TU Delft | aE Intecture Studio | P4 Presentation Tutors: A. Snijders, M. Stellingwerf & Frank Koopman

popUP SUPERstructure

Manuella Borges | 4521463

01 Introduction	02 Research	03 Design	04 Prototyping	05 Towards P5
Fascination	Design Guide	Toolbox Design	Video	Next Steps
Design Goal	Research x Design	Architectural Design		
Research Question	Structural Analysis			

01 Introduction	02 Research	03 Design	04 Prototyping	05 Towards P5
Fascination				
Design Goal				
Research Question	Structural Analysis			

Introduction | Fascination

Images: online source

Introduction | Fascination

Images: by author

Some causes that drive temporary architecture

Cause:	Natural Disaster	Events	
Purpose:	Shelter	Expo, Exhibit	Games, Concerts
Туроlоду:	Housing	Folly, Pavillion	Arena

Types of temporary architecture

According to Robert Kronenburg, mobile and temporary building systems can be divided into three specific types:

1) Portable buildings/structures

2) Relocatable buildings/structures

Introduction | Fascination

Temporary architecture as addition to existing context

Paper Bridge by Shigeru Ban, France Images: online source

The stairs to Kriterion by MVRDV, Rotterdam

Temporary architecture as the building

Introduction | Design Goal

"However, portable (moveable) buildings, though temporary in location, are not temporary in use. Their portability is precisely what makes them not disposable. The fact that they can be re-used means that they can represent an efficient use of materials and resources, and should therefore be designed with care. They are high-quality products tuned to a specific need if not a specific location."

Kronenburg, Robert. Architecture in Motion. : Taylor and Francis, 2013. ProQuest Ebook Central. Web. 24 October 2016.

Overall Design Question

How can temporary architecture used in events be designed to be easily assembled and disassembled in order to adapt to different programmatic needs and project scales when its temporary need has ceased to exist?

01	02	03	04	05
Introduction	Research	Design	Prototyping	Towards P5
	Design Guide Structural Analysis			

Research Question

Technical Research Question

Which techniques will allow for the creation of a more sustainable and flexible temporary architecture?

Sub-questions

What **materials** will be most suitable for the creation of lightweight and demountable structures that have low environmental impact?

What would be the optimal **sizes** for ease of handling and transportation?

What assembly/disassembly methods and **connections** will be most suitable?

Problem statement concerning building materials

Problem statement concerning building materials

Embodied Energy of Materials

as a Rising Issue

Embodied Energy Analysis. Source: http://www.bdonline.co.uk/

The Pure Cicle as the Key for Material Re-use &

Less Embodied Energy

Four Principles for Circular Economy Source: Ellen MacArthur Foundation

Researched materials

CATEGORY 1: METALS & ALLOYS

CATEGORY 2:

COMPOSITES

CATEGORY 4: ENGINEERED MATERIALS

Criteria I: Material Performance	Criteria II: Material Health	Criteria III: Cost
Poor: 1 – 18 points	Poor: 1 – 18 points	Expensive: 1 – 18 points
Good: 19 – 36 points	Good: 19 – 36 points	Reasonable: 19–36 points
Excellent: 37 – 56 points	Excellent: 37 – 56 points	Cheap: 37 – 56 points

Material choice influenced by transportation methods and span sizes

Material choice influenced by transportation methods and span sizes

Methodology

Design Principles

FLEXIBLE AND

REUSABLE

Modularity

Modular sizes for different project scales

Flexibility

Curved connection members for different shapes

Bracing of different sizes to add curvature to designs

Preliminary Toolbox Design

Primary Structure

Secondary Structure (Bracing)

First Model main findings

1) Wood on wood connections offered weak points with concentrated stresses in small woden sections.

2) Primary structure had reduced sectional profile at connection, which reduced structural instability

3) Linking primary and secondary structures (the bacing) created moment on the primary structure due to structural instability

SOLUTION:

a) Use much bigger wooden membersb) Adopt to steel connections and do some structural analysis

Structural challenge:

1) Determine the limits of toolbox design in terms of possible and structurally sound structures.

2) Design connections according to stress loads.

