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Abstract

This paper addresses the challenge of accurately monitoring power cable temperatures, which is
crucial for the reliability and efficiency of electrical power systems during the energy transition.
Overheating of power cables can lead to insulation failure and reduced lifespan, making precise
temperature monitoring essential.

Recent research by Alliander has explored the use of electromagnetic reflectometry for the recon-
struction of power cable temperatures by analyzing the propagation time of pulsed electromag-
netic signals within the cable. This study aims to improve upon this by directly reconstructing
the electromagnetic parameters of the power cable and understanding their temperature depen-
dence through a controlled experiment.

Key steps include:

• Cable Modeling: Using the Telegrapher’s equations to describe voltage and current distri-
butions in the time and frequency domains.

• Data Transformation: Converting these equations into integral equations and discretizing
them to define an inverse scattering problem.

• Experimental Validation: Using synthetic data and data from a temperature-controlled
experiment by Alliander to test and refine the reconstruction method

The study reconstructs the electrical parameters of the cable and attempts to find a relation
between the parameters and the cable temperature. This method attempts a more accurate
temperature monitoring system, enhancing the safety and efficiency of power grids
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Chapter 1

Introduction

The energy transition is one of the most significant challenges of the coming decades. A key
aspect of this transition involves enhancing the reliability and efficiency of the power grid.
Accurate monitoring of power cable temperatures is essential for maintaining these qualities
in electrical power systems. While maximizing the performance of power cables is important,
overheating can lead to insulation failure and a reduced cable lifespan. Therefore, developing
reliable methods to measure and reconstruct power cable temperatures is essential for ensuring
the safe and efficient operation of electrical networks.

Recent research initiated by Alliander has explored the relationship between the power-cable
temperatures and the propagation time of a pulsed electromagnetic signal inside the cable. The
research by Wouters et al. [1] demonstrated the potential of electromagnetic reflectometry for
temperature reconstruction. However, it was noted that the currently achievable accuracy in the
reconstruction of the cable parameters may be insufficient for a sufficiently precise temperature
reconstruction.

The present study aims to analyze the properties of power cables and the behavior of their
parameters as the cable-temperature varies. We use the data from an experiment conducted
by Alliander, where the relationship between the cable-temperature and the propagation time
was investigated for a single piece of isolated cable. Our approach is to utilize the reflectometry
data to directly reconstruct the constitutive parameters of the power cable by solving an inverse
scattering problem, rather than approximately measuring the EM pulse propagation time. Then,
by finding the polynomial fit for the temperature dependence of the reconstructed parameters
in the controlled-temperature experiment, we should be able to deduce the temperature in any
realistic conditions.

Our approach involves several key steps. First, we will describe a power cable using widely
accepted partial differential equations (PDE’s) in the time and frequency domains, which de-
scribe the current and voltage distributions along a power cable. We will then transform these
PDE’s into integral equations. Next, we will discretize the integral equations and define the
inverse scattering problem. Finally, we use synthetic data and the experimental data from Al-
liander to reconstruct the parameters of the power cable and to fit the temperature-dependence
polynomial.

This innovative approach aims to improve the accuracy of power cable temperature mon-
itoring, contributing to the overall reliability and efficiency of electrical power systems in the
context of the energy transition.
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Chapter 2

Frequency-domain model of
reflectometry data

In this Chapter we use the single-conductor transmission line as a model of a power cable. Multi-
conductor cores result in more complicated models. However, the difference between the latter
sophisticated model and the simple single-conductor model can be subsumed into the effective
transmission-line parameters. The propagation of the electromagnetic wave along a transmission
line is described by the Telegrapher’s equations. First we formulate these equations in the time
domain, then we transform the problem to the frequency domain with the help of the Fourier
transform and derive the second-order differential equation for the complex voltage amplitude.
After that, we introduce the scattering formalism and apply the Green’s function approach to
transform the problem into the integral equation.

2.1 Telegrapher’s equations in time domain

The voltage U(x, t) and the current I(x, t) along the transmission line are the functions of the
time t and the position x along the cable. A power cable is characterized by the (effective)
resistance R (of the conductor) and the inductance L in series and the capacitance C and
the conductance G (of the propagating medium) in parallel. The resistance and conductance
contribute to the losses in a transmission line. The effective constitutive parameters of the cable
may depend on the temperature T and the location x.

The propagation of the electromagnetic wave along the transmission line is governed by the
following coupled system of partial differential equations involving the voltage and the current
induced by the wave:

−∂U

∂x
= RI + L

∂I

∂t
+ f,

−∂I

∂x
= GU + C

∂U

∂t
,

(2.1)

where f(x, t) is the source function. We describe a cable of a finite length, stretching between
a and b along the x-axis, by defining R,G,L,C as follows:

R(x), G(x), L(x), C(x) =

{
R(x, T ), G(x, T ), L(x, T ), C(x, T ), x ∈ [a, b]

0, 0, µ0, ϵ0, x /∈ [a, b]
(2.2)
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2.2 Telegrapher’s equations in frequency domain

We use the Fourier transform to convert the differential equations from the time domain into
the frequency domain. The following properties of Fourier transform are employed: [8]

f̂(x, ω) =

∫
R
f(x, t)e−jωt dt

f(x, t) =
1

2π

∫
R
f̂(x, ω)ejωt dt

jωf̂(x, ω) =

∫
R

∂

∂t
f(x, t)e−jωt dt,

where j denotes the imaginary unit. The resulting system of ordinary differential equations
(ODE’s) describing the transmission line in the frequency domain is:

dÛ

dx
= −(R+ jωL)I + f̂ ,

dÎ

dx
= −(G+ jωC)Û

(2.3)

