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An important problem that arises during the design of wind 

turbines is estimating extreme loads with sufficient accuracy. 

This is especially difficult during iterative design phases when 

computational resources are scarce. Over the years, many 

methods have been proposed to extrapolate extreme load 

distributions from relatively short time series with “mean 

turbulence”. In this work, however, we focus on finding the 

response to extreme gusts based on the ability to generate 

conditional turbulent wind fields. Load distributions can then 

be constructed on the basis of a Monte Carlo method with 

importance sampling. 

I. THEORY 

The most straightforward way to determine an extreme load 

distribution is by a crude Monte Carlo simulation. In this case, 

𝑁 ten-minute wind fields are generated from the mean wind 

speed distribution, 𝑓(𝑈) , and fed to an aeroelastic model. 

When, for each sample, the maximum load is extracted, it 

results in a series of extreme loads 𝑥1, … , 𝑥𝑁. An extreme load 

distribution then follows from 

 𝐹̂(𝐿) ≈
1

𝑁
∑1(𝑥𝑖 ≤ 𝐿)

𝑁

𝑖=1

, (1) 

where 

 1(𝑥 ∈ 𝑆) = {
1 if 𝑥 ∈ 𝑆,
0 if 𝑥 ∉ 𝑆,

 (2) 

is the indicator function. The extreme load distribution is 

generally a cumulative distribution, representing the 

probability of non-exceedance. The return period then follows 

from 

 T =
1

1 − 𝐹
. (3) 

The return period should be interpreted as the time period 

after which the extreme value is exceeded once on average. 

For example, if extreme loads are extracted from ten-minute 

wind fields, the 90
th

 percentile corresponds to a return period 

of  100 minutes. This means that, out of a sample size of 10, 

the highest load lies in the 90
th

 percentile (𝐹 = 0.90) and can 

be called the 100-minute load. Perhaps unsurprisingly if 

judging by the name, the crude Monte Carlo method is not 

very effective; about 2.6 ∙ 10
6
 ten-minute wind fields are 

needed to reach the 50-year return level (𝐹 = 0.9999996). 

In practice, 50-year loads are extrapolated from much 

smaller sample sizes because of the effort it takes to run 

aeroelastic simulations. This can be very difficult because the 

shape of the extreme load distribution can contain bends or 

curves that easily lead to bias [1]. Therefore, only a fraction of 

the data is really usable for fitting (say, the 5–10% highest 

loads) and a lot of computation time is needed to predict 

extreme loads with sufficient accuracy. 

A common approach to reduce the uncertainty in Monte 

Carlo methods is to work with importance sampling. In this 

case, 𝑁  samples are drawn from a particular distribution, 

𝑤(𝐤), and are weighted by the likelihood ratio, 𝑓(𝐤)/𝑤(𝐤): 

 𝐹̂(𝐿) ≈
1

𝑁
∑1(𝑥𝑖 ≤ 𝐿)

𝑁

𝑖=1

𝑓(𝐤)

𝑤(𝐤)
, (4) 

where 𝑓(𝐤) is the probability density function associated with 

the parameter space 𝐤. After choosing a number of relevant 

parameters, the sampling distribution can be chosen such that 

the computational budget is efficiently spent on simulating 

severe events. Ultimately, this leads to much better predictions 

than what is obtained with a crude Monte Carlo method, 

where most of the extreme loads are cluttered around a mean. 

Importance sampling becomes interesting when one has 

control over a large number of relevant parameters. In order to 

gain more control over the wind field, one can rely on the 

principle of constrained stochastic simulation [2,3]. This 

makes it possible to simulate a conditional turbulence field 

that adheres to a number of constraints. These constraints can 

be set such that a predefined extreme gust is embedded within 

the field (see Fig. 1). The wind field then follows from the 

mean wind speed, 𝑈 ; the gust’s amplitude, 𝐴 ; the gust’s 

position, 𝐱0 = [𝑥0, 𝑦0 , 𝑧0]
T ; the gust’s length scales, ℓ𝑥 , ℓ𝑦 , 

and ℓ𝑧; and the gust shape (i.e., rectangular, ellipsoidal, etc.). 

