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A novel adaptive fuzzy dynamic surface control (DSC) scheme is for the first time constructed for a larger class of (multi-input
multi-output) MIMO non-affine pure-feedback systems in the presence of input saturation nonlinearity. First of all, the restrictive
differentiability assumption on non-affine functions has been canceled after using the piecewise functions to reconstruct the model
for non-affine nonlinear functions. Then, a novel auxiliary system with bounded compensation term is firstly introduced to deal
with input saturation, and the dynamic system employed in this work designs a bounded compensation term of tangent function.
Thus, we successfully relax the strictly bounded assumption of the dynamic system. Additionally, the fuzzy logic systems (FLSs) are
used to approximate unknown continuous systems functions, and the minimal learning parameter (MLP) technique is exploited
to simplify control design and reduce the number of adaptive parameters. Finally, two simulation examples with input saturation
are given to validate the effectiveness of the developed method.

1. Introduction

In the past several decades, approximation-based adaptive
control of nonlinear systems has been attracting much
attention, and many significant results have been achieved
[1–11]. Among them, the fuzzy logic systems (FLSs) and
neural networks (NNs) have been successfully employed to
approximate the unknown nonlinear functions. In addition,
as a breakthrough in nonlinear control, approximation-
based adaptive backstepping control has been extensively
introduced to achieve global stability for many classes of
nonlinear systems [12–17]. For example, in [12], an adaptive
fuzzy control scheme was proposed for a class of nonlinear
pure-feedback systems under the framework of backstepping,
which requires no priori knowledge of the systems dynamic.
In [14], an adaptive fuzzy control scheme is presented for a
class of pure-feedback nonlinear systems with immeasurable
states by utilizing backstepping methodology. Recently, for
a class of stochastic nonlinear systems with unknown con-
trol direction and unknown dead-zones, an adaptive fuzzy

backstepping control method is presented in [17]. However,
the problem of “explosion of complexity” caused by repeated
differentiations of the virtual control law seriously limits
the application of conventional backstepping technique.
Thus, the dynamic surface control (DSC) technique has
been creatively proposed to avoid this problem effectively
by introducing a first-order low-pass filter at each step.
Furthermore, compared with strict-feedback systems, pure-
feedback systems have a non-affine fashion that the control
inputs or variables appear nonlinearly in uncertain systems
functions, which leads to the design being more difficult
[18, 19]. Moreover, in contrast with SISO pure-feedback non-
linear systems, the control design of MIMO pure-feedback
nonlinear systems is, as well known, more complicated due
to the couplings among various inputs and outputs [20].

On the other hand, input saturation nonlinearity, as one
of the most important input constraints, usually appears
in many industrial control systems [21]. In many applica-
tions, the input saturation nonlinearity may severely cause
degradation of system performance, instability, or even
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damage. Consequently, the adaptive control of nonlinear
systems in the presence of input saturation nonlinearity
has been an active topic and attracted increasing attention
in recent years [22–30]. For example, in [22], an adaptive
fuzzy controller is constructed for pure-feedback stochastic
nonlinear systems to deal with input constraints based on the
adjustment of commanded input signal. In [25], an adaptive
neural controller is investigated for a class of pure-feedback
nonlinear time-varying systems with asymmetric input sat-
uration nonlinearity in combination with the Gaussian error
function. Recently, for a class of uncertain nonlinear systems
with input saturation constraint and external disturbances,
a tracking control scheme is proposed by introducing an
auxiliary system in [27]. However, it should be pointed out
that, for all above the state-of-the-art schemes [22–30] to
work for pure-feedback uncertain nonlinear systems subject
to input saturation, the non-affine function is always assumed
to be differentiable with respect to control variables or inputs,
which is restrictive arising from the fact that non-smooth
nonlinearities such as dead zone, backlash, and saturation
widely exist in various kinds of practical systems [22–25],
which makes the non-affine functions non-differentiable
and motives us to explore new methods to overcome this
limitation [22].

As amatter of fact, overcoming this limitation is challeng-
ing.This is because FLSs approximation errors will inevitably
occur while adopting FLSs to approximate unknown systems
functions within a compact set, this, in combination with
external disturbances, may seriously degrade control perfor-
mance or even give rise to closed-loop system instability.
Additionally, there also exist a large number of fuzzy weights
that need to be tuned online, which drastically increases the
computational burden [28]. Therefore, a design technique
needs to be developed that is able to guarantee that all
system trajectories stay in the appropriate compact sets all
the time, and the MLP technique needs to be employed
to solve the explosion of learning parameters. Based on
the aforementioned observations, this paper addresses the
control problem for a more general class of MIMO pure-
feedback nonlinear systems in the presence of input satu-
ration nonlinearity. What is more, to the best of authors’
knowledge, the control design of this huger class of non-
linear systems has not been reported, which is still an
open problem with theoretical and applicable significance.
The main contributions of this paper are highlighted as
follows: (1) it seems that this is the first work that considers
both the MIMO non-affine nonlinear systems and input
saturation even though some existing works focused on
the same topic; (2) to handle input saturation, compared
with the auxiliary system ℘̇𝑗 = −𝜅𝑗℘𝑗 + 𝑠𝑎𝑡(𝑜𝑗) − 𝑜𝑗
presented in [27, 30], the dynamic system employed in this
work designs a bounded compensation term 𝜉𝑗 tanh℘𝑗, and,
thus, the assumption that ℘𝑗 is bounded is cancelled; (3)
in contrast to the existing strategies [22–30], we allow the
non-affine functions of MIMO input-saturated nonlinear
systems to be non-differentiable via the reconstruction of
non-affine functions using appropriate piecewise functions,
which removes the restrictive differentiability assumption on
non-affine functions.

The rest of this paper is organized as follows. Section 2
presents the problem statement and preliminaries. The adap-
tive controller design is given in Section 3. Section 4 is
devoted to stability analysis. In Section 5 simulation results
are presented to show the effectiveness of the proposed
scheme, followed by the conclusion in Section 6.

2. Problem Statement and Preliminaries

Consider the following MIMO pure-feedback systems [23]:

̇𝜒𝑗,𝑖𝑗 = 𝜑𝑗,𝑖𝑗 (𝜒𝑗,𝑖𝑗 , 𝜒𝑗,𝑖𝑗+1) + 𝐷𝑗,𝑖𝑗 (𝜒, 𝑡) ,
1 ≤ 𝑖𝑗 ≤ 𝜌𝑗 − 1

̇𝜒𝑗,𝜌𝑗 = 𝜑𝑗,𝜌𝑗 (𝜒𝑗,𝜌𝑗 , 𝑢𝑗 (𝑜𝑗)) + 𝐷𝑗,𝜌𝑗 (𝜒, 𝑡)
𝑦𝑗 = 𝜒𝑗,1, 𝑗 = 1, 2, . . . , 𝑚

(1)

where 𝜒𝑗,𝑖𝑗 ∈ 𝑅 is the state of the 𝑗th subsystem, 𝜒 =[𝜒𝑇1,𝜌1 , . . . , 𝜒𝑇𝑗,𝜌𝑗 , . . . , 𝜒𝑇𝑚,𝜌𝑚]𝑇 ∈ 𝑅𝑁 is the state vector of
the whole system (𝑁 = 𝜌1 + ⋅ ⋅ ⋅ + 𝜌𝑚), where 𝜒𝑗,𝜌𝑗 =[𝜒𝑗,1, 𝜒𝑗,2, . . . , 𝜒𝑗,𝜌𝑗]𝑇 ∈ 𝑅𝜌𝑗 and 𝜌𝑗 is the order of the 𝑗th
subsystem. 𝜒𝑗,𝑖𝑗 = [𝜒𝑗,1, . . . , 𝜒𝑗,𝑖𝑗]𝑇 ∈ 𝑅𝑖𝑗 , 𝑢𝑗 ∈ 𝑅 and 𝑦𝑗 ∈ 𝑅
are the input and output of the 𝑗th subsystem, respectively.𝜑𝑗,𝑖𝑗(⋅) are unknown non-affine continuous functions, and𝐷𝑗,𝑖𝑗(𝜒, 𝑡), 𝑖𝑗 = 1, . . . , 𝜌𝑗, 𝑗 = 1, . . . , 𝑚 are the unknown
external disturbances. 𝑢𝑗(𝑜𝑗) is the plant input subject to
saturation and satisfying [30]

𝑢𝑗 (𝑜𝑗) = 𝑠𝑎𝑡 (𝑜𝑗) = {{{
sign (𝑜𝑗) 𝑢𝑗,𝑀, 𝑜𝑗 ≥ 𝑢𝑗,𝑀𝑜𝑗, 𝑜𝑗 < 𝑢𝑗,𝑀 (2)

where 𝑢𝑗,𝑀 is the bound of 𝑢𝑗(𝑜𝑗), 𝑜𝑗 ∈ 𝑅 is the input
saturation, and 𝑢𝑗 = 𝑢𝑗(𝑜𝑗).

The design objective of this work is to construct a novel
dynamic surface controller 𝑢𝑗 such that (1) the output track-
ing error 𝑧𝑗,1 = 𝜒𝑗,1 − 𝑦𝑗,𝑑 achieves preselected transient and
steady bounds; (2) all signals of system (1) are semiglobally
uniformly ultimately bounded (SGUUB); (3) the control
input constraint is not violated.

Assumption 1. Define the functions 𝜓𝑗,𝑖𝑗(𝜒𝑗,𝑖𝑗 , 𝜒𝑗,𝑖𝑗+1) =𝜑𝑗,𝑖𝑗(𝜒𝑗,𝑖𝑗 , 𝜒𝑗,𝑖𝑗+1) −𝜑𝑗,𝑖𝑗(𝜒𝑗,𝑖𝑗 , 0). We assume that the functions𝜓𝑗,𝑖𝑗(𝜒𝑗,𝑖𝑗 , 𝜒𝑗,𝑖𝑗+1) satisfy
𝜓
𝑗,𝑖𝑗
𝜒𝑗,𝑖𝑗+1 + ℏ𝑗,1𝑖𝑗 ≤ 𝜓𝑗,𝑖𝑗 (𝜒𝑗,𝑖𝑗 , 𝜒𝑗,𝑖𝑗+1)

≤ 𝜓𝑗,𝑖𝑗𝜒𝑗,𝑖𝑗+1 + ℏ𝑗,2𝑖𝑗 , 𝜒𝑗,𝑖𝑗+1 ≥ 0
𝜓󸀠
𝑗,𝑖𝑗
𝜒𝑗,𝑖𝑗+1 + ℏ𝑗,3𝑖𝑗 ≤ 𝜓𝑗,𝑖𝑗 (𝜒𝑗,𝑖𝑗 , 𝜒𝑗,𝑖𝑗+1)

≤ 𝜓󸀠𝑗,𝑖𝑗𝜒𝑗,𝑖𝑗+1 + ℏ𝑗,4𝑖𝑗 , 𝜒𝑗,𝑖𝑗+1 < 0
(3)
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where 𝜓
𝑗,𝑖𝑗
, 𝜓𝑗.𝑖𝑗 , 𝜓󸀠𝑗,𝑖𝑗 , and 𝜓󸀠𝑗,𝑖𝑗 are unknown positive con-

stants; ℏ𝑗,1𝑖𝑗 , ℏ𝑗,2𝑖𝑗 , ℏ𝑗,3𝑖𝑗 , and ℏ𝑗,4𝑖𝑗 are unknown constants.
And denote 𝜒𝑗,𝜌𝑗+1 = 𝑢𝑗, 𝜒𝑗,𝜌𝑗+1 = [𝜒𝑇𝑗,𝜌𝑗 , 𝑢𝑗]𝑇 for notation
conciseness.