If we differentiate the first equation one more time and substitute there the expression for dÎ
dx

obtained from the second equation we arrive at the second-order ODE for the frequency-domain
voltage:

d2Û

dx2
− γ2Û =

df̂

dx
, (2.4)

where γ(x, ω) is the cable propagation constant (related to the wavenumber):

γ2(x, ω) = (R+ jωL)(G+ jωC) = α+ jβ (2.5)

γ2
0(ω) = −ω2µ0ϵ0. (2.6)

The real and imaginary parts, α and β, of the squared propagation constant are called the
attenuation and phase constants, respectively, and ω

√
ϵ0µ0 is the vacuum wavenumber.

2.3 Scattering formalism

In the scattering formalism, the total voltage inside the cable is decomposed into the sum of the
incident and scattered voltages:

• û: Total voltage (Û) produced by the source f̂ in the actual transmission line with the
wavenumber γ(x, ω).

• ûin: Incident voltage. This is the voltage profile that the same source f̂ would create in
the transmission line with the wavenumber γ0(ω).

• ûsc = û− ûin: Scattered voltage.

The incident and the total voltages satisfy the following equations:

d2ûin

dx2
− γ2

0 û
in =

df̂

dx
, (2.7)

d2û

dx2
− γ2û =

df̂

dx
. (2.8)

It is easy to show that the scattered voltage satisfies:

d2ûsc

dx2
− γ2

0 û
sc = (γ2 − γ2

0)û. (2.9)

Obviously, the source of the scattered voltage is the so-called contrast source (γ2 − γ2
0)û, which

differs from zero only within the finite cable, where γ2(x, ω)− γ2
0(ω) ̸= 0.
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2.4 Integral equations

In this section we rewrite the differential equations Equation (2.7) and Equation (2.9) as integral
equations.

Definition 2.4.1 (Green’s function [9]) The frequency-domain Green’s function g(x−x′, ω)
is defined as the solution of the following equation

d2g

d2x2
− γ2

0g = δ(x− x′), (2.10)

where δ(x) denotes the generalized Dirac’s delta function.

To obtain the explicit expression for the vacuum Green’s function we use the spatial Fourier
transform with the following properties:

F [g(x, ω)] = g̃(k, ω) =

∫
R
g(x, ω)e−jkxdx

F
[
d2g

dx2

]
= −k2g̃(k, ω)

F [δ(x)] = 1

Applying this to the differential equation that defines the Green’s function, we obtain:

−k2g̃ − γ2
0 g̃ = 1

Solving the resulting algebraic equation we arrive at the expression for the k-domain Green’s
function:

g̃(k, ω) = − 1

(k2 + γ2
0)

(2.11)

The inverse Fourier transform of ĝ(k, ω) gives:

g(x, ω) =
1

2π

∫
R
g̃(x, ω)ejkxdk

g(x, ω) = − 1

2π

∫
R

1

k2 + γ2
0

ejkxdk

g(x, ω) = − 1

2γ02π

∫
R

2γ0
k2 + γ2

0

ejkxdk

g(x, ω) = − 1

2γ0
e−γ0|x|dk

g(x− x′, ω) = −e−γ0|x−x′|

2γ0
(2.12)

Theorem 2.4.1 (Green’s Theorem) Let g(x, ω) be the Green’s function satisfying the equa-
tion (2.10). Then, for any f(x, ω) ∈ C(a, b), such that f(x, ω) = 0 for x /∈ [a, b], the solution of
the equation

d2u

dx2
− γ2

0u = f

can be obtained as

u(x) =

∫ b

a

g(x− x′, ω)f(x′, ω)dx′.
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Applying Theorem 2.4.1 to Equation (2.9), we obtain the integral relation

ûsc(x, ω) =

∫ b

a

g(x− x′, ω)[γ2(x′, ω)− γ2
0(ω)]û(x

′, ω)dx′, (2.13)

which describes the scattered voltage at any x ∈ R, including the point xr, where it is measured
in a reflectometry experiment. Using the definition ûsc = û − ûin, we arrive at the following
integral equation that describes the total voltage distribution in the cable:

û(x, ω)−
∫ b

a

g(x− x′, ω)[γ2(x′, ω)− γ2
0(ω)]û(x

′, ω)dx′ = ûin(x, ω), x ∈ [a, b]. (2.14)

The equations (2.13) and (2.14) fully describe both the forward and the inverse scattering
problems. In the forward problem one assumes that the incident voltage ûin and the contrast
γ2 − γ2

0 are given and finds the total voltage û by solving (2.14). In the inverse problem one
measures the total voltage at some location xr, sometimes at the boundary of the interval [a, b],
and uses the equation (2.13) to find the contrast. Since the total voltage at all other points
in [a, b] is not known, it is also an unknown in the inverse problem. Therefore, the complete
formulation of the inverse problem usually includes both the data equation (2.13) and the object
equation (2.14).

