

Delft University of Technology

Prediction of software reliability

van Driel, Willem D.; Bikker, J.W.; Tijink, M.

DOI
10.1016/j.microrel.2021.114074
Publication date
2021
Document Version
Final published version
Published in
Microelectronics Reliability

Citation (APA)
van Driel, W. D., Bikker, J. W., & Tijink, M. (2021). Prediction of software reliability. Microelectronics
Reliability, 119, 1-6. Article 114074. https://doi.org/10.1016/j.microrel.2021.114074

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.microrel.2021.114074
https://doi.org/10.1016/j.microrel.2021.114074

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Microelectronics Reliability 119 (2021) 114074

Available online 24 February 2021
0026-2714/© 2021 Elsevier Ltd. All rights reserved.

Prediction of software reliability

Willem D. van Driel a,b,*, J.W. Bikker c, M. Tijink c

a Signify Eindhoven, HTC 7 – 1C, 5656AE Eindhoven, the Netherlands
b Delft University of Technology, the Netherlands
c CQM, 5616, RM, Eindhoven, the Netherlands

A R T I C L E I N F O

Keywords:
Software
Reliability
Maturity growth
Bayesian statistics

A B S T R A C T

It is known that quantitative measures for the reliability of software systems can be derived from software
reliability models. And, as such, support the product development process. Over the past four decades, research
activities in this area have been performed. As a result, many software reliability models have been proposed. It
was shown that, once these models reach a certain level of convergence, it can enable the developer to release the
software. And stop software testing accordingly. Criteria to determine the optimal testing time include the
number of remaining errors, failure rate, reliability requirements, or total system cost. In this paper we will
present our results in predicting the reliability of software for agile testing environments. We seek to model this
way of working by extending the Jelinski-Moranda model to a ‘stack’ of feature-specific models, assuming that
the bugs are labelled with the feature they belong to. In order to demonstrate the extended model, several
prediction results of actual cases will be presented. The questions to be answered in these cases are: how many
software bugs remain in the software and should one decide to stop testing the software?

1. Introduction

Digitization and connectivity of lighting systems has seen an expo
nentially increasing impact in the last years within the lighting industry
[1,2]. The impact is far beyond the impact on single products and ex
tends to an ever-larger amount of connected systems. Continuously,
more intelligent interfacing with the technical environment and with
different kind of users is being built-in by using more and different kind
of sensors, (wireless) communication, and different kind of interacting
or interfacing devices, see Fig. 1. When the number of components and
their interactions significantly increase, so-called large or complex sys
tems are formed. The commonly used description of a large or complex
system is given as [1,2]:

A complex system: a system composed of interconnected parts that as
a whole exhibit one or more properties (behavior among the possible
properties) not obvious from the properties of the individual parts.

With the increasing amount of complexity, it is imperative that the
reliability of such systems will enter a next frontier.

The trend towards controlled and connected systems also implies
that other components will start playing an equal role in the reliability of
such systems. Here, reliability needs to be complimented with avail
ability and other modelling approaches are to be considered [3]. In the

lighting industry, there is a strong focus on hardware reliability,
including going from component reliability to system reliability. How
ever, in the controlled and connected systems, software plays a much
more prominent role than in even sophisticated “single” products such
as color-adjustable lamps at home, streetlights, UV sterilization lights
and alike. In these systems, availability is more strongly determined by
software reliability than by hardware reliability [3]. In a previous study,
the reliability of software was evaluated using the Goel-Okumoto reli
ability growth model [4]. It is known that different models can produce
very different answers when assessing software reliability in the future
[5]. A significant amount of research has been performed in the area of
reliability growth and software reliability, that considers the process of
finding (and repairing) bugs in existing software, essentially during a
test phase [6 – 11]. A typical assumption is that the development of the
software has finished, except for the bugs that have to be detected and
repaired [5,8,12]. The software reliability models then answer questions
such as: what is the number of remaining bugs?, how many would we
find if we spend a specified number of additional weeks of testing, etc.
[13,14]. In a more recent study Rana et al. [15] demonstrated the use of
eight different software reliability growth models that were evaluated
on eleven large projects. Prior classification of the expected shape was
proven to improve the software reliability prediction.

