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 A B S T R A C T

This study introduces a multiscale simulation framework, termed Projection-based Embedded Discrete Frac-
ture Modeling with Algebraic Dynamic Multilevel method (pEDFM-ADM), which integrates an embedded 
discrete fracture network representation with a fully algebraic, front-tracking-based mesh adaptation strategy. 
Incorporating a fully implicit scheme, compositional thermodynamics, and algebraic multilevel operators, the 
framework captures essential subsurface processes such as buoyancy-driven migration, convective dissolution, 
phase partitioning, and fracture-matrix interactions under geologically realistic conditions. The method 
constructs a hierarchy of multilevel grids and localized multiscale basis functions that introduce fine-scale 
heterogeneities at each coarse level. Adaptive mesh refinement and coarsening are driven by local variations 
in CO2 mass fraction and executed through algebraic prolongation and restriction operators, enabling efficient 
projection between grid levels. The framework is systematically evaluated across a sequence of test cases with 
increasing complexity, including systems with low-permeability flow barriers, highly conductive fractures, 
striking a trade-off between computational resource and detailed simulation accuracy. Overall, the pEDFM-
ADM framework provides a scalable, fully algebraic, and physically adaptive modeling tool for large-scale 
CO2 storage simulations in fractured porous media, supporting predictive simulation and risk assessment for 
long-term carbon sequestration.
1. Introduction

Mitigating climate change requires rapid reductions in CO2 emis-
sions, making geological carbon capture and storage (CCS) essential 
as a large-scale mitigation strategy (Boot-Handford et al., 2014; Bui 
et al., 2018; Krevor et al., 2023; Bashir et al., 2024). Among the 
available geological storage options, deep saline aquifers are particu-
larly promising due to their large storage capacities and widespread 
geographical distribution. These aquifers are located at depths below 
approximately 800 m, where CO2 can be injected in a supercritical 
phase with relatively high density. Estimates suggest that the global 
total storage capacity of deep saline aquifers could range from hundreds 
to thousands of gigatons, emphasizing their critical role in global 
climate mitigation scenarios (Metz et al., 2005; Bachu, 2008; Alcalde 
et al., 2018).
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(H. Hajibeygi).

Despite their potential, implementing CO2 storage in saline aquifers 
presents geological and engineering challenges. A key challenge in-
volves managing multiphase flow dynamics and trapping mechanisms 
during CO2 injection and long-term storage. When CO2 is injected 
into a saline reservoir, it displaces resident brine and migrates up-
ward under buoyancy, while simultaneously dissolving into brine or 
becoming trapped by capillary forces in pore spaces over time (Benson 
and Cole, 2008; Szulczewski et al., 2012). These processes are strongly 
sensitive to the heterogeneities of reservoir properties, particularly 
the presence of natural fractures and faults. Fractures significantly 
impact fluid migration by creating preferential pathways or barriers, 
altering plume distribution and potentially influencing overall stor-
age integrity (Rutqvist et al., 2016; Sokama-Neuyam et al., 2020). 
Highly conductive fractures facilitate rapid CO2 migration, possibly 
leading to unintended migration beyond storage boundaries, whereas 
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low-permeability fractures act as flow barriers, compartmentalizing 
the reservoir and impeding the migration of CO2 (Berkowitz, 2002; 
Rutqvist et al., 2010). Therefore, accurate prediction of CO2 behavior 
in fractured aquifers requires advanced modeling approaches capa-
ble of integrating fine-scale fracture details with large-scale reservoir 
dynamics.

Among fracture modeling methods, Discrete Fracture Models (DFM) 
employ conforming unstructured grids to explicitly represent fractures 
and flow barriers at matrix interfaces (Karimi-Fard et al., 2004; Matthäi 
et al., 2007; Hoteit and Firoozabadi, 2008). However, generating such 
grids can be computationally intensive, particularly for complex frac-
ture networks (Sahimi, 2011; Moinfar et al., 2013; Berre et al., 2019). 
As an alternative, Embedded Discrete Fracture Models (EDFMs) offer a 
more practical approach by avoiding conforming grid generation (Lee 
et al., 2001; Li and Lee, 2008). In EDFM, small-scale fractures en-
tirely contained within a matrix cell are homogenized by adjusting the 
intrinsic permeability of the surrounding rock, while the remaining 
fracture networks in the network are discretized independently of 
the matrix grid (Hajibeygi et al., 2011; Moinfar et al., 2014). How-
ever, coupling between matrix cells and fracture cells is maintained 
through flux terms, even when the grid does not explicitly conform to 
the fracture geometry. Therefore, standard EDFM techniques struggle 
to accurately model fractures that are fully enclosed within a cell 
or have low permeability (HosseiniMehr et al., 2020). To overcome 
these limitations, projection-based Embedded Discrete Fracture Model 
(pEDFM) was developed by Ţene et al. (2017). When a fracture inter-
sects a matrix cell, the transmissibility with a neighboring matrix cell 
is reduced proportionally to the projection of the fracture area onto 
the matrix cell face. A new connection is then created between the 
fracture and the neighboring matrix cell such that the permeability 
of the fracture determines how readily fluid flows from one matrix 
cell to the next. This correction ensures strict local mass conservation 
and reduces the error observed in original EDFM for challenging con-
figurations involving low-permeability fractures (HosseiniMehr et al., 
2022). In recent years, pEDFM has been further extended to address 
more complex flow mechanisms and anisotropic media, including two-
phase flow simulation using hybrid TPFA-MFD formulations (Rao et al., 
2024), and applications on unstructured tetrahedral grids for fully 
three-dimensional fractured reservoirs (Cavalcante et al., 2024). Con-
sequently, it enables the development of a robust modeling strategy 
for both barrier and highly conductive fractures, while facilitating 
simulations of CO2 migration and subsequent trapping processes from 
the injection phase to the post-migration stage (Wang et al., 2022b).

Even with such advances in modeling flow and transport in frac-
tured reservoirs, simulating large-scale CO2 storage remains compu-
tationally demanding, primarily due to the large spatial scales and 
multiscale nature of the problem. In this context, the finite volume 
method (FVM) is frequently employed for its efficiency and local con-
servation properties, making it well suited for large-scale reservoir 
modeling (Wang et al., 2022a,b). However, the high-resolution grids re-
quired to accurately capture flow physics and geological heterogeneity 
often make classical numerical solvers computational prohibitive (Pra-
ditia et al., 2018). Grids at the Darcy scale (on the order of centime-
ters) can generate extremely large linear systems, making conventional 
methods impractical for field-scale applications. Consequently, there 
is a demand for advanced numerical techniques that can preserve 
fine-scale details while ensuring computationally efficiency.

One class of solutions involves multiscale methods, such as the 
multiscale finite element (MsFE) (Hou and Wu, 1997; Efendiev et al., 
2015) and multiscale finite volume (MsFV) approaches (Jenny et al., 
2003; Lee et al., 2008; Ţene et al., 2016). These methods construct 
coarse-scale pressure systems that preserve critical fine-scale infor-
mation through local basis functions. Algebraic restriction and pro-
longation operators then map the coarse-scale solution back to the 
original high-resolution grid, allowing an approximate solution that 
2 
captures essential flow details without globally refining the entire do-
main (Hajibeygi et al., 2008). Building on these concepts, the Algebraic 
Dynamic Multilevel (ADM) method was introduced to handle fully 
implicit (FIM) systems on dynamically updated multilevel grids (Cusini 
et al., 2016, 2018). ADM addresses the coexistence of multiscale and 
multilevel behaviors in pressure (elliptic or parabolic) and transport 
(hyperbolic) unknowns by adaptively refining or coarsening the mesh 
at each time step based on a front-tracking criterion. This ensures 
that fine-scale resolution is applied only where significant gradients 
and physical interactions occur. Mass conservation is enforced at all 
levels by carefully designed finite-volume restriction operators, while 
pressure and transport variables are interpolated using multiscale and 
constant basis functions, respectively (HosseiniMehr et al., 2018).