2.5 Decomposition of the contrast function

The contrast function γ2 − γ2
0 depends on four (effective) constitutive parameters of the power

cable R, G, L and C and the angular frequency ω. While the constitutive parameters may
depend on the temperature T of the cable in a complicated way, they do not depend on the
frequency. This fact may be used to improve the quality of reconstruction of the constitutive
parameters by utilizing the multi-frequency scattered voltage data that become available when
the cable is interrogated with a broad-band electromagnetic pulse. To make this possible the
contrast function must be appropriately decomposed:

γ2 − γ2
0 = (R+ jωL)(G+ jωC) + ω2ϵ0µ0 = χ1 + jωχ2 + ω2χ3, (2.15)

where

χ1(x) = RG,

χ2(x) = RC +Gµ0,

χ3(x) = µ0(ϵ0 − C).

(2.16)

Above we have made the assumption that the cable is essentially non-magnetic, i.e., L = µ0.
Note that the three components χi, i = 1, 2, 3 of the contrast function, uniquely define the three
constitutive parameters R, G, and C of the power cable.

With the introduced decomposition of the contrast function, the integral equations (2.13)
and (2.14) become:

û(x, ω)−
∫ b

a

g(x− x′, ω)χ1(x
′)û(x′, ω)dx′

− jω

∫ b

a

g(x− x′, ω)χ2(x
′)û(x′, ω)dx′

− ω2

∫ b

a

g(x− x′, ω)χ3(x
′)û(x′, ω)dx′ = ûin(x, ω), x ∈ [a, b].

(2.17)
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and ∫ b

a

g(xr − x′, ω)χ1(x
′)û(x′, ω)dx′

+ jω

∫ b

a

g(xr − x′, ω)χ2(x
′)û(x′, ω)dx′

+ ω2

∫ b

a

g(xr − x′, ω)χ3(x
′)û(x′, ω)dx′ = ûsc(xr),

(2.18)

where we have explicitly assumed that the scattered voltage is measured at the single location
xr.
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Chapter 3

Discretization of forward and
inverse scattering problems

In this chapter we discretize the integral equations (2.17) and (2.18) in space and derive the
corresponding algebraic equations. We use the mid-point rule to approximate the integrals over
x′ and the collocation method to discretize the second variable x. Then, we introduce the
discrete version of the Green’s function for a homogeneous finite cable at a base temperature.

3.1 Mid-point approximation and collocation

Theorem 3.1.1 (Mid-point approximation [7]) Let f ∈ C2[xk−1, xk], hk = xk − xk−1,
xm = (xk−1 + xk)/2, and m2 = maxξ∈[xk−1,xk] |f ′′(ξ)|. Then,∣∣∣∣∣

∫ xk

xk−1

f(x) dx− hkf(xm)

∣∣∣∣∣ ≤ 1

24
m2h

3
k

Theorem 3.1.2 (Composite integration rule [7]) Let f(x) be given for x ∈ [a, b], and let
there be a uniform partition a = x0 < x1 < · · · < xn = b, with xk = x0 + kh, k = 0, . . . , n,
h = (b− a)/n.

Let Ik be the approximation of the integral over [xk−1, xk], such that∣∣∣∣∣Ik −
∫ xk

xk−1

f(x) dx

∣∣∣∣∣ ≤ ckh
p+1, p ∈ N.

Then, ∣∣∣∣∣
n∑

k=1

Ik −
∫ b

a

f(x) dx

∣∣∣∣∣ ≤ c(b− a)hp

where c = maxk ck.

Consider the partitioning of the interval [a, b] into n sub-intervals of equal size h = (b−a)/n
and define the grid of n mid-points xi = a+h/2+ (i− 1)h, i = 1, . . . , n. Then, according to the
composite mid-point rule, the integrals in (2.17) and (2.18) can be approximated by finite sums
up to O(h2). Collocating the second variable x in (2.17) on the same grid as x′, and neglecting
the O(h2) approximation errors, we arrive at the following discretized version of the integral
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equations:

û(xk, ω)− h

n∑
i=1

g(xk − xi, ω)χ1(xi)û(xi, ω)

− jωh

n∑
i=1

g(xk − xi, ω)χ2(xi)û(xi, ω)

− ω2h

n∑
i=1

g(xk − xi, ω)χ3(xi)û(xi, ω) = ûin(xk, ω),

xk = a+ h/2 + (k − 1)h, k = 1, . . . , n.

(3.1)

h

n∑
i=1

g(xr − xi, ω)χ1(xi)û(xi, ω)

+ jωh

n∑
i=1

g(xr − xi, ω)χ2(xi)û(xi, ω)

+ ω2h

n∑
i=1

g(xr − xi, ω)χ3(xi)û(xi, ω) = ûsc(xr),

(3.2)

These algebraic equations can be compactly written as

[I −GωX1 − jωGωX2 − ω2GωX3]uω = uin
ω , (3.3)

rTωUωx1 + jωrTωUωx2 + ω2rTωUωx3 = usc
ω , (3.4)

where

• I ∈ Rn×n is the identity matrix.

• Gω ∈ Cn×n is the matrix with the elements [Gω]k,i = hg(xk − xi, ω).

• Xm = diag(xm) ∈ Rn×n, m = 1, 2, 3, are the diagonal matrices that contain the vectors
xm ∈ Rn with the elements [xm]i = χm(xi) along their diagonals.

• Uω = diag(uω) ∈ Cn×n is the diagonal matrix containing the vector uω ∈ Cn with the
elements [uω]i = û(xi, ω) along its diagonal.