Remark 2. In [22–30], the non-affine functions are always
assumed to satisfy 𝑞

𝑗,𝑖𝑗+1
≤ 𝜕𝜑𝑗,𝑖𝑗(𝜒𝑗,𝑖𝑗 , 𝜒𝑗,𝑖𝑗+1)/𝜕𝜒𝑗,𝑖𝑗+1 ≤𝑞𝑗,𝑖𝑗+1 and 𝑞𝑗,𝜌𝑗 ≤ 𝜕𝜑𝑗,𝑖𝑗(𝜒𝑗,𝜌𝑗 , 𝑢𝑗)/𝜕𝑢𝑗 ≤ 𝑞𝑗,𝜌𝑗 with 𝑞𝑗,𝑖𝑗+1 >0, 𝑞𝑗,𝑖𝑗+1 > 0, 𝑞

𝑗,𝜌𝑗
> 0, and 𝑞𝑗,𝜌𝑗 > 0 being unknown

constants. In fact, this assumption is used to ensure the
controllability of system (1). However, the assumption 𝑞

𝑗,𝜌𝑗
≤𝜕𝜑𝑗,𝑖𝑗(𝜒𝑗,𝜌𝑗 , 𝑢𝑗)/𝜕𝑢𝑗 ≤ 𝑞𝑗,𝜌𝑗 is too restrictive due to the fact

that many kinds of non-smooth nonlinearities (e.g., dead-
zone, backlash, or saturation, and so on) extensively exist
in control input, leading to the non-differentiability of non-
affine functions, even instability of closed-loop systems [10].
Even though some existing works like [16, 19] focus on the
same topic, none of them addresses the control problem
for both MIMO non-affine systems and input saturation
problem. In other words, in this paper, we for the first
time investigate a larger class of MIMO nonlinear systems
considering both non-differentiable non-affine functions and
input saturation.

Remark 3. From (3), there exist functions ℓ𝑗,1𝑖𝑗(𝜒𝑗,𝑖𝑗+1) andℓ𝑗,2𝑖𝑗(𝜒𝑗,𝑖𝑗+1) taking values in [0, 1] and satisfying

𝜓𝑗,𝑖𝑗 (𝜒𝑗,𝑖𝑗 , 𝜒𝑗,𝑖𝑗+1)
= (1 − ℓ𝑗,1𝑖𝑗 (𝜒𝑗,𝑖𝑗+1)) (𝜓𝑗,𝑖𝑗𝜒𝑗,𝑖𝑗+1 + ℏ𝑗,1𝑖𝑗)
+ ℓ𝑗,1𝑖𝑗 (𝜒𝑗,𝑖𝑗+1) (𝜓𝑗,𝑖𝑗𝜒𝑗,𝑖𝑗+1 + ℏ𝑗,2𝑖𝑗) ,

𝜒𝑗,𝑖𝑗+1 ≥ 0
𝜓𝑗,𝑖𝑗 (𝜒𝑗,𝑖𝑗 , 𝜒𝑗,𝑖𝑗+1)
= (1 − ℓ𝑗,2𝑖𝑗 (𝜒𝑗,𝑖𝑗+1)) (𝜓󸀠𝑗,𝑖𝑗𝜒𝑗,𝑖𝑗+1 + ℏ𝑗,3𝑖𝑗)
+ ℓ𝑗,2𝑖𝑗 (𝜒𝑗,𝑖𝑗+1) (𝜓󸀠𝑗,𝑖𝑗𝜒𝑗,𝑖𝑗+1 + ℏ𝑗,4𝑖𝑗) ,

𝜒𝑗,𝑖𝑗+1 ≥ 0

(4)

To make the control design succinct, define the functions𝑄𝑗,𝑖𝑗(𝜒𝑗,𝑖𝑗+1) and Δ 𝑗,𝑖𝑗(𝜒𝑗,𝑖𝑗+1) as
𝑄𝑗,𝑖𝑗 (𝜒𝑗,𝑖𝑗+1)
= {{{{{

(1 − ℓ𝑗,1𝑖𝑗 (𝜒𝑗,𝑖𝑗+1))𝜓𝑗,𝑖𝑗 + ℓ𝑗,1𝑖𝑗 (𝜒𝑗,𝑖𝑗+1)𝜓𝑗,𝑖𝑗 , 𝜒𝑗,𝑖𝑗+1 ≥ 0(1 − ℓ𝑗,2𝑖𝑗 (𝜒𝑗,𝑖𝑗+1))𝜓󸀠𝑗,𝑖𝑗 + ℓ𝑗,2𝑖𝑗 (𝜒𝑗,𝑖𝑗+1)𝜓󸀠𝑗,𝑖𝑗 , 𝜒𝑗,𝑖𝑗+1 < 0

Δ 𝑗,𝑖𝑗 (𝜒𝑗,𝑖𝑗+1)
= {{{

(1 − ℓ𝑗,1𝑖𝑗 (𝜒𝑗,𝑖𝑗+1)) ℏ𝑗,1𝑖𝑗 + ℓ𝑗,1𝑖𝑗 (𝜒𝑗,𝑖𝑗+1) ℏ𝑗,2𝑖𝑗 , 𝜒𝑗,𝑖𝑗+1 ≥ 0(1 − ℓ𝑗,2𝑖𝑗 (𝜒𝑗,𝑖𝑗+1)) ℏ𝑗,3𝑖𝑗 + ℓ𝑗,2𝑖𝑗 (𝜒𝑗,𝑖𝑗+1) ℏ𝑗,4𝑖𝑗 , 𝜒𝑗,𝑖𝑗+1 < 0
(5)

Using (5), we can model the non-affine terms𝜓𝑗,𝑖𝑗(𝜒𝑗,𝑖𝑗 , 𝜒𝑗,𝑖𝑗+1) as
𝜓𝑗,𝑖𝑗 (𝜒𝑗,𝑖𝑗 , 𝜒𝑗,𝑖𝑗+1) = 𝑄𝑗,𝑖𝑗 (𝜒𝑗,𝑖𝑗+1) 𝜒𝑗,𝑖𝑗+1

+ Δ 𝑗,𝑖𝑗 (𝜒𝑗,𝑖𝑗+1)
(6)

In view of (5), it can be known that

0 < 𝑄
𝑗,𝑖𝑗
≤ 𝑄𝑗,𝑖𝑗 (𝜒𝑗,𝑖𝑗+1) ≤ 𝑄𝑗,𝑖𝑗 ,

0 ≤ 󵄨󵄨󵄨󵄨󵄨󵄨Δ 𝑗,𝑖𝑗 (𝜒𝑗,𝑖𝑗+1)󵄨󵄨󵄨󵄨󵄨󵄨 ≤ ℏ∗𝑗,𝑖𝑗
(7)

where 𝑄
𝑗,𝑖𝑗

= min𝑖𝑗=1,2,...,𝜌𝑗 {𝜓𝑗,𝑖𝑗 , 𝜓𝑗,𝑖𝑗 , 𝜓󸀠𝑗,𝑖𝑗 , 𝜓󸀠𝑗,𝑖𝑗}, 𝑄𝑗,𝑖𝑗 =
max𝑖𝑗=1,2,...,𝜌𝑗 {𝜓𝑗,𝑖𝑗 , 𝜓𝑗,𝑖𝑗 , 𝜓󸀠𝑗,𝑖𝑗 , 𝜓󸀠𝑗,𝑖𝑗} and ℏ∗𝑗,𝑖𝑗 = max {|ℏ𝑗,1𝑖𝑗 | +|ℏ𝑗,2𝑖𝑗 | + |ℏ𝑗,3𝑖𝑗 | + |ℏ𝑗,4𝑖𝑗 |}. According to (6) and the definition
of 𝜓𝑗,𝑖𝑗(𝜒𝑗,𝑖𝑗 , 𝜒𝑗,𝑖𝑗+1), system (1) can be rewritten as

̇𝜒𝑗,𝑖𝑗 = 𝜑𝑗,𝑖𝑗 (𝜒𝑗,𝑖𝑗 , 0) + 𝑄𝑗,𝑖𝑗 (𝜒𝑗,𝑖𝑗+1) 𝜒𝑗,𝑖𝑗+1
+ Δ 𝑗,𝑖𝑗 (𝜒𝑗,𝑖𝑗+1) + 𝐷𝑗,𝑖𝑗 (𝜒, 𝑡) ,

𝑖𝑗 = 1, 2, . . . , 𝜌𝑗 − 1
̇𝜒𝑗,𝜌𝑗 = 𝜑𝑗,𝜌𝑗 (𝜒𝑗,𝜌𝑗 , 0) + 𝑄𝑗,𝜌𝑗 (𝜒𝑗,𝜌𝑗+1) 𝑢𝑗

+ Δ 𝑗,𝜌𝑗 (𝜒𝑗,𝜌𝑗+1) + 𝐷𝑗,𝜌𝑗 (𝜒, 𝑡)
𝑦𝑗 = 𝜒𝑗,1

(8)

Assumption 4. The reference signal 𝑦𝑗,𝑑(𝑡) is continuous and
available, and there exists a positive constant 𝑃𝑗0 such thatΩ𝑗0 fl {(𝑦𝑗,𝑑, ̇𝑦𝑗,𝑑, ̈𝑦𝑗,𝑑) : (𝑦𝑗,𝑑)2 + ( ̇𝑦𝑗,𝑑)2 + ( ̈𝑦𝑗,𝑑)2 ≤ 𝑃𝑗0}.
Assumption 5. For 𝑖𝑗 = 1, . . . , 𝜌𝑗, 𝑗 = 1, . . . , 𝑚, there exist
unknown positive constants 𝐷∗𝑗,𝑖𝑗 satisfying |𝐷𝑗,𝑖𝑗(𝜒, 𝑡)| ≤𝐷∗𝑗,𝑖𝑗 .
Lemma6 (see [8]). Consider the first-order dynamical system:

Υ̇ (𝑡) = − �Υ (𝑡) + 𝑏𝜏 (𝑡) (9)

with � > 0, 𝑏 > 0 and 𝜏(𝑡) a positive function. Then, for
any given bounded initial condition Υ(𝑡0) ≥ 0, the inequalityΥ(𝑡) ≥ 0, (∀𝑡 ≥ 0) holds.
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Lemma7 (see [17]). For any 𝛾 ∈ 𝑅 and∀ℵ > 0, the hyperbolic
tangent function tanh (⋅) fulfills

0 ≤ 󵄨󵄨󵄨󵄨𝛾󵄨󵄨󵄨󵄨 − 𝛾 tanh( 𝛾ℵ) ≤ 0.2785ℵ
0 ≤ 𝛾 tanh( 𝛾ℵ)

(10)

The fuzzy logic systems (FLSs) are employed as function
approximator. Construct FLSs with the following IF-THEN
rules:

𝑅𝑙 : If 𝜒1 is 𝐹𝑙1 and . . . and 𝜒𝑛 is 𝐹𝑙𝑛
THEN 𝑦 is 𝐵𝑙, 𝑙 = 1, 2, . . . , 𝑁. (11)

where 𝜒 = [𝜒1, 𝜒2, . . . , 𝜒𝑛]𝑇 ∈ 𝑅𝑛 and 𝑦 are input and output
of the FLSs. Based on the singleton fuzzifier, product inference,
and center average defuzzifier, the FLSs can be formulated as

𝑦 (𝜒) = ∑𝑁𝑖=1max𝑦∈𝑅𝑢𝐵𝑖 (𝑦)∏𝑛𝑗=1𝑢𝐹𝑖𝑗 (𝜒𝑗)∑𝑁𝑖=1 [∏𝑛𝑗=1𝑢𝐹𝑖𝑗 (𝜒𝑗)] (12)

where 𝑢𝐹𝑖𝑗(𝜒𝑗) and 𝑢𝐵𝑖(𝑦) are the membership of 𝐹𝑖𝑗 and 𝐵𝑖,
respectively. Let

𝜙𝑖 (𝜒) = ∏𝑛𝑗=1𝑢𝐹𝑖𝑗 (𝜒𝑗)∑𝑁𝑖=1 [∏𝑛𝑗=1𝑢𝐹𝑖𝑗 (𝜒𝑗)] (13)

where Θ𝑖 = max𝑦∈𝑅𝑢𝐵𝑖(𝑦), Θ = [Θ1, Θ2, . . . , Θ𝑁]𝑇, and𝜙(𝜒) = [𝜙1(𝜒), 𝜙2(𝜒), . . . , 𝜙𝑁(𝜒)]𝑇. Then, the FLSs can be
expressed as follows:

𝑦 (𝜒) = Θ𝑇𝜙 (𝜒) (14)

Lemma 8 (see [23]). On a compact set Ω𝜒, if 𝑓(𝜒) is a
continuous function, for any given constant 𝜛∗ > 0, then there
exist FLSs 𝑦(𝜒) such that

sup
𝜒∈Ω𝜒

󵄨󵄨󵄨󵄨𝑓 (𝜒) − 𝑦 (𝜒)󵄨󵄨󵄨󵄨 ≤ 𝜛∗ (15)

3. Fuzzy Adaptive Controller Design

In this section, an adaptive fuzzy controller is proposed for
a larger class of MIMO pure-feedback nonlinear systems (1)
utilizing the DSC technique. To start, consider the following
change of coordinates:

𝑧𝑗,1 = 𝜒𝑗,1 − 𝑦𝑗,𝑑,
𝑧𝑗,𝑖𝑗 = 𝜒𝑗,𝑖𝑗 − ]𝑗,𝑖𝑗 , 𝑖𝑗 = 2, 3, . . . , 𝜌𝑗 − 1,
𝑧𝑗,𝜌𝑗 = 𝜒𝑗,𝜌𝑗 − ]𝑗,𝜌𝑗 − 𝜉𝑗 tanh℘𝑗

(16)

where 𝑧𝑗,1 is the output tracking error, ]𝑗,𝑖𝑗 is the output of the
first-order filter with 𝑠𝑗,𝑖𝑗−1 as the input, 𝜉𝑗 is a positive design
parameter, and ℘𝑗 is a dynamic system defined as

℘̇𝑗 = cosh2 ℘𝑗𝜉𝑗 (−𝜅𝑗 tanh℘𝑗 + 𝑠𝑎𝑡 (𝑜𝑗) − 𝑜𝑗) ,
℘𝑗 (0) = 0

(17)

where 𝜅𝑗 > 0 is a design parameter.

Remark 9. It has to be noted that, compared with the existing
work [27, 30], a novel auxiliary system is proposed, and the
dynamic system employed in this brief designed a bounded
compensation term 𝜉𝑗 tanh℘𝑗 to cope with input saturation
problem. Therefore, the restrictive bounded assumption of
the dynamic system has been deleted.

Since 𝜑𝑗,𝑖𝑗(𝜒𝑗,𝑖𝑗 , 0), 𝑖𝑗 = 1, . . . , 𝜌𝑗 are unknown con-
tinuous functions, we use fuzzy logic systems (FLSs) to
approximate them as follows:

𝜑𝑗,𝑖𝑗 (𝜒𝑗,𝑖𝑗 , 0) = Θ𝑇𝑗,𝑖𝑗𝜙 (𝜒𝑗,𝑖𝑗) + 𝜛𝑗,𝑖𝑗 , 𝑖𝑗 = 1, . . . , 𝜌𝑗 (18)

where 𝜛𝑗,𝑖𝑗 is the approximation error and satisfies |𝜛𝑗,𝑖𝑗 | ≤𝜛∗𝑗,𝑖𝑗 with 𝜛∗𝑗,𝑖𝑗 > 0 being an unknown constant.
Define

Φ𝑗,𝑖𝑗 = 𝑄−1𝑗,𝑖𝑗 󵄩󵄩󵄩󵄩󵄩󵄩Θ𝑗,𝑖𝑗󵄩󵄩󵄩󵄩󵄩󵄩2 , 𝑖𝑗 = 1, . . . , 𝜌𝑗 (19)

whereΦ𝑗,𝑖𝑗 are unknown constants and Φ̂𝑗,𝑖𝑗 is the estimate ofΦ𝑗,𝑖𝑗 with Φ̂𝑗,𝑖𝑗 = Φ𝑗,𝑖𝑗 − Φ̃𝑗,𝑖𝑗 .
Step 𝑗, 1. Differentiating 𝑧𝑗,1 along with (16) yields

�̇�𝑗,1 = 𝜑𝑗,1 (𝜒𝑗,1, 0) + 𝑄𝑗,1 (𝜒𝑗,2) 𝜒𝑗,2 + Δ 𝑗,1 (𝜒𝑗,2)
+ 𝐷𝑗,1 (𝜒, 𝑡) − ̇𝑦𝑗,𝑑 (20)

Consider the following quadratic Lyapunov function
candidate:

𝑉𝑧𝑗,1 = 12𝑧2𝑗,1 (21)

Invoking (7), (20), and Assumption 5, we have

�̇�𝑧𝑗,1 ≤ 𝑧𝑗,1𝜑𝑗,1 (𝜒𝑗,1, 0) + 𝑄𝑗,1 (𝜒𝑗,2) 𝜒𝑗,2𝑧𝑗,1 − 𝑧𝑗,1 ̇𝑦𝑗,𝑑
+ 󵄨󵄨󵄨󵄨󵄨𝑧𝑗,1󵄨󵄨󵄨󵄨󵄨 ℏ∗𝑗,1 + 󵄨󵄨󵄨󵄨󵄨𝑧𝑗,1󵄨󵄨󵄨󵄨󵄨 𝐷∗𝑗,1 (22)

Substituting (18) into (22) gives

�̇�𝑧𝑗,1 ≤ 𝑧𝑗,1Θ𝑇𝑗,1𝜙 (𝜒𝑗,1) + 𝑄𝑗,1 (𝜒𝑗,2) 𝜒𝑗,2𝑧𝑗,1 − 𝑧𝑗,1 ̇𝑦𝑗,𝑑
+ 󵄨󵄨󵄨󵄨󵄨𝑧𝑗,1󵄨󵄨󵄨󵄨󵄨 𝑄𝑗,1𝜂∗𝑗,1 (23)
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where 𝜂∗𝑗,1 = 𝑄−1
𝑗,1
(𝜛∗𝑗,1 + ℏ∗𝑗,1 + 𝐷∗𝑗,1). In view of Young’s

inequality, we can further have

�̇�𝑧𝑗,1 ≤ 𝑄𝑗,1 (𝜒𝑗,2) 𝜒𝑗,2𝑧𝑗,1
+ 𝑧2𝑗,1 󵄩󵄩󵄩󵄩󵄩Θ𝑗,1󵄩󵄩󵄩󵄩󵄩22𝑎2𝑗,1 𝜙𝑇 (𝜒𝑗,1) 𝜙 (𝜒𝑗,1) + 𝑎2𝑗,12
+ 󵄨󵄨󵄨󵄨󵄨𝑧𝑗,1󵄨󵄨󵄨󵄨󵄨 𝑄𝑗,1𝜂∗𝑗,1 − 𝑧𝑗,1 ̇𝑦𝑗,𝑑

(24)

where 𝑎𝑗,1 is positive constant.
Then, construct the virtual control law 𝑠𝑗,1 andparameters

adaptation laws 𝜂𝑗,1 and Φ̂𝑗,1 as
𝑠𝑗,1 = −𝑐𝑗,1𝑧𝑗,1 − Φ̂𝑗,1𝑧𝑗,12𝑎2𝑗,1 𝜙𝑇 (𝜒𝑗,1) 𝜙 (𝜒𝑗,1)

− 𝜂𝑗,1 tanh (𝑧𝑗,1𝜐𝑗,1)
− 𝛼𝑗,1 ̇𝑦𝑗,𝑑 tanh (𝑧𝑗,1 ̇𝑦𝑗,𝑑𝜐𝑗,1 )

(25)

̇̂𝜂𝑗,1 = 𝜉𝑗,1𝑧𝑗,1 tanh (𝑧𝑗,1𝜐𝑗,1) − 𝜎𝑗,1𝜉𝑗,1𝜂𝑗,1 (26)

̇̂Φ𝑗,1 = 𝛽𝑗,1𝑧2𝑗,12𝑎2𝑗,1 𝜙𝑇 (𝜒𝑗,1) 𝜙 (𝜒𝑗,1) − 𝜎𝑗,1𝛽𝑗,1Φ̂𝑗,1 (27)

where 𝑐𝑗,1 > 0, 𝛽𝑗,1 > 0, 𝜉𝑗,1 > 0, 𝜎𝑗,1 > 0, 𝑎𝑗,1 > 0, 𝜐𝑗,1 > 0
and 𝛼𝑗,1 ≥ 𝑄−1𝑗,1 are design parameters, and 𝜂𝑗,1 is the estimate
of 𝜂∗𝑗,1.
Remark 10. Note that (26) and (27) satisfy Lemma 6. Thus,
by choosing 𝜂𝑗,1(0) ≥ 0 and Φ̂𝑗,1(0) ≥ 0, one has 𝜂𝑗,1(𝑡) ≥ 0
and Φ̂𝑗,1(𝑡) ≥ 0 for ∀𝑡 ≥ 0. Furthermore, since the initial
conditions 𝜂𝑗,1(0) and Φ̂𝑗,1(0) are selected by control law
designer, we choose 𝜂𝑗,1(0) ≥ 0 and Φ̂𝑗,1(0) ≥ 0.

In line with the DSC technique, introduce variable ]𝑗,2.
Let 𝑠𝑗,1 pass through a first-order filter with time constant 𝜄𝑗,2
to obtain ]𝑗,2 as

𝜄𝑗,2]̇𝑗,2 + ]𝑗,2 = 𝑠𝑗,1, ]𝑗,2 (0) = 𝑠𝑗,1 (0) (28)

Define the filter error 𝑒𝑗,2 = ]𝑗,2 − 𝑠𝑗,1, which yields ]̇𝑗,2 =−(𝑒𝑗,2/𝜄𝑗,2) and
̇𝑒𝑗,2 = −𝑒𝑗,2𝜄𝑗,2

+ Ξ𝑗,2 (𝑧𝑗,1, 𝑧𝑗,2, 𝑒𝑗,2, Φ̂𝑗,1, 𝜂𝑗,1, 𝑦𝑗,𝑑, ̇𝑦𝑗,𝑑, ̈𝑦𝑗,𝑑)
(29)

where Ξ𝑗,2(⋅) is the introduced continuous function.
By 𝜒𝑗,2 = 𝑧𝑗,2 + ]𝑗,2 and 𝑒𝑗,2 = ]𝑗,2 − 𝑠𝑗,1, we have

𝜒𝑗,2 = 𝑧𝑗,2 + 𝑠𝑗,1 + 𝑒𝑗,2 (30)

Noting that Φ𝑗,1 = 𝑄−1
𝑗,1
‖Θ𝑗,1‖2 and 𝛼𝑗,1 ≥ 𝑄−1

𝑗,1
, and

substituting (25) and (30) into (24), we can further obtain

�̇�𝑧𝑗,1 ≤ 𝑄𝑗,1 (𝜒𝑗,2) (𝑧𝑗,2 + 𝑒𝑗,2) 𝑧𝑗,1 − 𝑐𝑗,1𝑄𝑗,1𝑧2𝑗,1
+ 󵄨󵄨󵄨󵄨󵄨𝑧𝑗,1 ̇𝑦𝑗,𝑑󵄨󵄨󵄨󵄨󵄨 + 𝑎

2
𝑗,12 − 𝑄

𝑗,1
𝜂𝑗,1𝑧𝑗,1 tanh (𝑧𝑗,1𝜐𝑗,1)

− 𝑧𝑗,1 ̇𝑦𝑗,𝑑 tanh (𝑧𝑗,1 ̇𝑦𝑗,𝑑𝜐𝑗,1 )
+ 𝑄𝑗,1Φ̃𝑗,1𝑧2𝑗,12𝑎2𝑗,1 𝜙𝑇 (𝜒𝑗,1) 𝜙 (𝜒𝑗,1)
+ 󵄨󵄨󵄨󵄨󵄨𝑧𝑗,1󵄨󵄨󵄨󵄨󵄨 𝑄𝑗,1𝜂∗𝑗,1

(31)

Take the following Lyapunov function candidate:

𝑉𝑗,1 = 𝑉𝑧𝑗,1 + 𝑄𝑗,1𝜂
2
𝑗,12𝜉𝑗,1 +

𝑄
𝑗,1
Φ̃2𝑗,12𝛽𝑗,1 (32)

where 𝜂𝑗,1 = 𝜂∗𝑗,1 −𝜂𝑗,1 and Φ̃𝑗,1 = Φ𝑗,1 −Φ̂𝑗,1 are the estimates
of 𝜂𝑗,1 andΦ𝑗,1, respectively.

