
Delft University of Technology

BSc Electrical Engineering

Automatic Direction Finding Techniques for
Precise Tracking of Lightweight Transmitters

BSc Thesis

Authors:
Noura de Klerk

Yue Kroeze

Date:
June 28, 2024

Supervisor:
dr. Tomás Manzaneque

1 Abstract

This thesis investigates the usage of automatic direction finding in the Asian Hornet tracking field.
A lightweight and portable design with a precision of 0.5 degrees is discussed and implemented. The
goal of this localization system is to track the transmitter that is attached to the Asian Hornet. The
system utilizes two Software Defined Radio (SDR) dongles from the brand RTL that receive the
transmitted signal from the transmitter and send it to the computer. The Angle Of Arrival of the
signal is calculated using phase interferometry. The results show that the Python program, the
algorithm implementation in combination with the used hardware, used to calculate the phase
difference is not fast enough to process the received signal in real time. Furthermore, the chosen
RTL SDR dongles cannot be synchronized easily which leads to unknown and varying phase
differences when receiving the signals.

i

2 Preface

The context of this thesis is the Bachelor Graduation Project of the Electrical Engineering Bachelor
given by the Technical University of Delft. Therefore this report was written by two third year
Electrical Engineering students. This project was proposed by beekeeper Henk Mezger.

While this report provides a clear explanation of the concepts, it is intended for readers who already
possess a basic understanding of both telecommunications and signal processing. This foundational
knowledge will enable them to fully grasp the material presented.

Our gratitude goes out to our supervisor dr. Tomás Manzaneque and our technical advisor Ing.
Jeroen Bastemeijer. Furthermore, we want to thank our group members Cem Çetiner, Yunus Emre
Döngel, Emmad Hassan and Sofya Mikhaylitskaya for the pleasant collaboration. Lastly we want to
thank prof. dr. ir. Alle-Jan van der Veen for answering all our questions regarding signal processing
and António Maia Barros for assisting us with the prototyping.

Delft, June 28, 2024
Noura de Klerk and Yue Kroeze

ii

Contents

1 Abstract i

2 Preface ii

3 Introduction 2

4 Theory 3
4.1 Hornet specifications . 3
4.2 Software defined radio . 3
4.3 Automatic direction finding methods . 4
4.4 Localizing the transmitter . 6
4.5 Challenges for direction finding . 8
4.6 Precision estimation . 11
4.7 Automatic direction finding versus manual direction finding 12
4.8 User interface . 13

5 Program of requirements 14
5.1 External requirements . 14
5.2 Stakeholders . 14
5.3 User stories . 14
5.4 Requirements . 15

6 Methodology 16
6.1 Circuit of the receiver . 16
6.2 Explanation of the algorithm . 18
6.3 Development of the system . 19
6.4 Receive two signals . 22
6.5 Phase difference calculation with the received signal 24
6.6 Phase difference between two antennas . 24
6.7 Angle of arrival calculation . 26
6.8 Received signal strength indication and distance measurement 26
6.9 Direct phase difference . 27
6.10 Gold code improvement . 28

7 Analysis of the system 29
7.1 Algorithm and Python drawbacks . 29
7.2 Synchronization of the dongles . 29
7.3 Precision estimation of the algorithm . 29
7.4 Received signal strength indication . 30
7.5 Testing the user interface . 30

8 Discussion 31

9 Conclusion 31

10 Future work 31

11 Bibliography 32

A Additional figures 34

B Application code 36

C Test code 56

D Calculations 76

1

3 Introduction

The Asian Hornet (Vespa velutina) is an exotic animal in the Netherlands which presence endangers
the existence of the honeybees[1]. To shrink down the Asian Hornet population, the nests are
destroyed during the end of the season. In order to find these nests, Asian Hornet workers are
captured and tagged with a transmitter which is then followed to the nest. Current solutions for the
receiver are dependent on the operator to find the signal manually and follow it. This report
suggests an automatic solution which uses automatic direction finding localization. Beekeepers have
been trying to fight off the enlargement of the population. This is without success however as the
population has been growing for years. With the use of automatic direction finding, the tracking
must become more efficient, leading to more nests being found on a monthly basis. Figure 1 show
the idea in action. A transmitter is placed on the hornet and an operator uses a receiver with
direction finding to know where to go. The objective of this thesis is to make a system which can tell
the direction of an incoming signal.

Figure 1: Overview of the tracking process with automatic direction finding

Currently, there are two other companies on the market that sell transmitters for the tracking of the
Asian Hornet: Lowlands[2] and Lotek[3]. The Lowlands tracker works at a frequency of 150MHz and
sends a signal regular intervals. The Lotek counterpart uses a frequency between 138 MHz and 174
Mhz. These transmitters are used with a receiver connected to a directional antenna in such a way
that the system can be used with manual direction finding by turning the antenna and looking for a
higher signal strength.

This report describes a receiver system that uses two antenna’s to find the Angle Of Arrival of an
incoming signal. Section 4 will go into the background information that is essential for the system.
The requirements are then discussed in Section 5. Section 6 gives an elaborate overview of the
process of building the system followed by an analysis of the product in Section 7. This report ends
with a conclusion and discussion of the final system in Sections 9 and 8.

2

4 Theory

4.1 Hornet specifications

The most important characteristic of the Asian Hornet for this project is their flight capability. This
includes flight speed and the distance they are willing to get away from their nests. While its
European counterpart can only fly 1.86 m/s, the Asian hornet can reach speeds up to 6 m/s [1].
As for the foraging range, different values have been found with an average of 700 m with an
observed maximum of 2 km, [1]. However, these characteristics can change heavily with certain
factors, one of them being weather.

4.2 Software defined radio

Software defined radio (SDR) is a radio communication system where components that have been
typically implemented in hardware are instead implemented with the use of software. These
components are for instance, mixers, amplifiers, filters et cetera. There are three required hardware
components for this. The first being a SDR receiver (this is also called a dongle), the second is one
or multiple antenna’s and the third being a computer running SDR software [4], [5]. The SDR first
captures the signal using the antenna. Then the frequency is down-converted to be centered around
0 Hz. As opposed to analog devices, not one but two mixers are used. A mixer can down-convert or
up-convert signals using a local oscillator. The formula of this can be seen in Equations 1 and 2. To
not discard the data that is now down-converted to negative frequencies, a 90 degree shift is used to
convert them into imaginary frequencies. Next, the signal is filtered to lower the noise. A schematic
of this can be seen in Figure 2 [6].

f1 = fsignal + flo (1)

f2 = fsignal − flo (2)

4.2.1 IQ data

IQ sampling, or complex sampling, means that there are two orthogonal waves. One in phase(I) and
one quadrature (Q) wave shifted 90◦. This way, an array of complex numbers, one sample being
represented by I + jQ, can show the phase and amplitude of the received signal, as can be seen in
Equation 3.

A · cos(2πft+ ϕ) = (I2 +Q2)1/2 · cos(2πft+ tan−1(
Q

I
)) (3)

An SDR uses direct conversion, or zero IF, to down convert the signal from its carrier frequency to
base-band, 0 Hz, see Figure 2. This results in a complex signal that can be represented with IQ
data, I being the real component and Q the imaginary component.

Figure 2: Schematic of direct conversion in an SDR. Image from [7]

3

4.3 Automatic direction finding methods

The receiver will act as a single bearing. Multiple bearings do make the localization more accurate,
but given that the goal is to track the transmitter opposed to pin pointing its location, one bearing
suffices. There are multiple direction finding methods. In the following section, three of these are
considered for this project.

4.3.1 Pseudo-Doppler direction finding

Pseudo-Doppler direction finding is a frequency based direction finding and a relative simple way of
finding the direction of the signal source. Doppler direction finding uses the Doppler effect [8]. This
effect is shown in Figure 3 [9].

Figure 3: Visual explanation of Doppler shift. When the sound source is moving away from the
observer, the frequency is lower then when the sound source is approaching.

This shows that when the receiver moves towards the transmitter, the receiver frequency moves
upwards and vice versa. To use this Doppler shift, the vertical polarized antenna should be rotated
in a circular fashion at a very high speed. Figure 4 shows how a rotating antenna makes a sinusoidal
wave in the graph. These values are used to determine the direction.

Figure 4: Visual explanation of Doppler shift using a rotating antenna. (A) shows the in incoming
RF signal to the antenna. (B) shows how the sinusoidal wave that is obtained by measuring the

frequency shift at the different positions of the rotating antenna. Image from [10]

Given that rotating a single antenna at a high speed is not practical, pseudo-Doppler is used in
direction finding. Instead of moving a singular antenna, multiple antennas are used which are placed
on the circumference of a circle. One of the antennas is turned on a any given time and its signal is
read out. The antennas alternate in a circular fashion. With the use of an algorithm the angle of
arrival of the incoming signal is then determined [11].

4.3.2 Watson-Watt direction finding

Watson-Watt is an amplitude based direction finding system. It compares the amplitudes of the
received signal at each Adcock antenna. An Adcock antenna array consist of two antenna pairs
which are placed in a cross manner. Each of the antenna pairs creates a figure eight with its range
[12]. A visualisation of this is given in Figure 5. The Watson-Watt setup can be seen in Figure 6.

4

Figure 5: Range of the Adcock antennas.

Figure 6: Schematic overview of the antenna array for the Watson-Watt direction finding method.
Image from [12].

The sensitivity is at a maximum along the axis. This antenna pattern gives a unique set of
magnitudes for every direction. Watson-Watt can not measure elevation. Furthermore, the azimuth
accuracy decreases as the transmitter elevation increases or decreases.

4.3.3 Phase interferometry

With the use of two antennas, the phase shift of the incoming transmitted signal can be calculated.
Using this phase shift (delta x), the angle of arrival of the transmitted signal is obtained [12]. The
measurement setup for this method can be seen in Figure 7. In this setup the incoming signal is
assumed to be in the far field of the antennas and is therefore treated as a plane wave.

Figure 7: Schematic overview of the antenna array for the phase interferometry direction finding
method.

5

For accurate measurements the distance (d) between the two antennas must be smaller than half the
wavelength to avoid spatial aliasing [13]. Due to only having two antennas 180 degree phase
ambiguity can occur. This means that one phase result can be caused by a two different signal
directions. With spatial aliasing, there would be more phase ambiguity.

4.3.4 Direction finding method analysis

For this project, Watson-Watt is deemed too complex. Pseudo-Doppler needs four antennas and is
therefore not practical. Furthermore, this is also too complex for this project. The phase
interferometry method is accurate enough since, the direction finding should only indicate in which
direction the operator should go, the exact angle is not needed. The phase interferometry device
which uses two antennas is the most simple method from the ones discussed and is therefore chosen.
Since the system will be used to follow the transmitter, the idea is that the transmitter stays in the
antenna bore sight and that the phase ambiguity is not a big problem. Two variations of this
technique are used in this thesis.

4.4 Localizing the transmitter

The transmitted signal arriving at the receiver antennas can be schematically represented as seen in
Figure 7. Because the signal is arriving at an angle, in order to get to the second receiver antenna
the signal needs to travel an additional distance ∆x. With this extra distance travelled, the angle of
arrival θ can be determined because sin(θ) = ∆x

d . This can be written as sin(θ) = ∆t·c
d using the fact

that the wave travels at the speed of light, c, and that ∆x = ∆t · c . Therefore the second antenna
receives the signal with a time delay of ∆t in Equation 4 with respect to the first antenna.

∆t =
sin(θ) · d

c
(4)

This means that the signals received by the antennas will be as described in Equations 5 and 6.

s1(t) = x(t)e2jπfct (5)

s2(t) = x(t−∆t)e2jπfc(t−∆t) (6)

With fc the carrier frequency and x(t) the encoded signal. The SDR will down-convert the received
signal to base-band this can be seen mathematically as multiplying the signal with e−j2πfct to do so.
This means that after going through the ADC converter s2 will look like Equation 7.

s2(t) = x[n]e−2jπfc∆t (7)

With −2πfc∆t being the phase difference between the two signals. The two antennas are placed half
a wavelength apart so d = λ

2 = c
fc·2 . Substituting this in Equation 4 gives the phase difference

∆ϕ = −πsin(θ), where ∆ϕ is the phase difference between the two incoming signals. By rewriting
this, the angle of arrival can be obtained .

θ = sin−1(
−∆ϕ

π
) (8)

In this derivation the left antenna was taken as the reference. This means that the phase of the left
antenna is subtracted from the phase of the right antenna. When a signal comes from the right, the
sign of the angle will be changed.

Now the signal still needs to be recognised amongst the noise. This can be done by cross-correlating
the received signal with a known reference signal, giving the same result as applying a matched filter.
This is described in the next section. The result is a peak at the end of the coded signal, see Figure 8.

6

Figure 8: The output of a matched filter on a signal with noise.

Doing this on both of the incoming signal will give the location of the code. The phase of the
incoming signal at the location of the peak can then be determined by one of the methods described
in Section 6. Taking the difference of the two results and using Equation 8 yields the angle of arrival.

4.4.1 Matched filter

A way to maximize the SNR is by using a matched filter [14]. This filter is described by the transfer
function in Equation 9.

H(f) = K
S∗(f)

Pn(f)
e−jωt0 (9)

With S∗(f) is the Fourier transform of the known signal, Pn(f) is the PSD of the input noise and K
a nonzero constant. With the assumption of white noise, with Pn(f) = N0/2, H(f) becomes

H(f) =
2K

N0
S∗(f)e−jωt0 (10)

h(t) = s(t0 − t) (11)

This is an inverted copy of the known signal and time-shifted with t0. In this case, with white noise,
the matched filter can be carried out by cross-correlating the input with the known signal waveshape
[14]. This can be seen with the following derivation.

r0(t0) =

∫ t0

t0−T
r(t)s(t)dt (12)

Here r0(t0) is the output of the cross-correlation of the known signal s(t) and the input r(t).
Applying the matched filter to the input gives

r0(t0) = r(t0) ∗ h(t0) =
∫ t0

t0−T
r(λ)h(t0 − λ)dλ (13)

h(t) = s(t0 − t) for 0 ≤ t ≤ T (14)

Substituting Equation 14 in 13 give the same result as Equation 12.
Since a convolution in time domain is equal to a multiplication in the frequency domain, the Fourier
transform of the result of the filter applies to a signal r(t) with reference signal s(t) is

Ro(f) = F{r(t) ∗ s(−t)} = R(f) · S(f)∗ (15)

7

Using this filter, with white noise, results in an SNR described in the equation below.(
S

N

)
out

=
2

N0

∫ ∞

−∞
s2(t)dt =

2Es

N0
(16)

With Es the energy in the signal.

4.4.2 Gold codes

The frequency bands used for this application are licence free and and can thus be used for multiple
applications at the same time. This means that in order to find the right signal, a recognisable code
needs to be used. To be recognisable a code needs to have an auto-correlation function that is close
to a delta spike at 0-lag and a very low cross-correlation with any other signal and noise.
One optimal version of this is the Gold code. Gold codes or Gold sequences are a type of binary
sequences that are used in telecommunication. It has three key properties, it should be periodic,
have a low cross-correlation with other signals and random noise and the amount of zero’s and ones
should be balances. The low cross-correlation means that different Gold codes should not overlap
much [15]. Furthermore, they should be pseudo-random. Meaning that they look random, but are
still deterministic and reproducible. Figure 9 shows an example of such a gold code.

Figure 9: Auto- and cross-correlation of the gold code [1 1 1 0 0 1 1 1 0 1 0 1 1 0 0 1 0 0 1 0 0 1 1 1
0 0 1 0 0 1 0]

4.5 Challenges for direction finding

There are multiple challenges for direction finding. In this section the ones that are the most
prominent in this use case are discussed.

4.5.1 Phase ambiguity

When only two antennas are used, 180 degree phase ambiguity can occur. This could be solved by
adding a third or even a fourth antenna [13]. Another way of dealing with this problem is by
comparing the amplitude of the incoming signal at both the antennas [16]. The direction of the
incoming signal could also be induced from previous measurements. Furthermore, at the start of the
direction finding, the transmitter is within sight, so the starting position is deduced from that.

