finding the slice evaluated by

he rater. In the current work, Grad reaches better results than

n Dubost et al. (2017) , because it benefits from the more sophis-

icated postprocessing: the non-maximum suppression clears the

oise in the attention maps. 

Next to the methods presented in this paper, we experi-

ented with the perturbation method with masks proposed by

etsiuk et al. (2018) . For this method, masks are first sampled in

 low dimensional space and resized to the size of the input im-

ge. It appeared that the size of this lower dimensional needs to

e adapted to the size of the target object in the image. If the

arget objects are small, one may need to sample relatively large

asks. In our experiments, we experimented with a range of val-

es for the size of this low dimensional space, and did not manage

o compute discriminative attention maps for PVS, that are small

bjects relatively to the image resolution. 

The work presented in this article implies that pixel-level anno-

ations may not be needed to train accurate models for detection

roblems. This is especially relevant in medical imaging, where an-

otation requires expert knowledge and high quality annotations

re therefore difficult to obtain. Weakly supervised methods enable

earning from large databases, such as UK biobank ( Sudlow et al.,

015 ) or Framingham study ( Maillard et al., 2016 ), with less an-

otation effort, and could also help to reduce the dependence on

nnotator biases. The global label may even be more reliable, be-

ause for some abnormalities raters can agree well on the presence

r global burden of the abnormalities but poorly on their bound-

ries or spatial distribution. 

The variety of challenges present in the brain datasets are well

uited to the evaluation of weakly-supervised detection methods.

bservations and results might generalize to the detection of other

ypes of small objects, such as microinfarcts, microbleeds, or small

hite matter hyperintensities. 

. Conclusion 

We proposed a new weakly supervised detection method, GP-

net, that uses an encoder-decoder architecture optimized only

ith global labels such as the count of lesions in a brain re-

ion. The decoder part upsamples feature maps and enables the
omputation of attention maps at the resolution of the input im-

ge, which thus helps the detection of small objects. We also

howed the advantage of using regression objectives over classifi-

ation objectives for the optimization of weakly supervised detec-

ion methods, when the target object appears multiple times in the

mage. We compared the proposed method to four state-of-the-art

ethods on the detection of digits in MNIST-based datasets, and

n the detection of enlarged perivascular spaces – a type of brain

esion – from 3D brain MRI. The best weakly supervised detec-

ion methods were Guided-backpropagation ( Springenberg et al.,

015 ), and the proposed method GP-Unet. We noticed that meth-

ds based on the gradient of the output of the network, such as

uided-backpropagation, worked best in datasets where the target

bjects are also the most salient objects. In other datasets, meth-

ds using class activation maps, such as GP-Unet, worked best.

he performance of the detection enlarged perivascular spaces us-

ng the weakly supervised methods was close to the intrarater

greement of an expert rater. The proposed method could conse-

uently facilitate studies of enlarged perivascular and help advance

esearch in their etiology and relationship with cerebrovascular

iseases. 
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igit. 95 percent confidence interval is indicated in brackets. The average and standard 

ow. Best performance are indicated in bold. 

(2018) 

Grad-CAM 

Selvaraju et al. (2017) 

Grad 

Simonyan et al. (2014) 

Guided-backprop 

Springenberg et al. (2015) 

) 89.2 (87.4 - 90.9) 76.1 (73.8 - 78.3) 85.8 (83.8 - 87.5) 

) 89.1 (87.8 - 90.4) 66.3 (64.0 - 68.5) 88.3 (86.9 - 89.5) 

) 87.8 (85.8 - 89.6) 61.0 (58.5 - 63.6) 81.3 (79.0 - 83.3) 

) 91.2 (89.7 - 92.6) 69.8 (67.4 - 72.0) 82.1 (80.0 - 84.1) 

) 95.0 (93.8 - 96.0) 86.4 (84.8 - 87.9) 93.5 (92.1 - 94.6) 

) 93.6 (92.4 - 94.7) 81.5 (79.7 - 83.3) 88.9 (87.2 - 90.5) 

) 98.4 (97.8 - 98.8) 89.3 (87.9 - 90.6) 97.3 (96.6 - 97.9) 

) 88.5 (86.9 - 90.0) 69.6 (67.3 - 71.9) 82.4 (80.7 - 84.0) 

) 98.2 (97.7 - 98.7) 81.3 (79.1 - 83.3) 95.2 (94.5 - 96.0) 

) 94.3 (93.0 - 95.5) 77.9 (75.8 - 80.0) 91.8 (90.4 - 93.2) 

92.5 + /– 3.7 75.9 + /– 8.6 88.7 + /– 5.4 

t digit. 95 percent confidence interval is indicated in brackets. The average and standard 

ow. Best performance are indicated in bold. 

