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Abstract

In this thesis, the hydrodynamic limit (HDL) for two trapping models is studied, the Random Waiting Time
Model (RWTM) and the fractional kinetics process (FKP), on a discrete lattice Z%. The RWTM is studied for
dimension d = 1 and E[w;],co where w; denotes the waiting time at position i. On the other hand, the FKP is
studied for d = 3 and a nonexisting first finite moment. Instead, it is assumed that the waiting times w; follow
a power law distribution. Two main results are presented in this thesis. Firstly, it is proven that the HDL for
the RWTM converges to the solution of the heat equation. The solution is deterministic. The proof consists of
showing that the expectation value of the empirical density fields converge to the aforementioned solution by
using the duality property and Doob’s theorem, and that the variance is finite and decays to 0. Additionally,
it is proven that a rescaled random walk converges to a Brownian motion by using Lévy’s characterisation of
Brownian motion.

Secondly, it is proven that the HDL for the FKP converges to a random measure of the solution of the frac-
tional heat equation, defined in the Caputo sense. Hence, the solution is random. The proof consists of using
similar techniques of the proof of the RWTM and of using that the limit of a sequence of random speed mea-
sures is again random.

Before all of this, an introduction to Markov processes, their semigroups, martingales, and generators is pre-
sented. Additionally, an introduction to random walks, Brownian motion, and duality is included.
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Introduction

There is geometry in the humming of the strings. There is music in the spacing of the spheres.
Pythagoras

1.1. Particle Behaviour and Statistical Mechanics

Our surrounding world is composed of minuscule constituents, ranging from the bricks employed in con-
structing our universities to the intricate structures of molecules, atoms, and electrons. The Ancient Greek
philosopher Democritus, who lived in the fifth century BCE, articulated the idea that atoms were "‘indivis-
ible, [...] infinite in number and various and shape, and perfectly solid, with no internal gaps. They move
about in an infinite void, repelling one another when they collide or combining into clusters by means of tiny
hooks and barbs on their surfaces, which become entangled [6]. Since then, a multitude of philosophers and
physicists have pondered the existence of fundamental building blocks, referred to as ’elementary particles’,
as the indivisible constituents that constitute the fundamental essence of nature.

An influential proponent of this concept was the English chemist and physicist John Dalton, who, through
his research on gas behaviour and molecular interactions, postulated the existence of discrete, element-
specific building blocks coined 'atoms’. Many of his contemporaries regarded his proposition as an em-
bellishment of nature, deeming it excessively intricate and dismissing it as an act of sheer imprudence [9].
Nonetheless, subsequent scientific advancements have partially corroborated Dalton’s conjecture.

Toward the end of the 19th century, the discovery of the electron by J. J. Thomson and subsequent dis-
coveries revealed that Dalton’s atoms were not the fundamental constituents of matter. Instead, atoms were
found to encompass yet smaller constituents, exemplified by the electron, proton, and neutron.[1]

The domain of elementary particle physics has undergone significant transformations owing to funda-
mental discoveries such as Einstein’s Theory of Relativity and the emergence of Quantum Mechanics. These
advancements have rendered the field of (elementary) particle physics a diverse, innovative, and exhilarating
realm of scientific research, enabling explorations into the intricate tapestry of the universe.

Diverse approaches exist to characterize the microscale dynamics of particles, including electrons, pro-
tons, and larger entities like molecules. While the interesting phenomena that govern the behaviour of indi-
vidual particles are of great interest, there is also compelling need to investigate the collective behaviour of
systems composed of these entities. Statistical Physics serves as a fundamental physical discipline to anal-
yse macroscopic quantities such as temperature, energy, and structure based on the underlying microscopic
laws that govern the behaviour of individual entities. Einstein, widely recognised by the public for his con-
tributions to the Theory of Relativity, was awarded the Nobel Prize for his groundbreaking work on elucidat-
ing the behaviour of a system that comprise particles exhibiting Brownian Motion[9]. This exemplifies the
interdisciplinary nature of Statistical Physics, bridging the gap between microscopic and macroscopic phe-
nomena. Equilibrium Statistical Physics is devoted to understanding the transition from microscopic laws
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to macroscopic laws, known as phase transitions. In contrast, Non-Equilibrium Statistical Physics focuses on
macroscopic transport phenomena such as particle transport and heat conduction, drawing insights from the
microscopic behaviour of the individual particles. Such investigations often explore the long-term behaviour
of a system or the limit of the system as the number of particles tends towards infinity.

1.2. Interacting Particle Systems, the Hydrodynamic Limit and Duality
One of the examples of Non-Equilibrium Statistical Physics is the study and modelling of individual particle
behaviour through Interacting Particle System (IPS). While a witty student in Year 10 might correctly identify
Newton'’s laws as the logical and straightforward approach to describing the motion of a single particle, Non-
Equilibrium Statistical Physics takes a different perspective.

Instead of adhering to Newton’s laws, we assume that particles follow stochastic Markovian dynamics. The
particle’s behaviour is akin to a random walk on a given state space. An elementary example of this model is
the movement of i.i.d. particles on a one-dimensional integer line with a certain probability. A comprehen-
sive introduction to this problem can be found in [39].

By introducing an additional 'layer’ of randomness, such as assigning specific depths to traps placed at
each site on the integer line, we obtain a model that encompasses two forms of randomness. This scenario is
referred to as a’'Random Walk in a Random Environment’. This thesis will focus on a specific type of model
that is called the Random Waiting Time Model (RWTM)(2). Instead of assuming that the particles are i.i.d.,
one can also assume that the particles do interact and that the number of particles per site is limited, a model
referred to as the Simple (Symmetric) Exclusion Process (S(S)EP) and that was introduced by [40] and further
studied by e.g. [28, 34]. Another extensively studied model is the Simple Inclusion Process (SIP), where parti-
cles attract each other and the number of particles per site is unbounded. This model was introduced by [16]
and further investigated by e.g. [23, 16].

After describing the microscopic behaviour of the particles, the objective is to describe the behaviour of
macroscopic quantities. For instance, consider a collection of particles that evolve in a d-dimensional volume
V. If all equilibrium states of the systems are characterised by a macroscopic parameter p (e.g. the density
or temperature) within some set P, deviations from macroscopic equilibrium are expected to occur in small
regions around each macroscopic point x. These deviations, known as ’local equilibrium’, can be described
by p(x). For t = 0, the local equilibrium can change, leading to a local equilibrium p(x, #). The expectation
is that this parameter changes smoothly in macroscopic time and space, following a differential equation
known as the hydrodynamic limit (HDL) [24]. In this thesis, making the (local) particle density p(x, t) the
considered parameter. A scaling parameter fy is introduced, representing the ratio between the microscopic
and macroscopic length scales. The hydrodynamic limit can be viewed as a Law of large numbers for the time
evolution, usually described by a partial differential equation (PDE), of empirical density fields in interacting
particle systems. However, in many existing results, only a Weak Law of large numbers is established, wherein
the limit is shown in probability with respect to the law of the process [3].

To derive the HDL, we employ the duality property. Specifically, for symmetric! versions of the aforemen-
tioned models, we translate the problem of infinitely many particles to of a single particle, simplifying the
computational aspects. Duality with respect to a function first appeared in the literature in the late 1940s
and early 1950s in [27]. The concept of duality finds widespread applicability across various scientific do-
mains, encompassing diverse fields such as interacting particle systems, population genetics models, queue-
ing theory, and stochastic partial differential equations (SPDEs). Notably, a fundamental characteristic of
these processes involves the significance of temporal perspectives in both forward and backward directions.
For further exploration of this topic, we refer the interested reader to [20, 30].

1The probabilities of jumping to all neighbouring sites is equal.
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1.3. The Hydrodynamic Limit: Applications

This section delves into a more profound exploration of the physical applications associated with the hy-
drodynamic limit. Among the multitude of contexts in which the HDL finds utility, one prominent example
lies in its application to the investigation of impurities. In each case, the reader is referred to the associated
papers of the given examples.

One of these applications is the dissipative linear Boltzmann equation that describes the dynamic of a
set of particles with mass m; interacting inelastically with a background gas in thermodynamical equilib-
rium composed of particles with mass m <« m;. For instance, the case of fine polluting impurities interacting
with air or another gas. the only conserved quantity is the number of inelastic particles and as a result, a
conventional hydrodynamic approach is justified. This approach results in a single equation describing the
advection (the transport of a substance or quantity by bulk motion of a fluid) of inelastic particles at the ve-
locity of the background. The reader is referred to [10].

The HDL approach is also employed in the analysis of Hamiltonian systems exhibiting a superstable pair-
wise potential, leading to the emergence of stochastic dynamics through the introduction of a noise term
that facilitates the exchange of momenta between adjacent particles.In the scaling limit, the time conserved
quantities, energy, momenta and density, satisfy the Euler equation of conservation laws? up to a fixed time
t provided that the Euler equation has a smooth solution with a given initial data up to time ¢. The strength
of the noise term is chosen to be very small (but nonvanishing) so that it disappears in the scaling limit. The
reader is referred to [31].

Another example is the Anderson impurity model that is a Hamiltonian that is used to describe magnetic
impurities embedded in metals. The model is an IPS on Z¢ where each site of the lattice is allowed to contain
at most one particle, and particles could jump to an empty neighbouring site only under a certain constraint,
conserving the total number of particles. More precisely, depending on an integer parameter n, every particle
jumps with rate 1 to each of its neighbouring sites, provided that the particle has at least n empty neighbours
both before and after the jump (so for k = 1 we obtain the SSEP). The interested reader is referred to [38].

Prior to presenting and comprehending the principal findings, we shall look at some fundamental defi-
nitions and theorems. This preliminary discourse serves as a crucial foundation for establishing a solid con-
ceptual framework and facilitating a thorough understanding of the subsequent results.

1.4. Reading Overview
The thesis is structured as follows. Section 1.5 introduces the mathematical preliminaries that serve as the
foundation for this thesis. Sections 1.6, 1.7, 1.8, 1.9, and 1.10 delve into the necessary mathematical back-
ground.