4.5.2 Transmitter power output and path loss

Due to the low weight of the hornet, the battery must be small. This causes the signal to noise ratio
to be low. On top of that there is also the issue of free space loss and objects obstructing the field of
view. The free space loss can be approximated by Equation 17

FSPL = (
4 · π · d · f

c
)2 (17)

8

Where d is the distance between the transmitter and receiver. In the case of 433 MHz, this equation
gives FSPL500m = 328.97 · 5002 = 80dB.
In any area that is not an open field, the signal will also be heavily attenuated by obstacles, either
man-made or natural. The main reasons for power loss are multipath interference, shadowing and
absorption, which all have a larger effect with an increasing frequency [17]. It is however difficult to
make a standard model of this attenuation as every location is different and rural environments even
change with the seasons. One popular model used for path loss in urban environments is the Hata
model which is based on the Okumura empirical data [18]. Despite the fact that this application
does not exactly fit the requirements of the model, it is still a better approximation than simply
taking the free space loss.
The Hata model for path loss is as follows:

Lpath = 69.55 + 26.16 · log10(f)− 13.82 · log10(hB)− α(hm) + (44.9− 6.55 · log10(hB))log10(d) (18)

α(hm) = 0.8 + (1.1 · log10(f)− 0.7)hm − 1.56 · log10(f) (19)

hb and hm are the height of the transmitter ans receiver in meters respectfully, f is the carrier
frequency in MHz and d is the distance in km. α(hm) is the correction factor for a medium-small
city. Filling in Equation 18 using hb = 2m and hm = 1.5m gives a path loss at 500m of
Lpath,hata = 121.45 dB.

4.5.3 Multipath

A non-directive antenna will be used for the transmitter, meaning that the signal will be radiated in
all directions. Due to reflections from the environment (e.g. houses, trees) the signal can also be
received from multiple directions simultaneously, see Figure 10. This multipath problem is a
challenge for the direction finding [19]. It creates a copy of the signal that arrives from another angle
than the initial signal and with a time delay due to the different path. When calculating the angle of
arrival of the incoming signal, these multipath reflections pose a problem. However, due to the fact
that they are reflected, their power is reduced and they are delayed. Due to these characteristics, the
multipath signals could be filtered out. Directional antennas are less sensitive to multipath
interference. However, when a directional antenna is not placed in the direction of the transmitted
signal, the received signal will be even lower than with a non-directional antenna. For the purpose of
direction-of-arrival systems this means that the range of detection is limited to the beamwidth of the
antenna [20].

Figure 10: Visual explanation of multipath due to obstacles.

4.5.4 Height difference

The height at which an insect flies depends on the weight of the insect and it also varies with
temperature and air pressure [21]. This, and the placement of the transmitter antenna, leads to a
change in the polarization of the transmitter. The polarization loss factor can therefore change as
this is defined as the following Formula 20.

9

PLF = |p̂∗
Rx · p̂Tx| (20)

Where p̂ is the polarization vector. The power of the incoming signal deceases when the polarization
is mismatched.

4.5.5 Noise and interference filtering

Kalman filters are recursive constantly updating filters which make real time predictions based on
past observations and dynamic models of the system, enabling accurate estimation of the system’s
state even in the presence of noisy measurements [22]. The Kalman filter uses five equations. The
first three make a correction based on the measurement and prediction. The last two make the
prediction.

The first equation is the state equation this one is given in Formula 21. This formula estimates the
current state by adding the predicted value of the current state to the predicted value of the current
state subtracted from the measurement that is multiplied by some constant. This constant is the
Kalman gain. The measurement minus the predicted value of the current state is the innovation,
also called the measurement residual [23].

x̂n,n = x̂n,n−1 +Kn · (zn − x̂n,n) (21)

The second equation is the Kalman gain equation. This equation in given in Formula 22 from [23].
In this formula the estimate variance is divided by the estimate variance added to the measurement
variance. The result is a value between zero and one.

Kn =
pn,n−1

pn,n−1 + rn
(22)

The third equation is the covariance update equation, given in Formula 23 from [23]. This equation
uses the Kalman gain to update the covariance. The estimate uncertainty is decreased each filter
iteration.

pn,n = (1−Kn) · pn,n−1 (23)

The fourth equation is the dynamic system model. This model describes the behaviour of the
system. The exact formula is given in Formula 24. xn is the state that is estimated. A is a square
matrix, it relates the step at state n-1 to the state at step n, when the process noise is neglected. It is
a description of how the state changes between measurements. B is a vector matrix that relates the
control input to the state. un is the control input. Wn is the model uncertainty or process noise [24].

xn,n = A · xn,n−1 +B · un + wn,n−1 (24)

The fifth and last equation is the error covariance. This question is given in Formula 25 from [24].
The A is the same matrix as in the system behaviour equation. Q is the process noise covariance. It
represents the uncertainty in the process or model.

pn = A · pn−1 ·AT +Q (25)

4.5.6 Distance estimation

The distance of the transmitter can be approximated using the receiver signal strengths indication.
In a study conducted in Pakistan [25], various distance-RSSI measurements are done in an indoor
environment using Bluetooth low energy. This study shows an average decrease of 10 dBm for every
1.32 m distance. For distance measurements of the horizontal distance, a third antenna must be
used. This third antenna will measure the elevation angle of the transmitter. With this and the

10

diagonal distance, obtained from the RSSI measurement, the horizontal distance is calculated using
the Formula 26.

dhorizontal = ddiagonal · cos(φ) (26)

4.6 Precision estimation

4.6.1 Cramer Rao Bound

[26] The accuracy of the measured delay of the antennas could be estimated using the Cramer Rao
Bound (CRB). This band indicates the lower bound of the achievable variance of the unbiased
estimator [27]. In this case the estimator of the phase difference is unbiased, since there are no
differences between the average measurements if they are conducted multiple times in the same
environment. The CRB is given by the following Formula 27 [27].

CRB(τ) =
1

SNR · β2
(27)

The accuracy can be found by taking the square root of the CRB. The Signal to Noise Ratio is
defined as the total signal power divided by the total noise power as written in Equation 43.

SNR =
S
N0

2

1 + 2 S
N0

(28)

Beta squared is the mean squared bandwidth of the signal and is given by Equation 29 [27].

β2 =

∫ Ts

0 (ds(t)dt)2dt∫ Ts

0 s2(t)dt
=

∫∞
−∞(2πf)2|S(f)|2df∫∞

−∞ |S(f)|2df
(29)

A second approach for finding the CRB is using the Fisher information matrix J. The CRB is the
inverse of this matrix as can be seen in Equation 30 [27].

CRB = J−1
CR (30)

When both the signal and noise power spectral densities are flat, the Fisher information matrix can
be written as in Equation 31. In this equation, B stands for the bandwidth of the signal in radians
per seconds, T is the time over which the measurements are carried out and ωc is the carrier
frequency of the signal also given in radians per seconds.

JCR(τ) = 2ω2
c ·

TB

2π
[1 +

1

12

(
B

ωc

)2

] · SNR, for T >>
2π

B
(31)

This equation is only valid if the Fourier Series coefficients are independent. This is the case when
the measurement time T is significantly greater than 2π divided by the bandwidth. This equation
shows that if the observation time increases, the CRB will move downwards leading to a bigger
accuracy. Furthermore, a higher carrier frequency results in a higher accuracy [27].

The measurement time is given by the the amount of samples that is received at a time multiplied
with the inverse of the sampling frequency as given in Formula 32

T = samplesreceived ·
1

Fs
(32)

4.6.2 Signal to Noise Ratio

As discussed above, the SNR is important for determining the Cramer Rao Bound. The received
signal power is calculated using the effective isotropic radiated power (EIRP). The formula for this is
given in Equation 33 from [28].

11

PEIRP = GAT · PTX (33)

In this equation, GAT is the transmitted antenna sensitivity and the PTX the power of the
transmitted signal. The transmitted antenna gain is calculated using Equation 34 from [28].

GAT =
Power density in the direction of the maximum G(θ, ϕ)

power density of the isotropic antenna
(34)

For short dipole antennas, this number is approximated by 1.5 [28].
The power density of the transmitted signal is given in Formula 35

S =
PEIRP

4πd2
(35)

This transmitted signal is attenuated by the free space loss. This loss is 80dB for a carrier frequency
of 433 MHz.
The d in this formula is the distance between the transmitter and the receiver. The received signal
power will then be given in Formula 36 from [28].

PRX = S ·Ae RX (36)

Ae RX is the effective surface area of the receiving antenna. This area is given by Formula 37 from
[28].

Ae =
GRX · λ2

4π
(37)

Therefore the total power formula is as follows, see Formula 38

PRX = GAT · PTX ·GRX · λ

4πd

2

(38)

The noise power of the system given in Formula 39 from [28].

Pnoise = k · Teff ant ·BN (39)

In this equation k is the Boltzmann constant, Teff ant is the equivalent noise temperature and BN is
the bandwidth of the signal. The equivalent noise temperature exists of the sum of the noise
temperature all the elements that create noise. For the noise contribution of a device, often the noise
figure F is used. In Formula 40 from [28] the relation between the noise temperature and the noise
figure is shown.

Te = (F − 1) · T0 (40)

In this equation T0 is the reference temperature. This is 290 Kelvin.

4.7 Automatic direction finding versus manual direction finding

The current insect tracking devices use a directional antenna, such as a Yagi antenna, to manually
find the direction of arrival by turning the antenna and stop at the angle where the signal is greatest.
These directional antennas have the advantage of concentrating gain in one direction, which makes
the manual direction finding possible. Unfortunately these Yagi antennas are not a good fit for
automatic direction finding and low gain omnidirectional antennas will have to be used.
The gain of a Yagi antenna greatly depends on the number of elements and thus on its length. In the
case of tracking insects, the antenna must be portable and cannot be to large, therefore for the
estimation of the gain, an approximation of 1x1 m will be set for the dimensions. A Yagi antenna
consists of 3 different elements, one reflector with a size of 1.05 · λ

2 , a
λ
2 dipole and a number of

directors each 0.95 · λ
2 of length [29]. For this calculation these elements are spaced 0.25λ apart. The

results are laid out in Table 1.

12

Element size

Reflector 0.35

Dipole 0.36

Director 0.33

spacing 0.17

Amount of elements 6

Table 1: Measurements (in m) for a portable Yagi antenna at 433 MHz

Using 6 elements goes over the dimension limit, 1.02 m for 433 MHz, but should still be manageable.
These dimensions give an approximate gain of 10.5 dB with respect to a dipole, using the table from
[29].
In order to increase the range of the tracking system, a directional Yagi antenna can be used for
longer distances. However the accuracy of this system heavily depends on the operator, hence for a
more accurate short range direction finding, the system described in this report could be utilized.

4.8 User interface

This software is focused on being used by elderly people. This is because the product is initially
marketed towards beekeepers. According to an article from 2008 [30], the average age of beekeepers
in the Netherlands was nearly sixty years old. Other countries have similar age distributions, in
Australia [31] the average age is 52 years old. For the design of the user interface this has to be kept
in mind. To create a user accessible and user friendly design, the heuristics of Nielsen are often used
in practice. An overview of these heuristics is given here.

4.8.1 10 heuristics of Nielsen

The 10 heuristics of Nielsen show the aspects a design should comply with in order to be user
friendly [32].

1. Visibility of system status: The user must know what the system is doing. If the user must
wait for something to load for example, a loading bar must be shown.

2. Match between the system and the real world: The system must speak in the same language as
the user does. This means that recognisable icons must be used for example.

3. User control and freedom: The user must be able to undo an unwanted action.

4. Consistency and standards: When performing one action, this action must look the same also
on other platforms.

5. Error prevention: The system must help the user prevent to make mistakes.

6. Recognition rather than recall: Do not let the user memorise information.

7. Flexibility and efficiency of use: Short cuts must help advanced users with making the task
more efficient.

8. Aesthetic and minimalist design: Only relevant information must be shown on the screen.

9. Help users recognize, diagnose, and recover from errors: Error messages must be easy to
interpret.

10. Help and documentation: Help users with an explanation option or a tutorial.

13

5 Program of requirements

5.1 External requirements

The signal that is worked with is produced by a resonator. It has a carrier frequency of 433.96 MHz
and a duty cycle of 25% of an hour and a maximum power ERP of 450 mW.

5.2 Stakeholders

There are two types of stakeholders in this project. The internal stakeholders are this project group
(consisting of the authors and the other members mentioned in the preface), their supervisors and
the university. The external stakeholders are the customers and the government. The government is
a stakeholder, since this project must abide the law written up by the government.

5.3 User stories

The system must be capable of the following user tasks. This list only summarizes the tasks that the
system must perform in order to give the user a useful product [33]. They are rated using the
MoSCoW method. This method gives the user stories a priority. The following user stories with
their priorities are developed.

1. Must have: needed in order to have the main function working.

2. Should have: important features that are not vital, but have significant value.

3. Could have: would be nice to have, but could be left out.

4. Wont have: ideas that can be developed at a later stage.

5.3.1 Must haves

• As a user I want to see at which direction I must go, so that I can follow the hornet easily.

• As a user, I want the displayed direction to be updated in real-time, so that I can make timely
adjustments to my path.

5.3.2 Should haves

• As a user, I want the system to be portable and lightweight, so that I can carry it easily while
moving.

• As a user I want to see an indication of the distance of the hornet, because I don’t want it to
get out of range.

• As a user I want to be able to start and stop tracking to save the devices energy.

5.3.3 Could haves

• As a user I want to be able to set a stop watch to measure the time it takes to track the nest
for future research.

• As a user, I want to log the direction and distance data, so I can analyze it later for patterns or
research purposes.

• As a user, I want to have a battery level indicator on the display, so that I can monitor the
device’s remaining power.

5.3.4 Won’t haves

• As a user, I want an audible alert when the signal strength drops below a certain threshold, so
I am aware when the hornet is moving out of range.

• As a user, I want to have a weather-resistant design, so I can use the device in various
environmental conditions without worry.

• As a user, I want to have a backlight on the display, so I can use the system in low light
conditions.

14

5.4 Requirements

Based on the user stories and the theory, the following set of requirements is developed. After
examination only the must haves, the should haves and a couple of could haves can be realized
within the given time frame. The requirements that belong to the key performance indicators are
marked with a heart symbol.

5.4.1 Functional requirements

♡ Signals with a 433.96 MHz carrier frequency and a bandwidth of 1.5 MHz should be able to be
received.

♡ The direction to go to should be displayed on the LCD screen.

• The software defined radio dongle must mix and filter the signal.

• The two antennas of the system must work on the same clock.

• Cross-correlation must be used with a reference signal to obtain the phase delay.

• The Angle of Arrival must be calculated using the phase delay.

• The system must give accurate (less than 10◦differences from stationary when moving 20
km/h) results while being moved (every direction).

• The system must give accurate (less than 5 degree difference) when being stationary.

• Using the received signal strength indicator either a distance estimation or a signal reception
indication must be given.

• The tracking data must be logged onto the Raspberry Pi’s memory.

• The stopwatch should be displayed on the screen.

• The tracking should be able to be disabled to save the system’s energy.

• The stopwatch functionality should be able to be disabled.

5.4.2 Non-functional requirements

♡ The length of the omnidirectional dipole antennas must be 35 cm.

• The system latency must be no more than 2.9 seconds. This is how fast a good flying hornet (6
m/s) can get out of the 10◦ accuracy when at a distance of 100 m.

• The distance between the antennas must be 35 cm.

• Software defined radio must be used.

• The SDR dongles must either have an Ethernet or a USB-A connection.

• The user interface must be intuitive. The direction must be interpretable in 5 seconds.

• The power supply must be a portable power bank.

• The system must be mobile (under 5kg).

• The software must run on the Raspberry Pi 4b.

• The screen must have touchscreen.

• The program must be written in Python.

• Software defined radio must be used.

• The system must work with the RTL dongles.

• The system must cost less than 500 euros.

• The user interface should be clear and easy to read. The buttons need to be at least 1 cm2 [34].

• The system must have a battery life of at least 10 hours.

15

6 Methodology

First a system overview is given. This overview shows the different hardware components used and
the software that accompanies it. After that, the algorithm to create the angle of arrival is
described. Then the various steps of developing the software is discussed. Lastly, the precision
calculations are presented.