It follows from (31) that the time derivative of 𝑉𝑗,1 is
�̇�𝑗,1 ≤ 𝑄𝑗,1 (𝜒𝑗,2) (𝑧𝑗,2 + 𝑒𝑗,2) 𝑧𝑗,1 − 𝑐𝑗,1𝑄𝑗,1𝑧2𝑗,1 + 𝑎

2
𝑗,12

− 𝑄𝑗,1Φ̃𝑗,1𝛽𝑗,1 [ ̇̂Φ𝑗,1 − 𝛽𝑗,1𝑧2𝑗,12𝑎2𝑗,1 𝜙𝑇 (𝜒𝑗,1) 𝜙 (𝜒𝑗,1)]
+ [󵄨󵄨󵄨󵄨󵄨𝑧𝑗,1 ̇𝑦𝑗,𝑑󵄨󵄨󵄨󵄨󵄨 − 𝑧𝑗,1 ̇𝑦𝑗,𝑑 tanh (𝑧𝑗,1 ̇𝑦𝑗,𝑑𝜐𝑗,1 )]
− 𝑄𝑗,1𝜂𝑗,1𝜉𝑗,1 [ ̇̂𝜂𝑗,1 − 𝜉𝑗,1𝑧𝑗,1 tanh (𝑧𝑗,1𝜐𝑗,1)]
+ 𝑄
𝑗,1
𝜂∗𝑗,1 [󵄨󵄨󵄨󵄨󵄨𝑧𝑗,1󵄨󵄨󵄨󵄨󵄨 − 𝑧𝑗,1 tanh (𝑧𝑗,1𝜐𝑗,1)]

(33)

Applying (26), (27), and Lemma 7, one has

�̇�𝑗,1 ≤ 𝑄𝑗,1 (𝜒𝑗,2) (𝑧𝑗,2 + 𝑒𝑗,2) 𝑧𝑗,1 − 𝑐𝑗,1𝑄𝑗,1𝑧2𝑗,1
+ 𝑄
𝑗,1
𝜎𝑗,1 (𝜂𝑗,1𝜂𝑗,1 + Φ̃𝑗,1Φ̂𝑗,1) + 𝑎2𝑗,12

+ 0.2785𝑄
𝑗,1
𝜂∗𝑗,1𝜐𝑗,1 + 0.2785𝜐𝑗,1

(34)

Step 𝑗, 𝑖𝑗 (2 ≤ 𝑖𝑗 ≤ 𝜌𝑗 − 1, 𝑗 = 1, . . . , 𝑚). Similar to the design
method in Step 𝑗, 1 differentiating 𝑧𝑗,𝑖𝑗 along with (16) yields

�̇�𝑗,𝑖𝑗 = 𝜑𝑗,𝑖𝑗 (𝜒𝑗,𝑖𝑗 , 0) + 𝑄𝑗,𝑖𝑗 (𝜒𝑗,𝑖𝑗+1) 𝜒𝑗,𝑖𝑗+1
+ Δ 𝑗,𝑖𝑗 (𝜒𝑗,𝑖𝑗+1) + 𝐷𝑗,𝑖𝑗 (𝜒, 𝑡) − ]̇𝑗,𝑖𝑗

(35)
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Consider the following quadratic Lyapunov function
candidate:

𝑉𝑧𝑗,𝑖𝑗 = 12𝑧2𝑗,𝑖𝑗 (36)

In view of Young’s inequality and using (35), we can
obtain the time derivative of (36) as

�̇�𝑧𝑗,𝑖𝑗 ≤ 𝑄𝑗,𝑖𝑗 (𝜒𝑗,𝑖𝑗+1) 𝜒𝑗,𝑖𝑗+1𝑧𝑗,𝑖𝑗
+ 𝑧2𝑗,𝑖𝑗

󵄩󵄩󵄩󵄩󵄩󵄩Θ𝑗,𝑖𝑗󵄩󵄩󵄩󵄩󵄩󵄩22𝑎2𝑗,𝑖𝑗 𝜙𝑇 (𝜒𝑗,𝑖𝑗) 𝜙 (𝜒𝑗,𝑖𝑗) + 𝑎
2
𝑗,𝑖𝑗2

+ 󵄨󵄨󵄨󵄨󵄨󵄨𝑧𝑗,𝑖𝑗 󵄨󵄨󵄨󵄨󵄨󵄨 𝑄𝑗,𝑖𝑗𝜂∗𝑗,𝑖𝑗 − 𝑧𝑗,𝑖𝑗 ]̇𝑗,𝑖𝑗
(37)

where 𝜂∗𝑗,𝑖𝑗 = 𝑄−1𝑗,𝑖𝑗(𝜛∗𝑗,𝑖𝑗 + ℏ∗𝑗,𝑖𝑗 + 𝐷∗𝑗,𝑖𝑗), and 𝑎𝑗,𝑖𝑗 is positive
constant.

Take the virtual control law 𝑠𝑗,𝑖𝑗 and parameters adapta-
tion laws 𝜂𝑗,𝑖𝑗 and Φ̂𝑗,𝑖𝑗 as

𝑠𝑗,𝑖𝑗 = −𝑐𝑗,𝑖𝑗𝑧𝑗,𝑖𝑗 − Φ̂𝑗,𝑖𝑗𝑧𝑗,𝑖𝑗2𝑎2𝑗,𝑖𝑗 𝜙𝑇 (𝜒𝑗,𝑖𝑗) 𝜙 (𝜒𝑗,𝑖𝑗)
− 𝜂𝑗,𝑖𝑗 tanh (𝑧𝑗,𝑖𝑗𝜐𝑗,𝑖𝑗 )
+ 𝛼𝑗,𝑖𝑗 ]̇𝑗,𝑖𝑗 tanh (𝑧𝑗,𝑖𝑗 ]̇𝑗,𝑖𝑗𝜐𝑗,𝑖𝑗 )

(38)

̇̂𝜂𝑗,𝑖𝑗 = 𝜉𝑗,𝑖𝑗𝑧𝑗,𝑖𝑗 tanh (𝑧𝑗,𝑖𝑗𝜐𝑗,𝑖𝑗 ) − 𝜎𝑗,𝑖𝑗𝜉𝑗,𝑖𝑗𝜂𝑗,𝑖𝑗 (39)

̇̂Φ𝑗,𝑖𝑗 = 𝛽𝑗,𝑖𝑗𝑧
2
𝑗,𝑖𝑗2𝑎2𝑗,𝑖𝑗 𝜙𝑇 (𝜒𝑗,𝑖𝑗) 𝜙 (𝜒𝑗,𝑖𝑗) − 𝜎𝑗,𝑖𝑗𝛽𝑗,𝑖𝑗Φ̂𝑗,𝑖𝑗 (40)

The design process of parameters is similar to Step 𝑗, 1.
Then, let 𝑠𝑗,𝑖𝑗 pass through a first-order filter with time
constant 𝜄𝑗,𝑖𝑗+1 as follows:

𝜄𝑗,𝑖𝑗+1]̇𝑗,𝑖𝑗+1 + ]𝑗,𝑖𝑗+1 = 𝑠𝑗,𝑖𝑗 , ]𝑗,𝑖𝑗+1 (0) = 𝑠𝑗,𝑖𝑗 (0) (41)

Define 𝑒𝑗,𝑖𝑗+1 = ]𝑗,𝑖𝑗+1 − 𝑠𝑗,𝑖𝑗 , it yields ]̇𝑗,𝑖𝑗+1 =−(𝑒𝑗,𝑖𝑗+1/𝜄𝑗,𝑖𝑗+1) and
̇𝑒𝑗,𝑖𝑗+1
= −𝑒𝑗,𝑖𝑗+1𝜄𝑗,𝑖𝑗+1
+ Ξ𝑗,𝑖𝑗+1 (𝑧𝑗,𝑖𝑗+1, 𝑒𝑗,𝑖𝑗+1, Φ̂𝑗,𝑖𝑗 , 𝜂𝑗,𝑖𝑗 , 𝑦𝑗,𝑑, ̇𝑦𝑗,𝑑, ̈𝑦𝑗,𝑑)

(42)

where 𝑧𝑗,𝑖𝑗+1 = [𝑧𝑗,1, . . . , 𝑧𝑗,𝑖𝑗+1]𝑇, 𝑒𝑗,𝑖𝑗+1 = [𝑒𝑗,2, . . . , 𝑒𝑗,𝑖𝑗+1]𝑇,Φ̂𝑗,𝑖𝑗 = [Φ̂𝑗,1, . . . , Φ̂𝑗,𝑖𝑗]𝑇, 𝜂𝑗,𝑖𝑗 = [𝜂𝑗,1, . . . , 𝜂𝑗,𝑖𝑗]𝑇 and Ξ𝑗,𝑖𝑗+1(⋅)
is a continuous function.

According to 𝜒𝑗,𝑖𝑗+1 = 𝑧𝑗,𝑖𝑗+1 + ]𝑗,𝑖𝑗+1 and 𝑒𝑗,𝑖𝑗+1 = ]𝑗,𝑖𝑗+1 −𝑠𝑗,𝑖𝑗 , one reaches
𝜒𝑗,𝑖𝑗+1 = 𝑧𝑗,𝑖𝑗+1 + 𝑠𝑗,𝑖𝑗 + 𝑒𝑗,𝑖𝑗+1 (43)

Substituting (38) and (43) into (37) results in

�̇�𝑧𝑗,𝑖𝑗 ≤ 𝑄𝑗,𝑖𝑗 (𝜒𝑗,𝑖𝑗+1) (𝑧𝑗,𝑖𝑗+1 + 𝑒𝑗,𝑖𝑗+1) 𝑧𝑗,𝑖𝑗
− 𝑐𝑗,𝑖𝑗𝑄𝑗,𝑖𝑗𝑧2𝑗,𝑖𝑗 + 𝑎

2
𝑗,𝑖𝑗2

− 𝑄
𝑗,𝑖𝑗
𝜂𝑗,𝑖𝑗𝑧𝑗,𝑖𝑗 tanh (𝑧𝑗,𝑖𝑗𝜐𝑗,𝑖𝑗 )

− 𝑧𝑗,𝑖𝑗 ]̇𝑗,𝑖𝑗 tanh (𝑧𝑗,𝑖𝑗 ]̇𝑗,𝑖𝑗𝜐𝑗,𝑖𝑗 )
+ 𝑄𝑗,𝑖𝑗Φ̃𝑗,𝑖𝑗𝑧2𝑗,𝑖𝑗2𝑎2𝑗,𝑖𝑗 𝜙𝑇 (𝜒𝑗,𝑖𝑗) 𝜙 (𝜒𝑗,𝑖𝑗) + 󵄨󵄨󵄨󵄨󵄨󵄨𝑧𝑗,𝑖𝑗 ]̇𝑗,𝑖𝑗 󵄨󵄨󵄨󵄨󵄨󵄨
+ 󵄨󵄨󵄨󵄨󵄨󵄨𝑧𝑗,𝑖𝑗 󵄨󵄨󵄨󵄨󵄨󵄨 𝑄𝑗,𝑖𝑗𝜂∗𝑗,𝑖𝑗

(44)

Consider the following Lyapunov function candidate:

𝑉𝑗,𝑖𝑗 = 𝑉𝑧𝑗,𝑖𝑗 +
𝑄
𝑗,𝑖𝑗
𝜂2𝑗,𝑖𝑗2𝜉𝑗,𝑖𝑗 + 𝑄𝑗,𝑖𝑗Φ̃2𝑗,𝑖𝑗2𝛽𝑗,𝑖𝑗 (45)

where 𝜂𝑗,𝑖𝑗 = 𝜂∗𝑗,𝑖𝑗 − 𝜂𝑗,𝑖𝑗 and Φ̃𝑗,𝑖𝑗 = Φ𝑗,𝑖𝑗 − Φ̂𝑗,𝑖𝑗 .
Noting 𝜂𝑗,𝑖𝑗 = 𝜂∗𝑗,𝑖𝑗 − 𝜂𝑗,𝑖𝑗 and following the same way as