Previously, the pEDFM and ADM methods have been applied sep-
arately to CO2 flow and transport problems, but not within a unified 
modeling workflow. In this study, we develop an integrated pEDFM-
ADM modeling framework specifically designed for CO2 storage in 
fractured deep saline aquifers. The fractures are explicitly represented 
by pEDFM, allowing the study of the impact of fractures with vary-
ing permeability contrasts. ADM complements this by dynamically 
adjusting computational resolution, significantly enhancing efficiency 
while maintaining the impact of fine-scale heterogeneity on flow and 
transport. This integrated approach captures critical fracture-induced 
flow processes and large-scale reservoir dynamics, improving our pre-
dictive capability for CO2 plume behavior and storage effectiveness. 
Similar to the fine-scale system, the ADM dynamic grid is constructed 
independently for the matrix and fractures based on a front-tracking 
criterion that balances computational cost with accuracy. Mapping 
solutions across different grid resolutions is performed using sequences 
of restriction and prolongation operators.

The rest of the paper is organized as follows. Section 2 outlines the 
governing equations for flow and transport in fractured media, as well 
as the discretization and simulation approach for the fine-scale, pEDFM 
model. Section 3 details the application of ADM to the fine-scale, 
pEDFM model described in Section 2. Section 4 presents numerical 
results demonstrating the effectiveness of the proposed approach, and 
Section 5 concludes the study.

2. Fine-scale model and solution strategy

Flow and transport in porous media are governed by the con-
servation of mass, which applies to each component across multiple 
coexisting phases. The representation of fluid properties relies on ap-
propriate thermodynamic constitutive relationships that describe phase 
behavior under reservoir conditions. To establish a reference for sub-
sequent multiscale development, the fine-scale model considered in 
this work is based on pEDFM, which resolves fracture-matrix flow 
interactions.

2.1. Governing equations

In geological formations, CO2 migration is strongly affected by 
fracture-matrix interactions. To capture this behavior, the mass con-
servation equations for the CO2-brine system in porous media with 
discrete embedded fractures, are formulated as:

𝜕
𝜕𝑡

(

𝜙𝑚
𝑛ph
∑

𝛼=1
𝑥𝑐,𝛼𝜌𝛼𝑆𝛼

)

+ ∇ ⋅

(𝑛ph
∑

𝛼=1
𝑥𝑐,𝛼𝜌𝛼𝐮𝛼

)

−
𝑛ph
∑

𝛼=1
𝑥𝑐,𝛼𝑞𝛼

−
𝑛ph
∑

𝛼=1
𝑥𝑐,𝛼𝑄

𝑚𝑓
𝛼 = 0,

∀𝑐 ∈ {1,… , 𝑛c}, (2.1)

for the rock matrix 𝑚 and,

𝜕
(

𝜙𝑓
𝑛ph
∑

𝑥𝑐,𝛼𝜌𝛼𝑆𝛼

)

+ ∇ ⋅

(𝑛ph
∑

𝑥𝑐,𝛼𝜌𝛼𝐮𝛼

)

−
𝑛ph
∑

𝑥𝑐,𝛼𝑄
𝑓𝑚
𝛼
𝜕𝑡 𝛼=1 𝛼=1 𝛼=1
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−
𝑛ph
∑

𝛼=1
𝑥𝑐,𝛼𝑄

𝑓𝑓
𝛼 = 0,

∀𝑐 ∈ {1,… , 𝑛c}, (2.2)

for the lower-dimensional fracture 𝑓 . Here, 𝜙 denotes porosity, 𝜌𝛼 , 
𝑆𝛼 , and 𝑞𝛼 represent the density, saturation, and source/sink terms 
of the phase 𝛼 (wetting or non-wetting), respectively. The subscripts 
𝛼 ∈ {𝑤, 𝑛} denote the wetting (brine-rich) and non-wetting (CO2-rich) 
phases, respectively. The index 𝑐 identifies the components (CO2 and 
H2O), while 𝑥𝑐 ,𝛼 is the mass fraction of component 𝑐 in phase 𝛼. The 
terms 𝑄𝑚𝑓𝛼  and 𝑄𝑓𝑚𝛼  are the phase mass flux exchanges between the 
rock matrix and the fractures, and 𝑄𝑓𝑓𝛼  represents the phase influx 
between intersecting fractures. Note that the mass conservation law 
enforces the relations: ∭𝑉 𝑄

𝑚𝑓
𝛼 𝑑𝑉 = −∬𝐴𝑖 𝑄

𝑓𝑚
𝛼 𝑑𝐴 and ∬𝐴𝑖 𝑄

𝑓𝑖𝑓𝑗
𝛼 𝑑𝐴 =

−∬𝐴𝑗 𝑄
𝑓𝑗𝑓𝑖
𝛼 𝑑𝐴. The phase velocity 𝐮𝛼 is defined by Darcy’s law: 

𝐮𝛼 = −𝝀𝛼∇𝜓𝛼 , (2.3)

where the phase mobility is defined as 𝝀𝛼 = 𝐊 𝑘𝑟,𝛼
𝜇𝛼
, with 𝜇𝛼 as the 

phase viscosity, 𝐊 as the rock permeability tensor, and 𝑘𝑟,𝛼 as the 
phase relative permeability (Abou-Kassem et al., 2013). 𝜓𝛼 is the phase 
potential, given by: 
𝜓𝛼 = 𝑝𝛼 − 𝜌𝛼𝑔ℎ, (2.4)

where 𝑔 is the gravitational acceleration and ℎ is the depth. The two 
phase pressures 𝑝𝑛 and 𝑝𝑤 are interrelated by capillary pressure 𝑃𝑐 as 
follows: 
𝑝𝑛 − 𝑝𝑤 = 𝑃𝑐 . (2.5)

Generally, the capillary pressure is a nonlinear function of the 
wetting-phase saturation 𝑆𝑤. In addition, the model assumes that the 
pore space is fully occupied by the phases, with CO2 and H2O as 
the only components present. This is mathematically enforced by the 
conditions that the sums of phase saturations and component mass 
fractions in each phase equal one: 
∑

𝛼=𝑤,𝑛
𝑆𝛼 = 1, and

∑

𝑐=CO2 ,H2O
𝑥𝑐,𝛼 = 1. (2.6)

2.2. Thermodynamic equilibrium equations

For a binary CO2–H2O system, thermodynamic equilibrium is
achieved when the fugacity of each component is equal in both phases
(Reed, 1982): 
𝑓𝑐,𝑛

(

𝑝, 𝑥𝑐,𝑛
)

− 𝑓𝑐,𝑤
(

𝑝, 𝑥𝑐,𝑤
)

= 0, ∀𝑐 ∈ {CO2,H2O}, (2.7)

where 𝑓𝑐,𝑛 and 𝑓𝑐,𝑤 are the fugacities of component 𝑐 in the non-wetting 
and wetting phases, respectively. This condition is often reformulated 
in terms of equilibrium ratios, or 𝐾-values 

𝐾𝑐 =
𝑥𝑐,𝑛
𝑥𝑐,𝑤

, (2.8)

where 𝑥𝑐,𝑛 and 𝑥𝑐,𝑤 are the mass fractions of component 𝑐 in the 
vapor and aqueous phases, respectively. These 𝐾-values are func-
tions of pressure, temperature, and salinity, and provide the basis 
for equilibrium-based compositional modeling (Prausnitz et al., 1998). 
Once 𝐾-values are evaluated, phase partitioning is determined by 
solving the Rachford-Rice equation for vapor fraction 𝑉  (Michelsen and 
Mollerup, 2004): 
𝑛𝑐
∑

𝑐=1

𝑧𝑐 (𝐾𝑐 − 1)
1 + 𝑉 (𝐾𝑐 − 1)

= 0, (2.9)

where 𝑧𝑐 is the overall mass fraction of component 𝑐, i.e. 

