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Introduction:Many bicycle–car crashes are causedby the fact that thedriver fails to give right ofway to the cyclist.
Although the car driver is to blame, the cyclistmay have been able to prevent the crash by anticipating the safety-
critical event and slowing-down. This study aimed to understand how accurate cyclists are in predicting a
driver's right-of-way violation, which cues contribute to cyclists' predictions, and which factors contribute
to their self-reported slowing-down behavior as a function of the temporal proximity to the conflict.Method:
1030 participants were presented with video clips of nine safety-critical intersection situations, with five differ-
ent video freezing moments in a between-subjects design. After each video clip, participants completed a ques-
tionnaire to indicate what the car driver will do next, which bottom-up and top-down cues they think they used,
as well as their intended slowing-down behavior and perceived risk. Results and conclusions: The results showed
that participants' predictions of the driver's behavior develop over time, with more accurate predictions (i.e.,
reporting that the driver will not let the cyclist cross first) at later freezing moments. A regression analysis
showed that perceived high speed and acceleration of the car were associated with correctly predicting that
the driver will not let the cyclist cross first. Incorrect predictions were associated with believing that the car
has a low speed or is decelerating, and with reporting that the cyclist has right of way. Correctly predicting
that the driver will not let the cyclist cross first and perceived risk were significant predictors of intending to
slow down in safety-critical intersection situations. Practical applications: Our findings add to the existing knowl-
edge on cyclists' hazard anticipation and could be used for the development of training programs as well as for
cycling support systems.

© 2019 National Safety Council and Elsevier Ltd. All rights reserved.
1. Introduction

A crucial skill for safe performance in traffic is the ability to antici-
pate future events quickly and accurately, in order to have sufficient
time for decision-making and performing an appropriate action (Allen,
Lunenfeld, & Alexander, 1971; Cumming, 1964; Horswill, 2016a). An
in-depth crash analysis suggests that both cyclists and drivers make
anticipation errors that result in emergency events on the road
(Räsänen& Summala, 1998). Although several researchers have investi-
gated the mechanisms that underlie drivers' errors in cyclist–driver
conflicts (e.g., Herslund & Jørgensen, 2003; Räsänen & Summala,
2000; Summala, Pasanen, Räsänen, & Sievänen, 1996), knowledge on
cyclists' errors is sparse. Thus far, research indicates that a large propor-
tion of crashes happen in situations where the cyclist does see the
al Engineering, Delft University
ds.
csová).

td. All rights reserved.
oncoming car butwrongly expects that the car driverwill yield in accor-
dance with traffic rules (Räsänen & Summala, 1998).

A cyclist processes top-down and bottom-up cues to determine
what the driver on a collision course is going to do next (see Endsley,
1995; Summala & Räsänen, 2000). Top-down or “conceptually driven”
cues consist of procedural knowledge and expectancies based on for-
mal/informal traffic rules and previous experience (Allen et al., 1971;
Shor, 1964; Summala & Räsänen, 2000; Theeuwes, 2000). Knowledge
and expectancies create prototypical representations of intersection sit-
uations, called schemas or scripts (Minsky, 1975; Rumelhart, 2018;
Schank & Abelson, 1977). Bottom-up or “data-driven” cues consist of
perceptual features in the situation that a roaduser can perceive directly
(see Gibson, 2015). A cyclist can extract the driver's intentions from the
car speed and position on the road, the indicator lights, and the driver's
head orientation and hand signals (e.g., Drury & Pietraszewski, 1979;
Lee & Sheppard, 2016; Sun, Zhuang, Wu, Zhao, & Zhang, 2015; Walker,
2005). In the situation where a car driver inappropriately takes right
of way (such as observed in Räsänen & Summala, 1998), the cyclist

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsr.2019.01.002&domain=pdf
https://doi.org/10.1016/j.jsr.2019.01.002
nataliakovacsova@gmail.com
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http://www.sciencedirect.com/science/journal/
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has to deviate from the expected sequence of events (top-down cues)
and extracts relevant visual information (bottom-up cues) to prevent
a collision.

Recently, Lee and Sheppard (2016) conducted a study in which
participants were asked to predict the intentions (i.e., continuing
straight or turning) of cars and motorcycles at three-way intersections.
The authors found that drivers were more accurate in judging turning
maneuvers when the vehicle was indicating the turn compared to
when the indicator was off. However, participants were also able to
predict the vehicle's maneuver based on vehicle motion in the indica-
tor-off condition. A previous interview study on safety-critical events
in everyday cycling indicated that a high speed of the car is a cue that
cyclists pick up before the potential conflict (Werneke, Dozza, &
Karlsson, 2015).

In bicycle–car conflicts, responding quickly can make the difference
between crashing or not crashing. Despite the highly dynamic nature of
such conflicts, the existing studies do not address the temporal aspect of
how road users anticipate upcoming safety-critical events. For example,
in Lee and Sheppard's (2016) and Westerhuis and De Waard's (2017)
studies, participants were presented with video clips of an approaching
or leading roaduser that ended just before the roadusermade amaneu-
ver. In this way, only information until a single temporal moment was
obtained, without providing an insight into the development of antici-
pation as a function of time.

Being able to anticipate other road users' intentions accurately is a
critical precursor of successful decision-making in traffic. However,
having excellent anticipatory skills is not enough for safe performance
in traffic; safe performance also depends on the amount of risk one
perceives and is willing to take in traffic (e.g., Brown & Groeger, 1988;
Deery, 1999; Näätänen & Summala, 1974). Cyclists' perceived risk is
known to be high in situations where cyclists interact with cars, when
not having control over the outcome of the traffic situation, or when
the predictability of traffic situation is low (Chaurand & Delhomme,
2013; Møller & Hels, 2008), such as in situations where a car driver
fails to give right of way. Road users who perceive a relatively low
level of risk are more likely to show risky behaviors in traffic (see
Deery, 1999, for a review).

In the present study, participants were asked to watch video clips
from a cyclist's perspective. Each video included a safety-critical inter-
section situation in which a car driver violated the formal traffic rules.
To examine how the accuracy of cyclists' anticipation develops as a
function of the temporal proximity to the collision, participants were
presentedwith five clip freezingmoments of each intersection situation
in a between-subjects design. After each video clip, participants com-
pleted a questionnaire to indicate what the car driver will do next,
which bottom-up and top-down cues they think they used, as well as
their intended slowing-down behavior and perceived risk. To summa-
rize, this study addressed the following three research questions:

1. How do cyclists' predictions of what a car driverwill do next at an in-
tersection develop prior to a near miss or a crash with that car?
Table 1
Reported cycling experience in the summertime and driving experience in the last 12 months.