Based on random field theory, it is possible to find the 

probability associated with such events [4]. What remains is 

finding out which combination of parameters lead to the most 

severe load cases. 

 

Fig. 1 Sketch of a gust in a constrained wind field, showing all the relevant 
parameters. 
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II. METHODOLOGY 

A. Reference data set and model set-up 

In this paper, an importance sampling method will be 

compared to a crude Monte Carlo simulation of 96 years of 

operation [5]. The exact same model set-up is used, but the 

wind fields are, of course, generated outside of TurbSim. 

Load calculations were performed on the onshore version 

of the NREL 5 MW reference turbine using FAST v7. The 

wind climate is modeled according to an IEC class 1B site
1
 for 

which the ten-minute mean wind speed follows a Rayleigh 

distribution. Each simulation was run for 2 minutes, where the 

first minute was discarded to avoid any start-up transients. As 

with the reference data set, turbulence was generated 

according to the IEC Kaimal spectrum [6] on a 20 x 20 grid 

with a width and height of 137 m and a temporal frequency of 

20 Hz. 

The turbulence grid turned out to be quite coarse in the 𝑦- 

and 𝑧-directions. This meant that averaging the amplitudes out 

over a volume was not was not as effective as hoped. 

Moreover, there is also no clear relationship between the 

position of the gust and the load (something that does often 

exist for other turbines). Therefore, the choice was made to 

stick with single-point gusts for this exercise. 

Another consequence of the coarseness of the grid is that 

analytical approximations for the gust probability (e.g., as 

explained in [4]) lose their validity as they require a smooth 

random field. This meant that the probability of gusts 

occurring had to be derived empirically. A generalized 

extreme value distribution was therefore fitted to the velocity 

maxima found in 13,000 ten-minute wind fields for each wind 

speed between 3 and 25 m/s, yielding a joint probability 

density function 𝑓(𝑈, 𝐴) . From this, it is also possible to 

derive the 50-year return level for the gust amplitude (plotted 

as a dashed line in Fig. 3), which seems to be at around 6.0𝜎. 

At higher wind speeds, the 50–year gust is found at a slightly 

higher amplitude, because a higher rate of advection means 

more gusts are counted in the same time period.  

B. Response to extreme gusts 

Based on the reference data set, we can already see at which 

wind speeds the highest loads are found (see Fig. 2). Usually, 

we would expect to see the highest loads around the rated 

wind speed (11.4 m/s). This makes sense, seeing as the rotor 

operates at a maximum thrust at this point. However, the 

actual 50-year extremes are found at much higher wind speeds. 

In order to investigate this further, and to expose 

dependencies of the extreme loads on the gust amplitude, 

50,000 point-gusts (i.e., gusts with zero volume) were 

uniformly sampled from 𝑈 ∈ [3, 25] m/s and 𝐴/𝜎 ∈ [–10, 10]. 

The responses were binned and, for each bin, the maximum 

load is plotted in Fig. 3. This shows that for positive 

amplitudes, the results are indeed as expected. The high loads 

found at beyond-rated wind speeds actually correspond to 

negative amplitudes (i.e., a sudden drop in wind speed). This 

might seem counter-intuitive at first and is best explained by 

showing an example of a time series extracted from a set of 

10-minute load cases (see Fig. 4). In situations like these, it 

appears that the pitch controller is unable to handle extreme 

                                                           
1 The original paper [5] specifies a class 2B site, but this has been corrected 
with the release of the data set (see http://energy.sandia.gov/?page_id=13173). 

drops in wind speed. Such behavior is normally dealt with by 

an additional nonlinear gust controller, but this is not included 

in the baseline controller of the NREL 5 MW turbine [7]. The 

same kind of events are also noted in literature [1,5]. 