• uin
ω ∈ Cn is the vector with the elements [uin

ω ]i = û(xi, ω).

• rω ∈ Cn is the vector with the elements [rω]i = hg(xr − xi, ω).

• usc
ω ∈ C is the complex number representing the scattered frequency-domain voltage

ûsc(xr, ω).

The numerical solution uω of the forward scattering problem can be obtained by solving the
linear algebraic problem (3.3). To solve the inverse scattering problem, one has to use both
(3.3) and (3.4) to find the three vectors xm, m = 1, 2, 3.

3.2 Discrete Green’s function of a homogeneous cable

There is a significant difference between the average power cable propagation constant γ and
the vacuum propagation constant γ0. The large jump in the propagation constant at the end
of a finite cable produces the most noticeable (multiple) reflections of the electromagnetic wave
propagating in the cable. The spatial variations of the constitutive parameters along the cable
are relatively small compared to this jump.
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Incorporating the reflections at the ends of the cable into the Green’s function would have
been beneficial for the inverse problem, as it would allow focusing on the relatively small spatial
variations along the cable. However, computing the Green’s function of a finite albeit homoge-
neous piece of cable, is a formidable task. In this section, we introduce the numerical analogue
of this procedure.

Consider the following split of the contrast functions:

χ1(x) = RbGb + R̃(x)G̃(x) = χb
1 + χ̃1(x),

χ2(x) = RbCb +Gbµ0 + R̃(x)C̃(x) + G̃(x)µ0 = χb
2 + χ̃2(x),

χ3(x) = µ0(ϵ0 − Cb) + µ0(ϵ0 − C̃(x)) = χb
3 + χ̃3,

(3.5)

where χb
m ∈ R are constants. The corresponding diagonal matrices will be split as follows:

Xm = χb
mI + X̃m, m = 1, 2, 3.

Introducing these representations in (3.3), we arrive at the problem:

[I − χb
1Gω −GωX̃1 − jωχb

2Gω − jωGωX̃2 − ω2χb
3Gω − ω2GωX̃3]uω = uin

ω , (3.6)

which is equivalent to the problem:

[I −Gb
ωX̃1 − jωGb

ωX̃2 − ω2Gb
ωX̃3]uω = ũin

ω , (3.7)

where

Gb
ω = [I − χb

1Gω − jωχb
2Gω − ω2χb

3Gω]
−1Gω,

ũin
ω = [I − χb

1Gω − jωχb
2Gω − ω2χb

3Gω]
−1uin

ω .
(3.8)

It is clear that Gb
ω is the discrete analogue of the Green’s function of the homogeneous finite

cable with the constitutive parameters given by the contrast functions χb
m, m = 1, 2, 3.
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Chapter 4

Reconstruction of constitutive
parameters

In this Chapter we propose a two-step procedure for reconstructing the constitutive parameters
of the power cable. In the first step the effective parameters are reconstructed with a nonlin-
ear optimization algorithm, using a spatially homogeneous model of the cable. In the second
step a linearized method is applied to reconstruct the remaining spatial variations of the cable
parameters.

4.1 Reconstruction of effective cable parameters

To reconstruct the effective background parameters one assumes that the constitutive parameters
of a cable are homogeneous, i.e., the contrast functions are χb

m, m = 1, 2, 3. Then, the forward
and inverse scattering problems become:

[I − (χb
1 + jωχb

2 + ω2χb
3)Gω]u

b
ω = uin

ω , (4.1)

(χb
1 + jωχb

2 + ω2χb
3)r

T
ωu

b
ω = usc

ω (4.2)

Solving (4.1) for ub
ω and substituting the result in (4.2) we arrive at the equation:

(χb
1 + jωχb

2 + ω2χb
3)r

T
ω [I − (χb

1 + jωχb
2 + ω2χb

3)Gω]
−1uin

ω = usc
ω , (4.3)

which explicitly defines the scattered frequency-domain voltage usc
ω (χb

1 , χ
b
2 , χ

b
3) as a function of

the constitutive parameters of the cable.
Let vscωp

be the scattered voltage measured at the location xr at the frequencies ωp, p =
1, . . . , P ; and usc

ωp
(y1, y2, y3) the scattered voltage calculated according to (4.3) with the substi-

tutions χb
m = ym, m = 1, 2, 3. Consider the following cost function:

f(y1, y2, y3) =

P∑
p=1

∣∣∣usc
ωp
(y1, y2, y3)− vscωp

∣∣∣2∣∣∣vscωp

∣∣∣2 . (4.4)

The effective constitutive parameters of the cable can now be reconstructed by minimizing this
function:

[χb
1 , χ

b
2 , χ

b
3 ] = arg min

[y1,y2,y3]∈R3
f(y1, y2, y3). (4.5)

4.2 Linearized reconstruction of cable inhomogeneities

Let the effective background parameters χb
m either known a priori or reconstructed using the

optimization procedure described in the previous Section. Note that these parameters may
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depend on the temperature of the cable. To reconstruct the remaining spatial variations of the
contrast functions, both natural and induced by the temperature, we resort to the formulation
involving the discrete background Green’s function Gb

ω.
Let the temperature-induced spatial variations χ̃m(x) relative to the background contrast χb

m

be small. Then, one can apply the total voltage approximation in (3.7) by the total voltage in the
effective homogeneous cable, namely, uω ≈ ũin