Possible typologies

ROOFS

Load Combinations:

Eurocode 1		Canadian Building Code	Canadian Building Code						
н	1KN/m ²	Roofs	1,0 KN/m ²						
C1	3KN/m ²	Assembly areas (class b)	2,4 KN/m ²						
C5	5KN/m ²	Balconies and Footbridges	4,8 KN/m ²						

EUROCODE 5 COMBINATIONS OF ACTIONS (LOADS)

* Characteristic Actions according to EN 1991

G _k	PERMANENT	e.g.; Self-weight
Q _k	VARIABLE	e.g.: wind, snow, traffic, imposed loads
A _k	ACCIDENTAL	e.g.: impact, fire

DESIGN SITUATION	γ _G	γα
Structural Design Calculation		
favourable effect	1,0	-
unfavourable effect	1,35	1,5
Check at servicability limit state	1,0	1,0

CANOPIES

ROOF DECKS

ORMUL	AS USED :		
not cons	sidering reduction factor	s Ψ0, Ψ1 and Ψ2 used to fact	tor load reducing it depending on duration exposure)
JLS	structural design	1,35*G _k + 1,5 * Q _k	vertical axis for selft weight and imposed load
		1,5 * Q _k	horizontal axis for wind load
SLS	sevicability	1,0 * G _k + 1,0 * Q _k	vertical axis for selft weight and imposed load
		1,0 * Q _k	horizontal axis for wind load

Index

28 | 92

Most critical frames

29 | 92

Most critical roof frames that passed SLS analysis for System I

Table of maximum stresses at connections

PINNED BASE CONNECTION - SYSTEM I

FRAME TYPE	VERTICAL CONNECTION				INCLINED CC	INCLINED CONNECTION				HORIZONTAL CONNECTION			
	AxialForceN (KN)	ShearForce F (KN)	Bending Moment M (KN.m)	Stress σ (KN/m²)	AxialForceN (KN)	ShearForce F (KN)	Bending Moment M (KN.m)	Stress σ (KN/m²)	AxialForceN (KN)	ShearForce F (KN)	Bending Moment M (KN.m)	Stress σ (KN/m²)	
SLS													
A4-1	-10,8	3,8	11,5	2312	-9,3	-3,9	-11,6	-2781	-	-	-	-	
A5-3		-	-		-13,4	4,8	-12,8	-3138	-8,1	-4	-1,2	-446	
A6-3	-	-	-	-	-17,7	6	-16,5	-4055		-	-	-	
ULS													
A4-1	-16,1	5,7	17,1	3437	-13,8	-5,8	-17,4	-4168	-	-	-	-	
A5-3	-1	-	-	-	-19,8	7,1	-19,1	-4678	-11,9	-6	-1,9	-686	
A6-3	-	-	-	-1	-26,2	8,9	-24,6	-6041	-	-	-	-	

Horizontal connections

System I: Frame analysis example

System I: Connection verification

Inclined Connection

Results: 2 steel plates of 8mm 8 bolts of 20mm diam. (on each side of connection)

Observation Calculations done based on Eurocode. Model is for illustration using a similar system with steel plates and bolts inserted into Glulam wood.

Inclined connections presented significant stresses due to moment and axial forces as well as relatively moderate shear forces.

Horizontal Connection

Results:

2 steel plates of 8mm 4 bolts of 16mm diam. (on each side of connection)

Observation Calculations done based on Eurocode. Model is for illustration using a similar system with steel plates and bolts inserted into Glulam wood.

Due to little moment on the horizontal connection, 4 bolts instead of 8 were sufficient and bolts needed to address mainly shear forces.

System I: Connection design

Most critical roof frames that passed SLS analysis for System II

Table of maximum stresses at connections

PINNED BASE CONNECTION - SYSTEM II

FRAME TYPE	VERTICAL CONNECTION				INCLINED CC	INCLINED CONNECTION				HORIZONTAL CONNECTION			
	AxialForceN (KN)	ShearForce F (KN)	Bending Moment M (KN.m)	Stress (KN/m ²)	σ	AxialForceN (KN)	ShearForce F (KN)	Bending Moment M (KN.m)	Stress (KN/m²)	AxialForceN (KN)	ShearForce F (KN)	Bending Moment M (KN.m)	Stress σ (KN/m²)
SLS													
B5-2	-20,2	8,3	50	,1	10668	21,9	-7,7	-50	,7 -107	63 -8,3	3 -9,8	20,8	3 4431
B5-4	-	-	-	-		-85,8	21,3	-32	.,3 -90	74 -69,4	4 -24,6	-26,1	-7334
B6-3	-	-	-	-		-29,2	-10,1		37 75	61 -	-	-	-
ULS													
B5-4	-	-	-	-		-125,5	33,1	-45	,9 -129	74 -104,	1 -36,3	-40,7	-11344

