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Identification of a Cessna Citation II Model
Based on Flight Test Data

M.A. van den Hoek, C.C. de Visser , D.M. Pool

Abstract

As a result of new aviation legislation, from 2019 on all air-carrier pilots are
obliged to go through flight simulator-based stall recoverytraining. For this reason
the Control and Simulation division at Delft University of Technology has set up
a task force to develop a new methodology for high-fidelity aircraft stall behav-
ior modeling and simulation. As part of this research project, the development of a
new high-fidelity Cessna II simulation model, valid throughout the normal, pre-stall
flight envelope, is presented in this paper. From an extensive collection of flight test
data, aerodynamic model identification was performed usingthe Two-Step Method.
New in this approach is the use of the Unscented Kalman Filterfor an improved
accuracy and robustness of the state estimation step. Also,for the first time an ex-
plicit data-driven model structure selection is presentedfor the Citation II by making
use of an orthogonal regression scheme. This procedure has indicated that most of
the six non-dimensional forces and moments can be parametrized sufficiently by a
linear model structure. It was shown that only the translational and lateral aerody-
namic force models would benefit from the addition of higher order terms, more
specifically the squared angle of attack and angle of sideslip. The newly identified
aerodynamic model was implemented into an upgraded versionof the existing sim-
ulation framework and will serve as a basis for the integration of a stall and post-stall
model.
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1 Introduction

A S a result of new aviation legislation, from 2019 on all air-carrier pilots are
obliged to go through flight simulator-based stall recoverytraining [1]. This

implies that all aircraft dynamics models driving flight simulators must be updated
to include accurate pre-stall, stall, and post-stall dynamics. For this reason, the Con-
trol and Simulation (C&S) division at Delft University of Technology has set up
a task force to develop a new methodology for high-fidelity aircraft stall behavior
modeling and simulation. This research effort is twofold. First, the current simula-
tion framework is to be updated together with the implementation of a newly devel-
oped aerodynamic model identified from flight test data obtained from TU Delft’s
Cessna Citation II laboratory aircraft. As second part of this research effort, an aero-
dynamic stall model for the Citation II based on flight test data will be developed
and integrated into the upgraded simulation framework.

At this moment, the C&S division uses a simulation model of the Cessna Cita-
tion I, known as the Delft University Aircraft Simulation Model and Analysis Tool
(DASMAT)[2] as its baseline model. This simulation model was designed as stan-
dard Flight CAD package for control and design purposes within the C&S division
of the Faculty of Aerospace Engineering, Delft University of Technology. DASMAT
is known for a number of deficiencies; most significantly is its unsatisfactory match
with the current laboratory aircrafts flight dynamics. The Citation I model is the re-
sult of a flight test program executed for the development of mathematical models
describing the aerodynamic forces and moments, engine performance characteris-
tics, flight control systems and landing gear [3]. Earlier attempts at modeling the
longitudinal forces and the pitching moment were made by Oliveira et al.[4]. How-
ever, parameter estimates were only obtained for a limited range of flight conditions
with a very limited set of measurements. In addition, in the same paper the authors
state that dependency of the aerodynamic model from higher order terms, such as
α2 and terms relating to the time rate of change of the aerodynamic angles, such as
α̇, are yet to be investigated[4].

The estimation of stability and control derivatives from flight test data can be
formulated in the framework of maximum likelihood estimation [5]. In the con-
text of this paper, aerodynamic model identification will bedone by employing the
Two-Step Method (TSM)[6, 7]. This method effectively decomposes the non-linear
model identification problem into a non-linear flight path reconstruction problem
and linear parameter estimation problem, allowing the use of linear parameter es-
timation techniques for a significant simplification of the latter procedure. This de-
composition can be made under certain conditions concerning accuracy and type
of the in-flight measurements[7]. New to the TSM approach is the use of the Un-
scented Kalman Filter[8] (UKF) for an improved accuracy and robustness of the
state estimates in the first step.
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2 Research Vehicle and Flight Data

In this paper, aerodynamic model identification was appliedto the Cessna Citation
II laboratory aircraft, model 550, which is co-owned by Delft University of Tech-
nology (DUT) and the Netherlands Aerospace Center (NLR). The Citation II is
a twin-jet business aircraft, with two Pratt & Whitney JT15D-4 turbofan engines.
Both engines deliver a maximum thrust of 11.1 kN each. The maximum operating
speed is limited at 198.6 m/s, with a maximum operating altitude of approximately
13 km [9].

