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Manifestation of the geometric phase in neutron spin-echo experiments
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We show how the geometric (Berry’s) phase becomes manifest on adiabatic rotation of the polarization vector
in the magnetic field configuration in the arms in a neutron spin echo (NSE) experiment. When the neutron beam
used is monochromatic, a geometric phase collected in one spin-echo arm can be exactly compensated in the
other arm either by an opposite geometrical rotation or by adding/subtracting a dynamic (Larmor) phase. This
is not possible in a white beam, because, contrary to the dynamic phase, the geometric phase is independent of
wavelength. Therefore, the NSE pattern can be disturbed. We demonstrate that adiabatic resonant spin flippers
inherently produce a geometric phase which can influence the performance of NSE setups based on such flippers.
This effect can be avoided by a proper mutual symmetry of the gradient fields in these flippers.
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I. INTRODUCTION

In neutron spin-echo (NSE) experiments the precession
phase of the polarization vector accumulated while the beam
runs through some field configuration is compensated by
the precession in a following identical configuration, with
reversed precession. The degree of the resulting polarization
is commonly measured by off-setting the NSE condition by
inserting a small so-called phase coil in one NSE arm and
varying its field. One measures the amplitude of the damped
oscillating signal (for the whole spectrum) thus obtained: the
so-called spin-echo group. Presently, several instruments in
the world for this purpose are operational [1,2]. Here we
discuss the NSE experiment in a setup installed in a pulsed
white beam, where each NSE arm consists of two adiabatic
radiofrequency (RF)/gradient flippers as described for the first
time by Bazhenov et al. [3].

As is well known (see, e.g., Ref. [4]), each component of
the spinor |χ〉 describing a neutron flying through the magnetic
field configuration �B(t) (with t = x/v) of an NSE arm, picks
up a phase eimφ where φ = ∫ L

0 |B|(x)dx (m = ±1), the so-
called dynamic phase. Since the time spent in the magnetic field
is proportional to the wavelength λ, this phase is proportional
to λ.

When a field configuration is such that the resulting vector
�B (as seen by the flying neutron) describes a closed loop,
each spin state also collects a geometric phase φg , which is
independent of wavelength. Long ago Berry [5] stated that
φg is equal to the solid angle subtended by this closed loop.
This has been verified for a polarized thermal neutron beam
flying through a twisted field [4,6] and through a rotating
field [7] and also with cold neutrons [8]. It has been argued
that the noncommuting properties of two identical successive
neutron spin flippers with different orientations will lead to
an observable geometric phase shift effect [9], which has
been experimentally verified [10]. The geometric phase was
discussed also in contexts outside neutron beams [11], e.g.,
propagation of light in a fiber [12].

Many studies deal with single-state experiments in an
interferometer with different magnetic field configurations
along the two paths, in some studies giving different geo-
metric phases [10,13,14]. A direct example is the separation

geometric/dynamic phase effected by a relative rota-
tion/translation of two π flippers installed in the two pathways
[15]. An example with analogy to our work with a twisted coil
is an interference experiment with fields in the two paths with
(adjustable) opposite twist in search for the 4π symmetry of the
spinor [16]. A situation comparable with interferometry arises
when adiabatic/RF flippers are set at flip probability <1: then
a coexistence between flipped and nonflipped neutrons states
and their interference appears in a single beam line [17].

Recently, the geometric phase received renewed attention
in the field of quantum information processing due to its
presumed resilience against noise perturbations. In this context
its stability for trapped ultracold neutrons subjected to field
fluctuations was demonstrated [18].

In our NSE setup the dynamic phase is built up in the “zero-
field precession” mode over the path between two adiabatic
RF/gradient flippers, i.e., at twice the rate corresponding to
the DC field in the flippers [19]. When such a flipper is viewed
in a rotating coordinate system in a way as wass done long ago
in NMR theory [20], the field resulting from its (DC) gradient
and RF coil can be modeled with a field of strength A rotating
uniformly by π over its length. One could imagine a NSE
arm with two such flippers in which the field rotates over full
2π , hence a neutron flying through it will pick up a geometric
phase.

In an NSE experiment, where the net phase is ≈0, the
phase φg becomes relevant. Our NSE groups, measured
with a “white” neutron beam, showed a slight asymmetry.
Differentiated to λ the NSE condition was found not to
coincide for all λ, presumably due to a geometric phase picked
up by the polarization vector �P (t) in one or both NSE arms.
It is the aim of this article to find and analyze the geometric
phase φg in various modifications of our NSE setup. These
modifications (in one NSE arm only, keeping the other arm
unaltered) include (i) varying the phase difference between
the RF fields in the flippers, (ii) reversing the gradient field
in one and both flippers, and (iii) varying the amplitude A

of the rotating field in one flipper. For reference we describe
a trivial way to produce a geometric phase: transmitting the
beam through a DC coil, twisted over 2π .

The layout of this article is as follows: in Sec. II we show
how the NSE pattern for a setup as described above is disturbed
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when a net geometric phase remains. In Sec. III we calculate
the precession phase through one adiabatic/RF flipper and
through a full NSE arm consisting of two such flippers. We
discuss how this phase behaves as a function of the adiabaticity
parameter ka (the ratio between the precession frequency γA

in a field of strength A and the change rate of the field direction,
as seen by the flying neutron) and how it changes as a result
of the modifications just mentioned. In the end we discuss
the precession phase after a 2π -twisted DC coil. After a
description of our experimental setup in Sec. IV, we give
NSE patterns obtained, applying the modifications mentioned
above. This section is completed with NSE patterns obtained
with the twisted DC coil. Finally, there is a conclusion.