Cycling frequency Never Less than once a month Once a month to once a

Number of participants 0 121 127

Weekly cycling mileage 0–5 km 6–10 km 11–30 km
Number of participants 221 223 219

Driving frequency Never Less than once a month Once a month to once a
Number of participants 154 87 65

Yearly driving mileage 0 km 1–5000
km

5001–15,000 km

Number of participants 130 316 227
The temporally closer theperson is to the critical event, themore rel-
evant visual information is available (see Farrow, Abernethy, & Jackson,
2005, for a temporal occlusion paradigm). Based on this presumption,
we expected that the accuracy of cyclists' predictions of whether the
car driver will let the cyclist cross first or not increases as a function of
the temporal proximity to the conflict, with the highest accuracy
when the cyclist is temporally closest to the conflict.

2. How do bottom-up and top-down cues guide cyclists' predictions of
what a car driver will do next at an intersection in near-miss and
crash intersection situations?

We expected that cyclists use both bottom-up cues (e.g., the speed
and turn indicator of the car) and top-down (e.g., the right-of-way
rule, previous experience) to predict a car driver's behavior at an inter-
section. Based on Räsänen and Summala (1998) and Summala and
Räsänen (2000), we expected that relying on the right-of-way rules
and thinking that the car has a low speed or is decelerating are related
to incorrect predictions (i.e., predicting that the driver will yield to the
cyclist).

3. How are the prediction of the car driver's behavior, subjectively per-
ceived risk, participants' age, and cycling experience associated with
self-reported slowing-down behavior in near-miss and crash inter-
section situations?

We expected that correctly predicting the car driver's behavior as
well as a high level of perceived risk are predictive of the cyclist's self-re-
ported slowing-down behavior. Lastly, in line with studies that have
used objective measures of riding behavior (e.g., Crundall, Stedmon,
Saikayasit, & Crundall, 2013; Liu, Hosking, & Lenné, 2009), we expected
that age and cycling experience would be positively associated with
self-reported slowing-down behavior in near-miss and crash intersec-
tion situations.

2. Method

2.1. Participants

A total of 1384 participants from 65 countries completed the study
online using SurveyMonkey (the five most frequently reported coun-
tries of residence were United States, Venezuela, Italy, Canada, and the
UK). Participants were recruited through the crowdsourcing service
CrowdFlower and through the social networking service Facebook be-
tween February 27 and August 21, 2017. 1030 individuals (374 females,
653 males, 3 unknown) who met eligibility and quality control criteria
(i.e., older than 18 years, provided consent to the instructions, correctly
answered the quality control items), andwhodid not indicate ‘never’ on
the cycling frequency itemwere included in this study. Themean age of
the remaining participants was 34.09 (SD= 10.45), ranging between
18 and 70 years.
week 1–3 days a week 4–6 days a week Every day N/A

508 172 102 0

31–90 km 91–150 km More than 151 km N/A
228 88 39 12

week 1–3 days a week 4–6 days a week Every day N/A
233 248 237 6

15,001–25,000 km 25,001–50,000 km More than 50,001 km N/A

194 106 40 17



Table 2
Overview of the 10 intersection situations, estimated cycling speed, estimated time required to come to a full stop, and times between very early and very late clip freezingmoments and
the moment of conflict/collision. Note that the very late freezing moment was created by removing 5 frames (0.17 s) from the moment the car entered the bike path.

No. Intersection
situation

Bicycle
facility

Estimated cycling
speeda (km/h)

Estimated time to stop based on
cycling speed (s)

Time between freezing moment and the
conflict/collision pointb (s)

Deceleration
rate 3.1 m/s2

Deceleration
rate 4.6 m/s2

Very early Very late

1 Crash Yes 20.4 1.83 1.23 1.57 0.50
2 Near miss Yes 23.0 2.07 1.39 1.60 0.53
3 Near miss Yes 29.1 2.61 1.76 1.73 0.67
4 Near miss Yes 28.2 2.53 1.70 1.37 0.30
5 Safe Yes 30.2 – – – –
6 Crash Yes 31.5 2.82 1.90 1.30 0.23
7 Crash Yes 42.0 3.76 2.54 2.53 1.47
8 Crash No 29.3 2.63 1.77 1.77 0.70
9 Near miss Yes 30.0 2.69 1.81 1.27 0.20
10 Crash Yes 36.3 3.26 2.19 1.77 0.70

a The estimated cycling speed in the video clips was calculated by measuring the distance between the position reached 2 s prior to conflict/collision point and 34–35 m before this
position in GoogleTM Earth (see Supplementary material), and dividing this distance by the duration of the moving video clip between these two points.

b For near-miss situations, a conflict point was defined as the moment when the car entered the cyclist’s bike lane. For crash situations, a collision point was defined as the moment
when the cyclist collided with the car (see Supplementary material for the video frames of these points).
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On average, participants started to cycle at the age of 8.32 years (SD
= 4.58), and 76.0% of the participants reported driving a car at least
once a month (see Table 1 for an overview of participants' cycling and
driving experience). The majority of participants (58.1%) indicated
that the car is their primary mode of transport, followed by the bicycle
(17.6%), public transport (13.8%), walking (7.8%), and other (2.7%).
The majority of participants owned a city bike (52.8%) or mountain
bike (42.4%). 254 participants (24.7%) reported to have been involved
in an accident as a cyclist at least once during the last three years, and
44 participants reported that some of the reported accidents happened
with amotorized vehicle at an intersection. The Human Research Ethics
Committee of university (Ethics application no. 151, 2017) approved
the study.
1 The video clips can be found in the Supplementarymaterial. For review: https://www.
dropbox.com/sh/zq553x80cskyukg/AADI6o-7PY69oHsj6p45LLYfa?dl=0
2.2. Materials

Video clips froma cyclist's point of viewwere collected frompublicly
available YouTube postings. Clip segments inwhich the carwas crossing
a cyclist's path and was visible for at least 2 s prior to this crossing were
selected. Nine safety-critical and one safe intersection situationwere se-
lected. Safety-critical situationswere defined as situations that included
an approaching car that was not giving right of way to the cyclist,
resulting in a crash (five situations) or a near miss if a car crossed the
bike path without giving a right of way and the cyclist braked (four sit-
uations). In a safe situation, an approaching car stopped in front of the
bike path. The safe situation was included to assess whether partici-
pants could discriminate between safety-critical and safe intersection
situations. In addition, one extra video clip of a safe situation was
extracted from YouTube postings, which was used as a practice video
clip to familiarize participants with the task.