C. Sampling distributions 

From Fig. 3, it is fairly straightforward to derive the 

conditions at which the extreme blade root bending moments 

can reasonably be found. For this exercise, it is assumed that 

the extreme loads are dependent on 2 parameters, namely the 

mean wind speed, 𝑈, and the gust amplitude, 𝐴. The gust’s 

position, (𝑦0, 𝑧0),  is assumed to be uniformly distributed over 

the 𝑦𝑧 -plane. The gust’s time stamp, 𝑥0/𝑈̅ , is also varied 

uniformly such that the rotor’s azimuth angle can be anywhere 

between 0 and 120° at the time of impact. A sampling 

 

Fig. 2 Extreme blade root flapwise bending moments obtained from the 

reference data set, plotted as a function of the mean wind speed 𝑈̅. 

 

Fig. 3 Extreme blade root flapwise bending moments in response to a gust 

of amplitude 𝐴 at a mean wind speed 𝑈̅. The white hatched area 

marks 99.7% (±3σ) of the sample space. 
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distribution is defined as a multivariate normal distribution, 

𝑤(𝑈, 𝐴), with a mean at 𝑈̅ = 19 m/s, 𝐴 = –6.25𝜎 (see Fig. 2). 

This is to concentrate the computational effort on events that 

occur several times during a turbine’s lifetime, as well as on 

very rare events. In any way, it is clear from Fig. 2 and 3 that 

we need to be looking beyond the rated wind speed. 

III. RESULTS 

Fig. 5 shows the extreme load distributions that arise from a 

crude Monte Carlo simulation ( 𝑁 =  5 ∙ 10
6
) and the 

importance sampling method (𝑁 = 1 ∙ 10
5
). The distributions 

are plotted on a double logarithmic scale, − log(− log(𝐹)), 

which transforms the tail into a nearly straight line. The 50-

year flapwise moment is about 17.8 MNm. The peculiar shape 

of the extreme load distribution is owed to the fact that it is a 

mixture of multiple distributions originating from a range of 

mean wind speeds and different control regions. An example 

is plotted in Fig. 6, where the data is restricted to 𝑈 ≈ 19 m/s. 

Clearly, the importance sampling method provides a good 

approximation for the tail of the distribution, given the sample 

sizes. It also clearly shows the working principle in a 

qualitative sense. By focusing the computational effort on the 

extreme loads, it is possible to resolve the high return levels 

with a small sample size at the cost of having a large error for 

the lower quantiles. Furthermore, with importance sampling, 

the tail of the distribution already has its basic shape with a 

small sample size. This means we do not have to extrapolate 

that far—or not even at all—which eventually leads to less 

uncertainty in the final load prediction. 

To illustrate this in more detail, subsets were drawn from 

the existing data sets, each containing one day of simulated 

time (excluding the start-up period). For every subset, a 

generalized extreme value distribution was fitted to the data 

above the 70
th

 percentile (𝐹 > 0.7) to predict the higher return 

levels. Fig. 7 then shows the distribution of the 50-year load 

predictions. Clearly, both methods suffer from a negative bias, 

owing to the slightly downward curve of the tail of the 

extreme load distribution. However, the importance sampling 

method yields a lower uncertainty. Compared to the crude 

Monte Carlo method, the 90% confidence interval is reduced 

from [14.8, 19.7] MNm ([–17.1%, +10.7%]) to [16.6, 19.6] 

MNm ([–7.0%, +10.1%]). In addition, the bias in the 

predictions decreased from –9.3% to –2.0%. 

The best comparison between the two methods is to repeat 

this for a range of sample sizes as shown in Fig. 8. It shows 

that the importance sampling method is indeed superior to the 

crude Monte Carlo simulation over all sample sizes. The crude 

 

Fig. 4 An extract of a ten-minute time series at 𝑈̅ =  22 m/s with an 

extreme blade root bending moment of 16.4 MNm. 

