
 
 

Delft University of Technology

Enforcing physics onto PINNs for more accurate inhomogeneous material identification

van der Heijden, B.; Li, X.; Lubineau, G.; Florentin, E.

DOI
10.1016/j.cma.2025.117993
Publication date
2025
Document Version
Final published version
Published in
Computer Methods in Applied Mechanics and Engineering

Citation (APA)
van der Heijden, B., Li, X., Lubineau, G., & Florentin, E. (2025). Enforcing physics onto PINNs for more
accurate inhomogeneous material identification. Computer Methods in Applied Mechanics and Engineering,
441, Article 117993. https://doi.org/10.1016/j.cma.2025.117993

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.cma.2025.117993
https://doi.org/10.1016/j.cma.2025.117993


Computer Methods in Applied Mechanics and Engineering 441 (2025) 117993 

A
0
(

 

Contents lists available at ScienceDirect

Comput. Methods Appl. Mech. Engrg.

journal homepage: www.elsevier.com/locate/cma  

Enforcing physics onto PINNs for more accurate inhomogeneous 
material identification
B. van der Heijden a,b ,∗, X. Li a , G. Lubineau a , E. Florentin c
a King Abdullah University of Science and Technology, Mechanical Engineering Program, Physical Sciences and Engineering Division, Mechanics 
of Composites for Energy and Mobility Lab., Thuwal, 23955-6900, Saudi Arabia
b Delft University of Technology, Maritime and Transport Technology Department, Delft, 2628 CD, The Netherlands
c INSA Centre Val de Loire, Univ. Orléans, Univ. Tours, Laboratoire de Mécanique Gabriel LaMé, Bourges, 18022 CEDEX, France

A R T I C L E  I N F O

Keywords:
Physics-informed neural networks
Inverse methods
Material identification
Constitutive equation gap method
Differentiable programming

 A B S T R A C T

Physics-Informed Neural Networks (PINNs) are computationally efficient tools for addressing 
inverse problems in solid mechanics, but often face accuracy limitations when compared to 
traditional methods. We introduce a refined PINN approach that rigorously enforces certain 
physics constraints, improving accuracy while retaining the computational benefits of PINNs. 
Unlike conventional PINNs, which are trained to approximate (differential) equations, this 
method incorporates classical techniques, such as stress potentials, to satisfy certain physical 
laws. The result is a physics-enforced PINN that combines the precision of the Constitutive 
Equation Gap Method (CEGM) with the automatic differentiation and optimization frameworks 
characteristic of PINNs. Numerical comparisons reveal that the enforced PINN approach indeed 
achieves near-CEGM accuracy while preserving the efficiency advantages of PINNs. Validation 
through real experimental data demonstrates the ability of the method to accurately identify 
material properties and inclusion geometries in inhomogeneous samples.

1. Introduction

In recent years, significant progress in solid mechanics has been driven by the pursuit of precise predictive methods in engineering 
and science. These advances highlight the pivotal role of modelling in understanding material behaviour, optimizing mechanical 
systems, and designing structures. While the fundamentals of solid mechanics provide a basis for kinematic and static admissibility, 
challenges persist in formulating constitutive equations [1]. Despite recent developments [2], a persistent challenge lies in the 
precise determination and application of constitutive equations, particularly in complex systems with heterogeneities. The process of 
conducting material characterization experiments, extracting properties, and translating findings into accurate constitutive equations 
demands considerable expertise. This paper addresses the determination of constitutive properties in inhomogeneous structures by 
combining traditional inverse methods with machine learning technologies.

The traditional approach to material identification relies on simple tests, assuming homogeneity in stress and strain fields for 
analytical analysis and property extraction. However, this assumption is violated upon approaching failure, as non-homogeneous 
stress–strain components emerge, even for simple examples such as necking-localization during tensile tests. Moreover, this approach 
is time-consuming and expensive, as only few properties can be obtained simultaneously, and thus multiple tests are required to 
characterize a single material completely.
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Modern approaches employ full-field measurement techniques, such as digital image correlation (DIC), under more complex 
loading conditions. While this allows for the simultaneous extraction of many material properties, solving the resulting inverse 
problem requires more sophisticated and numerical methods. Examples include the Finite Element Model Updating (FEMU) [3,4], 
the Equilibrium Gap Method (EGM) [5], the Virtual Fields Method (VFM) [6,7], and Constitutive Equation Gap Method (CEGM) [8]. 
For a comprehensive understanding and comparison of these methodologies, readers can refer to existing literature [9,10]. These 
methods become computationally expensive, especially when dealing with inhomogeneous material properties [5,11].

Recent advances, such as Physics Informed Neural Networks (PINNs), offer promising alternatives [12]. PINNs, partially 
trained on information from differential equations, prove effective for both forward and inverse problems [13], enabling efficient 
identification of material parameters in inhomogeneous solids [14]. Wei et al. [15] explored a novel approach that combines the 
CEGM formulation with PINNs, resulting in an inverse method which is orders of magnitude faster than the original CEGM method. 
The increased speed is attributed to Automatic Differentiation (AD) and the parallelization inherently available in machine learning 
frameworks. However, the PINN approaches generally sacrifice accuracy in recovered material properties [15].

This paper addresses the accuracy limitation by reintroducing traditional physics and numerical strategies into the design of NNs 
and PINNs. It will show that designing PINNs that enforce physics, rather than informing the network, will improve performance. 
Section 2 introduces the inverse problem and existing solving strategies, outlining the notation and definitions used further on. 
Subsequently, Section 3 introduces various strategies of enforcing certain physics rules, rather than teaching them. These include 
thermodynamic admissibility of the constitutive equations and impose equilibrated stress fields. Numerical examples are discussed 
in Section 4 to illustrate the benefits and drawbacks of these techniques. Then, Section 5 highlights the applicability of the inverse 
strategy with an experimental example. Lastly, the research is concluded in Section 6.

2. Inverse problems and the state of the art

In the context of an inverse problem, the objective is to ascertain the material properties of a given structure by utilizing measured 
data. In contrast to conventional forward problems, where known inputs are employed to predict behaviour, inverse problems 
commence with observed behaviour and attempt to reverse-engineer the responsible material properties.

Nevertheless, the model relies on the same fundamentals. Here a local-continuum formulation with Cauchy stress is assumed 
within the regime of small perturbations. The solution to a forward problem adheres to the following criteria:

• Kinematic admissibility: 
{

𝜀 = 1
2

(

𝑢 ⊗ 𝛁 + 𝛁⊗ 𝑢
)

∀𝑥 ∈ 𝛺
𝑢 = �̄� ∀𝑥 ∈ 𝜕𝛺𝑢

(1)

• Static admissibility: 
⎧

⎪

⎨

⎪

⎩

0 = 𝛁 ⋅ 𝜎 ∀𝑥 ∈ 𝛺
𝜎 = 𝜎𝑇 ∀𝑥 ∈ 𝛺
𝑡 = 𝜎 ⋅ 𝑛 ∀𝑥 ∈ 𝜕𝛺𝑡

(2)

• Constitutive equation for this publication is assumed to be linear elastic: 
{

𝜎 = 𝐴 ∶ 𝜀 ∀𝑥 ∈ 𝛺 (3)

Here, 𝛺 represents the problem domain, 𝑢 displacement, 𝜀 infinitesimal strain, 𝜎 Cauchy stress, and 𝐴 the stiffness tensor, which 
can vary spatially. The domain boundary, 𝜕𝛺, is divided into kinematic and static regions, denoted as 𝜕𝛺𝑢 and 𝜕𝛺𝑡, respectively, 
with no overlap between them. Along the kinematic boundary, displacement �̄� is specified, while the static boundary has prescribed 
traction 𝑡, as illustrated in Fig.  1.

