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Recently, we have proposed the half-Josephson laser (HJL): a device that combines lasing with superconducting
leads, providing a locking between the optical phase and the superconducting phase difference between the leads.
In this work, we propose and investigate two setups derived from a superconducting quantum interference device
(SQUID), where two conventional Josephson junctions are replaced by two HJLs. In the first setup, the HJLs
share the same resonant mode, while in the second setup two separate resonant modes of the two lasers are
coupled optically. We dub the setup “light-superconducting interference device” (LSID). In both setups, we find
the operating regimes similar to those of a single HJL. Importantly, the steady lasing field is significantly affected
by the magnetic flux penetrating the SQUID loop, with respect to both amplitude and phase. This provides
opportunities to tune or even quench the lasing by varying a small magnetic field. For the second setup, we find
a parameter range where the evolution equation for the laser fields supports periodic cycles. The fields are thus
modulated with the frequency of the cycle resulting in an emission spectrum consisting of a set of discrete modes.
From this spectrum, two modes dominate in the limit of strong optical coupling. Therefore, the LSID can be also
used to generate such modulated light.
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I. INTRODUCTION

In the past decade there has been a rapidly growing
interest in devices that combine semiconductor nanostructures
with superconductors. The advantage of this combination lies
in the ability of the current-day semiconductor technology
to engineer all kinds of devices and nanostructures. When
incorporated in a Josephson junction, these determine the
transport properties of the junction [1], which, for exam-
ple, allow manipulation of supercurrents [2], realization of
Majorana states [3], and facilitation of superradiant emission
of light [4], or become useful for the purposes of quantum
manipulation [5].

Recently, we have proposed the so-called half-Josephson
laser (HJL) [6]. It consists of a single quantum emitter with
two superconducting leads biased at voltage V , and an optical
cavity with resonant mode at frequency ≈ eV/�. It emits
coherent laser light at a frequency that is precisely eV/�,
a half of the Josephson frequency, the optical phase of this
light being locked with the superconducting phase difference
between the leads. A HJL can be viewed as a voltage-
biased Josephson junction. Later, after the HJL proposal,
we investigated HJLs with multiple emitters, that provide
exponentially long coherence times for the emitted light [7],
and proposed schemes to reduce noise in the superconducting
phase using optical feedback [8].

In this article, we report a study of a HJL application that
is built on one of the archetypical devices made of Josephson
junctions: the superconducting quantum interference device
(SQUID). We consider the dc SQUID setup [9], which is
a circuit of two parallel Josephson junctions that supports
a supercurrent up to a certain critical value. The whole
structure is a superconducting loop, which can be threaded by
a magnetic flux. The presence of flux makes the phase drops
at the Josephson junctions unequal. As a result, the critical
current of the device depends periodically on the flux [10],
so that the SQUID can be viewed as a flux-tunable Josephson
junction.

The subjects of our study are two SQUID setups where the
Josephson junctions are replaced with HJLs. In the simplest
case of optically uncoupled HJLs, the effect of the magnetic
flux on the superconducting phases, combined with the phase
lock of these to the optical phases in the HJLs, will lead [11]
to an optical analog of the Aharonov-Bohm [12] effect: the
optical interference of the light emitted from the two HJLs
in the SQUID depends periodically on the flux through the
superconducting loop. In the present study, we will make a step
forward by including optical coupling in two ways: (i) the HJLs
share a single resonant mode, and (ii) the separate resonant
modes of the HJLs are coupled and (partly) hybridized. We will
call these setups light-superconducting interference devices
(LSIDs).

The paper is organized as follows. In an introductory Sec. II,
we explain the essential results and equations for a single HJL.
We introduce two SQUID-based setups in Sec. III. These two
setups are treated in Secs. IV and V, respectively. The second
setup provides a special regime where we find time-dependent
periodic lasing solutions. This is investigated in a separate
Sec. VI. We conclude in Sec. VII.

II. INTRODUCTION: THE HALF-JOSEPHSON LASER

The setup of the LSID is based on individual HJLs that are
coupled optically. The dynamics of the optical fields of the
LSID is therefore determined by the equations of motion of
the single HJLs augmented with interaction terms, as is shown
in the following section. With the HJL being a fundamental
building block of the LSID setups, we start with repeating
the main equations and results for a simple but general model
of a multi-emitter HJL. This model was first formulated in
Ref. [7]. The results for the model of the single HJL are also
useful because many of these are similar to those of the LSID,
as is shown later.

The half-Josephson laser can be regarded as a
superconductor–p-n diode–superconductor heterostructure
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mounted in an optical resonator. The p-n diode is capable
of emitting light by electron-hole recombination [11]. In
the model of Ref. [7], the optical resonator mode is driven
by a large number of quantum emitters, that form a dipole
moment oscillating at about half the Josephson frequency,
ωj/2 = eV/�, with V the bias voltage. It is essential that
optically active eigenstates of the quantum emitters couple to
the two superconducting leads. This coupling then results in
a phase lock between the optical phase of the electric field in
the resonator mode and the superconducting phase difference
between the leads. With increasing field intensity in the mode,
the dipole moment saturates, so that steady-state lasing occurs
at finite field intensity. In a toy model, the HJL is driven by
an ac Josephson current with frequency ωj . The lasing in the
HJL occurs as a result of a parametric resonance instability
at ωj/2. Due to this, there are two stable lasing states with
optical phases shifted by π .

Fluctuations in the laser intensity and phase of the HJL
originate from quantum noise in the optical mode [13] and
spontaneous switchings between eigenstates of the quantum
emitters. Such fluctuations can lead to spontaneous switchings
between two stable lasing states and result in loss of optical
coherence. However, we have shown that the typical switching
times can be exponentially long [7]. Therefore, in this work,
we consider neither noise nor switching in the devices under
consideration.

