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Abstract

Smart Thermal Grids (STGs) represent a new concept in the energy sector that involves
the use of the smart grid concept in thermal energy networks connecting users, such as
households, buildings and greenhouses, to each other via a transport line of thermal energy.
In this concept, there exists an energy management system that aims to improve the efficiency,
reliability and sustainability of the energy production and the distribution of energy. This
highlights the necessity of constructing a high level control unit which sets the operating points
of the production units such as boilers, micro Combined Heat Power (CHP) generators, and
chillers for every agent.
In this thesis, we develop a framework for the energy management which incorporates the
model of the smart thermal grid and the energy demand profile of the agents. This framework
is based on a Model Predictive Control (MPC) strategy in which the grid is addressed as a
large-scale uncertain system. We formulate a mixed-integer chance-constrained optimization
problem for the planning of the operation of the production units for all agents in the grid
in the presence of uncertain thermal energy demand profile. In order to deal with the chance
constraints together with integer variables, the robust randomized method in [1], which was
particularly developed for this problem, is employed. This technique allows us to handle
mixed-integer problems and stochastic programming in a unified framework and provide a-
priori probabilistic guarantees for the obtained solution. Motivated by the need for a more
flexible and scalable framework, we then extend this method to distributed computation
schemes using the Alternating Direction Method of Multipliers (ADMM). The resulting
performance enhancement in terms of the total operational costs observed in the simulation
was substantial and comparable with the centralized control approach.
Finally, we investigate the opportunity of improving the efficiency of energy usage when sea-
sonal storage systems exist in the thermal grids. We first propose a dynamic model for the
seasonal storage systems and then, incorporate it in the energy management problem formu-
lation. Due to the annual cyclic dynamical behavior of the seasonal storage systems, this
leads to a multi-rate albeit very complex optimization problem. To this end, we develop a
hierarchical MPC to solve such problem together with a discussion on the resulting optimiza-
tion problems in a receding horizon setting. The technical developments were validated on
a realistic benchmark problem (three-agent thermal grid in Utrecht, The Netherlands). The
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simulation results show that the proposed method was able to provide better usage of the
seasonal storage.
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Chapter 1

Introduction

1-1 Background

According to [2], up to 50% of the total global energy consumption is allocated to heat pro-
duction, most of which is related to heating purposes in buildings or houses. This underlines
not only the importance of thermal grids but also the necessity to improve them. The effi-
ciency of the systems is one of the key aspects of such improvement and control engineering
is seen as a promising solution. In fact, the notion of smart grids is introduced in conjunction
with those that have the ability to autonomously manage their operations so that they are
not only efficient but also reliable. In this thesis, we want to solve such control problem for
thermal grids.

The main goal of these systems is obviously to fulfill the thermal energy demand. Thus infor-
mation of the demand and possibly on future predictions is very important to the controller.
Since this varies not only over time but also between consumers, we consider it as an un-
certain variable so we would likely have a more realistic description of the systems. Robust
and stochastic control approaches are available when uncertainties are present in the system.
In this thesis we are more interested in exploring the latter because it could provide a less
conservative solution, which would mean a better performance [3].

One of the major challenges that is faced in connection with this problem is the scale of
these systems. They are viewed as large-scale systems since they consist of a large number of
consumers and producers which are connected through distribution pipelines [4]. Moreover,
nowadays besides centralized production units which serve many consumers in large geograph-
ical areas, there also exist decentralized ones which are owned by and serve only one of or
a few consumers [4]. When dealing with some issues that could be found in the controlling
of large-scale multi-agent systems, such as high computational demand, scalability, flexibility
and safety, it is distributed control approaches that are preferred to the centralized one [5].

Despite increasing the complexity of the systems, the existence of decentralized production
units is beneficial to the improvement of efficiency. Not only because they have higher effi-
ciency than the centralized ones [6], [7] but also because they open up possibilities for the
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2 Introduction

consumers, which are the agents of the system, to play a bigger role in maintaining the energy
balance of the whole system by exchanging thermal energy [1]. This needs to be taken into
account when formulating the optimization problem.
In addition, other features and limitations of the components of thermal grids have to be
considered and properly modeled. For instance, the existence of seasonal thermal energy
storages could be exploited to improve the efficiency. Moreover, some of the operational
constraints of each of the components should also be met. Due to the nature of the components
or when the feature of exchanging thermal energy is present in the systems, there could be
coupling between the agents which complicate the problem.
The problem that we wish to solve is determining the optimal operating points, in terms of
efficiency and reliability, of the production units. This task requires designing a high level
controller to manage the operation of the production units. In this regard, it is assumed that
each production unit has a low level controller which is able to track the set points. A class
of control methods which is suitable for the energy management system is Model Predictive
Control (MPC). MPC is a model based controller design procedure in which the computation
is based on solving an optimization problem. MPC computes control actions repeatedly by
minimizing a cost function over a finite prediction horizon based on predictions obtained by
a system model subject to the constraints that the problem has [8].
As previously mentioned, the control method has to be able to deal with the fact that thermal
grids are uncertain coupled large-scale systems. On the one hand, a stochastic approach called
the randomized method is considered to tackle the uncertainty. We are motivated to follow
this approach due to the fact that it is a data-driven method and nowadays measurement
data is widely available. Moreover, a-priori probabilistic guarantees of the solution can also
be provided by this method [9]. On the other hand, in order to deal with the large-scale
issue and the coupling between the agents, we investigate and develop suitable distributed
control techniques that are based on dual decomposition. Furthermore, we also develop a
hierarchical MPC scheme in order to improve the usage of seasonal storages. In the following
section, some results of the previous research in MPC, in particular stochastic and distributed
approaches are discussed.

1-2 Related Work

Considerable research in MPC methods has been carried out since the last decades. It includes
the development of a stochastic approach called randomized MPC and distributed methods.
A brief discussion on these methods and some of the literature results related to the energy
balance problem is presented in this section.
Two randomized MPC methods were already proposed by Blackmore, et al. in 2003 and
Batina in 2004, even though they both have huge drawbacks such as their high computational
demand [10]. However, the work of [3], [11] and [9] introduces the scenario approach which
is capable of tackling the drawbacks. The randomized MPC methods that are based on this
were then presented by Schildbach, et al in [10], Matusko and Borrelli in [12], and Prandini
in et al [13].
Some literature results which present the applications of the randomization-based approach to
solving stochastic problems are [14], [15] and [16]. In [14], the randomized MPC is proposed to
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1-2 Related Work 3

regulate the building temperature.The main challenge to the implementation of this method
is that the number of decision variables is too large so the authors proposed a distributed
algorithm to reduce the computational burden which is based on the dual decomposition
method. In [15], this method is implemented in an uncertain nonlinear system. Since the
system is non-convex, the theoretical result of the lower bound does not apply to this system.
Therefore the number of scenarios are perceived as tuning variables and the approach is
viewed as a heuristic approach. In [16] the randomization-based approach is implemented to
solve reserve scheduling problems for uncertain power systems. Even though the problem is
formulated as a convex problem, the number of decision variables was too large which led to
tractability issues. Thus, the randomization-based method is again considered as a heuristic
approach.

In [17], Calafiore, et al. study the application of the scenario-based approach to the mixed-
integer problem. They state that it is possible but computationally harder to solve than
the continuous problem since the bound grows exponentially with respect to the decision
variables. Further, in [18], Margellos, et al. state that the existence of binary variables in
their problem infers that they cannot apply the procedure of producing a number of scenarios
according to the scenario approach. In addition, the problem in [18] is a large-scale problem.
Therefore in [18], the authors use the method proposed in [19] where a robust problem with
bounded uncertainty is solved, where the bounds are computed using the scenario approach.

One of our main goals in this thesis is dealing with the issue arisen from the fact that thermal
grids are large-scale systems. In order to cope with this, various distributed MPC methods,
including the ones that are based on dual decomposition have been developed, as can be
seen in some survey papers such as [8] and [20], or in [21]. The dual decomposition is an
iterative method of solving the dual problem in which the Lagrange multipliers/prices which
are assigned to the agents are adjusted during the iterations. A standard subgradient method
is usually used to update the prices such as in [22], [23], while in [24], the convergence rate is
improved by proposing an accelerated gradient method. Moreover, the work of [25] and [26]
proposes updating techniques that are based on Newton’s method. We provide an extensive
explanation and discussion about this method in Appendix C.

However, the standard dual decomposition method can only deal with strictly convex prob-
lems. An extension of this which could solve a more general convex problems is called the
Alternating Direction Method of Multipliers (ADMM) [27]. It uses the augmented Lagrangian
to decompose the coupled system and it also has an iterative procedure of updating the primal
and dual variables. Some articles which discuss ADMM-based distributed MPC methods are
[28] and [29]. In [28] the authors propose this method in order to solve a multi-agent system
which is coupled to the cost function. In addition, the authors of [29] provide a stopping
criterion which could reduce the number of iterations at the expense of the optimality of the
solutions.

The work of [1] provides a formulation of the energy balance problem in thermal grids which
is a mixed-integer and chance-constrained problem and develops a stochastic MPC method,
which is a mixture of robust and randomized techniques to solve it. Our main goal in this
thesis is to extend the formulation and the method to a distributed setting. The authors
of [30] and [31] has also addressed the energy balance problem of a grid. However, in both
articles, they focus on electrical power even though in the latter article the thermal energy is
also taken into account. Moreover, they do not consider the demand as an uncertain variable.
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4 Introduction

In these studies, they provide a distributed MPC method which is based on the standard dual
decomposition method.
Hierarchical MPC methods that address multi-rate dynamic behavior can be found in [32],
[33] and [34]. Both works of [32] and [33] are related to the energy management in buildings
while the authors of [34] shows their hierarchical MPC approach applies to a chemical process
system. The similarities between these works are as follows. The upper layer of the hierar-
chical MPC contains the slow rate dynamic to compute the steady state trajectories or set
points and the lower layer in which the dynamic has faster rate is the controller that ensures
that the system tracks the trajectory. Moreover, they also consider economic MPC problem
in the upper layer.

1-3 Thesis Contribution

The contributions of this thesis are twofold:

1. We develop a distributed scheme as the extension of the unified framework for produc-
tion planning of thermal grids which was developed in [1]. We decompose the problem,
which is mixed-integer chance-constrained, based on the ADMM and provide two algo-
rithms, one is fully distributed algorithm and the other one is with a central coordinator.

2. We explore the possibility of increasing efficiency by having seasonal storages in the grid.
In this regard, we formulate the optimization problem that incorporates the dynamics
and constraints of the seasonal storages. Furthermore, we develop a combination of
hierarchical and distributed MPC scheme so that the annual cyclic behavior of the
storages can be captured and better operating plans can be obtained while having
distributed computations.

1-4 Report Structure

After this introductory chapter that explains motivations, related work, and the contributions
of the thesis, we provide the distributed coordination of thermal grids with uncertain demands
In Chapter 2. In this chapter, first we provide the mathematical modeling of thermal grids
including the profile of the thermal energy demand of an agent. Afterwards, the day-ahead
production planning problem is formulated. In these parts we extensively describe the cost
function and constraints of the problem, as well as the compact reformulation that we used.
We then explain the proposed algorithm to solve it which is called the robust randomized
method and extend it to two distributed algorithms. In the last section of this chapter, we
discuss the simulation study of the proposed methods.
Chapter 3 discusses the second case of the thermal grids where seasonal energy storages
are present in the system. Here we discuss how they affect the systems and we formulate
the corresponding production planning problems. Afterwards, we discuss the combination of
hierarchical and distributed framework in which the robust randomized method is applied to
tackle this problem. Lastly, we present and discuss the simulation study of this case.
We conclude this thesis in Chapter 4 by providing some remarks and recommendations for
the future research in this topic.

Wayan Wicak Ananduta Master of Science Thesis



Chapter 2

Distributed Coordination of Uncertain
Thermal Grids

In this chapter we present a unified framework which solves a production planning problem
of thermal grids. It is built based on the work of [1] which is extended to distributed settings.
The framework presented in [1] is a mixed-integer chance-constrained problem and we propose
two distributed robust randomized Model Predictive Control (MPC) methods which are based
on the Alternating Direction Method of Multipliers (ADMM) to solve it.

This chapter begins with a discussion of the thermal energy demand profile and its stochastic
model in Section 2-1. Afterwards, we explain the description of the system which includes
the dynamics, constraints, and cost function in Section 2-2. It is followed by the formulation
of the optimization problem in Section 2-3. Then, we present a tractable method to solve
the problem in Section 2-4. Our main contribution in this part is the formulation of the
distributed versions of the method which is described in Section 2-5. Finally, the simulation
study in which we show the performance of the proposed algorithm is provided in Section 2-6.

2-1 Daily Thermal Energy Demand Profile

The profile of thermal energy demand is obtained using Low Energy Architecture (LEA)
model in which it is viewed that the demand is only related to maintaining the indoor air
temperature [35]. This model is principally based on the energy balance of the building and
takes into account heat transfers that will affect the balance. Thus, the demand is the energy
that is required to be supplied to or extracted from an agent (a building or house) so that
the indoor air temperature is kept at the desired level. According to this model, the demand
depends on environmental conditions, such as outside temperature, solar radiation and wind
speed, as well as the insulation and the occupancy of the building. For instance, due to the
difference between the desired indoor and outside air temperature, there is some energy that
is exchanged between the building and the environment and the exchanges are considered as
convective transfers which are related to the insulation of the building. When the outside
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6 Distributed Coordination of Uncertain Thermal Grids
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Figure 2-1: The real thermal energy demand (red line), the forecast demand (blue line) and
2000 scenarios that are generated from the Markov Chain model (green lines).

air temperature is lower than the desired indoor air temperature and since it is possible to
transfer the energy through the wall, floor and roof, there will be some loss of energy which
need to be compensated. When the situation is the other way around, the building gains
thermal energy from the environment. Moreover, solar radiation, the use of lighting and
equipments and the existence of people that occupy the building contribute to the thermal
balance since they produce energy. In addition, we consider the demand is positive when the
agent requires energy while it is negative when the agent has an excess of energy. A complete
mathematical model is given in Appendix A-1.

In order to generate the forecast or random scenarios of the demand, we developed a stochastic
version of the LEA model which was based on the Markov-Chain method [36], [37]. It was
assumed that the uncertainty came from the outside air temperature and the occupancy of
the building. Furthermore, the rest of the weather variables, i.e., the wind speed and solar
radiation, were assumed to be deterministic. Moreover, the transition matrix of the model
was predefined. Figure 2-1 shows the plot of the real thermal energy demand of a building
(red) as well as the forecast (blue) and 2000 random scenarios (green) that were generated
from a Markov-Chain based model with 10 states. The value of the parameters related to the
LEA model is given in Appendix A-2.

2-2 System Description of the Thermal Grid

In the thermal grids, we consider that each agent (a household or greenhouse) has its own
decentralized production unit which consists of a boiler and a micro-Combined Heat Power
(CHP)1. It is also viewed that an agent has the capability of exchanging thermal energy with
each other. Moreover, it is also assumed that cooling demands are satisfied by using electrical

1Micro-CHPs are defined as the combined production of electrical (or mechanical) and useful thermal energy
from the same primary source [7]
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2-2 System Description of the Thermal Grid 7

equipments and the electrical energy demands are fulfilled locally or by importing from a
third party.

2-2-1 Dynamics of the System

Following [1], the problem that is dealt with is day-ahead production planning for all agents
i ∈N= {1, 2, · · · , N}, where N is the number of agents. For this problem, we consider a finite
prediction horizon Nh= 24 with hourly steps and introduce k as the sampling time. First we
define the main vector of the control variables of each agent, um,i(k) ∈ R10, as

um,i(k) =
[
pg,i(k) pug,i(k) pdg,i(k) hg,i(k) hb,i(k) him,i(k) usu

g,i(k) usu
b,i(k) zg,i(k) zb,i(k)

]T
,

(2-1)
where pg,i(k) and hg,i(k) denote the electrical power and the thermal energy production of
the micro-CHP, pug,i(k) and pdg,i(k) denote the up and down spinning of electrical power by
the micro-CHP, hb,i(k) denotes the amount of thermal energy that is produced by the boiler,
him,i(k) relates to the imported thermal energy from external parties, and usu

g,i(k) and usu
b,i(k)

refer to the start-up cost variable of the micro-CHP and boiler. Moreover, zg,i(k) and zb,i(k)
are the auxiliary variables that are required to model the minimum on and off time of each
micro-CHP and boiler.
The grids are modeled based on the level of energy of each agent. It is coherent with the aim
of the controller which is to ensure the efficiency and reliability of the energy production. In
this regard, each agent is seen to have a thermal energy buffer. The dynamics of the energy
level in the buffer, which indicates that the level at the next time instance depends on the
current level, the energy produced, and the current demand, is represented in the following
discrete-time equation:

hbuf,i(k + 1) = ηs,i

hbuf,i(k) + hg,i(k) + hb,i(k) + him,i(k) +
∑

j∈N−i

(1− αij)hxc,ij(k)− hd,i(k)

 ,

(2-2)
where ηs,i ∈ (0, 1) is the efficiency of the thermal energy storage and hd,i(k) is the thermal
energy demand of agent i. Moreover, hxc,ij(k) ∈ R denotes the thermal energy that is
exchanged between agents i and j and αij denotes the transportation energy loss coefficient
between those agents. Additionally, N−i is defined as the set of neighbors of agent i as follows

N−i ⊆ N\{i}, (2-3)

and all the exchanged energy of agent i with the neighbors, hxc,ij∀j ∈ N−i, are collected as
an auxiliary vector uc,i(k) ∈ R|N−i|.
Furthermore, we introduce the imbalance error as the state of each agent. It refers to the
difference between the energy level in the buffer (hbuf,i(k)) and the thermal energy demand
(hd,i(k)), as follows:

xi(k) = hbuf,i(k)− hd,i(k). (2-4)
Having imbalance error as the state (x) of the system serves the purpose of having a variable
which represents the reliability of the grid, which is one of the performance indicators in this
study. We can easily say that the grid is reliable when the imbalance error is non-negative
since it implies the supply is equal or bigger than the demand.
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8 Distributed Coordination of Uncertain Thermal Grids

The dynamics of the state (imbalance error) can then be obtained by using its definition in
Equation (2-4) and substituting hbuf,i(k + 1) according to Equation (2-2). Thus we are able
to form a linear dynamics equation of the state as follows:

xi(k + 1) = Aixi(k) +Biui(k) +Hwi(k), (2-5)

where the input vector is ui(k) = [uTm,i(k) uTc,i(k)]T and hd,i(k + 1) which is uncertain is
considered to be the disturbance wi(k) of the system. Moreover, A= ηs, B= ηs,i[b1 bi,2]
where b1 = [0 0 0 1 1 1 0 0 0 0] and bi,2 ∈ R|N−i| containing (1− αij) ∀j ∈ N−i and H= −1.
Note that the uncertain variable wi(k) is defined on a probability space ∆i. It is assumed
that ∆i is endowed with the Borel σ-algebra and P is a probability measure defined over ∆i.