To facilitate the description of these fields, the following tensor spaces are introduced. All kinematically admissible displacement 
fields are contained within: 

(�̄�) =
{

𝑢 ∈ 𝑢 | 𝑢 = �̄� , ∀𝑥 ∈ 𝜕𝛺𝑢

}

, (4)

where 𝑢 represents the vector field that is in 𝐻1. Similarly, all statically admissible stress fields are encompassed by: 
(𝑡) =

{

𝜎 ∈ 𝜎 | 𝛁 ⋅ 𝜎 = 0 , ∀𝑥 ∈ 𝛺 and 𝜎 ⋅ 𝑛 = 𝑡 , ∀𝑥 ∈ 𝜕𝛺𝑡

}

, (5)

where 𝜎 is the space of all symmetric square-integrable second-order tensor fields. Finally, a space of thermodynamically admissible 
stiffness tensors exists: 

 =
{

𝐴 ∈ 𝐴 | 𝜀 ∶ 𝐴 ∶ 𝜀 ≥ 0 , ∀𝜀 ∈ 𝜎 and 𝜀 = 0 ⟺ 𝜀 ∶ 𝐴 ∶ 𝜀 = 0
}

, (6)

where 𝐴 represents the space of positive definite fourth-order tensor fields with the appropriate symmetries. In the case of 
heterogeneous, isotropic, and elastic materials, 𝐴 can be described by two space-dependent parameters, such as Young’s modulus 
𝐸(𝑥) and Poisson’s ratio 𝜈(𝑥).

In the inverse problem, the displacement field �̂� is known, as it was measured with DIC/DVC. The solution concerns finding the 
constitutive field 𝐴 ∈  and a stress field 𝜎 ∈ (𝑡), such that the constitutive requirements, see Eq.  (3), are satisfied.
2 
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Fig. 1. Example inverse problem consisting of the measured displacement field �̂�, the boundary displacement �̄� and traction 𝑡.

2.1. Constitutive equation gap method

An elegant formulation to quantify the constitutive error relates the measured displacement field to a proposed and a statically 
admissible stress field through the constitutive equation gap: 

(𝜎, 𝐴) = 1
2 ∫

𝛺

(𝜎 − 𝐴 ∶ 𝜀
[

�̂�
]

) ∶ 𝐴−1 ∶ (𝜎 − 𝐴 ∶ 𝜀
[

�̂�
]

) d𝑥 ∀𝜎 ∈  , 𝐴 ∈ , (7)

which leverages the positive definiteness of the stiffness tensor to establish an energy norm. Minimizing this energy norm allows 
for the recovery of the stress and constitutive fields [11,16–18].

Inaccurate predictions might stem from noisy measurements or inadmissible displacement fields. In those cases, a modified 
formulation is created, introducing an alternative displacement field 𝑢 [19]. This displacement field should be kinematically 
admissible, but also as close as possible to the measured field. This results in the following penalized minimization problem, 

𝑢⋆, 𝜎⋆, 𝐴⋆ = argmin
𝑢∈, 𝜎∈ , 𝐴∈

(𝑢, 𝜎, 𝐴) + 𝛼
2 ∫

𝛺

‖

‖

𝑢 − �̂�‖
‖

2 d𝑥 , (8)

where 𝛼 is a hyperparameter that should be selected. Details on the selection of 𝛼 can be found in [20,21] and automated selection 
of the parameter is proposed by Benady et al. [22].

Some of these modified formulations even assume inaccuracies regarding static boundary conditions [20]. They identify that the 
traction applied or measured along a boundary might include inaccuracies, and add them as penalization terms as well. However, 
all methods assume that internal static admissibility needs to be satisfied exactly, and most also assume that traction-free boundaries 
are reliable. As a result, these stay enforced or constrained, rather than penalized.

A drawback of inverse CEGM methods is the complexity of the optimization. This can be resolved by searching through the static 
and constitutive space separately in a nested optimization. For example, an outer loop attempts to determine the stiffness tensor 
while the inner loop finds the optimal stress field that belongs to that stiffness. This approach makes the optimization expensive, as 
every major iteration needs to solve a normal forward problem. Progress has been made, and more efficient strategies exist [16,18]. 
Nevertheless, finding the constitutive behaviour of inhomogeneous materials remains expensive [10,15].

2.2. Inverse methods with PINNs

PINNs offer a computationally efficient approach for solving inverse problems in solid mechanics, building upon the foundational 
work by Raissi et al. [13]. PINNs are a class of neural networks that leverage both observed data and the governing differential 
equations to find solutions to complex physical problems. Wei et al. [15] developed a PINN to identify material properties in 
inhomogeneous elastic materials. What follows here is a summary of this approach.

The flowchart of Fig.  2 shows how the PINN employs NNs to represent the displacement field, the Cauchy stress field, and the 
constitutive parameters field. These NNs, combined with automatic differentiation, enable the calculation of internal equilibrium 
(𝛁 ⋅ �̃�) and the deformation gradient (�̃� ⊗ 𝛁). The core idea is to minimize the sum of various loss terms, representing the different 

physics requirements mentioned above, to solve the inverse problem efficiently.

3 
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Fig. 2. Three neural networks represent, from top to bottom, the static, kinematic, and constitutive fields of the problem. Automatic differentiation (AD) is used 
to compute internal equilibrium (𝛁 ⋅ �̃�) and the deformation gradient (�̃� ⊗ 𝛁). Minimizing the sum of losses solves the inverse problem.

This PINN-based inverse method augments the limited experimental data with the governing differential equations. The loss 
terms used in this approach include:

• Data Loss (data): quantifies the discrepancy between the NN displacement ̃𝑢 and the measured displacement data �̂� at locations 
𝑥𝑖 where measurements were conducted. 𝛥𝑉𝑖 is the unit volume to ensure that this represents an integration. 

data =
𝑁𝑢
∑

𝑖=1

‖

‖

�̃�(𝑥𝑖) − �̂�(𝑥𝑖)‖‖
2𝛥𝑉𝑖. (9)

• Equilibrium Loss (eq): evaluates whether NN stress field �̃� satisfies the internal equilibrium equation. This function can be 
evaluated at any point. Here, a dense sampling of 𝑥𝑗 is used. 

eq =
𝑁𝑒
∑

𝑗=1

‖

‖

‖

𝛁 ⋅ �̃�(𝑥𝑗 )
‖

‖

‖

2
𝛥𝑉𝑗 . (10)

• Boundary Condition Loss (bc): evaluates the violation of the static boundary conditions by comparing the NN stresses along 
the boundary coordinates 𝑥𝑘 to the traction prescribed on these boundaries 𝑡. Here, 𝛥𝑆𝑘 is the unit surface of the integration. 

bc =
𝑁𝑏
∑

𝑘=1

‖

‖

‖

�̃�(𝑥𝑘) ⋅ 𝑛(𝑥𝑘) − 𝑡(𝑥𝑘)
‖

‖

‖

2
𝛥𝑆𝑘. (11)

• Constitutive Equation Loss (cegm): evaluates the constitutive equation gap, as introduced in the CEGM approach above. The 
function is evaluated at the same locations 𝑥𝑗 as the equilibrium loss. 

cegm = 1
2

𝑁𝑎
∑

𝑗=0

(

�̃�(𝑥𝑗 ) − �̃�(𝑥𝑗 ) ∶ 𝜀
[

�̃�(𝑥𝑗 )
]

)

∶ �̃�−1(𝑥𝑗 ) ∶
(

�̃�(𝑥𝑗 ) − �̃�(𝑥𝑗 ) ∶ 𝜀
[

�̃�(𝑥𝑗 )
]

)

𝛥𝑉𝑗 . (12)

Eventually the final solution is found in the following minimization problem: 
�̃�⋆, �̃�⋆, �̃�⋆ = argmin

�̃�∈ 𝑢 , �̃�∈ 𝜎 , �̃�∈𝐴
cegm + 𝛼data + 𝛽eq + 𝛾bc, (13)

where  𝑢,  𝜎 , and 𝐴 are the spaces spanned by the neural networks, while 𝛼, 𝛽, and 𝛾 represent the penalization factors.
The PINN-based inverse method has the advantage of computational efficiency, reducing the time from hours to just minutes. 

This improved efficiency results from two key factors. Firstly, the absence of nested optimizations. Secondly, it takes advantage of 
well-established frameworks like PyTorch. This enables the utilization of highly efficient parallel solvers, such as the GPU-accelerated 
Adam solver [23].