6.1 Circuit of the receiver

The system is first made using a laptop and the Software Defined Radio (SDR) dongles of the brand
RTL. After successful tests, the Raspberry Pi will be used. The laptop is too big to carry around
and therefore the eventual product will make use of an Raspberry Pi computer with its 3.5-inch
display. This combination fits on the handlebar of the bike and acts like a bike computer. In Figure
11 the circuit with the Raspberry Pi is shown. For hardware setup used for prototyping in this
project are shown in Figure 12. Due to a lack of USB-A inputs on the MacBook, a USB hub is used.
This hub does feature two USB-A slots, however the width of the dongles causes the second slot to
be blocked. To solve this, a second converter is used which converts the USB-A to a USB-C which is
then either put into another port of the Macbook or for convenience in the same USB-hub. The
latter setup is shown in Figure 13. A second (Windows) laptop featuring multiple USB-A slots was
available during the project, but the RTL SDR drivers did not work on this computer. Lastly the
antennas that are used are shown, these antennas are 32 cm in length, which is slightly to short for
the transmitted signal. However, the alternative setup would have an antenna length of 50 cm. The
antenna is shown in Figure 14. Due to budget restrictions, the choice is made to not buy new
antennas and use the ones delivered with the RTL dongles.

Figure 11: Schematic overview of the receiver circuit.

16

Figure 12: Figure showing the prototyping hardware setup.

Figure 13: Figure showing the prototyping hardware USB setup.

Figure 14: Figure showing the prototyping hardware antenna setup.

6.1.1 Antenna array

The antenna array consists of two omnidirectional antennas. They are placed horizontally next to
each other to be able to measure the phase difference (and calculate the time difference) between the

17

incoming transmitted signal. The distance between these antennas must be either a half or a quarter
wavelength. The antennas are mounted on top of a backpack to make the system portable. This way
it can be used while walking, cycling and other activities that could be useful for tracking the
hornets. This way of mounting method also gives the operator free hands to use the screen or hold
other objects.

6.1.2 RTL Dongle

There are various SDR dongles on the market. Considering that the receiver does not have to
transmit anything, there is no need for a dongle that is half duplex. Considering the low price of the
total receiver, the RTL dongle is the best choice. For this project the RTL SDR Blog v4 was used,
which can receive signals from 500 kHz to 1.7 GHz, has a maximum stable sampling rate of 2.4 MS/s
and has its own python library. A block diagram of the SDR can be found in Appendix A.

6.1.3 PC type

Since the signals need to be read out, processed and displayed. This can not be done by a micro
controller like an Arduino. Therefore a tablet, smartphone or a Raspberry Pi should be used. For
using the system on a bicycle, the use of a Raspberry Pi is deemed optimal.

6.1.4 Touchscreen

There are various sized of touchscreens on the market. For this project the 3.5-inch GPIO Raspberry
Pi screen is chosen. This screen has approximately the same dimensions as the computer and it fits
sturdy due to the GPIO pin connection.

6.1.5 Power supply

The Raspberry Pi needs a power supply to work. Since the whole system needs to be handheld, a
power-bank is the ideal solution.

6.2 Explanation of the algorithm

In the following section two methods are attempted. The first one calculates the time difference
between the two incoming signals. This time difference is obtained by cross-correlation in frequency
domain (multiplication with the flipped complex conjugate) with a reference signal. The outcome of
these two multiplications are then divided. The location of the peak of the time domain visualization
of this division then gives the time difference between the two arriving signals. Multiplying this time
difference with 2 · π · fcode gives the phase difference. Which is then used in Equation 8 to obtain the
angle of arrival.

The second approach calculates the phase difference in the frequency domain only.

18

Figure 15: Schematic overview of the direction algorithm

The distance estimation is done using the received signal strength indicator. The signal of the
transmitter decreases in strength as the distance from the source increases. Using this, the distance
from the transmitter can be estimated.

6.2.1 Programming language

The received data coming from the dongles is processed using the Python programming language.
Python is deemed to be the best choice given that it has a lot of signal processing libraries which can
be used. Numpy is a powerful and commonly used library for data processing just like Scipy. The
RTL SDR also has its own Python library librtlsdr and wrapper pyrtlsdr [35]. For testing purposes,
the Matplotlib pyplot class is effective.

6.3 Development of the system

To develop a software efficiently it is required that tests are done for each step in the process. For a
structured software application the code is split up into separate classes. Each class has its own
responsibility. The entire class structure of the software can be seen in Figure 34. An enlarged
version of this figure is given in Section A. The code is given in Section B. For each of the steps it is
indicated to which class it belongs.

19

Figure 16: Visual representation of the class structure of the software using Unified Modeling
Language

The steps to building the automated direction finding system described in the program of
requirements are stated to be the following. The last two steps have not been executed reasons for
this can be found in Section 8.

1. Create Graphical User Interface.

2. Receive the signal with one antenna.

3. Make a phase difference calculation function with a reference signal.

4. Receive the signal with two antennas.

5. Make a function for calculating the phase difference of two signals.

6. Calculate the phase difference of the received signal using the function.

7. Calculate the phase difference between the two antennas.

8. Calculate the angle of arrival with the phase difference and show this on the GUI.

9. Calculate the distance and show this one the GUI.

10. Improve the software using cold codes.

11. Integration with the total system.

12. Improve the software using a Kalman filter.

Two algorithms for calculating the phase difference have been proposed. The first one uses the time
difference of arrival and the second uses the difference of the phase of the FFT’s.

6.3.1 The graphical user interface

Before the dongles were available, the graphical user interface was made. This GUI has its own class
called GUI B. This GUI is developed using the Pygame library and the Numpy and Datetime

20

libraries. It also imports the Tracking and Stopwatch class. The Stopwatch class B is responsible for
the stopwatch functionality. The layout visualizes a radar interface. This interface is commonly
known, so the idea is that it is easily interpretable. The color palette can be seen in the following
Figure 17. These colors are chosen because of the similarities to radars. In red and green usage in
the menu is an intuitive way of showing on and off.

Figure 17: The colors used for the user interface. The color codes left to right: 08090A, FFFAF,
32CD32, F0544F

The layout is first made in the Figma [36]. This is an online interface design tool. The result is seen
in Figure 18. In the first sketch, the options are turned on. The second sketch, seen in Figure 33 in
the appendix shows the interface when the options are off. A middle ground when either of the
option is enabled is also possible.

Figure 18: Figma sketch of the user interface when the menu options are turned on.

The system has a minimalist design. There are only a few buttons the user can press. The stripe
button leads to the menu. In this menu, the tracking and the stopwatch can be put on or off. When
the tracking is disabled, the red dot indicating the tracker position is removed. When the stop watch
is disabled, only the time is shown on top of the screen. To make the software accessible for elderly
people, a stylus is included. The people from this generation have not been brought up using
touchscreen. Users who prefer the touchscreen can still use it.

6.3.2 Receiving a signal

For receiving signals using the RTL SDR dongles a Receiver class B is made. This class creates the
RTL objects using the RtlSdr library and receives the samples from the dongles using a separate
thread from the Threading library to enable this event to happen simultaneously with the
presentation of the user interface. It also uses the Numpy library to save the sample data into
Numpy complex64 arrays. To test this class a 433 MHz RF Transmitter, an Arduino and a coil
antenna are used. This Arduino is powered by a 9V battery. The test signal is given in Figure 19.
The time plot generated from the SDR output signal by the test code C is given in Figure 20. This
figure shows that the transmitted signal is well received although noise is clearly present. The coil
antenna, free space loss, and other factors contribute to this. The Arduino signal is a repeated signal
consisting of two 30 ms high bits separated by a delay of 30 ms. The signal is received in an indoor
environment on a distance of 2.5 meter.
It can be seen from Figure 20 that this is not an exact copy of the reference signal. The peaks are
not all spaced equally apart. This may be explained by the fact that the transmitter used is a cheap
and imperfect device.

21

Figure 19: Visualisation of the normalized transmitted Arduino signal given in samples.

Figure 20: Time plot of the received signal from one RTL SDR dongle.

The figure shows the received data from right to left. This is because it is programmed as an
animation. The -5 indicates looking into the past. The reason for making an animation and taking a
screen shot of that is because it takes some time for the dongles to be instantiated and produce
usable data. The exact timing differs and can therefore not be hard coded. The amplitude shown in
the plot is the output of the dongle. This output has no unit for the amplitude because the dongle
normalizes it. It is unnecessary to know the exact value of the received signal strength at this point
as long as the signal can be well distinguished from the noise, which is the case here.

6.4 Receive two signals

In order to obtain samples from two dongles, a second object of the receiver class is made. For this
to work, the serial number of the second dongle is altered. Figure 21 shows the captured signals of
the two antennas using the test code C.

Figure 21: Plot of the two received signals using the two dongles.

22

This figure shows two different received signals which means that the two antennas and dongles are
properly instantiated. The amount of noise captured by the two antennas differs. A possible reason
for this is the placement of the antennas. This test is conducted indoors which means that other
(household) equipment might cause interference. Due to the low range of these sources, one antenna
might receive more of these signals than the other.

6.4.1 Phase difference function

The next step is to create and test a function that calculates the phase difference of two signals using
cross-correlation. One signal is the received signal from the antenna and the other is a repeated
reference signal. This function is part of the SignalProcessing class B. The reference signal is made
in the ReferenceSignal class B such that this signal can easily be changed. This way of programming
adheres the open-closed principle. The phase calculation function is tested using a hardcoded version
of the Arduino output. The shifted signal and the reference signal are shown in Figure 22. This
figure shows the time shifted signals and the calculated phase difference. The Arduino signal is 1
second long, so a delay of 0.05 seconds correctly corresponds to a phase delay of 18 degrees for the
coded signal.

Figure 22: Plot showing two artificially made signals and their time and calculated phase difference.

The second step is to add random noise to the shifted signal and see whether it gives an accurate
result. This result is given in Figure 23. The calculated phase difference is still the expected value.
The code of these two test can be found in Section C.
In this algorithm, both the reference signal and the received samples are zero padded to obtain a
length of both lengths - 1 and are then cross-correlated. The reference signal is made by using the
ideal Arduino code and modulating it with a carrier sinusoidal signal of 434 MHz. The
cross-correlation is done by multiplying the fast Fourier transform (FFT) of the zero padded received
signal with the flipped version of the FFT of the conjugate of the zero padded reference signal. The
inverse fast Fourier transform is then taken of the multiplicand. Then the index of the peak is found
and this location corresponds with the phase difference.

23

Figure 23: Plot showing two artificially made signals and their time and calculated phase difference
with added random noise.

6.5 Phase difference calculation with the received signal

After the working of both the receiving software and the phase-difference calculation software is
validated, they are combined. The transmitted signal discussed in the receive signal test is again
used. It is expected that the calculated phase difference of the reference signal and the received
signal should look like a sinusoid. The reference signal does not change, but the received signal does.
This signal is a moving wave and if at each time the phase difference is calculated, the movement of
the signal should be shown in the phase difference. In Figure 24, the received signal and the
calculated phase difference are shown. The code for this test is given in Section C. As can be seen in
the figure, it is not an ideal sinusoid. An analysis of this can be read in Section 7.1.

Figure 24: Figure showing the signal received from the dongle (upper plot) and the calculated
phase difference with the reference signal.

6.6 Phase difference between two antennas

After the two signals are received successfully, the phase difference of these compared to the
reference signal signals is calculated. The phase difference between the two received signals is then
calculated using the calculate delta phi function in the SignalProcessing class. To test this function,
a second shifted function is added to the phase difference test described in Section 6.5. This third
signal and the calculated phase difference between the two shifted signals can be seen in Figure 25.

24

Figure 25: Plot showing three artificially made signals and their time and calculated phase
difference.

When noise is added to both shifted signals, the outcome remains the same as can be seen in Figure
26.

Figure 26: Plot showing three artificially made signals and their time and calculated phase
difference with added random noise.

The code for these tests can be found in Section C. This algorithm uses the same start as the
algorithm for finding the phase difference between one received signal and the reference signal. This
multiplication is executed twice, once for each received signal. These products are then divided. The
phase difference between the received signals is found at the location of the peak of the IFFT of the
outcome of the division. This phase difference should remain constant when the transmitter is not
moved. A time plot of the received signal and the phase difference is shown in Figure 27. Due to
computational load, only one of the received signals is shown. This upper plot shows that the signal
is well received, which is mandatory to know that the receivers are correctly instantiated. The phase
difference in the second plot is not constant. This problem is discussed in Section 7.2. The lack of
measurement points in the plot is explained in Section 7.1.

25

Figure 27: Plot of the received signal and the phase difference between the received signals using
the two dongles.

6.7 Angle of arrival calculation

Without reliable phase difference calculations, the angle of arrival cannot be calculated. When using
the theoretical value 10.8 degrees obtained in Section 6.6, the angle of arrival is calculated using
Equation 8. This gives an angle of arrival of 3.4 degrees. First 10.8 degrees is converted into radians,
then it is plugged into the formula and lastly this radian angle is converted in to degrees.

6.8 Received signal strength indication and distance measurement

As could be seen in Section 4.5.6, the distance can be calculated from the received signal strength
indication (RSSI). Multiple experiments using different algorithm have been conducted, but no
experiment has shown a correlation between the distance between the transmitter and the receiver
and the RSSI. Figure 28 shows the failed experiment. The walking pace of about 4km/h might not
have been constant (but definitely between 3 and 5 km/h) during the experiment nor the elevation,
but even with these factors a slight decline in received signal strength would be expected. The
distance covered in this experiment was around 80 meters until the receiver lost the signal. The code
for this test can be found in Section C.

26

Figure 28: Plot of the calculated received signal strength indications whilst walking away with the
transmitter.

One thing that could be measured was the range of the system. The sudden decline in the plot
shows the moment where the receiver lost the signal. This was measured (using a smartwatch) to be
around 80 meters. This was measured in an urban environment. An analysis of the failed experiment
is given in Section 7.4.

6.9 Direct phase difference

A second approach to find the angle of arrival is done using the phase of the Fourier transform of the
incoming signals. Here the phases of the FFT at the dominant frequency are subtracted from each
other. This method is explained in the following sections. The code for this approach can be found
in Appendix C.

6.9.1 Code Identification

The frequency band that will be used is open for use for every one, thus there will be a lot of
interference for other signals. Additionally the transmitter is not transmitting continuously,
therefore the encoded signal needs to be identified. This is done using a matched filter, a more
theoretical explanation is given in Section 4. Figure 29 shows the result of the filter.

Figure 29: Result of a matched filter applied to a signal with noise

27

After the code is identified, only the samples of the codes are taken to minimize the amount of noise
in the final calculations.

6.9.2 Phase Difference

With the location of the code found, the phase difference can be calculated. This is done in the
frequency domain using the fast Fourier transform. Figure 30 shows the result of this operation for
two different time delays between the signals.

(a) time delay: 8.165 · 10−10 (b) time delay: 2.005 · 10−10

Figure 30: The phase of the fft of incoming signals at different time delays

As seen in Figure 30a this method does not give a stable phase difference for all frequencies, however
when looking at the dominant frequency of 0 Hz, a correct result can be found. Indeed, Equation 7
shows that a time difference of 8.165 · 10−10 s and 2.005 · 10−10 s results in a phase difference of 2.22
rad and 0.5 rad respectfully. As seen in Section 4, to find the angle of arrival the phase difference
needs to filled in Equation 8.

6.10 Gold code improvement

The code which is transmitted is of interest for the gain of the receiver and thus the signal to noise
ratio. The chosen code adheres to the requisites discussed in Section 4.4.2. The gold code consists of
the following bits that are sent using on-off keying: [1 1 1 0 0 1 1 1 0 1 0 1 1 0 0 1 0 0 1 0 0 1 1 1 0 0
1 0 0 1 0]. The transmitted signal has a duty cycle of 25%. It will be on for 0.5 seconds and off for
1.5 seconds. The 31 bits should fit in the on period. The bit duration will therefore be 16.13
milliseconds. The code is visualised in Figure 31. Using this particular gold code in the first phase
difference calculation would increase the accuracy.

Figure 31: Visual representation of transmitted gold code

28

7 Analysis of the system

7.1 Algorithm and Python drawbacks

As could be seen in Section 6.5, the calculated phase differences do not correspond with the
expectations. After further inspection, the program is to blame for this. During the execution of the
program, the calculation time is measured. This elapsed time is taken as the real time difference
between when the function is called and the output is returned. As can be seen in Table 2, this
difference is substantial and not constant. This renders the output to be unusable.

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6

Elapsed time (s) 11.7 7.2 6.2 5.8 5.9 21.8

Table 2: Elapsed time of the phase difference algorithm.