II. DISTURBANCE OF NSE BY GEOMETRIC PHASE

Let the precession phase φ1 in the first arm of a NSE setup be
composed of a λ-dependent dynamic term and a λ-independent
geometric term: φ1 = �1λ + φg1. In general, the precession
φ2 = �2λ + φg2 in the second arm will not cancel φ1. To
find NSE, a phase coil is inserted in this arm, making a field
over some length along the beam and thus a dynamic phase
proportional to this field.

Let the dynamic phase cancel for the field value Bf in this
coil, so �1λ = (�2 − cPhBf )λ for all λ, hence �1 − �2 +
cPhBf = 0. (cPh is a constant characterizing the coil, not to be
further specified.) When the field is varied �B away from Bf ,
a net phase ϕnet (λ) remains, equal to [�1 − �2 − cPh(Bf +
λ�B)] + φg1 − φg2 = λ�B + φg1 − φg2.

Defining the net geometric phase φg = φg1 − φg2, the
measured polarization P ≡ cos ϕnet (λ) is:

P (�B,λ) = cos(φg − cPhλ�B). (1)

The top row of Fig. 1 is a map of P (�B,λ) with net
geometric phase φg equal to 0, π/2, π and (arbitrary) 0.77.
In the bottom row 1/λ is plotted instead of λ: then the lines
separating regions with P > 0 and < 0 become straight. It is
seen that an (inadvertent) net overall geometric phase can turn
the map from symmetric into antisymmetric in �B. For an
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FIG. 1. (Color online) NSE scan in a setup with net geometric
phase φg = 0, π/2, π and (arbitrary) 0.77: maps of the polarization
P (�B,λ) as a function of phase coil field and wavelength [Eq. (1)]
(top row) and transformed to P (�B,1/λ) (bottom row). (Dark, P >

0; white, P < 0.)

arbitrary geometric phase there is no unique phase coil field
where P has the same phase for all λ.

III. PRECESSION PHASE AFTER ONE NSE ARM

To understand the NSE experiments described in Sec. IV,
we will first calculate the (dynamic and geometric) precession
phase φff acquired by the polarization vector �P while the
beam runs through one NSE arm, composed of two adiabatic
RF flippers, located a distance L apart.

The behavior of the neutron spin in a beam running
through a field �B(�r,t) is most generally described by the time-
dependent Schrödinger equation ih̄(∂/∂t)ψ(�r,t) = Hψ(�r,t),
where

H = p2

2m
− 1

2
h̄γ �σ · �B(�r,t) (2)

is the Hamiltonian and �σ is the 3D vector of Pauli matrices.
In 1D its solution can be written in terms of the 2D “spinor”
|χ (x,t)〉 as

ψ(x,t) = eikx−iωt |χ (x,t)〉,
where the exponential corresponds to a neutron moving in
the x direction with momentum h̄k = mv and kinetic energy
E = h̄ω = h̄2k2/(2m) = 1

2mv2. As follows, by substitution of
ψ(x,t)—as written above—into the Schrödinger equation with
(2) for the Hamiltonian, |χ (x,t)〉 satisfies the so-called Larmor
equation for spinors:

d

dt
|χ (x,t)〉 = 1

2
i �σ · γ �B(x,t)|χ (x,t)〉. (3)

We prefer to discuss the solution in terms of the
corresponding macroscopic 3D spin expectation �S(x,t) =
〈χ (x,t)|�σ |χ (x,t)〉. In the limit that the neutron’s Zeeman
energy µnB is much less than its kinetic energy h̄2k2/(2m),
which for thermal neutrons in fields as in our flippers is amply
satisfied, Eq. (3) can be written in terms of �S(x,t) as the
“Larmor equation”:

d

dt
�S(x,t) = γ �S(x,t) × �B(x,t). (4)

The solution is given in terms of (3 × 3) rotation matrices
denoted R �m(α), where �m is the unit vector along the rotation
axis and α the rotation angle. In general �m is x̂, ŷ, or ẑ.
To perform the calculations involved, one uses the geometric
relation:

R−1
y (π )Rz(ϕ) = R−1

z (ϕ)R−1
y (π ) (+ cycl. variants) (5)

which indicates that you can “push” R−1
y (π ) through Rz(ϕ),

provided you invert Rz to R−1
z .

A. Solving the Larmor equation for an adiabatic RF flipper

An adiabatic RF flipper consists of a homogeneous DC
magnetic field of strength B0, with superimposed a gradient
Bgr (x), along the z axis. Inside this field sits an RF coil of
length � generating an oscillating field BRF (x,t) along the x

axis at the resonance frequency ω = γB0. Figure 1 gives these
field contributions as a function of x, as they actually are (see
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FIG. 2. The fields Bgr (‖ z) and BRF (‖ x) as functions of x: as in
the laboratory system (where BRF is twice as strong as shown) and
in the system (xr ,yr ,z) rotating at frequency ω = γB0 about z: actual
(ooo/· · ·) and idealized (lines). Over length l the effective field (with
amplitude A) for one neutron rotates from z to −z about an axis in
the xy plane. (Right) Geometric relation between the “fields” ωg/γ ,
(�/γ )m̂, and A and the angle β occurring in (9).