The intersection situations were recorded during daylight in real
traffic on Dutch (intersection situations 1–5), Northern American (in-
tersection situations 6–8), and Australian roads (intersection situations
9–10); see Table 2 for an overview of the 10 intersection situations. The
video clips of two situations recorded on the Australian roads were hor-
izontally flipped to follow right-hand traffic rules in all intersection sit-
uations. Cyclists formally had right of way in all 10 situations and were
cycling on a bike path/lane in 9 of the 10 situations.

All downloaded video clips were stored at a frame rate of 29.97 fps.
Using a video editing method proposed by Westerhuis and De Waard
(2017), each video clip started with a frozen frame containing a 3 s
countdown at the right bottom of the screen, after which the clip was
played. Five clip freezing conditions of each clip were created using
Adobe Premiere Pro CC 2017. First, a very late freezingmomentwas cre-
ated by removing 5 frames (=0.17 s) from the moment the car either
entered the bike path/lane in near-miss and crash situations or themo-
ment the car stopped in the safe situation. From this point of each video
clip, eight additional frames were removed four times to create four ad-
ditional versions of each clip: late (=0.43 s), intermediate (=0.70 s),
early (=0.97 s), and very early (=1.24 s) freezing moments (see Fig.
1). The time between the very late freezing moment and the conflict/
collision varied between clips from 0.20 to 1.47 s (Table 2). After the
video clip had played, the last frame was frozen. From the moment of
the freeze, the relevant car was encircled for 2 s, after which the same
static image without the circle remained visible for another 2 s. Clips
with very late freezing moments were between 13.75 and 21.42 s long
(including frozen frames). A total of 50 video clips (10 intersection situ-
ations * 5 clip freezing moment conditions) were created.1

The estimated approach speeds of the cyclists differed between the
10 intersection situations, ranging from 20 km/h in Situation 1 to 42
km/h in Situation 7 (Table 2). These speeds are generally higher than
the cruising speeds observed among conventional bicycle users (e.g.,
De Waard, Lewis-Evans, Jelijs, Tucha, & Brookhuis, 2014; Kircher,
Ihlström, Nygårdhs, & Ahlstrom, 2018). However, the speeds are in
line with cruising speeds collected during naturalistic cycling studies
among e-bike users (e.g., Rotthier et al., 2017; Stelling-Konczak et al.,
2017) and with average speeds reported by users of racing bicycles
(Hendriksen et al., 2008).

Taylor (1993) computed that the maximum attainable deceleration
of cyclists is 5.5 m/s2. However, braking tests using various types of bi-
cycles suggest that cyclists decelerate at a somewhat lower rate of 3.5
to 4.5 m/s2 (Beck, 2004). Data from a braking task text (ref) were used
to estimate the cyclists' average deceleration (3.1 m/s2) and the 90th
percentile value (4.6 m/s2). Using these values, it was computed that
the cyclist had insufficient time to avoid a (potential) collision by
means of braking, for each of the nine ‘very late’ safety-critical situations
(Table 2).
2.3. Survey design

The online video-clip survey consisted of 14 web pages written in
the English language. On the first page, participants provided their con-
sent for participating in this study. Second, participants completed an
introduction questionnaire with items on demographic characteristics,
cycling, and driving experience.Weekly cyclingmileage in the summer-
time was indicated on a 6-point scale ranging from never (1) to every
day (6). As mentioned above, participants who indicated ‘never’ were

https://www.dropbox.com/sh/zq553x80cskyukg/AADI6o-7PY69oHsj6p45LLYfa?dl=0
https://www.dropbox.com/sh/zq553x80cskyukg/AADI6o-7PY69oHsj6p45LLYfa?dl=0


Fig. 1. The five freezingmoments of a near-miss situation (Situation 3; left) and a crash situation (Situation 6; right). See Supplementarymaterial for the final frames of all 10 intersection
situations.
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excluded. The weekly cycling frequency in the summertime was
indicated on a 10-point scale ranging from 0 km/mi (1) to more than
201 km (more than 125 mi) (10).

The next 11 pages consisted of 1 practice and 10 experimental video
clips and an 8-item questionnaire after each video clip. In this question-
naire, participants were asked to indicate their responses to the follow-
ing items:

(1) Perceived risk (“The situation was risky.”) – participants
indicated their response on a 7-point Likert scale from strongly
disagree to strongly agree.

(2) Cyclist's slowing-down behavior (“Imagine that you are the
cyclist in the video. Would you slow down?”) – participants
were asked to choose between yes, I would slow down and no, I
would continue cycling at this speed.

(3) Prediction of the driver's behavior (“Imagine that the cyclist in
the video will continue cycling at this speed. Will the car driver
let the cyclist cross first?”) – participants were asked to choose
between yes, the car driver will slow down and let the cyclist
cross first and no.

(4) Certainty about the driver's behavior (“I am certain about my
previous answer.”) –participants indicated their response on a
7-point Likert scale from strongly disagree to strongly agree.

(5) Factors that contributed to the prediction of the driver's behavior
(“Which factors contributed to your prediction?”) – this was a
checkbox item where participants could select from seven bot-
tom-up cues (including the speed of the car, turn signals, and
road markings) and two top-down cues (priority rules and
prior experience), see Fig. 3, for all nine options. Participants
could also report other factors in a textbox.

(6) Priority rules (“The encircled car has priority in this situation.”) –
participants indicated their response using the following three
options: yes, no, unsure.

(7) Number of times the video was played (“How many times did
you watch the video?”) – participants indicated their response
using a numerical scale ranging from 0 to more than 5.

(8) Color of the encircled car (“What was the color of the encircled
car?”) – participants could choose one of the four colors where
only one option was correct (e.g., silver, red, green, black).

Item 7 was included to verify whether the number of video replays
affected participants' prediction correctness. Item 8 was a quality con-
trol item used to select only participants who watched the video clips
prior to answering the questionnaire.

