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Identification of a Cessna Citation || Model
Based on Flight Test Data

M.A. van den Hoek, C.C. de Visser , D.M. Pool

Abstract

As a result of new aviation legislation, from 2019 on all earrier pilots are
obliged to go through flight simulator-based stall recoveajning. For this reason
the Control and Simulation division at Delft University oédhnology has set up
a task force to develop a new methodology for high-fidelitcraift stall behav-
ior modeling and simulation. As part of this research pripjie development of a
new high-fidelity Cessna Il simulation model, valid throoghthe normal, pre-stall
flight envelope, is presented in this paper. From an extertgillection of flight test
data, aerodynamic model identification was performed ugiagwo-Step Method.
New in this approach is the use of the Unscented Kalman Fitean improved
accuracy and robustness of the state estimation step. falsthe first time an ex-
plicit data-driven model structure selection is presefdethe Citation Il by making
use of an orthogonal regression scheme. This proceduretiiaated that most of
the six non-dimensional forces and moments can be paraeetsufficiently by a
linear model structure. It was shown that only the transteti and lateral aerody-
namic force models would benefit from the addition of highateo terms, more
specifically the squared angle of attack and angle of sjaleEhie newly identified
aerodynamic model was implemented into an upgraded veo$ithre existing sim-
ulation framework and will serve as a basis for the integratif a stall and post-stall
model.
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1 Introduction

As a result of new aviation legislation, from 2019 on all airrgex pilots are
obliged to go through flight simulator-based stall recoveamning [1]. This
implies that all aircraft dynamics models driving flight silators must be updated
to include accurate pre-stall, stall, and post-stall dyieant-or this reason, the Con-
trol and Simulation (C&S) division at Delft University of €anology has set up
a task force to develop a new methodology for high-fidelitgraift stall behavior
modeling and simulation. This research effort is twofolatst the current simula-
tion framework is to be updated together with the implemigmieof a newly devel-
oped aerodynamic model identified from flight test data ole@ifrom TU Delft's
Cessna Citation Il laboratory aircraft. As second part f tesearch effort, an aero-
dynamic stall model for the Citation Il based on flight testadaill be developed
and integrated into the upgraded simulation framework.

At this moment, the C&S division uses a simulation model & @essna Cita-
tion I, known as the Delft University Aircraft Simulation Mel and Analysis Tool
(DASMAT)[ 2] as its baseline model. This simulation model was desigisestan-
dard Flight CAD package for control and design purposesiwitie C&S division
of the Faculty of Aerospace Engineering, Delft Universitfiechnology. DASMAT
is known for a number of deficiencies; most significantly ssubsatisfactory match
with the current laboratory aircrafts flight dynamics. Thiga€on | model is the re-
sult of a flight test program executed for the development ath@matical models
describing the aerodynamic forces and moments, enginerpeahce characteris-
tics, flight control systems and landing geé}. [Earlier attempts at modeling the
longitudinal forces and the pitching moment were made byebh et al.fl]. How-
ever, parameter estimates were only obtained for a limaade of flight conditions
with a very limited set of measurements. In addition, in tame paper the authors
state that dependency of the aerodynamic model from higtaer derms, such as
a? and terms relating to the time rate of change of the aerodiymangles, such as
a, are yet to be investigated|

The estimation of stability and control derivatives fronglfif test data can be
formulated in the framework of maximum likelihood estinoetti[5]. In the con-
text of this paper, aerodynamic model identification willdmne by employing the
Two-Step Method (TSMJ, 7]. This method effectively decomposes the non-linear
model identification problem into a non-linear flight patltoastruction problem
and linear parameter estimation problem, allowing the ddmear parameter es-
timation techniques for a significant simplification of tlaétér procedure. This de-
composition can be made under certain conditions conagmiguracy and type
of the in-flight measurementg[ New to the TSM approach is the use of the Un-
scented Kalman Filte?] (UKF) for an improved accuracy and robustness of the
state estimates in the first step.
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2 Research Vehicle and Flight Data

In this paper, aerodynamic model identification was appiethe Cessna Citation
Il laboratory aircraft, model 550, which is co-owned by Délniversity of Tech-
nology (DUT) and the Netherlands Aerospace Center (NLRg Thtation Il is
a twin-jet business aircraft, with two Pratt & Whitney JT180Ourbofan engines.
Both engines deliver a maximum thrust of 11.1 kN each. Theimam operating
speed is limited at 198.6 m/s, with a maximum operatingualétof approximately
13 km [9].