 

Fig. 5 Return level plot of the extreme blade root flapwise bending 

moments, constructed from a crude Monte Carlo simulation (𝑁 = 5 

∙ 106) and an importance sampling method (𝑁 = 1 ∙ 105). 

 

Fig. 6 Return level plot of the extreme blade root flapwise bending 

moments at 18.5≤ 𝑈̅ ≤ 19.5 m/s, constructed from a crude Monte 

Carlo simulation (𝑁 = 1 ∙ 105) and an importance sampling method 

(𝑁 = 3 ∙ 103). 
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Monte Carlo simulation does not produce any usable 

predictions for a simulated time less than a couple of hours, 

where less than a handful of data points are actually available 

for fitting. This where the importance sampling method truly 

excels over the crude Monte Carlo, since 10 gusts can be 

evaluated in a single ten-minute period (although, based on 

these results, we can strongly advise against such small 

sample sizes). A single measure that compares the two 

methods directly is the standard error with respect to the “true” 

50-year load: 

 σ = √
1

𝑁
∑(

𝑀̂flap,50,𝑖 −𝑀flap,50

𝑀flap,50

)

2𝑁

𝑖=1

. (5) 

For about 1 month of simulated time, the importance sampling 

method results in a standard error of 1.4%, as opposed to 6.2% 

for the crude Monte Carlo simulation. 

IV. DISCUSSION 

This numerical exercise has led to some useful insights that 

can be used to further develop the importance sampling 

method. As is always the case with importance sampling, the 

quality of the estimate depends on the shape of the sampling 

distribution. Finding the right sampling distribution can be an 

iterative process and the effort it takes is not included in the 

comparison with the crude Monte Carlo simulation. Still, 

exploring the sample space, as done in Fig. 2, can be 

rewarding on its own. 

It is also difficult to make a really fair comparison between 

the two methods. A generalized extreme value distribution 

produced very good fits to the tails of the extreme load 

distributions. However, it caused a considerable bias that 

would have been less if we simply used a straight line (a 

choice we could only make with prior knowledge of the full 

curve). Especially small sample sizes sometimes resulted in 

very high loads that, in real life, would have been discarded 

by a designer. Furthermore, we consistently fitted to the data 

above the 70
th

 percentile, although slowly shifting this to the 

90
th

 or 99
th

 percentile for larger sample sizes could maybe 

have produced better results. 

In retrospect, the reference data set was definitely not ideal 

for this exercise. The turbulence grid was quite coarse, which 

meant that there was less room to experiment with large 

volumetric gusts and gusts targeted at certain parts of the rotor. 

Moreover, the IEC Kaimal spectrum did not produce the nice 

coherent structures that would have been obtained from the 

Mann model. The fact that the gust probability had to be 

derived by brute force was also far from ideal, since it lead to 

its own extrapolation problem with uncertainties. Deriving 

this distribution analytically is clearly far more effective. 

V. CONCLUSIONS 

Preliminary results have shown that predicting extreme loads 

with importance sampling has several advantages. First and 

foremost, it has the potential to greatly reduce uncertainty 

since the computational resources can be efficiently spent on 

the cases most relevant to the 50-year load. Secondly, the tail 

of the extreme load distribution already has its basic shape 

with a small sample size, which makes fitting much easier. 

Moreover, it removes a large part of the bias that crude Monte 

Carlo methods can suffer from. 
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Fig. 7 The uncertainty in the predicted 50-year blade root flapwise bending 
moments based on 1 day of simulated time. Indicated with a dashed 

line is the “true” 50-year load based on 96 years of data (17.8 

MNm). 

 

Fig. 8 Box plots showing the error in the prediction of the 50-year blade 

root flapwise bending moment for both methods. The thick line in 

the box represents the median, the edges of the box are located at 
the first and third quartile, and the ends of the whiskers mark the 5th 

and 95th percentiles. 