Chapter 2 focuses on the Bouchaud Trap Model (2.2) and the derivation of the hydrodynamic limit (HDL)
for the Random Waiting Time Model (2.3). Section 2.4 presents the derivation of the HDL for the fractional
kinetics process. Lastly, chapter 3 concludes this thesis with some final remarks.

2The Euler equations are a set of quasilinear partial differential equations governing adiabatic and inviscid (zero-viscosity) flow. The
interested reader is referred to [5]
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1.5. Mathematical Preliminaries

In this section, we will discuss pertinent mathematical definitions and outcomes to acquaint the reader with
the mathematical fundamentals of this thesis. It is important to note that this thesis falls within the realm
of Markov processes and their associated findings. To adequately establish these findings, we define Markov
processes as sequences of random variables that evolve on probability and measurable spaces. Hence, the
mathematical framework employed in this thesis must align with the concepts found in real analysis, such
as measures, measurable spaces, filtrations, and adaptations, among others. Moreover, various functions
require well-defined domains and path spaces, such as Skorokhod spaces. However, for two reasons, this for-
malism will not be employed in this thesis. Firstly, delving into this formalism would introduce notions be-
yond the scope of this thesis, necessitating extensive discussions of topology and real analysis. Secondly, this
rigorous mathematical formalism is not a prerequisite for deriving the key results of this thesis, as it primarily
concerns Markov chains rather than their underlying definitions in real analysis or topology. Nonetheless,
readers are encouraged to explore equivalent or more abstract definitions related to the definitions that will
be presented.

1.6. Preliminaries of Probability Theory

Definition 1.6.1 (Random Variable). Let (0, &, P) be a probability space and (E, &) a measurable space that
is called the state space. Then an (E, &)-valued random variable is a measurable function X : Q — E. Q, &,
and P are called the sample space, event space, and probability function, respectively.

The probability that X takes on a value in a measurable subset S € E is given byP(X € S) =P({w € Q| X(w) € S}).

Remark 1.6.1. Throughout this thesis, we assume that E = N . The state space (E, &) is known as a discrete
state space. In this particular scenario, & = 2?(N) where 22 is the power set.

Definition 1.6.2 (Stochastic Process). Let X(t) be a random variable with index t € T = [0,00). Then the
stochastic process is denoted by (X (1), t = 0). In simpler terms, a stochastic process is defined as a collection of
random variables that is indexed by some mathematical set. Each random variable is uniquely associated with
an element within that set.

Definition 1.6.3 (Filtration and Adaption). Let (O, &, P) be a probability space and (T, I ) a time space,
e if T isdiscrete (T =N), then a non-decreasing sequence (%) ney 0f 0-algebras of F,
FoSF SHC..SF, <. (1.1)
is called a discrete filtration
e if T is continuous (T = [0,00)), then a non-decreasing sequence (%) et of 0 -algebras of &,
FsCF F 1.2)
Intuitively, the filtration &; can be understood as the information available up to time t. Given a filtration
Fy, the space (Q, &, (F1)eT, P) is referred to as a filtered probability space. If a sequence (X;)eT of random

variables satisfies the following property: X, is &;-measurable for all t € T. Then the sequence is said to be
adapted to (%) teT-

We now present the definition of a so-called stopping time that will be used in subsequent sections.

Definition 1.6.4 (Stopping Time). Let T :Q — T be a random variable that is defined on a filtered probability
space (Q, F, (Fi)ier, P). T is called a stopping time with respect to (F¢) e if,

{(T<stleF (1.3)

Remark 1.6.2. Henceforth, our focus shall be confined to the continuous adaptations of the aforementioned
definitions. It is important to acknowledge that the forthcoming definitions and propositions, delineated within
this chapter, possess discrete as well as continuous counterparts. Considering that the substantive content of
this thesis is reliant upon the continuous formulations, our emphasis shall be placed upon those particular
formulations.
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1.7. Markov Processes
Let us commence by introducing some nomenclature. For a countable set E, we call

* JB(E,-) the space of bounded and measurable real valued functions on E;

* %6y(E,-) the space of continuous real valued functions on E that vanish at infinity;

e ¢"(E,-) the space of continuous real valued functions on E that are n-times differentiable;

* 6,(E,-) the space of continuous real valued functions on E that are bounded;

e 6¢°(E,-) the space of continuous real valued functions on E that are infinitely differentiable.

¢ S(R™) the Schwartz space or space of rapidly decreasing functions on R” that consists of all functions
whose derivatives are rapidly decreasing, i.e. S(R") := {f € €°(R")|Va,y e N", | fllq,y < oo}, with N" :=

N x --- x N the n-fold Cartesian product and
——

n times

I fllay = suRp x%(DP f)(x)(. (1.4)
xeR?

where we use the notation x% := x{' x5 2+ xy," and D" := D' D}?... D"

Hence, a function f in Schwartz space could be considered as a rapidly decreasing function f(x) such
that all its (infinitely many) derivatives exist everywhere on R” and decay to zero for x — +oo faster than
any power of x.

where '~ denotes the codomain of the function.

Let us furthermore note that 6, (E) < %(E). Both these spaces are equipped with the supremum norm
lplloo == sup gl (x)| with ¢ € B(E).

Example 1.7.1. The Gaussian function g(x) := p(x)e“x'z, with p(x) a polynomial, belongs to S(R™).
More generally, the space of all functions that have a compact support on a space R", i.e. the functions whose
closed support is a compact subset of R", is contained in S(R").

In contrast, the function h: R — R given by
h(x) = e~ sin (exz) (1.5)
does not belong to S(R) as h' (x) does not decay to zero for | x| — oo.

Remark 1.7.1 (Skorokhod Space and Cadlag Functions). The natural space for trajectories of E -valued Markov
processes is referred to as the Skorokhod space. This space consists of that are cadlag on a given domain. A
function g is said to be cadlag if it is right-continuous and has a left limit3 The Skorokhod space is denoted
as D(E, M) and consists of all cadlag functions from E to M. In our particular context, we define M = R= 0,
yielding the Skorokhod space D = D(E,Rxg).

Definition 1.7.1 (Markov process). Let (0, &, P) be a probability space, (E, &) a measurable space and (T, T )
a time space (wWhere J is theo-algebraon T) . Let X = {X; : t = 0} be a sequence of random variables. If,

e The paths t — X; are right-continuous; and
* The process satisfies the Markov property with respect to 0 (X;,0 < s < f).

where u = {uy : x € E} is a family of probability measures on D = D(E,R5). Then wecall X ={X;:t=0} a
Markov process on state space (E, &).

3Cadlag is a French abbreviation for continue a droite, limite a gauche. For a comprehensive examination of cadlag functions, we refer
the reader to [37].
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Definition 1.7.2 (Markov Property). Let (Q, &, P) be a probability space with a continuous filtration (¥, t€ T)
and let (E, &) be a measurable space. A random variable X : Q — E adapted to the filtration is said to possess
the Markov property if, for every A€ & and for everys,te€ T with0<s<t,

P(X; € AlFs) = P(X; € AlXy) (1.6)
Equivalently, the Markov property can be formulated as follows
E(f (X)I1Fs) =E(f (Xp)lo(Xs) (1.7)

forall f € B(E). In essence, the Markov property asserts that the probability of future states, given the present
states, is solely determined by the present states themselves, rendering the history of the process leading up to
the present state inconsequential and dispensable. Consequently, the knowledge of the present state provides a
comprehensive description of the systeni’s behaviour, obviating the need to consider or incorporate past states
or events.

Remark 1.7.2. The time space (T, 9 ) in (1.7.1) can be either discrete (T = N) or continuous (T = [0,00)). In
the case of discrete time, the counting measure is employed, while for continuous time, the Lebesgue measure is
utilized.* For further details, please refer to (1.6.2).

Remark 1.7.3. The measurable space or state space (E, &) is generally assumed to be LCCB: locally compact,
Hausdorff, and with a countable base. The specific details of this assumption will not be discussed within this
thesis; however, interested readers are encouraged to consult [43]. Nonetheless, it should be highlighted that a
state space where E has the LCCB topology and & is the Borel o-algebra, implies that, under the assumption
that there is a positive measure A on the state space, A will be a Borel measure with A(C) < oo for C < E compact.

Definition 1.7.3. (Continuous-Time Markov Chain) Let (O, &, P) be a probability space, (E, &) a discrete state
space and (T, 9°) a continuous time space. Furthermore, let {X;: t € T} be a Markov process in the sense of
(1.7.1). Then{X;: t € T} is called a continuous-time Markov chain (CTMC) and defined by

* a probability vector u on E, that is interpreted as the initial distribution;
* arate matrix Q on E, that is, a function Q : E> — R such that

- foralli,je E,withi # j, Q;; =0; and,
— foralli € E, ¥ jep.j#i Qi,j = —Qi,i-

Remark 1.7.4. There exist three distinct methods for appropriately defining {X; : t = 0} as a Markov chain with
an initial distribution A and rate matrix Q. The first and most intuitive method, from a probabilistic stand-
point, involves defining X; using holding times and embedded discrete-time chains. The second method em-
ploys transition probability matrices in continuous time, which, although less intuitive than the first approach,
aligns closely with the treatment of many Markov processes. The third method entails defining X; through the
use of potential matrices, which are transformations of the transition matrices. Although the least intuitive of
the three approaches, it offers analytical advantages. Since the second method encompasses concepts such as
semigroups and generators, which are further utilized in this thesis, it will be expounded upon in this chapter.
It is worth noting that introductory books on Markov chains, such as [8], as well as the exceptional notes by
[18], are recommended resources for readers seeking a comprehensive understanding of these concepts.

1.7.1. Transition Probability Matrices

Unless explicitly specified, we consider X = {X; : t € T} to be a continuous-time Markov chain in accordance
with the formulation provided in (1.7.3). The CTMC is defined on a given probability space (Q, &, P), with
the state space (E, &) being discrete and the time space (T, 97) being continuous.