Inflight test dis| Ia\IXI
Exgenmental BW computer
tatic.par

(952,889, vane

emperature probe

utogilot computer
I &n comﬁass
A t directo

Al

S

(a) Overview of the aircraft instrumen- (b) Definition of the aircraft body-fixed
tation systems reference frame or coordinate syst&m

Fig. 1 Aircraft instrumentation systems and reference frame

2.1 Instrumentation

The Flight Test Instrumentation System (FTIS) of the Ce<aitetion Il laboratory
aircraft combines the sensor measurements from a varigtystsimentation sys-
tems. An overview of the instrumentation systems is hidtiég in Figurel(a)and
summarized irl.

3 Flight Path Reconstruction

In this section, the methodology for the flight path recamsion procedure is pre-
sented.
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Table 1 Flight Test Instrumentation System sensor variables used in flaghtrpconstruction with
their associatedd standard deviation and sampling réte

Parameter Unit dstd Fs[Hz] "Source

Altitude

m 300x10°!

16.67

Static probe

Xp-axis rotation rad §0x103 50 Sperry vertical gyro
Yp-axis rotation rad F0x102 50 Sperry vertical gyro
Zy-axis rotation rad 3x102 10 Gyrosyn compass
True airspeed m/s .@0x 10-1 16.67 Pitot-static probe
Angle of attack rad $0x 103 1000 Alphavane

Angle of sideslip rad 30x 103 1000 Betavane

Xp-axis linear acceleration nf/2.00x 1072 100
Yy-axis linear acceleration n¥£2.00x 1072 100
Zp-axis linear acceleration nf/8.00x 1072 100
Xy-axis rotational rate rad/s.@x 102 100
Yp-axis rotational rate rad/s.x 102 100
Zy-axis rotational rate rad/s.®x 103 100

Q-Flex 3100 accelerometer
Q-Flex 3100 accelerometer
Q-Flex 3100 accelerometer
LITEF uFORS rate gyro
LITEF uFORS rate gyro
LITEF uFORS rate gyro

* Sampling rate values correspond to the new FTIS. Data obtéinedthe old
FTIS have different sampling rates.

3.1 Kalman Filtering Preliminaries

3.1.1 State transition function and navigation equations

The set of stochastic differential equations, in the cantéaircraft dynamics, can
in general be described by:

f
(t> — h[x(t),u(
2(t) = za(t) + V(1)

—
—

1)

wheref[] is the non-linear state transition function amd| the non-linear measure-
ment function. The process noise and (output) measurenoése are assumed to
be zero-mean, white and uncorrelated and can be paranaelryze

E{wT} =Q E{wvT} =0 2

where the diagonal elements of the process and measurenisatoovariance ma-
trices are composed of the squared standard deviation as giviablel. The full
kinematic model is given by combining the differential etioras for the flat earth
position, body velocity components and the equations ddtiemtal motion. The
whole set of differential equations is then given by:

E{wwT} =R
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Ze = —usin@ + (vsing+wcosp)cosd ¢ = p+ gsingtand + r cosptand
U=ax—gsiné —qw+rv 6 = qcosp—rsing (3)
vV =ay-+gcosfsing—ru-+ pw . sing  cosp
W = a,+ gcosf cosp — pv+ qu Y= Coss "coso

In this set of kinematic equations, the IMU measurementsisee as system input.
In order to model the noise characteristics and bias of thd Hignals, these were
modeled as:

axmzax-‘r/\ax“rwx pm:p+/\p+Wp
By, = 8y +Aa, +Wy Om = g+ Aq+Wq (4)
aZm:az+AaZ+WZ rm:r+Ar+Wr

whereA indicates the bias of the associated signalwmudicates the process noise
of the subscripted variable.