For the calculation using two dongles, this calculation time is even worse, due to the added
computations. The elapsed time of this algorithm is measured with the same approach as described
above. The results can be seen in Table 3.

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6

Elapsed time (s) 18.6 15.5 15.8 15.2 28.6 15.8

Table 3: Elapsed time of the phase difference algorithm.

The elapsed time in both algorithms is larger than the time axis shown in the figures. It is therefore
odd that multiple measurement points are shown in the plot. A possible explanation for this is that
the time axis is not correct anymore, since the plot freezes when phase is calculated.

7.2 Synchronization of the dongles

The phase difference calculated in Section 6.6 is not constant. This is caused by the sequential
get samples() call. This causes a time delay between the saved samples of the two dongles. Just like
in the previous section, a time analysis is done to measure the problem. In Table 3 the time between
the storage of the samples from the first dongle and the storage of the samples of the second dongle
is analyzed.

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6

Elapsed time (s) 9.5 k · 10−7 2.9 ·10−6 1.2 ·10−6 3.1 ·10−6 5.9 ·10−7 1.7 ·10−6

Table 4: Elapsed time between the storage of the samples of the two receivers.

To synchronize the two receivers, it is possible to remove the crystal from one of the dongles and
connect the two using a wire. By having the two dongles work on the same clock frequency, the
sample rates and the local oscillator frequencies are made equal. However, the actual sampling and
the local oscillators could be out of phase. This means that the calculated angle of arrival is
dependent on the this phase difference. In order to counter this problem, various solutions are
proposed. In the solution proposed by Tatu Peltola [37], a calibration signal is sent to both dongles
by placing a white noise generator directly at the input of both dongles. The pulses of white noise
are then cross-correlated to find the phase offset.

7.3 Precision estimation of the algorithm

The estimation of the accuracy of the time difference tau in the two antennas is calculated using
second method for the Cramer Rao Bound explained in Section 4.6.1. For this an estimation of the
Signal to Noise Ratio is needed. The transmitted signal power is -43 dB as obtained from the thesis
of Sofya Mikhaylitskaya and Emmad Hassan [38]. The calculated path loss is 121.45 dB, see Section

29

4.5.2, therefore the total signal power is -164.45 dB. The noise power is calculated using Equation
39. The noise figure of the RTL dongle is 8 dB [39] this is equal to 6.31 linear. With a bandwidth of
1.5 MHz, the noise power becomes 3.18 ·10−14 W, which is equal to -134.97 dB. The SNR used in
the Cramer Rao Bound calculation is found using Equation 43 and results in SNR = 1.267 · 10−6.
The measurement time is calculated using Formula 32. The amount of received samples at a time is
262144, this gives a measurement time of 0.128 seconds. The JCR is then calculated to be 3.603
·1018. Which gives a CRB of 4.620 ·10−19. This is the variance of the unbiased estimator, taking the
square root gives the accuracy in seconds. Thus, ∆t = 5.268 · 10−10 s. The exact derivation is
written in Appendix D. With this minimum time variation, using Equation 4, a minimum angle
variation of 0.5◦ can theoretically be found.

7.4 Received signal strength indication

The failure of the experiment shown in Section 6.8 can be blamed on the lack of understanding of
the dongle. The hypothesis is that the dongle automatically corrects for the decreasing signal
strength by changing the gain.

7.4.1 Range

The tested range using the Arduino setup is 80 meters. The exact transmitted power is not
measured, but given that the output of the transmitter that is attached to the hornet has a lower
power, the required 500 meter range will not be achieved.

7.5 Testing the user interface

The user interface is tested by making an analysis based on the Heuristics of Nielsen. The system
status is not being shown at the moment. It is expected that the system does not require the user to
wait. The pairing of the transmitter needs to be implemented still. The match between the system
and the real world is apparent due to the radar interface. The user is able to undo an unwanted
action because the menu has the option to switch the various menu options on and off. The action
buttons have similar looking icons compared to other platforms. Error prevention is not done yet.
The user interface is rather simple and the user does therefore not have to remember anything except
for the menu and return icons. Due to the simplicity, there are no possible shortcuts. The user
interface does is minimalistic however no error messages are implemented. To help users get familiar
with the product, a tutorial of the device will be put online and provided with each purchase.

30

8 Discussion

For our solution to work according to the requirements, various aspects need to be addressed.
Section 7 analyses the encountered difficulties. In summary, a multichannel device and a faster
algorithm computer combination is needed. The initial plan was to prototype using the USRP N210
device. With this device, the synchronization of the antennas would not be an issue, since it has
multiple channels. Due to a lack of working Ethernet switches, however, we were not able to
continue prototyping with this device. In hindsight, working with other SDR’s (such as LimeSDR or
KrakenSDR) would have been a better option for realizing a working prototype, since these also have
multiple channels. This would however surpass the budget of both the client and the university. As
is written in Section 7.4, there was not enough understanding of the working of the SDR dongles nor
the Python library that accompanies it. This has led to a lot of time and effort spent on trying to
understand the open source materials.

Even if the prototype had worked, there is no guarantee that the total system would be a success
given the low power output of the transmitter and the current measured range of 80 meters.
Furthermore given the nature of the Asian Hornet, it is able to fly across rivers, lakes et cetera
whilst flying with a speed of about 21 k/m. The insect would get out of range too fast for the hornet
hunter to track it over such a natural obstacle. Also the height at which the hornet flies decreases
the horizontal range (using Pythagorus’ Theorem), this also makes calculating the angle of arrival
more difficult. For exemple when it flies directly about the operator.

In Section 6.1, multiple shortcomings in the hardware are discussed. All of these imperfections lead
to the system not working perfectly. The calculation duration of the algorithm is deemed to be the
most prominent problem at the current stage of the prototype. Solving these hardware problems
would not solve this problem (a faster laptop might, but no research was done on this). After solving
the algorithm problem and the synchronization problem, the accuracy should be improved by
purchasing new and specialized hardware.

The theoretical precision of the system discussed in Section 7.3, is in practice not feasible. The
interference with other devices just as path loss would decrease the precision.

9 Conclusion

After research was done about multiple automatic direction finding methods, an attempt was made
to design prototype using phase interferometry. Due to the high computation time and the lack of
synchronization, the prototype does not work as intended. The user interface has been fully
implemented in Python and if the above stated problems are resolved, almost all the requirements
would have been met. Except for the accuracy requirement as they are not examined. Also the
distance indication and the operation range of 500 meters is not realized. Furthermore, the system is
not tested on a Raspberry Pi 4B since the system did not work on a laptop.

However, the proposed prototype used software defined radio and the cheap RTL dongles to receive
the 433.96 MHz signal. It shows the direction to go, the angle of arrival, which is calculated using
cross-correlation on the LCD screen and it saves this data. The tracking and the stopwatch can be
disabled to save energy.

10 Future work

For future work a more sophisticated SDR dongle will be used. The KrakenSDR for example is
known for its usage in automatic direction finding. When such a SDR dongle is used, research about
multi path complications can be done. Furthermore, research into using automatic direction finding
with a low power transmitted signal can be conducted, as well as the correction of the estimation
using a Kalman filter.

31

11 Bibliography

References

[1] S. Lioy, D. Laurino, R. Maggiora, et al., “Tracking the invasive hornet vespa velutina in
complex environments by means of a harmonic radar,” Scientific Reports, vol. 11, 1 Dec. 2021,
issn: 20452322. doi: 10.1038/s41598-021-91541-4.

[2] L. Electronics, Lowlandtag manual en2, Belgium tracking device:
https://lowland-electronics.be/.

[3] lotek, “Vhf-avian-tags-for-smaller-species-spec-sheet,”

[4] Admin, rtl-sdr.com, Apr. 2024. [Online]. Available: https://www.rtl-sdr.com/.

[5] F. W. H. Roel Schiphorst and C. H. Slump, The front end of software-defined radio:
Possibilities and challenges.

[6] A. about circuits, Practical Guide to Radio-Frequency Analysis and Design. [Online]. Available:
https://www.allaboutcircuits.com/textbook/radio-frequency-analysis-

design/radio-frequency-demodulation/understanding-quadrature-demodulation/.

[7] Beamforming & DOA — PySDR: A Guide to SDR and DSP using Python. [Online]. Available:
https://pysdr.org/content/doa.html.

[8] A. Karki, Radio direction finding using pseudo-doppler for uav-based radio direction finding
using pseudo-doppler for uav-based animal tracking animal tracking, 2019. [Online]. Available:
https://scholarworks.gvsu.edu/theses.

[9] S. Ready, The Doppler Effect: Explained with Examples – HSC Physics. [Online]. Available:
https://scienceready.com.au/pages/dopplers-effect.

[10] “A doppler radio-direction finder,” 2001. [Online]. Available:
https://api.semanticscholar.org/CorpusID:4677299.

[11] N. Ahmed, “Radio direction finding, theory and practices,” 2016. doi:
10.13140/RG.2.1.1019.4002/1. [Online]. Available:
https://www.researchgate.net/publication/289779492.

[12] W. Read, Review of conventional tactical radio direction finding systems.

[13] “Interferometer angle-of-arrival determination using precalculated phases,” Radio Science,
vol. 52, pp. 1058–1066, 9 Sep. 2017, issn: 1944799X. doi: 10.1002/2017RS006284.

[14] L. Couch, Digital and Analog Communication Systems (Prentice-Hall international editions).
Pearson, 2013, isbn: 9780132915380. [Online]. Available:
https://books.google.nl/books?id=j1UjygAACAAJ.

[15] D. S. B. Vaishnavi, “Gold Code Generators: - Dasika Sri Bhuvana Vaishnavi - Medium,” Feb.
2024. [Online]. Available:
https://medium.com/@dasikavaishnavi/gold-code-generators-d784e2b87984.

[16] J. P. Balsamo, Phase and amplitude interferometry based radio frequency phase and amplitude
interferometry based radio frequency direction finder direction finder. [Online]. Available:
https://scholars.unh.edu/honors/450.

[17] A. G. Longley, Radio propagation in urban areas.

[18] M. Hata, “Empirical formula for propagation loss in land mobile radio services,” IEEE
Transactions on Vehicular Technology, vol. 29, no. 3, pp. 317–325, 1980. doi:
10.1109/t-vt.1980.23859.

[19] Multipath propagation in v/uhf direction finding systems comparison of 7-channel and
5-channel direction finding systems with correlative interferometer [ci] and vector matching
[vm® plath] whitepaper 2.

[20] R. Sanudin, N. H. Noordin, A. O. El-Rayis, N. Haridas, A. T. Erdogan, and T. Arslan,
“Analysis of doa estimation for directional and isotropic antenna arrays,” in 2011 Loughborough
Antennas & Propagation Conference, 2011, pp. 1–4. doi: 10.1109/LAPC.2011.6114043.

32

https://doi.org/10.1038/s41598-021-91541-4
https://www.rtl-sdr.com/
https://www.allaboutcircuits.com/textbook/radio-frequency-analysis-design/radio-frequency-demodulation/understanding-quadrature-demodulation/
https://www.allaboutcircuits.com/textbook/radio-frequency-analysis-design/radio-frequency-demodulation/understanding-quadrature-demodulation/
https://pysdr.org/content/doa.html
https://scholarworks.gvsu.edu/theses
https://scienceready.com.au/pages/dopplers-effect
https://api.semanticscholar.org/CorpusID:4677299
https://doi.org/10.13140/RG.2.1.1019.4002/1
https://www.researchgate.net/publication/289779492
https://doi.org/10.1002/2017RS006284
https://books.google.nl/books?id=j1UjygAACAAJ
https://medium.com/@dasikavaishnavi/gold-code-generators-d784e2b87984
https://scholars.unh.edu/honors/450
https://doi.org/10.1109/t-vt.1980.23859
https://doi.org/10.1109/LAPC.2011.6114043

[21] J. A. Helms, A. P. Godfrey, T. Ames, and E. S. Bridge, “Predator foraging altitudes reveal the
structure of aerial insect communities,” Scientific Reports, vol. 6, Jun. 2016, issn: 20452322.
doi: 10.1038/srep28670.

[22] N. Murugendrappa, A. G. Ananth, and K. M. Mohanesh, “Adaptive noise cancellation using
kalman filter for non-stationary signals,” vol. 925, IOP Publishing Ltd, Oct. 2020. doi:
10.1088/1757-899X/925/1/012061.

[23] Kalman filter from the ground up second edition. 2023, isbn: 9789659312016.

[24] O. Cadet, Introduction to kalman filter and its use in dynamic positioning systems introduction
to kalman filter-application to dp dynamic positioning conference.

[25] F. Subhan, A. Khan, S. Saleem, et al., “Experimental analysis of received signals strength in
bluetooth low energy (ble) and its effect on distance and position estimation,” Transactions on
Emerging Telecommunications Technologies, vol. 33, 2 Feb. 2022, issn: 21613915. doi:
10.1002/ett.3793.

[26] I. W. Peshkov, N. A. Fortunova, and I. N. Zaitseva, “Minimizing the cramer-rao lower bound
for antenna arrays with directional radiators for direction-of-arrival estimation of radio
signals,” Institute of Electrical and Electronics Engineers Inc., 2022, isbn: 9781665470643. doi:
10.1109/SYNCHROINFO55067.2022.9840952.

[27] B. Sadler and R. Kozick, “A survey of time delay estimation performance bounds,” Institute of
Electrical and Electronics Engineers (IEEE), Oct. 2006, pp. 282–288. doi:
10.1109/sam.2006.1706138.

[28] D. J. G. Janssen, Telecommunications a (ee2t11) lecture 3, 2023.

[29] E. Notes, Yagi antenna theory: Yagi antenna basics. [Online]. Available:
https://www.electronics-notes.com/articles/antennas-propagation/yagi-uda-

antenna-aerial/theory.php.

[30] J. D. Rob Nijman, De honingbij hoort erbij, 2008.

[31] Beekeepers — Labour Market Insights. [Online]. Available:
https://labourmarketinsights.gov.au/occupation-

profile/beekeepers?occupationCode=121311.

[32] J. Nielsen, Enhancing the explanatory power of usability heuristics.

[33] A. Business, Chapter 15: Requirements and user stories. [Online]. Available:
https://www.agilebusiness.org/dsdm-project-framework/requirements-and-user-

stories.html.

[34] K. Dandekar, B. I. Raju, and M. A. Srinivasan, “3-d finite-element models of human and
monkey fingertips to investigate the mechanics of tactile sense,” Journal of Biomechanical
Engineering, vol. 125, pp. 682–691, 5 Oct. 2003, issn: 01480731. doi: 10.1115/1.1613673.

[35] pyrtlsdr. [Online]. Available:
https://pyrtlsdr.readthedocs.io/en/latest/Overview.html.

[36] FigMa: The Collaborative Interface Design Tool. [Online]. Available: https://figma.com/.

[37] Tejeez, GitHub - tejeez/rtlcoherent : SynchronizedRTL− SDRreceiversanddirectionfinding.
[Online]. Available: https://github.com/tejeez/rtl_coherent.

[38] H. E. Mikhaylitskaya S, Transmission and reception of an ultra-low power signal.

[39] D. .-. S. Linux Philip Collier Ab9il, RTL-SDR Sensitivity Improvement — Linux for Shortwave
Listeners — RTL-SDR — KiwiSDR. [Online]. Available:
https://skywavelinux.com/rtlsdr-sens.html#:~:

text=The%20RTL%2DSDR%20has%20a,in%20terms%20of%20manufacturing%20tolerances..

[40] Realtek, Rtl2832u dvb-t cfdm demodulator+usb 2.0 datasheet, 2010.

33

https://doi.org/10.1038/srep28670
https://doi.org/10.1088/1757-899X/925/1/012061
https://doi.org/10.1002/ett.3793
https://doi.org/10.1109/SYNCHROINFO55067.2022.9840952
https://doi.org/10.1109/sam.2006.1706138
https://www.electronics-notes.com/articles/antennas-propagation/yagi-uda-antenna-aerial/theory.php
https://www.electronics-notes.com/articles/antennas-propagation/yagi-uda-antenna-aerial/theory.php
https://labourmarketinsights.gov.au/occupation-profile/beekeepers?occupationCode=121311
https://labourmarketinsights.gov.au/occupation-profile/beekeepers?occupationCode=121311
https://www.agilebusiness.org/dsdm-project-framework/requirements-and-user-stories.html
https://www.agilebusiness.org/dsdm-project-framework/requirements-and-user-stories.html
https://doi.org/10.1115/1.1613673
https://pyrtlsdr.readthedocs.io/en/latest/Overview.html
https://figma.com/
https://github.com/tejeez/rtl_coherent
https://skywavelinux.com/rtlsdr-sens.html#:~:text=The%20RTL%2DSDR%20has%20a,in%20terms%20of%20manufacturing%20tolerances.
https://skywavelinux.com/rtlsdr-sens.html#:~:text=The%20RTL%2DSDR%20has%20a,in%20terms%20of%20manufacturing%20tolerances.