However, it is worth noting that the PINN approach may exhibit a trade-off between computational efficiency and accuracy 
compared to the CEGM approach [15]. It is hypothesized that the constraint-enforced nature of CEGM can lead to higher accuracy 
in estimating material properties. The physics informed loss terms of PINNs provide additional information to train the neural 
network, but do not inherently constrain it. Properly weighting the loss terms may improve accuracy, but is not be a generally 
4 
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applicable solution. Similarly, proofs on the convergence of CEGM require exact statically admissible stress fields, and while the 
PINNs approach uses the same constitutive error measure, it does not strictly ensure admissibility of these fields. Although some 
publications relax the static boundary condition, as they assume that measurement noise exists, they still strictly enforce internal 
equilibrium [20]. There are also additional explanations for the reduced accuracy. Aldirany et al. [24] show that it can also be 
explained by the inability of the NN optimizers to resolve the higher frequencies in the solution. This work enforces admissibility 
and constraints more strictly, as it hypothesizes that this is the main cause for the lack of accuracy.

Another drawback, not addressed in this publication, is the natural smoothness of NNs. The true constitutive and stress fields of 
a domain with material inhomogeneity are piecewise continuous (piecewise-𝐶0). Although the universal approximation theory [25] 
proves that NNs can fit such discontinuous jumps, they are not a particularly effective basis to describe such functions [26]. 
Alternative descriptions of these fields might require less degrees of freedom (DOFs) to fit the true fields with a similar accuracy. 

3. Methodology and improvements

The primary objective of this study is to introduce a methodology that integrates the principles of CEGM into the PINN 
framework. This approach seeks to establish a formal PINN structure, wherein the constraints of CEGM are more rigorously enforced, 
with the hypothesis that this results in enhanced accuracy compared to previous PINN approaches.

3.1. Constrained optimization

Within CEGM, static admissibility is strictly enforced, emphasizing its importance over the error in the constitutive equation [20,
22]. Conversely, the PINN approach penalizes both aspects simultaneously, weighted with penalty factors. The reliance on penalty 
factors in penalization-based methods introduces challenges in hyperparameter selection. Excessive penalty factors can lead to 
spurious local minima and suboptimal solutions, while overly lenient factors can result in solutions that fail to satisfy the constraints. 
The application of the Lagrange multipliers method provides a solution to this challenge [27].

In the context of the inverse problem, the formulation is expressed as follows1:

�̃�⋆, �̃�⋆, �̃�⋆ = argmin
�̃�∈ 𝑢 , �̃�∈ 𝜎 , �̃�∈𝐴

cegm + 𝛼data (14)

s.t.: eq = 0

bc = 0,

which is solved using the Lagrange multipliers method, and seeks to find the stationary points of: 

 = cegm + 𝛼data + 𝜆eqeq + 𝜆𝑏𝑐bc. (15)

Although this looks similar to the penalization approach above, the difference is that multipliers 𝜆eq and 𝜆bc are additional DOFs 
in the optimization and will be determined automatically. This reduces the need for manual tuning of penalty factors and mitigates 
issues arising from magnitude differences between stress and displacement fields, common in inverse problems. The penalization 
parameter 𝛼 is intentionally retained, as it can be used to train based on noisy full-field measurements. Extensive literature exists 
regarding the selection or even automated tuning of this parameter in traditional CEGM methodologies [20–22].

The constraints are applied to the internal and boundary equilibrium loss equations rather than formulating a separate constraint 
for each physics point for computational efficiency purposes. Adding a constraint for each point results in many Lagrange multipliers 
to be optimized for, and the optimization framework is not so well-equipped to handle this many constraints efficiently. 

It is crucial to clarify that this approach should not be confused with the rigorous constraints inherent in the CEGM methodology. 
In CEGM, static admissibility is enforced across the entire stress field, whereas in this framework, static admissibility is numerically 
enforced exclusively at the points 𝑥𝑗 , where the loss functions are evaluated. Nevertheless, as the network is constrained at enough 
points, it is expected to uphold constraints throughout the entire domain. This assertion can be validated after optimization by 
assessing the constraints at sample points not considered during the optimization process.

3.2. Enforcing physics onto PINNs

More stringent formulations carefully design the PINN layout to exactly satisfy certain requirements. The following explains how 
thermodynamic admissibility and internal equilibrium equations can be satisfied precisely, without informing the neural network 
about these physics, and without requiring any training.

1 A kinematic boundary condition can also be introduced, if necessary due to noisy or unreliable full-field measurements.
5 
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Fig. 3. Limiting the outputs of the constitutive network to an admissible domain. For these examples, the initial guesses 𝐸0 and 𝜈0 were zero.

3.2.1. Thermodynamic admissibility of the stiffness tensor
The first improvement involves refining the formulation of the stiffness tensor. Wei et al. [15] assumed Hooke’s law, describing 

the stiffness tensor with Young’s modulus �̃� and Poisson’s ratio �̃�, scalar outputs of the constitutive NN. The NN allowed these 
variables to take any value, potentially resulting in stiffness tensors that violate the constitutive admissibility requirements. The 
constitutive equation gap, however, relies on the properties of an admissible stiffness tensor to construct a positive definite loss 
function. Thus, the method of Wei et al. [15] did not always converge. Depending on the seed (initial guess) of the NNs it might 
diverge, which is attributed to a negative CEGM when the stiffness is negative.

To address potential issues with convergence, the Young’s modulus and Poisson’s ratio are bounded to certain domains, ensuring 
positive definite stiffness tensors [28]. Instead of simple capping, a smooth function is applied to ensure admissibility while 
maintaining differentiability, as illustrated in Fig.  3. The

• Young’s modulus (�̃�): is required to be positive. Thus, the neural network output related to stiffness 𝑒 undergoes the 
transformation 

�̃� = ln(exp(𝑒 + 𝑒0) + 1), (16)

to find the actual Young’s modulus. This function behaves linearly for large positive numbers, but has a lower bound of zero 
lim𝑒→−∞ = 0, as shown in Fig.  3. The initial guess 𝐸0 can be used to reduce computational costs through 𝑒0 = ln(exp(𝐸0) − 1).

• Poisson’s ratio (�̃�): should never exceed 0.5 nor fall below −1, achieved through 

�̃� = 3
4
(

tanh(�̃� + 𝑛0) + 1
)

, (17)

where �̃� is the neural network output. Here, the initial guess (𝜈0) is used to set 𝑛0 = arctanh(2𝜈0).

The equations above allow for the introduction of initial guesses. PyTorch uses Xavier Uniform Initialization [29] when seeding 
the weights of tanh-based fully-connected NNs, and sets the bias values to zero. Provided with small inputs, around unity.2 This 
results into roughly zero-mean outputs with low variance and an approximately linear response. It is computationally more efficient 
when the true values are closer to this initial guess and thus this somewhat linear regime. 

The initial guesses of this work were all homogeneous, and simply corresponded to the average stiffness of the sample. In a 
uni-axial tension example, this average stiffness was calculated from the specimen size, bench displacement and the force of the 
load cell, 𝐸0 = 𝐹

𝐴
𝐿
𝛥𝐿  Alternatively, data normalization could be considered, see Appendix for a formal description. As it scales all 

fields towards unity, the average stiffness, and thus the initial guess, is 1. 
The flat regions in the Young’s modulus and Poisson’s ratio limiting functions could cause the optimization to get stuck as the 

gradients vanish, but this is unlikely to happen. The problem of vanishing gradients is quite common in NNs with activation functions 
such as tanh or softplus. This potential ill-posedness is mitigated through normalization and initialization around zero. Although the 
flat region of the Young’s modulus limit function is unlikely to be explored by the optimizer, applying this methodology to samples 
with (near) incompressible behaviour can cause issues. In those cases, the real Poisson’s ratio is 0.5, and due to the limiting function, 
this might be approached but will not be reached. When dealing with incompressible materials, additional regularization or another 
parametrization of the constitutive equations should be considered. 

For other constitutive models or parametrizations of the linear elastic model, a similar structure can be followed, determining the 
range of admissible constitutive parameters and choosing a function to ensure their properties remain within that range. Although 
not necessary, selecting functions that behave somewhat linearly within the expected value range may benefit optimization.