(2018) 

Grad-CAM 

Selvaraju et al. (2017) 

Grad 

Simonyan et al. (2014) 

Guided-backprop 

Springenberg et al. (2015) 

) 69.2 (67.2 - 71.3) 57.3 (55.3 - 59.2) 63.8 (61.7 - 65.8) 

) 70.3 (68.6 - 72.1) 49.5 (47.7 - 51.2) 64.2 (62.5 - 65.8) 

) 75.3 (73.4 - 77.2) 44.0 (41.9 - 46.1) 62.8 (60.9 - 64.7) 

) 75.0 (73.1 - 76.9) 50.9 (48.9 - 52.9) 57.7 (55.5 - 59.9) 

) 84.6 (83.0 - 86.3) 67.9 (66.0 - 69.7) 83.1 (81.4 - 84.8) 

) 76.7 (74.6 - 78.7) 58.4 (56.2 - 60.5) 67.3 (65.2 - 69.4) 

) 92.4 (91.1 - 93.7) 68.9 (67.1 - 70.7) 84.6 (82.9 - 86.2) 

) 73.2 (71.4 - 75.0) 52.7 (50.7 - 54.6) 63.0 (61.2 - 64.8) 

) 93.5 (92.5 - 94.4) 60.5 (58.7 - 62.4) 75.0 (73.3 - 76.7) 

) 87.9 (86.5 - 89.3) 60.6 (58.7 - 62.5) 78.3 (76.6 - 80.0) 

79.8 + /– 8.6 57.1 + /– 7.5 70.0 + /– 9.0 
Appendix A. Results MNIST – Regression Objectives 

Table A.5 

FAUCs MNIST regression. Each row corresponds to the detection of a different d

deviation of the performance of each method across all digits is given in the last r

GP-Unet (this paper) GP-Unet no residual 

Dubost et al. (2017) 

Gated Attention 

Schlemper et al. 

0 97.4 (96.4 - 98.4) 99.7 (99.5 - 99.8) 90.5 (88.9 - 92.0

1 94.4 (93.5 - 95.1) 99.5 (99.3 - 99.7) 69.7 (67.4 - 72.0

2 91.7 (90.5 - 92.8) 99.3 (99.0 - 99.5) 87.5 (85.8 - 89.3

3 97.3 (96.6 - 97.9) 99.6 (99.2 - 99.9) 73.4 (70.9 - 75.6

4 97.8 (97.2 - 98.3) 99.0 (98.5 - 99.5) 83.9 (81.8 - 86.0

5 97.1 (96.3 - 97.8) 98.9 (98.4 - 99.4) 79.6 (77.4 - 81.8

6 98.6 (98.2 - 99.0) 99.9 (99.8 - 99.9) 86.5 (84.4 - 88.5

7 89.3 (87.6 - 91.0) 99.1 (98.5 - 99.6) 43.9 (41.2 - 46.5

8 98.8 (98.3 - 99.2) 99.5 (99.1 - 99.8) 73.6 (70.8 - 76.2

9 97.6 (96.8 - 98.3) 98.6 (98.1 - 99.1) 24.8 (22.6 - 27.1

Average 96.0 + /– 3.0 99.3 + /– 0.4 71.3 + /- 20.0 

Table A.6 

Sensitivity MNIST regression. Each row corresponds to the detection of a differen

deviation of the performance of each method across all digits is given in the last r

GP-Unet (this paper) GP-Unet no residual 

Dubost et al. (2017) 

Gated Attention 

Schlemper et al. 

0 92.7 (91.4 - 93.9) 98.4 (97.8 - 99.1) 75.1 (73.1 - 77.0

1 78.9 (77.3 - 80.4) 98.3 (97.8 - 98.8) 51.4 (49.4 - 53.4

2 80.0 (78.2 - 81.8) 96.7 (95.9 - 97.5) 73.5 (71.5 - 75.5

3 90.1 (88.8 - 91.5) 97.9 (97.4 - 98.4) 55.6 (53.5 - 57.7

4 90.7 (89.3 - 92.1) 97.0 (96.3 - 97.8) 73.9 (71.8 - 76.0

5 88.7 (87.2 - 90.2) 96.1 (95.2 - 97.0) 60.0 (57.8 - 62.2

6 92.2 (91.0 - 93.5) 98.3 (97.7 - 98.9) 73.6 (71.5 - 75.6

7 76.3 (74.6 - 78.1) 95.9 (94.9 - 97.0) 32.7 (30.7 - 34.6

8 95.8 (95.0 - 96.5) 98.5 (98.0 - 98.9) 57.7 (55.5 - 59.9

9 92.3 (91.1 - 93.5) 95.8 (95.0 - 96.6) 17.8 (16.2 - 19.3

Average 87.8 + /– 6.4 97.3 + /– 1.0 57.1 + /– 18.2 
Fig. A.12. FROC MNIST regression. Each subplot corresponds to the detection of a different digit. 
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Table A.7 

FPavg MNIST regression. Each row corresponds to the detection of a different digit. 95 percent confidence interval is indicated in brackets. The average and standard 

deviation of the performance of each method across all digits is given in the last row. Best performance are indicated in bold. 