Additionally, the status of the boilers and micro-CHPs is defined as a binary vector vi(k) =[
vg,i(k) vb,i(k)

]T
∈ {0, 1} × {0, 1} which is defined as follows

vg,i(k) =
{

0, micro-CHP is off,
1, micro-CHP is on,

vb,i(k) =
{

0, boiler is off,
1, boiler is on.

(2-6)

These binary variables are required to describe some of the constraints which are explained
in the next subsection.

2-2-2 System Constraints

The constraints of the optimization problem is defined according to the operational condition
or behavior of the system and the desired performance that has to be achieved. The following
are the constraints that are taken into account.

Start-up Cost Constraints

The production unit consumes fuel to start up but during this time it does not produce energy.
This behavior is modeled as startup cost constraints as follows

usu
i (t) ≥ Λsu

i (vi(t)− vi(t− 1)) , csu
i,k ≥ 0, t ∈ {k, · · · , k +Nh − 1}, (2-7)

where Λsu
i is a diagonal matrix in which the diagonal elements are the start-up costs of the

micro-CHP and the boiler owned by an agent and t is the prediction time. Equation (2-7)
indicates that every time the status of a boiler or micro-CHP changes from 0 to 1, which
means it starts up, the additional cost of starting up is added to the agent.
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2-2 System Description of the Thermal Grid 9

Capacity Constraints

The capacity constraints of each agent i ∈ N , for t ∈ {k, · · · , k +Nh − 1} are defined in the
following way:

vg,i(t)pmin
g,i ≤pg,i(t) ≤ vg,i(t)pmax

g,i , (2-8)
vg,i(t)hmin

g,i ≤hg,i(t) ≤ vg,i(t)hmax
g,i , (2-9)

vb,i(t)hmin
b,i ≤hb,i(t) ≤ vb,i(t)hmax

b,i , (2-10)
hmin

im,i ≤him,i(t) ≤ hmax
im,i , (2-11)

hmin
xc ≤hxc,ij(t) ≤ hmax

xc , j ∈ N−i. (2-12)

The first three constraints, Equation (2-8)-(2-10), are introduced to describe the production
capacity of the production unit. pmin

g,i and pmax
g,i denote the minimum and maximum electrical

energy that can be produced by the micro-CHP, while hmin
g,i and hmax

g,i indicates the thermal
energy produced. The minimum and maximum production energy of the boiler are denoted by
hmin

b,i and hmax
b,i . Similarly, Equation (2-11) refers to the capacity of the imported energy from

the external party and hmin
im,i, h

max
im,i denote the limit. The amount of energy that is exchanged

between the agents at each sampling time is also limited by the capacity of the pipeline which
is described by Equation (2-12) where hmin

xc = −hmax
xc and hmax

xc > 0 defines the maximum
capacity.

Up and Down Spinning Electrical Power Constraints

− pdg,i(t) ≤ pg,i(t)− pd,i(t) ≤ pug,i(t), (2-13)
pdg,i(t) ≥ 0, pug,i(t) ≥ 0, ∀t ∈ {k, · · · , k +Nh − 1}, (2-14)

where pd,i,k is the electrical energy demand of agent i at sampling time k.

Ramping Capacity Constraints

− pdown
g,i ≤ pg,i(t)− pg,i(t− 1) ≤ pup

g,i , ∀t ∈ {k, · · · , k +Nh − 1}, (2-15)

where pdown
g,i , pup

g,i > 0 denote the maximum increase and decrease of the electrical energy pro-
duced by a micro-CHP. These constraints are only imposed on the electrical energy production
due to the fact that thermal energy can be produced within each step.

Status Change Constraints
The status change constraints ensure that a micro-CHP is on (or off) for the predefined
minimum value of time. ∆kup,g and ∆kdown,g denote the minimum time that a micro-CHP
has to be on or off. The status change constraints of a micro-CHP are as follows

zg,i(t) ≥ vg,i(t)− vg,i(t− 1) , zg,i(t) ≥ 0, (2-16)
t∑

l=t+1−∆kup,g

zg,i(l) ≤ vg,i(t), ∀t ∈ {k, · · · , k +Nh − 1}, k ≥ ∆kup,g, (2-17)

t−1+∆kdown,g∑
l=t

zg,i(l) ≤ 1− vg,i(t− 1), ∀t ∈ {k, · · · , k +Nh − 1−∆kdown,g}. (2-18)
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10 Distributed Coordination of Uncertain Thermal Grids

Similarly, the status change constraints of a boiler are:

zb,i(t) ≥ vb,i(t)− vb,i(t− 1) , zb,i(t) ≥ 0, (2-19)
t∑

l=t+1−∆kup,b

zb,i(l) ≤ vb,i(t), ∀t ∈ {k, · · · , k +Nh − 1}, k ≥ ∆kup,b (2-20)

t−1+∆kdown,b∑
l=t

zb,i(l) ≤ 1− vb,i(t− 1), ∀t ∈ {k, · · · , k +Nh − 1−∆kdown,b, }. (2-21)

The minimum off time (∆kdown) is necessary to represent that a production unit require some
time to shut down and start up again, that is the transient-response time of the production
unit. On the other hand, the minimum on time (∆kup) is introduced to avoid high frequency
of the switching of the production unit which could lead to inefficient fuel consumption.

Balance Constraints
By definition, the thermal energy that is exchanged between agent i and j should follow

hxc,ij(t) + hxc,ji(t) = 0, ∀j ∈ N−i, ∀i ∈ N , ∀t ∈ {k, · · · , k +Nh − 1}. (2-22)

Probabilistic Constraints
One of the goals of the controller is to ensure that the thermal energy demand of each agent
is fulfilled i.e., the imbalance is nonnegative. Since the demand is uncertain, the constraint
that ensures this condition is a chance constraint as follows

P(xi(t+ 1) ≥ 0, ∀i ∈ N , ∀t ∈ {k, · · · , k +Nh − 1}}) ≥ 1− ε, (2-23)

where P is the probability operator and ε is the level of violation. This implies that the
imbalance error should be a nonnegative value for all the thermal energy demand realizations
except for a set of probability which is at most ε.

2-2-3 Cost Function

The cost (J t) in this optimization problem is defined as a quadratic function with respect to
the state and the decision variables as follows

Jt =
k+Nh−1∑
t=k

N∑
i=1

Ji(t), (2-24)

where
Ji(t) = xi(t)Qixi(t) + uTm,i(t)Rium,i(t), (2-25)

in which Qi > 0 and Ri ≥ 0 ∀i ∈ N . Moreover, Ri ∈ R10×10 is a diagonal matrix, the
diagonal elements of which represent the cost coefficient of the main decision variables as
follows

Ri = diag(ri),

ri =
[
0 rup,i rdp,i

rg,i

ηCHP

rb,i

ηb
rim,i 1 1 0 0

]
,
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2-3 Problem Formulation 11

where rup and rdp,i denote the cost coefficient of the up and down spinning, rg,i and rb,i denote
the cost coefficient of the micro-CHP and the boiler, and rim,i denotes the cost coefficient
of importing energy from a third party. Moreover, ηCHP ∈ (0, 1) and ηb ∈ (0, 1) denote the
efficiency of the micro-CHP and the boiler. Note that the first element is zero due to the fact
that pg,i and hg,i are coupled through

pg,i = ηp
ηh
hg,i. (2-26)

The seventh and eight entries are 1 because they correspond to the startup cost while the
last two entries are zero since they belong to the auxiliary variables zg,i and zb,i.

In addition, the cost coefficient rg,i and rb,i incorporate the production cost coefficient and
the cost coefficient of the carbon dioxide emission as follows:

rg,i = rpg,i + rCO2,g,i,

rb,i = rpb,i + rCO2,b,i,

where rp denotes the cost coefficient of the production and rCO2 denotes the cost coefficient
of the carbon dioxide emission.

The definition of the cost function infers that we want to minimize the imbalance error as
well as the efficiency. We penalize the imbalance error and the energy produced by the boiler
and micro-CHP as can be seen on the definition on the weight matrices Ri. The weights
assigned to the micro-CHP, the boiler, and the energy imported from the external party
are set based on the economic cost of producing thermal energy. Furthermore, the energy
exchanged between agents which is defined in uc,i(k) is not penalized.

It is also important to emphasize that the cost function is not strictly convex with respect to
all the decision variables. Not only that Ri ∀i ∈ N is positive semidefinite, but uc,i(k) and
vi(k) for all i ∈ N and k are not taken into account in the cost. Note that the fact whether
the cost is strictly convex is important when formulating a distributed optimization for the
problem.

2-3 Problem Formulation

After defining the dynamics, constraints, and cost function of the system, we can write this
optimization problem in a compact form. The predictions of the states, which are based on
their dynamics indicated in Equation (2-5), can be written as follows

x̃i = Aixi(k) + Biũi + Hiw̃i, ∀i ∈ N , (2-27)

where x̃i, ũi, w̃i,Ai,Bi,Hi are given in Appendix B-1. Moreover, the local constraints which
are defined in Equation (2-7) - (2-21) can also be written compactly as follows

Eiũi + Fiṽi + Pi ≤ 0, ∀i ∈ N , (2-28)

where ṽi = [vTi (k) · · · vTi (k + Nh − 1)]T and Ei, Fi, and Pi are matrices with appropriate
dimensions which are derived from the constraints as explained in Appendix B-2. Equation
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12 Distributed Coordination of Uncertain Thermal Grids

(2-28) indicates the local constraints due to the fact that only the local variables ui(t) and
vi(t) ∀t ∈ {k, · · · , k + Nh − 1} of each agent are involved in each constraint whereas the
balance constraints (Equation (2-22)) couple the decision variables of neighboring agents.
Thus Equation (2-22) is called the coupling constraints and can also be written in a canonical
form as

ũc,i +
∑
j∈N−i

Gijũc,j = 0, ∀i ∈ N , (2-29)

where ũc,j =
[
uTc,j(k) uTc,j(k + 1) · · · uTc,j(k +Nh − 1)

]T
and Gij∀j ∈ N−i∀i ∈ N are block

diagonal matrices of Gij ∈ R|N−i|×|N−j |. In addition, Gij∀j ∈ N−i∀i ∈ N are matrices, the
elements of which are 1 and 0 such that the balance constraints are satisfied. An example of
constructing matrices Gij is given in Appendix B-3.

Hence, we can define the centralized optimization problem for the overall thermal grid over a
finite prediction horizon Nh as

minimize
{ũi,ṽi}N

i=1

N∑
i=1
Ji(x̃i, ũi) (2-30a)

subject to P(Axi(k) + Biũi + Hiw̃i ≥ 0, ∀i ∈ N ) ≥ 1− ε, (2-30b)
Eiũi + Fiṽi + Pi ≤ 0, (2-30c)
ũc,i +

∑
j∈N−i

Gijũc,j = 0, ∀i ∈ N , (2-30d)

where
Ji(x̃i, ũi) = x̃Ti Qix̃i + ũTm,iRiũm,i, (2-31)

in which Qi and Ri are block diagonal matrices of Qi and Ri as defined in Subsection 2-2-3.
Furthermore, ũmi =

[
uTm,i(k) uTm,i(k + 1) · · · uTm,i(k +Nh − 1)

]T
.

Problem (2-30) is a chance-constrained mixed-integer problem. In general, such problems are
hard to solve not only due to the existence of the probabilistic constraints [3] but also the
mixed-integer variables. However, in the following section, we explain a tractable method to
solve this problem.

2-4 Tractable Methodology for Stochastic MPC Problems

The authors of [1] provide a tractable methodology to solve the optimization problem (2-30).
It consists of two steps in which the first step is approximating the chance constraints by
providing probabilistic bounds and the second step is reformulating the problem into a robust
mixed-integer problem. These steps are explained in the following parts.

2-4-1 Computing the Probabilistic Bounds

The chance constraints can be approximated by constructing a bounded set of uncertainty
realizations with a predefined probability of violation [18]. Since each agent has its chance
constraint which correspond to its uncertain variable wi(k), we define Bi(γi) to be the bounded
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2-4 Tractable Methodology for Stochastic MPC Problems 13

set of the uncertainty realizations of wi(k). We assume that Bi(γi) is an axis-aligned hyper-
rectangle2 for each agent i. Then we parametrize Bi(γi) = ×k+Nh−1

t=k

[
γ
i
(t), γi(t)

]
by the upper

and lower bounds γi = (γ
i
,γi) ∈ R2Nh , where γ

i
= [γ

i
(k), · · · , γ

i
(k + Nh − 1)]T ∈ RNh and

γi = [γ(k)i, · · · , γi(k +Nh − 1)]T ∈ RNh . Now, in order to compute the bounds, we consider
the following chance-constrained optimization problem:

minimize
γi

k+Nh−1∑
t=k

γi(t)− γi(t)

subject to P(wi(t) ∈ ∆i | γ
i
(t) ≤ wi(t) ≤ γi(t),∀t ∈ {k, · · · , k +Nh − 1}) ≥ 1− ε.

(2-32)
Since Problem (2-32) is convex, we can apply the scenario approach to obtain the bounds γi
with a pre-determined probabilistic guarantee as follows

minimize
γi

k+Nh−1∑
t=k

γi(t)− γi(t)

subject to γ
i
(t) ≤ w(s)

i (t) ≤ γi(t)
{
∀t ∈ {k, · · · , k +Nh − 1},
∀s ∈ {1, · · · , Ns},

(2-33)

where w(s)
i denote the s-th scenario of wi and the number of scenarios Ns is determined by

Equation (2-34) as the following [3]:

Ns ≥
2
ε

(
Nd + ln 1

β

)
, (2-34)

where Nd= 2NNh. Thus the optimal solution (γ?i ) that is obtained by solving Problem
(2-33) is a feasible solution for Problem (2-32) with confidence level of 1−β. It is important
to note that we only need a finite number of instances of wi(k), and it is not required that
the probability space ∆i and the probability measure P to be known explicitly [1].

2-4-2 Robust Reformulation

After Bi(γ?i ) ∀i ∈ N are constructed, we can formulate the robust counterpart of Problem
(2-30) where Wi(k) ∈ Bi ∩ ∆i∀i ∈ N . As stated in [1], it is a finite-horizon mixed-integer
problem any feasible solution of which is also a feasible solution of Problem (2-30) with
confidence level of 1− β. The robust counterpart is

minimize
{ũi,ṽi}N

i=1

N∑
i=1
Ji(ũi) (2-35a)

subject to Aixi(k) + Biũi + Hi(γoi + ηi) ≥ 0, (2-35b)
Eiũi + Fiṽi + Pi ≤ 0, (2-35c)
ũc,i +

∑
j∈N−i

Gijũc,j = 0, ∀i ∈ N , (2-35d)

2The choice of a hyper-rectangle is not restrictive and any convex set with convex volume could have been
chosen instead [18]
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14 Distributed Coordination of Uncertain Thermal Grids

where γoi = [γoi (k), · · · , γoi (k + Nh − 1)]T ∈ RNh , ∀i ∈ N are vectors, elements of which
are the middle points of the hyper-rectangle Bi, i.e., defined as γoi = 0.5(γ?i +γ?

i
). Moreover,

ηi = [ηi(k) · · · ηi(k + Nh − 1)]T∀i ∈ N are the bounds for the worst-case realizations of
wi(t) ∀t ∈ {k, · · · , k +Nh − 1}, that is

maximize
ηi

ηi

subject to ηi(t) ≤ γ?i (t)− γoi (t),
ηi(t) ≤ γ?i (t)− γ

o
i (t), ∀t ∈ {k, · · · , k +Nh − 1}.

(2-36)

Note that since now we have

x̃i = Aixi(k) + Biũi + Hi(γoi + ηi),

x̃i can be substituted so that we obtain an expression of Ji only as a function of ũi.

The stochastic procedure which is called as the robust randomized MPC is stated in the
following Algorithm 1.