* Corresponding author at: Signify Eindhoven, HTC 7 – 1C, 5656AE Eindhoven, the Netherlands.
E-mail address: willem.van.driel@signify.com (W.D. van Driel).

Contents lists available at ScienceDirect

Microelectronics Reliability

journal homepage: www.elsevier.com/locate/microrel

https://doi.org/10.1016/j.microrel.2021.114074
Received 29 September 2020; Received in revised form 8 February 2021; Accepted 18 February 2021

mailto:willem.van.driel@signify.com
www.sciencedirect.com/science/journal/00262714
https://www.elsevier.com/locate/microrel
https://doi.org/10.1016/j.microrel.2021.114074
https://doi.org/10.1016/j.microrel.2021.114074
https://doi.org/10.1016/j.microrel.2021.114074
http://crossmark.crossref.org/dialog/?doi=10.1016/j.microrel.2021.114074&domain=pdf

Microelectronics Reliability 119 (2021) 114074

2

In many software developments companies, software is developed in
a cadence of sprints resulting in biweekly releases in the so-called Scaled
Agile Framework (SAFe) [16]. This means there is a second reason why
bugs are found, apart from finding them by doing tests, namely, new
bugs are introduced because new features are added to the software
continuously. An important class of software reliability growth models is
known as General Order Statistics (GOS) models [17,18]. The special
case in which the order statistics come from an exponential distribution
is known as the Jelinski-Moranda model [19]. The main assumption for
this class of models is that the times between failures of a software
system can be defined as the differences between two consecutive order
statistics. It is assumed that the initial number of failures, denoted by a,
is unknown but fixed and finite. In this paper, we seek to model this way
of working by extending the Jelinski-Moranda model to a ‘stack’ of
feature-specific models, assuming that the bugs are labelled with the
feature they belong to. The feature-specific model parameters can be
considered as random effects, so that differences between features are
modelled as well. In order to demonstrate the extended model, two use
cases will be presented. Here, we model the software testing phase to get
a detailed sense of the software maturity. Once software is deemed
mature enough by the organization, it is released to the end-users. The
new, operational use of the software is different from testing phase, and
this phase is not being modelled. The questions to be answered in the
two cases are: how many software bugs remain in the software and
should one decide to stop testing the software [20,21]? This paper builds
up the mathematical model that describes the number of bugs detected
in every time interval (sprint), specified per software feature. We derive
a way to evaluate the likelihood function, which is used in the next
section on estimation. We set out with the model with only one feature,
which is a variant of the Jelinski-Moranda model but adapted for the
counts per sprint. We need expressions for conditional probabilities
based on recent history, where only the cumulative counts turn out to be
important. We extend the results to multiple features, where we shift the
time axis as different software features are completed at different times.
We conclude by describing how all ingredients are combined to the
likelihood function.

2. Mathematical derivations and approach

Full details for the mathematical derivations can be found in [22].
The basic concept includes that a software tool has bugs, which are
detected at time Ti after testing starts at time 0. Ti is independent and
exponentially distributed, i.e., Individual bugs are found independently
following an exponential distribution. To model agile software devel
opment, where new functionality is added after each sprint (taking say
two working weeks), we consider software as a set of features: one

feature can be considered a single part of the software, or the result of a
single “sprint” of development. Bugs are found and fixed for the existing
features (the latest and earlier features), and new features can be added
at later points in time. This way, you can track and predict the remaining
number of bugs for the current set of features (or any other interesting
set of features). We use a Bayesian setup [23,24] that allows us to
combine the bugs originating from different features. We implemented
our Bayesian approach in the Stan modelling framework [25] to esti
mate the software reliability model for multiple features. We do not
employ strong priors although that would be possible, e.g., expressing a
prior belief of the degree to which added features are similar to each
other in total number of bugs af or the speed at which bugs are found, bf .
For a feature f, given values for (af, bf), the setup from above is in essence
a Jelinski–Moranda model. The values (af, bf) are considered random,
unknown parameters, having the same role as random effects in a (non)
linear mixed effects model following some distribution. In a Bayesian
context, the af, bf can be considered priors with associated hyperpriors.
In our setup, af and bf are modelled as independent truncated normal
distributions, where the truncation are at 0 to ensure positive af and bf.
Both distributions have a mean and standard deviation parameter,
although they are not equal to the expected value and standard devia
tion due to the truncation. Their posterior distributions give some
insight to which extent features are different in size and complexity (in
terms of speed of finding bugs). The reading of input data, pre-
processing the data, fitting the Stan model, and inspecting conver
gence and results are done using Python. The Stan website (mc-stan.org)
states “Stan is a state-of-the-art platform for statistical modeling and
high-performance statistical computation.” The website offers an
extensive amount of documentation and examples. The Stan language
requires specification of a model in terms of different concepts which are
briefly described below. The model is applied in the situation that we
have observed a number of sprints with counts to which we fit the data.
The key Stan model components are as follow:

• Input data: detect the upper bounds for Number of bugs found in the
time interval (N) and the Cumulative number of bugs detected (C)
and time point at which a feature starts.

• Parameters: total bugs remaining, the bf; the hyperpriors for the
truncated normal distributions of a f and bf.

• Transformed parameters: af is considered a transformed parameter,
calculated from a combination of data and a model parameter.

• Model: distributions for af and bf, hyperpriors for these, and a spec
ification of log likelihood contributions by a double for-loop over
features and over sprints, where the feature starting sprints are used.

The bug reports may come from different sources (implemented
regression tests and tests by the team). Only bugs of sufficient severity
are considered in the predictions. To handle the various sources we
simply took the aggregate counts per sprint as input, assuming that the
total number of tests in a sprint was comparable, we get a discrete time
axis that was reasonably close to both test effort and calendar time.
Ticket data were fed into the code, where we distinguished tickets with
severity levels S (high) and A (low). We used JIRA [26] output of bug
data, a typical one is shown in Fig. 2. Pick-and-mix was used for ticket
severity allocation. These tickets either had the allocation open or
closed. Open means the issues were being solved, closed means it was
solved. Recurring tickets were treated as a new open ticket which can be
closed as soon as it is known to be recurrent. Ticket severity is denoted as
S, A, B, C, or D. S are issues seen as a blocker that need immediate
attention. A is seen as critical, B as major C and D as minor severity
levels. We have only analyzed the closed tickets. Fig. 2 depicts the full
flowchart of the process: from tickets to dashboard values. Actual sprint
dates have an equal length for each sprint of two weeks. The outcome is
produced automatically.

Fig. 1. The growing population with increased urbanization results in the need
to focus on energy efficiency and sustainability thereby increasing digitalization
and rapidly evolving technologies containing software.

W.D. van Driel et al.

http://mc-stan.org

Microelectronics Reliability 119 (2021) 114074

3

3. Results

As a real application case, we took connected lighting products that
enables you to harness the Internet of Things to transform your building
and save up to 80% on energy. LED luminaries with integrated sensors
collect anonymous data on lighting performance and how workers use
the workplace. This enables you to optimize the lighting, energy uses,
cleaning, and space usage to improve efficiency, reducing energy usage,
and cost. Workers can use software apps on their smartphones to book
meeting rooms, navigate within the office and personalize the envi
ronment around their workstation further improving productivity and
employee engagement. These smart lighting system with open API in
tegrates seamlessly with the IT system and enables a variety of software

applications to create a more intelligent work environment for both
building operations managers and employees.

In total, we analyzed 8 connected lighting system projects with the
developed tool. All these projects are still in the development phase and
follow clear software quality principles. In total, it concerns approxi
mately 10.000 software tickets or bugs. Fig. 3 depicts the ticket distri
butions when classified as high (A + S tickets) and low (B + C + D)
tickets. The variation per project is clear, tickets classified as high cover
approximately 12% of all, and low about 88%. This was to be expected
as severe tickets should appear less then less severe ones.

Predicted results of 4 projects, 1, 4, 6 and 7, are depicted in Fig. 4. It
shows the cumulative growth of severe (orange – red) and less severe
(blue – green) tickets as function of sprints (in this case weeks). For

Fig. 2. Flowchart for automatic generation of software reliability predictions. The Phyton code is assessed through the Qt based tool, mathematical details are
thoroughly described in [22].

Fig. 3. Ticket distributions for the 8 analyzed projects.

W.D. van Driel et al.