GP-Unet (this paper) GP-Unet no residual 

Dubost et al. (2017) 

Gated Attention 

Schlemper et al. (2018) 

Grad-CAM 

Selvaraju et al. (2017) 

Grad 

Simonyan et al. (2014) 

Guided-backprop 

Springenberg et al. (2015) 

0 0.07 (0.05 - 0.08) 0.02 (0.01 - 0.03) 0.14 (0.11 - 0.17) 0.16 (0.13 - 0.18) 0.21 (0.18 - 0.24) 0.27 (0.23 - 0.31) 

1 0.14 (0.11 - 0.16) 0.02 (0.01 - 0.03) 0.42 (0.36 - 0.47) 0.34 (0.30 - 0.38) 0.48 (0.42 - 0.53) 0.36 (0.31 - 0.40) 

2 0.29 (0.25 - 0.32) 0.03 (0.01 - 0.04) 0.32 (0.28 - 0.36) 0.37 (0.33 - 0.41) 0.79 (0.73 - 0.86) 0.42 (0.38 - 0.47) 

3 0.11 (0.09 - 0.14) 0.00 (0.00 - 0.00) 0.47 (0.42 - 0.52) 0.26 (0.22 - 0.29) 0.52 (0.46 - 0.58) 0.43 (0.38 - 0.48) 

4 0.13 (0.10 - 0.15) 0.03 (0.02 - 0.04) 0.39 (0.34 - 0.43) 0.18 (0.15 - 0.21) 0.19 (0.16 - 0.22) 0.19 (0.16 - 0.22) 

5 0.13 (0.11 - 0.16) 0.03 (0.02 - 0.05) 0.36 (0.31 - 0.40) 0.18 (0.15 - 0.21) 0.30 (0.25 - 0.34) 0.23 (0.20 - 0.26) 

6 0.04 (0.03 - 0.06) 0.01 (0.00 - 0.01) 0.40 (0.35 - 0.44) 0.10 (0.08 - 0.12) 0.14 (0.11 - 0.17) 0.06 (0.05 - 0.08) 

7 0.26 (0.23 - 0.29) 0.02 (0.01 - 0.03) 1.02 (0.93 - 1.11) 0.36 (0.32 - 0.41) 0.57 (0.51 - 0.62) 0.41 (0.36 - 0.45) 

8 0.08 (0.06 - 0.10) 0.02 (0.01 - 0.03) 0.44 (0.38 - 0.49) 0.11 (0.09 - 0.14) 0.21 (0.17 - 0.25) 0.07 (0.05 - 0.09) 

9 0.16 (0.13 - 0.18) 0.04 (0.03 - 0.06) 1.19 (1.07 - 1.30) 0.25 (0.22 - 0.28) 0.33 (0.29 - 0.38) 0.19 (0.16 - 0.23) 

Average 0.14 + /– 0.08 0.02 + /– 0.01 0.51 + /– 0.31 0.23 + /– 0.10 0.37 + /- 0.20 0.26 + /- 0.13 

Table A.8 

FNavg MNIST regression. Each row corresponds to the detection of a different digit. 95 percent confidence interval is indicated in brackets. The average and standard 

deviation of the performance of each method across all digits is given in the last row. Best performance are indicated in bold. 

GP-Unet (this paper) GP-Unet no residual 

Dubost et al. (2017) 

Gated Attention 

Schlemper et al. (2018) 

Grad-CAM 

Selvaraju et al. (2017) 

Grad 

Simonyan et al. (2014) 

Guided-backprop 

Springenberg et al. (2015) 

0 0.11 (0.08 - 0.14) 0.02 (0.01 - 0.03) 0.37 (0.32 - 0.43) 0.47 (0.41 - 0.53) 0.62 (0.55 - 0.69) 0.54 (0.47 - 0.61) 

1 0.35 (0.30 - 0.40) 0.03 (0.02 - 0.05) 0.75 (0.67 - 0.82) 0.49 (0.43 - 0.56) 0.82 (0.73 - 0.91) 0.58 (0.52 - 0.64) 