Algorithm 1 Robust Randomized MPC
for k = 1, 2, . . . do

Set ε ∈ (0, 1), β ∈ (0, 1).
Generate Ns scenarios where Ns is computed as in Equation (2-34).
Establish Bi(γ?i )∀i ∈ N by solving Problem (2-32).
Solve the robust problem (2-35)
Apply ui(k)∀i ∈ N to the agents.

end for

2-5 Distributed Robust Randomized MPC

One of the main contribution of this thesis is extending the robust randomized MPC to a
distributed approach. This is obtained by decomposing the proposed robust reformulation,
which is defined in (2-35). Due to the existence of the coupling constraints (Equation (2-35d)),
it is not a trivially separable problem. Thus we will decompose it using a dual decomposition
method. It is also known that since Ri ≥ 0 ∀i ∈ N , the cost function is not strictly convex.
This means that the standard dual decomposition method will not work [27]. Hence ADMM
is proposed to be applied to decompose and solve it in a distributed setting. In this section,
two ADMM formulations for this problem are explained, one is a fully distributed scheme
while the other is with a coordinator.
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2-5 Distributed Robust Randomized MPC 15

2-5-1 Fully Distributed Coordination based on MPC

Problem (2-35) can be expressed in a compact form as

minimize
{ũi,ṽi}N

i=1

N∑
i=1
Ji(ũi) (2-37a)

subject to ũi, ṽi ∈ Li, (2-37b)
ũc,i ∈ Ci, ∀i ∈ N , (2-37c)

where Li is the set which is defined by the local constraints (2-35b) and (2-35c) of agent i
while Ci is the set which is defined by the coupling constraint (2-35d). We can reformulate
the problem into

minimize
{ũi,ṽi}N

i=1

N∑
i=1
Ji(ũi) +ψi(ỹi) (2-38a)

subject to ũi, ṽi ∈ Li, (2-38b)
ũc,i − ỹi = 0 ∀i ∈ N , (2-38c)

in which ψi(ỹi) is the indicator function of Ci, that is ψi(ỹi) = 0 if ỹi ∈ Ci and ψi(ỹi) = +∞
otherwise. Note that ỹi = [yi(k) · · · yi(k+Nh− 1)] ∈ RNh|N−i|, ∀i ∈ N . By introducing the
Lagrange multipliers, λ̃i = [λTi (k) · · ·λTi (k + Nh − 1)]T ∀i ∈ N , where λi(t) ∈ R|N−i| ∀t ∈
{k, · · · , k + Nh − 1} and ρ> 0 as the penalty parameter, the augmented Lagrangian of this
problem can be written as

Lρ =
N∑
i=1

(
Ji(ũi) +ψi(ỹi) + λ̃Ti (ũc,i − ỹi) + ρ

2‖ũc,i − ỹi‖
2
2

)

=
N∑
i=1
Lρ,i(ũi, ỹi, λ̃i).

(2-39)

Hence, the augmented dual problem associated with Problem (2-35) is

minimize
{ũi,ṽi}N

i=1

N∑
i=1
Lρ,i(ũi, ỹi, λ̃i) (2-40a)

subject to ũi, ṽi ∈ Li, ∀i ∈ N , (2-40b)

which is separable. Thus the ADMM that solves this problem consists of the iterations of:

1. Updating ũi and ṽi for all i ∈ N :

ũ
(q+1)
i , ṽ

(q+1)
i :=argmin

ũi,ṽi

Lρ,i(ũi, ỹ(q)
i , λ̃

(q)
i )

subject to ũi, ṽi ∈ Li.
(2-41)

2. Updating ỹi for all i ∈ N :
ỹ

(q+1)
i = ΠCi

(
ũ

(q+1)
c,i

)
. (2-42)
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16 Distributed Coordination of Uncertain Thermal Grids

ΠCi(·) is the projection onto the set Ci which is

ỹi = argmin
ỹi

||ỹi − ũ(q+1)
c,i ||2

subject to ỹi +
∑
j∈N−i

Gijũ
(q+1)
c,j = 0.

(2-43)

Clearly, the solution of this minimization problem is

ỹ
(q+1)
i = −

∑
j∈N−i

Gijũ
(q+1)
c,j . (2-44)

Thus we use Equation (2-44) as the update rule of ỹi.

3. Updating λ̃i for all i ∈ N via a gradient method:

λ̃
(q+1)
i = λ̃

(q)
i + ρ

(
ũ

(q+1)
c,i − ỹ(q+1)

i

)
. (2-45)

The algorithm stops when
(
ũ

(q)
c,i − ỹ

(q)
i

)
→ 0, ∀i ∈ N , thus the stopping criterion of the

algorithm is given by ∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

ũ

(q)
c,1 − ỹ

(q)
1

...
ũ

(q)
c,N − ỹ

(q)
N


∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2

< ε, (2-46)

for a small ε > 0.

The distributed version of the robust randomized MPC is written in Algorithm 2. Note that
the steps of updating ỹi and λ̃i is fully distributed to the agents. Even so, it is also possible
to let a coordinator does these steps. Moreover, not all decision variables but only ũc,i which
contains hxc,ij that needs to be communicated between the agents (in a fully distributed
setting) or to the coordinator.

One issue of an iterative algorithm such as this method is that it possibly requires a large
number of iterations before the stopping criteria is met. In this regard, warm start is a method
which could reduce the number of iterations. It is done by using the solutions obtained in
the previous sampling time since it often gives a good enough approximation to result in far
fewer iterations [27]. For instance, let say that ỹ(q)

i and λ̃(q)
i are the solutions obtained at the

last iteration (q) at sampling time k, thus we initialize ỹ(0)
i and λ̃(0)

i for the next sampling
time (k + 1) as

ỹ
(0)
i =

[
ỹ

(q)T
i (k + 1) · · · ỹ

(q)T
i (k +Nh − 1) 0

]T
, (2-47)

λ̃
(0)
i =

[
λ̃

(q)T
i (k + 1) · · · λ̃

(q)T
i (k +Nh − 1) 0

]T
. (2-48)
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2-5 Distributed Robust Randomized MPC 17

Algorithm 2 Fully Distributed Robust Randomized MPC

Initialize ỹ(0)
i , λ̃

(0)
i , ∀i ∈ N , ρ > 0.

for k = 1, 2, . . . do
Set ε ∈ (0, 1), β ∈ (0, 1).
Generate Ns scenarios where Ns is computed as in Equation (2-34).
Establish Bi(γ?i )∀i ∈ N by solving Problem (2-32).
q = 1.

while

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

ũ

(q−1)
c,1 − ỹ(q−1)

1
...

ũ
(q−1)
c,N − ỹ(q−1)

N


∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2

≥ ε do

for i ∈ N do
Each agent solves the local optimization to obtain ũ(q)

i and ṽ(q)
i , that is

minimize
ũi,ṽi

Lρ,i
(
ũi, ỹ

(q−1)
i , λ̃

(q−1)
i

)
subject to (2-49b) and (2-49c).

end for
Exchange ũ(q)

c,i with the neighbors.
for i ∈ N do

Update ỹ(q)
i :

ỹ
(q)
i = −

∑
j∈N−i

Gijũ
(q)
c,j .

Update λ̃(q)
i :

λ̃
(q)
i = λ̃

(q−1)
i + ρ

(
ũ

(q)
c,i − ỹ

(q)
i

)
.

end for
q = q + 1.

end while
Apply u(q)

i (k) ∀i ∈ N .
Warm start: Initialize ỹ(0)

i , λ̃
(0)
i , ∀i ∈ N , for the next sampling time with a warm start

using ỹ(q)
i , λ̃

(q)
i from the last iteration:

ỹ
(0)
i =

[
ỹ

(q)T
i (k + 1) · · · ỹ

(q)T
i (k +Nh − 1) 0

]T
,

λ̃
(0)
i =

[
λ̃

(q)T
i (k + 1) · · · λ̃

(q)T
i (k +Nh − 1) 0

]T
.

end for
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18 Distributed Coordination of Uncertain Thermal Grids

2-5-2 Distributed ADMM with Coordinator

The second ADMM method is formulated by perceiving the problem as an optimal exchange
problem which is discussed in Appendix C-2-2. In this regard, we can consider the robust
reformulation of the problem as follows:

minimize
{ũi,ṽi}N

i=1

N∑
i=1
Ji(ũi) (2-49a)

subject to Aixi(k) + Biũi + Hi(γoi + ηi) ≥ 0, (2-49b)
Eiũi + Fiṽi + Pi ≤ 0, ∀i ∈ N , (2-49c)
N∑
i=1

Kiũc,i = 0, (2-49d)

in which the formulation of the coupling constraint is slightly modified. Instead of having N
coupling constraints as in Problem (2-35), in this formulation there is only one global coupling
constraints which is Equation (2-49d). Moreover, Ki ∀i ∈ N are diagonal matrices of Ki, the
elements of which are 0 and 1 such that the balance constraints are satisfied (see Appendix
B-3). Hence, we can follow the unscaled form of ADMM for such problems as provided in
[27], in order to solve it. This consists following iterations:

1. Updating of ũi and ṽi:

ũ
(q+1)
i , ṽ

(q+1)
i =argmin

ũi,ṽi

Ji(ũi) + λ(q)T (Kiũc,i) + ρ

2

∣∣∣∣∣∣Kiũc,i +
(
ỹ(q) −Kiũ

(q)
c,i

)∣∣∣∣∣∣2
2

subject to Aixi(k) + Biũi + Hi(γoi + ηi) ≥ 0,
Eiũi + Fiṽi + Pi ≤ 0.

(2-50)

2. Updating of ỹ:

ỹ(q+1) =
N∑
i=1

Kiũ
(q+1)
c,i . (2-51)

3. Updating of λ̃:
λ̃(q+1) = λ̃(q) + ρỹ(q+1). (2-52)

In this approach, beside the optimization problem is solved in a distributed fashion, the
process of updating the auxiliary decision variable ỹ and the Lagrange multiplier λ̃ requires
a coordinator which receives the decision of ũc,i at each iteration from all agents. Algorithm
3 provides the summary of the robust randomized method in this setting.

2-6 Numerical Study of the First Case

In this section, we present a simulation study to illustrate the performance of the proposed
distributed algorithms which would be compared with the performance of the centralized
version of this algorithm. All simulations were carried out in MATLAB. We used YALMIP
[38] and Gurobi [39] to solve the local optimization problems which are mixed-integer.
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2-6 Numerical Study of the First Case 19

Algorithm 3 Distributed Coordinated Robust Randomized MPC

Initialize ỹ(0)
i , λ̃

(0)
i , ∀i ∈ N , ρ > 0.

for k = 1, 2, . . . do
Set ε ∈ (0, 1), β ∈ (0, 1).
Generate Ns scenarios where Ns is computed as in Equation (2-34).
Establish Bi(γ?i )∀i ∈ N by solving Problem (2-32).
q = 1.

while

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

ũ

(q−1)
c,1 − ỹ(q−1)

1
...

ũ
(q−1)
c,N − ỹ(q−1)

N


∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2

≥ ε do

for i ∈ N do
Each agent solves the local optimization to obtain ũ(q)

i and ṽ(q)
i , that is

minimize
ũi,ṽi

Lρ,i
(
ũi, ỹ

(q−1)
i , λ̃

(q−1)
i

)
subject to (2-35b) and (2-35c).

end for
All agents send their decision of ũ(q)

c,i to the coordinator.
The coordinator updates ỹ and λ̃ as follows:

ỹ(q) =
N∑
i=1

Kiũ
(q)
c,i , (2-53)

λ̃(q) = λ̃(q−1) + ρỹ(q). (2-54)

q = q + 1.
end while
All agents apply u(q)

i (k) ∀i ∈ N .
Warm start: The coordinator initializes ỹ(0)

i , λ̃
(0)
i , ∀i ∈ N , for the next sampling time

with a warm start using ỹ(q)
i , λ̃

(q)
i from the last iteration:

ỹ
(0)
i =

[
ỹ

(q)T
i (k + 1) · · · ỹ

(q)T
i (k +Nh − 1) 0

]T
,

λ̃
(0)
i =

[
λ̃

(q)T
i (k + 1) · · · λ̃

(q)T
i (k +Nh − 1) 0

]T
.

and assigns them to the corresponding agents.
end for
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20 Distributed Coordination of Uncertain Thermal Grids

Figure 2-2: Diagram of the thermal grid considered in the simulation. It consists of three agents,
each of which has a boiler, a micro-CHP, and a storage. It is also possible to exchange energy
between them.

2-6-1 Simulation Setup

A thermal grid which consists of three agents (N = 3) and has uncertain thermal energy
demand was considered as an example for the simulation study of this case. Each agent has
its local thermal and electrical energy demand. They also had a micro-CHP and a boiler as
the production units. Additionally, they were able to exchange energy which are denoted by
hxc,ij ∀i ∈ N , ∀j ∈ N−i and |N−i| = 2 for all agents. Furthermore, there was an external party
which exports thermal and electrical energy to the agents if necessary. Figure 2-2 depicts the
diagram of the thermal grid.

We solved the production planning problem of this system for one day in a centralized setting
using Algorithm 1 and distributed settings using Algorithm 2 and 3 with Nh = 24. It was
assumed that the operating points that were set by solving this problem at each sampling
time could always be achieved by the production units. The thermal energy demand profiles
of all agent for the day are shown in Figure 2-3. The parameters of each agent, such as the
efficiency and the limit of the production units, the cost coefficients, are given in Table 2-1.
Moreover, we assumed that the up and down ramping capacity of the electrical power were
pup

g,i = pdown
g,i = pmax

g,i /3. Furthermore, the level of violation and confidence of the robust
randomized MPC method were set to be 0.1 and 0.0001, respectively. The Ns scenarios were
generated by the Markov-chain based model which is explained in Section 2-1. In order to have
a clear performance comparison of the distributed and centralized methods, the probabilistic
bounds were computed offline. Hence at each sampling time, all algorithms used the same
bounds when solving the robust problem.
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Figure 2-3: The thermal energy demand of each agent.

Table 2-1: The Values of the Parameters

Parameter Agent 1 Agent 2 Agent 3 Unit
pmax

g ,hmax
g ,pmin

g ,hmin
g 15, 15, 0, 2 15, 15, 0, 2 15, 15, 0, 2 KWh

hmax
b ,hmax

im ,hmin
b ,hmin

im 30, 120, 2, 0 30, 120, 2, 0 30, 120, 2, 0 KWh
hmax

xc ,hmin
xc ,x[0] 2, -2, 2 2, -2, 1 2, -2, 0 KWh

ηCHP,ηh,ηp 0.85, 0.7, 0.3 0.85, 0.7, 0.3 0.85, 0.7, 0.3 -
ηb,ηs,αij 0.8, 0.9, 0.25 0.8, 0.9, 0.25 0.8, 0.9, 0.25 -

cg,cup,cdp,cb 16, 0, 121, 36 25, 0, 144, 64 25, 0, 100, 400 -
cim, csu

g ,csu
b , Q 2500, 1, 1, 100 2500, 1, 1, 100 2500, 1, 1, 100 -

∆tup, ∆tdown 2, 2 2, 2 2, 2 hours
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22 Distributed Coordination of Uncertain Thermal Grids

2-6-2 Discussion of the Simulation Results

Figure 2-4 until 2-10 depict the simulation results of the three algorithms that were imple-
mented to the system. The thermal demands of all agents were fulfilled at every sampling
time and this is shown by the positive values of the imbalance errors (Figure 2-4). In order
to achieve this, not all production units were required to be on (Figure 2-8 - 2-9). The boiler
of Agent 3 was off all the time.

The decision that the boiler of Agent 3 was always off was logical since we set the cost
coefficient to be the highest (cb,3 = 400) among all production units which made it as the
last option in order to achieve an efficient production. Since the rest of the production units
along with the possibility of exchanging energy were able to satisfy all demands, it was not
necessary to use the boiler of Agent 3. By comparing Figure 2-5 and 2-6, we can see that the
micro-CHPs were asked to produce more energy than the boilers. This was also due to the
fact that the cost coefficients of the micro-CHPs were relatively lower than the ones of the
boilers.

We can see that the balance constraints of the exchanged energy were satisfied in Figure
2-7. As mentioned earlier, it also showed that the controller took the advantage of having
possibility of exchanging energy. It is seen in the figure that Agent 1 exported some of its
energy to Agent 2 and 3. This resulted in the reducing of the amount of energy that had to
be produced by those agents. Moreover, during 6 until 18 hours, Agent 3 also exported some
of the energy produced to Agent 2.

From all figures, we can see that the distributed algorithms found approximately the same
solution at every sampling time as the centralized algorithm. Figure 2-10 shows that the
computed cost of the solutions of the distributed and centralized algorithm were almost
identical at each sampling time. The total cost of the fully distributed and the coordinated
distributed algorithm were only approximately 1% higher than the total cost of the centralized
one. Therefore, it can be inferred that the proposed distributed algorithms were able to keep
the performance of the centralized version while having the advantages of being distributed
methods.

Theoretically, the solutions of the distributed and centralized algorithm do not necessarily
have to be exactly equal due to the randomization method that was employed. In fact, the
solutions of either method from one and another simulation can be different. However, in
this study the bounds that were assigned for solving the robust program via centralized and
distributed methods were the same.

Figure 2-11 shows the number of iterations and the computational time required by the dis-
tributed approaches to solve the problem at each sampling time. It can be seen that both
distributed methods had similar number of iterations as well as computational times. How-
ever, in the simulation of the last hour, the distributed algorithm with coordinator failed to
converge (satisfy the stopping criterion) in a given time and the algorithm stopped prema-
turely. Moreover, the computational time at each sampling hour was also considered to be
too long. In half of the sampling times (from 6 until 18 hours), the distributed approaches
required almost one hour to solve the problem. The simulations of both methods were done
in parallel at the same time with the same computer and the local optimizations were done
sequentially. Even though these two reasons affected the high computational time and it is
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Figure 2-4: The imbalance of each agent.

believed that if the local optimizations were done in parallel we will be able to reduce the com-
putational time, the algorithms still have a room of improvement to reduce the convergence
rate.