In the context of this paper, angle of attack and angle ofséijpleneasurements
were primarily obtained through the use of an intrusive rmsanm (see Figuri(a)).
To this end, the set of observation equations was extendéadchyding the equa-
tion for the angle of attack and angle of sideslip as meashyethe boom 0]
including the sensor biases1]. This model contains an unknown fuselage-upwash
coefficientC,, together with a kinematically induced angle of attack anglewof
sideslip, under the assumption of a zero vertical wind camepb and alignment
of the boom with theX,-axis. The complete set of observation equations, or the
navigation model, is given by:

VTASm == u2+V2+W2+VVTAS
hm=h+Vy W (g—Ag)X
ay=(14+Cgq )tan 1= 4 —— "Xy,
(ﬂn:(P+V<p v ( + aup) u+‘/U2+V2—|-W2+ a
= r—Ar)X
Y=Y +Vy B—tant__" (r = Ar)Xy, vg

VW2 P2+ w?

wherev is the standard notation for the measurement noise of treceapted vari-
able andk, denotes the location of the boom along ¥peaxis for the alpha and beta
vane.

For use in flight path reconstruction with a Kalman filter, #et of equations
in Eq. ) was extended with the time derivatives of additional statet require
reconstruction, i.e. sensor biases. Commonly, the statsition function is simply
assumed to be zero since the bias is constant in realityn€oeased excitation of
the sensor bias state, the state transition function fotitiear accelerations and
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fuselage-upwash coefficient was modeled as zero-meawani@nce random walk
scaled by a factdk, as earlier applied in the work of Mulder et atj:

A ~k-.#(0,1) (6)

The bias state transition function for the rotational ratas assumed to be zero for
its usually very small bias. On balance, the state vectattay with the augmented
bias terms is given by:

X= [h Uvwe 8 ¢ Ay, )\ay A, Ap Aq Ar Caup]T )

3.2 Kalman Filtering Procedure

To begin with the formulation of the augmented UKH 13, 14, 15], the augmented
state vector and covariance matrix are defined as:

£2(k) = [R(KIK)T V()T w(k)T]" (®)
P(k) 0 0

P)=| 0 QO ©)
0 OR

wherev andw in the augmented state vector represent the means of thegsroc
and measurement noise; these can therefore be assumectaenaumean, hence
their values will be zero. The augmented state vector andr@nce matrix can then
easily be transformed to the unscented domain by:

273(K) = [f(a(k)+ (L+)\)Pa(k)] i=12..L
(10)
%ﬁ(k):[ﬁa(k)— (L+A)Pa(k)} i=L+1,L+2...,2

This set of transformed points, indicated B2, is referred to as the set of sigma
points. Parameters and A are, respectively, the dimensionality of the state vec-
tor and a scaling factor defined As= a?(L + k) — L. a is a parameter to reflect
the spread of the sigma points around its mean, state victord3 is a factor to
account for any prior knowledge. The latter is set to a vafiezfor Gaussian distri-
butions.k is an extra scaling factor which is usually set to zero. Sgbsetly, the
weights for the set of transformed means and covariancedeéireed as follows:
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m_ A
Vo TL4+A
we — A +(1-a%+p) (11)
0 L+A
(M) _\(© 1 ;
i I 2(LJ’»)\) I ) = b

From this point, the equations of the UKF become more triviadalogously to
the EKF, the state vector which is now expressed as sigmdspaie propagated
through the system’s dynamics:

223k+ 1K) = 272 (K|K) + /t MLk, u(k), 2 V(KK) TldT (12)

where 2 ®* refers to the columns of the sigma points matrix related écstate and
superscriptv refers to the sigma points related to the process noise. maest@p
ahead state estimation can be calculated by:

R (K+1/k) = _iwfm)gra(H 1|k) (13)

and the one step ahead covariance matrix by:

P (k+1]k) = -iWi(C) (273 —%(KK)) (22— x(K|K))T (14)

Again, similarly to the EKF, the sigma points representing state vector and
measurement noise are propagated through the measurenoetipaes and subse-
quently the transformed means for the measurements andatad:

& (k+1|k) = h[2**(k+ 1]k), 2" (k+ 1|k)] (15)

with the transformed measurements given by taking the mésimedransformed
sigma points:
2L
§= Zjvvi“”@i (k+1]K) (16)
i=

The measurement covariance and measurement-state on@ss&nce can be
calculated by:

2L
Pyy = ;}Wi(c) (Zi(k+1]k) =Y (KIK)) (#i (k+ 1K) = §(k[K))T a7

2L
Py = 3 W (27 4(KIK) (/ ~9(<k)" 8)
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Finally, to complete the definition of the augmented UKFngaiatrix 27, cor-
rected state estimatiok(k+ 1|k+ 1) and corrected covariance matrix estimation
P(k+1|k+ 1) are expressed as:

H (k+1) = PPyt (19)
R(K+ 1K+ 1) = K(K+ 1K)+ {y(k+1) — §(k+1]k)} (20)
P(k+ 1|k +1) = P(k+ 1|k) — # (k+ 1)Pyy.# T (k+ 1) (1)

For additional numerical stability and guaranteed serfinde state covariance
matrix, the square-root implementation of the UKF can bal(i$€]. This type uses
the Cholesky decomposition to address certain numericarddges in the calcula-
tion of the transformed statistical properties. Furthéepgions to the UKF, e.g. the
Sigma-Point Kalman Filterl[7] and its iterative counterpari.f] were introduced
later. However, these filters populate the whole stateespdth sigma points instead
of only a selected optimal range. Therefore, the computatiburden of such filters
do not outweigh the advantages and their application isicesd [19].

4 Aerodynamic Model Identification
4.1 Preliminaries
The six non-dimensional forces and moments can be calcligte

Cx — m(ax — Aa,) — Tx

95 (22)
m (ay— )\ay)
G = ? (23)
 — Aa
CZ _ m(aqs z) (24)

6= o2 (- (- 2@ 240+ = P @ x)) @9

I XX XX

| k=122 Xz
Cm:qyy<q_~_| IyyI (p—Ap)(r—)\r)‘i‘:yy ((p_)‘p)z_(r_)‘r)z)_MT
& (26)
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Cr= g (P 120 @A) (1= A+ 2 (p- A (@A) ) (@)
qu IZZ IZZ
whereA denotes the bias obtained from the flight path reconstnugtiocedure for
each of the accelerations and rotational rates. Since tivatiees of the rotational
rates are not measured directly, these can be obtained bgrinatrdifferentiation.
Corrections to the non-dimensional forceXp and the non-dimensional pitch rate
were made by making use of an engine model. The engine-peddincust inZ,
was neglected and assumed to be approximately zero.

4.2 Parameter Estimation

The principles of regression analysis are well known andipusly applied in many
different researches in the framework of aerodynamic systentification PO, 21,
]. The ordinary least squares (OLS) estimator, defined asithienum residual

— min [X-0— 2
OoLs g"elﬂgH o -yl (28)

where||-|| denotes th&.? norm in Euclidean spadg". The well-known solution in
terms of linear operations is given by:

GoLs = (XTX) "t XTy (29)

According to the Gauss-Markov theorem, the OLS estimatthasbest linear
unbiased estimator under the assumption that the variditbe mesiduals should be
homoscedastic and the correlation terms should vanighin addition, under the
assumption of a normally distributed residuals vector th& @stimator is identical
to the maximum likelihood estimator, effectively attaigithe Crarér-Rao lower
bounds (CRLB)?4]. The standard bounds of the parameter estimates are gyven b
the diagonal elements of the variance-covariance matrix:

Cov{e} =E{(6-0)"(6-0)} =o?(x7X)* (30)

wherea? can be approximated by the mean squared error of the residusing
the estimated covariance, pair-wise correlation of theneded parameters can be
assessed by:

1 1
U(gl) 0 U(gl) 0
Corr{0} = : 0<(:92) : Cov{6} : G<?2) : (31)
0 0 1 0 1
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Because aircraft parameter estimation is often associatbdiata collinearity? 5],
a biased parameter estimation technique known as PrinCipalponents Regres-
sion (PRC) was used. PCR is able to increase the accuracy @attameter esti-
mates in case of multi-collinearity among the predictoialges P 0.