ω . Substituting this and the contrast splittings into
the main equation of the inverse scattering problem (3.4), we arrive at the linearized problem:

rTω Ũ
in
ω x̃1 + jωrTω Ũ

in
ω x̃2 + ω2rTω Ũ

in
ω x̃3 = ũsc

ω , (4.6)

where

Ũ in
ω = diag(ũin

ω ) = diag
(
[I − χb

1Gω − jωχb
2Gω − ω2χb

3Gω]
−1uin

ω

)
, (4.7)

ũsc
ω = usc

ω − (χb
1 + jωχb

2 + ω2χb
3)r

T
ω ũ

in
ω . (4.8)

Notice that this linearization is better than the usual Born approximation where one assumes
uω ≈ uin

ω . First of all, ũin
ω represents a much better approximation of uω, since it includes the

main multiple reflections from the cable ends. Secondly, the crucial contrast function splittings
(3.5) guarantee the smallness of the perturbations χ̃m.

To recover the vectors of the contrast perturbations x̃m, m = 1, 2, 3, we shall utilize the
scattered voltage data measured at xr at the angular frequencies ωp, p = 1, . . . , P . To this end,
we introduce the block-matrix formulation:

Rx̃ = ũsc, (4.9)

where the matrix R ∈ CP×3n is given by

R =


rTω1

Ũ in
ω1

jω1r
T
ω1
Ũ in
ω1

ω2
1r

T
ω1
Ũ in
ω1

rTω2
Ũ in
ω2

jω2r
T
ω2
Ũ in
ω2

ω2
1r

T
ω2
Ũ in
ω2

...
...

...

rTωP
Ũ in
ωP

jωPr
T
ωP

Ũ in
ωP

ω2
Pr

T
ωP

Ũ in
ωP

 . (4.10)

The right-hand side vector ũsc = [ũsc
ω1
, . . . , ũsc

ωP
]T ∈ CP contains the modified scattered voltage

multi-frequency data. The unknown vector x̃ = [x̃T
1 , x̃

T
2 , x̃

T
3 ]

T ∈ R3n contains all three contrast
perturbation vectors.

Since the scattered voltage data contain statistical noise, the problem is usually solved in
the least-squared sense:

x̃LS = arg min
x̃∈C3n

∥ṽsc −Rx̃∥22 , (4.11)

where the vector v̂sc = [ṽscω1
, . . . , ṽscωP

] ∈ CP contains the experimental version of the modified
scattered voltage data ũsc with

ṽscω = vscω − (χb
1 + jωχb

2 + ω2χb
3)r

T
ω [I − χb

1Gω − jωχb
2Gω − ω2χb

3Gω]
−1uin

ω . (4.12)

If the matrix RHR ∈ C3n×3n, where RH denotes the conjugate transpose of R, is invertible,
then

x̃LS = (RHR)−1RH ṽsc. (4.13)

If the matrix RHR is not invertible, then the minimum-norm solution x̃† of the least-squares
problem is computed as:

x̃† = (RHR)†RH ṽsc, (4.14)

where (RHR)† denotes the generalized inverse of the matrix RHR.
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Chapter 5

Data pre-processing

In this Chapter, we perform the preliminary analysis of the reflectometry data obtained in
the experiment carried out at Alliander B.V. We extract the incident and scattered signals
in the time domain, perform their Fourier transforms, and arrive the quantities required by
the frequency-domain formulation of the inverse scattering problem introduced in the previous
Chapters.

5.1 Controlled-temperature experiment

In early 2023 Alliander conducted an experiment to establish the relation between temperature
and propagation time for both XLPE and PILC cables. The purpose of the experiment was
to properly establish how the propagation time changes as a function of the temperature in
the entire range of temperatures experienced by a cable during operation. The goal was to
confidently establish the nature of this relation for both XLPE and PILC cables.
The experiment was setup in the following way:

• A climate chamber was constructed to allow control over the temperature of the cable.
(Figure 5.1a)

• A PILC and XLPE cable reel were placed inside the climate control chamber. (Figure 5.1b)

• SCG sensor units were placed at the beginning and end of the cable in order to measure
the change in voltage over time. [6]

• Temperature sensors were placed on different locations of the cable reel.

After this initial setup the process of measuring propagation times at different temperatures can
begin. In steps of 5◦C between room temperature and 60◦C the following steps were preformed.

1. Set heater to new temperature.

2. Wait 24 hours to allow the room and cable reel temperature to stabilize.

3. Measure the precise temperature.

4. Send a signal through the cable and measure the voltage.

In Figure 5.2 one of the measurements be seen in Figure 5.2. For t ∈ [0, 2.5µs] the signal is sent,
for t ∈ [3.0µs, 5.0µs] the first reflection is measured, for t ∈ [5.5µs, 7.0µs] the second reflection is
measured, etc.
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(a) Climate control chamber (b) 415m of Telcon XLPE cable,
1x25mm² with Aluminum conductor and
a 16mm2 cross section of the screen.

Figure 5.1: Setup of experiment performed in Duiven.

Figure 5.2: Measured voltage signal in the XLPE cable with T = 19.4◦C.

5.2 Reconstruction of the truncated signal

In Figure 5.2, the detected signal u(x, t) is shown. However, due to limitations of the mea-
surement apparatus, the signal is not captured perfectly. Specifically, the measurement device
does not record beyond certain limits, causing the signal to be truncated between t ≈ 1.0µs and
t ≈ 1.1µs.