Microelectronics Reliability 119 (2021) 114074

4

projects 4 and 6 no signs of maturity is near, for projects 1 and 7,
maturity is in sight. The predicted data is shown in Table 1. This table
depicts the average values of predicted nr of tickets in coming sprints.
Some projects are seeing maturity that are those with a low nr of
remaining bugs after 10 sprints such as project 1. Most projects are
seeing good levels of maturity for high severity tickets. Project 5 is the
exemption, with still a large amount of severe tickets remaining in the
code. Again, all projects are still in the development stage. The predicted
values presented in Table 1 can serve for decisions to be taken if the
software can be launched into the market. Also, this data can be used to
allocate manpower for further code development and/or enhancement.
Question remains for all these projects: can we take that decision?

As a final remark notice that by implementing the software reliability

tooling and metrics, the number of bugs or tickets observed in the per
formance of the software in actual applications was reduced by 40%.
This can be seen as a major achievement.

4. Discussion & conclusions

Software failures differ significantly from hardware failures. They
are not caused by faulty components or wear-out due to e.g. physical
environment stresses such as temperature, moisture, and vibration.
Software failures are caused by latent software defects. These defects
were introduced in the software while it was created. However, these
defects were not detected and/or removed prior of being released to the
customer. In order to prevent that these defects are noticed by the
customer; a higher level of software reliability has to be achieved. This
means to reduce the likelihood that latent defects are present in released
software. Unfortunately, even with the most highly skilled software
engineers following industry best practices, the introduction of software
defects is inevitable. This is due to the ever-increasing inherent com
plexities of the software functionality and its execution environment.
Here, software reliability engineering may be helpful, a field that relates
to testing and modelling of software functionality in a given environ
ment of a particular amount of time. But certainly, there is currently no
method available that can guarantee a totally reliable software. In order
to achieve the best possible software, a set of statistical modelling
techniques are required that:

• Can assess or predict the to-be-achieved reliability.

Fig. 4. Predicted tickets as function of sprints (weeks) for projects 1, 4, 6 and 7. Blue lines concerns low severity tickets orange lines the high ones. Future tickets are
given in green and red.

Table 1
Predicted nr of tickets for coming sprints. Average values ± standard deviation.

Project Predicted nr of tickets

High (A + S) Low (B + C + D)

+1 sprint +10 sprints +1 sprint +10 sprints

1 0.3 ± 1.7 1.4 ± 2.6 2.4 ± 3.6 11.9 ± 8.1
2 0.7 ± 2.3 3.2 ± 4.8 2.6 ± 3.4 12.7 ± 8.3
3 1.0 ± 3.0 5.1 ± 5.9 5.2 ± 4.8 25.8 ± 11.2
4 0.5 ± 1.5 2.4 ± 3.6 14.7 ± 7.8 71.0 ± 20.0
5 3.9 ± 4.1 19.3 ± 9.7 8.1 ± 5.9 39.9 ± 14.1
6 0.6 ± 1.4 2.9 ± 4.1 15.0 ± 8.0 75.2 ± 18.8
7 0.2 ± 0.8 0.8 ± 2.2 5.2 ± 4.8 25.1 ± 10.9
8 0.2 ± 0.8 1.0 ± 2.0 2.2 ± 3.8 10.5 ± 7.5

W.D. van Driel et al.

Microelectronics Reliability 119 (2021) 114074

5

• Based on the observations of software failures during testing and/or
operational use.

In order to achieve these two requirements, many software reliability
models have been proposed. It was shown that, once these models reach
a certain level of convergence, it can enable the developer to release the
software. And stop software testing accordingly. Criteria to determine
the optimal testing time include the number of remaining errors, failure
rate, reliability requirements, or total system cost. Typical questions that
need to be addressed are:

• How many errors are still left in the software?
• What is the probability of having no failures in a given time period?
• What is the expected time until the next software failure will occur?
• What is the expected number of total software failures in a given time

period?

Certainly, the question on “How many errors are left” is something
completely different from “What is the expected number of errors in a
given time period”. One cannot estimate the first directly, but you can
estimate the second. In our approach, we are content with “expected
number of errors that a long testing period would yield”.