Step 𝑗, 1 give rise to
�̇�𝑗,𝑖𝑗
≤ 𝑄𝑗,𝑖𝑗 (𝜒𝑗,𝑖𝑗+1) (𝑧𝑗,𝑖𝑗+1 + 𝑒𝑗,𝑖𝑗+1) 𝑧𝑗,𝑖𝑗 − 𝑐𝑗,𝑖𝑗𝑄𝑗,𝑖𝑗𝑧2𝑗,𝑖𝑗
+ 𝑎2𝑗,𝑖𝑗2
− 𝑄𝑗,𝑖𝑗Φ̃𝑗,𝑖𝑗𝛽𝑗,𝑖𝑗 [[

̇̂Φ𝑗,𝑖𝑗 − 𝛽𝑗,𝑖𝑗𝑧
2
𝑗,𝑖𝑗2𝑎2𝑗,𝑖𝑗 𝜙𝑇 (𝜒𝑗,𝑖𝑗) 𝜙 (𝜒𝑗,𝑖𝑗)]]

− 𝑄𝑗,𝑖𝑗𝜂𝑗,𝑖𝑗𝜉𝑗,𝑖𝑗 [ ̇̂𝜂𝑗,𝑖𝑗 − 𝜉𝑗,𝑖𝑗𝑧𝑗,𝑖𝑗 tanh (𝑧𝑗,𝑖𝑗𝜐𝑗,𝑖𝑗 )]
+ [󵄨󵄨󵄨󵄨󵄨󵄨𝑧𝑗,𝑖𝑗 ]̇𝑗,𝑖𝑗 󵄨󵄨󵄨󵄨󵄨󵄨 − 𝑧𝑗,𝑖𝑗 ]̇𝑗,𝑖𝑗 tanh (𝑧𝑗,𝑖𝑗 ]̇𝑗,𝑖𝑗𝜐𝑗,𝑖𝑗 )]
+ 𝑄
𝑗,𝑖𝑗
𝜂∗𝑗,𝑖𝑗 [󵄨󵄨󵄨󵄨󵄨󵄨𝑧𝑗,𝑖𝑗 󵄨󵄨󵄨󵄨󵄨󵄨 − 𝑧𝑗,𝑖𝑗 tanh (𝑧𝑗,𝑖𝑗𝜐𝑗,𝑖𝑗 )]

(46)
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Applying (39), (40), and Lemma 7 yields

�̇�𝑗,𝑖𝑗 ≤ 𝑄𝑗,𝑖𝑗 (𝜒𝑗,𝑖𝑗+1) (𝑧𝑗,𝑖𝑗+1 + 𝑒𝑗,𝑖𝑗+1) 𝑧𝑗,𝑖𝑗
+ 0.2785𝜐𝑗,𝑖𝑗 + 0.2785𝑄𝑗,𝑖𝑗𝜂∗𝑗,𝑖𝑗𝜐𝑗,𝑖𝑗
+ 𝑄
𝑗,𝑖𝑗
𝜎𝑗,𝑖𝑗 (𝜂𝑗,𝑖𝑗𝜂𝑗,𝑖𝑗 + Φ̃𝑗,𝑖𝑗Φ̂𝑗,𝑖𝑗)

− 𝑐𝑗,𝑖𝑗𝑄𝑗,𝑖𝑗𝑧2𝑗,𝑖𝑗 + 𝑎
2
𝑗,𝑖𝑗2

(47)

Step 𝑗, 𝜌𝑗 (𝑗 = 1, . . . , 𝑚). Similar to the former design process,
we can obtain

�̇�𝑗,𝜌𝑗 = 𝜑𝑗,𝜌𝑗 (𝜒𝑗,𝜌𝑗 , 0) + 𝑄𝑗,𝜌𝑗 (𝜒𝑗,𝜌𝑗+1) 𝑢𝑗
+ Δ 𝑗,𝜌𝑗 (𝜒𝑗,𝜌𝑗+1) + 𝐷𝑗,𝜌𝑗 (𝜒, 𝑡) − ]̇𝑗,𝜌𝑗
+ 𝜅𝑗 tanh℘𝑗 − 𝑠𝑎𝑡 (𝑜𝑗) + 𝑜𝑗

(48)

For |𝑢𝑗| = |𝑠𝑎𝑡(𝑜𝑗)| ≤ 𝑢𝑗,𝑀, there exists a continuous
functionQ𝑗,𝜌𝑗(𝜒𝑗,𝜌𝑗) such that

󵄨󵄨󵄨󵄨󵄨󵄨𝑄𝑗,𝜌𝑗 (𝜒𝑗,𝜌𝑗+1) 𝑢𝑗󵄨󵄨󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨󵄨𝑄𝑗,𝜌𝑗 (𝜒𝑗,𝜌𝑗 , 𝑠𝑎𝑡 (𝑜𝑗)) 𝑠𝑎𝑡 (𝑜𝑗)󵄨󵄨󵄨󵄨󵄨󵄨
≤ Q𝑗,𝜌𝑗 (𝜒𝑗,𝜌𝑗)

(49)

Consider a compact set Ω𝑗,𝜌𝑗 fl {∑𝜌𝑗
𝑙=1
(𝑄
𝑗,𝑙
𝜂2𝑗,𝑙/𝜉𝑗,𝑙 +𝑄

𝑗,𝑙
Φ̃2𝑗,𝑙/𝛽𝑗,𝑙) + 𝑧2𝑗,1 + ∑𝜌𝑗𝑙=2(𝑒2𝑗,𝑙 + 𝑧2𝑗,𝑙) ≤ 2𝜔𝑗,𝜌𝑗}. It can be

seen from (43) that all the variables of 𝜒𝑗,𝜌𝑗 are included
in the compact set Ω𝑗,𝜌𝑗 × Ω𝑗0. Thus, Q𝑗,𝜌𝑗(𝜒𝑗,𝜌𝑗) =
Q𝑗,𝜌𝑗(𝜒𝑗,𝜌𝑗−1, 𝑧𝑗,𝜌𝑗 + 𝑠𝑗,𝜌𝑗−1 + 𝑒𝑗,𝜌𝑗) have maximums on Ω𝑗,𝜌𝑗 ×Ω𝑗0. There exist unknown positive constants Q∗𝑗,𝜌𝑗 such that
Q𝑗,𝜌𝑗(𝜒𝑗,𝜌𝑗) ≤ Q∗𝑗,𝜌𝑗 .

Choosing the quadratic function 𝑉𝑧𝑗,𝜌𝑗 as 𝑉𝑧𝑗,𝜌𝑗 = 𝑧2𝑗,𝜌𝑗/2,
it gives

�̇�𝑧𝑗,𝜌𝑗 ≤ Θ𝑇𝑗,𝜌𝑗𝜙 (𝜒𝑗,𝜌𝑗) 𝑧𝑗,𝜌𝑗 + 󵄨󵄨󵄨󵄨󵄨󵄨𝑧𝑗,𝜌𝑗 󵄨󵄨󵄨󵄨󵄨󵄨 𝜂∗𝑗,𝜌𝑗 − 𝑧𝑗,𝜌𝑗 ]̇𝑗,𝜌𝑗
+ 𝑜𝑗𝑧𝑗,𝜌𝑗 (50)

where 𝜂∗𝑗,𝜌𝑗 = 𝜛∗𝑗,𝜌𝑗 + ℏ∗𝑗,𝜌𝑗 + 𝐷∗𝑗,𝜌𝑗 +Q∗𝑛 + 𝜅𝑗 + 𝑢𝑗,𝑀.
According to Young’s inequality, one has

�̇�𝑧𝑗,𝜌𝑗 ≤ 𝑧
2
𝑗,𝜌𝑗

󵄩󵄩󵄩󵄩󵄩󵄩Θ𝑗,𝜌𝑗󵄩󵄩󵄩󵄩󵄩󵄩22𝑎2𝑗,𝜌𝑗 𝜙𝑇 (𝜒𝑗,𝜌𝑗) 𝜙 (𝜒𝑗,𝜌𝑗) + 𝑎
2
𝑗,𝜌𝑗2

+ 𝑜𝑗𝑧𝑗,𝜌𝑗 + 󵄨󵄨󵄨󵄨󵄨󵄨𝑧𝑗,𝜌𝑗 󵄨󵄨󵄨󵄨󵄨󵄨 𝜂∗𝑗,𝜌𝑗 − 𝑧𝑗,𝜌𝑗 ]̇𝑗,𝜌𝑗
(51)

where 𝑎𝑗,𝜌𝑗 is positive constant.

Similarly, construct the actual control law 𝑜𝑗 and the
adaptation laws 𝜂𝑗,𝜌𝑗 and Φ̂𝑗,𝜌𝑗 as

𝑜𝑗 = −𝑐𝑗,𝜌𝑗𝑧𝑗,𝜌𝑗 − Φ̂𝑗,𝜌𝑗𝑧𝑗,𝜌𝑗2𝑎2𝑗,𝜌𝑗 𝜙𝑇 (𝜒𝑗,𝜌𝑗) 𝜙 (𝜒𝑗,𝜌𝑗)
− 𝜂𝑗,𝜌𝑗 tanh (𝑧𝑗,𝜌𝑗𝜐𝑗,𝜌𝑗 )
− 𝛼𝑗,𝜌𝑗 ]̇𝑗,𝜌𝑗 tanh (𝑧𝑗,𝜌𝑗 ]̇𝑗,𝜌𝑗𝜐𝑗,𝜌𝑗 )

(52)

̇̂𝜂𝑗,𝜌𝑗 = 𝜉𝑗,𝜌𝑗𝑧𝑗,𝜌𝑗 tanh (𝑧𝑗,𝜌𝑗𝜐𝑗,𝜌𝑗 ) − 𝜎𝑗,𝜌𝑗𝜉𝑗,𝜌𝑗𝜂𝑗,𝜌𝑗 (53)

̇̂Φ𝑗,𝜌𝑗 = 𝑐𝑗,𝜌𝑗𝑧
2
𝑗,𝜌𝑗2𝑎2𝑗,𝜌𝑗 𝜙𝑇 (𝜒𝑗,𝜌𝑗) 𝜙 (𝜒𝑗,𝜌𝑗) − 𝜎𝑗,𝜌𝑗𝛽𝑗,𝜌𝑗Φ̂𝑗,𝜌𝑗 (54)

The design process of parameters is also similar to Step𝑗, 𝑖𝑗 and Step 𝑗, 1. Take the following Lyapunov function
candidate:

𝑉𝑗,𝜌𝑗 = 𝑉𝑧𝑗,𝜌𝑗 + 𝜂
2
𝑗,𝜌𝑗2𝜉𝑗,𝜌𝑗 +

Φ̃2𝑗,𝜌𝑗2𝛽𝑗,𝜌𝑗 (55)

where 𝜂𝑗,𝜌𝑗 = 𝜂∗𝑗,𝜌𝑗 − 𝜂𝑗,𝜌𝑗 and Φ̃𝑗,𝜌𝑗 = Φ𝑗,𝜌𝑗 − Φ̂𝑗,𝜌𝑗 .
Following the same way as the former steps gives

�̇�𝑗,𝜌𝑗 ≤ 𝜎𝑗,𝜌𝑗 (𝜂𝑗,𝜌𝑗𝜂𝑗,𝜌𝑗 + Φ̃𝑗,𝜌𝑗Φ̂𝑗,𝜌𝑗) − 𝑐𝑗,𝜌𝑗𝑧2𝑗,𝜌𝑗
+ 0.2785𝜐𝑗,𝜌𝑗 + 0.2785𝜂∗𝑗,𝜌𝑗𝜐𝑗,𝜌𝑗 + 𝑎

2
𝑗,𝜌𝑗2

(56)

4. Stability Analysis

The main stability results of the MIMO pure-feedback non-
linear systems (1) are presented.