Definition 1.7.4 (Transition probability matrix). Let X = {X;:t€ T} bea CTMC on E. Then the matrix P; of X
corresponding to t is called the transition probability matrix with entries given by

Pi(x,y)=P(X;=ylXo=%), (x,y)€E* (1.8)

4The distinction in measures for these time spaces stems from their respective topologies: the discrete time space possesses the discrete
topology, while the continuous time space adheres to the Euclidean topology.
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Particularly, Py = I is the identity matrix on E. If the matrix P; does not depend on time, the Markov chain X
is called time homogeneous. We can write

Pi(x,y) =P(Xsrr = yIXs=%), (x,y)€E*seT (1.9)

Theorem 1.7.1 (Markov Operator). Let P = {P;: t € T} be the family of transition matrices P; of the Markov
chain X. Suppose that f : E — R is either non-negative or f € B(E). Then forallte T

Pifx)=) Pix, )f(y) =Elf(X)|Xo=x], x€E (1.10)
yeEE

The mapping f — P, f is a bounded, linear operator on B(E) and | P;|| = 1. Pf defines a Markov operator
P:E—E.

Proof. The reader is referred to [8]. O

Remark 1.7.5. Ifthe state space (E, &) possesses a positive measure |1, then the function f : E — [0,00) defined
as f(x) = uyx for x € E is referred to as the density function with respect to the counting measure on (E, &).
Consequently, for any subset A < E, we can express U(A) as Y xea f ().

Theorem 1.7.2. Let f : E — [0,00) be the density function of a positive measure y on the state space (E, &).
Then, f P; is the density function of the measure uP; given by

pP(A) = Y pxtPi(x, A=Y f(xX)P(x,A), A€E (1.11)
X€EA X€EA
Proof. The proof follows by conditioning on x. O

1.7.2. Semigroups and Generators
Let P ={P(¢): t = 0} be a family of Markov operators that satisfies the following conditions:

1. P(0) =1d; and
2. P(t+5s)=P(t)P(s) fors,t =0; and
3. forall f: E — [0,00) the function ¢ — P(¢) f is continuous.

Then P is called a Markov semigroup.

We commence by introducing another type of semigroup

Definition 1.7.5. Let (S(1))e1 be a (strongly) continuous semigroup on space E.> The operator

Ap= lim S(t)(f—qb S(t)(f—(/)

—0+

, xXe€D(A)=|¢peY:3lim (1.12)
=0+

is called an infinitesimal generator of (S(t)) teT.

Example 1.7.2. A very common example of an infinitesimal generator is the case for ¢ = 1 and S(t) = e'. We

el4-1

obtain A =lim;_.g “—

, Where 1 is the identity matrix.
We prove the important result:
Corollary 1.7.3. If¢p € D(A) then,

%S(t)gsz(t)AgbzAS(t)gb, VieT (1.13)

Proof. The proof consists of showing that the left and right derivative exists and that taking the derivative of
the semigroup is closed under operation. The reader is again referred to [18]. O

5properly, E should be a Banach space.
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1.7.3. Martingales

We now define the so-called Martingales.

Definition 1.7.6 (Martingale). Let (¥;):cT be a filtration and (X;) e a sequence of integrable random vari-
ables. Then (Xy) et is a (F;) e -martingale if

1. (Xp)¢eT is adapted to F; and
2. E(X;) <oo; and
3. Vte TE[X;|F,] = X; with0<s< t a.s.

In simpler terms, a martingale is a sequence of random variables for which, at a particular time, the conditional
expectation of the next value in the sequence is equal to the present value, irrespective of the past values.®

The notion of a martingale can be linked to the infinitesimal generator (1.7.5) through the application
of Dynkin’s Martingale. This connection can be formally established by utilizing It6’s Lemma, which can be
conceptually perceived as the stochastic process equivalent of the chain rule.

In a more rigorous sense, the relationship between a martingale and the infinitesimal generator can be
elucidated through the utilization of Dynkin’s Martingale. By incorporating It6’s Lemma, one can formally
demonstrate the correspondence between these concepts. It6’s Lemma serves as a powerful tool in analysing
stochastic processes, allowing for the differentiation of stochastic functions while taking into account the as-
sociated dynamics. In essence, [t6’s Lemma enables the extension of the chain rule to the realm of stochastic
calculus, providing a framework for understanding and manipulating stochastic differential equations.

Lemma 1.7.4 (Itd’s Lemma). Let f € €°(R) and X, a standard Brownian motion. Then, forallt€ T

t 1 t
f(Xr)Zf(X0)+f0 f’(Xs)dXs+5fO ' (Xgds (1.14)

Proof. See [42]. O

Proposition 1.7.5 (Dynkin’s Martingale). Let f € €2(R?,R) with compact support. Let the process M : T x Q —
R be defined by

t
M= X0~ [ Afxds 115
0
with A the infinitesimal generator of X. Then M; is a martingale with respect to the natural filtration (A.1).

Proof. This follows from It6’s Lemma, e.g. [44]. The statement can also be proven via semigroups.

6The reader is invited to compare the definition of a martingale to [Definition 1.7.2], the Markov property.
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1.8. Random Walks, Brownian Motion and Duality

Random walks are fundamental stochastic processes that involve the cumulative sum of random steps taken
on a mathematical space. They have been extensively studied in probability theory due to their simplicity
and applicability to various real-world phenomena. Let’s explore some of the key aspects of random walks.

¢ One-Dimensional Random Walk: The simplest form of a random walk is a one-dimensional random
walk on an integer line. It starts at position 0 and at each step, it can move either left or right with
certain probabilities. The probabilities of moving left and right may or may not be equal, introducing a
bias in the walk. This basic model serves as the building block for more complex random walks.

* Random Walk on a Lattice: Random walks can be extended to higher dimensions, such as the random
walk on a lattice in d-dimensional space, denoted as Z¢. In this case, each step of the walk corresponds
to moving to one of the neighbouring lattice points. Random walks on lattices have diverse appli-
cations, including modelling diffusion processes and analysing the behaviour of particles in various
physical systems.

¢ Random Walks in Finance: Random walks have been employed to model financial phenomena, such
as the financial status of a gambler. In this context, the random walk represents the gambler’s wealth,
which can increase or decrease with each betting decision. Studying random walks in finance helps
understand the behaviour of financial markets and evaluate investment strategies.

¢ Brownian Motion: Brownian motion is a specific type of random walk that has gained significant at-
tention. It refers to the erratic movement of particles suspended in a fluid, such as the motion of pollen
grains in water. Brownian motion is characterized by continuous, random fluctuations and is often
modelled using a mathematical concept called the Wiener process. It has numerous applications in
physics, chemistry, finance, and other fields.

Duality is another intriguing aspect related to random walks. It involves a correspondence between cer-
tain properties of a random walk and the behaviour of its inverse process. For example, the probability of a
random walk reaching a specific position can be related to the probability of its inverse process starting at
that position. Duality has proved to be a powerful tool in the analysis of random walks and has contributed
to many interesting results.

By studying random walks and their variations, researchers have gained insights into the behaviour of
stochastic processes, diffusion phenomena, financial markets, and more. These simple models continue to
be an essential part of probability theory and have widespread applications in various scientific disciplines.
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Example 1.8.1. The Gambler’s Ruin Problem is a well-studied random walk in probability theory. The set-up
is as follows. Consider a gambler who starts with an initial bank account of €i. On each successive gamble,
the gambler can either win €1 with probability p or lose €1 with probability q = 1 — p independent of the past.
The gambler’s goal is to obtain a total bank account balance of €N before being ruined, that is, before his bank
account is empty. If the gambler succeeds, he is said to have won the game. It can be shown that the probability
of winning the game is given by

+ ifp=q=13

with i the initial bank account balance. Similarly, the probabilities that the gambler loses the game or
becomes infinitely rich can be deduced. See for an elaborate discussion of random walks and the Gambler’s
Ruin Problem [15, 26].

1-(4y
Pyi={ -G (1.16)

The one-dimensional random walk can also be perceived as a Markov chain with a state space given by
the integer line. For some number 0 < p < 1, the transition probabilities of moving from state i to state j with
li—jl=1aregivenby P; ;1 =p=1-P; ;1.

The expectation of a random walk is an elementary result in probability theory and given by
ESVo(X ()] =Y P(X(1) = yIX(0) = x)p(y) (1.17)
y

where X () is a Markov process on a state space Z, ¢ € S(R) a test function and P; the transition probabilities
of the Markov process X (t).

Before delving into the interesting phenomena that can be observed as a result of the (scaling) limits of
random walks, we commence by introducing Wiener processes. The definitions of a Wiener process and
Brownian motion are equivalent, even though some physicists distinguish between the observed (Brownian
motion) and theoretical (Wiener process) aspects.

Definition 1.8.1 (Wiener Processes (Brownian Motion)). Let{W(t): t = 0} be a stochastic process with W; i.i.d.
random variables. If the process satisfies the following conditions:

1. Wy=0a.e;and

2. W has independent increments, i.e. forall l,t,s = 0, the (future) increments Wy, — W; are independent
of the past values W; for 1 >t > s = 0; and

3. W has Gaussian increments with mean 0 and variancel, i.e. W;,;— Wy ~ A (0, ]); and
4. W has almost surely continuous paths, i.e. W; is almost surely continuous in t.
then the process is called a Wiener process.

Example 1.8.2. For{W(t): t = 0} a Wiener process, let (M;) ;>0 be a sequence of random variables on probability
2
space (Q, (F1) =0, P) given by M(t) = eW‘_% ! Itis easily confirmed that M(t) is a martingale.
Proposition 1.8.1 (Generator of a Wiener Process). The generator A of a Wiener process applied on a function
f € D(A) is given by
1
Af=3f" (1.18)

Proof. A formal proof can be found in [29]. Intuitively, one applies the semigroup to the function f and
computes the second-order Taylor expansion. O
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The investigation of the limiting behaviour of a random walk, as mentioned earlier, has garnered con-
siderable interest among researchers. Expanding on these inquiries, Monroe D. Donsker made significant
advancements in this field and presented his findings in the form of the renowned Donsker’s invariance prin-
ciple.

Theorem 1.8.2 (Donsker’s Invariance Principle). Let{X; :i € N} be a sequence of i.i.d. random variables with
mean 0 and varianceo?. Let S, = ?:1 X;,” then the stochastic process S = (Sy) nen 1S known as a random walk.