In Ref. [7], we derived a general model for the HJL applying
to an arbitrary set of quantum emitters. The states of these
quantum emitters were assumed to couple only weakly to both
the optical field and the superconducting leads. This allowed
us to express the dipole moment in terms of an expansion in the
optical field of the resonant mode and the pair potentials of the
superconducting leads. Here, the optical field is represented
by the expectation value of the photon annihilation operator,
b ≡ 〈b̂〉. The semiclassical equation of motion of b has the
usual form for an oscillator mode that is driven by a dipole
moment. It is given by

ḃ = −
(

iω + �

2

)
b − i�′′|b|2b − iAb∗eiφ� . (1)

Here, ω is the detuning from the frequency of the resonant
mode ω0, ω ≡ ω0 − eV/�, � is the decay rate of the
mode, and φ� the superconducting phase difference. The
coefficients �′′ and A correspond to the third-order terms in
the aforementioned expansion of the dipole moment, where
the superconducting potentials are absorbed into A. The �′′
term describes the saturation of the dipole moment with
increasing photon number in the resonator. The real part of
the A term provides the gain that is responsible for driving
the resonator mode. Lasing occurs when the gain counters
the losses, represented by �. The lowest order term of the
expansion of the dipole moment is proportional to b and
shifts the resonant frequency of the mode. This shift is already
incorporated in the definition of ω0. The second-order terms
of the dipole moment expansion are zero, so that no terms
occur in Eq. (1) that are quadratic in b. This indicates that
without the driving, caused by the A term, no photons occupy
the resonator. A coherent state of radiation is formed in the
resonant mode, with the average photon number being given
by n = |b|2. The equations are similar to generic equations

describing parametric resonance in the presence of a weak
nonlinearity [14]. The superconductivity plays the role of an
ac drive at double frequency 2eV/�.

The stationary solutions to Eq. (1) are given by n = 0 and

n± = 1

|�′′| [±
√

A2 − �2/4 + ω],

(2)
�

2
tan

(
ϕb − φ�

2

)
= −A ∓

√
A2 − �2/4,

where we have assumed �′′ < 0. Here, ϕb is the optical phase
of the field in the mode. The fixed value of the optical phase
implies a phase lock to the superconducting phase difference.
The solution for the phase is covariant under ϕb → ϕb + π ,
which implies the occurrence of two solutions for each of the
n±, with opposite field amplitudes.

The existence of stationary solutions is not enough to
guarantee the possibility of lasing in the HJL. For this,
the stationary solutions must also be stable against small
perturbations. Stability analysis of a solution is done by
linearizing the equations of motion about this solution. These
linearized equations can be solved exactly. If a perturbation
always decays back to the stationary solution, the stationary
solution is said to be stable. If the perturbation grows, the
stationary solution is unstable.

To realize lasing in the HJL, at least one of the solutions
n± must be real and positive. This condition allows us to
distinguish three regimes, depending on the number of physical
solutions. (i) Both n± are negative [case (i) a] or complex
[case (i) b; here n+ = n∗

−]. The only physical solution to
Eq. (3) is at n = 0. (ii) Only n+ is real and positive. There
are now two physical solutions, of which the one at n = 0
is unstable against perturbations. This is the regime where
we have stable, steady-state lasing with n+ photons in the
mode. To have a large number of photons, it is required that
|�′′| 


√
A2 − �2/4 + ω. (iii) Both n± are real and positive,

so that there are three physical solutions. Stability analysis
shows that only the solution with n− photons in the resonator
mode is unstable. Hence this regime is bistable, with both
the nonlasing state and the lasing state (n+) stable against
perturbations.

In a phase diagram of 2A/� versus 2ω/�, regime (i) b
borders regimes (i) a and (iii). The boundary is simply defined
by A = �/2. Furthermore, regime (i) a borders (ii) and (ii)
borders (iii). Here, the boundaries are respectively given by
±|ω| =

√
A2 − �2/4.

In a steady lasing state a constant current runs through
the HJL. Since each photon that escapes the resonator is
replenished by an electron-hole pair annihilation, the current
is given by the number of photons that escape the cavity, �n,
times the electric charge, I = e�n.

III. SETUPS

Let us introduce two LSID setups and the corresponding
equations of motion for optical fields. The first setup contains
two HJLs sharing a single cavity, which are embedded in the
arms of a superconducting loop. This is similar to the design of
a dc SQUID. A magnetic flux 	 threads the loop of the SQUID
structure, thus relating the superconducting phase differences
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across the Josephson junctions, defined by φ
(j )
� for j = 1,2, so

that φ
(1)
� − φ

(2)
� = 2π	/	0. Here 	0 = π�/e is the quantum

of magnetic flux. From now, we refer to this setup as “single-
mode LSID.”

The description of the single-mode LSID is based on the
phenomenological model that was introduced with Eq. (1) for
a single HJL. We account for two HJLs by splitting the term
proportional to b∗. Each part comes with its own coefficient,
Aj , j = 1,2, and the corresponding superconducting phase
difference, φ(j )

� . Redefining the optical phase of b, ϕb → ϕb +
φ

(1)
� /2, we arrive at

ḃ = −
(

iω + �

2

)
b − i�′′|b|2b

− iA1b
∗ − iA2b

∗e−2iπ	/	0 . (3)

Here, ω, �, and �′′ are the same as in Eq. (1), while A1 and A2

are equivalent to A in the model of a single HJL. Also here,
without loss of generality, we assume from now on �′′ < 0. In
the case of similar HJLs in the arms of the SQUID, A1 � A2.
We note that the equation of motion for a single HJL is obtained
by setting 	 = 0.

The second setup is similar to the first one, with the
exception that there are now two resonant modes, each
associated with a HJL. The modes are coupled optically. For
instance, this can be realized if each HJL is mounted in a
separate optical cavity, the cavities being connected with a
fiber. Also here, a flux 	 threads the loop. This device will be
referred to as “two-mode LSID.”

We model this setup using two copies of the equations of
motion for a single-mode HJL, Eq. (1), and by augmenting
those with a coupling term [15]. Assuming bj to be the optical
field in the modes labeled with j = 1,2, we arrive at

ḃ1 = −
(

iω1 + �1

2

)
b1 − i�′′

1|b1|2b1

− iA1b
∗
1 − igb2e

−iπ	/	0 ,
(4)

ḃ2 = −
(

iω2 + �2

2

)
b2 − i�′′

2|b2|2b2

− iA2b
∗
2 − igb1e

iπ	/	0 .

Here, ωj is the detuning of each mode and �j the decay rate.
The coefficients �′′

j and Aj are coefficients of the expansion
of the dipole moments. Like for the model of the single mode,
we redefined here the optical phases: φ

(j )
b → φ

(j )
b + φ

(j )
� /2.