Theorem 11. Supposing that Assumptions 1, 4, and 5 hold and
the above proposed design procedure is employed to MIMO
pure-feedback nonlinear systems described by (1), for Φ̂𝑗,𝑖𝑗(0) ≥0, 𝜂𝑗,𝑖𝑗(0) ≥ 0, ∀𝜔 > 0 and 𝑉𝑗(0) ≤ 𝜔, there exist design
parameters 𝑐𝑗,𝑖𝑗 , 𝛽𝑗,𝑖𝑗 , 𝜉𝑗,𝑖𝑗 , 𝜎𝑗,𝑖𝑗 , 𝑎𝑗,𝑖𝑗 , 𝜐𝑗,𝑖𝑗 , 𝛼𝑗,𝑖𝑗 and 𝜄𝑗,𝑖𝑗 such that

(1) 𝑉𝑗(𝑡) ≤ 𝜔 for ∀𝑡 > 0, and hence all of the signals in the
closed-loop systems remain semiglobally uniformly ultimately
bounded;

(2) the output tracking error 𝑧𝑗,1 is such that
lim𝑡󳨀→∞|𝑧𝑗,1(𝑡)| ≤ Δ 𝑗,1, where Δ 𝑗,1 is a positive constant
depending on the design parameters. Furthermore, the whole
system output tracking error 𝑧1 = [𝑧1,1, . . . , 𝑧𝑚,1]𝑇 satisfies
lim𝑡󳨀→∞‖𝑧1(𝑡)‖ ≤ Δ 1 with Δ 1 a positive constant that relies
on the design parameters;

(3) the dynamic system℘𝑗 is bounded, and the control input
constraint is not violated.
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Proof. Choose the following Lyapunov function candidate for
the whole systems:

𝑉 = 𝑚∑
𝑗=1

𝑉𝑗 (57)

where 𝑉𝑗 = (1/2)∑𝜌𝑗−1𝑖𝑗=1 (𝑧2𝑗,𝑖𝑗 + 𝑄𝑗,𝑖𝑗𝜂2𝑗,𝑖𝑗/𝜉𝑗,𝑖𝑗 + 𝑄𝑗,𝑖𝑗Φ̃2𝑗,𝑖𝑗/𝛽𝑗,𝑖𝑗 +𝑒2𝑗,𝑖𝑗+1) + (1/2)(𝑧2𝑗,𝜌𝑗 + 𝜂2𝑗,𝜌𝑗/𝜉𝑗,𝜌𝑗 + Φ̃2𝑗,𝜌𝑗/𝛽𝑗,𝜌𝑗).
According to (34), (47), and (56), we can obtain the time

derivative of 𝑉𝑗 as
�̇�𝑗
≤ 𝜌𝑗−1∑
𝑖𝑗=1

𝑄𝑗,𝑖𝑗 (󵄨󵄨󵄨󵄨󵄨󵄨𝑧𝑗,𝑖𝑗+1󵄨󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨󵄨𝑒𝑗,𝑖𝑗+1󵄨󵄨󵄨󵄨󵄨󵄨) 󵄨󵄨󵄨󵄨󵄨󵄨𝑧𝑗,𝑖𝑗 󵄨󵄨󵄨󵄨󵄨󵄨
− 𝜌𝑗−1∑
𝑖𝑗=1

𝑐𝑗,𝑖𝑗𝑄𝑗,𝑖𝑗𝑧2𝑗,𝑖𝑗 + 𝑎
2
𝑗,𝜌𝑗2

+ 𝜎𝑗,𝜌𝑗 (𝜂𝑗,𝜌𝑗𝜂𝑗,𝜌𝑗 + Φ̃𝑗,𝜌𝑗Φ̂𝑗,𝜌𝑗) + 0.2785𝜂∗𝑗,𝜌𝑗𝜐𝑗,𝜌𝑗
+ 𝜌𝑗−1∑
𝑖𝑗=1

(𝑎2𝑗,𝑖𝑗2 + 0.2785𝑄
𝑗,𝑖𝑗
𝜂∗𝑗,𝑖𝑗𝜐𝑗,𝑖𝑗 + 0.2785𝜐𝑗,𝑖𝑗)

+ 𝜌𝑗−1∑
𝑖𝑗=1

𝑄
𝑗,𝑖𝑗
𝜎𝑗,𝑖𝑗 (𝜂𝑗,𝑖𝑗𝜂𝑗,𝑖𝑗 + Φ̃𝑗,𝑖𝑗Φ̂𝑗,𝑖𝑗) − 𝑐𝑗,𝜌𝑗𝑧2𝑗,𝜌𝑗

+ 𝜌𝑗−1∑
𝑖𝑗=1

(−𝑒2𝑗,𝑖𝑗+1𝜄𝑗,𝑖𝑗+1 +
󵄨󵄨󵄨󵄨󵄨󵄨𝑒𝑗,𝑖𝑗+1Ξ𝑗,𝑖𝑗+1 (⋅)󵄨󵄨󵄨󵄨󵄨󵄨)

+ 0.2785𝜐𝑗,𝜌𝑗

(58)

Using the following inequalities

𝜂𝑗,𝑖𝑗𝜂𝑗,𝑖𝑗 ≤ 𝜂
∗2
𝑗,𝑖𝑗2 − 𝜂2𝑗,𝑖𝑗2 ,

Φ̃𝑗,𝑖𝑗Φ̂𝑗,𝑖𝑗 ≤ Φ
2
𝑗,𝑖𝑗2 − Φ̃2𝑗,𝑖𝑗2

(59)

we can arrive at

�̇�𝑗 ≤ −𝜌𝑗−1∑
𝑖𝑗=1

𝑐𝑗,𝑖𝑗𝑄𝑗,𝑖𝑗𝑧2𝑗,𝑖𝑗 − 12
𝜌𝑗−1∑
𝑖𝑗=1

𝑄
𝑗,𝑖𝑗
𝜎𝑗,𝑖𝑗 (𝜂2𝑗,𝑖𝑗 + Φ̃2𝑗,𝑖𝑗)

+ 𝜌𝑗−1∑
𝑖𝑗=1

𝑄𝑗,𝑖𝑗 (󵄨󵄨󵄨󵄨󵄨󵄨𝑧𝑗,𝑖𝑗+1󵄨󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨󵄨𝑒𝑗,𝑖𝑗+1󵄨󵄨󵄨󵄨󵄨󵄨) 󵄨󵄨󵄨󵄨󵄨󵄨𝑧𝑗,𝑖𝑗 󵄨󵄨󵄨󵄨󵄨󵄨 − 𝑐𝑗,𝜌𝑗𝑧2𝑗,𝜌𝑗
+ 𝜌𝑗−1∑
𝑖𝑗=1

(−𝑦2𝑗,𝑖𝑗+1𝜄𝑗,𝑖𝑗+1 +
󵄨󵄨󵄨󵄨󵄨󵄨𝑒𝑗,𝑖𝑗+1Ξ𝑗,𝑖𝑗+1 (⋅)󵄨󵄨󵄨󵄨󵄨󵄨) + 𝐶𝑗,0

− 12𝜎𝑗,𝜌𝑗 (𝜂2𝑗,𝜌𝑗 + Φ̃2𝑗,𝜌𝑗)

(60)

where 𝐶𝑗,0 =∑𝜌𝑗−1𝑖𝑗=1 (𝑎2𝑗,𝑖𝑗/2 + 0.2785𝑄𝑗,𝑖𝑗𝜂∗𝑗,𝑖𝑗𝜐𝑗,𝑖𝑗 + 0.2785𝜐𝑗,𝑖𝑗 +𝑄
𝑗,𝑖𝑗
𝜎𝑗,𝑖𝑗(𝜂∗2𝑗,𝑖𝑗+Φ2𝑗,𝑖𝑗)/2) + 0.2785𝜂∗𝑗,𝜌𝑗𝜐𝑗,𝜌𝑗 + 𝑎2𝑗,𝜌𝑗/2+𝜎𝑗,𝜌𝑗(𝜂∗2𝑗,𝜌𝑗+Φ2𝑗,𝜌𝑗)/2 + 0.2785𝜐𝑗,𝜌𝑗 .
By completion of squares, one has

󵄨󵄨󵄨󵄨󵄨󵄨𝑒𝑗,𝑖𝑗+1Ξ𝑗,𝑖𝑗+1 (⋅)󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 𝑒
2
𝑗,𝑖𝑗+1

Ξ2𝑗,𝑖𝑗+1 (⋅)2𝑘𝑗,1 + 𝑘𝑗,12
𝑄𝑗,𝑖𝑗 󵄨󵄨󵄨󵄨󵄨󵄨𝑒𝑗,𝑖𝑗+1󵄨󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨󵄨𝑧𝑗,𝑖𝑗 󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 𝑄

2

𝑗,𝑖𝑗
𝑒2𝑗,𝑖𝑗+1𝑘𝑗,22 + 𝑧2𝑗,𝑖𝑗2𝑘𝑗,2

𝑄𝑗,𝑖𝑗 󵄨󵄨󵄨󵄨󵄨󵄨𝑧𝑗,𝑖𝑗+1󵄨󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨󵄨𝑧𝑗,𝑖𝑗 󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 𝑄𝑗,𝑖𝑗𝑧
2
𝑗,𝑖𝑗2 + 𝑄𝑗,𝑖𝑗𝑧2𝑗,𝑖𝑗+12

(61)

with 𝑘𝑗,1 and 𝑘𝑗,2 being positive constants. Then, we can
further rewrite (60) as

�̇�𝑗 ≤ −𝜌𝑗−1∑
𝑖𝑗=1

𝑐𝑗,𝑖𝑗𝑄𝑗,𝑖𝑗𝑧2𝑗,𝑖𝑗 − 12
𝜌𝑗−1∑
𝑖𝑗=1

𝑄
𝑗,𝑖𝑗
𝜎𝑗,𝑖𝑗 (𝜂2𝑗,𝑖𝑗 + Φ̃2𝑗,𝑖𝑗)

− 𝑐𝑗,𝜌𝑗𝑧2𝑗,𝜌𝑗 +
𝜌𝑗−1∑
𝑖𝑗=1

𝑄𝑗,𝑖𝑗 (𝑧
2
𝑗,𝑖𝑗2 + 𝑧2𝑗,𝑖𝑗+12 )

+ 𝜌𝑗−1∑
𝑖𝑗=1

( 𝑧2𝑗,𝑖𝑗2𝑘𝑗,2) +
(𝜌𝑗 − 1) 𝑘𝑗,12 + 𝜌𝑗−1∑

𝑖𝑗=1

(−𝑒2𝑗,𝑖𝑗+1𝜄𝑗,𝑖𝑗+1
+ 𝑒2𝑗,𝑖𝑗+1Ξ2𝑗,𝑖𝑗+1 (⋅)2𝑘𝑗,1 + 𝑄2𝑗,𝑖𝑗𝑒2𝑗,𝑖𝑗+1𝑘𝑗,22 ) + 𝐶𝑗,0 − 12
⋅ 𝜎𝑗,𝜌𝑗 (𝜂2𝑗,𝜌𝑗 + Φ̃2𝑗,𝜌𝑗)

(62)

Then, it can be known from [16] that |Ξ𝑗,𝑖𝑗+1(⋅)| has a
maximum 𝑀𝑗,𝑖𝑗+1 on the compact set Ω𝑗,𝑖𝑗+1 × Ω𝑗0. Let1/𝜄𝑗,𝑖𝑗+1 = 𝑀2𝑗,𝑖𝑗+1/(2𝑘𝑗,1) + 𝑄2𝑗,𝑖𝑗𝑘𝑗,2/2 + 𝜔𝑗 with 𝜔𝑗 being a
positive constant. Setting 𝑐𝑗,𝑖𝑗 = 𝑄−1𝑗,𝑖𝑗(𝑄𝑗,𝑖𝑗 + 1/(2𝑘𝑗,2) + 𝜗𝑗),𝑐𝑗,𝜌𝑗 = 𝑄𝑗,𝜌𝑗+1/(2𝑘𝑗,2)+𝜗𝑗 with 𝜗𝑗 being any positive constant,
one has