Let W' = S% fort€[0,1] be a partial continuous sum (a rescaled random walk). Then, (W/") ,en converges to
(Wi teqo,1] in distribution for n — co where (W) icj0,1] is a standard Brownian motion.

Proof. See [35]. O

Remark 1.8.1. Donsker’s invariance principle is an extension of the Central Limit Theorem that states that
(W) nen converges to (W) in distribution for n — oo where (W) is a standard Gaussian random variable.

Example 1.8.3. It can be checked that the random walk process S = (Sp) nen With partial sums Sy, = 2?21 X; is
a martingale, as

n-1
=Y X;i+E[Xp] = Sp
i=1

n-1
Z Xi+ XnlFn-1
i=1

[E[SnLgn—l] =k

In order to proceed, it is essential to establish a crucial definition that serves as a prerequisite for compre-
hending and proving the subsequent statements.

Definition 1.8.2 (Quadratic Variation). Let{X;: t = 0} be a stochastic process on a probability space (0, &, P).
The the quadratic variation of X; is given by

n
(X)e= lim Y (Xy —Xg )? (1.19)
IPI—0 {4
where P is a partition over the interval [0, t] and converges in probability.
More generally, the covariation (or cross-variance) of two processes {X; : t = 0} and {Y; : t = 0} is given by

n
(X, V)= lim Y (Xg —Xg (Vg — Yy ) (1.20)
I1PI—0 =3

Proposition 1.8.3 (It6 Isometry). Let{X;:t =0} and {Y;: t = 0} be two stochastic processes, both adapted to
the natural filtration. Let W; be a Brownian motion, then,

(j(;TXtdW[) (fOTYtdW,)] =E

Proof. See [32]. O

T
E f Xthdt] (1.21)
0

is referred to as the It0 isometry

7Again, one should actually be more precise and require that S, takes values in D([0, 1], R).
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It was the French mathematician Lévy who discovered the sufficient conditions for a stochastic process
X, to be a Brownian motion.

Theorem 1.8.4 (Lévy’s Characterisation of Brownian Motion). Let{X; : t = 0} be a stochastic process defined
on the probability space (Q, &, P) with filtration &;. If {X; : t = 0} satisfies the following conditions:

1. P[Xp=0]=1;and
2. X; is a continuous martingale with respect to the filtration &,; and
3. The quadratic variation < X >;=t a.s. underP.

then {X,: t = 0} is a Brownian motion.

Proof. The proof follows from considering the four conditions of a Brownian motion (1.8.1) separately. A
detailed proof can be found in [41]. O

Lastly, we state the definition of duality. See for a more elaborate explanation (1.2) and (2.3.1).

Definition 1.8.3 (Dual with respect to a Duality Function). Let Z, Z be two state spaces of the Markov processes
Mm(t): t =0} and (1) : t = 0} evolving on them, respectively. We say that these Markov processes are dual with
respect to the duality functionD: Z x Z — R ifVt=0,n€ Z, andi e Z
E,[D(&,n(0))] =Ex [D(&(2),m)] (1.22)
holds. Equation (1.22) is referred to as the duality property. If Z = Z we call the Markov process self-dual.
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1.9. General Properties
We now introduce some basic definitions that are important in the study of Markov chains and the related
phenomena.

Definition 1.9.1. Let X be a Markov chain. Then X is called
 a transient Markov chain, ifVxe E3y€ E: x— y, buty - x;
¢ a recurrent Markov chain if it is not transient

Remark 1.9.1. It follows from Pélya’s theorem that the symmetric random walk on Z% is recurrent ifd = 1,2
and transient if d = 3. The reader is referred to [17].

Definition 1.9.2 (Invariance Property). The semigroups P = {P, : t = 0} are said to be invariant if fP; = f for
every t € T. This is equivalent to [ P;fdu = [ fdu with u a probability measure on Q.

Remark 1.9.2. Note that if the initial distribution of X has an invariant density function (Xo has an invariant
density function f), then, by (1.7.2), X = {X; : t = 0} has the invariant distribution f as well.

Proposition 1.9.1. Let 1 be a probability measure on Q with bounded expectation. The following are equiva-
lent:

1. [£fdu=0forall f € BR).
2. pin %, with ¥ the set of invariant probability measures.

Proof. The proof follows from bounding the argument of the integral and using Fubini’s theorem. A detailed
proof can be found in [36]. O

Definition 1.9.3 (Ergodic Measure, I). A probability measure . on Q is said to be ergodic if for all f € B(R) and
t=0,ifS;f=fae,thenf=[fduae.

Remark 1.9.3. An equivalent definition of definition 1.9.3 can be stated as follows: for all f € BR), if £f =0
a.e., then f =cforceRa.e.

We now state an important theorem that will be used later in this thesis.

Theorem 1.9.2 (Birkhoff’s Ergodic Theorem, Continuous). Let X be a Markov process with invariant prob-
ability measure y and ¥ the set of invariant measures. Then, for any f € LP(Q, ) p = 1, the following limit
holds:

T
lim %[ fXpdr=E,[f(Xo)l.#]  p—a.sandin LP(Q,p). (1.23)
0

T—o0

Note that if the probability measure p is ergodic as well (in the sense of Definition 1.9.3), we obtain

Eulf(X0)#1 =E,[f(Xo)]  p—a.sandin LP(Q,p). (1.24)
Proof. See [19]. O

Alternatively, it can be shown that ergodic measures are the extreme points of the convex set of invariant
measures of some given continuous dynamical system (i.e. a continuous Markov process). We consider the
definition of ergodicity in terms of transformations.

Definition 1.9.4 (Ergodic Measure, II). Given (Q, &, P) a probability space with probability measure u. A
transformation T : Q — Q is said to be ergodic if for every set B € & with T~'B = B, we either have j(B) = 0 or
WB) =1. uis said to be T -ergodic.

Definition 1.9.5 (Extreme Points). A point z in a convex set C is said to be an extreme point if, given z,,z € C,
there exists a A € [0,1] such thatifz = Azy + (1 — 1) zp, then z = z1 = zp. In simpler terms, there exist no segment
containing z in its interior that is entirely contained in C.
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Theorem 1.9.3. Given (Q, &, P) a probability space with measure u. The following are equivalent:
1. pisergodic.
2. u is an extreme point of the convex set .%.
Proof. See [33]. O

Example 1.9.1. LetQ; = {0, 1} be a sample space for i = 1,2 and with probability measures given by
ai Bi
H= N
® ai+fi ai+pi
where a; and ; denote the rate to jump from state 0 to 1 and 1 to 0, respectively, on sample spaces Q;. Let
a1 =p1=1anday =1, B> =2. Hence, we obtain that

1 1
==6p+=0
H1 5 0 5 1

1 2
==0p+=0
U2 3 0 3 1

where the Kronecker delta §; denotes being in state0 or 1.
The convex combination p of y1, o is given by

w=Aur+ 1=y
with A €[0,1]. For A = %, we obtain

11 1 11 2 5 7
=—(=0p+=01)+=(z0p+=061)=—=06p+—=0
H2(2021)2(3031) AT
which is clearly unequal to u,, po for every value of 6. We conclude that u # 1, 42 and hence that p is not an

extreme point of the convex set Q2 = Q) x Q. By Theorem 1.9.3, we conclude that 1 is not ergodic.

Definition 1.9.6 (Reversible Markov Chain). Let be a CTMC that is irreducible and let u be the probability
measure of X = {X(t) : t € T} such that Xy has an invariant distribution u . The Markov chain X is reversible if
X and its time reversal X have the same transition rates, that is

HxCix,y) = MyCyx), X YEE (1.25)
Equation (1.25) is called the detailed balance equation.

1.10. Poisson Processes
In this section, we give a concise overview of Poisson (point) processes and relating phenomena. Note that
all parameters of the Poisson distribution, i.e. A, p, are bounded.

Definition 1.10.1 (Poisson Distribution). Let (Q, &, P) be a probability space with measure . The random
variable X is said to have the Poisson distribution with parameter A = 0, i.e. X ~ Pois(7), if,

k
P(X=k) = %e"l (1.26)

withP(X =0) = 1. Furthermore, we have thatE[X] =var[X] = A
We now define the so-called point processes. The idea of a point process is that of a random, at most
countable, collection K of points in some space E.

Let (E,&) be a measurable space. Let N (E) := N.o be the space of all measures p on E such that
w(B) € N =NuU {0} for all B € & and let N(E) := N the space of all measures that can be written as a countable
sum of measures from N_. Any sequence (xn)’,‘l=1 with k € N:=NuU {oo} can be used to define a measure

k
p=> 6y, (1.27)
n=1

then p e Nand u(B) = Zﬁ:l 15(x,) for BE&.
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Definition 1.10.2 (Point Process). Let (N, Ny) be a measurable space with Ny := Ny (E) the o -field generated by
all subsets of N of the form {p € N: u(B) = k} for B € &. A point process on E is a random variablen on (N, Ny ).

Example 1.10.1. Let X be a random variable in E. Then,
n:=0x (1.28)

is a point process for which the measurability follows from

{XeB}, ifk=1
nB)=k}=<1{X¢B}, ifk=0 (1.29)
@, otherwise

Definition 1.10.3. Letn be a point process on E. The measure A, defined by

AB)=E[n(B)], Be& (1.30)
is called an intensity measure.

Definition 1.10.4 (Poisson Point Process). Let A be a finite measure on E. A Poisson process with intensity
measure A is a point process 1 on E with the following two properties:

1. Forevery B € &, the distribution of 1(B) is Poisson with intensity measure A(B).

2. For every m € N and all pairwise disjoint sets By, By, ..., By, the random variables n(B1),n(B2), ...,n(Bn)
are independent.

Hence, a Poisson point process consists of random points in E, such that the number of points within any
measurable subset is Poisson distributed.
If a Poisson point process has a parameter of the form A = vA, with v the Lebesgue measure (it assigns length,
area, or volume to sets) and A a constant that can be interpreted as the average number of points per some
unit of length, area, volume, or time. It is also called the mean density, intensity, or rate.® In this instance,
the Poisson point process is called a homogeneous Poisson point process. Let us define a Poisson process in
terms of a Poisson point process as a counting process in dimension 1.