The coupling between the modes is proportional to coupling
strength g, which we take real, without loss of generality.

It is worth noting that, compared to the first setup, the
second setup has more output quantities: one can separately
measure intensity and optical phase of the light emitted from
each mode. Schematics of both setups are shown in Fig. 1.

IV. SINGLE-MODE LSID

Let us now analyze the model of the single mode LSID.
The stationary solutions to Eq. (3) yield the stationary number
of photons in the resonator mode, n = |b|2, and the optical

Φ
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FIG. 1. (Color online) Setups. (a) The single-mode LSID. Two
HJLs, sharing the same optical cavity, are embedded in a super-
conducting loop. The resonant frequency is ω0 ≈ eV/�. (b) The
dual-mode LSID: a superconducting loop containing a HJL in each
arm. The HJLs are embedded in separate cavities with resonant-mode
frequencies ω1,2 ≈ eV/�. The optical coupling between the resonant
modes is characterized with a parameter g, such that the splitting of
the frequencies of the hybridized modes equals 2g.

phase. They are given by

|�′′|n± = ±
√

A2
1 + A2

2 + 2A1A2 cos

(
2π

	

	0

)
− �2

4
+ ω,

tan 2ϕ±
b =

�
2

[
A1 + A2 cos

(
2π 	

	0

)] ∓ WA2 sin
(
2π 	

	0

)
±W

[
A1 + A2 cos

(
2π 	

	0

)] + �
2 A2 sin

(
2π 	

	0

) ,

(5)

with W = ω − |�′′|n±. Besides, n = 0 is also a stationary
solution. The expression for ϕb implies that a stationary state
with photon number n± can occur with two phases, differing
by π . Furthermore, the physical solutions correspond to real
and positive n±. As a minimal requirement for lasing, we need
|A1 + A2| > �/2. From now on, we assume this to be the
case. It is essential to note that the n± depend on the magnetic
flux. In particular, the threshold values of ω at which n± = 0
depend periodically on 	: ω±

thr(	). The sensitivity to flux is
highest when |A1 − A2| < �/2. In this case, there is a value
of 	, where the expression in the square root becomes zero,
so that n− = n+ = ω/|�′′|.

The single-mode LSID can operate in three different
regimes [7]. The definition of these regimes is exactly the
same as that of those of the single HJL, while the boundaries
separating the regimes are different and the dimensionality of
the phase diagram is higher, involving the extra parameters A2

and 	.
It is possible to switch between the regimes by changing

parameters. For instance, for a single HJL (equivalent to
setting 	 = 0 for the single-mode LSID) one can switch
from regime (i) to (ii) and from (ii) to (iii) by sweeping
the voltage and thus the detuning ω. With the single-mode
LSID, new possibilities arise to switch between the regimes.
A very interesting one is a switch between regimes (i) and (ii),
a nonlasing and a lasing regime, by changing the flux only.
This can happen in two ways. First, we can choose ω such
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FIG. 2. Flux dependence of the current and optical phase, and
regime switching for the single-mode LSID. In the lower panels,
the current through the device is plotted as a function of the flux,
	. The current is proportional to the n+ given by Eq. (5). In the
upper panels, the corresponding optical phases are plotted. For the
solid (dashed) lines |A1 − A2| < �/2 (|A1 − A2| > �/2). For the
leftmost panels, the detuning is chosen such that the HJL undergoes
a transition between the regimes (ii) and (i) a described in the main
text. This occurs near the half of a flux quantum. This happens for
both cases corresponding to the dashed and the solid lines. For the
rightmost panels, no transition occurs for the dashed line, while a
transition from regime (ii) to (i) b occurs for the solid line, in the
vicinity of half of a flux quantum.

that it is crossed by ω+
thr(	

+,(i)
thr ) at the threshold value of the

flux, 	
+,(i)
thr . This is a transition between regimes (i) a and (ii).

It corresponds to a second-order phase transition, where the
derivative of n to 	 is finite when the threshold is crossed. The
second way occurs when |A1 − A2| < �/2 and ω = 0. Here
a second-order phase transition between regimes (i) b and (ii)
occurs at the two threshold values of 	. At this phase transition
we find n− = n+ = 0, while the derivative of n to 	 is infinite.
These cases are shown in Fig. 2, where the current through
the device and the optical phase are plotted as a function
of flux. Hence, with these phase transitions it is possible to
switch a single-mode LSID on and off using a magnetic field
only.

There is also a parameter regime where the single-mode
LSID displays hysteretic behavior upon a flux sweep. This
regime occurs when |A1 − A2| < �/2 and ω is chosen such
that ω−

thr(	
−,(i)
thr ) = ω (the “threshold” of the unstable solution),

at the threshold value of the flux, 	
−,(i)
thr . If we start at 	 = 0,

the HJL is in regime (ii). Upon increasing 	 adiabatically,
a transition to the bistable regime (iii) takes place when the
threshold 	

−,(1)
thr is crossed. The single-mode LSID remains in

the steady lasing state. At a critical value of 	 we encounter
a transition to the nonlasing regime (i) b. This is a first-order
phase transition, where the single-mode LSID turns off. When
we decrease 	, the transition proceeds in opposite direction,
from regime (i) b to (iii). Since the nonlasing state is stable
in this regime, the HJL remains off. Crossing 	

−,(1)
thr another

time, we encounter a first-order transition to the original lasing
regime (ii). The hysteresis in the HJL is shown in Fig. 3, where

0

5
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15

= 52ω/Γ

2A /Γ  = 51

2A /Γ  = 5.22

1Φ/Φ00.50

Ι
|Ω

''|
eΓ
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Φ   /Φ0thr
−,(1) Φ   /Φ0thr
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(i)b (ii)(ii) (iii) (iii)

FIG. 3. The hysteresis in the single-mode LSID. The bistable
regime (iii) supports hysteretic behavior in the HJL. The gray, solid
(dashed) curve represents the current as calculated from the stable
(unstable) solution of Eq. (5). The solid (dashed) line at I = 0
indicates that the nonlasing solution is stable (unstable). The solid
black lines represent a flux sweep, with the direction indicated by the
arrows. These lines are slightly shifted for clarity. The regimes (i) b,
(ii), and (iii), indicated above the plot, and the threshold flux values,
	

−,(i)
thr , are explained in the main text.

the sweep occurs over a wider range of 	, which also includes
a second threshold, 	

−,(2)
thr .