92

Most critical roof deck frames that passed SLS analysis for System I

Table of maximum stresses at connections

PINNED BASE CONNECTION - SYSTEM I

FRAME TYPE	VERTICAL CO	RTICAL CONNECTION INCLINED CONNECTION					HORIZONTAL CONNECTION					
	AxialForceN (KN)	ShearForce F (KN)	Bending Moment M (KN.m)	Stress σ (KN/m²)	AxialForceN (KN)	ShearForce F (KN)	Bending Moment M (KN.m)	Stress σ (KN/m²)	AxialForceN (KN)	ShearForce F (KN)	Bending Moment M (KN.m)	Stress σ (KN/m²)
SLS												
RD-2	-18,7	4,4	19,	7 395	6-	-	-	-	-4,4	-18,7	-19,7	-4469
RD-1 beam300	-13,8	2,5	5 11,	3 220	1				-2,5	-13,8	-11,3	-2563
RD-1 beam400	-14	2,4	10,	7 206	3				-2,4	-14	-10,3	-2339
RD-1 beam400 and cable30°	-8,5	3	8 2,	8 43	2				-3	-8,5	-2,8	-688
RD-1 beam400 and cable45°	-8	2,4	1,	9 24	4				-2,4	-8	-1,9	-475
ULS												
RD-2	-27,9	6,5	5 29,	4 590	4-	-	-	-	-6,5	-27,9	-29,4	-6668

01	02	03	04	05
Introduction	Research	Design	Prototyping	Towards P5
		Toolbox Design Architectural Design		

Research Question
Design | Toolbox Design

Design | Toolbox Design

Primary Structure - Main members and connections

Secondary Structure - Bracing

BRACING TYPE I

TOP VIEW

BRACING TYPE II

TOP VIEW

BRACING TYPE III

TOP VIEW

Secondary Structure - Connections

Design | Toolbox Design

Facade - Concept

ETFE MEMBRANE Different types to attend various building performances

KEDER RAIL ALUMINUM PROFILE (various types exist)

Design | Toolbox Design

00

Facade - possible arrangements

FACADE WITH BRACING TYPE I OR TYPE II

FACADE WITH BRACING TYPE I OR TYPE II

FACADE WITH BRACING TYPE III

Design | Toolbox Design

Besign | Toolbox Design

Stairs

Context - Why IBA Parkstad?

International Event/Expo to be held in 2020 in order to showcase future-proof, innovative and experimental projects that will draw attention to the region and help boost its economy and restore the pride of its citizens.

Context - The Parkstad Region Challenge

Context - The Parkstad Region Challenge

Context - Dutch nature as seen by Tourists

Context - What makes the Parkstad Region unique?

The cultural and historic heritage of the Parkstad Region

SUPERstructure capacity of structure to be flexible and adapt to various scales and programs

Project Phasing

58 | 92

Heerlen is considered the Heart of the Parkstad Region. Rich Roman heritage at Via Belgica. City is situated strategically betweem main roads leading to Belgium and Germany.

Image: Google Earth

Vision

FLEXIBLE INDOOR SPACES Image: Space S

Toolbox use for modules creation

Frame A4-1 + Bracing Type III

Frame C3-2 + Bracing Type I

Frame C3-2 + Stairs + Bracing Type I

Module 1

Combined single module into a long shape. Not a strong presence on site. Blocking view of the main theatre

Module 3

Combined single module type. Strong presence on site. Blocking view of the main theatre. Street as backdrop

Module 2 + 3

Combined different module types for different programs. Strong presence on site. Partial blocking view of the main theatre

Module 1+ 2 + 3

Combined different module types for different programs. Strong presence on site. Street aproach guided by fluid form. Direct access to main theatre.

70 | 92

Building Sections

Heerlen

Building Sections

Section B

Beaujean Quarry - Folly (Floating Platform)

Beaujean

Crystal (or silver) sand used for the manufacture of glass since 1914. The sand is known for its mineral and chemical purity. The quarry landscape was closed to the public and is now being transformed into a public park. Image: Image: online

77 | 92

114

Schutterspark - Folly (Bridge)

"From Black to Green": project at the intersection between the Park and the waste left behind by the mining industry now aims to bring back to surface the Rode Beek stream and create a green corridor. Image: by author escapes

pop

Brussum

Schinveldse Bossen - Folly (Observatory)

a pale

Schinveld

Clay pits excavated during Roman times for production of pottery. Elevated pond location is a viewing point for surrounding landscape.

Image: Image: online

85 | 92

escapes

pop

01 Introduction	02 Research	03 Design	04 Prototyping	05 Towards P5
			Video	
Research Question	Structural Analysis			

VIDEO

01 Introduction	02 Research	03 Design	04 Prototyping	05 Towards P5
				Next Steps

Next Steps

- * Compile all structural analysis information into a booklet
- * Showcase 3 additional design better
- * Produce 1:20 Sectional model of Heerlen design
- * Adjust details to incorporate more tolerances when needed