Related to this, a difficulty that was faced when using the proposed distributed approaches
comes from the choice of the penalty term ρ which is also the step size of the ascent method.
In this study, it was considered as a tuning parameter and in the simulations both algorithms
used the same penalty term (step size ρ = 2) and the same stopping criterion. The observation
that can be concluded is that if ρ is too small, the convergence rate will be very slow. On
the other hand, the solution will not converge if ρ is too large. From this figure, it is also
noticed that the largest number of iterations happened at the first sampling time in which the
Lagrange multipliers were initialized randomly. So in other words, it also shows that warm
start that was implemented in both algorithms was able to reduce the number of iterations.

In summary, the simulation results show that the distributed approaches did not decrease
the performance of the robust randomized method in term of the cost. Nevertheless, it is
important to note that these approaches require the agents to be cooperative. Furthermore,
choosing the suitable penalty term (step size) and in general increasing the convergence rate
are the challenges which are important to improve these methods.
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Figure 2-5: The energy production of the boilers.
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Figure 2-6: The energy production of the micro-CHPs.
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Figure 2-7: The thermal energy exchanged between agents.
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Figure 2-8: The status of the boilers.
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Figure 2-9: The status of the micro-CHPs.
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Figure 2-10: The costs at each sampling time.
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Figure 2-11: The number of iterations and the computational time required by the distributed
approaches at each sampling time.
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Chapter 3

Coordination in Thermal Grids with
Seasonal Storages

In the second case study, we aim to exploit the advantage of having seasonal storages in
thermal grids. The grids that are considered consist of N number of agents (buildings and
houses), each of which has local thermal energy demand that can be fulfilled by its local
production unit, its seasonal storage and/or an external party. In these grids, it is assumed
that the production unit contains not only a boiler which supplies thermal energy but also
a chiller which absorbs it when needed, for instance during the summer. Moreover, the
seasonal storage can also perform both functions and become a cheaper alternative. However,
such storage systems have dynamics and constraints which have to be taken into account.
In addition, we do not consider micro-CHP, electrical power demand and the possibility of
exchanging energy between agents since the emphasis of this chapter is on exploring the
benefits of seasonal storages.

This chapter provides a brief description of yearly-based thermal energy demand profile in
Section 3-1. Then, Section 3-2 describes the grid model including seasonal storages whereas
Section 3-3 discusses the problem formulation which we wish to solve. In Section 3-4, we
discuss the Hierarchical MPC which is proposed to solve the problem while in Section 3-5 we
provide the numerical study which shows the performance of our proposed method.

3-1 Annual Thermal Energy Demand Profile

Thermal energy demand fluctuates over a year and in fact could be negative. Negative
thermal demand means that the agent has some amount of energy that needs to be absorbed
so that the thermal energy balance of the agent is satisfied. It can also be perceived as
cooling demand while the positive values are viewed as heating demand. Figure 3-1 is given
in order to illustrate the thermal energy demand profile of an agent in two years which
is obtained from the Low Energy Architecture (LEA) model and real weather data in the
Netherlands from mid 2010 until mid 2012. We can infer from the first plot of the figure that
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Figure 3-1: Thermal energy demand profile of a building. The first plot show the total demand
over 5 years while the last two plots separately show the heating and cooling demands.

the fluctuation of the total demand has a yearly pattern. It is also seen that the agent has
cooling demand mostly during the summers due to the fact that in this period the outdoor
air temperature was relatively higher than the indoor air temperature which is set to be 19oC
and the solar radiation was also higher than the other months. On the other hand, heating
demand dominates in the winter for the opposite reasons.

3-2 Modeling the Thermal Grids with Seasonal Storages

The model of the thermal grids, which, in this chapter, are considered to have seasonal
storages, is built based on the dynamics of the seasonal storages and the imbalance errors
as well as the operational constraints of the components. In this section, the focus is on
describing the dynamics and the constraints of the seasonal storages as well as the dynamics
of the imbalance errors which have to be slightly adjusted from the previous case study.

3-2-1 Dynamics and Constraints of Seasonal Storages

In general, the purpose of seasonal storages is to store thermal energy during the summer in
order to heat buildings in the colder months [40]. They could increase the efficiency of the
thermal grid in term of the usage of the production units since we can see the storages as
additional energy sources which supports the system. As stated in [40], the ground can be
used as a seasonal storage with which there are two methods of exchanging thermal energy:
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Figure 3-2: Operational modes of ATES. Figure is taken from [41].

through advection in aquifers and conduction using boreholes that are known as Aquifer
Thermal Energy Storage (ATES) and Borehole Thermal Energy Storage (BTES), respectively.
In our study, we consider the ATES systems which is largely used in the Netherlands. Such
storage consists of warm and cold wells in which warm and cold water are stored. The typical
temperature of the water in the warm wells and the cold wells are 14-17 oC and 6-9 oC,
respectively, while the aquifer ambient water temperature is 10-13 oC [40]. Thus, the amount
of supply that is stored in the wells can be considered to be proportional with the temperature
difference and the volume of the water.

There are two operating conditions of the ATES systems which is illustrated in Figure 3-
2. When the building that is connected with the ATES system requires heating supply, for
instance during a cold season, the storage transfers the warm water from the warm wells to
the cold wells by passing through a heat exchanger so that the building absorbs the thermal
energy contained in the water. This causes the temperature of the water that will be stored
in the cold wells drops. In this situation, it can be said that the water volume in the warm
wells decreases while the water volume in the cold wells increases. On the other hand, during
a warm season, where the building has cooling demand, the water in the cold well is extracted
to absorb the thermal energy that is contained in the building. This results in the increasing
of the water temperature which is then stored in the warm well. Moreover, in an ATES
system heat pumps are also necessary to boost the temperature of the water from the warm
well since it is not high enough to heat the building [40].

The first attempt to model an ATES system for an optimal control purpose, to the best of
our knowledge, has been addressed in [42]. Here, we extend the the proposed model in [42]
by using the similar idea in [43]. In order to describe the operation of the seasonal storage
of agent i mathematically, we consider the water volume of the wells (V h,i(k), Vc,i(k) ∈ R+)
and the level of heating and cooling supplies (sh,i(k), sc,i(k) ∈R+) as the states which have
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the following discrete-time dynamic:

Vh,i(k + 1) = Vh,i(k)− (ush,i(k)− usc,i(k)), (3-1)
Vc,i(k + 1) = Vc,i(k) + (ush,i(k)− usc,i(k)), (3-2)
sh,i(k + 1) = sh,i(k)− αh,i(ush,i(k)− usc,i(k)), (3-3)
sc,i(k + 1) = sc,i(k) + αc,i(ush,i(k)− usc,i(k)), (3-4)

where the subscripts h and c refers to the warm and cold well respectively, ush,i(k), usc,i(k) ∈
R+ denote the volume of the water that is transferred for heating and cooling purposes while
αh,i and αc,i are the volume-to-energy coefficient. Note that ush,i(k) and usc,i(k) are the
decision variables of the controller which can be translated as the operating point of the
pumps that are used to extract water from the well. Additionally, the volume-to-energy
coefficients are computed as the following equations:

αh,i = ρwcw∆Th,i, (3-5)
αc,i = ρwcw∆Tc,i, (3-6)

where ρw[kg/m3] is the water density, cp,w [Jkg−1K−1] is the specific heat capacity of water,
∆Th,i[K] is the water temperature difference of the warm well and the aquifer ambient tem-
perature and ∆Tc,i[K] is the water temperature difference of the cold well and the aquifer
ambient temperature.

Water in the warm and the cold wells may be mixed since it is stored in aquifers [40]. This
causes the reducing of heating and cooling supplies. In current practice, the distance of
the wells are designed to be three times than the thermal radius of the well to prevent the
breakthrough [40]. Based on the mathematical formulation of the dynamic of one agent, we
can infer that if one well, for instance the cold well grows, then the other well will reduce
in the same rate. Thus we can say that the volume of the hot and cold well of one agent
will not overlap each other. However, the overlap may happen when there exist neighboring
agents which have a seasonal storage that has different growing/reducing rate. Therefore, we
propose to impose additional constraints such that the controller can intelligently avoid this
situation. They are represented in Equation (3-7) - (3-8), in which V̄hc,ij is the maximum
limit of the total volume of the warm well of agent i and the neighboring cold well which
belongs to agent j and V̄ch,ig is the maximum limit of the total volume of the cold well of
agent i and the neighboring warm well which belongs to neighbor g.

Vh,i(k) + Vc,j(k) ≤ V̄hc,ij , ∀j ∈ N−i,c, (3-7)
Vc,i(k) + Vh,g(k) ≤ V̄ch,ig, ∀g ∈ N−i,h, ∀i ∈ N , (3-8)

where N−i,c ⊆ N\{−i} is the set of the cold wells which belong to the neighbors of agent i
while N−i,h ⊆ N\{−i} is the set of the warm wells which belong to the neighbors of agent i.
Furthermore, we define that N−i,h ∪N−i,c = N−i.

Another constraint that is addressed in order to ensure the sustainability of ATES systems is
as follows. The energy that is injected in and extracted from them over some period of time
must be balance [41]. This can be translated as the following equality constraint:

sh,i(k) + sc,i(k) = s̄hc,i, (3-9)
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where s̄i refers to the maximum amount of supply in one well when the other well is empty.
However, the conditions between wells varies over time and this could lead to the violation of
this constraint. Therefore we introduce ei(k) as an auxiliary decision variable which allows
some level of violation of the constraint and relax it into

sh,i(k) + sc,i(k) ≤ s̄hc,i + ei(k). (3-10)

3-2-2 Dynamics of the Imbalance Errors

In this case study, heating and cooling demands are distinguished and denoted as hd and cd
which are non-negative, i.e. hd, cd ≥ 0. Since now we have separated heating and cooling
demands, we also need to define two different imbalance errors which correspond to them. In
essence, the imbalance error indicates the difference between the supply and the demand of
energy, therefore we define the imbalance errors as follows:

xh,i(k) = hbuf,i(k)− hd,i(k), (3-11)
xc,i(k) = cbuf,i(k)− cd,i(k), (3-12)

where xh,i(k) and xc,i(k) are the imbalance errors of agent i at sampling time k that are
related to heating and cooling, respectively, hbuf,i(k) and cbuf,i(k) denote the level of heating
and cooling supplies that are currently available in the buffers. Furthermore, the dynamics
of the buffers are expressed as

hbuf,i(k + 1) = ηbuf,i
(
xh,i(k) + hb,i(k) + him,i(k) + αcopha,i(k)

)
, (3-13)

cbuf,i(k + 1) = ηbuf,i
(
xc,i(k) + cch,i(k) + cim,i(k) + ca,i(k)

)
. (3-14)

Equation (3-13) represents the dynamics of heating supply in the buffer where ηbuf,i ∈ [0, 1]
is the efficiency of the buffer, αhp is the coefficient which is related to the performance of heat
pump, hb,i(k) ∈ R+ is the heat supplied by the local boiler, him,i(k) ∈ R+ is the imported
heat from an external party and ha,i(k) ∈ R+ is the heating supply that is taken from the
seasonal storage. Whereas, Equation (3-14) provides the dynamics of the cooling supply in the
buffer in which cch,i(k), cim,i(k), ca,i(k) ∈ R+ indicate the cooling supplies that are taken from
the chiller, imported from an external party and given by the seasonal storage, respectively.
The heating and cooling supplies from the storage, ha,i(k) and ca,i(k), are proportional to the
water volume that is transferred between the wells of the storage, i.e.:

ha,i(k) = αh,iush,i(k), (3-15)
ca,i(k) = αc,iusc,i(k), (3-16)

3-3 Problem Formulation

In this part, we formulate the optimization problem of the production planning for the grids
with seasonal storages. Based on Equation (3-11) - (3-14), the dynamics of the imbalance
error of the system can be represented in as a state-space description as follows

xi(k + 1) = Aixi(k) +Biui(k) +Hiwi(k), (3-17)
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where

xi(k) =
[
xh,i(k) xc,i(k)

]T
∈ R2,

ui(k) =
[
uTh,i(k) uTc,i(k) uTs,i(k) uTa,i(k)

]T
∈ R9,

uh,i(k) =
[
hb,i(k) him,i(k)

]T
∈ R2,

uc,i(k) =
[
cch,i(k) cim,i(k)

]T
∈ R2,

us,i(k) =
[
ush,i(k) usc,i(k)

]T
∈ R2,

ua,i(k) =
[
usu

b,i(k) usu
ch,i(k) ei(k)

]T
∈ R3,

wi =
[
hd,i(k + 1) cd,i(k + 1)

]T
∈ R2,

Ai = ηbuf,i

[
1 0
0 1

]
, Bi = ηbuf,i

[
11×2 01×2 αcop 0 01×3

01×2 11×2 0 1 01×3

]
, Hi =

[
−1 0
0 −1

]
.

Meanwhile, based on Equation (3-1) - (3-4) and (3-15)-(3-16), the dynamics of the seasonal
storages can be simply described as

xa,i(k + 1) = Φixa,i(k) + Γiui(k), (3-18)

where the state of the seasonal storages is defined as

xa,i(k) =
[
Vh,i(k) Vc,i(k) sh,i(k) sc,i(k)

]T
∈ R4,

and the state-space matrices Φi and Γ are defined as:

Φi = I4×4, Γi =


01×4 −1 1 01×3

01×4 1 −1 01×3

01×4 −αah,i αah,i 01×3

01×4 αac,i −αac,i 01×3

 .

In this state-space description, the input of the state space equation or the decision vector
of variables are denoted by ui which consists uh,i(k), uc,i(k), us,i(k) and ua,i(k). The vector
uh,i(k) and uc,i(k) contain the manipulated variables that are related to the heating and
cooling supplies which come from the boilers, the chillers, and the external party, us,i(k)
consists of the manipulated variable related to the seasonal storages while ua,i(k) consists
of the auxiliary variable necessary for the start up cost constraints and the constraints of
the seasonal storages. We also introduce vi(k) =

[
vb,i(k) vch,i(k)

]T
∈ {0, 1} × {0, 1} as the

vector of the binary decision variables which represents the status of the production units.

In this case, we again deal with the production planning problem in which we want to set the
optimal operating condition of the production unit of each agent at every hour. We consider
that each agent has the startup cost and the capacity constraints of the production of the
supply. Moreover, the reliability is assured by imposing non-negativity constraints on the
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imbalance errors and their predictions. These become chance constraints due to the existence
of the uncertain demand. The cost function that is minimized is a quadratic cost with respect
to the imbalance error and the decision variables as

Ji(k) = xTi (k)Qixi(k) + uTi (k)Riui(k), ∀i ∈ N , (3-19)

in which Qi, Ri > 0, where

Ri = diag([rb,i rim,i rch,i rim,i rush,i rusc,i 1 1 1]),

where rb,i, rch,i, rim,i, rush,i and rusc,i denote the weight of hb,i, cch,i, him,i/cim,i, ush,i and
ush,i respectively. By having the prediction horizon of Nh, we have the following optimization
problem that need to be solved at every sampling time k:

minimize
{ui(k:k+Nh−1),vi(k:k+Nh−1)}N

i=1

k+Nh−1∑
t=k

N∑
i=1

Ji(t) (3-20)

subject to:

1. The dynamics of the imbalance error:

xi(t+ 1) = Aixi(t) +Biui(t) +Hiwi(t), ∀i ∈ N , ∀t ∈ {k, · · · , Nh + k− 1}. (3-21)

2. The dynamics of the seasonal storage:

xa,i(k + 1) = Φixa,i(k) + Γiui(k), ∀i ∈ N , ∀t ∈ {k, · · · , Nh + k − 1}. (3-22)

3. The startup cost constraints:

ci(t)su ≥ Λsu
i (vi(t)−vi(t−1)) , csu

i,t ≥ 0, ∀i ∈ N , ∀t ∈ {k, · · · , Nh+k−1}, (3-23)

where Λsu
i is a diagonal matrix in which the diagonal elements are the startup costs of

the boiler and the chiller owned by an agent.

4. The capacity constraints:

vb,i(t)hmin
b,i ≤hb,i(t) ≤ vb,i(t)hmax

b,i , (3-24)
hmin

im,i ≤him,i(t) ≤ hmax
im,i , (3-25)

vch,i(t)cmin
ch,i ≤cch,i(t) ≤ vch,i(t)cmax

ch,i , (3-26)
cmin

im,i ≤cim,i(t) ≤ cmax
im,i , (3-27)

umin
sh,i ≤ush,i(t) ≤ umax

sh,i , (3-28)
umin

sc,i ≤usc,i(t) ≤ umax
sc,i , ∀i ∈ N , ∀t ∈ {k, · · · , Nh + k − 1}. (3-29)

5. The local constraints of the seasonal storages:

sh,i(t+ 1) + sc,i(t+ 1) ≤ s̄hc,i + ei(k) (3-30)
sh,i(t+ 1) ≥ 0, sc,i(t+ 1) ≥ 0 ∀i ∈ N , ∀t ∈ {k, · · · , Nh + k − 1}. (3-31)
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6. The coupling constraints of the seasonal storages:

Vh,i(t+ 1) + Vc,j(t+ 1) ≤ V̄hc,ij , ∀j ∈ N−i,c (3-32)
Vc,i(t+ 1) + Vh,g(t+ 1) ≤ V̄ch,ig, ∀g ∈ N−i,h, ∀i ∈ N , ∀t ∈ {k, · · · , Nh + k − 1}.

(3-33)

7. The probabilistic constraints

P(x(t+ 1) ≥ 0, ∀i ∈ N , ∀t ∈ {k, · · · , Nh + k − 1}) ≥ 1− ε, (3-34)

where ε is the level of violation.