Sec. IV), and idealized: zero for all x, except in the interval
0 < x < l, where they are described as:

B0(x) = B0ẑ(hom. field) (6)

BRF (x,t) = 2A sin(πx/l) cos(ωt + ϕ)x̂(RF field) (7)

Bgr (x) = A cos(πx/l)ẑ(grad. field). (8)

The amplitude 2A of the RF field has on purpose been
chosen twice the amplitude of the gradient field. The length l

corresponds roughly to the length � of the RF coil.
A neutron with velocity v along the x axis and spin �S0

enters the idealized configuration of Fig. 2 at time t = t0. The
solution �S(t) of the Larmor equation (4) reads (see Appendix):

�S(t) = R−1
z (ωt + ϕ)Ryr

(ωgx/v)R−1
xr

(β)R−1
z (�t)

×Rxr
(β)Rz(ϕ)�S0, (9)

where ϕ is the phase of the RF field at t0 and ωg = πv/l

the geometric frequency. The diagram in Fig. 2 expresses
the relation between the quantities ωg , β, and � in (9)
and the amplitude A. The matricesRxr

,R−1
xr

, andRyr
represent

rotations around the xr and yr axes (at t0 at ϕ toward the
laboratory system) of the “rotating system” (xr,yr ,zr = z)
which rotates at frequency ω = γB0 around z. We point out
that, seen in the laboratory system, each neutron encounters
a different field configuration, expressed by different matrices
Rxr

, R−1
xr

, and Ryr
.

B. Precession phase after one adiabatic RF flipper

To find the precession phase of the spin �Sf at the end
of the flipper, we substitute t = l/v in (9). The final spin
�Sf is commonly discussed as a function of the “adiabaticity
parameter”

ka(A) = γA/ωg (→ kaπ = γ (l/v)A), (10)

that is, the ratio between the precession frequency in a field of
strength A and the geometric frequency ωg . With the help of
Fig. 2 it is seen that the quantities β and �t = �l/v in (9) can
be expressed in ka as (writing

√
1 + k2

a = κ)

sin β = 1

κ
, cos β = ka

κ
, �

l

v
= kaπ

√
1 + 1/k2

a.

Making these substitutions and applying relation (5) four
times, we get instead of (9):

�Sf = Q(�0,ϕ,ka)Ryr
(π )�S0 (11)

with �0 = γ (l/v)B0 and

Q(�0,ϕ,ka) = R−1
z (�0 + ϕ)M(ka)R−1

z (ϕ),

where the matrix M(ka) is given by

M(ka) = Rxr
(β(ka))Rz(kaπ

√
1 + 1/k2

a)R−1
xr

(β(ka)). (12)

The yy element of the matrix Q(�0,ϕ,ka) refers to the NSE
maps below. It can be written:

Qyy = [
1 − O

(
k−2
a

)]
cos

(
�0 − kaπ

√
1 + 1/k2

a + 2ϕ
)

+O
(
k−2
a

)
, (13)

where the collections of termsO(k−2
a ) approach 0 for ka → ∞.

In practice the amplitude A is varied rather than ka .
Expressed in A and substituting (10) for ka , the argument
of the cosine in (13) is written

φf = �0 − �(A) + 2ϕ, with
(14)

�(A) = γ (l/v)A

√
1 +

(
π

γ (l/v)A

)2

.

For ka → ∞ (adiabatic limit) the angle β goes to 0 and the
matrixQ(�0,ϕ,ka) will consist purely ofRz’s, becauseM(ka)
reduces to Rz(γ (l/v)A). Then, (11) reduces exactly to:

�Sf = R−1
z (�0 − �∞(A) + 2ϕ)Ryr

(π )�S0, with:
(15)

�∞(A) = γ (l/v)A.

Since the phase ϕ of the RF field at the arrival time of
successive neutrons increases at rate ω, a beam with stationary
polarization (all neutrons equal spin �S0) transforms into a beam
with spins progressing in time at rate 2ω. So the polarization
of this beam is not stationary.

C. Precession phase after NSE arm with two flippers

Next we consider an NSE arm consisting of two flippers F1
and F2, a distance L apart, with synchronized RF fields with
amplitudes A1 and A2. For a given neutron the spin after F1 is
given by Eq. (11). It arrives at F2 at t∗ = t0 + L/v; the phase
of the RF field at that time is ϕ∗. Between the flippers there
is no field (ignoring the guide field), so the spin �Sff after F2
is found by applying (11) [developed to (15) but taking �(A)
instead of �∞(A)] twice:

�Sff ≈ R−1
z (�0 ± �(A2) + 2ϕ∗)Ryr

(±π )

× [
R−1

z (�0 − �(A1) + 2ϕ)Ryr
(π )

]�S0. (16)

We write ≈ because we neglect O(k−2
a ). The ± signs describe

whether the gradient in F2 is parallel or opposite to the gradient
in F1. In the latter case the diagram in Fig. 2 mirrors about
zrr , so the geometric frequency for F2 becomes −ωg , hence
�(A) in (14) becomes −�(A). Applying relation (5) once
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again (which is valid, since yr is always ⊥ z) gives:

�Sff ≈ R−1
z (±�(A2) + 2ϕ∗ − �(A1) − 2ϕ)

× [
Ryr

(±π )Ryr
(π )

]�S0. (17)

The phase difference ϕ∗ − ϕ in the argument of R−1
z equals

ωL/v, so it is independent of the arrival time at flipper F1.
Hence, for an incoming beam with stationary polarization (all
neutrons equal �S0) the spin �Sff no longer depends on time: it
is again stationary. Therefore we can identify the spins �S0 and
�Sff with the polarization vector �P of the beam, so we write
�P instead of �S. Then, realizing that Ryr

(±π )Ryr
(π ) = I, we

can rewrite (17):

�Pff ≈ R−1
z (�ZF − �(A1) ± �(A2)) �P0 (18)

with �ZF = 2γ (L/v)B0 (19)

and �(A) given by (14). �ZF is a precession phase collected
“as if” a field 2B0ẑ existed all the way from x = 0 to x = L,
while in fact there is no field, hence: “zero field precession”
[19]. When A1 = A2 = A the final precession phase φff is

φff = �ZF − �(A) + �(A) = �ZF (gr. parallel) (20)

= �ZF − 2�(A). (gr. opposite) (21)

(20) implies that when A1 = A2 = A and gradients parallel,
φff will be independent of A for any λ. Using a limited power
supply for the RF fields, a stable NSE setup can be built,
although for low amplitude A the polarization will drop by the
factor [1 − O(k−2)] in Eq. (13).

When the gradients are parallel, but A1 �= A2, (20), includ-
ing (14), becomes:

φff = �ZF − γ
l

v
(A1 − A2) − ��(A1,A2);

(22)

��(A1,A2) = 1

γ (l/v)A1
− 1

γ (l/v)A2
,

so an extra phase to �ZF appears. Note the different de-
pendence on v of these terms. Figure 9 gives ��(A1,A2)
as functions of v and λ for some values of A2, with A1 =
1.5 mT and l = 80 mm.

1. Phase RF field second flipper shifted

When the gradients are parallel and A1 = A2 = A, but the
phase of the RF field in F2 is shifted by ψ , the phase ϕ∗ in
Eq. (17) increases by ψ , so the final phase (20) becomes:

φff (ψ) = �ZF + 2ψ. (23)

So we get an extra precession phase 2ψ of the polarization
vector, which does not depend on λ. The phase 2ψ behaves
in a way identical with the geometric phase φg1 introduced in
Sec. II.

D. Precession phase in 2π -twisted coil

A twisted coil of length lt with a DC field of constant
strength Bt , rotating in the yz plane around x̂ over 2π , is
described in a frame (x̃,ỹ,z̃) rotating synchronously with the
field vector, as seen by the neutron. So this frame rotates
at the geometric frequency ωt = 2π/(lt /v) and the coil field
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FIG. 3. Field vector in a coil twisted over 2π (left) and field
diagram in system x̃,ỹ,z̃ (right).

remains parallel to z̃. Similar to the RF flipper, a pseudofield
(ωt/γ )x̂ arises (see diagram in Fig. 3) and the resulting field
(�/γ )m̂ is homogeneous. The solution for the precession is
�̃P (t) = R−1

�m (�t) �̃P 0 with �m = γBt ẑ − ωt x̂. In the laboratory
system this becomes

�P (t) = R−1
x (ωt t)Ry(δ)R−1

z (�t)R−1
y (δ) �P0. (24)

We want to discuss this for the full range of the adiabaticity
parameter, here defined as:

kt ≡ γBt/ωt = γBt (lt /v)/2π. (25)

Using the diagram in Fig. 3, the quantities δ and �t in (24)
can be expressed in kt as: (writing

√
k2
t + 1 = κt )

cos δ = kt

κt

, sin δ = 1

κt

,�t = 2πkt

√
1 + 1/k2

t . (26)

After substitution, the result at the end of the coil is written:
�Pff = R−1

x (ωt t)P2π (kt ) �P0 with

P2π (kt ) = Ry(δ(kt ))R−1
z (2πkt

√
1 + 1/k2

t )R−1
y (δ(kt )) (27)

and kt and δ given by (25) and (26). At the end of
the coil the geometric phase ωt t = 2π , so R−1

x (ωt t) → I.
The polarization �Pff of the outcoming beam is stationary. The
elements of the matrix P2π (kt ) as a function of kt are given as
the solid lines in Fig. 10.

1. NSE arm with 2π -twisted coil between flippers

To find �Pff after inserting the coil between the flippers in
one NSE arm, we must sandwich (27) in Eq. (16) between the
matrices describing F1 and F2. With the twisted coil in the
adiabatic limit (kt → ∞, δ ↓ 0) this gives (F1 and F2 parallel
gradients), applying relation (5) twice:

�Pff = R−1
z (�(A2) + 2ϕ∗ − �t − �(A1) − 2ϕ) �P0.

Assuming A1 = A2 = A, the final precession phase of the
polarization vector is

φff = �ZF − �t (28)

with �t given by Eq. (26). So, the twisted coil decreases the
precession phase by �t , hence the NSE point will shift by this
value. In the limit kt → ∞ this is the dynamic phase when the
coil was untwisted.