A Additional figures

A.1 RTL-SDR

Figure 32: Block diagram of the RTL-SDR. From [40]

A.2 Figma GUI

Figure 33: GUI menu when the menu options are turned off.

34

A.3 UML class diagram

Figure 34: Visual representation of the class structure of the software using Unified Modeling
Language

35

B Application code

The github repository for all of the main code and test code can be found using the following link:
https://github.com/Mika-08/DirectionFinding

B.1 Main

import pygame

import GUI

def main():

"""

Main function of the program

:return: Nothing

"""

For running on Mac scaling = 1.4

scaling = 1.4

gui = GUI.GUI(scaling)

gui.init_window()

pygame.display.update()

if not gui.states["dummy_mode"]:

gui.tracking.enable_antennas()

running = True

while running:

gui.draw_dynamic()

pygame.display.update()

running = gui.handle_events()

pygame.quit()

if __name__ == "__main__":

main()

B.2 GUI

import pygame

import numpy as np

from datetime import datetime

import Stopwatch

import Tracking

class GUI:

def __init__(self, scaling):

"""

Constructor function for GUI class

36

"""

self.SCALING = scaling

self.WIDTH = 1400 / self.SCALING

self.HEIGHT = 2 * self.WIDTH / 3

self.SCREEN = None

self.states = {

"stopwatch_is_enabled": True,

"tracking_is_enabled": True,

"menu": False,

Make true if not antennas are connected

"dummy_mode": False

}

self.stopwatch = Stopwatch.Stopwatch()

if not self.states["dummy_mode"]:

self.tracking = Tracking.Tracking()

pygame.font.init()

self.MAIN_FONT = 'freesansbold.ttf'

self.FONTS = {

"radar_font": pygame.font.Font(self.MAIN_FONT, int(30 / self.SCALING)),

"time_font": pygame.font.Font(self.MAIN_FONT, int(30 / self.SCALING)),

"stopwatch_font": pygame.font.Font(self.MAIN_FONT, int(30 /

self.SCALING)),↪→

"menu_font": pygame.font.Font(self.MAIN_FONT, int(100 / self.SCALING)),

"menu_item_font": pygame.font.Font(self.MAIN_FONT, int(50 /

self.SCALING)),↪→

"gain_slider_font": pygame.font.Font(self.MAIN_FONT, int(30 /

self.SCALING))↪→

}

self.COLORS = {

"black": (8, 9, 10),

"green": (50, 205, 50),

"red": (240, 84, 79),

"white": (255, 250, 255)

}

Buttons

self.reset_button = None

self.start_stop_button = None

self.menu_button = None

self.back_button = None

self.tracking_button = None

self.stopwatch_button = None

self.gain_slider = None

self.gain_slider_x = 0

self.gain = None

self.dragging = None

37

Pictograms

self.pictograms = {

"menu_image": pygame.image.load("images/menu_white.PNG"),

"back_image": pygame.image.load("images/back_arrow_white.png")

}

Radar properties

self.radar_properties = {

"radius": 500 / self.SCALING,

"circle_center_x": int(self.WIDTH / 2),

"circle_center_y": int(4 * self.HEIGHT / 5),

}

self.radar_properties["circle_center"] =

(self.radar_properties["circle_center_x"],

self.radar_properties["circle_center_y"])

↪→

↪→

def init_window(self):

"""

Function for initializing the screen

:return: Nothing

"""

pygame.init()

self.SCREEN = pygame.display.set_mode((self.WIDTH, self.HEIGHT))

pygame.display.set_caption("Hornet tracker")

def make_radar_circles(self):

"""

Draw radar circles on the GUI.

"""

for i in range(5):

radius_outer_circle = self.radar_properties["radius"] - i * (100 /

self.SCALING) + 8.4 / self.SCALING↪→

pygame.draw.circle(self.SCREEN, self.COLORS['green'],

self.radar_properties["circle_center"], radius_outer_circle)↪→

pygame.draw.circle(self.SCREEN, self.COLORS['black'],

self.radar_properties["circle_center"], radius_outer_circle - 16.8 /

self.SCALING)

↪→

↪→

text_surface = self.FONTS['radar_font'].render(f"{500 - i * 100}m",

True, self.COLORS['white'])↪→

text_rect = text_surface.get_rect()

text_rect.center = (self.radar_properties["circle_center"][0] + 49 /

self.SCALING, self.radar_properties["circle_center"][1] -

radius_outer_circle - 14 / self.SCALING)

↪→

↪→

self.SCREEN.blit(text_surface, text_rect)

pygame.draw.circle(self.SCREEN, self.COLORS['green'],

self.radar_properties["circle_center"], 10 / self.SCALING)↪→

def make_radar_lines(self):

"""

Draw radar lines on the GUI.

"""

38

for i in range(8):

angle_rad = np.radians(45 * i)

end_point_x = self.radar_properties["circle_center"][0] +

np.sin(angle_rad) * self.radar_properties["radius"]↪→

end_point_y = self.radar_properties["circle_center"][1] +

np.cos(angle_rad) * self.radar_properties["radius"]↪→

pygame.draw.line(self.SCREEN, self.COLORS['green'],

self.radar_properties["circle_center"], (int(end_point_x),

int(end_point_y)), width=int(8.4 / self.SCALING))

↪→

↪→

def make_tracker(self):

"""

Funtion to draw the tracker location on the screen

:return: Nothing

"""

if not self.states["dummy_mode"]:

tracker_x_pos, tracker_y_pos =

self.tracking.make_coordinates(self.SCALING)↪→

tracker_center = (int(tracker_x_pos +

self.radar_properties["circle_center_x"]), int(tracker_y_pos +

self.radar_properties["circle_center_y"]))

↪→

↪→

tracker_radius = 25 / self.SCALING

pygame.draw.circle(self.SCREEN, self.COLORS['red'], tracker_center,

tracker_radius)↪→

def make_time_block(self, stopwatch):

"""

Function for making the time block at the right top of the screen

:param stopwatch: true, then stopwatch is enabled

:return: Nothing

"""

rectangle_x = self.WIDTH - 390 / self.SCALING

rectangle_y = 30 / self.SCALING

Add the current time to the screen

current_time = datetime.now().strftime('%H:%M')

text_time_surface = self.FONTS.get('time_font').render(f"Local time:

{current_time}", True, self.COLORS.get('white'))↪→

text_time_rect = text_time_surface.get_rect()

text_time_rect.topleft = (rectangle_x + 45 / self.SCALING, rectangle_y + 40

/ self.SCALING)↪→

Add to the screen

if not self.states["menu"]:

self.SCREEN.blit(text_time_surface, text_time_rect)

Add the outline and the stopwatch function when the stopwatch is enabled

if stopwatch:

self.make_stopwatch(rectangle_x, rectangle_y)

def make_stopwatch(self, rectangle_x, rectangle_y):

"""

Method to call if the stopwatch feature is turned on

39

:return: Nothing

"""

Rectangle outline

rect = pygame.Rect(rectangle_x, rectangle_y, 370 / self.SCALING, 260 /

self.SCALING)↪→

Stopwatch time

stopwatch_time_str = str(self.stopwatch.get_elapsed_time()).split('.')[0]

stopwatch_text_surface =

self.FONTS.get('stopwatch_font').render(f"Stopwatch:

{stopwatch_time_str}", True, self.COLORS.get('white'))

↪→

↪→

stopwatch_text_rect = stopwatch_text_surface.get_rect()

stopwatch_text_rect.topleft = (rectangle_x + 45 / self.SCALING, rectangle_y

+ 100 / self.SCALING)↪→

Stopwatch buttons

reset_text = self.FONTS.get('stopwatch_font').render("Reset", True,

self.COLORS.get('white'))↪→

Change the start stop button text dynamically

start_stop_button_text = "Start"

start_stop_color = self.COLORS.get('green')

if self.stopwatch.is_running:

start_stop_button_text = "Stop"

start_stop_color = self.COLORS.get('red')

start_stop_text =

self.FONTS.get('stopwatch_font').render(f"{start_stop_button_text}",

True, self.COLORS.get('white'))

↪→

↪→

reset_rect = reset_text.get_rect()

reset_rect.center = (rectangle_x + (45 + 60) / self.SCALING, rectangle_y +

200 / self.SCALING)↪→

start_stop_rect = start_stop_text.get_rect()

start_stop_rect.center = (rectangle_x + (45 + 230) / self.SCALING,

rectangle_y + 200 / self.SCALING)↪→

Make outlines for the buttons

x_pos_reset = reset_rect[0] - 35 / self.SCALING

y_pos_reset = reset_rect[1] - 21 / self.SCALING

x_pos_start_stop = start_stop_rect[0] - 42 / self.SCALING

y_pos_start_stop = start_stop_rect[1] - 21 / self.SCALING

self.reset_button = (x_pos_reset, y_pos_reset, 160 / self.SCALING, 75 /

self.SCALING)↪→

self.start_stop_button = (x_pos_start_stop, y_pos_start_stop, 160 /

self.SCALING, 75 / self.SCALING)↪→

if not self.states["menu"]:

Add to the screen

Draw the outline rectangle

pygame.draw.rect(self.SCREEN, self.COLORS.get('white'), rect, width=3,

border_radius=30)↪→

40

Draw the stopwatch text

self.SCREEN.blit(stopwatch_text_surface, stopwatch_text_rect)

Fill the inside

pygame.draw.rect(self.SCREEN, start_stop_color, self.start_stop_button,

border_radius=20)↪→

Draw the outlines

pygame.draw.rect(self.SCREEN, self.COLORS.get('white'),

self.reset_button, width=3, border_radius=20)↪→

pygame.draw.rect(self.SCREEN, self.COLORS.get('white'),

self.start_stop_button, width=3, border_radius=20)↪→

Draw the button text

self.SCREEN.blit(reset_text, reset_rect)

self.SCREEN.blit(start_stop_text, start_stop_rect)

def make_menu_button(self):

"""

Function to add the menu icon to the screen

:return: Nothing

"""

menu_image_scaled = pygame.transform.scale(self.pictograms["menu_image"],

(55, 50))↪→

menu_rect = menu_image_scaled.get_rect(topleft=(48 / self.SCALING, 30 /

self.SCALING))↪→

self.menu_button = menu_rect

if not self.states["menu"]:

self.SCREEN.blit(menu_image_scaled, menu_rect)

def make_menu(self):

"""

Function to make the menu

:return: Nothing

"""

rectangle_x = 260 / self.SCALING

rectangle_y = 250 / self.SCALING

text_menu_surface = self.FONTS.get('menu_font').render("Menu", True,

self.COLORS.get('white'))↪→

text_menu_rect = text_menu_surface.get_rect()

text_menu_rect.center = (self.WIDTH / 2, 180 / self.SCALING)

Make rectangle

rect = pygame.Rect(rectangle_x, rectangle_y, 875 / self.SCALING, 600 /

self.SCALING)↪→

Add text

Tracking

text_tracking_surface = self.FONTS.get('menu_item_font').render("Tracking",

True, self.COLORS.get('white'))↪→

41

text_tracking_rect = text_tracking_surface.get_rect()

text_tracking_rect.topleft = (rectangle_x + 50 / self.SCALING, rectangle_y +

50 / self.SCALING)↪→

Stopwatch

text_stopwatch_surface =

self.FONTS.get('menu_item_font').render("Enable\nstopwatch", True,

self.COLORS.get('white'))

↪→

↪→

text_stopwatch_rect = text_stopwatch_surface.get_rect()

text_stopwatch_rect.topleft = (rectangle_x + 50 / self.SCALING, rectangle_y

+ 200 / self.SCALING)↪→

Gain text

text_gain_surface = self.FONTS.get('menu_item_font').render("Dongle gain",

True, self.COLORS.get('white'))↪→

text_gain_rect = text_gain_surface.get_rect()

text_gain_rect.topleft = (rectangle_x + 50 / self.SCALING, rectangle_y + 400

/ self.SCALING)↪→

Gain left bound

text_gain_left_surface = self.FONTS.get('gain_slider_font').render("0 dB",

True, self.COLORS.get('white'))↪→

text_gain_left_rect = text_gain_left_surface.get_rect()

text_gain_left_rect.topleft = (rectangle_x + 380 / self.SCALING, rectangle_y

+ 350 / self.SCALING)↪→

Gain right bound

text_gain_right_surface = self.FONTS.get('gain_slider_font').render("49.6

dB", True, self.COLORS.get('white'))↪→

text_gain_right_rect = text_gain_right_surface.get_rect()

text_gain_right_rect.topleft = (rectangle_x + 675 / self.SCALING,

rectangle_y + 350 / self.SCALING)↪→

Gain value

text_gain_value_surface =

self.FONTS.get('gain_slider_font').render(f"{self.gain} dB", True,

self.COLORS.get('white'))

↪→

↪→

text_gain_value_rect = text_gain_value_surface.get_rect()

text_gain_value_rect.topleft = (rectangle_x + 525 / self.SCALING,

rectangle_y + 450 / self.SCALING)↪→

Make the menu sliders

self.make_menu_item_slider(rectangle_x, rectangle_y)

if self.states["menu"]:

Add to the screen

pygame.draw.rect(self.SCREEN, self.COLORS.get('white'), rect, width=3,

border_radius=30)↪→

self.SCREEN.blit(text_menu_surface, text_menu_rect)

self.SCREEN.blit(text_tracking_surface, text_tracking_rect)

self.SCREEN.blit(text_stopwatch_surface, text_stopwatch_rect)

self.SCREEN.blit(text_gain_surface, text_gain_rect)

42

self.SCREEN.blit(text_gain_left_surface, text_gain_left_rect)

self.SCREEN.blit(text_gain_right_surface, text_gain_right_rect)

self.SCREEN.blit(text_gain_value_surface, text_gain_value_rect)

def make_menu_item_slider(self, rectangle_x, rectangle_y):

"""

Function for making the menu sliders

:param rectangle_x: x position of the border

:param rectangle_y: y position of the border

:return: Nothing

"""

TODO: Divide into multiple functions

rect_tracking = pygame.Rect(rectangle_x + 670 / self.SCALING, rectangle_y +

50 / self.SCALING, 120 / self.SCALING, 45 / self.SCALING)↪→

self.tracking_button = rect_tracking

rect_stopwatch = pygame.Rect(rectangle_x + 670 / self.SCALING, rectangle_y +

200 / self.SCALING, 120 / self.SCALING, 45 / self.SCALING)↪→

self.stopwatch_button = rect_stopwatch

tracking_dot_x_pos = 371 / self.SCALING

tracking_dot_color = self.COLORS.get('red')

if self.states["tracking_is_enabled"]:

tracking_dot_x_pos = 420 / self.SCALING

tracking_dot_color = self.COLORS.get('green')

rect_tracking_dot = pygame.Rect(tracking_dot_x_pos + 575 / self.SCALING,

rectangle_y + 57 / self.SCALING, 40 / self.SCALING, 32 / self.SCALING)↪→

stopwatch_dot_x_pos = 371 / self.SCALING

stopwatch_dot_color = self.COLORS.get('red')

if self.states["stopwatch_is_enabled"]:

stopwatch_dot_x_pos = 420 / self.SCALING

stopwatch_dot_color = self.COLORS.get('green')

rect_stopwatch_dot = pygame.Rect(stopwatch_dot_x_pos + 575 / self.SCALING,

rectangle_y + 207 / self.SCALING, 40 / self.SCALING, 32 / self.SCALING)↪→

self.make_gain_slider(rectangle_x, rectangle_y)

if self.states["menu"]:

pygame.draw.rect(self.SCREEN, self.COLORS.get('white'), rect_tracking,

width=3, border_radius=20)↪→

pygame.draw.rect(self.SCREEN, self.COLORS.get('white'), rect_stopwatch,

width=3, border_radius=20)↪→

pygame.draw.rect(self.SCREEN, tracking_dot_color, rect_tracking_dot,

border_radius=20)↪→

pygame.draw.rect(self.SCREEN, stopwatch_dot_color, rect_stopwatch_dot,

border_radius=20)↪→

43

def make_gain_slider(self, rectangle_x, rectangle_y):