3.2.2. Internal equilibrium
Another violation of the admissibility requirements that can be alleviated is internal equilibrium. Instead of teaching the static 

neural network that the stress field should be divergence-free, it can be enforced through potential equations.  The Airy potential 

2 Normalization and centring is required when the fields, such as the coordinates 𝑥, become large, see Appendix.
6 
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Fig. 4. Stress potentials such as the Airy stress for two-dimensional problems can be employed to ensure internal equilibrium. The actual stresses are computed 
from the potential using automatic differentiation (AD), while the constitutive properties are limited to a specific range (lim node) to ensure thermodynamic 
admissibility of the stiffness tensor.

method provides a systematic approach to formulating symmetric, divergence-free, second-order tensor fields in two dimensions 
using a scalar field [30].  This scalar field, �̃�, can be represented by a NN, from which stresses are computed using AD, as is 
proposed by Fig.  4: 

�̃�𝑥𝑥 =
𝜕2�̃�
𝜕𝑦2

, �̃�𝑦𝑦 =
𝜕2�̃�
𝜕𝑥2

and �̃�𝑥𝑦 = �̃�𝑦𝑥 = −
𝜕2�̃�
𝜕𝑥𝜕𝑦

. (18)

It can indeed be confirmed that the resulting stress field automatically satisfies the internal equilibrium equations everywhere, as 
it always is divergence-free and symmetric.

The requirement for the Cauchy stress field to be divergence-free arises from purely static considerations, independent of 
constitutive models or kinematic assumptions [31]. This principle holds even beyond the assumptions of infinitesimal strain and 
linear elasticity. In large deformation frameworks, the Cauchy stress remains divergence-free and symmetric [31], although this 
does not necessarily apply to stress measures in finite-strain Lagrangian formulations, such as Piola–Kirchhoff stresses. 

A key challenge in ensuring equilibrated stress fields is handling potential material discontinuities. At these interfaces, the normal 
stress component tangential to the interface exhibits a jump, while the other components remain continuous. This discontinuity 
makes the divergence undefined at the interface, creating a singularity. It poses problems for the Airy stress potential, as well 
as for other PINN methods. Since these approaches create smooth, and enforce/train divergence-free stress fields, they struggle 
to capture the true, discontinuous nature of stresses at material interfaces.  Nevertheless, Airy potentials can still be applied to 
problems involving material discontinuities. A common approach is to define separate Airy potentials for each subdomain, ensuring 
compatibility via interface traction conditions [32]. Equivalently, one may consider a single, piecewise-𝐶2 Airy potential, where 
discontinuities align only with the tangential normal stress component at the interfaces. 

For inverse methods, the locations of these interfaces are generally unknown a priori, complicating the formulation. Two primary 
strategies exist: (1) defining internal boundaries along a predefined mesh or (2) approximating discontinuities weakly using functions 
that allow for steep gradients. The classical CEGM method [11] exemplifies the first approach, assuming homogeneous properties 
within each element and allowing stress discontinuities on the element interfaces while satisfying equilibrium. However, inaccuracies 
arise when the actual material interface does not align with the mesh.  The PINN approach, by contrast, avoids a priori assumptions 
about material interfaces, leveraging the universal approximation theorem [25] to approximate even piecewise-𝐶0 fields. The Airy 
stress PINN similarly relies on the ability of NN to approximate piecewise-𝐶2 fields. Since the potential field is somewhat smoother, 
it is more accommodating to approximation with NNs.

Compared to traditional PINNs, Airy-PINNs provide two key benefits: they reduce the difficulty of fitting discontinuities at 
material interfaces while also ensuring internal equilibrium naturally, eliminating the need to explicitly train for this condition. 
However, the resulting stress fields still tend to be overly smooth, which remains the primary drawback of the proposed method, 
as it conflicts with fundamental principles of solid mechanics. 

There are two more minor drawbacks related to computational costs: the need for the computation of expensive second 
derivatives and the larger neural network required to account for disregarded linear DOFs.  Disregarding the linear DOFs leads to 
non-unique solutions of the potential field, and an ill-posed optimization problem as certain degrees of freedom have zero sensitivity. 
However, this does not cause convergence problems in practice. The Adam optimizer updates parameters with a step proportional 
to the exponential moving averages of the gradient and squared gradient [23]. When evaluated with AD, these are zero for every 
iteration, and the optimizer will take a step of size zero. Essentially, these parameters are ‘‘frozen’’ to the initial guess throughout the 
entire optimization process, avoiding any convergence problems. While the potential function itself may not be unique and depend 
on the initial guess, the resulting stress field is nonetheless unique. 
7 
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Fig. 5. A tensile test with a universal testing machine in (a) photo and (b) schematic. The sample is gripped on kinematic boundaries over which the total 
reaction force is measured with a load cell, while the other boundaries are traction-free. (c) shows how the problem becomes non-unique if the microstructure 
is perfectly parallel, whereas (d) recovers uniqueness by assuming constant constitutive properties along the kinematic boundaries.

3.3. Solving the degenerate examples through regularization

In this paragraph, we highlight some important consideration for cases without non-zero static boundary conditions, or when 
these are known only partially through integral forms. In the first case, the ‘‘scale’’ of the material stiffness cannot be determined, 
while the second case introduces additional complications. One typical example would be a simple tensile test on a perfectly aligned 
microstructure, as shown in Fig.  5. This cannot be solved with the procedures discussed above as it is a degenerate problem without 
a unique solution. Such experimental setups, that contain kinematic boundaries (for example. in the grips of the load frame across 
which both the displacement and total force are measured, while all other boundaries have zero traction prescribed) require special 
treatment as defined below. 

The formulation can be extended to include such boundary conditions [20]. This requires the introduction of two constraints. 
Firstly, the discrepancy between the NN displacement and prescribed displacement boundary condition. Secondly, a static condition 
that integrates the traction along the boundary and compares it to the reaction force 𝐹  measured with the load cell: 

𝑏𝑐1 =
𝑁𝑏
∑

𝑘=1

‖

‖

�̃�(𝑥𝑘) − �̂�(𝑥𝑘)‖‖
2𝛥𝑆𝑘 , and 𝑏𝑐2 =

‖

‖

‖

‖

‖

‖

𝑁𝑏
∑

𝑘=1
�̃�(𝑥𝑘) ⋅ 𝑛(𝑥𝑘)𝛥𝑆𝑘 − 𝐹

‖

‖

‖

‖

‖

‖

2

, (19)

where 𝑥𝑘 are points on this boundary. These equations are added as additional constraints to the Lagrange multipliers formulation 
introduced in Section 3.1.

Some problems remain difficult to solve, even with these additions. Fig.  5 illustrates an example in which this formulation 
clearly lacks a unique solution. Due to the homogeneous kinematic constraints, all springs deform equally, making it impossible to 
determine which has the highest or lowest stiffness. If the local traction distribution were known, the problem could be solved, as 
the stiffest springs carry the highest load.

Sections 4.3 and 5 include examples of tension test results where only the total reaction force is available, rather than local 
traction distributions. Although there is not a complete loss in uniqueness, the lack of local traction distribution information will 
make these problems difficult to solve. To address this issue, two regularization methods are introduced to reformulate the problem: 
the first ensures uniqueness under all circumstances, while the second, a simpler method, is effective only under specific conditions. 

Both proposed solutions are not just limited to the PINN-based formulations discussed in this paper, but can also be implemented 
into traditional CEGM approaches to increase the accuracy of inferred traction information and subsequent material identification. 
The development of a method solving the uniqueness problem was required for the real experimental examples discussed in Section 5, 
as the PINN procedure failed to solve these problems without additional regularization. 

3.3.1. Multiple loading conditions method
This generic approach adds more information — specifically, the deformation of independent loading conditions, as illustrated 

in Fig.  6. For a two-dimensional example, combining tensile loads in directions 𝑒𝑦, 𝑒𝑥, and a shear test provides multiple sets of 
displacement measurements and static boundary conditions and enough information to recover the constitutive property distribution. 
8 
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Fig. 6. Solving multiple independent load cases requires several kinematic and static NNs, but only a single constitutive one, assuming that the coordinate 
system 𝑥 of the different measurements matches with one another.

This is akin to a homogenization problem, which similarly requires different loading configurations to determine the overall stiffness 
tensor [33].