Definition 1.10.5 (Counting Process). Let {n(t) : t = 0} be a stochastic process on the probability space (O, &,
P). If

1. n(t) 2 0; and,

2. n(t) € Z; and,

3. Foralls,t=0 withs<t,n(s) =n(r).
then {n(t) : t = 0} is called a counting process.

Definition 1.10.6 (Poisson Process). Let{n(t):t =0} be a counting process on the probability space (0, &, P)
and A >0 theIf

1. n(0) =0; and,

2. Forevery me N and ty, ..., t;-1,tm € T = [0,00) with t; < tjy) fori € [0,m] : (n(t1) —n(ty)), () —
(1), ..., n(tm) —n(tm=1)) are independent, i.e. the stochastic process has independent increments; and,

3. The number of events (or points) in any interval of length t € T is a Poisson random variable with pa-
rameter At, i.e. 1)(t) ~ Poisson(t).

then {n(¢) : t = 0} is called a Poisson process.

8 Rate s usually used when the underlying space is one-dimensional.
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Hence, we conclude that a Poisson point process is a process that describes the random distribution of
points in space (or time) according to a Poisson distribution. It is a multidimensional generalization of the
Poisson process.

A Poisson process, on the other hand, is a specific type of Poisson point process that is defined in one dimen-
sion, typically representing time. It is a stochastic process that models the occurrence of events or arrivals
over time. In a Poisson process, the events are assumed to be independent and randomly distributed in time,
with a constant rate of arrival.

So, a Poisson point process is a broader concept that can be defined in multiple dimensions, while a Poisson
process is a specific case of a Poisson point process, defined in one dimension (typically time) and character-
ized by a constant rate of event occurrences.

The last corollary that we state is an important result from the study of Markov processes and is true
for the Poisson processes that we consider in this thesis. Let {n(f) : £ = 0} be independent random walkers,
with (n(#)), the number of random walkers at time ¢ and location x, that starts at = 0 from a configuration
1n =1(0). If n is distributed as a product of Poisson distributions at time ¢ = 0, then 1(¢) is again distributed as
a product of Poisson distributions for ¢ > 0, albeit with a different parameter.

Proposition 1.10.1 (Doob’s Theorem). Lef p, = &, 74 Pois(p(x)) on NZ' bea product of Poisson distributions
with parameter p : R? — Rsq. Let (1) : t = 0} be independent random walkers with (1(t)), the number of
random walkers at time t and location x. If 1 =1(0) ~ u,, thenn =n(t) ~ u,, with

p:(X) =) p(Y)P:(y,x) (1.31)
y

where P;(y, x) is the transition probability of a single walker.

Proof. The proof follows from the Random Displacement Theorem, see [25]. O



Random Waiting Time Model and the
Fractional Kinetics Process

The knowledge of which geometry aims is the knowledge of the eternal.
Plato, The Republic

2.1. Introduction

The Bouchaud trap model (BTM) is a mathematical framework that combines elements of random walks and
random media. In this model, the medium is depicted as a landscape comprising traps, where each trap
possesses a distinct depth. The dynamics of the model involve particles undergoing random walks within
this random medium.

The key characteristic of the BTM is that when a particle encounters a trap, it becomes trapped for a
certain duration of time. The length of this entrapment period is exponentially distributed, with the mean
duration proportional to the depth of the specific trap at that particular site within the landscape.

In this thesis, we consider all particles to be independent and identically distributed (i.i.d.). This assump-
tion implies that each particle’s behaviour and interaction with the random medium are statistically indistin-
guishable from one another. This simplifying assumption allows for a more tractable analysis and exploration
of the properties and phenomena arising in the BTM.

By studying the BTM, researchers aim to gain insights into the behaviour of particles navigating through
complex and disordered environments. The interplay between random walks and the random medium in
this model provides a fertile ground for investigating diverse phenomena, such as diffusion, trapping, and
anomalous transport.

The examination of the BTM within the context of this thesis holds the promise of unveiling intriguing
aspects of particle dynamics and transport processes in the presence of disorder. Through rigorous analy-
sis and mathematical modelling, this research aims to deepen our understanding of complex systems and
contribute to the broader field of statistical physics.

2.2. Definition of the Bouchaud Trap Model

Consider a continuous-time Markov chain (CTMC) denoted by X = {X(¢) : ¢ € T}, which operates on a prob-
ability space (2, &, P). The CTMC has a discrete state space (E, &) and a continuous time space (T, 9).
In this context, we define the state space E as the d-dimensional lattice on which x, y are neighbours, i.e.
E=27%={(x,y) € Z%:|x~ y| = 1}, where d denotes the dimensionality of the lattice.

The system under consideration consists of a set of W particles, initially located at positions x1, X2, ..., X
at time ¢ = 0. To describe the behaviour of the system, we examine the translation probability P;(x, y), which
represents the likelihood that a particle starting from site x will transition to a target site y at time ¢.

17
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For x, y € Z% We assign to every unordered pair of sites (x, y) the weights or jump rates c, y) of X; by
S vr;(l_‘”r;, x,yyez? V(w%)_(l_“)(w%)“, (x,y)ez4 2.1)
7o, wyez? o, (x,y) ¢ 2 ‘

where v is a constant in units of time, which we set to 1. We define 7 : 79 ~Ras positive i.i.d. random
variables that represent the depths of a trap located at position x in the lattice Z¢. The collection of trap
depths is denoted as the "trapping landscape” 7 = ¥ 7a T+, Where 6, represents the Kronecker delta. The
trapping landscape characterizes the distribution of individual trap depths. In the context of the rates given
by equation (2.1), we have 7; = wi, for i = x,y. Here, w; can be interpreted as the inverse depth of the trap
located at position i. When the CTMC X(¢) visits a site x, it remains there for an exponentially-distributed
waiting time with mean 7, before transitioning to either the trap at x — 1 or x + 1. In this chapter, we require
the first moments of w; to be finite, i.e. E(w;) < oo and w; to be bounded from below. The parameter a takes
values in the range [0, 1] and describes the symmetry of the model, which will be further examined in subse-
quent sections of this chapter.

We can prove the reversibility of 7, by using Definition 1.9.6. Note that the reversibility of 7, is equivalent
to the reversibility of w.

Corollary 2.2.1. The trapping depths T are reversible for the Markov chain X = {X(t): t € T} on Z%.

Proof. We write down both the right-hand side and the left-hand side of (1.25) and compare the results. Fill-
ing in the expression for c(y, ;) and c(y,x) (2.1) in the right-hand side and left-hand side, respectively, we obtain
for the right-hand side

—(1—a)Tu
y

a
TxClx,y) =TxTy =(TxTy)

Similarly, we obtain for the left-hand side

-(1-a)

a a
TyCly,x) =TyT,, Ty =(TyTy)

from which it follows that both sides of (1.25) are equal. Hence, we conclude that 7 is a reversible measure
for the Markov chain X = {X(#): t € T} on Z¢. O

Remark 2.2.1. The proof of Corollary 2.2.1 demonstrates that the reversibility of T x is unaffected by the choice
of a € [0,1]. This observation significantly simplifies various computations in this chapter.

Remark 2.2.2. By utilizing the following identities: wy = i—g, where cy = }_ cx represents a normalization fac-
tor, and P¢(x,y) = qj—j) (and vice versa for y), the detailed balance equation (1.25) can be expressed equivalently
as follows:

Wy Pr(x,y) = wyPe(y, x) (2.2)

for (x,y) e Z°.

The infinitesimal generator [Definition 1.7.5] of X = {X(#) : t € T} of the continuous-time Markov chain
X ={X(?): t € T} can be defined as follows:

Lf0= )Y cupfO)-f) 2.3)
y:(x,y)ezd

for f:Z% — R local functions. Equation (2.3) corresponds to the generator of an independent random
walk (IRW) on Z¢ without reservoirs. The specific form of the generator determines the nature of the un-
derlying process. It is worth noting that there are other processes, such as the SIP or the SSEP, which are
discussed in greater detail in works like [11].
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The BTM can now be formally defined based on the previously established concepts and results.

Definition 2.2.1. Let 1 and a € [0,1] be defined as above. The standard continuous-time Markov chain X =
{X(t): t € T} on the given spaces' is a Bouchaud Trap Model BTM(Z%, w, a) if its dynamics are given by (2.1)
and (2.3).

It is now convenient to examine the different values of a in the BTM and explore the implications for the
dynamics of the model.

* a =0 (symmetric case I)
If we set a = 0, equation (2.1) reduces to,

(2.4)

S viyl, (x,y) ez _Jvwy, (x,y) € 2% .
)7, x,pez¢ o, xyezd "

In this case the rate at which X (#) hops from site x to site y is independent of the depth of the trap at y.

Remark 2.2.3. It was Bouchaud himself that considered this symmetric case in his original paper [7]. By
defining Ty = exp (— BEx) (the so-called Gibbs measure), we obtain rates c(y,y) given by (x,y) € 74

Clx,y) = velxtim@-aky VILA0 G (2.5)
with c(x,y) =0 for (x,y) ¢ 79. From equation (2.5) it follows that X (t) ~ exp (ﬁ), where d, is the degree
of x in Z%. Thus, after waiting an exponentially-distributed time, X (t) randomly jumps to one of its
neighbours with rates given by (2.5).

* ac (0,1) (asymmetric case)
When considering the Bouchaud Trap Model with a € (0, 1), the rates ¢y, ) in equation (2.1) still depend
on the depths of the traps x and y. Let us assume, without loss of generality, that 7, > 7. This implies
that trap x is significantly deeper than trap y, resulting in a much longer mean waiting time for X () at
trap x compared to trap y.

We can discuss two opposing scenarios. Firstly, if X(¢) is currently at trap x, increasing the value of a
leads to a decrease in the mean waiting time at trap x, while the waiting time at trap y increases. In
other words, as a increases, the rates c(y,) at which X(¢) randomly jumps from x to y also increase.

Secondly, considering the case where X () is located at trap y, increasing a leads to higher rates c(y, ) at
which X(#) randomly jumps from y to x. Consequently, X (#) becomes more attracted to trap x.