𝑧𝑐 =

𝑛ph
∑

𝛼=1
𝑥𝑐,𝛼𝜌𝛼𝑆𝛼

𝑛ph
∑

𝜌𝛼𝑆𝛼

. (2.10)
𝛼=1
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Fig.  1 illustrates representative results based on the thermodynamic 
model from Spycher et al. (2003), showing the mutual solubilities of 
pure CO2 and H2O as functions of pressure and temperature, where 
𝑥CO2

 denotes the CO2 mass fraction in the aqueous phase and 𝑦H2O
denotes the H2O mass fraction in the CO2-rich phase. This model is 
adopted for consistency with the reservoir parameter range considered 
in this study. At low pressure, CO2 solubility in the aqueous phase is 
relatively low. As pressure increases, the solubility of CO2 in water 
increases. However, once CO2 enters a dense or supercritical phase, 
its solubility becomes relatively insensitive to further pressure changes. 
As for the solubility of H2O, under low-pressure conditions where CO2
exists in a vapor state, the mass fraction of H2O in the CO2-rich phase 
is relatively high. As pressure increases within this regime, CO2 transi-
tions to a denser phase, leading to a marked decline in H2O solubility. 
Additionally, increasing temperature enhances H2O volatility, resulting 
in higher water content in the CO2-rich phase, while simultaneously 
reducing CO2 solubility in the aqueous phase.

2.3. Fine-scale solution strategy with pEDFM

The coupled non-linear Eqs. (2.1)–(2.2) for the matrix–fracture 
system are discretized spatially using the two-point-flux approximation 
(TPFA) finite volume method, and temporally using the backward Euler 
scheme, resulting in a FIM system. Independent structured grids are 
generated for a three-dimensional (3D) aquifer and a network of two-
dimensional (2D) fractures. An illustration is presented in Fig.  2 for a 
simple scenario with just two fractures.

The fracture-matrix coupling terms corresponding to Eqs. (2.1)–(2.2)
are modeled following the approach of Li and Lee (2008) and Hajibeygi 
et al. (2011). For a matrix control volume 𝑖 having an embedded 
fracture element 𝑓 , the flux of component 𝑐 in phase 𝛼 across the 
matrix–fracture interface is expressed as 

𝑄𝛼,𝑖𝑓 = 𝜌𝛼
𝑘𝑟,𝛼
𝜇𝛼

𝑇𝑖𝑓𝛥𝜓𝛼,𝑖𝑓 , (2.11)

where the rock transmissibility between the matrix and the fracture 𝑇𝑖𝑓
is defined symmetrically as 
𝑇𝑓𝑖 = 𝑇𝑖𝑓 = 𝐶𝐼𝑖𝑓𝐾

𝐻
𝑖𝑓 . (2.12)

Here, 𝐾𝐻
𝑖𝑓  is the harmonic average permeability between the over-

lapping matrix and fracture elements. The mobility is evaluated us-
ing a phase potential upwind scheme. 𝐶𝐼𝑖𝑓  denotes the connectivity 
index (Hajibeygi et al., 2011), calculated as 

𝐶𝐼𝑖𝑓 =
𝑆𝑖𝑓
⟨𝑑𝑖𝑓 ⟩

, (2.13)

where ⟨𝑑𝑖𝑓 ⟩ represents the average distance between the matrix control 
volume and the fracture surface. The fracture–matrix fluxes satisfy 
the local conservation property 𝐹𝑐,𝛼,𝑖𝑓 = −𝐹𝑐,𝛼,𝑓 𝑖. To correct for the 
limitations of the original EDFM when handling fractures with generic 
conductivity due to parallel transmissibilities, the pEDFM modifies 
the matrix–matrix, matrix–fracture, and fracture–fracture connectivi-
ties within overlapping regions. A continuous projection path is auto-
matically established at the matrix–fracture interfaces, ensuring that 
flux exchange occurs only through the physical connection between 
the two domains. For each spatial direction 𝑥𝑒 ∈ {𝑥, 𝑦, 𝑧}, the corre-
sponding projected area fraction on the interface between cell 𝑖 and its 
neighboring cells (e.g., 𝑗 or 𝑘) is given by: 
𝑆𝑖𝑓⊥𝑥𝑒 = 𝐴𝑖𝑓 × cos(𝜃), (2.14)

where 𝐴𝑖𝑓  is the area fraction of the fracture cell 𝑓 overlapping with 
the rock matrix cell 𝑖, and 𝜃 is the angle between the fracture plane and 
the interface connecting the matrix grid cell 𝑖 and its neighboring cell in 
the corresponding direction. Further details of the geometric projection 
and transmissibility correction procedures can be found in Ţene et al. 
(2017).
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Fig. 1. Mutual solubilities of H2O and CO2 from 20 to 100 ◦C and up to a pressure of 400 bar, based on the model of Spycher et al. (2003) and adapted 
from (Zhao et al., 2025).
Fig. 2.  The independent numerical grids: (a) 3D grid for rock matrix and (b) 2D grids for fractures.
The discrete residual form of Eq.  (2.1) for component 𝑐 in cell ⟨𝑖⟩
within the rock matrix is written as: 

𝑟𝑚𝑐,⟨𝑖⟩ =
𝑉 𝑚
⟨𝑖⟩𝜙

𝑚
⟨𝑖⟩

𝛥𝑡

𝑛ph
∑

𝛼=1

(

𝑥𝑡+1𝑐,𝛼,⟨𝑖⟩𝜌
𝑡+1
𝛼,⟨𝑖⟩𝑆

𝑡+1
𝛼,⟨𝑖⟩ − 𝑥

𝑡
𝑐,𝛼,⟨𝑖⟩𝜌

𝑡
𝛼,⟨𝑖⟩𝑆

𝑡
𝛼,⟨𝑖⟩

)

+
𝑁𝑛
∑

𝑗=1

𝑛ph
∑

𝛼=1
𝑥𝑐,𝛼𝜌𝛼 𝐮𝛼

|

|

|

|

|

|

𝑡+1

⟨𝑖𝑗⟩

⋅ 𝐧⃗

−
𝑛ph
∑

𝛼=1
𝑥𝑡+1𝑐,𝛼 𝑞

𝑚,𝑡+1
𝛼,⟨𝑖⟩ −

𝑁𝑓
∑

𝑓=1

𝑛ph
∑

𝛼=1
𝑥𝑡+1𝑐,𝛼,⟨𝑖⟩𝑄

𝑖𝑓 ,𝑡+1
𝛼,⟨𝑖⟩ = 0,

(2.15)

while for the fracture space it is written as: 

𝑟𝑓𝑐,⟨𝑖⟩ =
𝑉 𝑓
⟨𝑖⟩𝜙

𝑓
⟨𝑖⟩

𝛥𝑡

𝑛ph
∑

𝛼=1

(

𝑥𝑡+1𝑐,𝛼,⟨𝑖⟩𝜌
𝑡+1
𝛼,⟨𝑖⟩𝑆

𝑡+1
𝛼,⟨𝑖⟩ − 𝑥

𝑡
𝑐,𝛼,⟨𝑖⟩𝜌

𝑡
𝛼,⟨𝑖⟩𝑆

𝑡
𝛼,⟨𝑖⟩

)

+
𝑁𝑛
∑

𝑗=1

𝑛ph
∑

𝛼=1
𝑥𝑐,𝛼𝜌𝛼 𝐮𝛼

|

|

|

|

|

|

𝑡+1

⟨𝑖𝑗⟩

⋅ 𝐧⃗

−
𝑁𝑚
∑

𝑚=1

𝑛ph
∑

𝛼=1
𝑥𝑡+1𝑐,𝛼,⟨𝑖⟩𝑄

𝑖𝑚,𝑡+1
𝛼,⟨𝑖⟩ −

𝑁𝑓
∑

𝑓=1

𝑛ph
∑

𝛼=1
𝑥𝑡+1𝑐,𝛼,⟨𝑖⟩𝑄

𝑖𝑓 ,𝑡+1
𝛼,⟨𝑖⟩ = 0.