IV. EXPERIMENTS

Figure 4 is a sketch of our NSE setup, installed in a
thermal beam of the 2 MW HOR Reactor (Delft), made
pulsed (50 Hz) by a chopper [21]. The available spectrum is
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FIG. 4. Top view of our NSE balance with TOF data collection
in time-of-flight mode.

0.1 < λ < 0.8 nm. Data are collected in the time-of-flight
mode over 7.6 m flight path in 500 time channels of 40 µs
at a rate of 50 frames/s. In data processing the channels are
“binned” in groups of five. The ovals are the guide field coils
producing a vertical field of ±0.5 mT. The device FS is a
current screen for a stepwise transition from +z to −z field.
PhC is the phase coil producing a field ‖ z over 100 mm.

The π/2 flippers are each composed of V coils [22]. They
are constructed to prepare and analyze the component of the
polarization vector along y. This means that the yy element
of the matrix indicated in Eq. (18) is measured. To measure
the degree of polarization, the first flipper is operated as a +
and −π/2 flipper successively. Figure 5 gives a typical result.

The RF coils in the adiabatic RF flippers F1-F4 (� = 66 mm,
diameter = 32 mm, wind. density = 5/cm) are operated at
1.1 MHz (B0 = 36.2 mT). Their phases and current amplitudes
are monitored on a four-channel oscilloscope. The field profiles
in Fig. 2 and the maps of P (�B,1/λ) in Figs. 6, 7, and 13 are
measured with the RF coils carrying a 15-A RF current (giving
A ≈ 1.5 mT) and the gradient field coils carrying a 1.5-A
DC current (making a change in B0 by ±1.8 mT over the
length of the RF coils). For λ = 0.1 nm this “routine setting”
gives ka ≈ 2 averaged over the length of the flipper. For the
purpose of NSE-small-angle neutron scattering measurements
the poles of the DC magnets are shaped as parallelograms;
here this shape is not relevant.

A. NSE with RF fields in arm 2 out of phase

The NSE group, integrated over wavelength (λeff ≈
0.22 nm), was measured at various settings of the phase
difference ψ of the RF fields in flippers F3 and F4 in NSE
arm 2, while F1 and F2 in arm 1 were kept in phase. The result

0 0.2 0.4 0.6 0.8 1
0

50

100

150

λ (nm)

I(
λ)

/6
0 

s

 

 

0 0.2 0.4 0.6 0.8 1

−0.5

0

0.5

λ (nm)

P
(λ

)

I
+

I
−

FIG. 5. Intensities and polarization (with statistical errors; binned
in groups of five channels) as a function of λ in the setting indicated
by the line S in Fig. 6(b).
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FIG. 6. (Color online) (a) NSE groups, integrated over wave-
length, mapped against the phase difference ψ between the RF
fields in flipper F3 and F4. (b–d) NSE maps P (�B,1/λ) for ψ

corresponding to the vertical lines in (a). They have the same
symmetries as the maps in Fig. 1 for φg = 0,π/2, and π . The vertical
lines mark the common symmetry point. The line S refers to the data
shown in Fig. 5 (dark: P > 0, white: P < 0).

is given as the map in Fig. 6(a). The dashed lines indicate
a precession phase equal to ±π for the effective wavelength
λeff . So for ψ = ±π/2 (left and right edge), the NSE group
is shifted by ∓π , as predicted by Eq. (23).

Figures 6(b)–6(d) are maps P (�B,1/λ) obtained by ana-
lyzing the TOF data to λ. Their analogy with the panels in
Fig. 1 shows that the parameter ψ acts as twice the phase φg1

in Eq. (1).

B. Reversing one or two gradients in NSE arm 2

As pointed out in subsection IIIC, reversing the gradient
in the first RF flipper in one arm will shift the NSE point by
twice the dynamic phase �(A) given in Eq. (14), from the
position predicted by (20) to the one predicted by (21). This
is confirmed by the positions of the NSE groups in Fig. 7(a)
taken integrated over wavelength, with the gradients in NSE
arm 1 set parallel (++). The gradients in arm 2 were set
in all combinations + − , + +, − −, and −+, as published
earlier [17]. Including NSE arm 1, the full configurations are
denoted + + + + · · · + + − −. For + + ++ and + + −−
the dynamic phase term �(A) cancels [see Eq. (20) with (14)]
and NSE is found at phase coil field ≈ 0. For + + +− and
+ + −+ the NSE point is shifted by ±2�(A) [Eq. (21)],
where �(A) [practically equal to �∞(A) in (15)] is ≈ 10 × 2π

(for λeff ).
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FIG. 7. (Color online) (a): Position of NSE-groups (white beam)
for a setup with gradients in F1 and F2 in NSE- arm 1 parallel,
combined with all configurations of the gradients in F3 and F4 in NSE-
arm 2. (b–e) The NSE groups in (a) processed into maps P (�B,1/λ).
Their horizontal scale is extended in comparison with (a) (dark: P >

0; white: P < 0).

On differentiating to λ, we obtain polarization maps
P (�B,1/λ) similar to Fig. 1 (bottom row). They are shown
in Figs. 7(b)–7(e). For + + ++ and + + −− the map is
symmetric around the NSE point. For + + +− and + + −+
it is antisymmetric in opposite ways, which, by analogy with
Fig. 1, shows a net geometric phase φg at first sight of
approximately π/2 and −π/2, respectively.