Taking both cases into account, it can be concluded that, assuming 7, > 7y, as a increases, the mean
waiting time at trap x decreases. However, after leaving trap x and arriving at target site y, the proba-
bility of X () returning to trap x increases.

* a =1 (symmetric case II)
If we set a = 1, equation (2.1) reduces to
vy, (X)) € 74 V(WL), (x,y) ez?
C(x,y) = - d = y =4 = (;y (26)
0, (x,y)¢Z 0, (x,y)¢e”Z

In this scenario, the rate at which X (#) transitions from a trap at x to a trap at y is solely determined by
the depth of the trap at the target site y.

For the remainder of this chapter, we will focus on the case where a = 0, which corresponds to the sym-
metric instance of the Bouchaud Trap Model. In the literature, this particular case is referred to as the Ran-
dom Waiting Time Model (RWTM). The motivation for considering the symmetric case is that the subsequent
computations are less computationally intensive and do not require extensive additional background infor-
mation beyond what has been introduced in the thesis. The asymmetric case, with a # 0, falls under the
category of a Random Conductance Model and has been further explored in works such as [22].

1 These are the probability space, state space and time space.
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2.3. Derivation of the Hydrodynamic Limit for the Random Waiting Time
Model

Having defined the Random Waiting Time Model (RWTM), we can now proceed to describe the individual
dynamics of particles on the lattice Z¢. Due to the independence of each particle, it is more insightful to
study the collective behaviour of the total number of particles on each side of the lattice. This leads us to
investigate the hydrodynamic limit (HDL), which characterizes the macroscopic behaviour of the system.
This section is organized as follows. Firstly, we present the main result of this section and outline the two
conditions that must be satisfied to prove the result (2.3.1). Secondly, we provide a definition of the HDL for
the RWTM (2.3.1). Lastly, we prove the HDL for the RWTM (2.3.2). Throughout this section, we assume d = 1,
E(w;) < oo and w; bounded from below.
In this section, we will obtain the following result:

Theorem 2.3.1 (Hydrodynamic Limit for the RWTM). Let{X(¢):t=0},{Y (£): ¢t =0}, {n(t): t = 0} be continuous-
time Markov chains. Suppose that ufoN) = ® cza Pois(p(5)) on N2 with parameter p : R? — Rxo smooth and
bounded, such thatf dy(N) (mny = p(%) and ¢ € SR?) a test function in Schwartz space. Let the empirical

o
density field (2.12) be given by

Y gb(%)nmz(x), >0 @7

xezd

1
XgN(Qb):W

Ifthe limit of the double variance over |1y andn of the empirical density distribution goes to 0, and provided
that the rescaled Markov chain {Y (t) : t = 0} converges to a Brownian motion, i.e.

YN B(21) (2.8)
N D :
then,
BBy |~ ¥ noeo ()| — [dyE, [0B@0)] pey) 2.9)
™ En Nd XEZdntN N 5 YEy oty .
where p; = p(x, t) = EE [X(1),0],i.e. the expectation value of a random walk X (t) starting from position x,

is the solution to the following Cauchy problem:

(2.10)

{atp = %Oﬁ,p
po=p
with diffusion constant 9 = AL/I and E[wy] = M the mean waiting time. The upper equation in (2.10) is called
the heat equation.

2.3.1. Definition of the Hydrodynamic Limit for the RWTM

Let us recall the system setup described in the initial section of this chapter, which involves a Markov chain
X ={X():t=0} onaBTM(Z%1,a). In this context, we define n: 7% - {0,1,2,..., W} as the total number
of particles at site x, denoted by n(x) = Z}’Zl 1{y;=x;. Consequently, 7(x) represents the number of particles
at site x within a given configuration 7. The system’s evolution is described by the collection {n(x) : x € Z%}.
It is worth noting that we can express the Markov chain, as introduced in the initial section, as {X(¢) : t =
0} = {Xf :t=20,i€l,2,.., W} Hence, the time-dependent configuration of this system can be written as
N¢(x) = Z}Zl 1, Xi=x}" In simple terms, this configuration denotes the number of particles at site x and time ¢.
Given that X ; adheres to the Markov property, the configuration 7,(x) also abides by this property.

Let N € N be a scaling parameter that will be taken to infinity. Additionally, let us choose a sequence of
discrete spaces V such that for every xy € Vy, we have XWN — x € R for N — co. In other words, we divide
the points of the discrete space Vy by the scaling parameter N and observe the resulting non-integer points,
which we refer to as macroscopic points (x), in contrast to the original microscopic points (xy). Moreover, we
define a sequence of empirical density fields {X f\’ : N € N} associated with the relevant IPS linked to the right
discrete space as
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1 X
XN=— ¥ §[=|nw0,(x), t=0 (2.11)
L ve xéd (N) o
with §(x) the Kronecker delta on R and 6 a time-scaling function that depends on the system and di-
mension that is considered. In our case 8 = N2. An intuitive substantiation can be found in (A.2.1).
Now, in our case, for all Ne Nand ¢ € S([Rd), the empirical density field {X;V :te T}is aprocess on 79 and is
given by

xN @) = Nd Z¢>( Jnene 0, t=0 (2.12)

xezd

comparable to (2.12). Let us introduce a measurable function p : RY — R-o which is referred to in the liter-
ature as the macroscopic density or density profile. We assign to this density a family of probability measures
w={u™: NeNj}on z% pisthe family of probability measures of the Markov chain X. If the initial distribu-
tion of a Markov chain p is invariant, then all the distributions for later times ¢ > 0 are distributed according
to the same initial distribution. This follows from (1.9.2).

Definition 2.3.1. A sequence of configurations (') e is said to be compatible with the density profile p if
for all functions ¢ € S(RY) andVé >0,

(N)

ul >6 (2.13)

~ ¥ U(N)(x)d) f D) p(x)dx

xezd

N

Equivalently, a sequence of probability distributions {u"™ : N € N} is compatible with the density profile
d .
p R — REO’ lf;

2
dim [E#(N Z n(N)(x)(b f Pxp(x)dx| =0 (2.14)
erd
and
Varu;N) Z n(N)(x)(p( ) (2.15)
xEZd

Note that this is convergence in P-law.

It follows from Doob’s Theorem [Theorem 1.10.1] that when the sequence of configurations ) satisfies
compatibility with the density profile p, then at later macroscopic times tN?, the sequence of configurations
n(t]x]) satisfies compatibility with the density profile p;, where p; satisfies a PDE with initial condition p,
which is called the hydrodynamic limit. In this section, we consider the heat equation. In section 2.4, we will
consider the fractional heat equation. We need to prove both conditions (2.14, 2.15). This will be the subject

of the next paragraph.
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2.3.2. Proof of the Hydrodynamic Limit for the RWTM

Before delving into the proof of the aforementioned conditions, it is essential to examine the specific duality
property of the Random Waiting Time Model. Let us revisit the definition of the RWTM, where the rates c(y, )
are defined as follows:

1 Zd Zd
=, (x,y)e” Wy, (X, )EZ
Cay =9 " ) g = ) 4 (2.16)
0, ez 0, (x,y)eZ
Note that we use 1 (f) = n+(x) in the proof below.

Proposition 2.3.2 (Duality Property for the RWTM). Let{X(f):t=0},{n(¢?): ¢t = 0} be continuous-time Markov
chains. Let wy be the (inverse) depths of the RWTM. Then for all x € 7% teT,

t
E, Nx(£) — RV X 2.17)
Wy Wx(r
in the sense of Definition 1.8.3 with D(X,n(x)) = "fv—i” .
Proof. We start by taking the expectation over n? of the process 7 (#)
Epln«< (0] =) Pi(y, x)ny
y
2. w
(2%2) ZPt(x,y)_xny
y Wy
My
=wyy Pi(x,y)—
y wy
where we used the detailed balance equation in the second step (2.2.2).
It follows that i
3 n
E | 222 =Y Py, )L (2.18)
x ¥y wy

If we define D(X,n(1)) = n;j}—(;) and combine (2.18) and (1.17), we obtain

E,[D(x,n(0)] =Y P(x, y) D(y,1(0))
y
=ERIDX (1),7]

where D(X,n) is the duality function as in (1.22) and the where the expectation is equal to the expectation
of a random walk (1.17) starting from site x.
Plugging in the definition of D(X,n), we obtain

Nx (1)
Wy

X
Wwx(r)

— FRW

Ey (2.19)

O

Remark 2.3.1. This property provides a significant simplification to our problem by introducing the concept of
duality. With the duality property, we gain the ability to determine the total number of particles at a specific site
x and time t = 0 using only the initial configurationn and a single random walk X (t). This implies that despite
the potentially infinite number of particles in the initial configuration 1, we can utilise the duality property
to extract information about the number of particles at a particular site and time through the relationship
between the initial configuration and the random walk.

2Where we use the convention ny=ny(t=0).
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Proof of the Hydrodynamic Limit for the RWTM

Having established the duality property for the Random Waiting Time Model, we can now proceed to
prove the convergence of both the expectation and variance. In this paragraph, we will prove the HDL for the
RWTM. The proof consists of three parts: convergence of the expectation, convergence of the variance, and
convergence to Brownian motion.

Proof of Theorem 2.3.1. Our first step is to prove that, under the assumption that the rescaled Markov chain
{Y () : t = 0} converges to a Brownian motion, the double expectation over u(N ) and 7 of the empirical density
field converges to an integral with integrand p, that is the solution to the heat equation. We proceed to prove
that the variance is finite and that its limit approaches zero as N tends to infinity.

Convergence of the expectation of the RWTM

Consider the double expectation over ,u(N ) and 7 of the empirical density distribution
E,wEn |~z Z N2 (x)<p( )] (2.20)
o
erd

Evaluating this expression gives

[EH(pNJ [En

7 ¥ e (5 )] [ ane, | —

xezd

o X ne@o (1)

erd ]

¢z (X)
Z Wy (p(N

Juwa
xezd

(2.2.2)[ X
=7 | dudy Y. Pl y)—</> Zwy
. Nd x,yez? (N)

:de;N)Nd Y P onye()

x,yez4

where we used in the first step E #(N) f ® f=/fd u(N ) f for f € B(R) and the detailed balance equation
in the third step.

f” Z sz(yrx)nw( )

xyeZd

Y Poe(n0g(T)p(2)

xyeZd

< L e X P05

yezd erd

(2.19)
= Z (—)[ERW
yeZd

h]d

Y (tN?)