On the first of the 11 video-clip pages, participants read the instruc-
tions, watched a practice video clip, and reported their answers to the
eight questions mentioned above. The task instruction was as follows:
“You will now look at videos taken from a cyclist's perspective. In each
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video, you will have to pay attention to a particular car. After each video,
you will answer questions about a car that is encircled at the end of the
video. In each video, the cyclist is going straight ahead. When traffic lights
are present in the video, the cyclist always has a green light. Please watch
the videos and complete the questions in the order they appear. Please
watch each video only once. In case you did not notice the car about
which we ask you questions, you may replay the video once again. How-
ever, we kindly ask you to pay attention during the first viewing.”

On the last questionnaire page, participants completed the Cycling
Skill Inventory (CSI) and items on accident involvement during the
last three years as a cyclist and as a car driver. The psychometric analysis
of the CSI data has been reported elsewhere (ref).

2.4. Procedure

The study was of mixed between-within subjects design. The 50
experimental video clips were divided into five sets (i.e., fibe different
forms of the SurveyMonkey online survey). Each participant was
presented with 10 video clips; they saw each of the 10 intersection
situations once and encountered each of thefive clip freezing conditions
twice. The order of the clip freezing conditions and the order of the
intersection situations were counterbalanced across participants. All
video clips were uploaded to YouTube and embedded into the online
survey. Because of this, we could not control howmany times each par-
ticipant played the video clips.

Participants recruited through CrowdFlower were randomly allo-
cated to one of the five sets. Participants recruited through Facebook
were redirected to the survey via the posts with an Internet link to
one of the five sets of the survey. Randomly selected Internet links to
the survey were posted on the cycling-related Facebook groups based
in the Netherlands (e.g., Bikes in Groningen). It took on average 20
min to complete the survey.

2.5. Analysis

First, a data check of responses from 1030 participants who met the
eligibility and quality control criteria was performed. Participants had
the option to respond I prefer to not respond to the items in the introduc-
tion and final questionnaire (i.e., background, cycling, driving-related,
and accident-related items). These responses were considered as
missing values in the analysis. Text responses to the other cue option
were coded as “other” in case they were different from the nine
predefined cues (e.g., “The driver might not be able to see the cyclist.”).
In some cases, participants mentioned road markings or experience in
their comments while they did not select these predefined checkboxes.
Therefore, these responses were edited accordingly (e.g., “Bad experi-
ence with vans being in a hurry.” was coded as the “I have experience
as a cyclist at a similar intersection” cue).

We first calculated participants' predictions of the car driver's
behavior and self-reported slowing-down behavior as a function of
video clip freezing moments. The remaining analyses were conducted
without the safe situation, as the safe situation was included only for
method validation purposes.

We proceeded with an analysis of the reported bottom-up and
top-down cues. The frequencies of the reported cues were calculated
for correct (i.e., the car driver will not let the cyclist cross first) and in-
correct (i.e., the car driver will let the cyclist cross first) predictions of
the driver's behavior. In this analysis, the percentages of reported cues
were first calculated per clip freezing moment for each video clip, and
then the percentages of each cue were averaged across clip freezing
moment and the nine intersection situations. In addition, percentages
of reported cues and average perceived risk levels were plotted as a
function of video clip freezing moment.

Finally, Spearman's rank-order correlations, linear regressions, and
linear hierarchical regressions were conducted at the level of individual
participants. Prior to these statistical analyses, participants responses on
“prediction of the driver's behavior,” “cyclist's slowing-down behavior,”
and “perceived risk” itemswere averaged across: (a) the four near-miss
situations and clip freezing moments, and (b) the five crash situations
and clip freezing moments. Similarly, the 10 cue-related responses
were averaged across the five clip freezing moments of the four
near-miss or the five crash intersection situations. Except for the “per-
ceived risk” item, participants indicated their responses using binary
options. The averaged scores of these binary items ranged between 0%
and 100% (e.g., 0%, 25%, 50%, 75%, 100% for near-miss situations),
where 100% refers to perfect accuracy in predicting the driver's behavior
(i.e., a participant correctly predicted that the car would not stop in all
four near-miss situations), always slowing-down, or always reporting
a particular cue.

A linear regression analysis was conducted with predictions of the
driver's behavior as the dependent variable and the 10 cues as predic-
tors. Next, a hierarchical linear regression analysis was conducted
with self-reported slowing-down behavior as the dependent variable.
In the hierarchical regression models, background and cycling variables
(i.e., gender, age, weekly cycling mileage, and cycling frequency) were
entered in Step 1, prediction of the driver's behavior in Step 2, and
perceived risk in Step 3. The regression analyses were conducted for
near-miss and crash situations separately. As shown by Hellevik
(2009), linear regression analysis can safely be used instead of logistic
regression analysis. Linear and logistic regression analyses yield highly
correlated regression coefficients and p-values, while an important
advantage of linear regression analysis is the “intuitive meaningfulness
of the linear measures as differences in probabilities” (Hellevik, 2009, p.
59).

Additionally, we analyzed cross-cultural differences in participants'
predictions of the car driver's behavior, self-reported slowing-down
behavior, and perceived risk in the near-miss and crash situations. Ten
countries that were represented by more than 30 participants were
included in this analysis. The percentages were calculated for each of
the five clip freezing moments and subsequently averaged across the
four near-miss or five crash situations. Due to the relatively small sam-
ple sizes per freeze frame conditions, the results should be interpreted
with appropriate caution (see Supplementary material).

3. Results

3.1. Predictions of the car drivers' behaviors and participants' self-reported
slowing-down behaviors

As canbe seen in Fig. 2 (left), the percentage of participantswhopre-
dicted that the car driverwould not let the cyclist cross first increased as
a function of elapsed time in the four near-miss situations (blue lines)
and the five crash situations (black lines), and decreased in the safe
situation (green line). In other words, the accuracy of participants' pre-
dictions increased with elapsed time in all 10 intersection situations,
being themost accurate in the very late clip freezingmoment. However,
as shown in Table 2, for the late clip freezing moment, there was not
enough time to come to a full stop. Participants' predictions of the
driver's behavior were more accurate in the near-miss situations than
in crash situations (Table 3).