This optimization problem can be written compactly as follows

minimize
{ũi,ṽi}N

i=1

N∑
i=1
Ji(x̃i, ũi) (3-35a)

subject to P(Axi(k) + Biũi + Hiw̃i ≥ 0,∀i ∈ N ) ≥ 1− ε, (3-35b)
Eiũi + Fiṽi + Pi ≤ 0, (3-35c)
Φixa,i(k) + Γiũi ≥ 0, (3-35d)
Ψ (Φixa,i(k) + Γiũi)−Ψeũi ≤ s̄hc,i, (3-35e)
Gii (Φixa,i(k) + Γiũi) +

∑
j∈N−i

Gij (Φjxa,j(k) + Γs,jũj) ≤ Θi, ∀i ∈ N ,

(3-35f)

in which
Ji(x̃i, ũi) = x̃Ti Qix̃i + ũTi Riũi, (3-36)

by denoting that x̃i, ũi, w̃i, ṽi,Ai,Bi,Hi,Ψi and Γi are defined in Appendix B-1 and

Ψ =
[
0 0 1 1

]
, Ψe =

[
01×8 1

]
.

Moreover Ψ ∈ RNh×4Nh and Ψe ∈ RNh×NuNh are block diagonal matrices of Ψ and Ψe,
while Gii ∈ R|N−i|Nh×4Nh ∀i ∈ N are block diagonal matrices of Gii ∈ R|N−i|×4 and Gij ∈
R|N−i|Nh×4Nh ∀j ∈ N−i ∀i ∈ N are block diagonal matrices of Gij ∈ R|N−i|×4. Gii and Gij
are constructed such that the coupling constraints, i.e. Equation (3-32) - (3-33), are satisfied
(see an example of the construction of these matrices for the numerical study in Appendix
B-5). Furthermore, s̄hc,i ∈ RNh is a vector whose elements are s̄hc,i, Θi ∈ RNh|N−i| consists
of Θi ∈ R|N−i|, elements of which are V̄hc,ij and V̄ch,ig.

Problem (3-35) is a mixed-integer chance-constrained program in which Equation (3-35b)
denotes the chance constraint and Equation (3-35c) collects the local constraints (3-23) -
(3-29) such thatEi, Fi,Pi have appropriate dimensions and correspond to them as explained in
Appendix B-4. Moreover, Equation (3-35d) is the non-negativity constraint of the predictions
of the supply level of the hot and cold storage and comes from (3-31), Equation (3-35e) is
derived from the join maximum capacity limit of the hot and cold storage of the same agent
(3-30) and Equation (3-35f) is the coupling constraint between agents which comes from
Equation (3-32) and (3-33).
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Figure 3-3: The proposed hierarchical MPC scheme.

3-4 Hierarchical MPC

The availability of the supply of the seasonal storages may not be able to fulfill the demand
over the year. Thus the controller that is proposed should be able to capture the yearly-based
thermal demand profile in order to optimize the usage of the supply of the seasonal storages.
An obvious way to achieve it is by having an appropriate prediction horizon. However, since
the controller sets the hourly operating point of the production units, the problem becomes
intractable if we impose a very long prediction horizon, for instance, one year, i.e. Nh = 8760,
by assuming that one year is 365 days. The main reason which causes the intractability is
simply the number of decision variables which is too large. Moreover, if we consider the robust
randomized Model Predictive Control (MPC) approach as the method to solve this problem,
not only the part of solving the robust optimization but the computation of the bounds will
become intractable.
Therefore, we propose a hierarchical MPC scheme to tackle this issue. It consists of two layer
of MPC controllers as depicted in Figure 3-3. The task of the upper layer is to provide the
maximum amount of supply that can be taken from the seasonal storage at each hour while
the second layer computes the hourly set points. The aim of providing the upper bounds of
ush,i and usc,i from the upper layer is to ensure that the supplies of the seasonal storages are
not greedily used, which could happen, since it can be seen as free sources. When computing
the upper bounds, the upper layer captures the yearly-based demand profile of the grid by
considering a larger sampling time, which here we define as one month, and monthly demands.
In addition, the upper layer provides the hourly upper bounds for one month and does the
optimization only in less frequent manner than the lower layer which in this case is at the
beginning of the month.

3-4-1 Formulation of the Upper and the Lower Layer MPC

In the upper layer, we consider the production planning problem in a larger time scale, i.e.,
the sampling time is one month. However, since the goal of this part is to provide the upper
bound of ush,i and usc,i, we define the control variable uu,i(m), in which the subscript u
implies that it belongs to the upper layer problem, as

uu,i(m) =
[
uoh,u,i(m) uoc,u,i(m) ush,u,i(m) usc,u,i(m) eu,i(m)

]T
∈ R5, (3-37)
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38 Coordination in Thermal Grids with Seasonal Storages

where ush,u,i(m) and usc,u,i(m) denote the heating and the cooling supply of the seasonal
storage of agent i whereas uoh,u,i(m) and uoc,u,i(m) refer to the heating and the cooling
supply from other sources which can be the production units or imported from the external
party. Additionally, eu,i(m) is the auxiliary variable which appears in the constraint of the
ATES. Note that the time indexes used are noted as m since the sampling time of the upper
layer MPC is different than the lower layer and it is larger, i.e., m = τk where τ > 1. In our
particular case, τ = 720 since we assume one month is 720 hours.

The monthly optimization of the upper layer MPC with the prediction horizon of 12 months
(Nh,u = 12) is defined as the following:

minimize
{ũu,i}N

i=1

N∑
i=1
Ju,i(ũu,i) (3-38a)

subject to P(Axu,i(m) + Bu,iũu,i + Hiw̃u,i ≥ 0,∀i ∈ N ) ≥ 1− ε, (3-38b)
Φixa,u,i(m) + Γu,iũu,i ≥ 0, (3-38c)
Ψ (Φixa,u,i(m) + Γu,iũu,i)−Ψe,uũu,i ≤ s̄hc,i, (3-38d)
Gii (Φixa,u,i(m) + Γu,iũu,i) +

∑
j∈N−i

Gij (Φjxa,u,j(m) + Γu,jũu,j) ≤ Θi,

(3-38e)
ũu,i ≥ 0, xu,i(m) = xi(k), xa,u,i(m) = xa,u,i(k), ∀i ∈ N . (3-38f)

In this formulation, all the variables and matrices are in the compact form of the concatenated
variables and matrices of the whole prediction horizon (Nh,u) as explained in Appendix B.
Moreover, Bu,i which presents in Bu,i and Γu,i which presents in Γu,i are defined as:

Bu,i =
[
1 0 αcop 0 0
0 1 0 1 0

]
, Γu,i =


01×2 −1 1 0
01×2 1 −1 0
01×2 −αah,i αah,i 0
01×2 αac,i −αac,i 0

 ,

and Ψe,u ∈ RNh,u×5Nh,u is a block diagonal matrix of Ψe =
[
01×4 1

]
.

The cost function (3-38a) is a sum of the quadratic cost of each agent which is defined as
follows

Ju,i = xTu,i(l)Qu,ixu,i(l)+uTu,i(l)Ru,iuu,i(l), ∀i ∈ N , ∀l ∈ {m, · · · ,m+Nh,u−1}, (3-39)

where Qu,i and Ru,i are positive definite matrices, i.e. Qu,i, Ru,i > 0. Moreover, Ru,i is
a diagonal matrix where the weight of the supply of the seasonal storage is chosen to be
smaller than the weight of the supply of the other sources. In this part, the weights become
the tuning parameters which can be manipulated. Moreover, the constraints imposed in this
layer are the chance constraint of the imbalance error (3-38b), the non-negativity constraint
of the supply level of the storages (3-38c) and the joint maximum supply limit of the hot and
cold storages of one agent (3-38d) as well as the joint maximum volume limit of the hot and
cold storages of two agents (3-38e) which is the coupling constraint. Additionally, the upper
layer requires the current states of the seasonal storages and the imbalance errors which are
obtained from the lower layer and as stated in Equation (3-38f).
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In the lower layer, the controller solves the original optimization problem (3-35) without the
coupling constraint and with the additional constraint on the ush,i(k) and usc,i(k) as follows:

ush,i(t) ≤ ūsh,i(t), ∀i ∈ N , ∀t ∈ {k, · · · , k +Nh − 1}, (3-40)
usc,i(t) ≤ ūsc,i(t), ∀i ∈ N , ∀t ∈ {k, · · · , k +Nh − 1}, (3-41)

where ūsh,i and ūsc,i are obtained from the solution of the upper layer. Note that the coupling
constraint is not taken into account in the lower layer because it has been included in the
optimization in the upper layer. Thus, the upper bounds given by the upper layer are also
expected to ensure the satisfaction of the coupling constraints. Therefore, the problem in
the lower layer is separable and can be distributed to the agents. In the next part, we will
discuss the method that we use to compute ūsh,i and ūsc,i at each hour from the solution of
the upper layer MPC.

3-4-2 Obtaining the Maximum Limit of the Supply from the Seasonal Storages

Since the upper layer MPC solves the monthly production planning problem, its solutions,
u?sh,u,i(m) and u?sc,u,i(m), are basically the total amount of heating and cooling supplies which
can be taken from the seasonal storage i during the duration m. Now we want to allocate the
amount of the available supplies to each sampling time k. Dividing u?sh,u,i(m) and u?sc,u,i(m)
equally for each sampling time, i.e.

ūsh,i(k : k + τ) =
u?sh,u,i(m)

τ
, (3-42)

ūsc,i(k : k + τ) =
u?sc,u,i(m)

τ
, (3-43)

is not suitable since the demand at each sampling time varies. Therefore, in order to translate
these values to become the upper bound as mentioned in (3-40) and (3-41), we use some
knowledge of the demand profile to form two stochastic vectors. We obtain hourly ūsh,i and
ūsc,i of one month as follows:

ūsh,i(k : k + τ) =
hfd,i(k : k + τ)∑k+τ

l=k h
f
d,i(l)

u?sh,u,i(m), (3-44)

ūsc,i(k : k + τ) =
cfd,i(k : k + τ)∑k+τ

l=k c
f
d,i(l)

u?sc,u,i(m), (3-45)

where hfd,i indicates the demand forecast. So, u?sh,u,i(m) and u?sc,u,i(m) are divided propor-
tionally to the forecast of the demand. The advantage of having this formulation is that if
the demand forecast is accurate enough, we have an appropriate distribution of the usage of
the seasonal storage.

Furthermore, it is also important to note that the upper layer has to send the upper bounds
for 2τ time steps in which ūsh,i(k + τ + 1 : k + 2τ) and ūsc,i(k + τ + 1 : k + 2τ) are derived
from Equation (3-44) and (3-45) by using u?sh,u,i(m+1), u?sc,u,i(m+1), hfd,i(k+τ+1 : k+2τ)
and cfd,i(k + τ + 1 : k + 2τ). It is because the first Nh values of ūsh,i(k + τ + 1 : k + 2τ) and
ūsc,i(k + τ + 1 : k + 2τ) are required in the lower layer.
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3-4-3 Dealing with Uncertainties

The randomization-based method is again considered to deal with the chance constraints that
appear in both layers of the hierarchical MPC. The optimization problem of the upper layer
is convex since the cost function and the constraints are convex, so the scenario approach
can be applied to it. So, the chance constraint (3-38b) is approximated with a number of
deterministic constraints as the following:

Axu,i(m) + Bu,iũu,i + Hiw̃
(s)
u,i ≥ 0, ∀i ∈ N ∀s ∈ {1, · · · , Ns,u}, (3-46)

where the number of scenarios, Ns,u depends on the number of the decision variables in this
problem, Nd,u = 5NNh,u as

Ns,u ≥
2
ε

(
Nd,u + ln 1

β

)
, (3-47)

in which β is the level of confidence. Meanwhile, the robust randomized method is employed
in the lower layer since the problem is mixed-integer which is not convex.

3-4-4 Distributed MPC in the Upper Layer

A fully distributed MPC scheme can be achieved by decomposing the upper layer problem
since the lower layer problem is already separable. Since by definition the cost function is
strictly convex, the standard dual decomposition can be applied to this problem. Thus by
assigning the Lagrange Multipliers λi ∈ R2Nh,u to the coupling constraints (3-38e), we obtain
the corresponding Lagrangian as

L =
N∑

i=1
Ju,i(ũu,i) + λT

i

Gii

(
Φixa,u,i(m) + Γiũu,i

)
+
∑

j∈N−i

Gij

(
Φjxa,u,j(m) + Γs,jũu,j

)
−Θi


(3-48)

which can be arranged into

L =
N∑
i=1

Ju,i(ũu,i) +

λTi Gii +
∑
j∈N−i

λTj Gji

 (Φixa,u,i(m) + Γiũu,i)− λTi Θi

 . (3-49)

The Lagrangian (3-49) is separable. Moreover, by omitting the constant terms, we obtain N
local optimization problems which are assigned to the agents as follows:

minimize
ũu,i

Ju,i(ũu,i) +

λTi Gii +
∑
j∈N−i

λTj Gji

Γiũu,i

subject to (3-38b), (3-38c), (3-38d), (3-38f).

(3-50)

The dual ascent method is then can be applied which means that Problem (3-50) is solved
iteratively with certain λ(q)

i ∀i ∈ N where (q) indicates the iteration step. From the solutions
of Problem (3-50), ũ(q)

u,i ∀i ∈ N , the Lagrange Multipliers λi ∀i ∈ N are updated as follows:

λ
(q+1)
i = max

(
0,λ(q) + αg

r
di

)
, (3-51)
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in which the directions of the ascent method di ∀i ∈ N are computed as

di = Gii

(
Φixa,u,i(m) + Γiũ(q)

u,i

)
+

∑
j∈N−i

Gij

(
Φjxa,u,j(m) + Γs,jũ(q)

u,j

)
−Θi. (3-52)

Note that the step size is diminishing with αg ∈ [0, 1] and due to the fact that the Lagrange
multipliers are assigned to the inequality constraints, they are non-negative at each iteration.
The stopping criterion of this iterative procedure comes from the complementary slackness
condition due to the fact that the coupling constraints are inequality constraints. Hence, the
stopping criterion is

λ
(q)T
i di < ε ∀i ∈ N , (3-53)

for a small positive ε.

The proposed formulation allows the upper layer problem to be solved in a fully distributed
setting in which some information need to be exchanged between the agents, such as the
Lagrange multipliers in order to solve the local optimization problem and the prediction of
the states of the seasonal storages in order to update the Lagrange multipliers. It is also
possible to assign a coordinator to update the Lagrange multipliers and in this setting the
information is exchanged between the coordinator and the agents. The complete procedure
of the proposed hierarchical MPC is given in Algorithm 4.

Algorithm 4 Hierarchical MPC
1: for k = 1, 2, . . . do
2: if mod (k, τ) = 1 then
3: (Solving the upper layer problem (3-38) in a distributed fashion)
4: m = dk/τe.
5: Initialize λ̃(1)

i , ∀i ∈ N , ρ > 0 randomly if m = 1, otherwise using warm start.
6: q=1.
7: while Equation (3-53) is false do
8: Each agent sends λ̃(q)

i to its neighbors.
9: Each agent solves Problem (3-50) using the scenario approach

10: to obtain ũ(q)
u,i.

11: Each agent sends ũ(q)
u,i to its neighbors.

12: Each agent updates λ̃i using Equation (3-51).
13: q = q + 1.
14: end while
15: Compute ūsh,i(k : k + 2τ) and ūsc,i(k : k + 2τ) using Equation (3-44) and (3-45)
16: Send ūsh,i[k : k + 2τ ] and ūsc,i[k : k + 2τ ] to the lower layer MPC.
17: end if
18: Using the robust randomized method, each agent solves the lower layer problem:

minimize
{ũi,ṽi}N

i=1

Ji(x̃i, ũi)

subject to (3-35b), (3-35c), (3-35d), (3-35e), (3-40), (3-41).
(3-54)

19: Each agent apply ũ?i (k), ṽ?i (k).
20: end for
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Figure 3-4: A 3-agent thermal grid in Utrecht.

3-5 Numerical Study of the Second Case

As a numerical study, we consider a realistic three-agent thermal grid which is located in the
city center of Utrecht as shown in Figure 3-4. The agents in the grid are 3 office buildings,
each of which owns a seasonal storage that is assumed to have dynamic as described in 3-2-1.
The heating and cooling demands of all agents, which were computed via LEA model based
on the actual buildings’ sizes (Table A-3) and the weather data are shown in Figure 3-5 until
3-7. Moreover, we also assume that the amount of supplies that are stored in the storages
can be measured and the positions of the storages are according to Figure 3-4. Note that the
red and blue circles in Figure 3-4 represent the warm and cold wells respectively.

Based on the assumption of the location of the wells, we can infer the coupling constraints
between agent as

Vh,1(k) + Vc,2(k) ≤ V̄hc,12,

Vh,2(k) + Vc,3(k) ≤ V̄hc,23,

Vh,3(k) + Vc,1(k) ≤ V̄hc,31,

where V̄hc,12 = V̄hc,23 = V̄hc,31 = 2.4 · 105 m3 which was chosen by considering the maximum
possible volume of one of the wells. Furthermore, the values of the parameters of each agent
are given in Table 3-1. The initial conditions of the cold storages sc,i[0] ∀i ∈ N were set to be
approximately 60% of the total cooling demand so that the storage could not fulfill the all the
demand and the local production units (the chillers) had to be used. On the other hand, the
initial supply in the hot storages sh,i[0] ∀i ∈ N were set to be zero since the simulation started
in the summer season which mostly requires cooling supplies. Additionally, the temperature
of the wells were assumed to be constant and the temperature difference between one well
and the ambient aquifer is 4K which yields the values of αh and αc as in Table 3-1. This
assumption was made by considering the possible temperature ranges of the wells and the
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Figure 3-5: Heating and cooling demand of agent 1.