2 0.30 (0.25 - 0.34) 0.05 (0.03 - 0.07) 0.40 (0.34 - 0.45) 0.37 (0.32 - 0.43) 0.82 (0.73 - 0.90) 0.56 (0.50 - 0.63) 

3 0.15 (0.12 - 0.18) 0.04 (0.02 - 0.05) 0.58 (0.52 - 0.65) 0.34 (0.30 - 0.39) 0.68 (0.61 - 0.76) 0.56 (0.49 - 0.62) 

4 0.12 (0.10 - 0.15) 0.05 (0.03 - 0.06) 0.36 (0.31 - 0.41) 0.22 (0.18 - 0.25) 0.49 (0.43 - 0.56) 0.25 (0.21 - 0.29) 

5 0.14 (0.11 - 0.16) 0.05 (0.04 - 0.07) 0.50 (0.44 - 0.56) 0.29 (0.25 - 0.34) 0.54 (0.48 - 0.60) 0.42 (0.37 - 0.47) 

6 0.11 (0.08 - 0.13) 0.02 (0.01 - 0.03) 0.35 (0.31 - 0.40) 0.09 (0.07 - 0.12) 0.47 (0.41 - 0.52) 0.22 (0.18 - 0.26) 

7 0.36 (0.31 - 0.41) 0.04 (0.03 - 0.06) 1.00 (0.90 - 1.10) 0.43 (0.37 - 0.49) 0.73 (0.65 - 0.81) 0.58 (0.51 - 0.65) 

8 0.07 (0.05 - 0.09) 0.02 (0.01 - 0.04) 0.58 (0.50 - 0.65) 0.11 (0.08 - 0.13) 0.59 (0.52 - 0.66) 0.37 (0.32 - 0.43) 

9 0.11 (0.09 - 0.14) 0.07 (0.05 - 0.09) 1.22 (1.09 - 1.34) 0.20 (0.16 - 0.24) 0.63 (0.55 - 0.70) 0.36 (0.31 - 0.41) 

Average 0.18 + /– 0.10 0.04 + /– 0.02 0.61 + /- 0.28 0.30 + /- 0.14 0.64 + /- 0.12 0.44 + /- 0.13 

A

plot corresponds to the detection of a different digit. 
ppendix B. Results MNIST – Classification Objectives 

Fig. B.13. FROC MNIST classification. Each sub
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Table B.9 

FAUCs MNIST classification. Each row corresponds to the detection of a different digit. 95 percent confidence interval is indicated in brackets. The average and standard 

deviation of the performance of each method across all digits is given in the last row. Best performance are indicated in bold. 

GP-Unet (this paper) GP-Unet no residual 

Dubost et al. (2017) 

Gated Attention 

Schlemper et al. (2018) 

Grad-CAM 

Selvaraju et al. (2017) 

Grad 

Simonyan et al. (2014) 

Guided-backprop 

Springenberg et al. (2015) 

0 69.3 (66.7 - 71.7) 85.8 (84.6 - 87.1) 79.5 (77.4 - 81.6) 65.2 (61.8 - 68.6) 37.5 (34.4 - 40.6) 54.1 (50.7 - 57.7) 

1 62.6 (60.3 - 65.0) 83.9 (82.5 - 85.3) 63.8 (61.3 - 66.3) 72.3 (69.5 - 75.3) 28.6 (25.6 - 31.7) 83.2 (80.3 - 86.1) 

2 75.5 (73.4 - 77.5) 80.3 (78.7 - 81.9) 65.9 (63.7 - 68.3) 80.3 (76.9 - 83.6) 54.9 (50.7 - 58.6) 80.1 (76.5 - 83.5) 

3 80.6 (79.0 - 82.2) 83.4 (81.7 - 84.9) 78.9 (77.0 - 80.7) 80.7 (77.0 - 84.3) 63.7 (59.9 - 67.4) 80.9 (77.2 - 84.5) 

4 77.1 (74.9 - 79.1) 84.1 (82.6 - 85.7) 77.1 (75.2 - 79.0) 83.7 (80.7 - 86.5) 51.3 (47.4 - 55.0) 84.3 (81.1 - 87.3) 

5 85.5 (83.9 - 86.8) 85.5 (84.3 - 86.7) 83.4 (81.9 - 84.9) 81.7 (78.5 - 84.7) 62.0 (58.3 - 65.8) 82.5 (79.0 - 85.8) 

6 82.8 (81.1 - 84.3) 74.1 (71.9 - 76.2) 80.0 (77.8 - 81.9) 86.6 (83.7 - 89.3) 54.6 (50.4 - 58.9) 86.4 (83.6 - 89.2) 