Inflight test display
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Flight director
ADC
AHRS

IMU

(a) Overview of the aircraft instrumen-
tation systems

ZbXb

Yb

(b) Definition of the aircraft body-fixed
reference frame or coordinate systemFb

Fig. 1 Aircraft instrumentation systems and reference frame

2.1 Instrumentation

The Flight Test Instrumentation System (FTIS) of the CessnaCitation II laboratory
aircraft combines the sensor measurements from a variety ofinstrumentation sys-
tems. An overview of the instrumentation systems is highlighted in Figure1(a)and
summarized in1.

3 Flight Path Reconstruction

In this section, the methodology for the flight path reconstruction procedure is pre-
sented.
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Table 1 Flight Test Instrumentation System sensor variables used in flight path reconstruction with
their associated 1σ standard deviation and sampling rateFs.

Parameter Unit 1σ std Fs [Hz] *Source

Altitude m 3.00×10−1 16.67 Static probe
Xb-axis rotation rad 8.70×10−3 50 Sperry vertical gyro
Yb-axis rotation rad 8.70×10−3 50 Sperry vertical gyro
Zb-axis rotation rad 1.73×10−2 10 Gyrosyn compass
True airspeed m/s 1.00×10−1 16.67 Pitot-static probe
Angle of attack rad 3.50×10−3 1000 Alpha vane
Angle of sideslip rad 3.50×10−3 1000 Beta vane

Xb-axis linear acceleration m/s2 2.00×10−2 100 Q-Flex 3100 accelerometer
Yb-axis linear acceleration m/s2 2.00×10−2 100 Q-Flex 3100 accelerometer
Zb-axis linear acceleration m/s2 3.00×10−2 100 Q-Flex 3100 accelerometer
Xb-axis rotational rate rad/s 2.00×10−3 100 LITEFµFORS rate gyro
Yb-axis rotational rate rad/s 2.00×10−3 100 LITEFµFORS rate gyro
Zb-axis rotational rate rad/s 5.00×10−3 100 LITEFµFORS rate gyro

* Sampling rate values correspond to the new FTIS. Data obtainedfrom the old
FTIS have different sampling rates.

3.1 Kalman Filtering Preliminaries

3.1.1 State transition function and navigation equations

The set of stochastic differential equations, in the context of aircraft dynamics, can
in general be described by:

ẋ(t) = f [x(t),u(t), t]+G(x(t), t)w(t)

zn(t) = h [x(t),u(t), t]

z(t) = zn(t)+v(t)

(1)

wheref [·] is the non-linear state transition function andh [·] the non-linear measure-
ment function. The process noise and (output) measurement noise are assumed to
be zero-mean, white and uncorrelated and can be parametrized by:

E{vv⊺}= Q E{ww⊺}= R E{wv⊺}= 0 (2)

where the diagonal elements of the process and measurement noise covariance ma-
trices are composed of the squared standard deviation as given in Table1. The full
kinematic model is given by combining the differential equations for the flat earth
position, body velocity components and the equations of rotational motion. The
whole set of differential equations is then given by:
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żE =−usinθ +(vsinφ +wcosφ)cosθ
u̇= ax−gsinθ −qw+ rv

v̇= ay+gcosθ sinφ − ru+ pw

ẇ= az+gcosθ cosφ − pv+qu

φ̇ = p+qsinφ tanθ + r cosφ tanθ
θ̇ = qcosφ − r sinφ (3)

ψ̇ =
sinφ
cosθ

+ r
cosφ
cosθ

In this set of kinematic equations, the IMU measurements areused as system input.
In order to model the noise characteristics and bias of the IMU signals, these were
modeled as:

axm = ax+λax +wx

aym = ay+λay +wy

azm = az+λaz +wz

pm = p+λp+wp

qm = q+λq+wq (4)

rm = r +λr +wr

whereλ indicates the bias of the associated signal andw indicates the process noise
of the subscripted variable.