2011 2012
-2000

0

2000
Building Thermal Energy Demand Profile [KWh]

2011 2012
0

1000

2000
Heating Demand

Time
2011 2012

0

1000

2000
Cooling Demand

Figure 3-6: Heating and cooling demand of agent 2.
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Figure 3-7: Heating and cooling demand of agent 3.

Table 3-1: The Values of the Parameters

Parameter Agent 1 Agent 2 Agent 3 Unit
hmin

b , hmax
b , cmin

ch ,cmax
ch 10, 2000, 10, 2000 10, 2000, 10, 2000 10, 2000, 10, 2000 KWh

hmin
im ,hmax

im , cmin
im ,cmax

im 0, 10000, 0, 10000 0, 10000, 0, 10000 0, 10000, 0, 10000 KWh
umin

sh , umax
sh , umin

sc , umax
sc 0, 2000, 0, 2000 0, 2000, 0, 2000 0, 2000, 0, 2000 KWh

sh[0], sc[0],x[0], s̄hc 0, 8 · 105, 0, 8 · 105 0, 4.8 · 105, 0, 4.8 · 105 0, 9.6 · 105, 0, 9.6 · 105 KWh
ηbuf, αhp 0.9, 1.35 0.9, 1.35 0.9, 1.35 -
αh, αc 4.67, 4.67 4.67, 4.67 4.67, 4.67 KWh/m3

Q, rb, rch, rim 100, 10, 10, 250 100, 10, 10, 250 100, 10, 10, 250 -
rush, rusc, Λsu

b ,Λsu
ch 3, 3, 1, 1 3, 3, 1, 1 3, 3, 1, 1 -

ambient aquifers. It is also worth to mention that the weight of the supply of the seasonal
storages in the cost function were set to be smaller than the weight of the other supplies (the
boilers and the imported energy from the external party).

In this one-year simulation, we investigated two control approaches, the centralized approach
which means the MPC controller solves Problem 3-35 with small prediction horizon of 24
hours at each sampling time and the hierarchical approach as written in Algorithm 4 in
which the prediction horizon of the upper layer was m = 12 months and the lower layer was
24 hours. The simulations were done in MATLAB by using Gurobi [39] as the solver of the
optimizations and YALMIP [38] as an interface. Figure 3-8 until 3-13 depict the results of
the simulations.

The evolutions of the water volume in the warm and cold wells of the ATES are depicted in
Figure 3-8. When the system was controlled by the hierarchical MPC scheme, the growing
and reducing rate of the volume of the wells were slightly slower. This happened due to
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the fact the volume of the water that can be extracted and injected were limited based on
the decisions of the upper layer optimization. Moreover, as seen in Figure 3-9 that both
controllers were able to provide solutions which were feasible for the coupling constraints.
As mentioned earlier that these constraints are important to maintain the efficiency and the
sustainability of the ATES.

Figure 3-10 and 3-11 show the usages of the boilers and chillers in the system which can be
considered to be minimal. The peak usage of the boilers happened between February and April
while the chillers worked the hardest between September and October. This is interesting
since they occurrence did not match with the peak of the heating and cooling demands which
happened earlier. However, this result is logical since during those periods the seasonal storage
could not provide heating and cooling supply. As seen in Figure 3-8, the warm wells were
completely depleted from February until April while the cold wells were empty1 in September
and October. Therefore, it can be said that in the proposed energy management the boilers
and chillers were considered as the backups when the seasonal storages could not provide the
supplies.

When comparing the decision of the usage of the boilers and chillers of both approach, we
can see in Figure 3-10 and 3-11 that the centralized MPC approach tended to not use the
production units while the seasonal storages were still able to provide the supplies and to
maximize the usage of them when the seasonal storages did not have supplies anymore.
Meanwhile the hierarchical MPC approach tended to distribute the load, even though with
a small proportion, to the production units during the time when the seasonal storages only
had limited supplies, i.e. they were almost depleted. These can be seen in the period of
January-February for the plots of the boilers (Figure 3-10) and in the period of June-July for
the plots of the chillers (Figure 3-11). Thus resulted in shorter period of the depletion of the
wells as seen in Figure 3-8.

Even though the total cost of the hierarchical MPC scheme was more expensive, the differ-
ence, which was approximately 5%, was considerably small (see Figure 3-12). It is argued
that it was caused by the errors of the demand forecast which were used as the stochastic
vectors. In the upper layer, since the decision of the monthly supply usage of the storages
were distributed proportionally with the ratio of the current and the total demand of that
month, the differences between the forecast and the actual demand imply mismatches on the
distribution of the upper bounds. It sometimes resulted in the usage of the production units
which were more costly as can be seen as the small spikes that appear in Figure 3-10 and
3-11. Preliminary simulations which had been carried out and in which both controllers had
the perfect demand forecast and did not apply robust randomized method show that the
hierarchical MPC could provide cheaper cost up to 20%. Therefore, having accurate demand
forecasts is important to improve the cost of the hierarchical MPC.

At most of the time, both controllers provided positive imbalance errors. Figure 3-13 shows
the imbalance errors of agent 1 in the simulation of the hierarchical MPC. However, there
existed some violations on the non-negativity constraints that were imposed on, which were
expected, due to the fact that we imposed probabilistic constraints which allow some small
fraction of violations. Moreover, the violations (negative imbalance) happened at most 0.4% of
the total simulation duration which was smaller than the level of violation that was predefined

1Physically, the wells were not empty, but the temperature differences between the water in the wells and
the ambient aquifer were zero which means the wells did not have energy supply.
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Figure 3-8: The evolution of the supply level of the seasonal storages.

as 10%. Hence it demonstrates that the robust randomized approach that was applied was
able to satisfy the given probabilistic constraints.

In conclusion, the simulation results show that the proposed controllers were able to manage
the thermal grid to be reliable by ensuring that the demand were mostly satisfied. Moreover,
the coupling constraints that were imposed to maintain the sustainability and the efficiency
of the ATES were also satisfied when the system was controlled by both approaches. Further-
more, we also have shown that the hierarchical MPC approach is promising to be implemented
since it was able to provide an intelligent way of limiting the usage of the supply of the seasonal
storage and a distributed computation scheme.
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Figure 3-9: The coupling constraints were satisfied.
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Figure 3-10: The usage of the boilers.
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Figure 3-11: The usage of the chillers.
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Figure 3-12: The accumulation of the total cost of all agents.
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Figure 3-13: The imbalance errors.
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Chapter 4

Conclusions and Future Work

The focus of this research is to develop distributed Model Predictive Control (MPC) ap-
proaches which act as the energy management systems of thermal grids. In this chapter we
provide some concluding remarks regarding the work that has been done and some recom-
mendations for the future work which are related to this project.

4-1 Conclusions

1. In this thesis, two cases of thermal grids have been investigated. The main similarity
of them, which is the main focus of our work, is the existence of the coupling between
agents which makes the problem not trivially separable. Thus, for each case, we have
proposed distributed approaches to solve the mixed-integer chance constrained opti-
mization problem of production planning.

2. In the first case in which the thermal grid is intended to fulfill heating demands of
the agents by having decentralized production units such as boilers and micro-CHP
and the possibility of exchanging energy between agents, the proposed distributed ro-
bust randomized methods which are based on the Alternating Direction Method of
Multipliers (ADMM) were able to have similar performance in term of the cost as the
centralized counterpart in the simulation. This means that by having distributed op-
timization methods we are able to add some advantages such as lower computational
demands, scalability and flexibility to the energy management system which is proposed
in [1] without losing the performance.

3. In the second case in which the grid have seasonal storages, the hierarchical MPC is
proposed not only to provide a distributed computation method but also to capture
the dynamic of seasonal storages in a long period of time. The dual ascent method is
applied to decompose the problem in order to obtain a distributed scheme. Simulation
results showed that it was able to ensure the grid to satisfy all constraints including
the coupling between the agents. Additionally, it also provides an intelligent method to
limit the usage of the seasonal storages.
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4-2 Future Work

Reflecting on the work presented on this thesis, some recommendations for future work are
stated in this section.

1. The distributed robust randomized methods which are proposed in Chapter 2 have
considerably low convergence rate. An improvement on this area may be achieved by
applying a fast or accelerated gradient method when updating the Lagrange multipliers
and investigating structured methods to set the penalty term ρ.

2. The distributed energy management in a thermal grid requires the agents to share or
exchange information. In this regard, some scenarios such as delays on exchanging infor-
mation or the resistance of some agents to share the information need to be investigated
and tackled.

3. In the second case study, the dynamics of the seasonal storages in this thesis is modeled
as a linear discrete-time system. However, these storages, such as Aquifer Thermal
Energy Storage (ATES) have non-linear behavior, as also noted in [43]. Incorporating
the nonlinearities of the dynamics of the seasonal storage yields to a more accurate
model on the controller. Thus it is expected that the controller will provide better
decisions.

4. Physically, the coupling constraints on the volume of the wells are related with the
distance between those two wells. We may consider to replace the linear volume-based
coupling constraints with the coupling of the radius of the wells. However, these con-
straints are not linear with respect to the states of the seasonal storage. Therefore,
methods to linearly approximate the nonlinear constraints need to be investigated so
that the complexity of the problem does not increase.
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Appendix A

Mathematical Model of the Thermal
Demands

In this part we explain the mathematical model that is used to generate the thermal energy
demand of an agent and provide an example. Section A-1 provides the explanation of the
model as well as all equations of the model. In Section A-2, we show the example of the daily
thermal demand profile of a building.

A-1 Low Energy Architecture Model

The model of the thermal energy demand of an agent (building or house) is obtained according
to the Low Energy Architecture (LEA) model which is based on the following dynamics of
the indoor air temperature [35]:

dTin
dt

cp,aρaVa = hd + hint + henv, (A-1)

where hd [KWh] is the thermal energy demand and hint [KWh] is the thermal energy that is
produced internally, by the occupancy of people, lighting, and other installation while henv
[KWh] is the thermal energy gain from/loss to the environment. Moreover, T in [K] is the
desired indoor air temperature, cpa [J/kgK] is the specific heat capacity of air, ρa [kg/m3] is
the air density, and Va [m3] is the volume of the air inside the building. In the equilibrium
point, that is dTin = 0, where we assume that the desired indoor air temperature has been
achieved and is kept constant, we have

hd = −hint − henv(Tin, Tout, Tsoil, vw, qsol),

where Tout [K] and Tsoil [K] denote the outside air and soil temperature, vw [m/s] is the wind
speed, and qsol [KWh] is the solar radiation. These variables are related to the environment
conditions and vary over time.
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The internal energy, hint is the heat that is produced due to the occupancy of the building.
It is calculated as follows:

hint = hperson + hinst + hlight, (A-2)

where hperson is the heat that is transmitted by people. As in [35], the heat that is produced
per person is assumed to be constant, that is Chperson = 80 [KWh]. So, hperson depends on
the number of people (Nperson), as

hperson = ChpersonNpersoncf,person, (A-3)

where cf ,per is the covection factor of a person. Moreover, hinst and hlight are the heat that are
produced by the installations and the lighting, respectively. They are assumed to be constant
per area, i.e. Chinst = Chlight = 10 [J/m2] [35], thus for the total area is represented as

hinst = Chinstafloorcf,inst, (A-4)
hlight = Chlightafloorcf,light, (A-5)

where afloor is the total floor area of the building and cf,inst, cf,light are the convection factor
of the installation and the lighting, respectively.

The thermal energy that is lost to or gained from the environment, henv, is broken down into
three parts as follows:

henv = hsoil + hshell + hc,solar. (A-6)

The heat that is transferred to/from the soil, hsoil, which is caused by the temperature
difference between the indoor air and the soil is represented by:

hsoil = (Tsoil − Tin)Ubotasoil, (A-7)

where Ubot [J/m2K] is the overall heat transfer coefficient to the soil, and asoil [m2] is the total
surface area of the building that touches the ground. Whereas, the heat exchanged which is
due to the temperature difference between the indoor and the outdoor air and transfered via
the facade is denoted by hshell and formulated as follows

hshell = (Tout − Tin)
nfac∑
i=1

(Uwallawall + Uwinawin), (A-8)

where Uwall [J/m2K] and Uwin [J/m2K] are the overall heat transfer coefficient of the walls
and windows, respectively, and awall [m2] and awin [m2] are the surface area of the walls and
windows respectively. The heat transfer coefficient Uwall varies depending on the wind speed
as follows [35]:

Uwall = 1
( 1
hc,in

+Rc,wall + 1
hc,out

)
, (A-9)

where hc,in [J/m2K] is the heat transfer coefficient at the inside of the walls, Rc,wall [m2K/J] is
the conductive heat transfer resistance, and hc,out [J/m2K] denotes the heat transfer coefficient
at the outside of the walls which depends on the wind speed as follows:

hc,out =
{

1.2vw + 3.8 if vw < 4
2.5v0.8

w otherwise
(A-10)
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Moreover, the solar radiation, hc,solar, is considered to be transfered as convective thermal en-
ergy to the building. This is computed as sum of thermal energy from solar that is transferred
via the windows of all facades as follows:

hc,solar =
nfac∑
i=1

(SGFi γw ashell,i cf,win qsol) , (A-11)

where SGF is the solar gain factor, γw is the window fraction, ashell,i[m2] is the total surface
area of the shell, i.e ashell,i = awall,i + awin,i, cf is the convection factor of the window [J/m2].

A-2 Generating Thermal Demand Profile

The example of the daily thermal energy demand profile of a building which is based on the
LEA model is provided in Figure 2-1 which is again showed as the red plot in the following
Figure A-1. It was generated using a 24-hour weather data (Tin, Tout, Tsoil, vw, qsol) as depicted
in Figure A-2 and the parameters as in Table A-1. In addition, in all our numerical studies,
we used the same values of the convection factors and the heat transfer coefficients as given
in Table A-1 while the building parameters were different between agents. It is assumed that
the surface area at each floor is equal . Moreover, the area of window awin and the area of the
wall awall can be obtained from γw and ashell. Therefore, the total area of the floor as well as
the total area of the windows and the walls are calculated as follows:

afloor = nfloor as,floor,

awin = γw ashell,

awall = (1− γw)ashell.

Furthermore, we assume that all agents were located close to each other so the same weather
data applies to them.

Table A-1: The Parameters of the LEA Model

Building Parameters Convection Factors Heat Transfer Coefficients
as,floor = 480m2 cf,win = 0.024 Ubot = 1.3 [J/m2K]
nfloor = 2 cf,per = 0.02 Uwin = 1.6 [J/m2K]
ashell = 840m2 cf,light = 0.08 hc,in = 8 [J/m2K]
γw = 0.5 cf,ins = 0.23 Rc,wall = 2.5 [m2K/J]
SGF = 0.5
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Figure A-1: Red line: the real thermal energy demand generated using the LEA model.
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Figure A-2: The 24-hour weather data that was used to generate the demand profile in Figure
A-1.

A-3 Building Parameters of the Case Studies

Table A-2 and A-3 show the values of the building parameters that are necessary to generate
the thermal energy demands and its forecasts in each case study.
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Table A-2: The Building Parameters of the First Case Study (Chapter 2)

Building as,floor [m2] ashell [m2] nfloor γw Tin[oC]
Agent 1 500 1200 3 0.4 20
Agent 2 480 840 2 0.5 20
Agent 3 460 720 3 0.3 20

Table A-3: The Building Parameters of the Second Case Study (Chapter 3)

Building as,floor [m2] ashell [m2] nfloor γw Tin[oC]
Agent 1, sub building 1 4275 2664 4 0.95 18
Agent 1, sub building 2 4275 5328 8 0.95 18
Agent 1, sub building 3 2513 20991 29 0.95 18
Agent 2 19125 14000 4 0.4 19
Agent 3, sub building 1 2909 16612 22 0.6 20
Agent 3, sub building 2 2909 16612 22 0.6 20
Agent 3, sub building 3 2778 6641 9 0.5 20
Agent 3, sub building 4 3889 7875 9 0.5 20
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Appendix B

Formulas and Detailed Definitions

This appendix provides the definitions of the compact vectors and matrices.

B-1 Dynamics Equations

The state and disturbance predictions as well as the decision variables which are written in
compact formats are defined as the following

x̃i =


xi[k + 1]
xi[k + 2]

...
xi[k +Nh]

 , ũi =


ui[k]

ui[k + 1]
...

ui[k +Nh − 1]

 , w̃i =


wi[k]

wi[k + 1]
...

wi[k +Nh − 1]

 , ṽi =


vi[k]

vi[k + 1]
...

vi[k +Nh − 1]

 ,
in which k is the current sampling time and Nh is the prediction horizon. Moreover, the
compact matrices required for the state-space descriptions and the constraint equations are
defined as:

Ai =


Ai
A2
i
...

ANh
i

 , Bi =


Bi 0 0 · · · 0
AiBi Bi 0 · · · 0
...

... . . . . . . ...
ANh−1
i Bi ANh−2

i Bi ANh−3
i Bi · · · Bi

 ,

Hi =


Hi 0 0 · · · 0
AiHi Hi 0 · · · 0
...

... . . . . . . ...
ANh−1
i Hi ANh−2

i Hi ANh−3
i Hi · · · Hi

 ,

Φi =


ΨΦi

ΨΦ2
i

...
ΨΦNh

i

 , Γi =


ΨΓi 0 0 · · · 0

ΨΦiΓi ΨΓi 0 · · · 0
...

... . . . . . . ...
ΨΦNh−1

i Γi ΨΦNh−2
i Γi ΨΦNh−3

i Γi · · · ΨΓi

 .
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B-2 Local Constraints in Chapter 2

This section explains the construction of matrices Ei,Fi,Pi of the first case study (Chapter
2). We collect all the local constraints as a single inequality constraint in the form of Eiũi +
Fiṽi + Pi ≤ 0.