To reconstruct this peak we will make the following assumption. We expect the signal to
reduce with the same factor after each reflection. To determine this factor, we will determine
the factor by which the signal reduces between the first and second reflection, t = tc and t = td
respectively. These factors can be found in Table 5.1 per temperature. Multiplying the first
reflection with this factor gives us the height of the original signal.

Next we we assume that our truncated signal is of the form u(x, t) = a(x − p)2 + q. p lies
in the center of our truncated signal, and q is equal to the height of our original signal found in
Table 5.1. Finally we solve the formula for the truncated signal and reconstruct the peak. In
figure Figure 5.3 the reconstructed peak can be found for T = 19.4◦C.
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temperature ◦C first reflection (mV) second reflection (mV) factor original signal (mV)

19.4 18332 2476 7.40388 135728
22 18920 2592 7.29938 138104
27.2 19944 2728 7.31085 145808
32.2 21004 2900 7.24276 152127
36 21584 2984 7.23324 156122
40.4 22496 3128 7.19182 161787
43.8 22288 3252 6.85363 152754
48.8 23164 3392 6.82901 158187

Table 5.1: For different temperatures the height of the first and second reflections, the factor
between the first and second reflection and the reconstructed original height of the first signal.

Figure 5.3: u(x, t) with and without peak reconstruction.

5.3 Extracting the incident and scattered voltage data

In Figure 5.2 one can see the signal measured in the experiment at the temperature T = 19.4◦C.
This signal is the total voltage data U(xr, t) recorded at the receiver location xr.

To arrive at the quantities used in the theoretical formulation of the previous Chapters, we
first need to extract the incident and scattered voltages U in(xr, t) and U in(xr, t) in the time do-
main. Note that the additive property U(x, t) = U in(x, t) + U sc(x, t) holds in the time domain
as well. In particular, we have U(xr, t) = U in(xr, t) + U sc(xr, t) at the receiver location.

Unfortunately, in this experiment, no separate measurement of U in(xr, t) has been made. In
fact, such a measurement is not too complicated, and is expected to be available in the future
experiments. In the present case, we can still estimate U in(xr, t) by exploiting the fact that
the generated signal has a relatively short duration in time, whereas the significant length of
the cable makes sure that the first reflections from its end are well-separated in time from the
generator’s signal recorded at the receiver location.

The vertical lines at ta, and tb in Figure 5.2 indicate the empirical boundaries of the incident
voltage signal. Denoting by U(xr, t) the measured total voltage signal, we define the approximate
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U in(xr, t) and U sc(xr, t) as follows:

U in(xr, t) =

{
U(xr, t) t ∈ [ta, tb]

0 t /∈ [ta, tb]

U sc(xr, t) = U(xr, t)− U in(xr, t).

(5.1)

Denoting by F the Fourier transform, we subsequently compute:

ûin(xr, ω) = F [U in(xr, t)]

ûsc(xr, ω) = F [U sc(xr, t)]
(5.2)

In Figure 5.4 ûin(xR, ω), û
sc(xR, ω) can be found.

Extrapolating the incidental voltage along the cable

Finally, to arrive at the incident voltage that would have existed in the cable with the propaga-
tion constant γ0, we assume that the source function df̂/dx in the equation (2.7) is localized in
space, namely:

df̂

dx
= f̂0(ω)δ(x− xr). (5.3)

Applying the Green’s Theorem we can express the solution ûin(x, ω) of (2.7) as:

ûin(x, ω) =

∫
R
g(x− x′, ω)

f̂(x′, ω)

dx′ dx′

=

∫
R
g(x− x′, ω)f̂0(ω)δ(xr − x′)dx′

= g(x− xr, ω)f̂0(ω),

ûin(xr, ω) = g(xr − xr, ω)f̂0(ω) = − 1

2γ0
f̂0(ω),

f̂0(ω) = −2γ0û
in(xr, ω),

ûin(x, ω) = −2γ0g(x− xr, ω)û
in(xr, ω).

(5.4)

Upon substituting in the last formula above, the expression (2.12) for the Green’s function, we
arrive at:

ûin(x, ω) = ûin(xr, ω)e
−γ0|x−xr|. (5.5)

Useful frequency band

In Figure 5.4 ûin(xR, ω) and ûsc(xR, ω) can be found. From this figure we can deduce that the
interval [0, 4.0×107] contains all the useful frequencies. Thus for the inverse scattering problem
defined in the previous chapter we will use frequencies in this domain.
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Figure 5.4: Incidental and scattered voltage in frequency domain.
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Chapter 6

Numerical experiments with
synthetic data

In the previous Chapter we defined the inverse scattering problem. In this Chapter, we imple-
ment the problem and test performance. We do this by creating synthetic data and testing our
implementation on that.

6.1 Synthetic data

In order to test our data on synthetic data, we will first have to create our synthetic data.
This is done in the following way. Our forward and inverse scattering problem is defined as in
Equation (6.1) and Equation (6.2).

[I − (χb
1 + jωχb

2 + ω2χb
3)Gω]u

b
ω = uin

ω , (6.1)

(χb
1 + jωχb

2 + ω2χb
3)r

T
ωu

b
ω = usc

ω (6.2)

We will define most parameters as in Section 3.1 with 1 exception. Again we will have:

• I ∈ Rn×n is the identity matrix.