4.3 Model Structure Selection

Stepwise regressionf] is a method specifically aimed at data-driven selection of
an appropriate model structure from a set of candidate segrs. Later modifi-
cations to this approach restricted the selection of cateidegressors to higher
order terms, starting at a fixed linear model struct2ifg[The pool of candidate re-
gressors is to be formed by single terms, cross-interactow higher order terms
corresponding to the independent variables in the mode .dbiwnside of the step-
wise regression method is that it includes addition andieltion criteriaPd]. In
addition, regressors cannot be evaluated independertfube of their interaction
with other regressors in the selected model structure.

More recently, MorelliP1, 29 and Grauerf(] applied a multi-variate polyno-
mial model obtained from an orthogonal model structurecsigle to various air-
craft. The latter model structure selection techniquestiamms the full set of candi-
date regressors to the orthogonal domain in order to tesidginégicance of each pa-
rameter. By defining a predicted square error (PSH#,)kelection of the orthogonal
basis functions can be done by minimization of the latterimélerms contributing
less than a certain threshold value can also be removed frermodel structure.

The process of orthogonal basis functions model strucelexgon begins with
the orthogonalization process of the set of candidate segrs:

-1

Po=1 pj=Xj— ) Kjpx for j=12...n (32)
K=0
wherex; is the j'" vector of independent variables and coefficiggts defined as:
PeXi -
i=—— for k=0,1,...,j—1 33
WJ pﬂpk J ( )

Orthogonal vector@g, p1,--.,pn Now form the columns of orthogonal regression
matrix P. The parameter estimate can now be obtained by the leasesg&timator
in Eq. 29). This can be done by subsequently calculating the cortiibbto the total
least-squares cost independently for each candidatessegrevith:

2
- 02) -

a selection can be made based on the PSE, which is defined as:
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1 2

PSE= N(y,S‘/)T (yfy)JrO-maxN (35)
The maximum model fit error variance can be obtained from:
2 1 3 2
Omax= [y _1 Yi—y) (36)

5 Results

In this section the results of the flight path reconstructimodel structure selec-
tion and parameter estimation procedure are presentedlditican, a comparison
between parameter estimates by Koehler and Hardover marssis\presented, fol-
lowed by post identification smoothing of the locally iddietil models.

5.1 Flight Path Reconstruction

The results for the flight path reconstruction procedure prigses a total of more
than 200 individually reconstructed dynamic maneuversh bangitudinally and
laterally induced. For this reason, only a selection of ltssa shown in this paper.
For a typical 3-2-1-1 dynamic maneuver in elevator, theltesue depicted in Fig-
ure2. In this figure, the state estimate by the UKF together withlitas estimate,
innovation sequences, filtered and reconstructed measuatsrand the control sur-
face deflections during the maneuver are shown. Innovaéiqnences are shown to
confirm filter consistency.

5.2 Aerodynamic Model Identification

The results from the model structure selection procedudepanameter estimation
are presented in this section together with a model vatiddily applying the iden-
tified least squares model to flight derived non-dimensidoales and moments
together with a comparison versus the currently implenteagrodynamic model
in the DASMAT simulation framework.