�̇�𝑗 ≤ − 𝜌𝑗∑
𝑖𝑗=1

𝜗𝑗𝑧2𝑗,𝑖𝑗 − 12
𝜌𝑗−1∑
𝑖𝑗=1

𝑄
𝑗,𝑖𝑗
𝜎𝑗,𝑖𝑗 (𝜂2𝑗,𝑖𝑗 + Φ̃2𝑗,𝑖𝑗) + 𝐶𝑗

− 12𝜎𝑗,𝜌𝑗 (𝜂2𝑗,𝜌𝑗 + Φ̃2𝑗,𝜌𝑗) −
𝜌𝑗−1∑
𝑖𝑗=1

𝜔𝑗𝑒2𝑗,𝑖𝑗+1
(63)

where 𝐶𝑗 = 𝐶𝑗,0 + (𝜌𝑗 − 1)𝑘𝑗,1/2. Noting (32), (45), (55), and
(57), it yields

�̇�𝑗 ≤ −𝜆𝑗𝑉𝑗 + 𝐶𝑗 (64)

where 𝜆𝑗 = min𝑖𝑗=1,...,𝜌𝑗 {2𝜔𝑗, 2𝜗𝑗, 𝜎𝑗,𝑖𝑗𝜉𝑗,𝑖𝑗 , 𝜎𝑗,𝑖𝑗𝛽𝑗,𝑖𝑗}. Note that𝐶𝑗/𝜆𝑗 can be made arbitrarily small by decreasing 𝑐𝑗,𝑖𝑗 , 𝛽𝑗,𝑖𝑗 ,
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and 𝜉𝑗,𝑖𝑗 andmeanwhile increasing 𝜎𝑗,𝑖𝑗 , 𝑎𝑗,𝑖𝑗 , 𝜐𝑗,𝑖𝑗 , 𝛼𝑗,𝑖𝑗 and 𝜄𝑗,𝑖𝑗 .
Hence we can have 𝐶𝑗/𝜆𝑗 ≤ 𝜔 by appropriately choosing the
design parameters. It follows from 𝐶𝑗/𝜆𝑗 ≤ 𝜔 and (64) that�̇�𝑗 ≤ 0 on the level set 𝑉𝑗 = 𝜔. Therefore, all the signals
of the closed-loop systems are SGUUB. The property (1) of
Theorem 11 is proved.

Solving (64) shows

𝑉𝑗 (𝑡) ≤ 𝑉𝑗 (0) + Σ (65)

with Σ = 𝐶𝑗/𝜆𝑗 a positive constant. According to (21), (36),
and (57), we have∑𝜌𝑗𝑖𝑗=1 𝑧2𝑗,𝑖𝑗/2 ≤ 𝑉𝑗. Using the first inequality
in (65), the following inequality holds:

lim
𝑡󳨀→∞

󵄨󵄨󵄨󵄨󵄨𝑧𝑗,1󵄨󵄨󵄨󵄨󵄨 ≤ lim
𝑡󳨀→∞

√2𝑉𝑗 ≤ √2Σ = Δ 𝑗,1 (66)

Now let us consider the Lyapunov function candidate for
the whole systems as 𝑉 = ∑𝑚𝑗=1 𝑉𝑗. From (65), it can be
derived that

�̇� ≤ 𝑚∑
𝑗=1

[−𝜆𝑗𝑉𝑗 + 𝐶𝑗] ≤ −R𝑉 + Π (67)

where R = min {𝜆1, . . . , 𝜆𝑚} and Π = ∑𝑚𝑗=1 𝐶𝑗. Then, we
further have

𝑉 (𝑡) ≤ [𝑉 (0) − Γ] 𝑧−R𝑡 + Γ (68)

where Γ = Π/R is a positive constant.
Similarly, we have lim𝑡󳨀→∞ 𝑉(𝑡) ≤ Γ,which leads to

lim
𝑡󳨀→∞

󵄩󵄩󵄩󵄩𝑧1 (𝑡)󵄩󵄩󵄩󵄩 ≤ lim
𝑡󳨀→∞

√2𝑉 (𝑡) ≤ √2Γ = Δ 1 (69)

Noting that the size of Δ 1 depends on the design
parameters 𝑐𝑗,𝑖𝑗 , 𝛽𝑗,𝑖𝑗 , 𝜉𝑗,𝑖𝑗 , 𝜎𝑗,𝑖𝑗 , 𝑎𝑗,𝑖𝑗 , 𝜐𝑗,𝑖𝑗 , 𝛼𝑗,𝑖𝑗 and 𝜄𝑗,𝑖𝑗 . Thus,
by appropriately online-tuning the design parameters, the
tracking error 𝑧1 can be regulated to a neighborhood of the
origin as small as desired and property (2) of Theorem 11 is
proved.

Furthermore, for input saturation, there exists a nonneg-
ative scalar I𝑗 to satisfy |Λ 𝑗| ≤ I𝑗 with Λ 𝑗 = 𝑠𝑎𝑡(𝑜𝑗) − 𝑜𝑗
and 𝜅𝑗 > I𝑗. Choosing the Lyapunov function candidate
quadratic function 𝑉℘𝑗 as 𝑉℘𝑗 = C℘2𝑗/2, we can obtain

�̇�℘𝑗 = cosh2 ℘𝑗 (−𝜅𝑗℘𝑗 tanh℘𝑗 + ℘𝑗 (𝑠𝑎𝑡 (𝑜𝑗) − 𝑜𝑗))
≤ cosh2 ℘𝑗 (𝜅𝑗 󵄨󵄨󵄨󵄨󵄨℘𝑗󵄨󵄨󵄨󵄨󵄨 − 𝜅𝑗℘𝑗 tanh℘𝑗 − 𝜅𝑗 󵄨󵄨󵄨󵄨󵄨℘𝑗󵄨󵄨󵄨󵄨󵄨
+I𝑗 󵄨󵄨󵄨󵄨󵄨℘𝑗󵄨󵄨󵄨󵄨󵄨) ≤ cosh2 ℘𝑗 (0.2785𝜅𝑗 − (𝜅𝑗 −I𝑗) 󵄨󵄨󵄨󵄨󵄨℘𝑗󵄨󵄨󵄨󵄨󵄨)

(70)

If |℘𝑗| > 0.2785𝜅𝑗/(𝜅𝑗 − I𝑗), we have �̇�℘𝑗 < 0. Therefore,℘𝑗 will lie in the compact set {℘𝑗||℘𝑗| ≤ 0.2785𝜅𝑗/(𝜅𝑗 −
I𝑗)} (∀𝑡 ≥ 0) and property (3) of Theorem 11 is proved. This
completes the proof.

5. Simulation Analysis

In this section, two simulation examples are given to show
validity of the proposed method in this paper.

Example 1. Consider the MIMO non-affine nonlinear uncer-
tain systems as follows:

̇𝜒1,1 = 𝜑1,1 (𝜒1,1, 𝜒1,2) + 𝐷1,1 (𝜒, 𝑡)
̇𝜒1,2 = 𝜑1,2 (𝜒1,1, 𝜒1,2, 𝑢1 (𝑜1)) + 𝐷1,2 (𝜒, 𝑡)
̇𝜒2,1 = 𝜑2,1 (𝜒2,1, 𝜒2,2) + 𝐷2,1 (𝜒, 𝑡)
̇𝜒2,2 = 𝜑2,2 (𝜒2,1, 𝜒2,2, 𝑢2 (𝑜2)) + 𝐷2,2 (𝜒, 𝑡)
𝑦1 = 𝜒1,1
𝑦2 = 𝜒2,1

(71)

where 𝜑1,1(𝜒1,1, 𝜒1,2) = 0.2𝜒1,1𝜒1,2/5 + 𝜒1,1 + 𝜒1,2,𝜑1,2(𝜒1,1, 𝜒1,2, 𝑢1(𝑜1)) = 0.3𝜒1,2𝜒1,1 + 0.25𝜒1,1 + 0.5𝑢1(𝑜1),𝜑2,1(𝜒2,1, 𝜒2,2) = 0.5𝜒2,1𝜒2,2 + 𝜒2,2 + 𝜒2,1 and 𝜑2,2(𝜒2,1,𝜒2,2, 𝑢2(𝑜2)) = 0.8𝜒22,1𝜒2,2 + 𝜒2,2 + 0.5𝑢2(𝑜2), 𝐷1,1(𝜒, 𝑡) =0.5 sin(𝑡) cos(0.2𝑡3)2 + 𝜒21,1𝜒2,1𝜒2,2, 𝐷1,2(𝜒, 𝑡) = 0.5𝑢1 +0.3 cos(𝑡)3 sin(𝑡) + 𝜒21,2 + 𝜒1,2𝜒2,1, 𝐷2,1(𝜒, 𝑡) =0.2 sin(𝑡2) cos(0.5𝑡)2 + 𝜒1,1𝜒2,1𝜒21,2 and 𝐷2,2(𝜒, 𝑡) =0.5 cos(0.2𝑡2) sin(5𝑡) + 𝜒22,2 + 𝜒22,1. 𝑢1(𝑜1) and 𝑢2(𝑜2) are
defined as follows:

𝑢1 (𝑜1) = 𝑠𝑎𝑡 (𝑜1){{{
sign (𝑜1) 5.5, 󵄨󵄨󵄨󵄨𝑜1󵄨󵄨󵄨󵄨 ≥ 5.5𝑜1, 󵄨󵄨󵄨󵄨𝑜1󵄨󵄨󵄨󵄨 < 5.5

𝑢2 (𝑜2) = 𝑠𝑎𝑡 (𝑜2){{{
sign (𝑜2) 4.5, 󵄨󵄨󵄨󵄨𝑜2󵄨󵄨󵄨󵄨 ≥ 4.5𝑜2, 󵄨󵄨󵄨󵄨𝑜2󵄨󵄨󵄨󵄨 < 4.5

(72)

It can be known that the existence of input
saturation nonlinearity implies that non-affine functions𝜑1,2(𝜒1,1, 𝜒1,2, 𝑢1(𝑜1)) and 𝜑2,2(𝜒2.1, 𝜒2.2, 𝑢2(𝑜2)) are non-
differentiable. In this case, the existing approaches cannot be
used. However, Assumption 1 in this paper is still satisfied
which means that the scheme proposed here is able to
deal with the control design difficulty in spite of the input
saturation nonlinearity.