The startup cost constraints (2-7) can be written as

E1,iũi + F1,iṽi + P1,i ≤ 0
where

E1,i =


E1,i 0 · · · 0

0 E1,i · · · 0
... . . . . . . ...
0 0 · · · E1,i

 , F1,i =


F1,i 0 · · · 0 0
−F1,i F1,i · · · 0 0

... . . . . . . ...
...

0 0 · · · −F1,i F1,i

 ,

E1,i =
[
02×6 −I 02×2 02×|N−i|

02×6 −I 02×2 02×|N−i|

]
, F1,i =

[
Λsu
i

02×2

]
,

and if k ≥ 1, P1,i =


vi[k − 1]

0
...
0

 otherwise P1,i = 0.

The capacity constraints (2-8), (2-9), (2-10), (2-11) and (2-12) are written as

E2,iũi + F2,iṽi + P2,i ≤ 0
where

E2,i =


E2,i 0 · · · 0

0 E2,i · · · 0
... . . . . . . ...
0 0 · · · E2,i

 , F2,i =


F2,i 0 · · · 0
0 F2,i · · · 0
... . . . . . . ...
0 0 · · · F2,i

 ,P2,i =


P2,i
P2,i
...
P2,i

 ,

E2,i =



−1 01×9 01×|N−i|

1 01×9 01×|N−i|

01×3 −1 01×(6+|N−i|)

01×3 1 01×(6+|N−i|)

01×4 −1 01×(5+|N−i|)

01×4 1 01×(5+|N−i|)

01×5 −1 01×(4+|N−i|)

01×5 1 01×(4+|N−i|)

0|N−i|×10 −I
0|N−i|×10 I



, F2,i =



pmin
g,i 0
−pmax

g,i 0
hmin

g,i 0
−hmax

g,i 0
0 hmin

b,i
0 −hmax

b,i
0(2+|N−i|)×1 0(2+|N−i|)×1


,

P2,i =
[
01×6 hmin

im,i −hmax
im,i hmin

xc · · · hmin
xc −hmax

xc · · · −hmax
xc

]T
.
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The up and down spinning electrical power constraints (2-13) and (2-14) are compactly written
as

E3,iũi + F3,iṽi + P3,i ≤ 0
where

E3,i =


E3,i 0 · · · 0

0 E3,i · · · 0
... . . . . . . ...
0 0 · · · E3,i

 , F3,i = 0, P3,i =


P3,i
P3,i
...
P3,i

 ,

E3,i =


−1 0 1 01×(7+|N−i|)

1 −1 0 01×(7+|N−i|)

0 −1 0 01×(7+|N−i|)

0 0 −1 01×(7+|N−i|)

 , P3,i =


pd,i
−pd,i

0
0

 .

The ramping capacity constraints can be expressed as

E4,iũi + F4,iṽi + P4,i ≤ 0
where
if k > 1,

E4,i =


E4,i 0 · · · 0 0
−E4,i E4,i · · · 0 0

... . . . . . . ...
...

0 0 · · · −E4,i E4,i

 , F4,i = 0, P4,i =


P4,i + P4ad,i

P4,i
...
P4,i

 ,
otherwise

E4,i =


0 0 · · · 0 0
−E4,i E4,i · · · 0 0

... . . . . . . ...
...

0 0 · · · −E4,i E4,i

 , F4,i = 0, P4,i =


0
P4,i
...
P4,i

 ,
Furthermore,

E4,i =
[
−1 01×(9+|N−i|)

1 01×(9+|N−i|)

]
, P4,i =

[
−pdown

g,i
−pup

g,i

]
, P4ad,i =

[
−pg,i[k − 1]
−pg,i[k − 1]

]
.
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The status change constraints of the production units (the boilers and micro-CHP) are put
together as the following. First, inequalities in (2-16) and (2-19) can be written as

E5a,iũi + F5a,iṽi + P5a,i ≤ 0
where

E5a,i =


E5a,i 0 · · · 0

0 E5a,i · · · 0
... . . . . . . ...
0 0 · · · E5a,i

 , F5a,i =


F5a,i 0 · · · 0 0
−F5a,i F5a,i · · · 0 0

... . . . . . . ...
...

0 0 · · · −F5a,i F5a,i

 ,

E5a,i =
[
02×8 −I 02×|N−i|

02×8 −I 02×|N−i|

]
, F5a,i =

[
I

02×2

]
,

and if k ≥ 1, P5a,i =


vi[k − 1]

0
...
0

 otherwise P5a,i = 0.

Equation (2-17) can be written as

E5b,iũi + F5b,iṽi + P5b,i ≤ 0
where

E5b,i =



E5b,i 0 0 0 · · · 0
E5b,i E5b,i 0 0 · · · 0
... . . . ...

... · · · 0
E5b,i · · · E5b,i 0 · · · 0

0 E5b,i · · · E5b,i · · · 0
... . . . . . . . . . · · ·

...
0 0 0 E5b,i · · · E5b,i


, P5b,i =



∑k−1
l=k+1−∆kup,g

zg,i[l]∑k−1
l=k+2−∆kup,g

zg,i[l]
...
0
0
...
0


,

F5b,i =


F5b,i 0 · · · 0

0 F5b,i · · · 0
... . . . . . . ...
0 0 · · · F5b,i

 , ∀k ≥ ∆kup,g,

in which

E5b,i =
[
01×8 1 0 02×|N−i|

]
, F5b,i =

[
−1 0

]
.
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Similarly, Equation (2-20) which refers to the boilers can be written as

E5c,iũi + F5c,iṽi + P5c,i ≤ 0
where

E5c,i =



E5c,i 0 0 0 · · · 0
E5c,i E5c,i 0 0 · · · 0
... . . . ...

... · · · 0
E5c,i · · · E5c,i 0 · · · 0

0 E5c,i · · · E5c,i · · · 0
... . . . . . . . . . · · ·

...
0 0 0 E5c,i · · · E5c,i


, P5c,i =



∑k−1
l=k+1−∆kup,b

zb,i[l]∑k−1
l=k+2−∆kup,b

zb,i[l]
...
0
0
...
0


,

F5c,i =


F5c,i 0 · · · 0

0 F5c,i · · · 0
... . . . . . . ...
0 0 · · · F5c,i

 , ∀k ≥ ∆kup,b,

in which

E5c,i =
[
01×8 0 1 02×|N−i|

]
, F5c,i =

[
0 −1

]
.

Meanwhile, Equation (2-18) can be expressed as

E5d,iũi + F5d,iṽi + P5d,i ≤ 0
where

E5d,i =


E5d,i · · · E5d,i 0 0 · · · 0

0 E5d,i · · · E5d,i 0 · · · 0
0 0 E5d,i · · · E5d,i · · · 0
... . . . . . . . . . . . . . . . ...
0 · · · 0 0 E5d,i · · · E5d,i

 , P5d,i =


vg,i[k − 1]− 1

−1
−1
...
−1

 ,

F5d,i =


0 0 · · · 0 0 · · · 0

F5d,i 0 · · · 0 0 · · · 0
0 F5d,i · · · 0 0 · · · 0
... . . . . . . ...

...
...

...
0 0 · · · F5c,i 0 · · · 0

 , P5d,i ∈ R(Nh−∆kdown,g,i), ∀k > 1,

in which,

E5d,i = E5b,i, F5b,i =
[
1 0

]
.
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Similarly, Equation (2-21) can be expressed as

E5e,iũi + F5e,iṽi + P5e,i ≤ 0
where

E5e,i =


E5e,i · · · E5e,i 0 0 · · · 0

0 E5e,i · · · E5e,i 0 · · · 0
0 0 E5e,i · · · E5e,i · · · 0
... . . . . . . . . . . . . . . . ...
0 · · · 0 0 E5e,i · · · E5e,i

 , P5e,i =


vb,i[k − 1]− 1

−1
−1
...
−1

 ,

F5e,i =


0 0 · · · 0 0 · · · 0

F5e,i 0 · · · 0 0 · · · 0
0 F5e,i · · · 0 0 · · · 0
... . . . . . . ...

...
...

...
0 0 · · · F5c,i 0 · · · 0

 , P5e,i ∈ R(Nh−∆kdown,g,i), ∀k > 1,

in which,

E5e,i = E5c,i, F5b,i =
[
0 1

]
.

Therefore we can obtain

E5,i =
[
ET5a,i ET5b,i ET5c,i ET5d,i ET5e,i

]T
,

F5,i =
[
FT5a,i FT5b,i FT5c,i FT5d,i FT5e,i

]T
,

P5,i =
[
PT

5a,i PT
5b,i PT

5c,i PT
5d,i PT

5e,i

]T
.

Finally, we obtain the matrices for the local constraints as

E =
[
ET1,i ET2,i ET3,i ET4,i ET5,i

]T
,

F =
[
FT1,i FT2,i FT3,i FT4,i FT5,i

]T
,

P =
[
PT

1,i PT
2,i PT

3,i PT
4,i PT

5,i

]T
.

B-3 Balance Constraints in Chapter 2

Here we provide the example of constructing matrices Gij andKi which appear in the compact
forms of the balance constraint. Consider a grid with 4 agents as depicted in Figure B-1. The
balance constraints of this system can be written as:

hxc,12 + hxc,21 = 0,
hxc,31 + hxc,13 = 0,
hxc,23 + hxc,32 = 0,
hxc,24 + hxc,42 = 0.
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Figure B-1: The example of a 4-agent grid system with the possibility of exchanging energy.

By defining

uc,1 =
[
hxc,12 hxc,13

]T
,uc,2 =

[
hxc,21 hxc,23 hxc,24

]T
,

uc,3 =
[
hxc,31 hxc,32

]T
,uc,4 = hxc,42,

the matrices Gij ∀j ∈ N−i which correspond to those balance constraints are

G12 =
[
1 0 0
0 0 0

]
, G13 =

[
0 0
1 0

]
,

G21 =

1 0
0 0
0 0

 , G23 =

0 0
0 1
0 0

 , G24 =

0
0
1

 ,
G13 =

[
0 1
0 0

]
, G32 =

[
0 0 0
0 1 0

]
,

G42 =
[
0 0 1

]
.

Whereas, for the compact format of the formulation of the ADMM method which is based
on the exchange problem, the matrices Ki ∀i ∈ N are defined as

K1 =


1 0
0 1
0 0
0 0

 , K2 =


1 0 0
0 0 0
0 1 0
0 0 1

 , K3 =


0 0
1 0
0 1
0 0

 , K4 =


0
0
0
1

 .

B-4 Local Constraints in Chapter 3

This section explains the construction of matrices Ei,Fi,Pi of the second case study (Chapter
3). They are formed from the startup cost constraints (3-23) and the capacity constraints
(3-24), (3-25), (3-26), (3-27), (3-28) and (3-29).
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The startup cost constraints (3-23) can be written as

E1,iũi + F1,iṽi + P1,i ≤ 0
where

E1,i =


E1,i 0 · · · 0

0 E1,i · · · 0
... . . . . . . ...
0 0 · · · E1,i

 , F1,i =


F1,i 0 · · · 0 0
−F1,i F1,i · · · 0 0

... . . . . . . ...
...

0 0 · · · −F1,i F1,i

 ,

E1,i =
[
02×6 −I
02×6 −I

]
, F1,i =

[
Λsu
i

02×2

]
,

and if k ≥ 1, P1,i =


vi[k − 1]

0
...
0

 otherwise P1,i = 0.

Meanwhile, the capacity constraints can be written as

E2,iũi + F2,iṽi + P2,i ≤ 0
where

E2,i =


E2,i 0 · · · 0

0 E2,i · · · 0
... . . . . . . ...
0 0 · · · E2,i

 , F2,i =


F2,i 0 · · · 0
0 F2,i · · · 0
... . . . . . . ...
0 0 · · · F2,i

 ,P2,i =


P2,i
P2,i
...
P2,i

 ,

E2,i =



−1 0 01×2 01×2 01×2

1 0 01×2 01×2 01×2

0 −1 01×2 01×2 01×2

0 1 01×2 01×2 01×2

01×2 −1 0 01×2 01×2

01×2 1 0 01×2 01×2

01×2 0 −1 01×2 01×2

01×2 0 1 01×2 01×2

01×2 01×2 −1 0 01×2

01×2 01×2 1 0 01×2

01×2 01×2 0 −1 01×2

01×2 01×2 0 1 01×2



, F2,i =



hmin
b,i 0

−hmax
b,i 0
0 0
0 0
0 cmin

ch,i
0 −cmax

ch,i
06×1 06×1


,

P2,i =
[
01×2 0 −hmax

im,i 01×2 0 −cmax
im,i 0 −umax

sh,i 0 −umax
sc,i

]T
.

Hence, we obtain the matrices for the local constraints as

E =
[
ET1,i ET2,i

]T
,

F =
[
FT1,i FT2,i

]T
,

P =
[
PT

1,i PT
2,i

]T
.

Wayan Wicak Ananduta Master of Science Thesis



B-5 Coupling Constraints in Chapter 3 67

B-5 Coupling Constraints in Chapter 3

The coupling constraints in the numerical study of Chapter 3 are written as

Vh,1(t) + Vc,2(t) ≤ V̄hc,12,

Vh,2(t) + Vc,3(t) ≤ V̄hc,23,

Vh,3(t) + Vc,1(t) ≤ V̄hc,31,∀t ∈ {k + 1, · · · , Nh}.

This constraints can be written compactly as in (3-35f) by defining

G11 = G22 = G33 =
[
1 0 0 0
0 1 0 0

]
,

G12 = G23 = G31 =
[
0 1 0 0
0 0 0 0

]
,

G13 = G21 = G32 =
[
0 0 0 0
1 0 0 0

]
.
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Appendix C

Distributed Optimization Based on
Dual Decomposition

This appendix discusses some distributed optimization methods which are mainly based on the
Lagrange dual theory. Section C-1 provides some important theories in convex optimization
which are the bases whereas the methods are discussed in Section C-2.

C-1 Preliminaries

In this section, a summary of convex optimization and Lagrange duality that are important
and related to the thesis are presented. They are extracted from [44] and [45].

C-1-1 Convex Optimization

Local and Global Optima of a Function

Consider the following general optimization problem

minimize
x

or maximize
x

f(x)

subject to x ∈ P,
(C-1)

and the ball centered at x̄ with radius ε which is the set

B(x̄, ε) := {x|||x− x̄|| ≤ ε}. (C-2)

We have the following definitions of local/global, strict/non-strict minima/maxima:

Definition C-1.1. x ∈ P is a local minimum of C-1 if there exists ε > 0 such that f(x) ≤
f(y) for all y ∈ B(x, ε) ∩ P.

Master of Science Thesis Wayan Wicak Ananduta



70 Distributed Optimization Based on Dual Decomposition

Definition C-1.2. x ∈ P is a global minimum of C-1 if f(x) ≤ f(y) for all y ∈ P.

Definition C-1.3. x ∈ P is a strict local minimum of C-1 if there exists ε > 0 such that
f(x) < f(y) for all y ∈ B(x, ε) ∩ P, y 6= x.

Definition C-1.4. x ∈ P is a strict global minimum of C-1 if f(x) < f(y) for all y ∈
P, y 6= x.

Definition C-1.5. x ∈ P is a local maximum of C-1 if there exists ε > 0 such that f(x) ≥
f(y) for all y ∈ B(x, ε) ∩ P.

Definition C-1.6. x ∈ P is a global maximum of C-1 if f(x) ≥ f(y) for all y ∈ P.

Definition C-1.7. x ∈ P is a strict local maximum of C-1 if there exists ε > 0 such that
f(x) > f(y) for all y ∈ B(x, ε) ∩ P, y 6= x.

Definition C-1.8. x ∈ P is a strict global maximum of C-1 if f(x) > f(y) for all y ∈
P, y 6= x.

Convex Sets and Functions

The following is the definition of a convex set:

Definition C-1.9. A subset C ∈ Rn is a convex set if the line segment between any two points
in C lies in C, that is

θx+ (1− θ)y ∈ C,

for any x,y ∈ C and 0 ≤ θ ≤ 1.

This leads to the following propositions:

Proposition C-1.1. If S, T are convex sets, then S ∩ T is a convex set.

Proposition C-1.2. The intersection of any collection of convex sets is a convex set.

Convexity of a function is defined as follows

Definition C-1.10 (Convexity). A function f : Rn → R is convex if

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y), (C-3)

for any x,y and θ with 0 ≤ θ ≤ 1.

Definition C-1.11 (Strict Convexity). A function f : Rn → R is strictly convex if

f(θx+ (1− θ)y) < θf(x) + (1− θ)f(y), (C-4)

for any x,y, x 6= y and θ with 0 < θ < 1.

Now consider the following optimization problem, where the feasible region is simply described
as the set P:

minimize
x

f(x)

subject to x ∈ P,
(C-5)
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Theorem C-1.1. Suppose that P is a convex set, f : P → R is a convex function, and x̄ is
a local minimum of (C-5). Then x̄ is a global minimum of f over P.

Proof. Suppose x̄ is not a global minimum, i.e., there exists y ∈ P for which f(y) < f(x̄).
Let y(θ) = θx̄+(1−θ)y, which is a convex combination of x̄ and y for θ ∈ [0, 1] and therefore
y(θ) ∈ P for θ ∈ [0, 1]. Note that y(θ)→ x̄ as θ → 1. From the convexity of f(·),

f(y(θ)) = f(θx̄+ (1 + θ)y) ≤ θf(x̄) + (1 + θ)f(y) < θf(x̄) + (1 + θ)f(x̄) = f(x̄),

for all θ ∈ (0, 1). Therefore f(y(θ)) < f(x̄) for all θ ∈ (0, 1) and so x̄ is not a local minimum,
resulting in a contradiction.