To conclude this section, we have described a single-mode
LSID, where two HJLs sharing the same resonant mode are
incorporated in a superconducting loop. We find the single-
mode LSID to be flux tunable. Importantly, in some parameter
regimes the lasing can even be switched on and off solely
using the small magnetic fields. Additionally, a parameter
regime exists where there is a hysteresis with respect to a flux
sweep.

V. TWO-MODE LSID

In this section we analyze the model, Eq. (4), of the
two-mode LSID, where a superconducting loop contains a
HJL in each arm of the loop, while the resonant modes
are coupled optically. The relative complexity of this model
prohibits us from doing a full analytical study. Instead, we
investigate the weak- and the strong-coupling limits using
perturbative methods. Then we study analytically the equations
for a specific, symmetric choice of parameters, assuming
no particular coupling strength. For a particular parameter
range of the latter case, we also perform a numerical study,
in Sec. VI, where we find time-dependent solutions to
Eq. (4).

A. Weak-coupling limit

Let us first study the weak-coupling limit, g 
 Ai , of the
two-mode LSID. In this limit, the two HJLs in the device only
slightly perturb each other. The perturbation depends on the
flux, 	. As a result, the current through the device displays
small oscillations upon changing flux.

We calculate the flux-dependent change in the optical fields
of the modes in the weak-coupling limit. The stationary lasing
states of the uncoupled HJLs, given in Eq. (2), are taken to
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be n0
j = |b0

j |2 and ϕ0
bj

, with the index j = 1,2 labeling the
HJLs. For clarity, we make an extra assumption �j 
 Aj

and expand Eq. (2) about �j = 0. In this limit, (x0
j ,y

0
j ) =

(
√

(Aj + ωj )/|�′′
j |,0). The optical coupling in Eq. (4) and the

�j perturb the optical fields as bj = b0
j + δbj ≡ x0

j + iy0
j +

δxj + iδyj , with x0
j ,y

0
j ,δxj ,δyj being real. We calculate the

linear variations owing to �j and g, which yields

δ�xj = 0,

δ�yj = −x0
j

�j

2Aj

,

(6)
δgxj = x0

k

g

2(Aj + ωj )
cos[π	/	0],

δgyj = x0
k (−1)j

g

2Aj

sin[π	/	0],

where j,k = 1,2 and j �= k.
As a result of the perturbative interaction, the cur-

rent through the HJL and the optical phase change. The
total current through the device becomes I � I0 + δI , with
I0 = e

∑
j �jn

0
j and δI = 2e

∑
�i(x0

i δxi + y0
i δyi). Here I0 �√

n0δI . The variations owing to �j yield a small constant
reduction of the total current in second order, while the ones
owing to the optical coupling yield, in first order, a small flux-
dependent change of the current. The perturbation to the optical
phase is given by δϕbj

= cos2[π	/	0](δy0
j − tan ϕ0

bj
δx0

j )/x0
j .

Up to first order, we find

δI = eg

[
�1

|�′′
1|

√
n0

2

n0
1

+ �2

|�′′
2|

√
n0

1

n0
2

]
cos[π	/	0],

δϕbj
= cos2[π	/	0]

2Aj

[
−�j + (−1)j g

√
n0

k

n0
j

sin[π	/	0]

]
,

(7)

where k �= j and n0
j = (x0

j )2 = (Aj + ωj )/|�′′
j |. The phase

variation can be written as a sum of simple harmonic functions,
with arguments mπ	/	0, for m = 1,2,3.

B. Strong-coupling limit

We proceed with the strong-coupling limit of the two-mode
LSID assuming g � Ai,�i . In this limit, the modes of the HJLs
are essentially hybridized. The frequencies of the hybridized
modes are shifted by ±g. We show that each of these
hybridized modes is excited separately in separate ranges of
detuning. In these ranges, the two-mode LSID works similar
to a single-mode LSID.

A perturbative treatment of Eq. (4) requires tuning to one of
the two hybridized modes, ωi � ±g. With this, the lowest or-
der stationary solution reads ω2b

(0)
2 = −gb1e

iπ	/	0 . Then, up
to first order we have ±ω2b2 = [±ω2 + i�2 − |�′′

2|n(0)
2 ]b(0)

2 −
A2[b(0)

2 ]∗. Inserting these results in the expression for b1 yields

the equation for a stationary single-mode LSID:[
± i

(
ω1 − g2

ω2
2

ω2

)
+ �1

2
+ �2

2

g2

ω2
2

]
b1

= −i

(
�′′

1 + g4

ω4
2

�′′
2

)
n1b1

− i

(
A1 + g2

ω2
2

A2e
−2iπ	/	0

)
b∗

1 . (8)

The approximation leading to this equation is valid for a limited
range of detunings, |ω1 − (g2/ω2)| � |Aj |.

C. Symmetric equations

The limits studied so far give a rather narrow perspective of
the two-mode LSID: in the weak-coupling limit it is described
as two largely independent HJLs, while in the strong-coupling
limit it essentially becomes a single-mode LSID, at least for a
narrow interval of detuning. To learn more about the device,
let us assume the HJLs to be identical. With this, it is possible
to analytically calculate stationary solutions to Eq. (4). Small
deviations from this assumption of symmetry can in principal
be treated perturbatively. Doing so, we have not found any
qualitative differences from the symmetric case. Hence, we
describe all essentials of the two-mode LSID for the case when
the arms of the superconducting loop contain equal HJLs.

Before presenting the stationary solutions, we first reduce
the parameter space of Eq. (4) by rescaling various quantities
to dimensionless form,

b̃j ≡
√

|�′′
j |

Aj

bj , γj ≡ �j/(2Aj ),

(9)

Gjk ≡ g

Aj

√
|�′′

j |
|�′′

k |
Ak

Aj

, ω̃j ≡ ωj/Aj ,

and measuring time in units of (A1A2)−1/2. With this, the
equations of motion become√

A2

A1

˙̃b1 = −(iω̃1 + γ1)b̃1 + i|b̃1|2b̃1

− ib̃∗
1 − iG12b̃2e

−iπ	/	0 ,
(10)√

A1

A2

˙̃b2 = −(iω̃2 + γ2)b̃2 + i|b̃2|2b̃2

− ib̃∗
2 − iG21b̃1e

iπ	/	0 .