Fig. 2 (right) shows that similar to the predictions of the drivers' be-
haviors, participants' self-reported slowing-down behaviors increased
with elapsed time in the safety-critical situations (blue and black
lines) and decreased with elapsed time in the safe situation (green
line). Participants reported to slow down more in the near-miss situa-
tions compared to the crash situations, especially for the early clip freez-
ing moments (Table 3).

On average, participants reported playing the video clips 1.40 times
(SD=0.61). There was no statistically significant correlation between
the number of times the video was played and correctly predicting the
car driver's behavior (ρ=0.02, p= .454, N=1030) nor with the cor-
rectness of the reported slowing-down behavior (i.e., yes, I would slow



Fig. 2. Left: Percentage of participantswho reported no to the question “Imagine that the cyclist in the videowill continue cycling at this speed.Will the car driver let the cyclist cross first?”
as a function of intersection situation and clip freezingmoment. Right: Percentage of participants who reported yes, I would slow down to the question “Imagine that you are the cyclist in
the video. Would you slow down?” as a function of intersection situation and clip freezing moment. The values of the markers are based on the responses of 189–213 participants.
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down) (ρ=0.01, p= .780, N=1030). Overall, participants were cer-
tain about their prediction of the car driver's behavior (mean = 5.33,
SD = 1.05, on the scale from 1 to 7), and their average certainty was
similar across the five clip freezing moments (5.21 in the very early to
5.58 in the very late condition). Correctly predicting the car driver's
behavior was positively associated with reported level of certainty
(ρ =0.11, p b .001, N=1030).
3.2. Reported bottom-up and top-down cues

In the safety-critical situations (i.e., near-miss and crash), partici-
pants selected on average 1.60 cues per video clip (SD= 0.68). Fig. 3
shows that the cues concerning the car speed (cues 1–4) and priority
rules (cue 8) were reported most frequently among the available
options. As can be seen in Fig. 3, there were differences between the
reported cues for correct and incorrect predictions: participants who
correctly predicted that the car would not slow down typically reported
Table 3
Mean percentages of correct predictions of the car drivers' behavior (top), mean percent-
ages of self-reported slowing-down behavior (center), and mean scores of perceived risk
(bottom) for the three intersection situation types and the five clip freezing moments.

Will the car driver let the
cyclist cross first?

% of No responses

Very early Early Intermediate Late Very late

Near miss 56.7 63.8 71.5 72.8 80.8
Crash 27.1 34.4 43.1 53.4 65.8
Safe 24.9 25.7 16.4 17.5 11.2

Would you slow down? % of Yes, I would slow down responses

Very early Early Intermediate Late Very late

Near miss 74.2 79.9 85.1 89.1 93.4
Crash 48.4 60.4 68.0 76.5 83.2
Safe 43.2 53.3 53.1 43.4 33.7

The situation was risky. Mean (1 = Strongly disagree; 7 = Strongly agree)

Very early Early Intermediate Late Very late

Near miss 3.71 4.16 4.33 4.73 5.07
Crash 3.45 3.89 4.45 4.94 5.61
Safe 3.08 3.46 3.66 3.62 3.26
that the car's high speed (cue 1) or the car's acceleration (cue 2) contrib-
uted to their prediction. On the other hand, participants who falsely be-
lieved that the car would slow down typically reported that the car's
low speed (cue 3), or car's braking (cue 4), or priority rules (cue 8) con-
tributed to their prediction. Further, participants more frequently re-
ported their cycling experience (cue 9) when making correct
predictions. Frequently mentioned cues in the other category (cue 10)
were the distance between the cyclist and the car, the car's initiation
or non-initiation of the turn, the driver's looking behavior, the position
of the car at the intersection (e.g., the car is halfway through the inter-
section), a blind spot, and the presence of other road users (e.g., pedes-
trian, leading car). Overall, similar results for percentages of all reported
cues were found for near-miss and crash situations (Fig. 3).

An examination of the car speed cues across the five clip freezing
moments (Fig. 4) showed that high speed and acceleration of the car
(cues 1 & 2) were selected more frequently when being temporally
closer to the conflict, whereas low speed and deceleration of the car
(cues 3 & 4)were selectedmore frequently in the early clip freezingmo-
ments. The percentage of “I have priority according to the traffic rules”
responses was similar across the five clip freezing moments (Fig. 4).

The percentages of participants who correctly reported that the car
driver did not have right of way ranged between 43.0% in Situation 2
and 76.2% in Situation 5 (see Supplementary material for the results of
all 10 situations). Participants were more likely to know that the cyclist
had right of way in situationswhere priority roadmarkingswere visible
or in situations where the cyclist rode in a bike lane. However, approx-
imately half of the participants incorrectly reported or were not aware
of the priority rules in situations where the cyclist rode on a physically
separated bike path (Situations 2, 3, and 4).

Table 4 shows linear regression analyses for participants' correct
predictions of the car driver's behavior in near-miss (left) and crash
(right) situations. In both models, high speed and acceleration (cues 1
& 2) as well as “I have experience as a cyclist at a similar intersection”
(cue 9) and other cues (cue 10) were positively associated withmaking
correct predictions of the driver's behavior. Low speed and deceleration
(cues 3 & 4) and “I have priority according to the traffic rules” (cue 8)
were negatively associated with making correct predictions of the
driver's behavior, meaning that the probability that a participant made
a correct prediction was lower if a participant had selected these cues.
Turn signals and lines/markers on the road did not have a statistically
significant relationship with the predicted driver's behavior in neither



Fig. 3. Percentage of participants who reported bottom-up cues (cues 1–7) and top-down cues (cues 8 & 9) for correct (green) and incorrect (red) predictions of the car driver's behavior
averaged across five clip freezing moments in near-miss and crash situations. Participants indicated their responses using a checkbox item “Which factors contributed to your prediction
(of the driver's behavior)?” (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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of the twomodels (p N .01). The explained variancewas higher for near-
miss situations (R2 =0.33) than for crash situations (R2 =0.25).