(2.16)

Here, 𝑁𝑛 denotes the number neighboring cells that surround the cell 
⟨𝑖⟩ in the corresponding media. 𝑁𝑚 and 𝑁𝑓  are the number of matrix 
and of fracture cells in the entire system, respectively. The overall-
composition variable set is employed (Voskov and Tchelepi, 2012), in 
which the wetting phase pressure, 𝑝𝑤, and overall CO2 mole (mass) 
fraction, 𝑧CO2

, are used as primary variables (Wang et al., 2022b).
To solve the nonlinear system at each time-step, the Newton–

Raphson method is employed, starting with a first-order Taylor series 
4 
expansion of the residual equations about the current iteration 𝜈: 

𝑟𝜈+1𝑐 ≈ 𝑟𝜈𝑐 +
𝜕𝑟𝑐
𝜕𝑝𝑤

|

|

|

|𝜈
𝛿𝑝𝜈+1𝑤 +

𝜕𝑟𝑐
𝜕𝑧CO2

|

|

|

|

|𝜈
𝛿𝑧𝜈+1CO2

, (2.17)

where 𝜈 and 𝜈 + 1 indicate the iteration steps. 𝛿𝑝𝜈+1𝑤  and 𝛿𝑧𝜈+1CO2
 are the 

updates of the unknowns at iteration 𝜈 + 1. This procedure leads to a 
system of linearized equations that can be expressed in a matrix form: 

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐽𝑚𝑚CO2 ,𝑝𝑤
𝐽𝑚𝑓CO2 ,𝑝𝑤

𝐽𝑚𝑚CO2 ,𝑧CO2
𝐽𝑚𝑓CO2 ,𝑧CO2

𝐽𝑓𝑚CO2 ,𝑝𝑤
𝐽𝑓𝑓CO2 ,𝑝𝑤

𝐽𝑓𝑚CO2 ,𝑧CO2
𝐽𝑓𝑓CO2 ,𝑧CO2

𝐽𝑚𝑚H2O,𝑝𝑤
𝐽𝑚𝑓H2O,𝑝𝑤

𝐽𝑚𝑚H2O,𝑧CO2
𝐽𝑚𝑓H2O,𝑧CO2

𝐽𝑓𝑚H2O,𝑝𝑤
𝐽𝑓𝑓H2O,𝑝𝑤

𝐽𝑓𝑚H2O,𝑧CO2
𝐽𝑓𝑓H2O,𝑧CO2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝜈

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐉𝜈

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝛿𝑝𝑚𝑤
𝛿𝑝𝑓𝑤
𝛿𝑧𝑚CO2

𝛿𝑧𝑓CO2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

𝜈+1

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝛿𝜉𝜈+1

= −

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑟𝑚CO2

𝑟𝑓CO2

𝑟𝑚H2O

𝑟𝑓H2O

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝜈

⏟⏟⏟
𝑟𝜈

.

(2.18)

Here, 𝐉𝜈 is the Jacobian (derivatives) matrix, 𝛿𝜉𝜈+1 is the vector of 
unknown increments, and 𝑟𝜈 is the residual vector. The linearized 
system is solved iteratively until convergence is reached, typically 
indicated by sufficiently small changes in the primary variables or by 
achieving a low residual norm. This completes the description of the 
pEDFM approach used as the fine-scale model in this study. The next 
section introduces the application of ADM within this framework.

3. pEDFM-ADM for CO𝟐 storage

The pEDFM-ADM framework integrates pEDFM with the ADM 
method to efficiently simulate multiphase, CO2–H2O flow in fractured 
saline aquifers. In this approach, the fractured aquifer is discretized 
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on a Cartesian grid, with fractures embedded as lower-dimensional 
features using pEDFM. The ADM component introduces a dynamic 
multilevel hierarchy that enables efficient simulation by solving the 
governing equations on coarser grids and reconstructing fine-scale 
solutions via multiscale interpolator. This approach allows accurate 
resolution of key features, such as CO2 fronts or active fractures, 
without globally refining the grid.

3.1. Adaptive selection of multilevel grids

At each time-step, the pEDFM-ADM framework adaptively con-
structs a multilevel solution grid by combining predefined sets of matrix 
and fracture grid cells. The grid is refined or coarsened dynamically 
based on the evolving physical state of the system, particularly the 
movement of the CO2 concentration front, which is identified according 
to a user-defined threshold. For instance, the algorithm tracks the over-
all mass fraction 𝑧CO2

 and applies fine resolution in regions with steep 
gradients, while coarsening areas where CO2 mass fracture evolves 
more smoothly. This front-tracking strategy ensures efficient use of 
computational resources without compromising accuracy.

For a three-dimensional aquifer, the physical domain is initially dis-
cretized into a fine-scale grid consisting of 𝑁𝑚 cells in the rock matrix 
and 𝑁𝑓𝑖  cells for each fracture 𝑖. Although this resolution captures 
detailed CO2-brine interactions, solving fully implicit systems across 
all cells becomes computationally prohibitive for large-scale problems. 
To address this, pEDFM-ADM constructs a hierarchy of coarser grids, 
indexed by level 𝑙, where 𝑙 = 0 corresponds to the fine-scale grid. Let 
𝑁 𝑙
𝑚 and 𝑁 𝑙

𝑓𝑖
 denote the number of control volumes at level 𝑙 in the 

matrix and in fracture 𝑖, respectively. The coarsening ratio 𝛾 𝑙 at level 𝑙
is defined as: 

𝛾 𝑙 =
(

𝛾 𝑙𝑚, 𝛾
𝑙
𝑓1
,… , 𝛾 𝑙𝑓𝑁𝑓

)

=
( 𝑁 𝑙

𝑚

𝑁 𝑙−1
𝑚

,
𝑁 𝑙
𝑓1

𝑁 𝑙−1
𝑓1

,… ,
𝑁 𝑙
𝑓𝑛frac

𝑁 𝑙−1
𝑓𝑛frac

)

. (3.1)

This framework allows for independent coarsening strategies in the ma-
trix and individual fractures, offering flexibility. To maintain numerical 
stability, the level difference between neighboring cells is restricted to 
one, thereby avoiding abrupt transitions that could degrade solution 
quality.

The selection of the grid resolution is guided by a threshold-based 
criterion, specified as an input parameter. This refinement criterion 
compares the spatial variation of 𝑧CO2

 between neighboring cells. Let 
𝛺𝐼
𝑙  and 𝛺𝐽

𝑙  denote two neighboring coarse grid cells at level 𝑙, and 𝑖
and 𝑗 indicate the indices of fine-scale cells contained in these coarse 
blocks. The maximum difference of the 𝑧CO2

 is computed as:

𝛥𝑧𝐼,𝐽 = max
𝑖∈𝛺𝐼𝑙 , 𝑗∈𝛺

𝐽
𝑙

|

|

|

𝑧𝑖 − 𝑧𝑗
|

|

|

. (3.2)

If the difference 𝛥𝑧𝐼,𝐽  for any pair of neighboring coarse blocks 
exceeds a specified threshold, the block 𝐼 is refined from coarse level 𝑙
to (𝑙 − 1).