The assumption of symmetry implies ω̃1 = ω̃2 = ω̃, γ1 =
γ2 ≡ γ , and G ≡ G12 = G21 (we note that this does not
imply A1 = A2). For this choice, the stationary solutions of
the equations of motion are invariant under exchange of the
resonators (1 ↔ 2) and reversing the magnetic field 	 → −	.
Because of this ñ ≡ ñ1 = ñ2, with ñj = |b̃j |2, while ϕb1 �= ϕb2 .

We have found five stationary solutions, either stable or
unstable, to Eqs. (10) in the symmetric case, for photon number
and optical phase. This includes n = 0. For brevity, we give
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the expression of the optical phases only in the limit γ → 0:

ñ±
α = ±

√√√√1 + G2 − γ 2 + 2G

√
cos2

(
π

	

	0

)
− γ 2 + ω̃,

2ϕ
(1)
b,α + π ± π

2
= arctan

[ −G sin
(
π 	

	0

)
1 + G cos

(
π 	

	0

) ] ≡ ϕ+
G,

with ϕ
(1)
b,α = −ϕ

(2)
b,α, (11)

ñ±
β = ±

√√√√1 + G2 − γ 2 − 2G

√
cos2

(
π

	

	0

)
− γ 2 + ω̃,

2ϕ
(1)
b,β ∓ π

2
= arctan

[
G sin

(
π 	

	0

)
1 − G cos

(
π 	

	0

)]
≡ ϕ−

G,

with ϕ
(1)
b,β = −ϕ

(2)
b,β − π

2
. (12)

Let us make several remarks. First, the solutions are invariant
under a change of both optical phases with π . This is equivalent
to the invariance of Eq. (10) under a sign change of both b̃1

and b̃2. Second, the solutions are periodic in flux, with the
flux period of 2	0. This period is however only visible in the
dependence of the optical phases on the flux, that can be probed
by measuring the light interference. In contrast, the current
through the device is only sensitive to the photon number,
which has a flux period of 	0. Finally, for γ �= 0 there is a

region of flux values, defined by γ > | cos[π	/	0]|, where
the ñ±

α,β are complex valued, so that the only physical solution
is at ñ = 0. This regime is similar to the regime (i) b that was
discussed in context of the single-mode LSID in Sec. IV.

Figure 4 presents the plots of the solutions of Eqs. (11)
and (12). The solutions n±

α,β are shown in Fig. 4(a) (plot
in the center). In this panel, we can distinguish the various
regimes that occur in this device; those are similar to the ones
introduced for the single-mode LSID in Sec. IV. In regime

G0 1
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FIG. 4. The lasing in the two-mode LSID. (a) The four solutions of n as given by Eqs. (11) and (12), as a function of detuning. This interval
of ω̃ corresponds to various regimes described in the main text. The regimes are indicated by labels above the plot. The values of detuning labeled
with c–f correspond to the panels (c)–(f) at 	 = 	0/4. In the strong-coupling limit, the solid lines labeled with ñ+

α and ñ−
β are the stable stationary

solutions, while the dashed lines labeled with ñ+
β and ñ−

α are the unstable ones. We have defined ω̃2
± ≡ 1 + G2 − γ 2 ± 2G

√
cos2[π	/	0] − γ 2.

In the limit of G � 1, the critical value of the detuning for regime (iv) is given by ω̃c = √
sin2[π	/	0] − γ 2 (Sec. VI). (b) The optical phases

as a function of G for several values of the flux, as explained in the main text. The solid (dashed) curves correspond to the solid (dashed) curves
in (a), for 0 < 	 � 	0. (c)–(f) The stationary current (thick solid curves) as a function of flux, for several values of the detuning. The dashed
curves correspond to the current at the unstable stationary solutions. Panels (d)–(f) contain bistable regimes where two values of the stationary
current are possible. With changing flux, switches between various regimes, indicated above the panels, occur. These panels correspond to the
strong-coupling limit, with G = 15. Furthermore, γ = 0.05 and |�′′

1|A2
2 = |�′′

2|A2
1.
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(i) a no lasing occurs in the two-mode LSID. Regime (i) b is
not shown in the plot, while it was mentioned in the previous
paragraph. The lasing occurs in the regime (ii). There is a single
stable lasing solution in (ii) a and there are two stable lasing
solutions in (ii) b. The latter also involves an unstable lasing
solution. Regime (iii) a is bistable while (iii) b is tristable.
These regimes also contain one and two unstable solutions,
respectively. In both cases, the nonlasing solution is stable.
Finally, in the vicinity of ω̃ = 0 there is a new regime (iv).
This regime contains time-dependent solutions (limit cycles)
and will be the topic of investigation in Sec. VI.

We see that steady-state lasing occurs in regime (ii), in two
small windows of the detuning, those being in the vicinity
of ω̃ = ±G. Hence, indeed as expected, we find two lasing
modes at a frequency shifted by the coupling constant � G

and a frequency splitting of � 2G.
The stability of the solutions found depends on the coupling

strength. For G � 1, the solid lines (ñ+
α and ñ−

β ) in Fig. 4(a)
represent the stable solutions. The dashed lines represent the
unstable ones. In the limit G 
 1 we find that ñ+

β is stable
instead of unstable, while ñ−

β is unstable instead of stable.
This is expected in the regime where the two HJLs in the
arms of the superconducting loop are only coupled weakly.
Here, both HJLs should lase in a regime of detuning about
ω̃ = 0. The stable solutions merge at G → 0, as do the unstable
ones.

The dependence of the optical phases on the flux is shown in
Fig. 4(b). Instead of showing the value of each solution of the
phase separately, we have plotted ϕ±

G . It is sufficient to plot in
a flux interval from zero to 	0. Indeed, ϕ±

G for 0 < 	 � 	0 is
the same as ϕ∓

G for 	0 < 	 � 2	0. At G = 0 the phase ϕ±
G is

either zero or π while for G → ∞, tan ϕ±
G = ± tan[π	/	0].