In the context of this paper, angle of attack and angle of sideslip measurements
were primarily obtained through the use of an intrusive noseboom (see Figure1(a)).
To this end, the set of observation equations was extended byincluding the equa-
tion for the angle of attack and angle of sideslip as measuredby the boom [10]
including the sensor biases [11]. This model contains an unknown fuselage-upwash
coefficientCαup together with a kinematically induced angle of attack and angle of
sideslip, under the assumption of a zero vertical wind component and alignment
of the boom with theXb-axis. The complete set of observation equations, or the
navigation model, is given by:

hm = h+vh

φm = φ +vφ

θm = θ +vθ

ψm = ψ +vψ

VTASm =
√

u2+v2+w2+vVTAS

αv = (1+Cαup) tan−1 w
u
+

(q−λq)xvα√
u2+v2+w2

+vα

(5)

β = tan−1 v√
u2+w2

−
(r −λr)xvβ√
u2+v2+w2

+vβ

wherev is the standard notation for the measurement noise of the subscripted vari-
able andxv denotes the location of the boom along theXb-axis for the alpha and beta
vane.

For use in flight path reconstruction with a Kalman filter, theset of equations
in Eq. (3) was extended with the time derivatives of additional states that require
reconstruction, i.e. sensor biases. Commonly, the state transition function is simply
assumed to be zero since the bias is constant in reality. For increased excitation of
the sensor bias state, the state transition function for thelinear accelerations and
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fuselage-upwash coefficient was modeled as zero-mean unit-variance random walk
scaled by a factork, as earlier applied in the work of Mulder et al.[12]:

λ̇ ∼ k ·N (0,1) (6)

The bias state transition function for the rotational rateswas assumed to be zero for
its usually very small bias. On balance, the state vector together with the augmented
bias terms is given by:

x =
[

h u v wφ θ ψ λax λay λaz λp λq λr Cαup

]⊺
(7)

3.2 Kalman Filtering Procedure

To begin with the formulation of the augmented UKF [8, 13, 14, 15], the augmented
state vector and covariance matrix are defined as:

x̂a(k) = [x̂(k|k)⊺ v(k)⊺ w(k)⊺]⊺ (8)

Pa(k) =





P(k) 0 0
0 Q 0
0 0 R



 (9)

wherev andw in the augmented state vector represent the means of the process
and measurement noise; these can therefore be assumed to have zero mean, hence
their values will be zero. The augmented state vector and covariance matrix can then
easily be transformed to the unscented domain by:

X
a
i (k) =

[

x̂a(k)+
√

(L+λ )Pa(k)
]

i = 1,2, . . . ,L

X
a
i (k) =

[

x̂a(k)−
√

(L+λ )Pa(k)
]

i = L+1,L+2, . . . ,2L
(10)

This set of transformed points, indicated byX
a, is referred to as the set of sigma

points. ParametersL and λ are, respectively, the dimensionality of the state vec-
tor and a scaling factor defined asλ = α2(L+ κ)−L. α is a parameter to reflect
the spread of the sigma points around its mean, state vectorx̂, andβ is a factor to
account for any prior knowledge. The latter is set to a value of 2 for Gaussian distri-
butions.κ is an extra scaling factor which is usually set to zero. Subsequently, the
weights for the set of transformed means and covariances aredefined as follows:
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W(m)
0 =

λ
L+λ

W(c)
0 =

λ
L+λ

+(1−α2+β )

W(m)
i =W(c)

i =
1

2(L+λ )
i = 1,2, . . . ,2L

(11)

From this point, the equations of the UKF become more trivial. Analogously to
the EKF, the state vector which is now expressed as sigma points are propagated
through the system’s dynamics:

X
a(k+1|k) = X

a (k|k)+
∫ tk+1

tk
f [X a,x(k|k),u(k),X a,v(k|k),τ ]dτ (12)

whereX
a,x refers to the columns of the sigma points matrix related to the state and

superscriptv refers to the sigma points related to the process noise. The one step
ahead state estimation can be calculated by:

x̂(k+1|k) =
2L

∑
i=0

W(m)
i X

a (k+1|k) (13)

and the one step ahead covariance matrix by:

P(k+1|k) =
2L

∑
i=0

W(c)
i

(

X
a,x
i − x̂(k|k)

)(

X
a,x
i − x̂(k|k)

)

⊺
(14)

Again, similarly to the EKF, the sigma points representing the state vector and
measurement noise are propagated through the measurement equations and subse-
quently the transformed means for the measurements are calculated:

Y (k+1|k) = h [X a,x(k+1|k),X a,w(k+1|k)] (15)

with the transformed measurements given by taking the mean of the transformed
sigma points:

ŷ =
2L

∑
i=0

W(m)
i Y i(k+1|k) (16)

The measurement covariance and measurement-state cross-covariance can be
calculated by:

Pyy =
2L

∑
i=0

W(c)
i (Y i(k+1|k)− ŷ(k|k))(Y i(k+1|k)− ŷ(k|k))⊺ (17)

Pxy =
2L

∑
i=0

W(c)
i

(

X
a,x
i − x̂(k|k)

)

(Y i − ŷ(k|k))⊺ (18)
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Finally, to complete the definition of the augmented UKF, gain matrixK , cor-
rected state estimation̂x(k+ 1|k+ 1) and corrected covariance matrix estimation
P(k+1|k+1) are expressed as:

K (k+1) = PxyP−1
yy (19)

x̂(k+1|k+1) = x̂(k+1|k)+K {y(k+1)− ŷ(k+1|k)} (20)

P(k+1|k+1) = P(k+1|k)−K (k+1)PyyK
⊺(k+1) (21)

For additional numerical stability and guaranteed semi-definite state covariance
matrix, the square-root implementation of the UKF can be used [16]. This type uses
the Cholesky decomposition to address certain numerical advantages in the calcula-
tion of the transformed statistical properties. Further extensions to the UKF, e.g. the
Sigma-Point Kalman Filter [17] and its iterative counterpart [18] were introduced
later. However, these filters populate the whole state-space with sigma points instead
of only a selected optimal range. Therefore, the computational burden of such filters
do not outweigh the advantages and their application is restricted [19].

4 Aerodynamic Model Identification

4.1 Preliminaries

The six non-dimensional forces and moments can be calculated by:

CX =
m(ax−λax)−Tx

qS
(22)

CY =
m
(

ay−λay

)

qS
(23)

CZ =
m
(

ax−λaz

)

qS
(24)

Cl =
Ixx

qSb

(

ṗ− Ixz

Ixx
((p−λp)(q−λq)+ ṙ)+

Izz− Iyy

Ixx
(q−λq)(r −λr)

)

(25)

Cm =
Iyy

qSc

(

q̇+
Ixx− Izz

Iyy
(p−λp)(r −λr)+

Ixz

Iyy

(

(p−λp)
2− (r −λr)

2
)

−MT

)

(26)
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Cn =
Izz

qSb

(

ṙ − Ixz

Izz
(ṗ− (q−λq)(r −λr))+

Iyy− Ixx

Izz
(p−λp)(q−λq)

)

(27)

whereλ denotes the bias obtained from the flight path reconstruction procedure for
each of the accelerations and rotational rates. Since the derivatives of the rotational
rates are not measured directly, these can be obtained by numerical differentiation.
Corrections to the non-dimensional force inXb and the non-dimensional pitch rate
were made by making use of an engine model. The engine-produced thrust inZb

was neglected and assumed to be approximately zero.

4.2 Parameter Estimation

The principles of regression analysis are well known and previously applied in many
different researches in the framework of aerodynamic system identification [20, 21,
22]. The ordinary least squares (OLS) estimator, defined as theminimum residual

ΘOLS = min
Θ∈R

‖X ·Θ −y‖ (28)

where‖·‖ denotes theL2 norm in Euclidean spaceRn. The well-known solution in
terms of linear operations is given by:

Θ̂ OLS = (X⊺X)−1X⊺y (29)

According to the Gauss-Markov theorem, the OLS estimator isthe best linear
unbiased estimator under the assumption that the variance of the residuals should be
homoscedastic and the correlation terms should vanish[23]. In addition, under the
assumption of a normally distributed residuals vector the OLS estimator is identical
to the maximum likelihood estimator, effectively attaining the Craḿer-Rao lower
bounds (CRLB)[24]. The standard bounds of the parameter estimates are given by
the diagonal elements of the variance-covariance matrix:

Cov{Θ}= E

{

(

Θ̂ −Θ
)⊺ (Θ̂ −Θ

)

}

= σ2 (X⊺X)−1 (30)

whereσ2 can be approximated by the mean squared error of the residuals. Using
the estimated covariance, pair-wise correlation of the estimated parameters can be
assessed by:

Corr
{

Θ̂
}

=















1
σ(Θ̂1)

0 . . . 0

0 1
σ(Θ̂2)

. . . 0
...