This approach is generic but difficult and expensive to apply. Firstly, it is experimentally costly as it requires equipment to apply 
these different loading conditions onto the sample. One also has to ensure that the coordinate system matches between the different 
experiments (possibly through marks on the specimen). Lastly, the inverse PINN concerns many more NNs and DOFs, making it 
more expensive to optimize for. 

3.3.2. Homogeneous regions method
In cases where the specimen is isotropic and homogeneous along the kinematic and total force boundary conditions, a more 

efficient approach can be employed. This method regularizes the problem by explicitly adding the assumption of unknown yet 
homogeneous properties along the boundary, as illustrated in Fig.  5.

The PINN automatically deduces the traction distribution on the kinematic boundary from the measured deformation along the 
boundary. After all, constant stiffness along the boundary means that the region with the most deformation was subjected to the 
highest traction.

The implementation, as depicted in Fig.  4, undergoes minimal modification. When the elastic properties for any point 𝑥 in the 
homogeneous region are required, parameters from a vector are provided rather than the values of the constitutive neural network 
at 𝑥. These parameters are then introduced as degrees of freedom during the training process. This method stands as the preferred 
approach when applicable, as the subsequent problem solves quickly, while maintaining low experimental costs as it requires only 
a single test.

4. Numerical results

This section presents a comparative analysis of in silico examples of the proposed methodology in conjunction with two 
established approaches: the CEGM method [11] and the PINN method [15] that we seek to improve. In contrast to previous work, 
it will include examples with kinematic boundary conditions, which were difficult to solve due to the absence of local non-zero 
traction information.

4.1. Example problems and network design

For the purpose of evaluation, reference problems from prior research are employed, as depicted in Fig.  7. No additional noise 
was introduced in these numerical examples. These problems involve non-homogeneous 10 by 10 mm squares, and the displacement 
field is computed using Abaqus on a highly refined mesh, subsequently down-sampled to 11 points in each direction. This coarse 
resolution is inherited from the CEGM examples due to computational limitations [11]. Despite the displacement measurement 
resolution of 1 mm, the constitutive equation gap loss and static boundary constraints can be assessed at any location. A spatial 
resolution of 0.33 mm (31×31 points) was determined to provide accurate results without overfitting. This resolution is increased 
compared to the reference study, as that publication had minor overfitting problems.

To extract the most information possible from the data, one would like the functional space described by the NNs to be as large as 
possible. This is done by increasing the number of layers and nodes per layer, and essentially allows the description of more refined 
displacement, stress and constitutive fields.  However, NNs that are too large will result in overfitting. This occurs when a model 
9 
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Fig. 7. The three reference problems, where the black dots represent measurement points. The white regions have a stiffness of 2 MPa, whereas the grey areas 
are 1 MPa. The Poisson’s ratio is constant at 𝜈 =0.3 throughout the entire domain.

contains too many degrees of freedom compared to the available data, resulting in solutions that fit the training data, including its 
noise or outliers, excessively well, but generalize poorly to unseen data.

This overfitting should be prevented as the results become non-physical. The following procedure was followed to select the 
NN-size and amount of data such that overfitting did not occur:

1. Initial choice of NN-size (number of layers and nodes per layer) and data-size (number of physics-points and displacement 
data-points from DIC).

2. Train the NNs until all losses converge.
3. Test all losses on previously unseen locations (other physics-points and new displacement-points):

(a) Overfitting is detected if any losses increase significantly. Either increase amount of data (physics and/or 
displacement) or decrease NN-size and start at point 2 again.

(b) No overfitting is detected if losses remain unchanged. Therefore, results can be relied upon.

For consistency with prior work, the NN architecture closely follows that of Wei et al. [15]. Consequently, all networks are fully 
connected and employ a hyperbolic tangent (tanh) activation function. The implementation of NNs is achieved through PyTorch [34], 
with optimization carried out using the MDMM algorithm for stationary point optimization3 [27]. The training initializes with a 
learning rate of 0.01, with automatic reduction upon reaching plateaus, while the optimization process concludes after 40,000 
epochs. The PINN results [15] are recomputed using the same settings to ensure a fair comparison.

The displacement, Cauchy stress, and constitutive networks possess three hidden layers with 32 nodes per layer, while the Airy 
stress potential network comprises four layers with 64 nodes per layer. Such a large network for Cauchy stress would result in 
overfitting, whereas this does not occur for the Airy stress formulation. This is because the Airy stress network results in less 
freedom than a Cauchy stress network of the same size, as only the second derivatives of the network are used, removing the 
linear contributions.

The accuracy is visualized using the relative error, 

𝑒 (𝑥) =
|

|

̃ (𝑥) − ex(𝑥)|
|

|

|

ex(𝑥)|
|

, (20)

 which compares the NN approximation to the true solution at any location 𝑥, resulting in the heatmaps shown below.  The 
represents the variable of interest, either Young’s modulus 𝐸 or Poisson’s ratio 𝜈.  To aid comparison between different methods, 
the mean and standard deviation of this error field are obtained through integration over the space. The mean represents the average 
relative error over the entire domain, while the standard deviation provides information on the uniformity of the error. 

𝑒mean = 1
vol(𝛺) ∫𝛺

𝑒 (𝑥) d𝑥 and 𝑒std =

√

1
vol(𝛺) ∫𝛺

|

|

|

𝑒 (𝑥) − 𝑒mean||
|

2
. (21)

4.2. Constrained optimization and enforced physics

To assess whether each change offers any advantages compared to existing literature, two variants of the algorithm are created, 
and their results are listed in Table  1. Both implementations contain the thermodynamically admissible stiffness tensor. The first 
variant, hereafter referred to as ‘‘Constrained PINN’’, directly utilizes a stress field obtained from a NN. It employs constrained 
optimization with Lagrange multipliers and enforces the thermodynamic admissibility of the constitutive equations. The second 
variant, dubbed ‘‘Airy PINN’’, employs the stress potential formulation, and uses the Lagrange multiplier only for the boundary 
equilibrium loss.

3 The Lagrange multiplier optimization method for automatic differentiation frameworks (MDMM) is not implemented in Torch, but ‘‘crowsonkb’’ has made 
a small library (https://github.com/crowsonkb/mdmm) that wraps the saddle-point optimizer required for MDMM in Torch.
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Table 1
Comparing the mean and standard deviation of the relative error among the different methods from measurements with 1 mm 
resolution.
 RP1 RP2 RP3 Time

 ⟨𝑒𝐸 ⟩ [%] ⟨𝑒𝜈⟩ [%] ⟨𝑒𝐸 ⟩ [%] ⟨𝑒𝜈⟩ [%] ⟨𝑒𝐸 ⟩ [%] ⟨𝑒𝜈⟩ [%] 𝑡 [h:mm]
 CEGM 2± 7 4± 5 5± 8 7± 7 5± 8 7± 7 >4:00  
 Traditional PINN 8± 9 8± 8 13±13 10±10 14±13 10±11 0:05  
 Constrained PINN 6± 8 6± 6 10±13 11±11 11±13 12±11 0:07  
 Airy PINN 5± 8 5± 6 9±12 9± 8 9±12 9± 8 0:15  

Fig. 8. Constitutive properties and errors of RP3 obtained with the constrained PINN.

No example independently shows the impact of thermodynamically admissible stiffness tensors, as that does not impact the 
accuracy of the results themselves. The thermodynamically admissible stiffness tensor formulation is, however, much more reliable 
in terms of convergence. The traditional PINN, either converges to positive or diverges to negative stiffness depending on the NN 
seed. No divergence was observed for any seed after the constitutive properties were limited to an admissible domain, although 
the accuracy of the solution ⟨𝑒 ⟩ still varies by ±1%, depending on the selected seed. To ensure repeatability and consistency, all 
simulations reported initialize from the same seed, selected through trial and error such that the traditional PINN also converges 
for all examples.