7 63.7 (61.1 - 66.2) 77.9 (75.9 - 79.9) 67.7 (65.4 - 70.0) 63.5 (60.1 - 67.0) 38.4 (35.8 - 41.2) 68.4 (64.7 - 72.1) 

8 82.7 (81.0 - 84.2) 84.7 (83.2 - 86.0) 73.2 (71.1 - 75.3) 91.6 (89.4 - 93.6) 28.6 (24.1 - 33.1) 91.9 (89.9 - 93.7) 

9 44.3 (41.5 - 47.3) 74.3 (72.2 - 76.5) 78.1 (76.0 - 80.0) 30.4 (27.6 - 33.3) 7.2 (5.7 - 8.8) 31.7 (28.8 - 34.7) 

Average 72.4 + /- 12.0 81.4 + /- 4.3 74.8 + /- 6.4 73.6 + /- 16.7 42.7 + /- 17.0 74.4 + /- 17.4 

Table B.10 

Sensitivity MNIST classification. Each row corresponds to the detection of a different digit. 95 percent confidence interval is indicated in brackets. The average and 

standard deviation of the performance of each method across all digits is given in the last row. Best performance are indicated in bold. 

GP-Unet (this paper) GP-Unet no residual 

Dubost et al. (2017) 

Gated Attention 

Schlemper et al. (2018) 

Grad-CAM 

Selvaraju et al. (2017) 

Grad 

Simonyan et al. (2014) 

Guided-backprop 

Springenberg et al. (2015) 

26.0 (24.7 - 27.4) 36.7 (34.9 - 38.5) 30.3 (28.7 - 31.9) 19.4 (18.0 - 20.8) 11.8 (10.6 - 12.9) 13.6 (12.3 - 14.9) 

1 22.3 (21.0 - 23.6) 33.5 (31.9 - 35.1) 23.4 (22.1 - 24.7) 19.4 (18.2 - 20.6) 11.0 (9.8 - 12.2) 25.9 (24.6 - 27.3) 

2 30.1 (28.6 - 31.7) 30.4 (28.8 - 31.9) 23.7 (22.3 - 25.1) 27.3 (25.8 - 28.8) 21.6 (20.0 - 23.3) 25.0 (23.5 - 26.5) 

3 30.3 (28.8 - 31.7) 35.1 (33.5 - 36.8) 29.8 (28.4 - 31.2) 28.2 (26.7 - 29.6) 23.9 (22.3 - 25.6) 26.9 (25.5 - 28.3) 

4 30.8 (29.2 - 32.4) 36.5 (34.8 - 38.3) 31.2 (29.6 - 32.8) 29.6 (28.1 - 31.1) 17.6 (15.9 - 19.3) 30.8 (29.2 - 32.3) 

5 34.1 (32.5 - 35.8) 37.4 (35.6 - 39.1) 34.4 (32.8 - 36.1) 31.4 (29.8 - 33.0) 26.7 (25.0 - 28.4) 30.1 (28.5 - 31.6) 

6 30.9 (29.4 - 32.3) 23.9 (22.7 - 25.0) 31.0 (29.6 - 32.5) 31.3 (29.7 - 32.8) 22.9 (21.1 - 24.7) 30.8 (29.3 - 32.4) 

7 21.6 (20.3 - 22.8) 34.6 (32.9 - 36.3) 25.0 (23.5 - 26.5) 17.5 (16.2 - 18.8) 13.9 (12.7 - 15.0) 19.1 (17.9 - 20.3) 

8 34.7 (33.1 - 36.4) 34.0 (32.4 - 35.6) 30.7 (29.2 - 32.2) 33.5 (31.9 - 35.1) 15.3 (13.3 - 17.3) 33.7 (32.1 - 35.3) 

9 15.2 (13.9 - 16.6) 30.7 (29.2 - 32.2) 32.4 (30.8 - 34.0) 4.9 (4.1 - 5.7) 1.7 (1.1 - 2.2) 5.1 (4.3 - 6.0) 

Average 27.6 + /- 5.9 33.3 + /- 3.9 29.2 + /- 3.6 24.2 + /– 8.4 16.6 + /– 7.1 24.1 + /– 8.5 

Table B.11 

FPavg MNIST classification. Each row corresponds to the detection of a different digit. 95 percent confidence interval is indicated in brackets. The average and standard 

deviation of the performance of each method across all digits is given in the last row. Best performance are indicated in bold. 