...
...

...
0 0 . . .

1
σ(Θ̂p)















Cov
{

Θ̂
}















1
σ(Θ̂1)

0 . . . 0

0 1
σ(Θ̂2)

. . . 0
...

...
.. .

...
0 0 . . .

1
σ(Θ̂p)















(31)
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Because aircraft parameter estimation is often associatedwith data collinearity[25],
a biased parameter estimation technique known as PrincipalComponents Regres-
sion (PRC) was used. PCR is able to increase the accuracy of the parameter esti-
mates in case of multi-collinearity among the predictor variables [20].

4.3 Model Structure Selection

Stepwise regression[26] is a method specifically aimed at data-driven selection of
an appropriate model structure from a set of candidate regressors. Later modifi-
cations to this approach restricted the selection of candidate regressors to higher
order terms, starting at a fixed linear model structure[27]. The pool of candidate re-
gressors is to be formed by single terms, cross-interactions and higher order terms
corresponding to the independent variables in the model. The downside of the step-
wise regression method is that it includes addition and elimination criteria[28]. In
addition, regressors cannot be evaluated independently because of their interaction
with other regressors in the selected model structure.

More recently, Morelli[21, 29] and Grauer[30] applied a multi-variate polyno-
mial model obtained from an orthogonal model structure selection to various air-
craft. The latter model structure selection technique transforms the full set of candi-
date regressors to the orthogonal domain in order to test thesignificance of each pa-
rameter. By defining a predicted square error (PSE)[30], selection of the orthogonal
basis functions can be done by minimization of the latter metric. Terms contributing
less than a certain threshold value can also be removed from the model structure.

The process of orthogonal basis functions model structure selection begins with
the orthogonalization process of the set of candidate regressors:

p0 = 1, p j = x j −
j−1

∑
k=0

γk jpk for j = 1,2, . . . ,n (32)

wherex j is the j th vector of independent variables and coefficientγk j is defined as:

γk j =
p⊺

kx j

p⊺

kpk
for k= 0,1, . . . , j −1 (33)

Orthogonal vectorsp0,p1, . . . ,pn now form the columns of orthogonal regression
matrixP. The parameter estimate can now be obtained by the least squares estimator
in Eq. (29). This can be done by subsequently calculating the contribution to the total
least-squares cost independently for each candidate regressor with:

J(â j) =

(

p⊺

j y
)2

p⊺

j p j
(34)

a selection can be made based on the PSE, which is defined as:
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PSE=
1
N
(y− ŷ)⊺ (y− ŷ)+σ2

max
n
N

(35)

The maximum model fit error variance can be obtained from:

σ2
max=

1
N−1

N

∑
i=1

(yi −y)2 (36)

5 Results

In this section the results of the flight path reconstruction, model structure selec-
tion and parameter estimation procedure are presented. In addition, a comparison
between parameter estimates by Koehler and Hardover maneuvers is presented, fol-
lowed by post identification smoothing of the locally identified models.

5.1 Flight Path Reconstruction

The results for the flight path reconstruction procedure comprises a total of more
than 200 individually reconstructed dynamic maneuvers, both longitudinally and
laterally induced. For this reason, only a selection of results is shown in this paper.
For a typical 3-2-1-1 dynamic maneuver in elevator, the results are depicted in Fig-
ure2. In this figure, the state estimate by the UKF together with the bias estimate,
innovation sequences, filtered and reconstructed measurements and the control sur-
face deflections during the maneuver are shown. Innovation sequences are shown to
confirm filter consistency.

5.2 Aerodynamic Model Identification

The results from the model structure selection procedure and parameter estimation
are presented in this section together with a model validation by applying the iden-
tified least squares model to flight derived non-dimensionalforces and moments
together with a comparison versus the currently implemented aerodynamic model
in the DASMAT simulation framework.