The overview in Table  1 indicates that the constrained formulation slightly improves the PINN method in most cases, but not all. 
Whereas the Airy stress formulation consistently outperforms the other PINNs, though it does not reach the accuracy of the traditional 
CEGM method. The resulting constitutive distributions of RP3 are visualized in Figs.  8 and 9, with the true stiff inclusions indicated. 
The stiffness obtained through the coarse Airy stress approach, as depicted in Fig.  9, effectively separates the stiffer inclusions. 
Conversely, the constrained formulation, as seen in Fig.  8, struggles to differentiate the two inclusions on the right side of the 
domain. All PINN approaches, even the traditional PINN which is not plotted, suffer from overly smooth constitutive property 
fields. The recovery of stress fields through these inverse methods is less accurate than the recovery of material properties. The 
stress fields showcased in Fig.  10 merely capture the overall trends of the stress fields, while intricate details and discontinuities 
are smoothed out by the neural network.  Although the Airy based stress field is still too smooth, it is much closer to the exact 
solution. This is because approximating the piecewise-𝐶2 potential field is easier with NNs than the piecewise-𝐶0 stress field used 
in the constrained and traditional PINN. 

A deeper investigation reveals that the NNs are simply not rich enough to capture the exact constitutive and static fields, 
especially around the discontinuities at the material interfaces. Directly training the constitutive neural network on an exact and 
refined distribution of the constitutive properties results in a Young’s modulus approximation with an accuracy of 2.5%. Similarly, 
training the static NN directly on the exact stress fields results in a mean relative error of 3%. It was concluded that the constitutive 
and static neural networks cannot accurately represent the discreteness of the true fields, because (small) NN are inherently smooth. 
Regardless of the solving strategy, the neural network representation does not have enough freedom to predict the constitutive 
properties with the accuracy of the CEGM method.

To address this, the adoption of larger neural networks might yield better results. A NN, with three layers and 48 nodes each, 
can fit the exact stiffness distribution to a 0.8% relative mean error, while it could fit the exact Cauchy stress to <1%. An Airy 
potential NN needs to be larger, at least 92 nodes, for that accuracy. However, increasing the network size results in overfitting 
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Fig. 9. Constitutive properties and errors of RP3 obtained with the Airy potential PINN.

Fig. 10. Comparing the von Mises stresses obtained through the different approaches using the coarse simulations.

Table 2
Comparing the mean and standard deviation of the relative error among the different methods from displacement fields with a 
0.25 mm resolution.
 RP1 RP2 RP3 Time

 ⟨𝑒𝐸 ⟩ [%] ⟨𝑒𝜈⟩ [%] ⟨𝑒𝐸 ⟩ [%] ⟨𝑒𝜈⟩ [%] ⟨𝑒𝐸 ⟩ [%] ⟨𝑒𝜈⟩ [%] 𝑡 [h:mm] 
 Traditional PINN 7± 8 7± 8 10±12 8± 7 13±13 7± 7 0:11  
 Constrained PINN 4± 8 5± 5 10±12 10±10 8±11 9± 8 0:18  
 Airy PINN 3± 7 3± 4 6±10 5± 6 7±10 5± 5 0:45  

problems, and adding more physics points does not resolve the situation; thus more measurement samples are required. A finer 
displacement measurement resolution is acceptable, as the 1 mm resolution was inherited from the original CEGM paper [11] and 
does not reflect the capabilities of modern DIC systems. In a study by Latourte et al. [35], a simple 8 MP camera was used, already 
resulting in displacement fields with a much finer resolution.  Similarly, the stereo-DIC examples in this publication were obtained 
with two 12.3 MP cameras. When projected onto the specimen, the resolution is approximately 0.02 mm. 

A summary of the results for simulations with larger NNs and the refined measurement grid are listed in Table  2. The resolution 
of the displacement field is reduced to 0.25 mm (41×41 points), while the physics losses are sampled by 61×61 points. Here, the 
accuracy approaches, and for the Airy potential formulation even exceeds, what is obtained with the CEGM method on the coarse 
grid. This shows that larger NNs become more capable of capturing the required discreteness.

Tables  1 and 2 also provide summaries of the average computational costs.4 All PINN approaches outperform the CEGM method, 
although the Airy-based formulation is more expensive than the others. The increased computational cost associated with the 

4 All simulations were performed on a Lenovo Yoga Pro 7 laptop with an AMD R7 7735HS processor and 16 GB RAM and a Fedora 40 operating system All 
GPU acceleration was disabled.
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Fig. 11. The Young’s modulus and Poisson’s ratio of the example problem with a total force instead of local traction on all non-zero traction boundaries. The 
regions with assumed homogeneous properties along the boundary are hashed, while the stiffer region in the middle is annotated in the results of all methods.

Airy stress formulation is attributed to two primary factors. Firstly, it necessitates the computation of higher derivatives, leading 
to a more intricate chain of automatic differentiation. Secondly, larger networks are required to ensure adequate flexibility for 
accurately describing the stress field, as all linear components of the network are disregarded in such a potential formulation, 
introducing more unknowns. The constrained formulation on the finer mesh has a similar performance, both in accuracy and speed, 
as the Airy potential method had on the lower resolution dataset. It is important to emphasize that these additional computational 
costs of the Airy potential method translate into improved predictive accuracy, and without the need for larger datasets. For 
the best accuracy, the Airy stress potential method is recommended, especially in cases with limited resolution in the full-field 
measurements. For minimal computational costs, with high resolution data available, the methods are equivalent if the Airy potential 
method is performed on a down-sampled dataset. Lastly, the iterations involving constraints tend to be slightly more resource 
intensive. Consequently, in scenarios where the number of iterations are fixed, constrained optimization is expected to incur higher 
computational costs, explaining why the PINN method in the literature is cheapest. However, the increased costs are insignificant 
when contrasted with the computational burden of the traditional CEGM method.

4.3. Solving the typical tensile setup without local traction information

Three inverse problems were solved to illustrate the proposed remedies for the uniqueness problem stemming from  the lack of 
detailed traction information. These setups have traction distributed over a boundary of which only the total force is known.  The 
first strategy naively implements the kinematic and total force boundary conditions as a Lagrange multiplier constraint, see Eq.  (19). 
This shows how poor the results are when the algorithm is not assisted with inferring the local traction boundary condition. Then 
the constraint of homogeneous properties along the boundary conditions are introduced, resulting in accurate predictions. This is 
followed by the multi-load case method, which simultaneously solves for the three independent measurements.

The considered scenario concerns identical material distribution as RP1 in Fig.  7, but now with loading through kinematic 
conditions. For the first two examples, a kinematic boundary was imposed such that the left edge was clamped, while the right 
side was displaced by 1 mm in 𝑒𝑥 direction, and a reaction force 𝐹 = 11.5𝑒𝑥 N was obtained from FEA nodal-force results along 
that boundary. For the multi-load case method, this was augmented with two additional tests. A tensile test where the bottom was 
clamped, and the top boundary was displaced by 1 mm in 𝑒𝑦 direction, resulting in a load 𝐹 = 11.5𝑒𝑦 N. Subsequently, the specimen 
was loaded in shear, where the left boundary was clamped, and the right boundary displaced 1 mm upwards, causing a 𝐹 = 2.9𝑒𝑦 N 
load to be observed.

The PINN architecture use the Airy stress formulation, while the network size follows the description in Section 4.1. Some changes 
needed to be made to the optimization settings, since these problems proved more difficult to solve. Although, the displacement 
is still measured on an 11×11 points grid, the number of points where the CEGM equation is sampled needed to be increased to 
61×61 points to prevent overfitting. Similarly, the number of iterations needed to be increased to 75,000 epochs, as especially the 
multi-load case method converges slower. For consistency, these settings were used for all these inverse problems. This also results 
in slightly higher computational costs, as acknowledged in Table  3.
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Table 3
The accuracy of solutions that have kinematic boundary conditions on which the only non-zero 
static component is the reaction force.
 ⟨𝑒𝐸 ⟩ [%] ⟨𝑒𝜈⟩ [%] 𝑡 [h:mm]
 No regularization 192±545 55±19 0:45  
 Homogeneous boundary 8± 9 10± 7 0:47  
 Multi-load case 8± 9 6± 9 2:23  

Fig. 12. (a) From left to right, the homogeneous nylon, inhomogeneous, and homogeneous TPU 95A samples, and (b) the test setup.