GP-Unet (this paper) GP-Unet no residual 

Dubost et al. (2017) 

Gated Attention 

Schlemper et al. (2018) 

Grad-CAM 

Selvaraju et al. (2017) 

Grad 

Simonyan et al. (2014) 

Guided-backprop 

Springenberg et al. (2015) 

0 0.05 (0.03 - 0.06) 0.02 (0.01 - 0.03) 0.02 (0.01 - 0.04) 0.15 (0.12 - 0.17) 0.23 (0.20 - 0.26) 0.21 (0.18 - 0.24) 

1 0.06 (0.05 - 0.08) 0.00 (0.00 - 0.01) 0.11 (0.08 - 0.13) 0.10 (0.08 - 0.13) 0.14 (0.12 - 0.17) 0.04 (0.02 - 0.05) 

2 0.04 (0.03 - 0.05) 0.01 (0.00 - 0.02) 0.06 (0.04 - 0.08) 0.03 (0.01 - 0.04) 0.05 (0.03 - 0.06) 0.05 (0.03 - 0.07) 

3 0.02 (0.01 - 0.04) 0.00 (0.00 - 0.01) 0.04 (0.03 - 0.05) 0.02 (0.01 - 0.03) 0.03 (0.02 - 0.04) 0.03 (0.02 - 0.04) 

4 0.02 (0.01 - 0.03) 0.02 (0.01 - 0.03) 0.01 (0.00 - 0.02) 0.04 (0.03 - 0.06) 0.10 (0.08 - 0.13) 0.03 (0.02 - 0.05) 

5 0.02 (0.01 - 0.03) 0.05 (0.03 - 0.06) 0.03 (0.02 - 0.04) 0.04 (0.03 - 0.05) 0.05 (0.03 - 0.06) 0.05 (0.03 - 0.06) 

6 0.03 (0.01 - 0.04) 0.03 (0.02 - 0.04) 0.02 (0.01 - 0.03) 0.02 (0.01 - 0.03) 0.03 (0.02 - 0.05) 0.03 (0.02 - 0.04) 

7 0.10 (0.08 - 0.12) 0.01 (0.00 - 0.02) 0.09 (0.07 - 0.11) 0.11 (0.08 - 0.13) 0.15 (0.12 - 0.18) 0.08 (0.06 - 0.10) 

8 0.01 (0.00 - 0.01) 0.01 (0.00 - 0.02) 0.04 (0.02 - 0.05) 0.04 (0.02 - 0.05) 0.04 (0.03 - 0.06) 0.03 (0.02 - 0.04) 

9 0.24 (0.20 - 0.27) 0.04 (0.03 - 0.05) 0.07 (0.05 - 0.08) 0.42 (0.38 - 0.45) 0.48 (0.44 - 0.51) 0.42 (0.38 - 0.45) 

Average 0.06 + /– 0.06 0.02 + /– 0.01 0.05 + /– 0.03 0.10 + /– 0.11 0.13 + /– 0.13 0.10 + /– 0.12 

Table B.12 

FNavg MNIST classification. Each row corresponds to the detection of a different digit. 95 percent confidence interval is indicated in brackets. The average and standard 

deviation of the performance of each method across all digits is given in the last row. Best performance are indicated in bold. 

GP-Unet (this paper) GP-Unet no residual 

Dubost et al. (2017) 

Gated Attention 

Schlemper et al. (2018) 

Grad-CAM 

Selvaraju et al. (2017) 

Grad 

Simonyan et al. (2014) 

Guided-backprop 

Springenberg et al. (2015) 

0 1.13 (1.01 - 1.25) 1.07 (0.95 - 1.19) 1.11 (0.99 - 1.23) 1.22 (1.09 - 1.35) 1.31 (1.17 - 1.44) 1.28 (1.15 - 1.41) 

1 1.34 (1.20 - 1.48) 1.24 (1.11 - 1.38) 1.32 (1.18 - 1.46) 1.36 (1.22 - 1.50) 1.52 (1.36 - 1.68) 1.29 (1.15 - 1.43) 

2 1.15 (1.02 - 1.28) 1.14 (1.02 - 1.27) 1.20 (1.07 - 1.32) 1.17 (1.04 - 1.30) 1.27 (1.13 - 1.42) 1.19 (1.06 - 1.32) 

3 1.05 (0.93 - 1.16) 1.02 (0.90 - 1.14) 1.05 (0.93 - 1.16) 1.06 (0.95 - 1.18) 1.14 (1.02 - 1.27) 1.08 (0.96 - 1.19) 

4 1.09 (0.97 - 1.21) 1.05 (0.93 - 1.17) 1.08 (0.96 - 1.21) 1.09 (0.97 - 1.22) 1.27 (1.13 - 1.42) 1.09 (0.97 - 1.21) 