The final model structure of the non-dimensional forces anchemts inXy, ob-
tained from an orthogonal least squares model selectie@nsehconsisted of a total
of 5 terms, i.eCx,, Cx,» Cxy» Cxée, Cx ,. However, the term related to the squared
angle of attack was removed from the model for its high paendorrelation with
the angle of attack term. Identified values for the pararsetsitabulated in Tablz
Tabulated values represent the parameters in the total ewafitbocally identified
models. The minimum, maximum and mean values for the estinpharameters
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and corresponding variance were included as performanasureto indicate con-

sistence of the estimates.
The models for the 6 dimensionless forces and momentsirggtivm the model
structure selection procedure and parameter estimatioa parametrized as fol-

lows:

Cx = Cxg +Coxe @ + Cx50° + O+ Cis, B (37)

Oy = Cy, + Cy; B+ Cy, -+ Cy, F 4 Cvg, 8a+Cyy & +C,, 2 (38)
Cz = Cz, +Cz, @ +Cz,G+Cz,, 8% (39)

G =Ci,+C,B+Ci,p+C,T+C 0a+Cj & (40)

Cin = Cing + Ciny @ + Crng G+ Cim, O (41)

Cn = Cig +Cig B+Cny P+ Cn F +Ciyy, Oa+Cn O (42)

Table 2 Estimated parameters mean variance, minimum variance and maxinmianoeafor the
Cx model, obtained from an orthogonal least squares model strusgtlgetion approach.

] Omin Bmax a(e) 0(6)min 0(6)max

Cx, —0.051 —0.594 Q019 1553x 107° 4.134x 1078 4.710x 10~*
Cx, 0.862 —0213 12733 1115x 103 2.059x 10 > 5.349x 102
Cx, —4.465-100213 17117 8591x 10 1.296x 10> 8320

Cxs —0.172 —3602 0842 2572x 1073 3.688x 107° 2.736x 10 2

Table 3 Estimated parameters mean variance, minimum variance and maxinmiamoeafor the
Cy model, obtained from an orthogonal least squares model striggleetion approach.

[¢] Brmin Omax 6(9) o'(e)min U(e)max
Cy, 0.004 -0.056 0059 8638x 1078 3.190x 10710 8.079x 10~/
Cy, —0.794 —2.258 —0.169 4389x 10°* 1.362x 105 4.080x 1073
Cy, —0.159 —4.163 2583 1403x 1072 3.772x 107> 1.152x 107!
Cy 1958 —1.813 13569 2199x 102 3.163x 105 1.496x 10!
Cy,, —0.180 —4.305 1397 2083x 1073 1.548x 1076 2.282x 1072
Cr, 0839 —1988 26784 4846x 1072 1.152x 10°© 1.427
Cy,, 2754 —14.888 48476 1028 2795x 10°° 9.398
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Table 4 Estimated parameters mean variance, minimum variance and maxinmiamoeafor the
Cz model, obtained from an orthogonal least squares model strussleetion approach.

[ Bmin 6Bmax a(o) 0(6)min 0(6)max

Cz, —0213 0941 0025 1575x10* 1.075x 1075 5.183x 1073
Cz, —4.037 -8231 2868 8074x 1072 2.369x 1074 4.290x 1071
Cz, —57.766 —267.955 189902 1320x 10* 2.363x 10! 1.979x 1¢*

Cz,, —0836 -—6.355 25163 4456x 1072 7.952x 1074 6.847x 101

Table 5 Estimated parameters mean variance, minimum variance and maxinmiamoeafor the
Ci model, obtained from an orthogonal least squares model strisgtlgetion approach.

0 Omin Omax o(0) I(0)min 0(0)max
—0.002 —0.020 Q010 1826x 108 1.182x 1010 3.285x 107
G, —0.073 -0.143 —0.006 1407x 106 9.575x 108 1.490x 10>
C. —0.494-0.710 Q056 2656x 107> 1.727x 10°® 1.508x 104
C, 0376 Q024 Q785 6498x10°° 4.639x 107 4.298x 104
G, —0.178-0.276 Q121 6081x 106 1.585x 107 9.996x 10>
G, 0102 -1.309 2314 6865x 1074 2.784x 1078 1.619x 1072

Table 6 Estimated parameters mean variance, minimum variance and maxinmiamoeafor the
Cmnm model, obtained from an orthogonal least squares model strusgtleetion approach.