Table  3 also compares the performance of the different implementations. Clearly, the implementation that only adds the 
appropriate boundary condition does not result in the correct solution. It is also not unique, as the result depends strongly on the 
initial guess. However, just assuming homogeneous properties along the clamped boundaries is enough to converge to the correct 
solution. The much more expensive, multi-load case approach does not predict the Young’s modulus more accurately, but increases 
both the experimental complexity and computation costs.

Note that the Poisson’s ratio is less accurate than in previous examples, especially for the homogeneous boundary method. This 
discrepancy is caused by the clamped boundary. In the centre region, everything except the hashed areas in Fig.  11, the Poisson’s 
ratio is much more accurate, resulting in ⟨𝑒𝜈⟩ = 5 ± 5, which is comparable to previous findings. At a clamped boundary, Poisson’s 
effects cannot be observed, as the boundary condition restricts the kinematic freedom. Thus, the inverse methods under-predict the 
Poison’s ratio. This is also why the Poisson’s ratio of the multi-load case method is inaccurate at the corners, as those locations are 
dominated by the clamped boundaries in all load-cases considered.

It is concluded that both methods successfully identify the material property distributions. The homogeneous boundary method 
is preferred due to the lower costs, but can only be used if that assumption is realistic. Otherwise, the multi-load case approach is 
the only option. Lastly, it is recommended to exclude the Poisson’s ratio results close to the clamped boundaries, as those results 
are less accurate.

5. Experimental example

Samples with inhomogeneous materials were manufactured and tested to demonstrate how the proposed method can identify 
material properties under realistic experimental conditions.

5.1. Test methodology

Three specimens were produced: one from nylon, one from TPU 95A, and one combining both materials, as shown in Fig.  12. All 
samples were produced using additive manufacturing with an Ultimaker S5 at 100% infill density, with all other settings at default. 
The samples had a thickness of 5 mm and a width of 50 mm. The inhomogeneous sample featured a 25 mm soft square inclusion 
with rounded corners of 2 mm.

To prepare for DIC, the samples were painted white, and black speckles were applied using an airbrush. DIC was used, see Fig. 
12, to obtain the displacement field under loading. The stereo-DIC setup consisted of two Sony IMX253 cameras with Nikon 50 mm 
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1.8 D lenses. The tensile machine grips were 75 mm apart, with approximately 70 mm of the sample height visible through the 
cameras. A displacement-controlled loading rate of 2 mm/min was applied for a total displacement of 1.5 mm, corresponding to an 
average strain of 2%. The load was recorded for each sample and will later be used as a boundary condition for the inverse method. 
Displacement fields were computed using Correlated Solutions VIC-3D software, and only the initial and final images were used for 
the inverse analysis.

5.2. Data preparation

The data preparation process involved three steps: downsampling, centring, and normalization. Downsampling was necessary as 
the DIC algorithm computed the displacement field at 9 million coordinates. The resulting datafile could not be loaded in system 
memory, let alone be operated upon. Even without this limitation, PINNs should never use the full dataset for training, as one 
should test against overfitting on data unseen by the optimizer. The down-sampled data was used during the training phase, while 
overfitting was tested on a fine grid of 501×701 points.

Centring was performed for convenience in defining boundary conditions. The coordinate system from DIC was shifted such that 
the image centre aligned with the origin. Normalization is essential, as the tanh-based NN and optimizers struggle with fields of 
vastly differing magnitudes. Normalization is standard practise when working with NNs, as such the details are listed in Appendix.

5.3. Identifying homogeneous specimens

The homogeneous samples were identified with two methods. Firstly, with hand calculations that compare the strain values 
measured with DIC to the applied loading. Secondly, through the Airy stress inverse method introduced in this publication.

The hand calculations estimated the constitutive properties using the strain field in the last DIC image. These strain fields 
were not perfectly uniform, as lines at ±45◦were visible. These were probably caused by slight inhomogeneities from the additive 
manufacturing process. These defects can visually be observed on the sample in Fig.  12. It was assumed that these inhomogeneities 
average out, so the Young’s modulus and Poisson’s ratio were defined as: 

𝐸 = 1
𝑁

𝑁
∑

𝑛

𝜎𝑦𝑦
𝜀𝑦𝑦(𝑥𝑛)

and 𝜈 = 1
𝑁

𝑁
∑

𝑛
−
𝜀𝑥𝑥(𝑥𝑛)
𝜀𝑦𝑦(𝑥𝑛)

, (22)

where the stress 𝜎𝑦𝑦 is the measured load-cell force divided by the cross-sectional area, while 𝑥𝑛 refers to all locations in the DIC 
dataset. The spatial standard deviation of the constitutive properties will also be reported to acknowledge the slight inhomogeneity 
from the manufacturing procedure. 

The Airy stress method was employed for analysing the homogeneous samples, with the same architecture and hyperparameters 
used as in the numerical examples from Section 4.1. The displacement and constitutive networks had three hidden layers of 32 
nodes each, while the Airy stress potential network comprised four layers with 64 nodes each. The downsampled displacement field 
contained 25×35 points, and the physics were evaluated on the same grid. These problems contain clamped boundaries lacking 
local traction information. Therefore, the inverse method might not converge to a solution. As discussed in Section 4.3, this was 
solved by assuming a region of homogeneous material properties along those boundaries.

The training process began with a learning rate of 0.01, which was automatically reduced when plateaus were reached. 
Optimization was performed for a total of 40,000 epochs.

5.4. Identifying inhomogeneous specimens

For the inhomogeneous sample, the inverse-PINN did not converge under the initial settings. More iterations and larger networks 
were required.

The kinematic and constitutive neural networks were increased to 72 nodes per layer, while the static NNs layers contained 72 
and 128 nodes for the constrained and Airy formulation, respectively. The displacement field was sampled at 101×141 points, and 
the physics were evaluated at 96×128 points to reliably fit the larger networks.

To reduce computational expense, the kinematic NN was first trained directly on the measured displacement field for 5000 
epochs. This was followed by optimization of the other NNs for 10,000 epochs, during which the kinematic NN was fixed. This 
approach initialized the neural network with a better initial guess. Subsequently, all weights and biases were optimized for with 
another 400,000 epochs.

After training, a threshold method was used to determine the location and size of the soft inclusion. Areas with normalized 
stiffness below a certain value were classified as the soft region, while the rest was considered the hard phase. The impact of the 
threshold value will be reflected on. The spatial mean and standard deviation of the constitutive properties were calculated for the 
two regions, as they represent the material properties of the two phases.  A drawback of this method is that it includes information 
from the smooth transition at the interface. This has a major impact on the spatial standard deviation. An alternative approach 
involves using two threshold values: an upper threshold above which points are classified as part of the stiff phase, and a lower 
threshold below which points belong to the soft phase, while intermediate values are treated as interface-related areas and thus 
disregard. This approach reduces the impact of the non-physical smooth transition but was ultimately not reported, as it could lead 
to an unfair comparison. 
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Table 4
Material properties and standard deviations obtained through the various inverse methods. A normalized stiffness cut-off of 0.5 
was used to separate nylon and TPU regions in the inhomogeneous sample.
 Nylon TPU 95A
 𝐸 [MPa] 𝜈 [–] 𝐸 [MPa] 𝜈 [–]
 Homogeneous samples with hand-calculation 1536± 60 0.40±0.02 58± 6 0.43±0.02 
 Homogeneous samples with Airy PINN 1539± 37 0.41±0.01 61± 6 0.44±0.01 
 Inhomogeneous sample with Constrained PINN 1622±406 0.37±0.10 127±53 0.24±0.11 
 Inhomogeneous sample with Airy PINN 1676±294 0.42±0.05 82±48 0.27±0.09 

Fig. 13. Constitutive properties of the inhomogeneous specimen obtained with the Airy PINN method. The boxes represent the boundaries of the soft phase: 
the grey box shows the true boundary, while red, blue, and orange indicate boundaries corresponding to threshold values of 1.00, 0.75, and 0.50, respectively.