5 0.99 (0.88 - 1.10) 0.97 (0.86 - 1.08) 0.98 (0.87 - 1.10) 1.00 (0.89 - 1.12) 1.09 (0.96 - 1.21) 1.01 (0.90 - 1.12) 

6 1.11 (0.99 - 1.23) 1.16 (1.04 - 1.28) 1.11 (0.99 - 1.23) 1.11 (0.99 - 1.23) 1.26 (1.12 - 1.40) 1.12 (1.00 - 1.24) 

7 1.26 (1.13 - 1.40) 1.17 (1.04 - 1.31) 1.24 (1.11 - 1.38) 1.32 (1.18 - 1.45) 1.37 (1.23 - 1.51) 1.29 (1.16 - 1.43) 

8 1.06 (0.94 - 1.18) 1.06 (0.94 - 1.19) 1.09 (0.96 - 1.21) 1.07 (0.94 - 1.19) 1.34 (1.18 - 1.49) 1.06 (0.94 - 1.19) 

9 1.32 (1.18 - 1.46) 1.15 (1.02 - 1.29) 1.15 (1.01 - 1.28) 1.46 (1.31 - 1.61) 1.52 (1.36 - 1.68) 1.46 (1.31 - 1.61) 

Average 1.15 + /- 0.11 1.10 + /- 0.08 1.13 + /- 0.09 1.19 + /- 0.14 1.31 + /- 0.13 1.19 + /- 0.13 
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A

F f a different digit. GP-Unet is the standard GP-Unet architecture. In GP-Unet No Skip, 

b ooling is replaced by global max pooling. 

 corresponds to the detection of a different 

is indicated in brackets. The average and 

e of each method across all digits is given 

indicated in bold. 

P-Unet no skip GP-Unet pax pooling 

.0 (97.5 - 98.5) 89.2 (87.2 - 91.3) 

.9 (85.6 - 88.2) 80.0 (77.2 - 82.6) 

.9 (91.4 - 94.3) 80.3 (77.5 - 83.0) 

.9 (97.4 - 98.5) 88.6 (86.4 - 90.8) 

.2 (95.2 - 97.0) 82.9 (80.2 - 85.5) 

.6 (97.1 - 98.1) 86.1 (83.6 - 88.6) 

.1 (97.5 - 98.7) 87.6 (85.2 - 89.9) 

8 (0.5 - 1.2) 56.3 (52.8 - 59.8) 

.8 (98.4 - 99.1) 87.7 (85.3 - 89.9) 

.9 (96.1 - 97.6) 78.4 (75.5 - 81.1) 

.4 + /– 28.7 81.7 + /– 9.3 

 row corresponds to the detection of a dif- 

terval is indicated in brackets. The average 

mance of each method across all digits is 

ce are indicated in bold. 

P-Unet no skip GP-Unet pax pooling 

.9 (89.6 - 92.3) 81.8 (80.1 - 83.5) 

.3 (61.5 - 65.0) 71.9 (70.1 - 73.8) 

.4 (81.7 - 85.1) 75.8 (74.0 - 77.7) 

.8 (90.7 - 93.0) 82.8 (81.1 - 84.5) 

.8 (86.3 - 89.2) 76.1 (74.1 - 78.1) 

.4 (87.9 - 90.8) 74.7 (72.7 - 76.8) 

.9 (90.5 - 93.3) 81.4 (79.5 - 83.4) 

6 (0.3 - 0.9) 55.2 (52.9 - 57.5) 

.5 (93.7 - 95.4) 83.7 (82.1 - 85.3) 

.1 (88.8 - 91.5) 70.8 (68.8 - 72.9) 

.4 + /– 27.3 75.4 + /– 8.0 
ppendix C. Results MNIST – GP-Unet architectures 

ig. C.14. FROC MNIST architecture. Each subplot corresponds to the detection o

lockwise skip connections are removed. In GP-Unet Max Pool, the global average p

Table C.13 

FAUCs MNIST architecture. Each row

digit. 95 percent confidence interval 

standard deviation of the performanc

in the last row. Best performance are 

GP-Unet G

0 97.4 (96.3 - 98.3) 98

1 94.4 (93.6 - 95.2) 86

2 91.7 (90.4 - 92.9) 92

3 97.3 (96.6 - 97.9) 97

4 97.8 (97.2 - 98.3) 96

5 97.1 (96.4 - 97.8) 97

6 98.6 (98.1 - 99.1) 98

7 89.3 (87.6 - 90.9) 0.