The true geometric phases are recognized as follows. NSE
arm 1, with gradients (++), has π for an argument in the
matrix Ryr

in (17) for both flippers F1 and F2. So at the
end of this arm the field �B (and the adiabatically following
polarization) has described a closed loop in space covering
a solid angle 0. By Berry’s statement no geometric phase is
picked up: φg1 = 0. NSE arm 2, in the configuration (++)
or (−−), gives the geometric phase φg2 = 0 for the same
reason. In the configuration (+−) the first flipper has π for an
argument in Ryr

, the second flipper −π . So the field vector �B
follows a full great circle covering solid angle 2π . By Berry’s
argument this gives a geometric phase φg2 = 2π (≡ 0). By
analogy the configuration (−+) gives the same. So for all
gradient configurations of NSE arms 1 and 2 the net geometric
phase φg is zero: there is no reason why for + + +− and
+ + −+ the map P (�B,1/λ) should be antisymmetric.

The lower part of Figs. 7(b) and 7(d) gives a hint that
this map for these configurations is indeed symmetric: as
1/λ decreases (λ increases), P (�B,1/λ) tends to become
symmetric. This means that the term ��(A1,A2) in Eq. (22)
disappears in the measured net phase φff . Apparently, for
low wavelength the amplitude A of the flippers F3 and F4
in NSE arm 2 is too small to suppress this term. This is
discussed further in the next section, where the amplitude in
F4 is deliberately reduced.

C. Varying amplitude A2 in second flipper NSE arm 2

We measured NSE groups, in gradient configuration
(+ + ++), at various amplitudes A2 of the rotating field
(i.e., Bgr and BRF ) in flipper F4, with the flippers F1–F3 in
the “routine setting” specified in Sec. IV (so they are in the
adiabatic regime for most of the neutron spectrum).

Figure 8(a) is the map P (�B,1/λ) measured with flipper
F4 also in the “routine setting.” [This map should be symmetric
around the NSE point. This experiment was done in a
separate experimental run with new (inaccurate) setting of the
parameters. Apparently, some asymmetry by a net geometric
phase was present.]

Figures 8(b) and 8(c) give P (�B,1/λ) measured at lower
values of the amplitude A2 in F4. Here Fig. 7(a) is projected,
after correction for the shift of the NSE point due to the term
γ (l/v)(A1 − A2) in Eq. (22) arising from the reduction of A2.
The influence of the term ��(A1,A2) (i.e., the reduction of
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FIG. 8. (Color online) Varying amplitude A2 of the rotating field
in flipper F4 with F1–F3 kept in “routine setting” [Igr = 1.5A/IRF =
15 A], gradient configuration + + ++. (a) Map P (�B,1/λ) with F4
also in “routine setting.” (b–c) Igr and IRF in F4 reduced by 0.5 and
0.33 (dark: P > 0; white: P < 0). The horizontal bars mark the phase
difference.
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FIG. 9. (Color online) Approach of the term ��(A1,A2)
[Eq. (22)] to 0 as λ increases (a) or velocity v decreases (b). Red
lines with error bars: read from Fig. 8(c). Black lines: calculated with
Eq. (22) for the indicated values of the amplitude A2 in F4, with
amplitude A1 in F3 at 1.5 mT and length rotating field l = 80 mm.

the net geometric phase in NSE arm 2 to 0) can be followed
from top (λ = 0.1 nm) to bottom (λ = 1 nm): in the bottom
(high λ, so high ka) the patterns come in phase.

In Fig. 9 the phase difference between the settings for F4
in Figs. 8(a) and 8(c) is plotted as a function of λ and v.
For comparison with theory we add as full lines the outcome
of ��(A1,A2) in Eq. (22) for amplitude A1 in F3 equal to
1.5 mT and amplitude A2 in F4 equal to the values given in
the figure. The length of the flippers is taken as l = 80 mm.

The figure demonstrates that in an NSE experiment we can
follow the development of the geometric phase produced by
one flipper (F4) on increasing the amplitude A of its rotating
field. It does, however, not follow the prediction of Eq. (22).
This is not surprising, since this equation is based on the
idealized shape of Fig. 2 for the RF and gradient field.

D. 2π -twisted coil in NSE arm 1

As an alternative way to introduce a geometric phase, we
mounted two coils of circular cross section in NSE arm 1,
each twisted over π (Fig. 4) to make one 2π coil, similar
to those in Refs. [4] and [6]. They were inserted inside a mu-
metal tube for flux short-circuiting. The coils had a diameter of
60 mm and wind. density of 1 mm−1; their combined length
was lt = 300 mm.

Before the NSE experiment, the matrix P2π given in
Eq. (27) was checked, varying the current It . This was done
in the instrument PANDA installed at the HOR in Delft for
3D polarization analysis with a monochromatic beam (λ =
0.20 nm) in a surrounding field zero.

Figure 10 shows the result, plotted as a function of current
It . To compare with P2π (kt ) according to Eq. (27), the current
It is converted using (25) into kt , from the field Bt based
on the current It and the winding density. After reducing the
calculated field by 0.9 (because the actual field is some less)
the agreement between Eq. (27) and the experimental results
is good.