3.3. Factors predicting self-reported cyclists' behavior

As can be seen in Table 5, participants were more likely to report to
slow down when they correctly predicted the driver's behavior (ρ=
0.25 and ρ=0.19 in near-miss and crash situations, respectively) and
when they perceived higher risk (ρ= 0.27 and ρ= 0.32 in near-miss
and crash situations, respectively). Age was positively correlated
with slowing-down (ρ = 0.06 and ρ = 0.10 in near-miss and
crash situations, respectively). Correlations between cycling experience
(i.e., weekly cycling mileage and cycling frequency), on the one hand,
and participants' slowing-down behavior, correctly predicting the
driver's behavior, and perceived risk, on the other, were all non-
Fig. 4. Percentage of participantswho reported a particular cue as a function of the clip freezingm
car driver's behavior; Right: results for video clips where participants made an incorrect predic
significant (p N .01). Finally, self-reported accident involvement as a cy-
clist was not significantly associated with participant's slowing-down
behavior, correctly predicting the driver's behavior, or perceived risk
(p N .01).

The results of linear hierarchical regression analyses for predicting
the cyclists' self-reported slowing-down behavior are shown in Table
6 (near-miss situations) and Table 7 (crash situations). At Step 1, only
age was significantly associated with slowing-down (β = 0.08 and
0.09, for near-miss and crash situations, respectively). At Step 2, cor-
rectly predicting that the driver will not slow down contributed to the
cyclists' slowing-down (β=0.25 and 0.21 for near-miss and crash situ-
ations, respectively). At Step 3, perceived risk also contributed signifi-
cantly to cyclists' slowing-down behavior in near-miss (β= 0.25) as
well as in crash situations (β=0.32). In near-miss situations, the rela-
tionship between the prediction of driver's behavior and cyclists'
oment. Left: results for video clipswhere participantsmade a correct prediction about the
tion about the car driver's behavior.



Table 4
Linear regression analysis for participants' correct predictions of the driver's behavior in near-miss and crash situations. Statistically significant predictors are shown in boldface.

Predictor (cue)a Near-miss (4 situations) Crash (5 situations)

B SE B β p B SE B β p

(Constant) 62.667 2.362 b0.001 42.562 2.175 b0.001
1. High speed of the car 0.198 0.028 0.20 b0.001 0.245 0.030 0.24 b0.001
2. Speeding up (acceleration) of the car 0.278 0.030 0.25 b0.001 0.283 0.037 0.21 b0.001
3. Low speed of the car −0.218 0.034 −0.19 b0.001 −0.151 0.030 −0.15 b0.001
4. Braking (deceleration) of the car −0.239 0.048 −0.13 b0.001 −0.098 0.033 −0.08 0.003
5. Turn signals of the car are ON −0.085 0.055 −0.04 0.123 0.032 0.058 0.02 0.584
6. Turn signals of the car are OFF 0.095 0.058 0.04 0.103 −0.027 0.045 −0.02 0.558
7. Lines/markers on the road −0.011 0.036 −0.01 0.747 −0.045 0.032 −0.04 0.156
8. “I have priority according to the traffic rules” −0.250 0.031 −0.22 b0.001 −0.167 0.025 −0.19 b0.001
9. “I have experience as a cyclist at a similar intersection” 0.168 0.028 0.16 b0.001 0.101 0.028 0.10 b0.001
10. Other 0.240 0.064 0.10 b0.001 0.185 0.077 0.07 0.016
R2 0.33 0.25
Adj. R2 0.32 0.24
F (df1, df2), p 49.97 (10, 1019), b0.001 33.27 (10, 1019), b0.001

a Responseswere averaged across the 4 near-miss situations, or across the 5 crash situations. The average scores per cue ranged from 0% to 100%, where 100% refers to always reporting
the particular cue.
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slowing-down remained essentially unchanged once perceived riskwas
entered into the model (β=0.23). In crash situations, this relationship
was reduced but remained statistically significant after controlling for
perceived risk (β=0.15).

Lastly, as shown in Fig. 5, participants' perceived risk increased as a
function of time in the safety-critical situations (blue and black lines).
For the (very) early freezing moments, participants perceived slightly
higher risk in near-miss situations than in crash situations; the opposite
effect was observed for the later three freezing moments (Table 3).
4. Discussion

The majority of bicycle–car collisions happen at intersections in
urban areas (Schepers, Kroeze, Sweers, & Wüst, 2011; Wang & Nihan,
2004). So far, crash analyses have indicated that these collisions occur
even when the cyclist must have seen the approaching car (Räsänen &
Summala, 1998). In the present study, we examined how cyclists' haz-
ard anticipation develops as a function of time in safety-critical intersec-
tion situations where a car on a collision course is already detected by
the cyclist. Second, we investigated which bottom-up and top-down
cues guide cyclists' predictions of car drivers' right-of-way violations.
Lastly, we examined how predicting that the driver will not let the cy-
clist cross first, perceived risk, and cycling experience contribute to
the cyclists' self-reported slowing-down behavior in near-miss and
crash situations.
Table 5
Spearman rank-order correlations among background variables, crash involvement, prediction

1 2

1 Gender (1 = female, 2 =male) –
2 Age (years) −0.15⁎⁎⁎ –
3 Weekly cycling mileagea 0.12⁎⁎⁎ −0.0
4 Cycling frequencyb 0.02 −0.0
5 Accident involvement (#) 0.13⁎⁎⁎ −0.1
6 Accident with a motor vehicle at an intersection (0 = no, 1 = yes) 0.03 −0.1
7 Near miss: Correctly predicting the driver's behaviorc −0.02 0.03
8 Near miss: Cyclist's slowing-downc 0.01 0.06⁎

9 Near miss: Perceived riskc 0.04 0.12⁎

10 Crash: Correctly prediction the driver's behaviord −0.02 −0.0
11 Crash: Cyclist's slowing-downd 0.00 0.10⁎

12 Crash: Perceived riskd 0.13⁎⁎⁎ 0.01

Samples size differed between 1016 and 1030 for the 66 pairs of variables listed. ⁎p b .05, ⁎⁎p b
a Weekly cycling mileage in the summertime was indicated on a 10-point scale (from 1= 0
b Weekly cycling frequency in the summertime was indicated on a 6-point scale (from 1=
c Responses were averaged across the four near-miss situations.
d Responses were averaged across the five crash situations.
As expected, the accuracy of cyclists' prediction of whether a car
driver will let the cyclist cross first developed as a function of video
clip freezing moment, with the prediction being the most accurate
when the cyclist was closest to the conflict point. Although the nine
safety-critical situations differed from each other in terms of location,
cyclist's approach speed, and visual features, participants showed simi-
lar patterns of correct predictions as a function of the freezingmoment.
Two situation-specific findings should be pointed out. First, differences
in the accuracy of predicting the driver's right-of-way violation were
observed between near-miss and crash situations, with overall higher
accuracies in the near-miss situations. A plausible explanation for this
finding is that, in near-miss situations, the car drove onto the cyclist's
path relatively early; it could be therefore more obvious to the cyclist
that the car driver would not let the cyclist cross first as compared to
the crash situations. Second, participants showed poor accuracy in
predicting the crash in Situation 1 as compared to the crashes in the
other four situations. This difference can be attributed to features of
the particular situation: the car driver in Situation 1 was driving slowly
onto the bike path whereas drivers in the other four crash situations
were driving fast while making a turn. This finding is congruent with
Summala and Räsänen (2000), who observed that cyclists might inter-
pret a low speed of a car as yielding behavior.