3.2. Solution strategy

At each Newton iteration, pEDFM-ADM constructs a reduced multi-
scale system via algebraic operators based on Eq.  (2.18), defined on a 
dynamic multilevel grid updated at the beginning of each time-step. In 
regions where a coarse grid is employed, a fine-scale solution that ac-
counts for subgrid-scale heterogeneity can be efficiently reconstructed 
from the coarse-scale solution using algebraically defined restriction 
(𝐑) and prolongation (𝐏) operators. These operators are constructed 
to ensure local mass conservation in the reconstructed fine-scale fields. 
The underlying ADM methodology is described in detail by Cusini et al. 
(2016). Fig.  3 provides a schematic overview of how the pEDFM-ADM 
method is applied to CO  storage.
2

5 
The fully-implicit system on the fine grid is projected to a selected 
coarser level 𝑙 by restriction and prolongation operators: 
𝐑̂𝑙−1𝑙 ⋯ 𝐑̂0

1𝐉0𝐏̂
1
0 ⋯ 𝐏̂𝑙𝑙−1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐉ADM

𝛿𝜉′𝑙 = − 𝐑̂𝑙−1𝑙 ⋯ 𝐑̂0
1𝑟0

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝑟ADM

, (3.3)

where 𝐉0 and 𝑟0 are the Jacobian matrix and residual vector at the fine 
scale, respectively, and 𝛿𝜉′𝑙  is the solution at grid level 𝑙. The restriction 
operators 𝐑̂𝑙−1𝑙  map residuals of governing equations from level 𝑙−1 to 
level 𝑙, while the prolongation operators 𝐏̂𝑙𝑙−1 interpolate the solution 
in the opposite direction. Both 𝐑 and 𝐏 are block-diagonal matrices: 

𝐑𝑙−1𝑙 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

[

(𝑅𝑝)𝑙−1𝑙
]

𝑚 0 0 0

0
[

(𝑅𝑝)𝑙−1𝑙
]

𝑓 0 0

0 0
[

(𝑅𝑧)𝑙−1𝑙
]

𝑚 0

0 0 0
[

(𝑅𝑧)𝑙−1𝑙
]

𝑓

⎞

⎟

⎟

⎟

⎟

⎟

⎠

𝑁𝑙×𝑁𝑙−1

, (3.4)

and 

𝐏𝑙𝑙−1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

[

(𝑃𝑝)𝑙𝑙−1
]

𝑚𝑚

[

(𝑃𝑝)𝑙𝑙−1
]

𝑚𝑓 0 0
[

(𝑃𝑝)𝑙𝑙−1
]

𝑓𝑚

[

(𝑃𝑝)𝑙𝑙−1
]

𝑓𝑓 0 0

0 0
[

(𝑃𝑧)𝑙𝑙−1
]

𝑚𝑚 0

0 0 0
[

(𝑃𝑧)𝑙𝑙−1
]

𝑓𝑓

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠𝑁𝑙−1×𝑁𝑙

.

(3.5)

Here, the subscript 𝑝 and 𝑧 denote the liquid pressure and overall 
CO2 mass fraction sub-blocks, respectively. The same finite-volume 
restriction operator is typically applied to both variables to ensure 
the local mass balance, meaning (𝑅𝑝)𝑙−1𝑙 = (𝑅𝑧)𝑙−1𝑙 . Each entry of the 
restriction operator (𝑅𝑝)𝑙−1𝑙  is binary: 

(𝑅𝑝)𝑙−1𝑙 (𝑖, 𝑗) =

{

1 if cell 𝑗 is inside coarser cell 𝑖,
0 otherwise.

(3.6)

Once the grid hierarchy is established, solving the coarser system 
and then prolonging the solution back to the fine grid provides an 
approximation to the fully resolved, fine-scale solution. This process 
significantly reduces computational costs compared to solving the orig-
inal fine-scale system in all cells. The final step involves recovering 
the fine-scale solution 𝛿𝜉0 by iteratively applying all prolongation 
operators: 
𝛿𝜉0 ≈ 𝛿𝜉′0 = 𝐏̂1

0 … 𝐏̂𝑙𝑙−1𝛿𝜉
′
𝑙 . (3.7)

Previous studies have shown that an iterative procedure is needed 
for highly-heterogeneous reservoirs (Hajibeygi et al., 2008). To this 
end, the pEDFM-ADM method integrates two iterations of a fine-
scale smoother to reduce remaining errors to a desired tolerance. This 
smoother approximates the inverse of the original fine-scale linear 
operator 𝐀𝜈 , and is implemented using ILU(0) decomposition.

3.3. Fracture multilevel multiscale basis functions

In the pEDFM-ADM framework, a non-overlapping primal coarse 
grid is first constructed on the fine-scale computational domain for 
both the matrix and fracture cells. By connecting the coarse nodes, an 
overlapping decomposition is obtained, referred to as the dual coarse 
grid, as described by Cusini et al. (2016). Local basis functions are then 
computed for each coarse node within its dual coarse block, following 
the multilevel grid hierarchy. For hyperbolic variables (e.g., saturation 
or component mass fraction), constant interpolation is adopted as the 
prolongation operator, while for the elliptic pressure field, multiscale 
basis functions following Ţene et al. (2016) are employed to account 
for heterogeneity in transmissibility.

As with the typical pEDFM method, fractures are discretized as 
lower-dimensional entities embedded in the matrix grid. Coarse nodes 
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Fig. 3. Schematic description of the pEDFM-ADM strategy.
are assigned in the fracture domain similarly to the matrix, ensuring 
that every fracture contains its own set of coarse nodes. As a result, 
basis functions are constructed not only for matrix coarse nodes but also 
for fracture coarse nodes. The computation of fracture basis functions 
follows a similar procedure to that of the matrix; however, the support 
region of each basis function now extends across both the matrix and 
fracture media.

This coupling implies that matrix basis functions are influenced 
by the presence of nearby fractures, and meanwhile, fracture basis 
functions are also affected by adjacent matrix cells. The resulting basis 
functions are therefore termed fully coupled basis functions, as they 
are solved over local dual coarse domains that include both matrix and 
fracture cells, with all intermediate interactions preserved.

Mathematically, for each coarse node 𝑖, the local basis function 𝛷𝑖 is 
obtained by solving the following coupled system over its local domain 
𝛺𝑖, i.e., 
−∇⋅

(

𝝀∗ ∇𝛷∗∙
𝑖
)

+
∑

𝑗∈conn∗𝑚𝑓

𝜂∗𝑗 
(

𝛷∗∙
𝑖
)

+
∑

𝑗∈perf∗𝑤

𝛽∗𝑗
(

𝛷∗∙
𝑖 −𝛷𝑤∙

𝑖
)

= 0, (3.8)

which is solved for each basis function 𝛷∗∙
𝑖 . Here, 𝜂∗𝑗  is the matrix–

fracture coupling coefficient, and 𝛽∗𝑗  is the well index if wells are 
present. The operator (⋅) denotes the matrix–fracture coupling term. A 
detailed description of the basis function entries can be found in Ţene 
et al. (2016). The solution 𝛷𝑖 is then assembled into column 𝑖 of the 
prolongation operator 𝑃𝑝, which maps coarse pressures to the fine-scale 
solution. These multiscale basis functions enable accurate coarse-grid 
representation of flow in highly heterogeneous porous media with 
complex matrix–fracture connectivity. Fig.  4 shows a surface plot of 
some matrix and fracture basis functions at two different coarsening 
levels for a 2D homogeneous domain.

4. Numerical results

This section presents a series of numerical simulations designed to 
evaluate the effectiveness of the proposed framework. We begin by 
6 
analyzing the influence of fractures on CO2 sequestration performance, 
and then proceed to more complex scenarios to assess both the accuracy 
and computational efficiency of the method.