[ Bmin Bmax a(e) (6)min 0(6)max

Cm, 0021 -0.022 0089 4918x 1077 1.252x 1078 5.698x 10°°
Cm, —0.488 —0.855 —0.253 2509x 1075 2.856x 107 1.904x 10~*
Cmy —11.935-22.066 —1.489 3466x 1072 2.968x 102 2.920x 10°*
Cr,, —1.250 —1.508 —0.351 1204x 104 9.907x 1076 1.097x 1073

Table 7 Estimated parameters mean variance, minimum variance and maxinmiamoeafor the
Cn model, obtained from an orthogonal least squares model striseleetion approach.

] Bmin  Omax o(h) 0(8)min 0(8)max
Cp, 0.000 —0.002 Q002 1158x 1078 2.084x 10710 1.326x 107
Cn;, 0.079 —0.056 0145 3689x 106 1.548x 107 5.965x 10°°
—0.142 —0.677 0284 1307x 104 5.361x 106 3.267x 103
—0.295 —0.474 0374 1005x 104 3.055x 106 5.440x 104
—0.025 —0.155 Q073 4720x 105 5.616x 107 1.049x 103
—0.065 —0.611 0578 7.338x 104 1.783x 1077 1.770x 102

0
5

o

r

%a

Ho
&
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5.3 Model Validation

The identified models for all six non-dimensional forces amoiments were ap-
plied to an independent validation data set consisting &6 20 the total data set.
A comparison between the aircraft derived forces and mosnéimé least squares
model and the DASMAT model which is currently implementedtie simulation
framework is shown in Figuré. In addition, fit statistics in terms of the coefficient
of determination and the relative root mean square erroMBR) are tabulated in
Table8.

A time-domain comparison between the new least-squaregiraod DASMAT
for a longitudinally induced 3-2-1-1 maneuver is preseriteffigure 5. This fig-
ure indicates an increased fidelity of the predicted aitatates by the new least-
squares model in comparison to the DASMAT model. Most sigaift is the better
fit of the new model for the velocity in the direction of tg axis and the Euler
angles.

Table 8 Fit statistics for the least squares model and the existing DASMATn{odel averaged
over all validation sets.

Ck & C2 G GCn G

R2 0.76 0.77 0.77 0.75 0.76 0.85
R3 0.60 0.55 0.64 0.25 0.00 0.50

RRMSE(%) 6.76 5.32 6.38 4.96 5.8 4.72
RRMSE (%) 8.79 7.34 7.97 8.65 12.65 8.50

6 Conclusion

In this paper, the methodology regarding the identificatiban aerodynamic model
for flight simulation training from flight test data was demgéd for the normal post-
stall flight envelope. By employing the Two-Step Method (T)Skhe Unscented

Kalman Filter (UKF) was used in cooperation with linear paeger estimation tech-
niques. Results indicate that the state estimates and neeaeant reconstructions by
the UKF are in good agreement with the presented data.

This research effort results in a simple and parsimoniotfsaerodynamic
models describing the 6 non-dimensional forces and momehésmodel presented
in this paper outperforms the current aerodynamic modeldmpnted in the DAS-
MAT framework in terms of goodness of fit, in all 6 degrees aeidom, when
compared to the recorded forces and moments of the Cessatagill laboratory
aircraft. The explained variance of the non-dimensionetde was increased with
at least 13%. More significant improvements were made to tredimensional
moments; an increase of the explained variance of at ledstv@&as achieved.
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’ Flight data Model fit DASMAT ‘
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Fig. 5 Time domain response of the newly implemented aerodynamic modeh&ygeith the
currently implemented aerodynamic model in the DASMAT simulaframework and the flight
derived aircraft states and control surface deflections fongitudinally induced, 3-2-1-1 ma-
neuver.

The work presented in this paper will serve as a basis forrtegration of a
stall and post-stall model, resulting from a parallel reskea&ffort. Together, these
models will be used in future research into, e.g., the behafipilots during aero-
dynamic stall and the development of new control algorithms
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