Finally, Figs. 4(c)–4(f) show the (possible) stationary
currents as a function of the flux in the strong-coupling limit.
Similarly to the single-mode LSID, the flux can be used to
change the operating regime of the device. Panels (c) and (d)
correspond to the same regimes as the left and right panels (for
the latter only the solid line) of Fig. 2, respectively. Indeed, a
flux sweep in the parameter regime of panel (d) would show
hysteresis, similar to what is shown in Fig. 3 in Sec. IV. In panel
(e) a regime change between the bistable regime (iii) a and the
nonlasing regime (i) b occurs. If in the lasing state, a flux
sweep across the point 	0/2 extinguishes the lasing without
recovering. Panel (f) shows transitions between regimes (ii) b,
(iii) a, and (i) b.

To conclude this section, we have studied the two-mode
LSID. In the weak-coupling limit, the effect of the flux is
small periodic modulations at the background of the current
for two uncoupled HJLs. In the strong-coupling limit, there
are intervals of the detuning where the device operates like the
single-mode LSID while the overall picture is more complex.
In the next section, we concentrate on a nontrivial feature that
is unique for the two-mode LSID.

VI. PERIODIC LASING CYCLES

In the previous sections, we have studied the stationary
states of the LSID. As noted, the two-mode LSID displays a
regime with time-dependent steady solutions, or “limit cycles.”
These are the topic of this section. First, we give a theoretical

background to this phenomenon. We do stability analysis to
find the parameter ranges where this interesting regime takes
place, and identify the corresponding dynamics of the LSID.
Then, we use a perturbative analysis in the limit of strong
coupling G � 1 to estimate the key properties of the limit
cycles. We find that in this limit, the emission predominantly
occurs at two frequencies separated from eV/� by ±g. We
refer to this as dual-mode lasing.

After this, we present the results based on the numerical
integration of the differential equation and compare these with
the theoretical estimates.

A. Stability

We study the stability of the nonlasing solution, b̃j =
0, in the vicinity of ω̃ = 0. As in the previous section,
we assume equal parameters ω̃ ≡ ω̃1,2, γ ≡ γ1,2, G12 =
G21. In addition, we assume A1 = A2. The eigenvalues of
the linearized equations of motion in the vicinity b̃j = 0
read

λ ≡ γ ±
√

1 − G2 − ω̃2 ± 2G
√

ω̃2 − sin2[π	/	0], (13)

for all four possible combinations of the “±”s. From this,
we can resolve the various regimes defined in Sec. V. For
instance, the solution at n = 0 is stable when the real parts
of all λ are positive. In the lasing regime (ii) all λ are real,
yet three are positive and one is negative, thus indicating a
saddle point instability. In regime (iv), the nonlasing solution
is also unstable, but here the corresponding eigenvalues are
complex instead of real, while the real part of two eigenvalues
is negative. This regime can only occur if ω̃2 < sin2[π	/	0].
In the remainder of this section we will always assume G � 1,
so that regimes (ii) and (iv) are clearly separated from each
other. Then λ is approximated as

λ � γ ±
√

sin2[π	/	0] − ω̃2 ± i

[
G + ω̃2 − 1

2G

]
, (14)

again for all four possible choices of the “±”s. Therefore, in
this limit, the threshold for regime (iv) is defined by γ 2 +
ω̃2 = sin2[π	/	0]. Crossing this threshold corresponds to a
transition from regime (iii) a to regime (iv).

To understand the implications of the transition to regime
(iv), let us first consider briefly the dynamics of the two-mode
LSID in regime (iii) a. We discuss it in terms used in Sec. IV
of Ref. [7]. We assume that the LSID is not in a stationary
state. Then the evolution of the state of the device is governed
by Eq. (10). The optical fields, b̃j , can be decomposed into
real and imaginary parts, b̃j = xj + iyj . Using these, we can
construct a four-dimensional coordinate space where each
point, (x1,y1,x2,y2), represents a state of the two-mode LSID.
We can map the state evolution to the motion in the coordinate
space of a “particle” which is driven by a “force field.”
Given some initial condition, the particle will evolve along
a trajectory defined by the force field, to a stable stationary
point or “attractor.” The set of initial conditions from which
the particle flows to one specific attractor is the domain of
attraction of that attractor.

In contrast to the attractors, some stationary points are
unstable saddle points. Generally, when close to a saddle
point, the particle will be repelled by it. There are however
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trajectories that lead the particle to the saddle point without
it being repelled. These trajectories form the stable direction
of the saddle point and form a separatrix of Eq. (10). In the
cases of regimes (ii) a and (iii) a of the two-mode LSID,
we have respectively one and two saddle points, for which
the separatrix is three dimensional. Therefore, in the regimes
(i)–(iii) the separatrices of m − 1 saddle points divide the state
space in m domains of attraction, each associated with a single
attractor. Because trajectories of the particle with different
initial conditions do not cross, it is not possible to switch from
one region to another without accounting for noise [7].

In the course of a transition from regime (iii) a to (iv)
the nonlasing solution becomes unstable. However, as we
have seen, the unstable direction is two dimensional instead
of one dimensional. It cannot separate the region of the
former attractor at n = 0 in two new regions, each with
their own attractor. Importantly, the attractors (saddle points)
represented by the solution n+

α (n+
β ) and the separatrices do

not change significantly, and no new stationary attractors
appear. Paradoxically, a particle in the domain of attraction
of the former attractor at n = 0 is not evolving to an attractor
anymore, but it also cannot escape to another domain of
attraction or to infinity. To resolve this issue, this domain must
contain a nonstationary attractor, or limit cycle.

If the frequency of the limit cycle is ωc, one generally
expects the emission to occur at a comb of frequencies
separated by ωc, ωn = eV/� + nωc. Below we consider the
limit of strong coupling where the emission predominantly
occurs at two frequencies corresponding to n = ±1.

B. Perturbative analysis

In the limit of G � 1, it is possible to perform a perturbative
analysis of the regime (iv). We use the full time dependent
Eq. (10). Here, we perform this analysis only up to first order
in G−1. The results of this subsection explain key features of
the numerical results presented in the next subsection.

To analyze Eq. (10) perturbatively, we expand the fields
in a series of G−1: bj = b

(0)
j + G−1b

(1)
j assuming typical time

scales of the order of G−1. The lowest order equations read

˙̃b(0)
1 + iGe−iπ	/	0 b̃

(0)
2 = 0, ˙̃b(0)

2 + iGeiπ	/	0 b̃
(0)
1 = 0.