"""

Make the gain slider

:param rectangle_x: x position of the menu rectangle

:param rectangle_y: y position of the menu rectangle

:return: Nothing

"""

slider_x = rectangle_x + 370 / self.SCALING

slider_y = rectangle_y + 400 / self.SCALING

slider_width = 420 / self.SCALING

dot_width = 40 / self.SCALING

rect_gain = pygame.Rect(slider_x, slider_y, slider_width, 45 / self.SCALING)

self.gain_slider_x = slider_x

if self.gain_slider_x < slider_x:

self.gain_slider_x = slider_x

if self.gain_slider_x > slider_x + 261.42857142857144:

self.gain_slider_x = slider_x + 261.42857142857144

rect_gain_dot = pygame.Rect(self.gain_slider_x + 7 / self.SCALING, slider_y

+ 7 / self.SCALING, dot_width, 32 / self.SCALING)↪→

self.gain_slider = rect_gain_dot

self.calculate_gain(slider_x, slider_width, dot_width)

if self.states["menu"]:

pygame.draw.rect(self.SCREEN, self.COLORS.get('white'), rect_gain,

width=3, border_radius=20)↪→

pygame.draw.rect(self.SCREEN, self.COLORS.get('white'), rect_gain_dot,

border_radius=20)↪→

def calculate_gain(self, slider_x, slider_width, dot_width):

"""

Calculate the gain value

:param slider_x: The x position of the slider rectangle

:param slider_width: The width of the slider rectangle

:param dot_width: The width of the slider dot

:return: Nothing

"""

gain_values = [0.0, 0.9, 1.4, 2.7, 3.7, 7.7, 8.7, 12.5, 14.4, 15.7, 16.6,

19.7, 20.7, 22.9, 25.4, 28.0, 29.7, 32.8, 33.8, 36.4, 37.2, 38.6, 40.2,

42.1, 43.4, 43.9, 44.5, 48.0, 49.6]

↪→

↪→

min_value_gain = min(gain_values)

max_value_gain = max(gain_values)

44

normalized_gain_values = [(value - min_value_gain) / (max_value_gain -

min_value_gain) * (slider_width - 14 / self.SCALING - dot_width) for

value in gain_values]

↪→

↪→

slider_value = (self.gain_slider_x - slider_x) / (slider_width - 14 /

self.SCALING - dot_width) * \ (max_value_gain - min_value_gain) +

min_value_gain

↪→

↪→

self.gain = min(gain_values, key=lambda x: abs(x - slider_value))

def make_back_button(self):

"""

Make the back button

:return: Nothing

"""

back_image_scaled = pygame.transform.scale(self.pictograms["back_image"],

(60, 50))↪→

back_rect = back_image_scaled.get_rect(topleft=(48 / self.SCALING, 30 /

self.SCALING))↪→

self.back_button = back_rect

if self.states["menu"]:

self.SCREEN.blit(back_image_scaled, back_rect)

def check_stopwatch_buttons(self, mouse_pos):

"""

Check is the stopwatch buttons are clicked

:param mouse_pos: position of the mouse

:return: Nothing

"""

Make the hit boxes for the stop watch buttons

reset_box = pygame.Rect(self.reset_button)

start_stop_box = pygame.Rect(self.start_stop_button)

if reset_box.collidepoint(mouse_pos):

self.stopwatch.reset()

elif start_stop_box.collidepoint(mouse_pos):

self.stopwatch.start_stop()

def check_buttons(self, mouse_pos):

"""

Function for checking if a button is clicked

:param mouse_pos: position of the mouse

:return: Nothing

"""

if self.states["menu"]:

if self.back_button.collidepoint(mouse_pos):

self.states["menu"] = False

if self.tracking_button.collidepoint(mouse_pos) and

self.states["tracking_is_enabled"]:↪→

self.states["tracking_is_enabled"] = False

45

if not self.states["dummy_mode"]:

self.tracking.disable_antennas()

elif self.tracking_button.collidepoint(mouse_pos) and not

self.states["tracking_is_enabled"]:↪→

self.states["tracking_is_enabled"] = True

if not self.states["dummy_mode"]:

self.tracking.enable_antennas()

if self.stopwatch_button.collidepoint(mouse_pos) and

self.states["stopwatch_is_enabled"]:↪→

self.states["stopwatch_is_enabled"] = False

elif self.stopwatch_button.collidepoint(mouse_pos) and not

self.states["stopwatch_is_enabled"]:↪→

self.states["stopwatch_is_enabled"] = True

elif not self.states["menu"]:

if self.menu_button.collidepoint(mouse_pos):

self.states["menu"] = True

if self.states["stopwatch_is_enabled"]:

self.check_stopwatch_buttons(mouse_pos)

def check_gain_slider(self, event):

"""

Check if the slider is adjusted

:param event: Event in the event list

:return: Noting

"""

if self.states["menu"]:

if event.type == pygame.MOUSEBUTTONDOWN:

if self.gain_slider.collidepoint(event.pos):

self.dragging = True

elif event.type == pygame.MOUSEBUTTONUP:

self.dragging = False

elif event.type == pygame.MOUSEMOTION:

if self.dragging:

mouse_x, _ = event.pos

self.gain_slider_x = mouse_x

def handle_events(self):

"""

Event handler

:return: Nothing

"""

for event in pygame.event.get():

mouse_pos = pygame.mouse.get_pos()

if event.type == pygame.QUIT:

if not self.states["dummy_mode"]:

self.tracking.disable_antennas()

return False

elif event.type == pygame.MOUSEBUTTONDOWN:

46

self.check_buttons(mouse_pos)

self.check_gain_slider(event)

return True

def draw_track_screen(self):

"""

Draw the tracking screen

:return: Nothing

"""

Make radar

self.make_radar_circles()

self.make_radar_lines()

if self.states["tracking_is_enabled"]:

self.make_tracker()

Make menu button

self.make_menu_button()

self.make_back_button()

Show or not show the stopwatch

if self.states["stopwatch_is_enabled"]:

self.make_time_block(True)

elif not self.states["stopwatch_is_enabled"]:

self.make_time_block(False)

def draw_menu_screen(self):

"""

Draw the menu screen

:return: Nothing

"""

self.make_menu()

self.make_back_button()

def draw_dynamic(self):

"""

Function for dynamically drawing the items on the screen

:return: Nothing

"""

self.make_menu_button()

self.make_back_button()

self.make_time_block(self.stopwatch)

self.make_menu()

self.SCREEN.fill(self.COLORS.get('black'))

if self.states["menu"]:

self.SCREEN.fill(self.COLORS.get('black'))

print("menu show")

self.draw_menu_screen()

47

if not self.states["menu"]:

self.SCREEN.fill(self.COLORS.get('black'))

print("tracking show")

self.draw_track_screen()

B.3 Stopwatch

from datetime import datetime, timedelta

class Stopwatch:

def __init__(self):

"""

Initializer function for the Stopwatch class

"""

self.is_running = False

self.start_time = None

self.elapsed_time = timedelta()

def start_stop(self):

"""

Function for starting and stopping the stopwatch

:return: Nothing

"""

if self.is_running:

self.is_running = False

self.elapsed_time += datetime.now() - self.start_time

else:

self.is_running = True

self.start_time = datetime.now()

def reset(self):

"""

Function for resetting the stopwatch

:return: Nothing

"""

self.is_running = False

self.start_time = None

self.elapsed_time = timedelta()

def get_elapsed_time(self):

"""

Get the elapsed time

:return: The elapsed time

"""

if self.is_running:

return self.elapsed_time + (datetime.now() - self.start_time)

else:

return self.elapsed_time

48

B.4 Tracking

import numpy as np

import SignalProcessing

class Tracking:

def __init__(self):

"""

Constructor function for the tracking class

"""

self.signal_processing = SignalProcessing.SignalProcessing()

self.angle_of_arrival = None

self.distance = None

def enable_antennas(self):

"""

Function to enable the receiving antennas

:return: Nothing

"""

self.signal_processing.enable_receiving()

def disable_antennas(self):

"""

Function to disable the receiving antennas

:return: Nothing

"""

self.signal_processing.disable_receiving()

def get_signal_information(self):

"""

Function for getting the information from the signal processing object

:return: Nothing

"""

self.angle_of_arrival = self.signal_processing.calculate_aoa()

self.distance = self.signal_processing.calculate_distance()

def make_coordinates(self, scaling):

"""

Function for making the coordinates of the dot

:return:

"""

self.get_signal_information()

ring_number = (self.distance + 99) // 100

if ring_number > 5:

ring_number = 5

line_length = ring_number * 100 / scaling # Think of solution

- 90 to let the top correspond with 0 degrees

angle_radians = np.radians(self.angle_of_arrival - 90)

x_pos = np.cos(angle_radians) * line_length

49

y_pos = np.sin(angle_radians) * line_length

return x_pos, y_pos

B.5 Receiver

import numpy as np

import threading

from rtlsdr import RtlSdr

class Receiver:

def __init__(self, center_freq, sample_rate, gain='auto', device_index=0):

"""

Constructor for the ReceiverTest class

:param center_freq: center frequency of the signal

:param sample_rate: sampling rate

:param gain: gain of the dongle

:param device_index: index of the RTL-SDR dongle

"""

self.receive_thread = None

self.samples = np.zeros(int(5 * sample_rate), dtype=np.complex64)

self.sample_lock = threading.Lock()

self.sdr = RtlSdr(device_index=device_index)

Configure SDR settings

self.sdr.sample_rate = sample_rate # Hz

self.sdr.center_freq = center_freq # Hz

self.sdr.gain = gain

Flag to stop the receiving thread

self.terminate_flag = threading.Event()

def receive_samples(self):

"""

Function to receive the samples

:return: Nothing

"""

while not self.terminate_flag.is_set():

samples = self.sdr.read_samples(256 * 1024) # Read samples from the

SDR↪→

with self.sample_lock:

self.samples = np.roll(self.samples, -len(samples))

self.samples[-len(samples):] = samples

def start_receiving(self):

"""

Function to make a thread to receive the samples

:return: Nothing

"""

self.receive_thread = threading.Thread(target=self.receive_samples)

self.receive_thread.daemon = True # Allows the program to exit even if the

thread is running↪→

50

self.receive_thread.start()

def stop_receiving(self):

"""

Function to stop receiving when the terminate_flag has been set

:return: Nothing

"""

self.terminate_flag.set()

self.receive_thread.join()

self.sdr.close()

def get_samples(self):

"""

Function to get the samples using a data lock

:return: The samples

"""

with self.sample_lock:

return self.samples

B.6 SignalProcessing

import Kalman

import numpy as np

import Receiver

import ReferenceSignal

import scipy

def zero_pad_array(arr, desired_length):

"""

Function that adds additional zeros to the array

:param arr: Array to be altered

:param desired_length: Length which the altered array needs to be

:return: The altered array

"""

current_length = len(arr)

if current_length < desired_length:

padding = desired_length - current_length

arr = np.pad(arr, (0, padding), 'constant', constant_values=(0,))

return arr

def time_delay(ref, samples1, samples2, sample_rate):

"""

Function to calculate the time difference and phase difference between two

signal↪→

:param ref: Reference signal

:param samples1: Received signal 1

:param samples2: Received signal 2

:return: The time difference and phase difference

"""

downsampling_factor = 1

51

ref = ref[::downsampling_factor]

samples1 = samples1[::downsampling_factor]

samples2 = samples2[::downsampling_factor]

length_ref = len(ref)

length_samples = len(samples1)

total_length = length_ref + length_samples - 1

ref = zero_pad_array(ref, total_length)

samples1 = zero_pad_array(samples1, total_length)

samples2 = zero_pad_array(samples2, total_length)

mult1 = np.flip(scipy.fft.fft(np.conj(ref))) * scipy.fft.fft(samples1)

mult2 = np.flip(scipy.fft.fft(np.conj(ref))) * scipy.fft.fft(samples2)

if np.argmax(np.abs(scipy.fft.ifft(mult2))) >

np.argmax(np.abs(scipy.fft.ifft(mult1))):↪→

ifft = np.abs(scipy.fft.ifft(mult2 / mult1))

else:

ifft = np.abs(scipy.fft.ifft(mult1 / mult2))

td = np.linspace(0, total_length / sample_rate, total_length)

est_delay = (td[np.argmax(np.abs(ifft))] * downsampling_factor) % 1

T = 1

phase_delay = 2 * np.pi * 1 / T * est_delay

phase_delay_degrees = np.rad2deg(phase_delay)

return est_delay, phase_delay

class SignalProcessing:

def __init__(self):

"""

Constructor for the signal processing class

"""

self.status = False

self.kalman = Kalman.Kalman()

self.center_freq = 434e6

self.sample_rate = 2.048e6

self.rx1 = Receiver.Receiver(self.center_freq, self.sample_rate,

device_index=0)↪→

self.rx2 = Receiver.Receiver(self.center_freq, self.sample_rate,

device_index=1)↪→

self.reference_signal = ReferenceSignal.ReferenceSignal(self.sample_rate)

self.past_data = []

def disable_receiving(self):

"""

52

Function to let the sdr dongles receive

:return: Nothing

"""

self.rx1.stop_receiving()

self.rx2.stop_receiving()

self.save_data()

self.past_data = []

def enable_receiving(self):

"""

Function to let the sdr dongles stop with receiving

:return: Nothing

"""

self.rx1.start_receiving()

self.rx2.start_receiving()

def save_data(self):

"""

Function to save the last tracking to a file

:return: Nothing

"""

print(self.past_data)

output_file = open("Output.txt", "w")

for data in self.past_data:

output_file.write(str(data))

output_file.write("\n")

def calculate_delta_phi(self):

"""

Function to calculate the phase difference between the two received signals

:return: delta_phi, the phase difference

"""

Get samples

samples1 = self.rx1.get_samples()

samples2 = self.rx2.get_samples()

modulated_ref = self.reference_signal.signal

delay, phase = time_delay(modulated_ref, samples1, samples2,

self.sample_rate)↪→

delta_phi = phase

return delta_phi

def calculate_aoa(self):

"""

Function to calculate the angle of arrival with the delta_phi

:return: Angle of arrival

"""

delta_phi = self.calculate_delta_phi()

Ensure the phase difference is within the range [-pi, pi]

delta_phi = np.arctan2(np.sin(delta_phi), np.cos(delta_phi))

53

Calculate the angle of arrival

sin_theta = delta_phi / np.pi

Ensure sin_theta is in the valid range [-1, 1]

sin_theta = np.clip(sin_theta, -1, 1)

angle_of_arrival = np.arcsin(sin_theta)

Convert to degrees

angle_of_arrival_degrees = np.rad2deg(angle_of_arrival)

print(angle_of_arrival_degrees)

self.past_data.append(angle_of_arrival_degrees)

return angle_of_arrival_degrees

def calculate_distance(self):

"""

Function to calculate the distance to the receiver using the RSSI

Not implemented

:return: Distance

"""

distance = 250

return distance

B.7 ReferenceSignal

import numpy as np

def makeSignal(ref, sample_rate):

Define the carrier frequency

carrier_frequency = 434e6

Generate the time vector for the base signal

t = np.arange(len(ref)) / sample_rate

Generate the carrier signal

carrier_signal = np.cos(2 * np.pi * carrier_frequency * t)

Modulate the base signal with the carrier

modulated_signal = ref * carrier_signal

return modulated_signal

class ReferenceSignal:

def __init__(self, sample_rate):

"""

Constructor function for the reference signal class

:param sample_rate: Sample rate with which the dongles sample

"""

self.signal = None

54

self.sample_rate = sample_rate

self.gold_code = [1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1,

0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0]↪→

self.create_reference_signal()

def create_reference_signal_gold_code(self):

signal = []

bit_time = 0.01613

bit_duration = int(bit_time * self.sample_rate)

for value in self.gold_code:

if value == 1:

signal.append(np.ones(bit_duration))

else:

signal.append(np.zeros(bit_duration))