• Gω ∈ Cn×n is the matrix with the elements [Gω]k,i = hg(xk − xi, ω).

• Xm = diag(xm) ∈ Rn×n, m = 1, 2, 3, are the diagonal matrices that contain the vectors
xm ∈ Rn with the elements [xm]i = χm(xi) along their diagonals.

• Uω = diag(uω) ∈ Cn×n is the diagonal matrix containing the vector uω ∈ Cn with the
elements [uω]i = û(xi, ω) along its diagonal.

• uin
ω ∈ Cn is the vector with the elements [uin

ω ]i = û(xi, ω) with û(xi, ω) as defined in
Equation (5.5).

• rω ∈ Cn is the vector with the elements [rω]i = hg(xr − xi, ω).

• usc
ω ∈ C is the complex number representing the scattered frequency-domain voltage

ûsc(xr, ω).

However, usc
ω will be created synthetically. To do this we will use typical values for R,G,C and

L.

• To calculate the resistance R of our insulation material we will use the IEC classification of
conductors [3]. For a aluminium insulator with a cross section of 25mm2 R ≈ 1.20Ω/km.
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• The conductance of our insulation material G is expected to be very small as the electrical
resistance of XLPE is very large. We let G ∈ [10−25, 10−5].

• An approximation for the capacitance C is calculated using C = 2πϵ0ϵr/ ln(Dout/Din) [4]
where Din is the diameter of the conductor material (5.64 mm) and Dout is the diameter
of the insulation material and screen (7.13mm) and ϵr the relative permittivity of the insu-
lation material (2.5) [5]. This gives C ≈ 5.93281306× 10−10. As this is an approximation
we let C ∈ [0.5× 5.93281306× 10−10, 1.5× 5.93281306× 10−10].

• In Section 2.5 we already defined L = µ0 as our cable is essentially non-magnetic.

Using these approximations for our constitutive parameters we can create usc
ω synthetically.

Then we can test different minimization methods and analyse how well these methods perform
in reconstructing our parameters.

6.2 Local minimisation

One way to find the minimum of our cost function Equation (4.4) is by using a local minimisation
method. The Python package scipy offers various local minimization methods which all preform
relatively the same. One of the local methods is the BFGS-B, a quasi-Newton method that is
used for solving large-scale optimization problems with bound constraints on the variables.

To test whether the local minimization method accurately reconstructs our G and C we add
some error to our initial guess x0. If the reconstruction is accurate enough for small errors,
we can apply the method to the real data. In figure Figure 6.1 the performance of the lo-
cal optimization routine scipy.optimize.minimize(cost function, x0, method = BFGS-B,

bounds) is shown.

Figure 6.1: Performance of the scipy.optimize.minimize(method = BFGS-B) local optimiza-
tion algorithm. The red horizontal line indicates the true solution. The blue dots correspond
to reconstructions where the initial guess had an error corresponding to the x-axis

In the figure we can clearly see that even for extremely small perturbations of the initial
guess x0, the error on the reconstruction is extremely large: for only 10% error on x0, the
reconstructed C has more than 50% error with respect to the expected C. When applying our
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implementation to the real data, we expect our initial guess to have an error of much more
than 10%. This shows that the local optimisation algorithm is not accurate enough for our
application.

6.3 Global optimisation with the Differential Evolution al-
gorithm

As the available local optimisation method appears to be too sensitive with respect to the initial
guess, we tested various global optimisation methods that generally do not have this problem.
The method that produced the best results is the Differential Evolution (DE) algorithm. The
DE method is stochastic in nature. It does not use the gradient of the cost functional to find
its minimum, and can search large areas of the candidate space. At the same time, it often
requires a significant number of iterations, i.e., function evaluations, compared to conventional
gradient-based techniques.

Since the DE method is a global optimisation method, the bounds on variables need to be
defined. We define the bounds using the realistic intervals of G and C found in Section 6.1.
These are [10−25, 10−5] and [0.5×5.93281306×10−10, 1.5×5.93281306×10−10] respectively For
the numerical experiments, we take random pairs of the values of G and C in these intervals
and attempt their reconstruction. Figure 6.2a shows the results of these numerical experiments.
Each line is the error in the reconstruction of one such set of randomly chosen parameters.

(a) Errors in the reconstruction of the syn-
thetic G (top) and C (bottom) as functions
of the number of iterations of the Differential
Evolution algorithm

(b) Errors in the reconstruction of the syn-
thetic G (top) and C (bottom) as functions
of the number of frequency components used
in the reconstruction process

Figure 6.2: Performance of the scipy Differential Evolution algorithm

The errors in the reconstruction of G and C tends to zero with the increasing number of
iterations. On average we need 1024 iterations to find an acceptable solution.

One more aspect that can potentially affect the quality of the reconstruction is the number
of frequency components, or simply frequencies ω, used in the cost functional. In Figure 6.2b
G and C are reconstructed using an increasing number of frequencies. We evenly space our
frequencies over the ‘useful’ interval [0, 4× 107] that was established in Section 5.3. Again, each
line is the reconstruction error for a single set of the randomly chosen G and C. We see that
as long as we take multiple frequencies, the amount of frequencies is not as important for the
accurate reconstruction of G and C.
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Chapter 7

Application to measured data

In this Chapter, we apply the DE optimisation algorithm to the real data, reconstruct the
constitutive parameters G and C at different temperatures and analyse the results.