The solutions can be found straightforwardly as

b̃
(0)
1 (t) = −iβe−iπ	/	0 sin[Gt], b̃

(0)
2 (t) = β cos[Gt],

where we have implicitly chosen an origin in time, t0. The
complex constant β has yet to be determined. It will be fixed by
the requirement that the part of bj oscillating with frequency
G, can be fully contained in the leading order that includes
b̃

(0)
1 (t) and b̃

(0)
2 (t). The higher order terms in the expansion

only oscillate with frequencies that are multiples of G. The
time average of the total number of photons is |β|2 = ñ

(0)
1 +

ñ
(0)
2 . This quantity is also proportional to the average current

through the device.
We continue with the first-order corrections. To find these,

we first take the time derivative of Eq. (10) and then collect all
terms that are proportional to G. To this end, we keep in mind

that each time derivative adds a factor of G. We find

G−1
[ ¨̃b(1)

1 + iGe−iπ	/	0 ˙̃b(1)
2

] = −[
iω̃ − 2i

∣∣b̃(0)
1

∣∣2 + γ
] ˙̃b(0)

1

− i
[
1 − (

b̃
(0)
1

)2]( ˙̃b(0)
1

)∗
. (15)

A second expression exist with b1 ↔ b2 and 	 → −	.
This can be used to eliminate ˙̃b(1)

2 in Eq. (15). Inserting
the expressions for the lowest order terms and rewriting the
products of harmonic functions we arrive at

1

G

[ ¨̃b(1)
1 + G2b̃

(1)
1

] = −2χ ˙̃b(0)
1 − |β|2

2
βe

−iπ 	
	0 G cos[3Gt],

χ ≡ iω̃ + γ − i
3|β|2

4
− i

β∗

2β
(e2iπ	/	0 − 1).

(16)

There is a similar equation for b̃2 with the term proportional to
cos[3Gt] replaced by −i|β|2βG sin[3Gt]/2. These equations
describe a driven harmonic oscillator. Since the term propor-
tional to χ drives exactly at the resonance frequency G, and the
frequencies of the higher order terms should only be multiples
of G, we require χ = 0. This sets β

|β±|2 = 4

3
[±

√
sin2[π	/	0] − γ 2 + ω̃],

(17)
γ tan[2φ±

β − π	/	0] = ∓
√

sin2[π	/	0] − γ 2,

with φ±
β the phase of β±. We note that in this limit, |β|2

and therefore the leading-order term of the average current is
independent of the coupling constant G. The first-order terms
are readily calculated:

b̃
(1)
1 = e

−iπ 	
	0

16G
|β|2β cos[3Gt], b̃

(1)
2 = i

|β|2β
16G

sin[3Gt].

These variations have an extra factor of i compared to the
leading order, and are therefore perpendicular to it in the
complex plane.

The correction to the number, δñj = ñj − ñ
(0)
j , is at least

of the order G−2. The phase between b̃1 and b̃2 is, up to first
order, given by π (2	 − 	0)/2	0.

C. Numerics

To validate the analytical results of the previous subsection,
we have performed a numerical analysis. We study the average
current through the two-mode LSID in the limit cycle regime
(iv), and the trajectory of the limit cycle.

The analysis is based on the numerical integration of the
differential equations in Eq. (10). The initial condition is
chosen close to bj = 0 and the parameters are chosen to
achieve the limit cycle regime. To converge to the limit cycle
within a reasonable amount of integration time, we choose
a sufficiently large damping, γ = 0.05, which is still small
enough for all essential features to be as described in the
previous section. We integrate the differential equation from
t = 0 up to t = 25/γ . A time interval of δt = 1/γ at the end
is used to represent the limit cycle, blc

j (t).
The data of blc

j (t) are used to plot several quantities. We
use the raw data to demonstrate a few aspects of the limit
cycle. The real and imaginary parts of blc

j (t) are plotted in
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FIG. 5. Limit cycles in regime (iv) of the two-mode LSID, with
G = 15 and γ = 0.05. (a) The average current as a function of flux.
The circles, squares, and diamonds correspond to numerical results
for three values of the detuning, as indicated in the panel. The solid
(dashed) lines are |β±|2, corresponding to stable (unstable) limit cycle
solutions. The values of the flux labeled with “thr 1” and “thr 2” are
lasing thresholds for the solutions with |ω̃| = 0.56. The solution at
positive detuning is bistable in the nonlasing regime, with a stable
nonlasing state (I = 0). This is similar to the earlier discussed regime
(iii). Close to 	/	0 = 0 and 1, a regime similar to (i) b exists. (b) The
variation of the relative cycle frequency shift δν with flux. The circles,
squares, and diamonds correspond to the results in (a). The solid
lines are fits with the function η1 sin2[π	/	0] − η2. The coefficients
(η1,η2) are respectively given by (0.074,0.064), (0.071,0.067), and
(0.068,0.067). Two curves are shifted by an amount indicated in the
panel. (c) Trajectory of the limit cycle with 	/	0 = 1/4. The solid
(dashed) line corresponds to b̃1 (b̃2). The trajectory is rotated over an
angle of 0.87π (1.12π ) to align the long axis of the cycle with the
vertical axis of the plot. (d) and (e) The optical phase and number of
photons corresponding to the trajectories in the limit cycle of (c). The
dash-dotted line in (e) is the sum of the solid and dashed lines.

a parametric plot to show its trajectory, while the modulus
and phase of blc

j (t) are plotted as a function of time. The
frequency of the limit cycle is shifted from G by Gδν � G−1.
We extract the value of |β|2 by fitting |blc

j (t)|2 to a function
of the form |βj |2{1 + sin[2G(1 − δν)t + κj ]}, corresponding
to the leading-order solutions, n

(0)
1 and n

(0)
2 . The higher orders

are small, being of order G−2.
The results of the numerical analysis are shown in Fig. 5. In

panel (a), we show the average current through the two-mode
LSID as a function of the flux, 	, for three values of the
detuning. We first remark that the expression for |β+|2 nicely
fits the numerical results. Interestingly, we find two different

regimes that remind us of the regimes (ii) and (iii) of the
time-independent states. Inevitably, this bistable regime also
involves an unstable limit cycle, which we expect to be
represented by β−. With this observation, we conclude that
the limit cycle states display parameter dependencies and
properties similar to those of the time-independent states
investigated in Secs. IV and V. In particular, we find the
regimes that are analogous to the regimes (i) b, (ii), and (iii)
and the possibility of hysteresis as described in Sec. IV. With
this, we review our understanding of the regimes (ii) b, (iii)
a (only at positive ω), and (iii) b, which were introduced in
Sec. V C. We only made notice of the existence of stationary
states in these regimes, but we expect that all these regimes also
contain a stable and an unstable limit cycle state, represented
by β±.