Concatenate the list of arrays into a single array

self.signal = np.concatenate(signal)

def create_reference_signal(self):

"""

Function that creates a reference signal form the code

:return: Nothing

"""

on_duration = int(0.03 * self.sample_rate)

off_duration_short = int(0.03 * self.sample_rate)

off_duration_long = int(0.91 * self.sample_rate)

reference_signal = np.concatenate([

np.ones(on_duration),

np.zeros(off_duration_short),

np.ones(on_duration),

np.zeros(off_duration_long)

])

modulated_ref = makeSignal(reference_signal, self.sample_rate)

self.signal = modulated_ref

55

C Test code

C.1 Receive signal

import numpy as np

import matplotlib.pyplot as plt

import Receiver

from matplotlib.animation import FuncAnimation

center_freq = 434e6

sample_rate = 2.048e6

receiver = Receiver.Receiver(center_freq, sample_rate)

receiver.start_receiving()

duration = 5 # Duration in seconds

Create a figure and axis for plotting

fig, (ax1) = plt.subplots(1, 1, figsize=(10, 8))

x_data = np.linspace(-duration, 0, int(duration * sample_rate))

y_data1 = np.zeros(int(duration * sample_rate))

phase_data = []

line1, = ax1.plot(x_data, y_data1, lw=2, label='Receiver 1')

ax1.set_ylim(0, 2)

ax1.set_xlabel('Time (s)')

ax1.set_ylabel('Amplitude')

ax1.set_title('Received Signal - RTL-SDR 1')

ax1.legend(loc='upper right')

def init():

"""

Initialize the plot

:return:

"""

line1.set_ydata(np.zeros_like(x_data))

return line1,

def update(frame):

"""

Function that updates the plot real-time

:return: The lines to plot

"""

samples1 = receiver.get_samples()

if samples1 is not None:

Update the plot data for the received signal

y_data1[:] = np.abs(samples1[:int(duration * sample_rate)])

line1.set_ydata(y_data1)

return line1,

56

Set up the animation

ani = FuncAnimation(fig, update, init_func=init, blit=True, interval=50,

cache_frame_data=False)↪→

Show the plot

plt.tight_layout()

plt.show()

receiver.stop_receiving()

C.2 Receive signals using two antennas

import numpy as np

import threading

import matplotlib.pyplot as plt

from matplotlib.animation import FuncAnimation

from rtlsdr import RtlSdr

import Receiver

Initialize receivers with the center frequency and sample rate

center_freq = 434e6

sample_rate = 2.048e6

receiver1 = Receiver.Receiver(center_freq, sample_rate, device_index=0)

receiver2 = Receiver.Receiver(center_freq, sample_rate, device_index=1)

receiver1.start_receiving()

receiver2.start_receiving()

Create a figure and axis for plotting

fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 6))

x_data = np.linspace(-5, 0, int(5 * sample_rate))

y_data1 = np.zeros(int(5 * sample_rate))

y_data2 = np.zeros(int(5 * sample_rate))

line1, = ax1.plot(x_data, y_data1, lw=2, label='Receiver 1')

line2, = ax2.plot(x_data, y_data2, lw=2, label='Receiver 2')

ax1.set_ylim(0, 2)

ax2.set_ylim(0, 2)

ax1.set_xlabel('Time (s)')

ax2.set_xlabel('Time (s)')

ax1.set_ylabel('Amplitude')

ax2.set_ylabel('Amplitude')

ax1.set_title('Received Signal - RTL-SDR 1')

ax2.set_title('Received Signal - RTL-SDR 2')

ax1.legend(loc='upper right')

ax2.legend(loc='upper right')

57

def init():

"""

Initialize the plot

:return:

"""

line1.set_ydata(np.zeros_like(y_data1))

line2.set_ydata(np.zeros_like(y_data2))

return line1, line2

def update(frame):

"""

Function that updates the plot real-time

:return: The lines to plot

"""

samples1 = receiver1.get_samples()

samples2 = receiver2.get_samples()

if samples1 is not None and samples2 is not None:

Update the plot data

y_data1[:] = np.abs(samples1[:int(5 * sample_rate)])

y_data2[:] = np.abs(samples2[:int(5 * sample_rate)])

line1.set_ydata(y_data1)

line2.set_ydata(y_data2)

return line1, line2

Set up the animation

ani = FuncAnimation(fig, update, init_func=init, blit=True, interval=50,

cache_frame_data=False)↪→

Show the plot

plt.tight_layout()

plt.show()

Stop receiving samples when closing the plot

receiver1.stop_receiving()

receiver2.stop_receiving()

C.3 Phase difference calculation

import numpy as np

import scipy

import matplotlib.pyplot as plt

center_freq = 434e6

sample_rate = 2.048e6

duration = 5 # Duration in seconds

wavelength = 3e8 / center_freq # Speed of light divided by center frequency

58

on_duration = int(0.03 * sample_rate)

off_duration_short = int(0.03 * sample_rate)

off_duration_long = int(0.91 * sample_rate)

ref = np.concatenate([

np.ones(on_duration),

np.zeros(off_duration_short),

np.ones(on_duration),

np.zeros(off_duration_long)

])

def makeSignal(ref, sample_rate):

Define the carrier frequency

carrier_frequency = 434e6

Generate the time vector for the base signal

t = np.arange(len(ref)) / sample_rate

Generate the carrier signal

carrier_signal = np.cos(2 * np.pi * carrier_frequency * t)

Modulate the base signal with the carrier

modulated_signal = ref * carrier_signal

return modulated_signal

def addTimeShift(s, t0, sample_rate):

n = len(s)

fft_signal = scipy.fft.fft(s)

Calculate the frequencies for each component

freqs = np.fft.fftfreq(n, d=1 / sample_rate)

Create the phase shift array for the given time shift t0

phase_shifts = np.exp(-1j * 2 * np.pi * freqs * t0)

Apply the phase shifts to the FFT signal

shifted_fft_signal = fft_signal * phase_shifts

Compute the inverse FFT to get the time-shifted signal

shifted_signal = scipy.fft.ifft(shifted_fft_signal)

return shifted_signal

def zero_pad_array(arr, desired_length):

"""

Function that adds additional zeros to the array

:param arr: Array to be altered

:param desired_length: Length which the altered array needs to be

59

:return: The altered array

"""

current_length = len(arr)

if current_length < desired_length:

padding = desired_length - current_length

arr = np.pad(arr, (0, padding), 'constant', constant_values=(0,))

return arr

def makePeak(ref, samples1):

"""

Function to calculate the time difference and phase difference between the

received signal and the reference signal↪→

:param ref: Reference signal

:param samples1: Received signal

:return: The time delay and phase difference

"""

downsampling_factor = 1

ref = ref[::downsampling_factor]

samples1 = samples1[::downsampling_factor]

length_ref = len(ref)

length_samples = len(samples1)

total_length = length_ref + length_samples - 1

ref = zero_pad_array(ref, total_length)

samples1 = zero_pad_array(samples1, total_length)

mult1 = np.flip(scipy.fft.fft(np.conj(ref))) * scipy.fft.fft(samples1)

ifft = np.abs(scipy.fft.ifft(mult1))

td = np.linspace(0, total_length / sample_rate, total_length)

print(td)

est_delay = td[np.argmax(np.abs(ifft))] * downsampling_factor

T = 1

phase_delay = 2 * np.pi * 1 / T * est_delay

phase_delay_degrees = np.rad2deg(phase_delay)

plt.plot(td, ref, label="Reference signal")

plt.plot(td, samples1, label="Test signal")

plt.title(F"Phase difference at 0.05 seconds time delay\n"

F"Calculated value {phase_delay_degrees:.03f} degrees")

plt.ylabel("Amplitude")

plt.xlabel("Time (s)")

plt.legend()

plt.show()

return est_delay, phase_delay

def makeNoise(signal):

60

target_snr_db = 20

x_watts = signal ** 2

Calculate signal power and convert to dB

sig_avg_watts = np.mean(x_watts)

sig_avg_db = 10 * np.log10(sig_avg_watts)

Calculate noise according to [2] then convert to watts

noise_avg_db = sig_avg_db - target_snr_db

noise_avg_watts = 10 ** (noise_avg_db / 10)

Generate a sample of white noise

mean_noise = 0

noise_volts = np.random.normal(mean_noise, np.sqrt(noise_avg_watts),

len(x_watts))↪→

Add the noise to the data.

return signal + noise_volts

modulated_ref = makeSignal(ref, sample_rate)

shifted = addTimeShift(modulated_ref, 0.05, sample_rate)

shifted = makeNoise(shifted)

delay1, phase1 = makePeak(modulated_ref, shifted)

print(F"The time difference between the reference and the shifted signal is:

{delay1} seconds."↪→

F" The phase difference is: {np.rad2deg(phase1)} degrees.")

C.4 Received signal phase difference

import numpy as np

import scipy

import matplotlib.pyplot as plt

import Receiver

from matplotlib.animation import FuncAnimation

import time

center_freq = 434e6

sample_rate = 2.048e6

receiver = Receiver.Receiver(center_freq, sample_rate)

receiver.start_receiving()

duration = 5 # Duration in seconds

wavelength = 3e8 / center_freq # Speed of light divided by center frequency

on_duration = int(0.03 * sample_rate)

off_duration_short = int(0.03 * sample_rate)

off_duration_long = int(0.91 * sample_rate)

Make the reference signal

ref = np.concatenate([

np.ones(on_duration),

np.zeros(off_duration_short),

61

np.ones(on_duration),

np.zeros(off_duration_long)

])

def makeSignal(ref, sample_rate):

Define the carrier frequency

carrier_frequency = 434e6

Generate the time vector for the base signal

t = np.arange(len(ref)) / sample_rate

Generate the carrier signal

carrier_signal = np.cos(2 * np.pi * carrier_frequency * t)

Modulate the base signal with the carrier

modulated_signal = ref * carrier_signal

return modulated_signal

def zero_pad_array(arr, desired_length):

"""

Function that adds additional zeros to the array

:param arr: Array to be altered

:param desired_length: Length which the altered array needs to be

:return: The altered array

"""

current_length = len(arr)

if current_length < desired_length:

padding = desired_length - current_length

arr = np.pad(arr, (0, padding), 'constant', constant_values=(0,))

return arr

def makePeak(ref, samples1):

"""

Function to calculate the time difference and phase difference between the

received signal and the reference signal↪→

:param ref: Reference signal

:param samples1: Received signal

:return: The time delay and phase difference

"""

begin_time = time.time()

downsampling_factor = 1

ref = ref[::downsampling_factor]

samples1 = samples1[::downsampling_factor]

length_ref = len(ref)

length_samples = len(samples1)

total_length = length_ref + length_samples - 1

62

ref = zero_pad_array(ref, total_length)

samples1 = zero_pad_array(samples1, total_length)

mult1 = np.flip(scipy.fft.fft(np.conj(ref))) * scipy.fft.fft(samples1)

ifft = np.abs(scipy.fft.ifft(mult1))

td = np.linspace(0, total_length / sample_rate, total_length)

print(td)

est_delay = (td[np.argmax(np.abs(ifft))] * downsampling_factor) % 1

T = 1

phase_delay = 2 * np.pi * 1 / T * est_delay

phase_delay_degrees = np.rad2deg(phase_delay)

time_delta = time.time() - begin_time

print(F"Elapsed time is {time_delta} seconds")

return est_delay, phase_delay

modulated_ref = makeSignal(ref, sample_rate)

Create a figure and axis for plotting

fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 8))

x_data = np.linspace(-duration, 0, int(duration * sample_rate))

y_data1 = np.zeros(int(duration * sample_rate))

phase_data = []

line1, = ax1.plot(x_data, y_data1, lw=2, label='Receiver 1')

line2, = ax2.plot([], [], lw=2, label='Phase Difference')

ax1.set_ylim(0, 2)

ax1.set_xlabel('Time (s)')

ax1.set_ylabel('Amplitude')

ax1.set_title('Received Signal - RTL-SDR 1')

ax1.legend(loc='upper right')

ax2.set_ylim(0, 360)

ax2.set_xlim(-duration, 0)

ax2.set_xlabel('Time (s)')

ax2.set_ylabel('Phase Difference (degrees)')

ax2.set_title('Phase Difference')

ax2.legend(loc='upper right')

def init():

"""

Initialize the plot

:return:

"""

line1.set_ydata(np.zeros_like(x_data))

63

line2.set_data([], [])

return line1, line2

def update(frame):

"""

Function that updates the plot real-time

:return: The lines to plot

"""

samples1 = receiver.get_samples()

if samples1 is not None:

Update the plot data for the received signal

y_data1[:] = np.abs(samples1[:int(duration * sample_rate)])

line1.set_ydata(y_data1)

Calculate phase difference

time, phase_difference = makePeak(modulated_ref, samples1)

print(F"The time difference between the reference and the shifted signal is:

{time} seconds."↪→

F" The phase difference is: {np.rad2deg(phase_difference)} degrees.")

phase_difference_degrees = np.degrees(phase_difference) # Convert radians

to degrees↪→

Update the phase difference plot

phase_data.append(phase_difference_degrees)

if len(phase_data) > len(x_data):

phase_data.pop(0)

line2.set_data(np.linspace(-duration, 0, len(phase_data)), phase_data)

return line1, line2

Set up the animation

ani = FuncAnimation(fig, update, init_func=init, blit=True, interval=50,

cache_frame_data=False)↪→

Show the plot

plt.tight_layout()

plt.show()

receiver.stop_receiving()

C.5 Phase difference two signals calculation

import numpy as np

import scipy

import matplotlib.pyplot as plt

center_freq = 434e6

64

sample_rate = 2.048e6

duration = 5 # Duration in seconds

wavelength = 3e8 / center_freq # Speed of light divided by center frequency

def plot(signal1, signal2, signal3, phase):

y1 = np.arange(0, len(signal1))/1000000

y2 = np.arange(0, len(signal2))/1000000

y3 = np.arange(0, len(signal3))/1000000

plt.plot(y1, np.abs(signal1), label="Reference signal")

plt.plot(y2, np.abs(signal2), label="Shifted signal 1, 0.05 s")

plt.plot(y3, np.abs(signal3), label="Shifted signal 2, 0.08 s")

plt.legend()

plt.title(F"Reference signal and two shifted signals \n"

F"Calculated phase difference between the two signals: {phase:.01f}

degrees.")↪→

plt.ylabel("Amplitude")

plt.xlabel("Time (s)")

plt.show()

on_duration = int(0.03 * sample_rate)

off_duration_short = int(0.03 * sample_rate)

off_duration_long = int(0.91 * sample_rate)

ref = np.concatenate([

np.ones(on_duration),

np.zeros(off_duration_short),

np.ones(on_duration),

np.zeros(off_duration_long)

])

def makeSignal(ref, sample_rate):

Define the carrier frequency

carrier_frequency = 434e6

Generate the time vector for the base signal

t = np.arange(len(ref)) / sample_rate

Generate the carrier signal

carrier_signal = np.cos(2 * np.pi * carrier_frequency * t)

Modulate the base signal with the carrier

modulated_signal = ref * carrier_signal

return modulated_signal

def addTimeShift(s, t0, sample_rate):

n = len(s)

fft_signal = scipy.fft.fft(s)

65

Calculate the frequencies for each component

freqs = np.fft.fftfreq(n, d=1 / sample_rate)

Create the phase shift array for the given time shift t0

phase_shifts = np.exp(-1j * 2 * np.pi * freqs * t0)

Apply the phase shifts to the FFT signal

shifted_fft_signal = fft_signal * phase_shifts

Compute the inverse FFT to get the time-shifted signal

shifted_signal = scipy.fft.ifft(shifted_fft_signal)

return shifted_signal

def zero_pad_array(arr, desired_length):

"""

Function that adds additional zeros to the array

:param arr: Array to be altered

:param desired_length: Length which the altered array needs to be

:return: The altered array

"""

current_length = len(arr)

if current_length < desired_length:

padding = desired_length - current_length

arr = np.pad(arr, (0, padding), 'constant', constant_values=(0,))

return arr

def makePeak(ref, samples1):

"""