The final model structure of the non-dimensional forces and moments inXb, ob-
tained from an orthogonal least squares model selection scheme, consisted of a total
of 5 terms, i.e.CX0, CXα , CXq, CXδe

, CXα2 . However, the term related to the squared
angle of attack was removed from the model for its high pairwise correlation with
the angle of attack term. Identified values for the parameters as tabulated in Table2.
Tabulated values represent the parameters in the total number of locally identified
models. The minimum, maximum and mean values for the estimated parameters
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Fig. 3 Absolute number of model terms selected in the longitudinal and lateral models obtained
from an orthogonal least squares model structure selection procedure.
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and corresponding variance were included as performance measure to indicate con-
sistence of the estimates.

The models for the 6 dimensionless forces and moments resulting from the model
structure selection procedure and parameter estimation were parametrized as fol-
lows:

CX =CX0 +CXα α +
✟
✟
✟✟CXα2 α2+CXqq̂+CXδe

δe (37)

CY =CY0 +CYβ β +CYp p̂+CYr r̂ +CYδa
δa+CYδr

δr +CYβ2 β 2 (38)

CZ =CZ0 +CZα α +CZqq̂+CZδe
δe (39)

Cl =Cl0 +Clβ β +Clp p̂+Clr r̂ +Clδa
δa+Clδr

δr (40)

Cm =Cm0 +Cmα α +Cmqq̂+Cmδe
δe (41)

Cn =Cn0 +Cnβ β +Cnp p̂+Cnr r̂ +Cnδa
δa+Cnδr

δr (42)

Table 2 Estimated parameters mean variance, minimum variance and maximum variance for the
CX model, obtained from an orthogonal least squares model structureselection approach.

θ θmin θmax σ(θ) σ(θ)min σ(θ)max

CX0 −0.051 −0.594 0.019 1.553×10−5 4.134×10−8 4.710×10−4

CXα 0.862 −0.213 12.733 1.115×10−3 2.059×10−5 5.349×10−2

CXq −4.465−100.213 17.117 8.591×10−1 1.296×10−2 8.320
CXδe

−0.172 −3.602 0.842 2.572×10−3 3.688×10−5 2.736×10−2

Table 3 Estimated parameters mean variance, minimum variance and maximum variance for the
CY model, obtained from an orthogonal least squares model structureselection approach.

θ θmin θmax σ(θ) σ(θ)min σ(θ)max

CY0 0.004 −0.056 0.059 8.638×10−8 3.190×10−10 8.079×10−7

CYβ −0.794 −2.258 −0.169 4.389×10−4 1.362×10−6 4.080×10−3

CYp −0.159 −4.163 2.583 1.403×10−2 3.772×10−5 1.152×10−1

CYr 1.958 −1.813 13.569 2.199×10−2 3.163×10−5 1.496×10−1

CYδa
−0.180 −4.305 1.397 2.083×10−3 1.548×10−6 2.282×10−2

CYδr
0.839 −1.988 26.784 4.846×10−2 1.152×10−6 1.427

CYβ2 2.754 −14.888 48.476 1.028 2.795×10−5 9.398
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Table 4 Estimated parameters mean variance, minimum variance and maximum variance for the
CZ model, obtained from an orthogonal least squares model structureselection approach.

θ θmin θmax σ(θ) σ(θ)min σ(θ)max

CZ0 −0.213 −0.941 0.025 1.575×10−4 1.075×10−6 5.183×10−3

CZα −4.037 −8.231 2.868 8.074×10−3 2.369×10−4 4.290×10−1

CZq −57.766−267.955 189.902 1.320×101 2.363×10−1 1.979×102

CZδe
−0.836 −6.355 25.163 4.456×10−2 7.952×10−4 6.847×10−1

Table 5 Estimated parameters mean variance, minimum variance and maximum variance for the
Cl model, obtained from an orthogonal least squares model structureselection approach.

θ θmin θmax σ(θ) σ(θ)min σ(θ)max

Cl0 −0.002−0.020 0.010 1.826×10−8 1.182×10−10 3.285×10−7

Clβ −0.073−0.143−0.006 1.407×10−6 9.575×10−8 1.490×10−5

Clp −0.494−0.710 0.056 2.656×10−5 1.727×10−6 1.508×10−4

Clr 0.376 0.024 0.785 6.498×10−5 4.639×10−7 4.298×10−4

Clδa
−0.178−0.276 0.121 6.081×10−6 1.585×10−7 9.996×10−5

Clδr
0.102 −1.309 2.314 6.865×10−4 2.784×10−8 1.619×10−2

Table 6 Estimated parameters mean variance, minimum variance and maximum variance for the
Cm model, obtained from an orthogonal least squares model structureselection approach.