The relative permeability curves for the matrix domain are modified 
based on experimental data reported in Oak et al. (1990), and are 
modeled using the Van Genuchten formulation (Van Genuchten, 1980). 
Capillary pressure curves are derived from the Leverett J-function. In 
this study, we assume that multiphase interactions within the fractures 
are negligible. Consequently, the relative permeability in fractures 
follows linear functions (Fanchi, 2005), and both capillary pressure and 
hysteresis effects are neglected in the fracture domain. The primary 
drainage and imbibition curves for the matrix are illustrated in Fig.  5.

We assess the accuracy of the pEDFM-ADM method by comparing 
it with a reference fine-scale simulation that employs the pEDFM 
method without ADM. To quantify the solution accuracy of pEDFM-
ADM method for hyperbolic variables (e.g., 𝑥CO2

 and 𝑧CO2
), the error 

at each time step 𝑡 is defined as Zhao et al. (2025): 

𝜖𝑥(𝑡) =

𝑁
∑

𝑖=1

|

|

|

𝑥𝑖CO2
(𝑡) − 𝑥𝑖CO2 ,ref

(𝑡)||
|

𝑁
, (4.1)

where 𝑥CO2 ,𝑟𝑒𝑓  is the reference fine-scale solution for the CO2 mass 
fraction, and 𝑁 is the total number of fine cells. For pressure, we define 
the normalized root-mean-square error as: 

𝜖𝑃 (𝑡) =

√

√

√

√ 1
𝑁

𝑁
∑

𝑖=1

(

𝑃 𝑖𝑤(𝑡) − 𝑃
𝑖
𝑤,ref(𝑡)

)2

𝑃𝑏𝑐
, (4.2)

where 𝑃𝑤,𝑟𝑒𝑓  denotes the fine-scale solution of the wetting-phase pres-
sure, and 𝑃𝑏𝑐 is a characteristic pressure scale (for instance, a bound-
ary value). The average errors over the entire simulation period are 
computed to provide a global measure of solution accuracy: 
𝜖 = mean(𝜖 (𝑡)), (4.3)
𝑥 𝑥
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Fig. 4. Example of multilevel, fully coupled basis functions over multiple dual coarse blocks in a 2D homogeneous fractured domain. Red lines indicate the 
fracture network, and the basis functions capture both matrix and fracture influences. The color scale represents the magnitude of the pressure basis function.
Fig. 5. Illustrations of the relative permeability and capillary pressure curves used for the matrix domain. Superscripts 𝑑 and 𝑖 denote drainage and imbibition, 
respectively. Single-headed arrows indicate irreversible processes, while double-headed arrows represent reversible ones along the corresponding curves.
𝜖𝑃 = mean(𝜖𝑃 (𝑡)). (4.4)

4.1. Test case 1: Impacts of fractures

To systematically investigate the full-cycle behavior of CO2 storage 
in a deep fractured saline aquifer, we first consider a two-dimensional 
conceptual model representing a reservoir cross-section with a length 
of 200 m and a height of 50 m. The domain is discretized into a 
structured grid with 201 cells in the horizontal direction and 51 cells 
in the vertical direction. The permeability of the rock matrix is set 
to 8×10−14 m2. A CO2 injection well is placed on the left boundary, 
injecting through the bottom 10 m of the formation, while a production 
7 
well penetrating the full vertical extent of the domain is located at the 
right boundary. The production well is designed to withdraw formation 
brine rather than produced CO2, in order to mitigate pressure perturba-
tions and facilitate CO2 dispersal throughout the aquifer. Two inclined 
fractures are embedded in the domain with identical inclination angles 
but different spatial positions, as shown in Fig.  6.

To evaluate the impact of fracture conductivity, we vary the frac-
ture permeability while keeping the fracture aperture constant. In 
each scenario, we consider two logarithmic-scale fracture-to-matrix 
permeability ratios, defined as log10(𝑘𝑓∕𝑘𝑚), with values of 4 and −6 
representing highly conductive fractures and near-impermeable flow 
barriers, respectively. The physical parameters and simulation settings 
used in all scenarios are summarized in Table  1.
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Fig. 6. Schematic of 200 × 50 m computational domain and fracture configurations used in Test Case 1. The injector is shown in light blue, the producer in red, 
and each fracture in dark blue.
Table 1
Physical parameters and simulation setup. (STC: standard conditions.)
 Parameter Value Unit  
 Aquifer length 200 m  
 Aquifer height 50 m  
 Fracture length 40 m  
 Fracture aperture 5 × 10−3 m  
 Fracture inclination angle 45 ◦  
 Matrix porosity 0.2 –  
 Matrix permeability 8 × 10−14 m2  
 Initial pressure 25 MPa  
 Bottom hole pressure 25 MPa  
 Temperature 323.15 K  
 Injection rate 1 × 10−4 pore volume/day 
 CO2 density at STC 1.98 kg/m3  
 H2O density at STC 998 kg/m3  
 Simulation time 3.2 × 104 day  
 Injection time 600 day  

Fig.  7 presents streamline patterns of aqueous phase under three 
configurations: the base case simulation without fractures, flow barrier 
fractures, and finally conductive fractures. In Fig.  7(b), streamlines are 
visibly diverted around the low-permeability fractures, most clearly 
near the fracture tips where stagnation zones form. Almost no stream-
lines pass through the fractures, confirming their role as effective flow 
barriers. In contrast, in Fig.  7(c), where the fracture permeability is four 
orders of magnitude greater than that of the matrix, flow converges 
into the fractures, accelerates along their length, and re-emerges into 
the matrix, creating localized acceleration of the brine through the 
highly permeable pathways of the conductive fractures. The streamline 
density in the surrounding matrix is noticeably reduced, indicating that 
transport is dominated by flow through the conductive fractures.

The impact of fracture configuration on the evolution of CO2 mass 
fraction is illustrated in Fig.  8. In the base case without fractures, 
gravitational instabilities develop near the top boundary due to the 
density difference between CO2-rich and CO2-poor brine. These insta-
bilities give rise to downward-propagating convective fingers, which 
enhance dissolution trapping by increasing the contact area between 
CO2 and resident brine (Voskov and Tchelepi, 2012). In the low-
permeability fracture case, some vertical finger development cannot 
cross the barriers, but the overall convective pattern remains similar 
to the base case. In the high-permeability case, CO2-rich fluid rapidly 
enters the conductive fractures, descends to greater depths, and re-
enters the matrix, driving large-scale flow patterns on both sides of the 
fracture network.

Fig.  9 further shows the temporal evolution of both dissolved and 
residual trapping fractions. Dissolution increases progressively as the 
CO2 plume interacts with undersaturated brine. Residual trapping, on 
the other hand, is primarily controlled by capillary hysteresis. After 
injection stops, brine, as the wetting phase in most sedimentary for-
mations, imbibes into the trailing edge of the non-wetting CO2 plume. 
This imbibition process leaves disconnected and immobile CO2 ganglia 
behind (Juanes et al., 2006). In the conductive fracture case, the rapid 
migration of CO  along connected pathways reduces its contact time 
2

8 
with the surrounding matrix, limiting capillary trapping and resulting 
in lower residual immobilization. In contrast, dissolution trapping is 
higher because the fracture-controlled flow locally enhances mixing 
and interfacial contact between CO2-rich and CO2-poor brine.

4.2. Test case 2: Validation of pEDFM-ADM

Building on Test Case 1, we further evaluate the capability of the 
proposed pEDFM-ADM framework in capturing the dynamics of CO2
migration and trapping in Test Case 2 by comparing with a fine-scale 
solution. The pEDFM-ADM simulations employ two coarse levels, each 
with a uniform coarsening ratio of 5 in both 𝑥- and 𝑧- directions. 
To evaluate the sensitivity of the adaptive resolution control, we test 
three threshold values for the front-tracking criterion based on local 
variations in the overall CO2 mass fraction, 𝛥𝑧CO2

∈
{

10−1, 10−2, 10−3
}

. 
This criterion governs both refinement and coarsening during the sim-
ulation, ensuring that high resolution is applied selectively in regions 
with sharp CO2 gradients. Over the full simulation cycle, including both 
injection and post-injection periods, the model captures key processes 
such as plume propagation, convective mixing, and dissolution, while 
dynamically adjusting grid resolution in response to the evolving front.