Function to calculate the time difference and phase difference between the

received signal and the reference signal↪→

:param ref: Reference signal

:param samples1: Received signal

:return: The time delay and phase difference

"""

downsampling_factor = 1

ref = ref[::downsampling_factor]

samples1 = samples1[::downsampling_factor]

length_ref = len(ref)

length_samples = len(samples1)

total_length = length_ref + length_samples - 1

ref = zero_pad_array(ref, total_length)

samples1 = zero_pad_array(samples1, total_length)

mult1 = np.flip(scipy.fft.fft(np.conj(ref))) * scipy.fft.fft(samples1)

ifft = np.abs(scipy.fft.ifft(mult1))

66

td = np.linspace(0, total_length / sample_rate, total_length)

print(td)

est_delay = td[np.argmax(np.abs(ifft))] * downsampling_factor

T = 1

phase_delay = 2 * np.pi * 1/T * est_delay

phase_delay_degrees = np.rad2deg(phase_delay)

return est_delay, phase_delay

def time_delay(ref, samples1, samples2):

"""

Function to calculate the time difference and phase difference between two

signal↪→

:param ref: Reference signal

:param samples1: Received signal 1

:param samples2: Received signal 2

:return: The time difference and phase difference

"""

downsampling_factor = 1

ref = ref[::downsampling_factor]

samples1 = samples1[::downsampling_factor]

samples2 = samples2[::downsampling_factor]

length_ref = len(ref)

length_samples = len(samples1)

total_length = length_ref + length_samples - 1

ref = zero_pad_array(ref, total_length)

samples1 = zero_pad_array(samples1, total_length)

samples2 = zero_pad_array(samples2, total_length)

mult1 = np.flip(scipy.fft.fft(np.conj(ref))) * scipy.fft.fft(samples1)

mult2 = np.flip(scipy.fft.fft(np.conj(ref))) * scipy.fft.fft(samples2)

if np.argmax(np.abs(scipy.fft.ifft(mult2))) >

np.argmax(np.abs(scipy.fft.ifft(mult1))):↪→

ifft = np.abs(scipy.fft.ifft(mult2 / mult1))

else:

ifft = np.abs(scipy.fft.ifft(mult1 / mult2))

td = np.linspace(0, total_length / sample_rate, total_length)

est_delay = td[np.argmax(np.abs(ifft))] * downsampling_factor

T = 1

phase_delay = 2 * np.pi * 1/T * est_delay

phase_delay_degrees = np.rad2deg(phase_delay)

return est_delay, phase_delay

67

def makeNoise(signal):

target_snr_db = 20

x_watts = signal ** 2

Calculate signal power and convert to dB

sig_avg_watts = np.mean(x_watts)

sig_avg_db = 10 * np.log10(sig_avg_watts)

Calculate noise according to [2] then convert to watts

noise_avg_db = sig_avg_db - target_snr_db

noise_avg_watts = 10 ** (noise_avg_db / 10)

Generate a sample of white noise

mean_noise = 0

noise_volts = np.random.normal(mean_noise, np.sqrt(noise_avg_watts),

len(x_watts))↪→

Add the noise to the data.

return signal + noise_volts

modulated_ref = makeSignal(ref, sample_rate)

shifted = addTimeShift(modulated_ref, 0.05, sample_rate)

shifted2 = addTimeShift(modulated_ref, 0.08, sample_rate)

shifted = makeNoise(shifted)

shifted2 = makeNoise(shifted2)

delay1, phase1 = makePeak(modulated_ref, shifted)

print(F"The time difference between the reference and the shifted signal is:

{delay1} seconds."↪→

F" The phase difference is: {np.rad2deg(phase1)} degrees.")

delay2, phase2 = makePeak(modulated_ref, shifted2)

print(F"The time difference between the reference and the shifted signal is:

{delay2} seconds."↪→

F" The phase difference is: {np.rad2deg(phase2)} degrees.")

delay3, phase3 = time_delay(modulated_ref, shifted, shifted2)

print(F"The time difference between the two shifted signals is: {delay3} seconds."

F" The phase difference is: {np.rad2deg(phase3)} degrees.")

plot(modulated_ref, shifted, shifted2, np.rad2deg(phase3))

C.6 Phase difference between the two dongles

import numpy as np

import scipy

import matplotlib.pyplot as plt

import Receiver

from matplotlib.animation import FuncAnimation

import time

68

center_freq = 434e6

sample_rate = 2.048e6

receiver = Receiver.Receiver(center_freq, sample_rate, device_index=0)

receiver2 = Receiver.Receiver(center_freq, sample_rate, device_index=1)

receiver.start_receiving()

receiver2.start_receiving()

duration = 5 # Duration in seconds

wavelength = 3e8 / center_freq # Speed of light divided by center frequency

on_duration = int(0.03 * sample_rate)

off_duration_short = int(0.03 * sample_rate)

off_duration_long = int(0.91 * sample_rate)

Make the reference signal

ref = np.concatenate([

np.ones(on_duration),

np.zeros(off_duration_short),

np.ones(on_duration),

np.zeros(off_duration_long)

])

def makeSignal(ref, sample_rate):

Define the carrier frequency

carrier_frequency = 434e6

Generate the time vector for the base signal

t = np.arange(len(ref)) / sample_rate

Generate the carrier signal

carrier_signal = np.cos(2 * np.pi * carrier_frequency * t)

Modulate the base signal with the carrier

modulated_signal = ref * carrier_signal

return modulated_signal

def zero_pad_array(arr, desired_length):

"""

Function that adds additional zeros to the array

:param arr: Array to be altered

:param desired_length: Length which the altered array needs to be

:return: The altered array

"""

current_length = len(arr)

if current_length < desired_length:

padding = desired_length - current_length

arr = np.pad(arr, (0, padding), 'constant', constant_values=(0,))

return arr

69

def makePeak(ref, samples1):

"""

Function to calculate the time difference and phase difference between the

received signal and the reference signal↪→

:param ref: Reference signal

:param samples1: Received signal

:return: The time delay and phase difference

"""

begin_time = time.time()

downsampling_factor = 1

ref = ref[::downsampling_factor]

samples1 = samples1[::downsampling_factor]

length_ref = len(ref)

length_samples = len(samples1)

total_length = length_ref + length_samples - 1

ref = zero_pad_array(ref, total_length)

samples1 = zero_pad_array(samples1, total_length)

mult1 = np.flip(scipy.fft.fft(np.conj(ref))) * scipy.fft.fft(samples1)

ifft = np.abs(scipy.fft.ifft(mult1))

td = np.linspace(0, total_length / sample_rate, total_length)

print(td)

est_delay = (td[np.argmax(np.abs(ifft))] * downsampling_factor) % 1

T = 1

phase_delay = 2 * np.pi * 1 / T * est_delay

phase_delay_degrees = np.rad2deg(phase_delay)

time_delta = time.time() - begin_time

print(F"Elapsed time is {time_delta} seconds")

return est_delay, phase_delay

def time_delay(ref, samples1, samples2):

"""

Function to calculate the time difference and phase difference between two

signal↪→

:param ref: Reference signal

:param samples1: Received signal 1

:param samples2: Received signal 2

:return: The time difference and phase difference

"""

start_time = time.time()

downsampling_factor = 1

ref = ref[::downsampling_factor]

samples1 = samples1[::downsampling_factor]

70

samples2 = samples2[::downsampling_factor]

length_ref = len(ref)

length_samples = len(samples1)

total_length = length_ref + length_samples - 1

ref = zero_pad_array(ref, total_length)

samples1 = zero_pad_array(samples1, total_length)

samples2 = zero_pad_array(samples2, total_length)

mult1 = np.flip(scipy.fft.fft(np.conj(ref))) * scipy.fft.fft(samples1)

mult2 = np.flip(scipy.fft.fft(np.conj(ref))) * scipy.fft.fft(samples2)

if np.argmax(np.abs(scipy.fft.ifft(mult2))) >

np.argmax(np.abs(scipy.fft.ifft(mult1))):↪→

ifft = np.abs(scipy.fft.ifft(mult2 / mult1))

else:

ifft = np.abs(scipy.fft.ifft(mult1 / mult2))

td = np.linspace(0, total_length / sample_rate, total_length)

est_delay = (td[np.argmax(np.abs(ifft))] * downsampling_factor) % 1

plot(ref, samples1, mult1)

T = 1

phase_delay = 2 * np.pi * 1/T * est_delay

phase_delay_degrees = np.rad2deg(phase_delay)

delta_time = time.time() - start_time

print(F"Elapsed time {delta_time} seconds. ")

return est_delay, phase_delay

modulated_ref = makeSignal(ref, sample_rate)

Create a figure and axis for plotting

fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 8))

x_data = np.linspace(-duration, 0, int(duration * sample_rate))

y_data1 = np.zeros(int(duration * sample_rate))

phase_data = []

line1, = ax1.plot(x_data, y_data1, lw=2, label='Receiver 1')

line2, = ax2.plot([], [], lw=2, label='Phase Difference')

ax1.set_ylim(0, 2)

ax1.set_xlabel('Time (s)')

ax1.set_ylabel('Amplitude')

ax1.set_title('Received Signal - RTL-SDR 1')

71

ax1.legend(loc='upper right')

ax2.set_ylim(0, 360)

ax2.set_xlim(-duration, 0)

ax2.set_xlabel('Time (s)')

ax2.set_ylabel('Phase Difference (degrees)')

ax2.set_title('Phase Difference')

ax2.legend(loc='upper right')

def init():

"""

Initialize the plot

:return:

"""

line1.set_ydata(np.zeros_like(x_data))

line2.set_data([], [])

return line1, line2

def update(frame):

"""

Function that updates the plot real-time

:return: The lines to plot

"""

start_time = time.time()

samples1 = receiver .get_samples()

time_received_first = time.time()

samples2 = receiver2.get_samples()

time_received_second = time.time()

print(F"The first samples are saved after {time_received_first - start_time}

seconds. The second samples are saved "↪→

F"{time_received_second - time_received_first} seconds after that.")

if samples1 is not None:

Update the plot data for the received signal

y_data1[:] = np.abs(samples1[:int(duration * sample_rate)])

line1.set_ydata(y_data1)

Calculate phase difference

delay3, phase3 = time_delay(modulated_ref, samples1, samples2)

print(F"The time difference between the two shifted signals is: {delay3}

seconds."↪→

F" The phase difference is: {np.rad2deg(phase3)} degrees.")

phase_difference_degrees = np.degrees(phase3) # Convert radians to degrees

Update the phase difference plot

phase_data.append(phase_difference_degrees)

if len(phase_data) > len(x_data):

phase_data.pop(0)

72

line2.set_data(np.linspace(-duration, 0, len(phase_data)), phase_data)

return line1, line2

Set up the animation

ani = FuncAnimation(fig, update, init_func=init, blit=True, interval=50,

cache_frame_data=False)↪→

Show the plot

plt.tight_layout()

plt.show()

receiver.stop_receiving()

receiver2.stop_receiving()

C.7 Received signal strength indication measurement

import numpy as np

import scipy

import matplotlib.pyplot as plt

from matplotlib.animation import FuncAnimation

import Receiver # Ensure this module is correctly implemented and imported

center_freq = 434e6

sample_rate = 2.048e6

duration = 5 # Duration in seconds

on_duration = int(0.03 * sample_rate)

off_duration_short = int(0.03 * sample_rate)

off_duration_long = int(0.91 * sample_rate)

receiver = Receiver.Receiver(center_freq, sample_rate, device_index=0)

receiver.start_receiving()

Create a figure and axis for plotting

fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 8))

x_data = np.linspace(-duration, 0, int(duration * sample_rate))

y_data1 = np.zeros(int(duration * sample_rate))

y_data2 = np.zeros(int(duration * sample_rate))

line1, = ax1.plot(x_data, y_data1, lw=2, label='Receiver 1')

line2, = ax2.plot([], [], lw=2, label='Received signal strength indication')

ax1.set_ylim(0, 2)

ax1.set_xlabel('Time (s)')

ax1.set_ylabel('Amplitude')

ax1.set_title('Received Signal - RTL-SDR 1')

ax1.legend(loc='upper right')

ax2.set_ylim(-100, 20)

73

ax2.set_xlim(-duration, 0)

ax2.set_xlabel('Time (s)')

ax2.set_ylabel('RSSI (dB)')

ax2.set_title('RSSI')

ax2.legend(loc='upper right')

text = ax2.text(0.5, 0.5, '')

RSSI_data = []

RSSI_data_not_saved = []

def init():

"""

Initialize the plot

:return:

"""

line1.set_ydata(np.zeros_like(x_data))

line2.set_ydata(np.zeros_like(x_data))

return line1, line2

def update(frame):

"""

Function that updates the plot real-time

:return: The lines to plot

"""

samples1 = receiver.get_samples()

if samples1 is not None:

Update the plot data for the received signal

y_data1[:] = np.abs(samples1[:int(duration * sample_rate)])

line1.set_ydata(y_data1)

print(F"Max value {np.max(samples1)}")

Calculate RSSI

power = np.abs(np.max(samples1)) ** 2

print(power)

RSSI = 10 * np.log10(power + 1e-12)

Update the RSSI data

y_data2[:-1] = y_data2[1:]

y_data2[-1] = RSSI

line2.set_ydata(y_data2)

RSSI_data.append(RSSI)

RSSI_data_not_saved.append(RSSI)

if len(RSSI_data_not_saved) > len(x_data):

RSSI_data_not_saved.pop(0)

line2.set_data(np.linspace(-duration, 0, len(RSSI_data_not_saved)),

RSSI_data_not_saved)↪→

text.set_text(f'{RSSI:.03f}')

74

text.set_position((-2, -40))

return line1, line2, text,

Set up the animation

ani = FuncAnimation(fig, update, init_func=init, blit=True, interval=10,

cache_frame_data=False)↪→

Show the plot

plt.tight_layout()

plt.show()

Stop receiving samples when closing the plot

receiver.stop_receiving()

file = open("RSSI.txt", "w")

file.write(str(RSSI_data))

file.close()

C.8 Direct phase difference

75

D Calculations

D.1 Cramer Rao Bound calculation

The CRB is calculated using the signal power of -164.45 dB, a noise power of -134.96 dB, angular
frequency ωc (2.7 ·109 rad/s, bandwidth B (1.5 MHz) and the measurement time T (0.128 s). The
center frequency in radians is calculated by multiplying the center frequency with 2π.
The CRB 41 and Fisher 42 formula’s are denoted again here.

CRB = J−1
CR (41)

JCR(τ) = 2ω2
c ·

TB

2π
[1 +

1

12

(
B

ωc

)2

] · SNR, for T >>
2π

B
(42)

The SNR in this equation is calculated using

SNR =
S
N0

2

1 + 2 S
N0

(43)

Resulting in SNR = 1.265 · 10−6.
The Fisher equation is filled out as follows.

JCR = 2 · (2.7 · 109)2 · 0.128 · 1.5 · 10
6 · 2π

2π
· [1 + 1

12
·

(
1.5 · 106 · 2π
2.7 · 109

)2

]1.265 · 10−6 (44)

This is equal to 3.603 ·1018. Which gives a CRB of 4.620 ·10−19. As the CRB gives variance of the
unbiased estimator, taking the square root of the CRB will give the accuracy in seconds,
∆t =

√
4.620 · 10−19 = 5.268 · 10−10. Using this time difference the minimum angle of arrival can be

calculated by rewriting Equation 45 into Equation 46 and using d = λ
2 = c

2f

∆t =
sin(θ) · d

c
(45)

θ = sin−1

(
∆t · c
d

)
= sin−1(∆t · 2fc) (46)

This results in an angle of arrival of 0.5◦.

76

	Abstract
	Preface
	Introduction
	Theory
	Hornet specifications
	Software defined radio
	Automatic direction finding methods
	Localizing the transmitter
	Challenges for direction finding
	Precision estimation
	Automatic direction finding versus manual direction finding
	User interface

	Program of requirements
	External requirements
	Stakeholders
	User stories
	Requirements

	Methodology
	Circuit of the receiver
	Explanation of the algorithm
	Development of the system
	Receive two signals
	Phase difference calculation with the received signal
	Phase difference between two antennas
	Angle of arrival calculation
	Received signal strength indication and distance measurement
	Direct phase difference
	Gold code improvement

	Analysis of the system
	Algorithm and Python drawbacks
	Synchronization of the dongles
	Precision estimation of the algorithm
	Received signal strength indication
	Testing the user interface

	Discussion
	Conclusion
	Future work
	Bibliography
	Additional figures
	Application code
	Test code
	Calculations