θ θmin θmax σ(θ) σ(θ)min σ(θ)max

Cm0 0.021 −0.022 0.089 4.918×10−7 1.252×10−8 5.698×10−6

Cmα −0.488 −0.855 −0.253 2.509×10−5 2.856×10−6 1.904×10−4

Cmq −11.935−22.066−1.489 3.466×10−2 2.968×10−3 2.920×10−1

Cmδe
−1.250 −1.508 −0.351 1.204×10−4 9.907×10−6 1.097×10−3

Table 7 Estimated parameters mean variance, minimum variance and maximum variance for the
Cn model, obtained from an orthogonal least squares model structureselection approach.

θ θmin θmax σ(θ) σ(θ)min σ(θ)max

Cn0 0.000 −0.002 0.002 1.158×10−8 2.084×10−10 1.326×10−7

Cnβ 0.079 −0.056 0.145 3.689×10−6 1.548×10−7 5.965×10−5

Cnp −0.142−0.677 0.284 1.307×10−4 5.361×10−6 3.267×10−3

Cnr −0.295−0.474 0.374 1.005×10−4 3.055×10−6 5.440×10−4

Cnδa
−0.025−0.155 0.073 4.720×10−5 5.616×10−7 1.049×10−3

Cnδr
−0.065−0.611 0.578 7.338×10−4 1.783×10−7 1.770×10−2
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5.3 Model Validation

The identified models for all six non-dimensional forces andmoments were ap-
plied to an independent validation data set consisting of 20% of the total data set.
A comparison between the aircraft derived forces and moments, the least squares
model and the DASMAT model which is currently implemented inthe simulation
framework is shown in Figure4. In addition, fit statistics in terms of the coefficient
of determination and the relative root mean square error (RRMSE) are tabulated in
Table8.

A time-domain comparison between the new least-squares model and DASMAT
for a longitudinally induced 3-2-1-1 maneuver is presentedin Figure5. This fig-
ure indicates an increased fidelity of the predicted aircraft states by the new least-
squares model in comparison to the DASMAT model. Most significant is the better
fit of the new model for the velocity in the direction of theXb axis and the Euler
angles.

Table 8 Fit statistics for the least squares model and the existing DASMAT (D) model averaged
over all validation sets.

CX CY CZ Cl Cm Cn

R2 0.76 0.77 0.77 0.75 0.76 0.85
R2

D 0.60 0.55 0.64 0.25 0.00 0.50

RRMSE(%) 6.76 5.32 6.38 4.96 5.8 4.72
RRMSED (%) 8.79 7.34 7.97 8.65 12.65 8.50

6 Conclusion

In this paper, the methodology regarding the identificationof an aerodynamic model
for flight simulation training from flight test data was developed for the normal post-
stall flight envelope. By employing the Two-Step Method (TSM), the Unscented
Kalman Filter (UKF) was used in cooperation with linear parameter estimation tech-
niques. Results indicate that the state estimates and measurement reconstructions by
the UKF are in good agreement with the presented data.

This research effort results in a simple and parsimonious set of aerodynamic
models describing the 6 non-dimensional forces and moments. The model presented
in this paper outperforms the current aerodynamic model implemented in the DAS-
MAT framework in terms of goodness of fit, in all 6 degrees of freedom, when
compared to the recorded forces and moments of the Cessna Citation II laboratory
aircraft. The explained variance of the non-dimensional forces was increased with
at least 13%. More significant improvements were made to the non-dimensional
moments; an increase of the explained variance of at least 35% was achieved.
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Fig. 5 Time domain response of the newly implemented aerodynamic model together with the
currently implemented aerodynamic model in the DASMAT simulationframework and the flight
derived aircraft states and control surface deflections for a longitudinally inducedδe 3-2-1-1 ma-
neuver.

The work presented in this paper will serve as a basis for the integration of a
stall and post-stall model, resulting from a parallel research effort. Together, these
models will be used in future research into, e.g., the behavior of pilots during aero-
dynamic stall and the development of new control algorithms.
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