8 98.8 (98.2 - 99.2) 98

9 97.6 (96.8 - 98.2) 96

Average 96.0 + /– 3.0 86

Table C.14 

Sensitivity MNIST architecture. Each

ferent digit. 95 percent confidence in

and standard deviation of the perfor

given in the last row. Best performan

GP-Unet G

0 92.7 (91.4 - 93.9) 90

1 78.9 (77.3 - 80.4) 63

2 80.0 (78.2 - 81.8) 83

3 90.1 (88.8 - 91.5) 91

4 90.7 (89.3 - 92.1) 87

5 88.7 (87.2 - 90.2) 89

6 92.2 (91.0 - 93.5) 91

7 76.3 (74.6 - 78.1) 0.

8 95.8 (95.0 - 96.5) 94

9 92.3 (91.1 - 93.5) 90

Average 87.8 + /– 6.4 78
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Table C.15 

FPavg MNIST architecture. Each row corresponds to the detection of a different 

digit. 95 percent confidence interval is indicated in brackets. The average and 

standard deviation of the performance of each method across all digits is given 

in the last row. Best performance are indicated in bold. 

GP-Unet GP-Unet no skip GP-Unet pax pooling 

0 0.07 (0.05 - 0.08) 0.07 (0.05 - 0.09) 0.08 (0.06 - 0.10) 

1 0.14 (0.11 - 0.16) 0.30 (0.26 - 0.35) 0.16 (0.13 - 0.19) 

2 0.29 (0.25 - 0.32) 0.22 (0.18 - 0.25) 0.15 (0.12 - 0.17) 

3 0.11 (0.09 - 0.14) 0.06 (0.05 - 0.08) 0.09 (0.07 - 0.12) 

4 0.13 (0.10 - 0.15) 0.10 (0.08 - 0.13) 0.06 (0.04 - 0.07) 

5 0.13 (0.11 - 0.16) 0.10 (0.08 - 0.12) 0.09 (0.06 - 0.11) 

6 0.04 (0.03 - 0.06) 0.08 (0.06 - 0.10) 0.11 (0.09 - 0.14) 

7 0.26 (0.23 - 0.29) 1.99 (1.98 - 2.00) 0.21 (0.17 - 0.24) 

8 0.08 (0.06 - 0.10) 0.06 (0.05 - 0.08) 0.03 (0.02 - 0.04) 

9 0.16 (0.13 - 0.18) 0.19 (0.16 - 0.22) 0.10 (0.08 - 0.13) 

Average 0.14 + /– 0.08 0.32 + /– 0.56 0.11 + /– 0.05 

Table C.16 

FNavg MNIST architecture. Each row corresponds to the detection of a different 

digit. 95 percent confidence interval is indicated in brackets. The average and 

standard deviation of the performance of each method across all digits is given 

in the last row. Best performance are indicated in bold. 

GP-Unet GP-Unet no skip GP-Unet pax pooling 

0 0.11 (0.08 - 0.14) 0.13 (0.10 - 0.16) 0.30 (0.25 - 0.35) 

1 0.35 (0.30 - 0.40) 0.60 (0.53 - 0.67) 0.49 (0.42 - 0.56) 

2 0.30 (0.25 - 0.34) 0.25 (0.21 - 0.29) 0.39 (0.34 - 0.45) 

3 0.15 (0.12 - 0.18) 0.13 (0.10 - 0.16) 0.26 (0.22 - 0.31) 

4 0.12 (0.10 - 0.15) 0.18 (0.14 - 0.21) 0.37 (0.31 - 0.42) 

5 0.14 (0.11 - 0.16) 0.13 (0.11 - 0.16) 0.36 (0.30 - 0.41) 

6 0.11 (0.08 - 0.13) 0.10 (0.08 - 0.12) 0.26 (0.22 - 0.30) 

7 0.36 (0.31 - 0.41) 1.58 (1.42 - 1.74) 0.71 (0.62 - 0.80) 

8 0.07 (0.05 - 0.09) 0.09 (0.07 - 0.11) 0.26 (0.21 - 0.31) 

9 0.11 (0.09 - 0.14) 0.15 (0.12 - 0.18) 0.47 (0.41 - 0.54) 

Average 0.18 + /– 0.10 0.33 + /– 0.44 0.39 + /– 0.13 

Fig. C.15. FAUCs on the MNIST dataset for different architectures of the proposed method: GP-Unet. Each subplot corresponds to the detection of a different digit. FAUCs 

are displayed with confidence intervals computed by bootstrapping the test set. A: GP-Unet; B: GP-Unet without blockwise skip connections; C: GP-Unet with Global Max 

Pooling. For digit 7, GP-Unet without blockwise skip connections convergence to a very high value. We tried repeating the experiments with different random initializations of 

the weights and let the optimization run longer, but we achieved the same results. This supports the argument that adding blockwise skip connections eases the optimization. 
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