FIG. 10. (Color online) The matrix P2π according to Eq. (27)
(lines) and measured on PANDA (ooo) with a monochromatic beam
(λ = 0.20 nm).

The precession phase is “measured” from the elements of
P2π by taking

φ = tan−1([P2π ]xy/[P2π ]yy). (29)

(This is the only combination from the elements
(xx,xy,yx,yy) giving a result without need for corrections
for different quadrants). It is shown in Fig. 11 as ++. The
dotted line (φ = 2ktπ ) is the dynamic precession phase, if the
coil were untwisted. When it is subtracted, we get the full
lines/circles. The geometric phase is seen to develop to ±2π

as |kt | increases. For a coil of reversed twist (which was not
available) this line would mirror about the horizontal axis.

Next, the coil was mounted in arm 1 of the NSE setup
in gradient configuration + + ++. The NSE group P (B)
integrated over wavelength was measured at various currents
It . Equation (28), with (26), implies that the NSE group
P (B)It �=0 (measured for It �= 0) will be shifted from the group

FIG. 11. (Color online) Precession phase in the 2π -twisted coil
as a function of current It . Coil in PANDA: (29) applied to the data in
Fig. 10 (++); after subtracting dynamic phase (oo); (29) applied to
the elements of P2π ; Eq. (27), (red) lines. Coil in NSE arm 1: phase
difference between the patterns P (B)It �=0 and P (B)It =0 at various It

(thick lines with bars). This phase difference is the geometric phase.
The vertical lines indicate the values of It of the patterns I (B) in
Fig. 12.
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FIG. 12. (Color online) Spin-echo groups P (B) with a 2π -twisted
coil in the NSE arm 1 for currents It = 0, 0.75, and 1.5 A, integrated
over wavelength. The full lines in all panels are the measurements;
the thin (red) lines in (b) and (c) are the result in (a) shifted by the
dynamic phase 2πkt . The phase difference (thick bars) between these
lines is the geometric phase.

P (B)It=0 (for It = 0) by a value �B given by cPh�B = �t =
2πkt

√
1 + 1/k2

t .
For each current It we subtracted the dynamic phase

2πkt by shifting the group P (B)It=0 by a value �B = αIt ,
proportional to It . The empirical constant α was fitted such
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FIG. 13. (Color online) Maps of P (�B,λ), config. + + ++, with
2π -twisted coil in NSE arm 1, for currents It such that the geometric
phase = 0, π , and 3

2 π (vertical lines in Fig. 11). Symmetries agree
with Fig. 1 for φg = 0,π (and 3

2 π ).

that for all currents It the envelop (· · ·line) of the shifted
group P (B)It=0 becomes an envelope for the measured NSE
group P (B)It �=0. This is illustrated in Fig. 12 for It = 0.75
and 1.5 A.

It appears that the NSE patterns P (B)It �=0 inside the
envelope are shifted with respect to the shifted patterns
P (B)It=0. This shift corresponds to the geometric phase picked
up in the twisted coil. The thick bars in Figs. 12(b) and 12(c)
show that for It = 0.75 A and 1.5 A this shift (for λeff ) is
about 0.5 and 0.7 of a period 2π , respectively.

The phase differences thus found are added in Fig. 11 as
the thick line with error bars. It shows how the geometric
phase develops on increasing the current in the 2π -twisted
coil, when it is inserted in NSE arm 1. At either end of Fig. 11
the geometric phase fails to develop to full 2π . This is because
in the NSE experiment the coil is embedded in the guide field
of 0.5 mT penetrating into its ends, thereby reducing its overall
twist by 10–20%.

In Fig. 13 the NSE patterns corresponding to φg = 0,π ,
and � 3π/2 (that is for It = 0, 0.5, and 1.0 A) are given as
maps P (�B,λ), analogous to Fig. 1. Their (anti)symmetries
agree with the patterns in Fig. 1 based on Eq. (1) for these
values for the geometric phase φg . The conclusion is that the
geometric phase picked up in a DC device agrees with the one
picked up in a pair of adiabatic/RF flippers.

V. SUMMARY AND CONCLUSION

We investigated the NSE pattern for a NSE setup for a
polychromatic neutron beam, with each NSE arm made up of
2 adiabatic/gradient RF flippers some distance apart.

In the situation where no net geometric phase remains in
NSE, we found a symmetric NSE pattern, as expected. To
verify the expected distorted pattern when a net geometric
phase remains, we introduced a phase difference ψ between
the RF fields in the NSE arm 2. The observed asymmetry in
the NSE pattern as a function of ψ confirms the calculation.
This finding has the practical benefit that one can exploit
the parameter ψ to correct an inadvertent asymmetry in a
NSE setup, which might arise, e.g., by the π/2 flippers in the
beginning and the end.

The suspicion of a geometric phase introduced by the
flippers themselves was checked by running through all
combinations (+ + , − −, +−, and −+) of the signs of
the gradients in the flippers of arm 2, while keeping the
NSE arm 1 in the (++) configuration. Indeed, the symmetry
of the NSE pattern is modified; the observed asymmetries
correspond to the geometric phase built up in the various
configurations. The accompanying (different) positions of
the NSE point can be accounted for. It is remarkable
that the expected geometric phase is not fully reached,
whereas the flippers operate practically in the “adiabatic
limit.”