According to Theorem 11, the virtual control laws and
actual control laws are constructed as

𝑠1,1 = −8𝑧1,1 − Φ̂1,1𝑧1,12 × 0.252 𝜙𝑇 (𝜒1,1) 𝜙 (𝜒1,1)
− 5 ̇𝑦1,𝑑 tanh (𝑧1,1 ̇𝑦1,𝑑0.25 ) − 𝜂1,1 tanh ( 𝑧1,10.25)

𝑠2,1 = −6𝑧2,1 − Φ̂2,1𝑧2,12 × 0.12 𝜙𝑇 (𝜒2,1) 𝜙 (𝜒2,1)
− 2 ̇𝑦2,𝑑 tanh (𝑧2,1 ̇𝑦2,𝑑0.1 ) − 𝜂2,1 tanh (𝑧2,10.1 )
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𝑜1 = −8𝑧1,2 − Φ̂1,2𝑧1,22 × 0.252 𝜙𝑇 (𝜒1,2) 𝜙 (𝜒1,2)
− 2]̇1,2 tanh (𝑧1,2]̇1,20.5 ) − 𝜂2,1 tanh (𝑧2,10.5 )

𝑜2 = −12𝑧2,2 − Φ̂2,2𝑧2,22 × 0.12 𝜙𝑇 (𝜒2,2) 𝜙 (𝜒2,2)
− 2]̇2,2 tanh (𝑧2,2]̇2,20.2 ) − 𝜂2,2 tanh (𝑧2,20.2 )

(73)

with adaptive laws

̇̂𝜂1,1 = 2𝑧1,1 tanh ( 𝑧1,10.25) − 0.15 × 2𝜂1,1,
̇̂Φ1,1 = 2𝑧21,12 × 0.252 𝜙𝑇 (𝜒1,1) 𝜙 (𝜒1,1) − 0.15 × 2Φ̂1,1
̇̂𝜂2,1 = 2𝑧2,1 tanh (𝑧2,10.1 ) − 0.1 × 2𝜂2,1,
̇̂Φ2,1 = 𝑧22,12 × 0.12 𝜙𝑇 (𝜒2,1) 𝜙 (𝜒2,1) − 0.1Φ̂2,1
̇̂𝜂1,2 = 1.5𝑧1,2 tanh (𝑧1,20.5 ) − 0.15 × 1.5𝜂1,2,
̇̂Φ1,2 = 2𝑧21,22 × 0.252 𝜙𝑇 (𝜒1,2) 𝜙 (𝜒1,2) − 0.15 × 2Φ̂1,2
̇̂𝜂2,2 = 1.5𝑧2,2 tanh (𝑧2,20.2 ) − 0.1 × 1.5𝜂2,2,
̇̂Φ2,2 = 𝑧22,22 × 0.12 𝜙𝑇 (𝜒2,2) 𝜙 (𝜒2,2) − 0.1Φ̂2,2

(74)

where 𝑧1,1 = 𝜒1.1 − 𝑦1,𝑑, 𝑧1,2 = 𝜒1.2 − ]1,2, 𝑧2,1 =𝜒2,1 − 𝑦2,𝑑 and 𝑧2,2 = 𝜒2,2 − ]2,2. Let the initial conditions
be [𝜒1,1(0), 𝜒1,2(0), 𝜒2,1(0), 𝜒2,2(0)]𝑇 = [0.5, 0.2, 0.35, 0.15]𝑇,Φ̂1,1(0) = Φ̂1,2(0) = Φ̂2,1(0) = Φ̂2,2(0) = 0 and 𝜂1,1(0) =𝜂1,2(0) = 𝜂2,1(0) = 𝜂2,2(0) = 0. The simulation results are
provided in Figures 1–5.

From Figure 1, we can see that the outputs 𝑦1 and 𝑦2 track
the desired trajectories 𝑦1,𝑑 and 𝑦2,𝑑 with small tracking error.
Figure 2 shows that the proposed scheme works well with
bounded system inputs, and the response curves of adaptive
parameters Φ̂1,1, 𝜂1,1, Φ̂1,2, 𝜂1,2, Φ̂2,1, 𝜂2,1, Φ̂2,2, and 𝜂2,2 are
depicted in Figure 3. From Figure 4, it can be seen that the
bounds for 𝑧1,1, 𝑧1,2, and 𝑧2,2 are not overstepped. Finally,
Figure 5 is given to explain the boundedness of states 𝜒1,1,𝜒1,2, 𝜒2,1, and 𝜒2,2.
Example 2. Consider the following two inverted pendulums
systems composed of spring and damper connections. The
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Figure 1: Outputs 𝑦1 and 𝑦2 and desired trajectories 𝑦1,𝑑 and 𝑦2,𝑑.
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Figure 2: System inputs 𝑢1 and 𝑢2.
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and 𝜂2,2.
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Figure 4: Phase portrait of 𝑧1,1, 𝑧1,2, and 𝑧2,2.
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Figure 5: Phase portrait of states 𝜒1,1, 𝜒1,2, 𝜒2,1 and 𝜒2,2.

pendulum angle and angular velocity were controlled using
the torque inputs generated by a servomotor at each base.The
dynamic equations can be described as follows [6]:

𝐽1 ̈𝜃1 = 𝑚1𝑔𝑟 sin 𝜃1 − 0.5𝐹𝑟 cos (𝜃1 − 𝜃) − 𝑇𝑓1 + 𝑢1
𝐽2 ̈𝜃2 = 𝑚2𝑔𝑟 sin 𝜃2 − 0.5𝐹𝑟 cos (𝜃2 − 𝜃) − 𝑇𝑓2 + 𝑢2 (75)

where 𝜃1 and 𝜃2 are the angular positions, 𝐽1 = 1 kgm2 and𝐽2 = 1 kgm2 are the moments of inertia,𝑚1 = 2 kg and𝑚2 =2.5 kg are the masses, 𝑟 = 0.5 m, 𝐹 = 𝑘(𝑝 − 𝑙) + 𝑏�̇� denotes
the force applied by the spring and damper at the connection
points, and 𝑝 is the distance between the connection points
as follows:

𝑝
= √𝑑2 + 𝑑𝑟 (sin 𝜃1 − sin 𝜃2) + 𝑟22 [1 − cos (𝜃2 − 𝜃1)]

(76)
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Figure 6: Outputs 𝑦1 and 𝑦2 and reference signals 𝑦1,𝑑 and 𝑦2,𝑑.
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Figure 7: Control inputs 𝑢1 and 𝑢2.

where 𝑑 = 0.5 m, 𝑘 = 150 N/m and 𝑏 = 1 N sec/m. The
relative angular position 𝜃 can be defined as

𝜃 = tan−1 ( (𝑟/2) (cos 𝜃2 − cos 𝜃1)𝑑 + (𝑟/2) (sin 𝜃1 − sin 𝜃2)) (77)

and 𝑇𝑓𝑖 (𝑖 = 1, 2) are assumed to be a LuGre friction model
defined as

𝑇𝑓𝑖 = 𝑠0 ̇𝜀𝑖 + 𝑠1 ̇𝜀𝑖 + 𝑠2 ̇𝜃𝑖
̇𝜀𝑖 = ̇𝜃𝑖 − 𝑠0 󵄨󵄨󵄨󵄨󵄨 ̇𝜃𝑖󵄨󵄨󵄨󵄨󵄨𝑇𝑐 + (𝑇𝑠 − 𝑇𝑐) exp (− 󵄨󵄨󵄨󵄨󵄨 ̇𝜃/ ̇𝜃2󵄨󵄨󵄨󵄨󵄨2)

(78)

where 𝑠0 = 1 Nm, 𝑠1 = 1 Nm sec, 𝑠2 = 1 Nm sec, ̇𝜃𝑠 =0.1 rad/sec, 𝑇𝑠 = 2 Nm and 𝑇𝑐 = 1 Nm.
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Figure 8: Adaptive parameters Φ̂1,1, 𝜂1,1, Φ̂1,2, 𝜂1,2, Φ̂2,1, 𝜂2,1, Φ̂2,2, and 𝜂2,2.
Defining 𝜒1,1 = 𝜃1, 𝜒1,2 = ̇𝜃1, 𝜒2,1 = 𝜃2 and 𝜒2,2 = ̇𝜃2,

system (75) can be rewritten in the following form:

̇𝜒1,1 = 𝜑1,1 (𝜒1,1, 𝜒1,2) + 𝐷1,1 (𝜒, 𝑡)
̇𝜒1,2 = 𝜑1,2 (𝜒1,1, 𝜒1,2, 𝑢1 (𝑜1)) + 𝐷1,2 (𝜒, 𝑡)
̇𝜒2,1 = 𝜑2,1 (𝜒2,1, 𝜒2,2) + 𝐷2,1 (𝜒, 𝑡)
̇𝜒2,2 = 𝜑2,2 (𝜒2,1, 𝜒2,2, 𝑢2 (𝑜2)) + 𝐷2,2 (𝜒, 𝑡)
𝑦1 = 𝜒1,1
𝑦2 = 𝜒2,1

(79)

where 𝜑1,1(⋅) = (1 − 𝑒−1−𝜒1,1)/(1 + 𝑒−1−𝜒2,1) + 𝜒1,2, 𝜑1,2(⋅) =𝑔1,2(𝑚1𝑔𝑟 sin 𝑥1,1−0.5𝐹𝑟 cos(𝜒1,1−𝜃)−𝑇𝑓1)+𝑔1,2𝑢1(𝑜1),𝑔1,2 =1/𝐽1, 𝜑2,2(⋅) = 𝑔2,2𝑢2(𝑜2)+𝑔2,2(𝑚2𝑔𝑟 sin𝑥2,1−0.5𝐹𝑟 cos(𝜒2,1−𝜃) − 𝑇𝑓2), 𝑔2,2 = 1/𝐽2, 𝜑2,1(⋅) = (𝜒2,1 + 𝜒2,2)/(1 + 𝜒2,1) +𝜒2,2; 𝐷1,1(𝜒, 𝑡) = 0.5 sin(𝜒1,2𝜒2,1𝜒2,2) cos(0.2𝑡), 𝐷2,1(𝜒, 𝑡) =2 × sin(𝜒1,1𝜒1,2𝜒22,1), 𝐷1,2(𝜒, 𝑡) = 0.3 cos(𝜒21,2 + 𝜒1,1𝜒2,1) and𝐷2,2(𝜒, 𝑡) = cos(𝜒22,1 + 𝜒22,2 + 𝜒1,1)(sin(𝑡))2. Moreover, 𝑢1(𝑜1)
and 𝑢2(𝑜2) are described by the following:

𝑢1 (𝑜1) = 𝑠𝑎𝑡 (𝑜1){{{
sign (𝑜1) 4, 󵄨󵄨󵄨󵄨𝑜1󵄨󵄨󵄨󵄨 ≥ 4𝑜1, 󵄨󵄨󵄨󵄨𝑜1󵄨󵄨󵄨󵄨 < 4

𝑢2 (𝑜2) = 𝑠𝑎𝑡 (𝑜2){{{
sign (𝑜2) 6.5, 󵄨󵄨󵄨󵄨𝑜2󵄨󵄨󵄨󵄨 ≥ 6.5𝑜2, 󵄨󵄨󵄨󵄨𝑜2󵄨󵄨󵄨󵄨 < 6.5

(80)

It can be seen that the non-affine functions are non-
differentiable with respect to 𝑢1 and 𝑢2. In simulation, choose
the desired reference trajectories as𝑦1,𝑑 = 0.5(sin 𝑡+sin(0.5𝑡))
and 𝑦2,𝑑 = sin(𝑡); the virtual control laws, actual control laws,
and adaption laws are provided by (25), (52) and (26)-(27),
(53)-(54)with design parameters 𝑐1,1 = 𝑐1,2 = 6, 𝑐2,1 = 𝑐2,2 = 9,𝑎1,1 = 𝑎1,2 = 0.2, 𝑎2,1 = 𝑎2,2 = 0.5, 𝛼1,1 = 𝛼2.1 = 4,

𝛼1,2 = 𝛼2,2 = 2, 𝜐1,1 = 𝜐1,2 = 0.25, 𝜐2,1 = 𝜐2,2 = 0.1,𝛽1,1 = 𝛽1,2 = 1.5, 𝛽2,1 = 𝛽2,2 = 2, 𝜎1,1 = 𝜎1,2 = 0.15,𝜎2,1 = 𝜎2,2 = 0.25, 𝜉1,1 = 2, 𝜉1,2 = 𝜉2,2 = 2.5, 𝜉2,1 = 1.5. Let
the initial conditions be [𝜒1,1(0), 𝜒1,2(0), 𝜒2,1(0), 𝜒2,2(0)]𝑇 =[0.3, 0.2, 0.5, 0.45]𝑇, Φ̂1,1(0) = Φ̂1,2(0) = Φ̂2,1(0) = Φ̂2,2(0) =0 and 𝜂1,1(0) = 𝜂1,2(0) = 𝜂2,1(0) = 𝜂2,2(0) = 0. The simulation
results are provided in Figures 6–8.

As can be seen in Figure 6, the system outputs track the
desired trajectories, perfectly. Figures 7-8 illustrate the system
inputs and adaptive parameters, from which, we can see that
the fairly good tracking performance is obtained.

6. Conclusion

This work for the first time proposes fuzzy adaptive dynamic
surface control design for a larger class of MIMO non-affine
nonlinear systems in the presence of input saturation. To
overcome the design difficulty of input saturation, a novel
auxiliary system with bounded compensation term has been
proposed, and a bounded compensation term of tangent
function is designed in this paper. Thanks to this design,
we successfully relax the strictly bounded assumption of the
dynamic system. SGUUB stability of the closed-loop systems
is rigorously proved by combining Lyapunov theory and
invariant set theory.
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