In this paper we presented an approach to predict software reliability
for agile testing environments. The new approach divers from the many
others in the sense that it combines features with tickets using Bayesian
statistics. By doing that, a more reliable number of predicted tickets
(read: software bugs) can be obtained. The developed system software
reliability approach is applied to 8 software development projects, to
demonstrate how software reliability models can be used to improve the
quality metrics. The new approach is carved down in a tool, pro
grammed in Python. The outcome of the predictions can be used in the
Quality dashboard maturity grid to enable a better judgement of
releasing the software or not. The strength of the software reliability
approach is to be proven by more data and comparison with field return
data. The outcome is satisfactory as a more reliable number of remaining
tickets was calculated. As prominent advantage we note that divergence
of the proposed fitting procedure is not an issue anymore in the new
approach.

Following is recommended for the future developments of the pre
sented approach:

• Gather more data from the software development teams.
• Connect to the field quality community to gather field data of soft

ware tickets.
• Make software reliability calculation part of the development

process
• Automate the Python code such that ticket-feature data can be im

ported on-the-fly.
• Include machine learning techniques and online failure prediction

methods, which can be used to predict if a failure will happen 5 min
from now [27].

• Investigate the used of other SRGM models, including multistage
ones, or those that can distinguish development and maintenance
software defects [14,15].

• Not focus on a specific software reliability model but rather assess
forecast accuracy and then improve forecasts as was demonstrated
by Zhao et al. [28].

• Classify the expected shape of defect inflow prior to the prediction
[15].

CRediT authorship contribution statement

Willem D. van Driel: methodology, writing–original draft
preparation

Jan Willem Bikker: conceptualization, project administration,
investigation

Matthijs Tijink: conceptualization, writing–review and editing,
software, investigation

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

This paper is a result of the SCOTT project (www.scott-project.eu)
which has received funding from the Electronic Component Systems for
European Leadership Joint Undertaking under grant agreement No
737422. This Joint Undertaking receives support from the European
Union’s Horizon 2020 research and innovation programme and Austria,
Spain, Finland, Ireland, Sweden, Germany, Poland, Portugal,
Netherlands, Belgium, Norway.

References

[1] W. Van Driel, X. Fan, Solid state lighting reliability: components to systems,
Springer: New York 359 (2012), https://doi.org/10.1007/978-1-4614-3067-4.

[2] W. Van Driel, X. Fan, G. Zhang, Solid state lighting reliability: components to
systems part II, Springer: New York (2016), https://doi.org/10.1007/978-3-319-
58175-0.

[3] Z. Papp, G. Exarchakos (Eds.), Runtime Reconfiguration in Networked Embedded
Systems - Design and Testing Practice, Springer, Singapore, 2016, https://doi.org/
10.1007/978-981-10-0715-6.

[4] W. Van Driel, M. Schuld, R. Wijgers, W. Kooten, Software reliability and its
interaction with hardware reliability, in: 15th International Conference on
Thermal, Mechanical and Multi-Physics Simulation and Experiments in
Microelectronics and Microsystems (EuroSimE), 2014.

[5] A.A. Abdel-Ghaly, P.Y. Chan, B. Littlewood, Evaluation of competing software
reliability predictions, IEEE Trans. Softw. Eng. SE-12 (1986) 950–967.

[6] A. Bendell, P. Mellor (Eds.), Software Reliability: State of the Art Report,
Maidenhead, Pergamon Infotech Limited, 1986.

[7] M. Lyu (Ed.), Handbook of Software Reliability Engineering, McGraw-Hill and IEEE
Computer Society, New York, 1996.

[8] H. Pham (Ed.), Software Reliability and Testing, Los Alamitos, California, IEEE
Computer Society Press, 1995.

[9] M. Xie, Software reliability models—past, present and future, in: Recent Advances
in Reliability Theory, Bordeaux, Stat. Ind. Technol., Birkhäuser Boston, Boston,
MA, 2000, pp. 325–340.

[10] P. Bishop, A. Povyakalo, Deriving a frequentist conservative confidence bound for
probability of failure per demand for systems with different operational and test
profiles, Reliability Engineering & System Safety 378 (158) (2017) 246–253.

[11] E. Adams, Optimizing preventive service of software products, IBM Journal of
Research and Development 380 (28) (1984) 2–14.

[12] M. Xie, G. Hong, Software reliability modeling, estimation and analysis, in:
Advances in Reliability, North-Holland: Amsterdam, Handbook of Statist, Vol. 20,
2001, pp. 707–731.