(2.21)

We now use the assumption that the rescaled Markov chain converges to a Brownian motion,

Y (tN?)

— B(@1) (2.22)
D

where B(21) is a standard Brownian motion in the sense of Definition 1.8.1. Note that this is convergence
in distribution.
It then follows that

2: (__)ERVV
PVd yezd

Y(th)]
N N —oo V'

— 2 Pt(—)[EBM [p(B(21))] (2.23)

yezd
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Observe that (2.23) is just a Riemann sum that converges

Nd > pt(—)[EBM [(pB@D)] — f dyEy[p(B@D))p:(y) (2.24)
yezd N=eo
Hence, we conclude that
E,wwEq Nd 2 mzvz(x)¢>( P fdy[Eyk/)(B(@t))]pt(y) (2.25)
xezd b

where p; = p(x,t) = [EIJ;IE [p(X(t),O)] is a solution to (2.26) [Theorem 1.10.1], with X (¢#) the diffusion pro-
cess.

0,p =507
{ 0= 20yP (2.26)
Po=p
that is called the heat equation. O
Finite variance of the RWTM
The double variance over /.t(N ) and 7 of the empirical density field is given by
var, o |Vary |~ xé M2 (x)(,b(—)] (2.27)

From Doob’s Theorem [Theorem 1.10.1], it follows that 7,5 is an independent Poisson processes with
parameter

P =Y p(LIPe(1,5) (2.28)
yezd N

using detailed balance (2.2.2), we obtain
()= pl= )Pth (x, y)— (2.29)
yezd Wy

Now, as 0 < A; < wy,0 < A2 < wy, i.e. they are bounded from below, and p(y) < A3 for Ay, A2, A3 € R\ {0},
it follows that

=Y p() th(xy)—<A— Y p(%) P x
yezd Wy 2 yezd

As 1
S__
112 Wy

where we use that the particles are i.i.d. and that the expectation value and variance of a Poisson distri-
bution are equal [Definition 1.10.1].

Hence, the variance over the empirical density field (2.27) is bounded from above by

143 1 2( X
By ue? (2.30)
Ay N2d xg%d . (]V)
By the Law of large numbers,
Z ( )—'Mfd)Z(x)dx 2.31)
erd
for M = E[w]. We obtain that
A de Y w ( ] —o (2.32)

xezd

Hence, we conclude that
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vary

var (v
19

U

Ly @) 0 (2.33)
Nd erdTIl‘N2 (p N .

As a consequence, the sequence of configurations n%, distributed as ,ufoN ) satisfies compatibility with the
density profile p in the sense of Definition 2.3.1.

Convergence to Brownian motion
In the preceding theorem [Theorem 2.3.1] we assumed that the rescaled Markov chain converges to Brow-
nian motion, i.e.

Y (tN?)
N
The conventional method to establish this convergence involves demonstrating the convergence of the
respective infinitesimal generators. By establishing this convergence, we can infer that the underlying pro-
cesses also converge. However, a more comprehensive discussion and reasoning for why this approach is not
applicable to equation 2.34 can be found in (A.2.2).

— B(21) (2.34)
D

Instead, we will adopt an alternative approach by employing martingales, as discussed in [21]. To facil-
itate this approach, we will utilize Lévy’s characterisation [Theorem 1.8.4]. The first condition is evident, as
%Xﬁvz is a continuous-time Markov chain that conforms to standard properties. The second condition is
straightforward to establish by employing the definition of a martingale and utilizing Dynkin’s martingale
(1.15).

However, the third condition necessitates further steps and involves more complex mathematical reason-
ing. We must demonstrate that (X, Y), — ct with ¢ € R. Let us first introduce the process w; on the state
space [0,oo)Zd that is called the environment process and is given by w;(x) = w(X; + x). The environment
process equivalent to the process of waiting times as seen from the position of the walker. Before proving the
convergence of the quadratic variation, we express the convergence expression in a slightly different form.

1
<NXIN2, NXIN2>T —cCt

1 v
—f dr — ct
N2 Jy  wX))

1 N
—f dr —c
tN2 Jo w(X;)

By introducing a function f(w;) = m and writing w,(0) = w(X;) = wy, we obtain

1 T
?.[0 fwdr — ¢ (2.35)

for T = tN?, the macroscopic time (see 2.3.1). This convergence is obtained by Birkhoff’s Ergodic Theorem
[Theorem 1.9.2]

Let (, &, P) be a probability space with measure p.

Proposition 2.3.3. The measurev is time-invariant forall te T.

Proof. By Proposition 1.9.1, it follows that that [ % fdv = 0 for all f € (R). The generator of the process (as
seen from the position of the walker) is equal to

1

Zf(w) =
f e:le|=1 w(0)

(faew) - f(w)) (2.36)
Indeed, jumps of the walker correspond to shifts of the environment.

We now prove that dv = %d 1 is an invariant measure for this process with du the joint distribution of
the waiting times, i.e. the joint law of {w(x) : x € Z%}. Recall that M = %, the inverse of the diffusion constant.
By using the assumption [ % fdv =0 for all f € B(R), we obtain
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_ 1 B w(0)
f‘gfdv_ 2wy Ve = fw) T du
1
=— Y | (f@ew)- f(w))dp=0 2.37)
M e:le|=1

where we used that pisi.i.d. and thus invariant under shifts.
It now follows that

/f(rew)du:/f(w)du (2.38)
we conclude thatv e .#. O
Proposition 2.3.4. The time-invariant measure vis ergodic forallt € T.

Proof. We use Proposition 1.9.3. Assume that f is v-integrable and time-invariant, then by Proposition 1.9.1,
it follows that £ f =0 a.e. for all f € B(R). Clearly [ f £ fdv =0 a.e. as well. By Itd symmetry [Proposition
1.21], it follows that

11
():[ffffdv: -—f > (f(‘rew)—f(w))zd,u (2.39)
2M e:le|l=1
We obtain
f@ew) = f(w) a.s. for all e € Z% with lel=1 (2.40)

As a consequence by ergodicity of u under spatial shifts (remember p isi.i.d.), we conclude that f is u-a.s.
constant, and hence also v-a.s. constant. We obtain that v is indeed invariant and ergodic. O

From Birkhoff’s Ergodic Theorem, it follows that

1fT ! d—lfTﬂ yar — [ fadviw
T) Wy r—TO wy)dr w)dv(w

where f(w) = 1/(w(0)), so we find

1 w(0) 1
ff(W)dV(W)_fm(T)d”(W)_z\_/[

By Lévy’s characterisation, we have proven that

Y (tN?)
N

— B(91) (2.41)
D
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2.4. Derivation of the Hydrodynamic Limit for the Fractional Kinetics Pro-

cess

In the previous chapter, we focused on the scenario where d = 1 and E(w;) < co. We successfully established
the convergence of the empirical density field to a Brownian motion, thereby verifying that the hydrodynamic
limit follows the heat equation. In this chapter, we will explore a slightly different case. Specifically, we will
assume that d = 3 and that the expectations are not finite but follow a power law distribution. The structure
of this chapter is as follows. Firstly, the fractional kinetics equation will be introduced [2.1] together with the
main result in this section [Theorem 2.4.3]. Secondly, the general setup will be stated [2.4.1]. Thirdly, the
proof of the main theorem will be given [2.4.3].

Let p : R? — Rs( be the macroscopic density and ufoN '=® ezd Pois(p (%) wy) be the probability measure
that initialises the process 7, at £ = 0. Then, under P, the empirical density field X{V converges to W, where

1. W=Wg:=%,;v;0y, is called the speed measure for (v;, x;); the support of the Poisson point process on
(0,00) x RY with intensity measure Bv~""# dv. Note that W is random;

2. The (deterministic) macroscopic density p, solves the following Cauchy problem:

(2.42)

{Ofp =9d5p
Po=p

with p; = p(x, 1) = EEXP [p(X(1),0)]. This system describes the so-called fractional kinetics process. The
fractional equation (upper equation in (2.42)) is known as the fractional kinetics equation (FKE) meant
in the Caputo sense, that is,

1 S T
ra-pJo (t—s)ﬁf

p
%f(t) = (s)ds, t=0,fe€ (R (2.43)

where I' is the Gamma function and § € (0, 1] the sub-difussive parameter. Note that for § = 1, equation
(2.43) reduces to a normal first order derivative. It should also be noted that the FKP is a memory-
preserving process, that is, the process depends on its past behaviour due to the integral from 0 to 7.
The reader is referred to [14, 34] for more details.

In this section, we will obtain the following result:

Theorem 2.4.1 (Hydrodynamic Limit for the FKP). Ford =3 and € (0,1], let{X(t): t =0} and {n(t): t = 0} be
continuous-time Markov chains. Forall N € N, let ufom = ®1cza Pois(p(3;) wy) be the initial distribution of the
particle system with p : R — Rso and ¢ € SR?) a test function. Let the empirical density field (2.48) be given
by

1
XN P =— Y ¢>(1)nreN(x), =0 (2.44)
NB xezd N

if the limit of the double variance over uy and 1 of the empirical density function goes to 0, and provided
that Theorem 2.4.2 and Theorem 2.4.3 hold, then,

ng((/)) N W () (2.45)

where p; is the solution to (2.42).
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2.4.1. Definition of the Hydrodynamic Limit for the FKP

Recall the setup of our system that was given in the previous subsection of this chapter, which involves a
Markov chain X = {X () : £ = 0} on a BTM(Z%, 7, a). In this context, we denote by 1y : 7% - 10,1,2,..., W} the
total number of particles at site x given by n, = Z}’Zl 1y, that describes the evolution of the system. In
this sense, this setup is equivalent to the setup of the RWTM. However, in this scenario, we assume that the
waiting times w; have a non-existent first moment, resulting in the scenario that no particles will move (their
waiting times are unbounded). Therefore, the integral over n does not exist. Therefore, we introduce the

(%)
function DN ( N = nmg that homogenizes convergence to p,, while the empirical density (X w,) does not
converge, due to the unboundedness of wy[12]. As we divide by wy, the system becomes convergent again.