7.1 Reconstruction of G and C

To recover the relation between the temperature and the parameters of the cable we reconstruct
the constitutive parameters at each cable temperature individually, without assuming any a
priori temperature dependence model.

Figure 7.1 shows the measured temperature over two days. As can be seen from this plot,
the temperature of the cable is not consistent throughout the day, probably, due to the cyclic
operation mode of the heater. Therefore, the reconstruction of constitutive parameters will be
performed from several reflectometry measurements corresponding to the same nominal cable
temperature. This will hopefully allow to average out the fluctuations in the temperature.

Figure 7.1: Temperature log of a part of the Duiven experiment

Figure 7.2 shows the reconstructed G and C at 8 different temperatures. Each dot corre-
sponds to a reconstruction obtained from a single waveform measure by the reflectometer. At
each temperature we observe a few outliers. Although, most of the reconstructions lie in a small
interval.

The average conductivityG of the propagating medium (cable insulation layer) does not seem
to depend on the cable temperature, while the average capacitance C of the insulating material
decreases with temperature. This result is in agreement with the earlier conclusions in [2] that
the propagation speed of the electromagnetic wave is increasing with the cable temperature in an
XLPE power cable. This is further supported by the findings of Alliander that the propagation
time of the electromagnetic wave is decreasing with an increasing cable temperature. The
findings of Alliander can be found in Figure 7.3
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Figure 7.2: Reconstruction of G and C for a set of measurements per temperature. The box
plot visualises the spread of the reconstruction per temperature.

7.2 Reconstruction of the temperature dependence

We fit a polynomial function C3(T ) of the third degree in the temperature T to the median
values of the reconstructed C. The resulting function is shown in Figure 7.4. The explicit
expression for the fitted polynomial is:

C3(T ) = 1.23× 10−17 − 1.37× 10−15T + 3.46× 10−14T 2 + 3.06× 10−10T 3 (7.1)

It is obvious that this function is monotonically decreasing, which allows a unique recovery
of the value of T , given the reconstructed value of C.

This temperature dependence may be different (e.g. increasing) for other cables (e.g. PILC)
with a different type of insulating material. Therefore, a similar temperature-controlled exper-
iment should be performed with each specific power cable and the corresponding temperature-
dependence curves should be constructed.
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Figure 7.3: Propagation time of the electromagnetic signal sent through the XLPE cable. To
note, the measurements below 20 degrees failed.

Figure 7.4: Fitted third degree polynomial to the median values of C as a function of T
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Chapter 8

Conclusions

In this report an approach to the problem of the power-cable temperature reconstruction from
the reflectometry data has been presented. The main idea of this project was to recover the
electromagnetic constitutive parameters of the power cable and to analyze their dependence on
the temperature from the data obtained during a temperature-controlled experiment. Know-
ing this parameter-temperature dependence, one can then apply the parameter-reconstruction
algorithm and deduce the cable temperature in realistic conditions.

We have applied the Telegrapher’s equations to model the propagation of the electromagnetic
pulse in a power cable. We have further transformed the differential equations to the frequency
domain, and applied the scattering formalism and the Green’s Theorem to rewrite the problem
of the reconstruction of the cable parameters as an inverse problem in the form of two coupled
integral equations.

To take into account the finite length of the power cable, we have derived the discrete
analogue of the finite-cable Green’s function. A two-stage approach to the inverse scattering
problem has been proposed, where in the first stage the effective homogeneous constitutive
parameters of the cable are reconstructed without the usual linearizing approximation. Such
a linearizing approximation is much more appropriate at the second stage, where the spatial
inhomogeneities in the cable parameters are reconstructed.

In this report the first stage, i.e., the homogeneous-cable inverse problem, has been investi-
gated in detail on both synthetic and experimental data. We have implemented the homogeneous
cable model in python. We used Alliander’s temperature-controlled experiment, where an ap-
proximate procedure for extracting the incidental and the scattered signals had to be applied,
as only the total signal was measured.

We then tested the accuracy of our algorithm on synthetic data. The synthetic data was cre-
ated by using the actual incidental signal and synthetic cable parameters. We investigated both
local and global optimization algorithms and the global differential evolution (DE) algorithm
showed the best performance.

Finally, we implemented the model on the temperature-controlled experiment of Alliander
B.V. and reconstructed conductivity G and the capacitance C of the insulating material. The
median of G showed no temperature dependence. The median of C showed a decreasing depen-
dence on temperature for the XLPE power cable.

This temperature dependence of C(T ) has been fitted by a third degree polynomial. The
dependence of C on T is monotonic. Hence, the cable temperature T of a homogeneous cable
can be uniquely recovered from the reconstructed value of C.

While the results of this research are promising, several suggestions for the improvement of
both the data-acquisition procedure and the reconstruction algorithm are in order. First of all,
the approximate extraction of the incident signal should instead be implemented as a separate
accurate measurement of the signal sent into the power cable. Secondly, the disappointing per-
formance of the otherwise computationally efficient local gradient-based optimization algorithms
can probably be improved by calculating the analytical gradient expression and supplying it to

26



the optimization routine. Finally, a separate experiment should be carried out to verify the abil-
ity of the present inversion method to reconstruct the spatial inhomogeneities of the power-cable
temperature distribution.
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