We followed the development of a net geometric phase by
measuring the NSE patterns with three flippers at amplitudes
of gradient [and RF field such that the adiabatic condition
holds practically for the full neutron spectrum]. Flipper 4 was
operated in the same setting and in various settings with lower
amplitudes. Besides the shift of the NSE point due to the
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dynamic phase, the NSE patterns show the development of the
geometric phase.

The buildup of a geometric phase was studied with a
2π -twisted coil in NSE arm 1 and measuring the NSE
pattern at various currents in this coil. The position of
the NSE pattern, taking the dynamic phase in this coil
into account, can be reconstructed. From the difference
between the actual and the reconstructed pattern, the geometric
phase can be found. The buildup of the geometric phase
from 0 to 5 rad for increasing current in this coil can be
followed and the asymmetries in the NSE patterns can be
accounted for. It confirms the geometric phase found in a
stand-alone test of this coil with a monochromatic neutron
beam.
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APPENDIX: PRECESSION PHASE AFTER 1
ADIABATIC RF FLIPPER

A neutron with velocity v along the x axis enters the
idealized configuration of Fig. 2 with the field given by
Eqs. (4)–(6) at time t = t0; the phase of the RF field at t0
is ϕ. Assuming in Eqs. (4)–(6) that B̂gr = A and B̂RF = 2A,
the time-dependent field �B(t) ≡ �B(x = vt,t) experienced by
the neutron can be written as:

�B(x,t) = B0ẑ + ARy(ωgx/v)ẑ

+ 2ARz(ωt + ϕ) sin(ωgx/v)x̂, (A1)

where ωg = πv/l the geometric frequency and x̂ and ẑ are
unit vectors along the axes x and z. Because for each neutron
the phase ϕ of the RF field at the entrance time differs, this
field applies to one specific neutron. The Larmor equation
describing the precession reads:

d

dt
�S(t) = γ �S(t) × �B(t). (A2)

We go to a frame (xr,yr ,zr = z) rotating at frequency
ω = γB0 around the laboratory ẑ axis. In this frame the
Larmor equation has unchanged shape, but the spin at time
t becomes �Sr (t) ≡ Rz(ωt + ϕ)�S(t). So this transformation
creates a “field” ω/γ along the rotation direction, thus
“transforming away” the homogeneous field B0ẑ. The RF field
[the last term in (A1)] is composed of two counter-rotating
fields Br,1 and Br,2 of amplitude A each. Br,1 is stationary
in the rotating frame; Br,2 rotates back at 2ω. The field (A1)

transforms into

�Br (x,t) = A[Ryr
(ωgx/v)ẑr +Rz(2ωt + 2ϕ) sin(ωgx/v)x̂r ].

(A3)

The first term is the sum of the gradient field [written as the
second term in (A1)] and the stationary field Br,1. The second
term is the field Br2, rotating at −2ω. Because of its (high)
frequency 2ω it is ineffective and hence neglected.

We go to a doubly rotating frame (xrr ,yrr = yr,zrr )
which rotates at frequency ωg around the yr axis of the
frame (xr,yr ,zr ). In this system the spin becomes �Srr (t) ≡
R−1

yr
(ωgx/v)�Sr (t). The field �Brr is obtained from �Br by

applying R−1
yr

(ωgx/v) to the remaining first term of (A3).
It reduces to Aẑrr . By the rotation of the system (xrr ,yrr ,zrr )
a new “field” component ωg/γ ŷrr arises along yrr . Contrary
to the first transformation step, this new component does not
compensate an existing field. So the field (A3) is transformed
into

�Brr (t) = (�/γ ) �m. (A4)

This is a constant field along the unit vector

m̂ = (γA/�)ẑrr + (ωg/�)ŷrr

(see field diagram in Fig. 2 in main text) with strength �/γ =√
A2 + (ωg/γ )2. This is of order A (or larger, depending on

ωg). So, in the system (xrr ,yrr ,zrr ) the field �Brr is reduced to
a homogeneous field and the solution for the spin can readily
be written:

�Srr (t) = R−1
�m (�t)�Srr (t0). (A5)

To transform back to the laboratory system we remember that
at any time �Srr (t) is related with �S(t) according to:

�Srr (t) = R−1
yr

(ωgx/v)Rz(ωt + ϕ)�S(t); (A6)

so for (x = 0,t = t0) we have �Srr (t0) = Rz(ϕ)�S(t0). Solution
(A5), back in the laboratory system, then becomes:

�S(t) = R−1
z (ωt + ϕ)Ryr

(ωgx/v)R−1
�m (�t)Rz(ϕ)�S(t0). (A7)

To write Eq. (A7) in terms of standard rotation matrices,
we introduce the angle β (see diagram Fig. 2 in the main
text) by sin β = ωg/�. In terms of this angle we write the
unit vector m̂ = R−1

x (β)ẑ. We can then replace R−1
�m (�t) with

R−1
xr

(β)R−1
z (�t)Rxr

(β) and (A7) becomes:

�S(t) = R−1
z (ωt + ϕ)Ryr

(ωgx/v)R−1
xr

(β)R−1
z (�t)

×Rxr
(β)Rz(ϕ)�S(t0). (A8)

This is Eq. (9) in the main text.
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