Let 5 € (0,1] be the parameter that describes the diffusivity of the system. Let [’ be a given product mea-
sure that satisfies

Pwe>n) =n"Pa+0Q)), n— oo (2.46)

for n € N We further assume that d = 3. Note that equation (2.46) is equivalent to the fact that E(w;) < oo does

not hold.

The rescaled empirical density field over 7, is given by
— X 5( Jnioyto, £=0 (2.47)
Nﬁ xezq

2
where we set Oy = NF.
For ¢ € S(R?) a test function. The empirical density field is given by

A Z <l>( )nteN(x), t=0 (2.48)
xezd
or, X
x x
XN =— Y wDN()p|=]|, t=z0 (2.49)
N% xezd N (N)
for Dﬁv (X)) = mg” ) the duality function.

2.4.2. Fractional Kinetics Equation

2.4.3. Proof of the Hydrodynamic Limit for the FKP

To prove that the empirical density field converges to a random measure, i.e. the HDL itself is random, we
need to consider several preliminary results.

2
Theorem 2.4.2. Let Xpn(t) = X”TNﬂ) be a rescaled, continuous random walk. Suppose that equation (2.46)
holds. Then X (t) converges to the fractional kinetic process (2.42) in distribution.

Proof. See [4]. O

Theorem 2.4.3. For¢ € S(R?) a test function and w, the random waiting times corresponding to sub-difussive
behaviour, i.e. E(w;) < co. Let 8 € (0, 1] be the sub-difussive parameter. Let Wy be the sequence of random speed
measures given by

1 X
Wy=— ) wip|= (2.50)
N% xez4 : (N)
Then,
Wy 7 W) (2.51)

in distribution. Note that W is a random measure as well.
Proof. See [13]. O

Remark 2.4.1. The fact that the limit W (¢) is still random is a consequence of the factor w, that is random.
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Proof of Theorem 2.4.1. We first prove that the expectation value over ufoN ) and 1 converges to arandom speed
measure by using Theorem 2.4.2 Theorem 2.4.3. Subsequently, we proceed to prove that the double variance
of the empirical density field goes to 0 for N — oo.

Convergence of the expectation of the FKE

Consider the double expectation over ,u( and 1. As uy = ® 74 Pois(p(§;) wy), we have [du,
U (X))

(N) n(x)

Wy

¢ P(N) = P[(N),Wlth SIIV the

p(57) which, by Doob’s Theorem [Theorem 1.10.1], implies that E 0 (

semigroup corresponding to the BTM(Zd,wx, a)with a€ (0,1), for fe %b(Rd), t=0,and x € 743
Evaluating the expectation gives,

ld Z wx(rb(%) due

NP xezd Wx

1
— ¥ wxq)( JEq(DCx,m)
NB xezd

1 X
— Y wep|=|S¥D(x,m)
N% xezd g (N) '

[EH(pN)[E" - Qb( )WtHN(x)

Nﬁ xezd

=E (N) E,

=E v
1

=E
e

1
=— ¥ wx([)( )pt(—) (2.52)
NB xezd

msN( al and ;) [D(x n(x)] = SND(x 7). Note that we implicitly used Theorem 2.4.2 in the last

where D(x,n) ==
step.

Then, by Theorem 2.4.3,
1
Wy=— ¥ wed(5)pr) — Wipi) (2.53)
Nﬁ xez4
where p; = p(x, 1) = [E)FCKP [p(X (t),O)] is a solution to (2.42), with X (#) the fractional kinetics process. Equation
(2.53) signifies that, even though we started with a deterministic (i.e. non-random) density p;, the hydrody-
namic limit is random due to the randomness of w,.

Finite variance of the FKE
Consider the double variance over ufom and 7. By using that the variance of a Poisson distribution is equal
to its variance and that the particles are i.i.d., we obtain,

X
var wvar, | — - ). <P( )TlteN (x) LV vary pIR) ( N) N6y (X)
° Nﬁ xezd NF Ko xezd
@52 1 d 1 X
= u NP — ) ¢(ﬁ)flte,v(x)
NF e NB xezd
@53
N—oo
where we the last convergence is due to the factor - squared. O
NB

Remark 2.4.2. Theorem 2.4.1 only holds for d = 3. Nonetheless, similar results can be derived for d = 1,2. For
d =1, the limiting processes are the so-called Fontes-Isopi-Newman (FIN) diffusion processes. The interested

2
s

SSNF(£)=EZ for f € 6, R?), 120, and x € 7%, See [1.7.2].
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reader is referred to [2]. The case d = 2 is a FKP as well, but with a different scaling limit. For more details, see
[12].

Itis convenient to briefly analyse the proof that precedes this paragraph. The expectation value of the em-
pirical density field (2.52) is a modification of the random speed measure given by equation (2.50). Namely,
equation 2.52 is equation 2.50 evaluated in ¢ (%) o+ (). Hence, by Theorem 2.4.3, the empirical density field
converges to a random measure evaluated in ¢ (%) p; (5). The result that this limit is still random is due to
the 'extra’ randomness that was incorporated. As observed in the introduction to this subsection, the duality
function that was introduced (2.49), homogenizes the convergence to p;,i.e. as wy follows a power law, the
waiting times are non-integrable. By introducing the appropriate duality function, one obtains a function
that is integrable and (still) depends on wy . As a result, incorporating this duality function into the empirical
density field resulted in an extra factor of w, in the density field (2.49), and consequently, the emergence of
an extra factor of randomness. It was possible to apply Theorem 2.4.3 to the density field. The final result
followed.



Concluding Remarks

It is of significance to underscore certain distinctions between the two derived equations in this thesis: the
HDL solutions for the RWTM and for the FKP. Firstly, it is crucial to acknowledge that despite the determinism
of the density p in both cases, the HDL solution for the RWTM is deterministic and remains constant, whereas
the HDL solution for the FKP exhibits a stochastic, non-deterministic nature attributable to the presence of
the additional factor wy. Secondly, the past behaviour of the process, known as memory, does not constitute
a factor in the RWTM as opposed to the FKP in which the Fractional kinetics equation is defined in terms of
a fractional derivative that does take its past behaviour into account, i.e. the derivative is defined in terms
of an integral up to time ¢. Conclusively, memory is also a distinguishable characteristic between these two
processes.

For both cases, the specification of the initial distribution is necessary, with the assumption of a Poisson

distribution as the initial condition, in order to simplify the derivations. This choice is motivated by the uti-
lization of the convergence result for time ¢ = 0, wherein, for a Poisson distribution, the distribution at # =0
serves as the reference. For prospective research endeavours, it is worthwhile to explore alternative initializa-
tions and assess their implications.
Additionally, a more in-depth analysis of scenarios where all waiting times w; possess a finite first moment,
except for one, holds promise in shedding light on the system’s evolution for future times ¢. It is expected
that such investigations may reveal an intermediary variant that encompasses features from both the RWTM
and the FKP. While this line of inquiry may serve as a suitable topic for a master’s thesis, a simulation-based
exploration within an undergraduate thesis is also feasible.

Undoubtedly, the composition of this thesis has been an enriching experience. As written in the intro-
duction, it is my sincere hope to engage in numerous research endeavours in the future.
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Appendix

A.1. Introduction

Definition A.1.1 (Natural Filtration). The filtration associated to the process which records its "past behaviour'
ateach time is called the generated filtration or natural filtration. In a sense, it is the simplest filtration possible.
All the information concerning the given process is contained, and only that information. Let I be a totally
ordered index set and X a random variable, then the natural filtration of & with respect to X is defined to be
the filtration . = (3771-X)iel , With

i

gf:a(X;l(Anjel,jsi,Aeg) A1)

Clearly, this definition holds for either the discrete and continuous filtrations. In words, the natural filtration is
the smallest o -algebra on Q) that contains all pre-images of & -measurable subsets of E for times’ j up toi.

A.2. Random Waiting Time Model

A.2.1. Scaling Parameter

In (2.3) it is proven that the double expectation of the empirical density distribution converges to an integral
with an integrand that contains p, the solution to the heat equation. By performing a time and space trans-
formation, we can deduce the appropriate scaling parameter.

The heat equation is given by

op %p
L A2
ot~ ox? (A2
for c e R. If we apply the following transformations:
t'=at+l A.3)
X =bx+p (A.4)

where a,b € R, [ a coordinate in units of time and p a coordinate of units of space. We obtain the transformed
heat equation

op p
a0~ “ox” (A9
and in our original coordinates
10 1 0%
L p (A6)

aor” ‘B2 ox?

hence we conclude that @ = b?. In words, a transformation in space by a factor b results in a transfor-
mation in time by a factor b2. Thus, for the RWTM, we have a transformation in space by a factor of N and,
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hence, a transformation in time by a factor N2. We conclude 6 = N?.

It should be noted that if p does obey a different PDE, the scaling parameters will be different.

A.2.2. Convergence of Generators
Consider the RWTM with w, = 1 and thus ¢(x,j) = 1.! The infinitesimal generator is then given by

L= )Y (fo-fx) A7)

y:(x, )€z
Then the nth infinitesimal generator is given by

n2

1 1
fnf(x)—7(f(x+;)+f(x—;)—2f(x)) (A.8)

It can be shown that this generator converges to the infinitesimal generator of a Brownian motion (1.8.1).
Hence, the underlying processes converge as well and we can conclude that the model converges to a Brow-
nian motion.

In our case, wy # 1 and thus c(y,y) # 1. The infinitesimal generator is then given by

L= )Y (fy-fx) (A.9)

y:(x,y)ezq
Then the nth infinitesimal generator is given by

n2

fnf(x)=2w

1 1
(f(x+ﬁ)+f(x—z)—2f(x)) (A.10)

nx

which clearly does not converge to the infinitesimal generator of a Brownian motion due to the fact that
wyx depends on n.

1The waiting times are constant, so there is no randomness due to the waiting times.
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