5.5. Results and discussion

The constitutive properties obtained for the homogeneous samples, listed Table  4, shows that the hand calculation and inverse-
PINN closely matched the expected values for nylon and TPU. The Young’s modulus for TPU was determined to be 61±6 MPa, which 
is consistent with the 67±6 MPa reported in the technical datasheet (TDS) [36]. The Poisson’s ratio for both materials, 0.41±0.01 
for nylon and 0.44±0.01 for TPU, aligns with the typical range for such polymers, but they are not listed on the TDS. The only outlier 
was the Young’s modulus of the nylon, 1539±37 MPa, which is lower than the supplier’s reported 2331±55 MPa [37], but consistent 
with other studies reporting values between 1630 and 1750 MPa [38]. This discrepancy could be due to different manufacturing 
parameters or moisture uptake in the nylon spool. A traditional Young’s modulus extraction with simple hand calculations confirmed 
the findings obtained with the NNs-based inverse method.

It is also noteworthy that the inverse method correctly identified both specimens as homogeneous. Although the constitutive 
neural network allowed for non-uniform material properties, the constitutive fields obtained in both cases were nearly constant, as 
indicated by the small spatial standard deviations in Table  4.

Evaluating the inhomogeneous sample with the Airy PINN yields constitutive properties somewhat consistent with those of the 
homogeneous samples, as listed in Table  4, whereas the constrained PINN demonstrates lower accuracy.  In fact, the results from the 
homogeneous samples fall within one standard deviation of those from the inhomogeneous sample, except for the Poisson’s ratio in 
the TPU region. The lower Poisson’s ratio observed in the TPU region is primarily due to underprediction at the bottom edge of the 
inclusion, as shown in Fig.  13. In reality, the Poisson’s ratio field should be fairly uniform since both materials have similar Poisson’s 
ratios. However, the recovered field is significantly non-homogeneous. This inaccuracy in Poisson’s ratio predictions is not unusual, 
as it is typically more difficult to estimate than Young’s modulus. Previous studies using CEGM, with [15] and without PINNs [11], 
encountered similar challenges. The in-silico examples of those studies also demonstrated inaccuracies in predicting the Poisson’s 
ratio although only the Young’s modulus field was inhomogeneous. These occur at the boundary between phases with different 
Young’s moduli, which suggests that it might be the minor inaccuracies of the Young’s modulus that trigger larger differences in 
the Poisson’s ratio.

For both PINN-based methodologies, this is exacerbated by the non-physical smoothness in the constitutive and static fields at 
the material interface. Larger NNs might fit these discontinuities better, but this requires more displacement and physics points to 
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prevent overfitting. This information is available (the downsampled dataset contains around 1% of all the points in the DIC field), 
but this becomes prohibitively expensive from a computational perspective. Especially memory limitations prevented the evaluation 
of larger models. 

Because all fields were normalized in the data-preparation stage, an initial stiffness 𝐸0 = 1 was used upon seeding the NN. As 
the stiffer Nylon phase dominates the global response, this initial guess was inaccurate for the soft TPU region as the true Young’s 
modulus was a factor 25 lower. Nevertheless, the inverse-PINN correctly determined the magnitude of the TPU stiffness, showcasing 
that a bad initial guess does not affect the results. 

The size of the soft inclusion, determined using a normalized stiffness threshold of 0.5, was found to be approximately 
24 by 26 mm, which is close to the actual size of 25 mm square. Fig.  13 illustrates the boundaries of the soft inclusion for various 
threshold values. The boundaries are close to each other, which indicates a low sensitivity to the specific threshold value, suggesting 
that the selection of this hyperparameter is not critical. This low sensitivity can be attributed to the steep gradient in the stiffness 
field around the inclusion.

Overall, these results demonstrate that this type of inverse method can accurately extract material properties from real 
experimental tests. These experiments posed significant challenges, as the true behaviour of the specimens cannot be fully captured 
by the assumption of isotropic linear elasticity. The 3D-printed samples are inherently anisotropic, as they are constructed from 
layers with ±45◦orientations and this was also visible in the strain fields obtained with DIC. Furthermore, the materials themselves, 
particularly TPU 95A, do not conform to linear elasticity. TPU is a soft plastic that typically requires more advanced, non-linear 
constitutive models. Future work could explore performing the same inverse analysis with a hyper-elastic material model, which 
may lead to more accurate results.

6. Conclusion

This study shows that the PINN approach to material identification can be improved by enforcing physics rather than merely 
informing the networks. By incorporating principles of static and thermodynamic admissibility into the PINN framework, the 
proposed method significantly enhances the precision of material identification, especially in cases involving non-homogeneity.

The improvements are:

• Constraining the outputs of the neural network to ensure thermodynamically admissible constitutive behaviour.
• Enforcing static admissibility using the traditional Airy stress potential method.

Numerical experiments show that the enhanced PINN approach achieves accuracy levels comparable to traditional methods, such 
as CEGM, while offering significant reductions in computational time. In contrast, conventional PINNs without these physics-based 
constraints fail to reach similar levels of accuracy.

A key limitation of the current approach is the inherent smoothness of both the constitutive and stress fields. Compared to 
traditional constrained PINN methods, the Airy potential field has a weak instead of a strong discontinuity which is easier to 
approximate with NNs, but it is still overly smooth. While increasing the network size can improve approximation accuracy, it 
also leads to significantly higher computational costs. A more efficient alternative may be to use representations that inherently 
align with the continuity requirements of the constitutive, stress, or potential fields, potentially achieving greater accuracy at a 
lower computational expense. 

Although this study is limited to small deformations and linear elasticity in two dimensions, the principle of enforcing static 
admissibility through stress potentials is broadly applicable. The requirement for a divergence-free Cauchy stress field is independent 
of the constitutive behaviour, making this approach viable for examples with large deformations and non-linear materials. While 
stress potentials can also be employed in three-dimensional problems, their formulation is significantly more complex. It remains 
an open question whether these advanced potential-based methods offer clear advantages in accuracy or efficiency over traditional 
PINNs. 

The approach was further validated through real experiments, which confirmed accuracy and applicability of the method. It 
accurately identified the material properties of both homogeneous samples (nylon and TPU) and successfully determined the spatial 
distribution of material properties of the inhomogeneous specimens. The results closely matched the expected material properties 
reported in technical data sheets, while the identified boundaries of the inhomogeneous regions were in agreement with the actual 
geometry. These findings demonstrate the robustness of the method in real-world applications, where experimental data often 
includes noise and the fitted constitutive equation does not perfectly capture the material behaviour.

The main conclusion of this work is that physics considerations should play a central role in the design of PINNs. While NNs 
possess powerful learning capabilities, it is more effective to prescribe exact physical constraints where possible, reserving the 
use of NNs for solving parts that are challenging with traditional approaches. In this study, the constitutive behaviour and static 
admissibility requirements can be effectively described using traditional methods, while the NN is best suited for defining functional 
spaces and allows for the use of efficient and accelerated optimization algorithms.
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Appendix. Normalization procedure

Characteristic values were defined to ensure that all normalized fields and parameters were approximately unity.5 These 
characteristic properties are:

• Characteristic length 𝑙0: is used to normalize the coordinate system, 
�̂� =

𝑥
𝑙0
. (A.1)

• Characteristic displacement 𝑢0: is used to normalize the displacement, 
�̂� =

𝑢
𝑢0

. (A.2)

• Characteristic force 𝐹0: is used to normalize the applied forces and tractions, 

�̂� =
𝐹
𝐹0

(A.3)

In this study, the characteristic length was chosen as 𝑙0 = 10 mm, 𝑢0 = max(𝑢𝑦) − min(𝑢𝑦)∕5, and 𝐹0 = 𝐹∕5. The latter two values 
varied between the three samples.

Normalization also affected the outputs and internal variables of the algorithm, so final results were scaled back using the 
characteristic properties. The following relationships were derived:

• Normalized strain scaling depends on length and displacement scaling: 

�̂� =
d�̂�
d�̂�

=
d 𝑢
𝑢0

d 𝑥
𝑙0

=
𝑙0
𝑢0

𝜀. (A.4)

• Stress, is scaled with force and cross-sectional area: 

�̂� =
�̂�

�̂�
=

𝐹
𝐹0
𝐴
𝑙0𝑡

=
𝑙0𝑡
𝐹0

𝜎. (A.5)

• Young’s modulus, scaled with respect to stress and strain: 
�̂� = �̂�

�̂�
=

𝑢0𝑡
𝐹0

𝐸. (A.6)

5 The hat notation ̂ indicates normalized quantities.
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