Figs.  10 and 11 present snapshots at 𝑡 = 20000 days for two 
contrasting fracture scenarios: one with two low-permeability fractures 
acting as flow barriers (𝑘𝑓∕𝑘𝑚 = 10−6), and another with two conduc-
tive fractures (𝑘𝑓∕𝑘𝑚 = 104). For the barrier case, the pEDFM-ADM 
simulations closely reproduce both the extent and the fine-scale mor-
phology of the plume, including fingering structures. As the refinement 
threshold tightens, the error drops from 0.43% to 0.14%, accompanied 
by an increase in the fraction of active grid cells (AGC) from 39% 
to 91%. Here, active grid cells refer to the fine-scale cells that are 
explicitly resolved in the simulation at a given time step and higher 
AGC values mean finer resolution but also greater computational cost. 
In the conductive-fracture case, even the coarsest setting (𝛥𝑧CO2

= 10−1) 
adequately captures the large-scale convection pattern with only 0.35% 
error, using merely 37% of the fine-grid resolution.

Fig.  12 complements these visual comparisons by reporting quan-
titative accuracy and efficiency metrics. Fig.  12(a) and (b) show the 
differences in pressure and overall mass fraction between pEDFM-ADM 
and the fine-scale reference solution. Both quantities remain consis-
tently small across the simulation, demonstrating that pEDFM-ADM 
preserves the accuracy of the fine-scale model. The AGC curves in Fig. 
12(c) highlight how the dynamic algorithm selectively refines only the 
active regions. For the most stringent threshold, the algorithm retains 
approximately 80% of the fine grid cells on average over the simulation 
period. As the ADM threshold increases, the number of active cells 
decreases, which reduces computational cost, but the error in each 
primary variable correspondingly increases. In this particular test case, 
the solutions for thresholds of 10−2 and 10−3 are nearly indistinguish-
able. These results demonstrate that pEDFM-ADM enables a tunable 
balance between computational efficiency and accuracy. In both the 
flow-barrier and conductive-fracture cases, the framework preserves 
essential features such as solute fingering, and convective mixing, while 
maintaining acceptable accuracy with reduced computational cost.
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Fig. 7. Streamline distribution of aqueous phase at 1200 days for Test Case 1.
Fig. 8. Snapshots of CO2 mass fraction at 7500, 15000, 32000 days for Test Case 1. The aspect ratio of the figures has been adjusted for improved visualization.
4.3. Test case 3: Fractures with complex geometries

To further demonstrate the effectiveness and generality of the pro-
posed pEDFM-ADM framework, we consider a more challenging sce-
nario involving a complex, irregular fracture network, as illustrated 
in Fig.  13. The computational domain spans 200 m in the horizontal 
direction and 50 m vertically, and contains 30 fractures with di-
verse orientations, lengths, and spatial distributions, including both 
intersecting and isolated segments, as reported in Wang et al. (2022b).

As with the previous test cases, we simulate two representative 
scenarios with extreme fracture-matrix permeability contrasts: a low-
permeability fracture network with log(𝑘𝑓∕𝑘𝑚) = −6, and a highly 
conductive network with log(𝑘𝑓∕𝑘𝑚) = 4. For each case, pEDFM-
ADM simulations are again performed using three different adaptivity 
thresholds based on 𝛥𝑧CO2

: {10−1, 10−2, 10−3}. Boundary conditions and 
fluid properties are consistent with those listed in Table  1.

Figs.  14 and 15 present CO2 mass fraction distributions at interme-
diate (2500 days) and late (32 000 days) times, comparing fine-scale 
9 
reference solutions with pEDFM-ADM results across varying adaptivity 
thresholds. For the low-permeability fracture network (log(𝑘𝑓∕𝑘𝑚) =
−6), the fractures act as flow barriers that partition the domain and 
inhibit vertical plume propagation. At 2500 days, the pEDFM-ADM 
simulations accurately capture both the leading front and finger mor-
phology with high fidelity compared to the fine-scale solution, with an 
error of 𝜖 = 0.03% at 𝛥𝑧CO2

= 10−1, while activating only 48% of the 
grid cells. At 32000 days, the plume remains largely confined by low-
permeability segments, and the pEDFM-ADM results remain consistent 
with the reference solution, with 𝜖 = 0.32% and 47% active cells at the 
coarsest threshold.

The high-permeability fracture network (log(𝑘𝑓∕𝑘𝑚) = 4) functions 
as a conduit system that channels CO2 along fracture planes and 
induces large-scale convective mixing patterns within the matrix. At 
2500 days, these transport features are reproduced with 𝜖 = 0.18%
using only 37% of the fine grid at 𝛥𝑧CO2

= 10−1. At 32000 days, the 
plume geometry becomes increasingly influenced by fracture-controlled 
mixing. Resolving these structures requires finer adaptivity: the error 
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Fig. 9. Temporal evolution of the fraction of injected CO2 trapped by different mechanisms. The elapsed time (𝑡) is nondimensionalized with respect to the 
duration of the injection period. The light-blue shaded region denotes the injection phase, while the light-green shaded region corresponds to the post-injection 
phase.

Fig. 10. CO2 mass fraction profiles after 20000 days for the case with log(𝑘𝑓∕𝑘𝑚) = −6, showing the fine and coarse grid levels.

Fig. 11. CO2 mass fraction profiles after 20000 days for the case with log(𝑘𝑓∕𝑘𝑚) = 4, illustrating detailed plume behavior across fine and coarse grid levels.
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Fig. 12. Error analysis for case with flow barriers, detailing pEDFM-ADM performance across various thresholds, with metrics for pressure, mass fraction errors, 
and active grid cell usage.
Fig. 13. Schematic of computational domain and fracture geometries for Test Case 3.
decreases from 𝜖 = 0.61% at 𝛥𝑧CO2
= 10−1 to 0.19% at tighter threshold, 

with corresponding active cell fraction increasing from 30% to 82%. 
These comparisons illustrate that the pEDFM-ADM concentrates resolu-
tion near the front, and that higher fracture conductivity requires finer 
spatial resolution to accurately represent plume dynamics.

Fig.  16 quantifies the temporal evolution of errors and the fraction 
of active grid cells used in the simulation. For the low-permeability 
fracture network, plume migration is limited by the barrier effect, 
producing a compact CO2 plume with relatively sharp 𝑧CO2

 gradients 
along its boundary. Since the pEDFM-ADM algorithm refines only in 
regions of steep gradients, most of the reservoir can be represented 
on a coarse grid, with fine-scale resolution concentrated along the 
advancing front. In contrast, for the high-permeability fracture net-
work, the plume rapidly disperses throughout the reservoir, generating 
large-scale mixing and numerous localized regions of CO2 gradients. 
Accurately resolving this transport pattern requires fine-scale resolution 
across much of the domain, keeping the active cell fraction high for an 
extended period. Fig.  17 aggregates the dissolved and residual trapping 
11 
fractions to visualize the total trapping occurring in each simulation. 
The conductive network exhibits much stronger dissolution due to 
fracture-induced mixing and enhanced interface area. Residual trapping 
primarily occurs during the post-injection period. Across all thresholds, 
including 𝛥𝑧CO2

= 10−1, the pEDFM-ADM solutions closely follow the 
fine-scale curves, demonstrating the framework’s capability for rapid 
yet reliable quantification of trapping metrics, even under relatively 
coarse adaptive thresholds.