Participants reported various bottom-up and top-down cues when
predicting drivers' behaviors. Overall, bottom-up cues were reported
more often than top-down cues, suggesting that cyclists update their
expectancies with perceptual features of the current situation. The
of the car driver's behavior, self-reported slowing-down behavior, and perceived risk.

3 4 5 6 7 8 9 10 11

6⁎ –
3 0.53⁎⁎⁎ –
8⁎⁎⁎ 0.15⁎⁎⁎ 0.19⁎⁎⁎ –
3⁎⁎⁎ 0.07⁎ 0.04 0.38⁎⁎⁎ –

−0.04 −0.04 −0.02 0.02 –
−0.05 −0.03 0.02 0.05 0.25⁎⁎⁎ –

⁎⁎ 0.04 0.01 −0.05 0.01 0.08⁎⁎ 0.27⁎⁎⁎ –
5 −0.03 −0.03 −0.02 0.01 0.38⁎⁎⁎ 0.01 0.01 –
⁎ −0.05 −0.06 0.03 0.04 −0.02 0.32⁎⁎⁎ 0.07⁎ 0.19⁎⁎⁎ –

0.01 −0.04 0.03 0.06⁎ 0.03 0.17⁎⁎⁎ 0.54⁎⁎⁎ 0.18⁎⁎⁎ 0.32⁎⁎⁎

.01, ⁎⁎⁎p b .001.
km/mi to 10=more than 201 km /more than 125 mi).
never to 6= every day; participants who indicated never were excluded).



Table 6
Linear hierarchical regression analysis for predicting cyclists' self-reported slowing-down behavior in the near-miss situations. Statistically significant predictors are depicted in boldface.

Predictor Near-miss (4 situations)

B SE B β p R2 Adj. R2 F (df1, df2) p

Step 1 0.01 0.00 1.89 (4, 1011) 0.110
(Constant) 78.166 4.494 b0.001
Gender (1 = female, 2 = male) 1.323 1.471 0.03 0.369
Age (years) 0.167 0.067 0.08 0.013
Weekly cycling mileagea −0.324 0.406 −0.03 0.426
Cycling frequencyb −0.116 0.748 −0.01 0.877

Step 2 0.07 0.06 14.69 (5, 1010) b0.001
(Constant) 65.361 4.636 b0.001
Gender (1 = female, 2 = male) 1.375 1.426 0.03 0.335
Age (years) 0.160 0.065 0.08 0.014
Weekly cycling mileagea −0.204 0.394 −0.02 0.605
Cycling frequencyb −0.019 0.725 0.00 0.979
Prediction of the driver's behaviorc 0.175 0.022 0.25 b0.001

Step 3 0.13 0.12 24.96 (6, 1009) b0.001
(Constant) 50.321 4.824 b0.001
Gender (1 = female, 2 = male) 0.757 1.381 0.02 0.584
Age (years) 0.105 0.063 0.05 0.099
Weekly cycling mileagea −0.339 0.381 −0.03 0.375
Cycling frequencyb 0.047 0.701 0.00 0.947
Prediction of the driver's behaviorc 0.161 0.021 0.23 b0.001
Perceived riskd 4.368 0.518 0.25 b0.001

a Weekly cycling mileage in the summertime was indicated on a 10-point scale (from 1= 0 km/mi to 10=more than 201 km /more than 125 mi).
b Weekly cycling frequency in the summertime was indicated on a 6-point scale (from 1= never to 6= every day; participants who indicated never were excluded).
c The scores were averaged over the four near-miss situations and expressed on a scale from 0% to 100%, where 100% refers to perfect accuracy in predicting the driver's behavior (i.e.,

the car driver will not let the cyclist cross first).
d Perceived risk was indicated on a 7-point scale (from 1= strongly disagree to 7= strongly agree) and averaged over the four near-miss situations.
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most frequently reported visual bottom-up cues that contributed to the
cyclists' predictions were car speed and the car's acceleration/decelera-
tion. There appear to be two groups of cyclists, those who interpreted
the car's speed as high or that the car was accelerating and those who
interpreted the speed as low or that the car was decelerating. Reporting
that the car drives slowly or is decelerating was associated with failing
to recognize that the car driver will not let the cyclist cross first. Regard-
ing top-down cues, participants who followed the idea that they had
Table 7
Linear hierarchical regression analysis for predicting cyclists' self-reported slowing-down beha

Predictor Crash (5 situations)

B SE B β

Step 1
(Constant) 62.798 5.256
Gender (1 = female, 2 = male) 1.845 1.721 0.03
Age (years) 0.228 0.079 0.09
Weekly cycling mileagea −0.380 0.475 −0.03
Cycling frequencyb −1.129 0.875 −0.05

Step 2
(Constant) 51.421 5.395
Gender (1 = female, 2 = male) 2.095 1.682 0.04
Age (years) 0.261 0.077 0.10
Weekly cycling mileagea −0.292 0.465 −0.02
Cycling frequencyb −1.060 0.855 −0.04
Prediction of the driver's behaviorc 0.207 0.030 0.21

Step 3
(Constant) 24.982 5.694
Gender (1 = female, 2 = male) −0.443 1.614 −0.01
Age (years) 0.239 0.073 0.10
Weekly cycling mileagea −0.461 0.441 −0.04
Cycling frequencyb −0.748 0.812 −0.03
Prediction of the driver's behaviorc 0.147 0.029 0.15
Perceived riskd 7.480 0.705 0.32

a Weekly cycling mileage in the summertime was indicated on a 10-point scale (from 1= 0
b Weekly cycling frequency in the summertime was indicated on a 6-point scale (from 1=
c The scoreswere averaged over thefive crash situations and expressed on a scale from 0% to

driver will not let the cyclist cross first).
d Perceived risk was indicated on a 7-point scale (from 1– strongly disagree to 7 – strongly
right of way were more likely to predict incorrectly that the car driver
will yield to them, a finding which is in line with Räsänen and
Summala (1998).