[13] V. Almering, M. Van Genuchten, G. Cloudt, P. Sonnemans, Using software
reliability growth models in practice, Software, IEEE 24 (2007) 82–88.

[14] H. Pham (Ed.), System Software Reliability, Springer-Verlag, London, 2000,
https://doi.org/10.1007/1-84628-295-0.

[15] R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, F. Törner, W. Meding,
C. Höglund, Selecting pm nhu8io0software reliability growth models and
improving their predictive accuracy using historical projects data, J. Syst. Softw.
98 (2014) 59–78.

[16] M. Xie, G. Hong, C. Wohlin, Modeling and analysis of software system reliability,
in: W. Blischke, D. Murthy (Eds.), Case Studies in Reliability and Maintenance,
Wiley, New York, 2003, pp. 233–249, chapter 10.

[17] D. Miller, Exponential order statistic models of software reliability growth, IEEE
Trans. Softw. Eng. SE-12 (1986) 12–24.

[18] H. Joe, Statistical inference for general-order-statistics and nonhomogeneous-
poisson-process software reliability models, IEEE Trans. Softw. Eng. 15 (1989)
1485–1490.

[19] Z. Jelinski, P. Moranda, Software reliability research, in: W. Freiberger (Ed.),
Statistical Computer Performance Evaluation, Academic Press, 1972, pp. 465–497.

[20] S.R. Dalal, C.L. Mallows, When should one stop testing software? J. Am. Stat.
Assoc. 83 (1988) 872–879.

[21] S. Zacks, Sequential procedures in software reliability testing, in: Recent Advances
in Life-Testing and Reliability, CRC, Boca Raton, FL, 1995, pp. 107–126. Version
April 21, 2020 submitted to Mathematics.

[22] W.D. van Driel, J.W. Bikker, M. Tijink, A. Di Bucchianico, Software Reliability for
Agile Testing, Accepted for publication in Mathematics, 2020.

[23] S. Basu, N. Ebrahimi, Bayesian software reliability models based on martingale
processes, Technometrics 45 (2003) 150–158.

W.D. van Driel et al.

http://www.scott-project.eu
https://doi.org/10.1007/978-1-4614-3067-4
https://doi.org/10.1007/978-3-319-58175-0
https://doi.org/10.1007/978-3-319-58175-0
https://doi.org/10.1007/978-981-10-0715-6
https://doi.org/10.1007/978-981-10-0715-6
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0020
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0020
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0020
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0020
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0025
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0025
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0030
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0030
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0035
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0035
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0040
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0040
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0045
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0045
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0045
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0050
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0050
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0050
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0055
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0055
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0060
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0060
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0060
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0065
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0065
https://doi.org/10.1007/1-84628-295-0
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0075
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0075
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0075
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0075
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0080
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0080
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0080
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0085
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0085
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0090
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0090
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0090
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0095
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0095
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0100
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0100
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0105
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0105
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0105
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0110
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0110
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0115
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0115

Microelectronics Reliability 119 (2021) 114074

6

[24] B. Littlewood, A. Sofer, A Bayesian modification to the Jelinski-Moranda software
reliability growth model, Softw. Eng. J. 2 (1987) 30–41.

[25] Team, T.S.D, Stan Python Code, Available online, https://mc-stan.org/, 2018.
(Accessed 15 November 2018).

[26] Atlassian, JIRA Software Description, 2020.

[27] F. Salfner, M. Lenk, M. Malek, A survey of online failure prediction methods, in:
ACM Computing Surveys, 2010, pp. 12–24, 433 42.

[28] X. Zhao, V. Robu, D. Flynn, K. Salako, L. Strigini, Assessing the safety and
reliability of autonomous vehicles from road testing, in: 30th International
Symposium on Software Reliability Engineering (ISSRE) 436 2019, 2019.

W.D. van Driel et al.

http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0120
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0120
https://mc-stan.org/
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0130
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0135
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0135
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0140
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0140
http://refhub.elsevier.com/S0026-2714(21)00040-8/rf0140

	Prediction of software reliability
	1 Introduction
	2 Mathematical derivations and approach
	3 Results
	4 Discussion & conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