Concave Functions and Maximization

A concave function is defined as the following.

Definition C-1.12. A function f : Rn → R is concave if

f(θx+ (1− θ)y) ≥ θf(x) + (1− θ)f(y), (C-6)

for any x,y and θ with 0 ≤ θ ≤ 1.

Definition C-1.13. A function f : Rn → R is strictly concave if

f(θx+ (1− θ)y) > θf(x) + (1− θ)f(y), (C-7)

for any x,y, x 6= y and θ with 0 < θ < 1.

Now consider the following optimization problem, where the feasible region is simply described
as the set P:

maximize
x

f(x)

subject to x ∈ P,
(C-8)

Theorem C-1.2. Suppose that P is a convex set, f : P → R is a concave function, and x̄ is
a local maximum of (C-8). Then x̄ is a global maximum of f over P.

Affine functions

An important class of functions which is related to our thesis is a class of affine functions. An
affine function is defined as f(x) = aTx+ b.

Proposition C-1.3. An affine function is both convex and concave.

Proposition C-1.4. if f(x) is both convex and concave, then f(x) is an affine function.
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Convex Programs

Consider the following optimization problem which can be either a minimization or maxi-
mization problem:

minimize
x

or maximize
x

f(x)

subject to x ∈ P,
(C-9)

Definition C-1.14. We call Problem (C-9) a convex program if

1. P is a convex set, and

2. we are minimizing and f(x) is a convex function or we are maximizing and f(x) is a
concave function.

Therefore, from the above theorems, every local optimia of the objective function of a convex
program is a global optima of the objective function.

A Separating Hyperplane

The separating hyperplane theorem for convex sets is the main tool which is used in developing
duality and analyzing dual problem. The theorem is stated as follows:

Theorem C-1.3 (Strong Separating Hyperplane Theorem). Suppose that S is a convex set
in Rn and there is a point x̄ /∈ S. Then there exists a vector u 6= 0 and a scalar α for which
the following hold:

1. uTx > α ∀x ∈ S.

2. uTx < α ∀x ∈ S.

A weaker version of this theorem is as follows:

Theorem C-1.4 (Weak Separating Hyperplane Theorem). Suppose that S is a convex set
in Rn and there is a point x̄ /∈ S or x̄ ∈ ∂S. Then there exists a vector u 6= 0 and a scalar α
for which the following hold:

1. uTx ≥ α ∀x ∈ S.

2. uTx ≤ α ∀x ∈ S.

C-1-2 Lagrange Duality Theory

Consider the following optimization problem

minimize
x

J(x) (C-10a)

subject to gi(x) ≤ 0, i = 1, ..., Nq, (C-10b)
hi(x) = 0, i = 1, ..., Nr, (C-10c)
x ∈ P, (C-10d)
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where x ∈ Rn, J : Rn → R is the cost function, Equation (C-10b) is the inequality constraints
in which gi : Rn → R, ∀i ∈ {1, ..., Nq} are the inequality constraint functions, and Equation
(C-10b) is the equality constraint in which hi : Rn → R, ∀i ∈ {1, ..., Nr} are the equality
constraint functions. Moreover, Equation (C-10d) is an additional constraint where P is the
feasible set in which x must lie. Note it is a general optimization problem. For instance, a
maximization problem can also be converted into this form.

Lagrange Dual Function

The Lagrangian L : Rn × RNq × RNr → R associated with the optimization problem (C-10)
is defined as

L(x,λ,ν) = J(x) +
Nq∑
i=1

λigi(x) +
Nr∑
i=1

νihi(x), (C-11)

where λi is referred as the Lagrange multiplier associated with the ith inequality constraint
and similarly νi is referred as the Lagrange multiplier associated with the ith equality con-
straint. The vectors λ and ν which consist of λi and νi ∀i{1, 2, · · · , N} are called the dual
variables or Lagrange multiplier vectors associated with the problem (C-10).

The Lagrange dual function gd: RNq ×RNr → R is then defined as the minimum value of the
Lagrangian L over x for λ ∈ RNq ,ν ∈ RNr ,

gd(λ,ν) = inf
x∈P

L(x,λ,ν) = inf
x∈P

J(x) +
Nq∑
i=1

λigi(x) +
Nr∑
i=1

νihi(x)

 . (C-12)

Theorem C-1.5. The dual function gd(λ,ν) is a concave function.

Proof. The dual function is the pointwise infimum of a family of affine functions of (λ,ν),
thus it is concave (even if problem (C-10) is not convex).

Lagrange Dual Problem

The dual problem that is associated with the the problem (C-10) si defined as the following:

maximize
λ,ν

gd(λ,ν)

subject to λ ≥ 0.
(C-13)

The Lagrange dual problem (C-13) is a convex optimization problem since the objective to
be maximized is concave and the constraint is convex. This holds whether or not the primal
problem is convex [45]. It is an optimization problem in which the objective is to find the
tightest lower bound of Problem (C-10) because the dual function gives a lower bound as
stated in the following theorem.

Theorem C-1.6 (Weak Duality Theorem). If x̃ is feasible for Problem (C-10) and λ̃, ν̃ is
feasible for Problem (C-13), then:

gd(λ̃, ν̃) ≤ J(x̃). (C-14)
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In particular, let p? and d? be the optimal solution of the primal problem (C-10) and the dual
problem (C-13), we have

d? ≤ p?. (C-15)

Proof. For any feasible x̃ ∈ P, i.e., that satisfies the inequality and equality constraints in
(C-10) and for any pair (λ̃, ν̃) with λ̃ ≥ 0, we have

Nq∑
i=1
λ̃igi(x̃) +

Nr∑
i=1
ν̃ihi(x̃) ≤ 0. (C-16)

This implies that
gd(λ̃, ν̃) = inf

x∈P
L(x, λ̃, ν̃) ≤ L(x̃, λ̃, ν̃) ≤ J(x̃), (C-17)

where the last inequality follows from Equation (C-12) and Equation (C-17). Therefore
d? ≤ p?.

Strong Duality

From the weak duality theorem, we know that d? is the best lower bound on p?. The difference
p?− d? is then called as the optimal duality gap of the original problem. Strong duality holds
if the equality

d? = p? (C-18)

holds, which also means the optimal duality gap is zero. The strong duality property infers
that the problem can be solved by solving its dual problem. If the primal problem (C-10) is
convex, usually the problem have strong duality [45].

Optimality Conditions

Consider the primal optimization problem (C-10) and its dual (C-13). Assume that strong
duality holds and the cost functions and constraint functions are differentiable. x? and (λ?, ν?)
can be the primal and dual optimal points if they satisfy the following condition:

∇J(x?) +
Nq∑
i=1

λ?i∇gi(x?) +
Nr∑
i=1

ν?i∇hi(x?) = 0, (C-19)

λ?i gi(x?) = 0, i = 1, . . . , Nq, (C-20)
λ?i ≥ 0, i = 1, . . . , Nq, (C-21)

gi(x?) ≤ 0, i = 1, . . . , Nq, (C-22)
hi(x?) = 0, i = 1, . . . , Nr. (C-23)

The KKT conditions are necessary conditions for any primal-dual optimal pair if strong
duality holds and the cost and constraints are differentiable. If the primal problem is also
convex then the KKT conditions are sufficient. The proof of KKT conditions can be found
in [45].
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C-2 Dual Decomposition

The main idea of distributed approach is that large-scale problems are decomposable. So in
this approach, the problem is decomposed into many smaller subproblems (agents) such that
there is a local optimization problem at each agent which is expected to be computationally
easier and there exist some level of communication or coordination among the agents in order
to improve the overall performance [8], [20], [46]. Based on the Lagrange dual theory, we
know that it is possible to solve a problem by solving the associated dual problem. Therefore,
there are decomposition methods which are based on the dual theory. These methods are
called dual decomposition. In this section, we discuss the method and the corresponding
algorithm to solve the problem. Moreover, we also provide some examples and compare it
with a different distributed optimization strategy. In the end, we discuss a specific issue arisen
when using this method which is related to our main problem and explain an extension of
this method which is able to deal with this issue.

C-2-1 Dual Ascent Method

The dual ascent method is an iterative-based optimization algorithm which is developed based
on the dual theory. In this method, first we decompose the problem which we want to solve
into smaller subproblems and then apply a gradient ascent method to solve the dual problem.

In order to describe the method, first we consider the following optimization problem:

minimize
x

N∑
i=1

Ji(xi) (C-24a)

subject to xi ∈ Xi, i = 1, ..., N, (C-24b)
N∑
i=1

Aixi ≤ c, (C-24c)

where agent i has local variable xi ∈ Rni , local constraint set Xi ⊆ Rni , and local cost Ji(xi).
Moreover, the system has a coupling inequality constraint

∑N
i=1Aixi ≤ c. In addition, the

number of agent is N , and the total cost function is
∑N
i=1 Ji(xi). Moreover, it is assumed

that the cost function Ji(xi) for all i are strictly convex.

Due to the existence of the coupling constraint (Equation (C-24c)), this problem is not trivially
separable. However, by introducing the Lagrange multiplier λ which is associated with the
coupling constraint, we can obtain the dual problem which is separable as follows:

maximize
λ

minimize
{xi∈Xi}N

i=1

N∑
i=1

(
Ji(xi) + λTAixi

)
− λT c

subject to λ ≥ 0.
(C-25)

The dual problem can be decomposed into N minimization subproblems since λT c is a con-
stant and can be omitted. Note that for simplicity we only deal with one coupling constraint.
Obviously we can extend the method for more than one coupling constraint by simply intro-
ducing the associated Lagrange multipliers and form the corresponding Lagrangian.
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Thus, the dual problem can be solved in two stages. The first stage is solving N subproblems.
Each subproblem is written as follows

minimize
xi

(
Ji(xi) + λTAixi

)
subject to xi ∈ Xi,

(C-26)

with the optimal value of xi of this problem at each iteration is denoted by x?i . The second
stage is updating the Lagrange multiplier λ as a maximization problem as follows

maximize
λ

N∑
i=1

(
Ji(x?i ) + λTAix?i

)
− λT c

subject to λ ≥ 0.
(C-27)

This is a convex problem which can be solved using an ascent method. In this method, the
Lagrange multipliers are iteratively updated as follows

λ(q+1) = max(0,λ(q) + αgd), (C-28)

where (q) denotes the number of iterations, αg is the step size and 0 ≤ αg ≤ 1 and d is the
direction as defined as

d =
N∑
i=1

Aix
?
i − c. (C-29)

The stopping criterion of this method is taken from one of the optimality conditions, that is
complementary slackness (Equation (C-20)). So the iteration stops if λT (

∑N
i=1Aix

?
i − c) ≤ ε

for a small value of ε > 0. The dual ascent method for this problem is summarized in
Algorithm 5.

The dual decomposition methods will find global optimal if strong duality holds. Therefore
convexity of the problem is important. This can be see in [22], [23], [24] in which the opti-
mization problems considered are convex. Furthermore, as mentioned in [30] and [31], where
the problems are nonconvex, the convergence cannot be guaranteed.

C-2-2 Alternating Direction Method of Multipliers

As noted in [27], the Alternating Direction Method of Multipliers (ADMM) is one of the
Augmented Lagrangian methods which were developed to improve the dual ascent method,
in particular to yield convergence without assumptions such as strict convexity or finiteness
of the cost function. Additionally, the authors of [28] also have observed that ADMM is able
to improve convergence speed of the dual ascent in practice. In this section, a brief summary
of this method is given. We refer the readers to [27] for a more extensive explanation of this
method.

The following convex optimization problem is considered to explain the method:

minimize
x∈Rn

f(x)

subject to Ax = c,
(C-30)
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Algorithm 5 The Dual Ascent Method
Initialize r = 1 and λ(1)

while
∑N
i=1Aix

?
i − c ≥ ε do

for for i = {1, 2, · · · , N} do
Solve the local optimization problems as indicated in using λ(q) to obtain the current
solution x(q)

i ∀i ∈ {1, 2, · · · , N}, that is (for each agent):

x
(q)
i = arg min

xi∈Xi

(
Ji(xi) + λ(q)TAixi

)
.

end for
Update the Lagrange multiplier using the gradient ascent method:

λ(q+1) = max
(

0,λ(q) + γ

(
N∑
i=1

Aix
(q)
i − c

))
.

r = r + 1.
end while

where A ∈ Rp×n, c ∈ Rp, and f : Rn → R is convex. The augmented Lagrangian for this
problem is

Lρ(x,λ) = f(x) + λT (Ax− c) + ρ

2 ||Ax− c||
2
2, (C-31)

where ρ is called the penalty parameter. Minimizing x over the augmented Lagrangian can
also be viewed as the following problem:

minimize
x∈Rn

f(x) + ρ

2 ||Ax− c||
2
2

subject to Ax = c,
(C-32)

which is equivalent to the original problem (C-30).

Applying dual ascent to the modified problem (C-32) yields the iterative algorithm which is
written as

x(q+1) := argmin
x

Lρ(x,λ(q)) (C-33)

λ(q+1) := λ(q) + ρ(Ax(q+1) − c). (C-34)

This algorithm is known as the method of multipliers. The existence of the penalty term in
the augmented Lagrangian provides an advantage that the strong assumptions for the dual
ascent method to converge as have been mentioned are not required. However, this advantage
comes at the cost that when the cost function is separable, the augmented Lagrangian Lρ is
not separable [27]. This implies that the minimization of x in step (C-33) can not be carried
out separately in paralel for each xi.

ADMM is intended to improve the method multipliers so that it can be used to decompose a
problem into smaller subproblems. Thus ADMM is suitable to be a distributed optimization
algorithm while having the convergence properties of the method of multipliers. The algorithm
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deals with the following problem

minimize
x,y∈Rn

f(x) + g(y)

subject to Ax+By = c,
(C-35)

where x ∈ Rn, y∈ Rm, A ∈ Rp×n, A ∈ Rp×m c ∈ Rp. Moreover it is assumed that f and g
are convex. We can say that Problem (C-35) is formed by splitting the decision variable of
Problem (C-30) which is denoted by x there into two parts which are denoted by x and y
here. This yields to splitting of the cost function and the matrix on the constraint as well.

The augmented Lagrangian for this problem is

Lρ(x,y,λ) = f(x) + g(y) + λT (Ax+By − c) + ρ

2 ||Ax+By − c||22, (C-36)

and ADMM consists of the following iterations:

x(q+1) := argmin
x

Lρ(x,y(q),λ(q)), (C-37)

y(q+1) := argmin
y

Lρ(x(q+1),y,λ(q)), (C-38)

λ(q+1) := λ(q) + ρ(Ax(q+1) +By(q+1) − c), (C-39)

where ρ > 0.

It is also discussed in [27] that very mild assumptions are required to guarantee the conver-
gence of ADMM. They are: (1) The extended-real-valued functions f : Rn → R ∪ {+∞} and
g : Rn → R∪{+∞} are closed, proper, and convex, and (2) The unaugmented Lagrangian has
a saddle point. Under these assumptions, the ADMM algorithm satisfies residual convergence,
that is the solution approaches feasibility ((Ax(q+1) +By(q+1)− c)→ 0 as r →∞), objective
convergence that is the cost function approaches the optimal value (f(x(q)) + g(y(q))→ p? as
q →∞) and dual variable convergence (λ(q) → λ? as q →∞).

When dealing with a generic constrained optimization problem, ADMM can be formulated by
first introducing an indicator function of the set that constrains the problem and an auxiliary
variable which is associated to the set. The update of the auxiliary variable is then done by
using a projection operator. As extracted from [27], This method is described as the following.

Consider a generic constrained convex optimization problem as follows

minimize
x

f(x)

subject to x ∈ P,
(C-40)

where f and P are convex. This problem can be rewritten in ADMM form (C-35) as

minimize
x

f(x) + g(y)

subject to x− y = 0,
(C-41)

where g is the indicator function of P, that is g(y) = 0 if y ∈ P and g(y) = +∞ otherwise.

The augmented Lagrangian is

Lρ(x,y,λ) = f(x) + g(y) + λT (x− y) + ρ

2 ||x− y||, (C-42)
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so the ADMM for this problem is:

x(q+1) := argmin
x

Lρ(x,y(q),λ(q))

y(q+1) := ΠP
(
x(q+1)

)
λ(q+1) := λ(q) + ρ

(
x(q+1) − y(q+1)

)
.

Note that ΠP(·) is the projection operator onto the set P.

It is a general ADMM formulation which is used as the basis of the decomposition method for
an MPC problem. It can be seen in the work of [29] in which a distributed MPC algorithm
based on ADMM is proposed. Moreover, as discussed in [27], it could also deal with consensus
problems that inspired the work of [28] in which the authors provide a distributed model
predictive consensus algorithm.

The ADMM approach to solve the optimal exchange problem which is related to our study
is also worth to be mentioned. As discussed in [27], the exchange problem is given as follows

minimize
{xi∈Rn}N

i=1

N∑
i=1

fi(xi)

subject to
N∑
i=1
xi = 0,

(C-43)

where fi denotes the cost function for subsystem i. The ADMM for this problem consists of
the following iterations:

x
(q+1)
i = argmin

xi

fi(xi) + λ(q)T (xi) + ρ

2

∣∣∣∣∣∣xi +
(
x̄(q) − x(q)

i

)∣∣∣∣∣∣2
2
, (C-44)

x̄(q+1) =
N∑
i=1
x

(q+1)
i , (C-45)

λ(q+1) = λ(q) + ρx̄(q+1). (C-46)
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