Panel (b) of Fig. 5 shows the relative shift of the cycle
frequency δν = (1 − ωc/G), which is of the order of G−2.

In the panels (c)–(e), the raw data are used to show the
trajectory of the limit cycle in a parametric plot, and the
modulus and phase as a function of time. The trajectory
matches the prediction of the previous section. The long axis
of the paths correspond to the leading orders b

(0)
j , while the

short axis corresponds to the first-order corrections, b
(1)
j . The

difference in shape between the trajectories of b̃1 and b̃2 results
from the corrections in the perturbation expansion of order
G−2 and higher. In the panel (e), the moduli |b̃j (t)|2 are shown
separately and as a sum, ñ1(t) + ñ2(t), which is proportional to
the current. The oscillation amplitude of the current depends
on the relative phase of the bj (t).

We have described the limit cycles in the two-mode LSID.
The dependence of the limit cycle states on flux and detuning
is rather similar to that of the time-independent stationary
states. Generally, the emission spectrum in this case consists
of a comb of equally separated frequencies ωn = eV/� + ωcn.
Interestingly, in the limit of strong coupling the emission
spectrum consists of two discrete frequencies corresponding to
n = ±1. This is therefore a dual-mode lasing state, in contrast
to the states in regime (ii) that are single-mode lasing states.
The two-mode LSID can thus lase at a single frequency, at
ω̃ � ±G, or at two frequencies at ω̃ � 1. We stress that the
occurrence of the dual-mode lasing regime (iv) is crucially
related to the coupling of the superconductors to the resonator
modes. Without this coupling, we cannot use the flux to create
the instability of the regime (iv), that results in the dual-mode
lasing.

VII. CONCLUSIONS

We summarize the results of the article and sketch some
prospectives of HJL-based devices.

We have studied two device setups reminiscent of a su-
perconducting quantum interference device (SQUID), where
the regular Josephson junctions are replaced by HJLs: the
groups of quantum emitters, emitting in a resonator mode,
of which the optically active eigenstates are coupled to
both superconducting leads. In the first setup investigated,
both groups of quantum emitters emit in a single resonator
mode, while in the second setup they emit in two separate
resonator modes, which are coupled optically. These setups
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were referred to as, respectively, “single-mode LSID” and
“two-mode LSID.” In both devices parameter regimes exist
that support lasing. The occurrence of nonlasing, lasing, and
multistable regimes is equivalent to what is found in a regular
HJL. Additionally, the LSIDs also depend on the magnetic
flux that threads the superconducting loop of the SQUID. It
was found that the LSIDs can operate as a flux-tunable regular
single-mode HJL. Indeed, parameter regimes exist where the
lasing in the LSIDs can be turned on and off by changing the
magnetic flux only. In this context, the occurrence of bistable
regimes leads for certain parameter regimes to hysteretic
behavior upon performing flux sweeps.

The two-mode LSID has been studied in the weak- and
the strong-coupling limits and for a symmetric choice of
parameters. In the weak-coupling limit, the device is equivalent
to two single HJLs that perturb each other only slightly. A weak
dependence on the flux is found. In the strong-coupling limit,
the device develops lasing instabilities at detunings of the order
of the coupling constant, both positive and negative. At these
values of the detuning, the device is similar to a single-mode
LSID. Studying the symmetric choice of parameters revealed
a new lasing instability in the vicinity of zero detuning,
which was investigated in the limit of strong coupling. Here,
the device exhibits lasing that is predominantly occurring at
two frequencies, which are separated by approximately twice
the coupling strength. For such dual-mode lasing, there are
regimes similar to the ones of the time-independent states: a
nonlasing, a lasing, and a bistable one.

The connection between superconductivity and optics
achieved with the HJL devices promises a set of novel
applications, this article providing an example thereof. With
these prospects, the emerging field of superconducting opto-
electronics looks rather promising.

Even more possibilities would emerge for arrays of HJLs.
It is easy to extend the design idea of the two-mode LSID to
an n-mode LSID.

The setup for such an n-mode LSID consists of n HJLs
in parallel, all sharing the same pair of superconducting elec-
trodes. This guarantees that the devices are driven at the same

frequency. Note that there are n − 1 superconducting loops
in this circuit, making it possible to tune the superconducting
phase differences of each HJL. An optical coupling between
the nearest HJLs is provided. The dynamics is described by a
set of 2n equations; those generalize Eq. (10). Each of these
equations contains two coupling terms. Linearized equations
give n resonant modes. If the detuning matches the resonant
frequencies, we expect a single-mode lasing. Otherwise, the
lasing regimes may become complex, involving limit cycles
and perhaps even chaos. The lasing regimes can be tuned with
changing the fluxes in the loops.

To experimentally realize the two-mode LSID and the
n-mode LSID, a strong constraint is imposed on the spatial
dimensions of the optical resonators. These need to be smaller
than the SQUID loop, which can be of the order of a
micron in diameter [16]. This can be achieved using optical
microresonators. For instance, using photonic crystals, one
can realize arrays of resonators with nearest-neighbor type
couplings, where the resonators are separated by distances of
the order of a micron [17].

The n-mode LSID is a fairly straightforward extension
of the ideas of this article. It is reminiscent to the arrays of
Josephson junctions [18] that can be regarded as a realization
of artificial solids. Similarly to the Josephson junction arrays,
there are rich design possibilities for such HJL devices. One
could design any kind of setup with superconducting loops, in
1D, 2D, or even 3D, incorporate as many HJLs as necessary,
and couple those optically with each other. The coupling
does not even have to be limited to the nearest neighbors.
In principle, it can be realized with any number of neighbors,
and with varying coupling strengths. This would open up a
new field of research, where the physical phenomena typical
for Josephson arrays [19–21] merge with optics and lasing.
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M. Monthioux, Nat. Nanotechnol. 1, 53 (2006).
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