4.4. Test case 4: Heterogeneous aquifer with mixed-conductivity fractures

In this section, we consider a complex scenario that couples het-
erogeneous matrix permeability with fractures of contrasting hydraulic 
roles (i.e. both conductive fractures and flow barriers). The matrix 
permeability field is derived from cropped subregion of the SPE10 
benchmark dataset (‘‘SPE10Bottom’’), characterized by strong spatial 
correlations and channelized high-permeability streaks (Christie and 
Blunt, 2001). The same fracture network from Test Case 3 (composed 
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Fig. 14. CO2 mass fraction profiles at 2500 days for Test Case 3. Fine-scale results are compared with pEDFM-ADM solutions at thresholds 10−1, 10−2, 10−3. 
Overlaid grid lines show local coarsening levels.
Fig. 15. CO2 mass fraction profiles at 32000 days for Test Case 3. Fine-scale results are compared with pEDFM-ADM solutions at thresholds 10−1, 10−2, 10−3. 
Overlaid grid lines show local coarsening levels.
of 30 fractures) is superimposed on this field. As shown in Fig.  18, 
white lines denote highly conductive fractures with 𝑘𝑓 = 8.0 × 10−10

m2, while black lines represent low-permeability barriers with 𝑘𝑓 = 8.0
× 10−20 m2. This setup reflects a more geologically realistic subsurface 
environment where both matrix and fracture heterogeneity influence 
flow behavior.

Figs.  19 and 20 show CO2 mass fraction fields at early time (600 
days) and late time (20 000 days), respectively, comparing fine-scale 
reference solutions with pEDFM-ADM results under different refine-
ment thresholds. At 600 days, the plume evolution is primarily gov-
erned by the heterogeneous matrix permeability field, with migration 
strongly aligned along high-permeability pathways and hindered by 
low-permeability zones. Conductive fractures serve to locally enhance 
transport where they intersect permeable matrix channels, whereas 
barrier-type fractures alter flow paths and create compartmentaliza-
tion. The adaptive pEDFM-ADM approach successfully reproduces these 
early-stage features: even at the coarsest setting (𝛥𝑧CO2

= 10−1), the 
error remains as low as 𝜖 = 0.10% while activating only 46% of fine 
grid cells.

By 20000 days, the CO2 plume exhibits a substantially more com-
plex structure, shaped by long-range interactions between the under-
lying matrix heterogeneity and fracture connectivity. The presence of 
conductive fractures facilitates deep plume penetration and sustains 
extensive fracture-controlled mixing. At the coarsest refinement level 
(𝛥𝑧CO2 = 10−1), pEDFM-ADM captures large-scale plume distribution 
but fails to resolve finer structural details, with a error of 0.40% and 
only 26% of the fine grid cells active. Tighter thresholds (𝛥𝑧CO2

= 10−2

and 10−3) recover progressively more fine-scale features, with errors of 
12 
0.10% and 0.02% and activate 81% and 99% of the grid, respectively. 
While this demonstrates the framework’s ability to focus resolution in 
physically significant regions such as fracture intersections and sharp 
fronts, the trade-off between accuracy and efficiency becomes apparent: 
the 𝛥𝑧CO2

= 10−3 case achieves near fine-scale accuracy but offers 
minimal computational savings due to the high active grid cell count.

As seen in Fig.  21, both pressure and CO2 mass fraction errors 
are reported alongside the temporal evolution of the active grid cell 
fraction, providing a quantitative assessment of solution accuracy and 
grid activation for this test case. Errors consistently decrease with 
tighter refinement thresholds, while temporal variations reflect gradual 
accumulation as the plume interacts with increasingly complex regions 
of the domain. The averaged metrics in Fig.  21(d) further confirm 
the accuracy-efficiency trade-off: loose thresholds greatly reduce active 
fine cell usage but lose fine-scale detail, whereas the tightest threshold 
achieves near fine-scale accuracy with minimal computational savings 
because the active grid fraction remains close to 100% for most of the 
simulation.

Finally, Fig.  22 illustrates the temporal evolution of CO2 storage 
mechanisms, including dissolved and residual trapping fractions. Across 
all thresholds, including the coarsest setting, the pEDFM-ADM frame-
work accurately reproduces the evolution of global storage metrics 
and maintains close agreement with the fine-scale reference. These 
results confirm the method’s robustness and predictive capability for 
simulating multiphase, multicomponent flow in complex geological do-
mains containing both matrix heterogeneity and mixed fracture types, 
reinforcing its potential for practical applications in geological CO2
sequestration.
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Fig. 16. Quantitative error analysis of pEDFM-ADM solutions for Test Case 3. Pressure and overall CO2 mass fraction errors are shown alongside the percentage 
of active grid cells for each coarsening threshold. (HF: high-permeability fractures; LF: low-permeability fractures).
Fig. 17. Temporal evolution of CO2 trapping mechanisms in Test Case 3. Results are expressed as fractions of the injected CO2 retained in immobile and dissolved 
states over dimensionless time. The light-blue shaded region denotes the injection phase, while the light-green shaded region corresponds to the post-injection 
phase.
5. Conclusions

This study presented a multiscale simulation framework, Projection-
based Embedded Discrete Fracture Modeling with Algebraic Dynamic 
Multilevel method (pEDFM-ADM), for efficient and accurate model-
ing of CO2 storage in fractured deep saline aquifers. The framework 
combines an embedded representation of discrete fractures with an 
13 
algebraic, front-tracking-based dynamic mesh adaptation strategy, al-
lowing for both grid refinement and coarsening in response to evolving 
plume fronts during CO2 migration and trapping.

The method constructs a hierarchy of multilevel grids and localized 
multiscale basis functions for both matrix and fracture cells. These 
basis functions are extended to incorporate fracture effects, ensuring 
accurate matrix–fracture coupling through algebraic prolongation and 
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Fig. 18. Log-permeability field ln(𝐾) of the matrix and fracture configuration for Test Case 4. White segments represent highly conductive fractures, while black 
segments denote low-permeability barriers.
Fig. 19. CO2 mass fraction profiles after 600 days for Test Case 4. For the pEDFM-ADM simulations, the dynamically refined grid is overlaid as white lines.
Fig. 20. CO2 mass fraction profiles after 20000 days for Test Case 4. For the pEDFM-ADM simulations, the dynamically refined grid is overlaid as white lines.
restriction operators, which enable efficient projection between grid 
levels.

Through a series of progressively complex test cases, the proposed 
approach demonstrated its capability to capture multiphase, multicom-
ponent flow phenomena features, including fracture-controlled trans-
port, barrier-induced compartmentalization, dissolution-driven convec-
tion, and residual trapping. In scenarios dominated by low-permeability 
14 
fractures, the method resolved the redirection of flow around low 
permeability fractures and localized density-driven fingering. In con-
trast, for highly conductive fractures, the model captured preferential 
transport and large-scale convective mixing. In all cases, the adaptive 
mesh strategy ensures that computational resolution is concentrated 
in physically significant regions, such as plume fronts and fracture 
intersections, while preserving coarser resolution elsewhere to reduce 
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Fig. 21. Error analysis of pEDFM-ADM solutions for Test Case 4. Pressure and overall CO2 mass fraction errors are shown alongside the percentage of active grid 
cells for each coarsening threshold.
Fig. 22. Temporal evolution of CO2 trapping mechanisms in Test Case 4. Results are expressed as fractions of the injected CO2 retained in immobile and dissolved 
states over dimensionless time. The light-blue shaded region denotes the injection phase, while the light-green shaded region corresponds to the post-injection 
phase.
computational cost, thereby providing a trade-off between simulation 
accuracy and computational efficiency.

Importantly, the method preserves key storage metrics across all 
thresholds, including dissolved and residual CO2 fractions, thereby con-
firming its reliability in capturing long-term trapping behavior. These 
results highlight the potential of projection-based multiscale embedded 
fracture models as a scalable and predictive tool for assessing CO2
migration and storage performance in geologically realistic formations.
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