Cyclists reported to slow down at overall higher percentages than
they reported that the car driver would not let the cyclist cross first
(Fig. 2). This difference suggests that besides hazard anticipation,
there are other factors that made the cyclists want to slow down. As
safety-critical situations involve some element of risk that individuals
vior in the crash situations. Statistically significant predictors are depicted in boldface.

p R2 Adj. R2 F (df1, df2) p

0.01 0.01 3.36 (4, 1011) 0.010
b0.001
0.284
0.004
0.424
0.197

0.06 0.05 12.39 (5, 1010) b0.001
b0.001
0.213
0.001
0.529
0.215
b0.001

0.15 0.15 30.22 (6, 1009) b0.001
b0.001
0.784
0.001
0.296
0.357
b0.001
b0.001

km/mi to 10=more than 201 km /more than 125 mi).
never to 6= every day; participants who indicated never were excluded).
100%, where 100% refers to perfect accuracy in predicting the driver's behavior (i.e., the car

agree) and averaged over the five crash situations.



Fig. 5. Mean scores of perceived risk (item “The situation was risky.”) as a function of
intersection situation and clip freezing moment. The values of the markers are based on
the responses of 189–213 participants.
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might want to reduce (Näätänen & Summala, 1974), the subjectively
perceived risk was investigated as a contributing factor to cyclists'
slowing-down intentions. The results showed that a high level of
perceived risk was a significant predictor of slowing-down behavior.
The level of perceived risk was higher when the temporal proximity
to the collision was smaller.

Cycling experience was not significantly associated with correctly
predicting the driver's behavior, slowing-down, or perceived risk. Previ-
ous research showed that hazard detection skills can be improved
through experience and training (e.g., Crundall et al., 2012; Horswill,
2016b), but little is known about the relationship between cycling expe-
rience and the ability to predict other road users' behaviors. It is possible
that cycling experience is not a unique predictor, and that other types of
experiences (e.g., driving, walking in traffic) as well as perceptual skills
(e.g., speed estimation, interception skill) are predictive of whether one
is able to anticipate what a car driver will do next.

The estimated time to stop based on the cyclist's speed in the
video clips showed that the cyclist would have to initiate braking at,
or before, the very early clip freezing moment to avoid a collision (Sit-
uations 1, 6–8, 10). Accordingly, more than half of the participants
would get involved in the crash if they braked at the moment of the
freeze. Even when taking into account that participants may cycle at
lower speeds than the cyclists in the video clips (for example when
using conventional bicycles), cyclists might not have been able to
avoid these crashes (Table 2). More research should be conducted to
examine under which conditions cyclists have sufficient time to
avoid a potential collision, preferably using objective measures of cy-
cling behavior.

Our study has several limitations. First, the video clips were taken in
real traffic, whichmeans that we had no control over the exact timing of
the events. Further, participants were not actively in control of the bicy-
cle and they could not influence the level of risk they were willing to
take by cycling slower or faster (Näätänen & Summala, 1974). On the
other hand, the ecological validity of the safety-critical situations can
be considered a strength of this study. Second, the selection of
intersection situations was dependent on the availability of publicly
available video postings. Although the situations in the video clips cap-
ture a common crash scenario where a car driver fails to give way to an
oncoming cyclist, the features of the intersection environment might
not be representative for all kind of cyclists–car crashes. Third, the
data collection was conducted online using self-reports. To address
the main concern of online surveys that participants provide meaning-
less responses, stringent inclusion criteriawere applied and quality con-
trol questionswere included. Participants completed the survey on their
own computers so that the field of viewwas smaller than in real cycling
(see Pretto, Ogier, & Bulthoff, 2009, showing that a small field-of-view
causes an underestimation of ego-speed). Furthermore, participants
had different Internet connections that could influence the quality
with which the video clips were played. Lastly, there was a large variety
in the participants' countries of residence but the sample sizes from
each country were too small to allow us to draw conclusions on cross-
cultural differences in cyclists' hazard anticipation, slowing-down be-
havior, or perceived risk (see Supplementary material for the descrip-
tive results).

5. Conclusions and practical applications

Crash analyses have shown that hazard anticipation is a contributing
factor to bicycle–car collisions, but limited research exists on how cy-
clists anticipate drivers' right-of-way violations. Using video clips of
safety-critical events, we demonstrated that cyclists' predictions of
whether a car driver will yield to a cyclist or not develop as a function
of time, being the most accurate temporary closest to the conflict. Par-
ticipants who indicated that the car's speed or acceleration was high
were more likely to correctly predict that the driver will not yield to
the cyclist, whereas participants who thought that the car was driving
slowly or decelerating often falsely believed that the car would let the
cyclist cross first. Furthermore, participants who reported the right-of-
way rule as a contributory factor to their predictions were more likely
to incorrectly predict the driver's behavior at the intersection. Lastly,
this study showed that correct predictions of the driver's behavior and
high perceived risk are associated with self-reported slowing-down
behavior.

One recommendation would be to address these issues in cy-
cling training programs. For example, cyclists could be taught that
if one sees a car slowing-down, it does not mean that the car will
stop for you. Next, taking other road users' unsafe behaviors or er-
rors (i.e., not seeing an oncoming cyclist and making a turn) into
account and performing a forgiving reaction can be addressed in
the training programs as an important traffic safety principle that
can prevent crashes or limit injuries (SWOV, 2010). Furthermore,
the road infrastructure could be redesigned so that cars do not
have to brake in a way that is confusing for cyclists. Supporting cy-
clists' predictions by means of warning systems may represent a
promising future application. Prototypes of cooperative cyclist–car
applications have already been designed (Gustafsson, Muñoz,
Lindgren, Boda, & Dozza, 2013; Segata, Vijeikis, & Cigno, 2017). Fi-
nally, it remains to be investigated to what extent the frequently
reported cues contribute to cyclists' predictions in a real traffic en-
vironment, and to what extent cyclists are capable of avoiding a
crash in situations where the driver has not seen the approaching
cyclist.
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