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ARTICLE INFO ABSTRACT
Keywords: This study introduces a multiscale simulation framework, termed Projection-based Embedded Discrete Frac-

CO, storage

Multiscale multilevel method
Embedded discrete fracture model
Numerical simulation

ture Modeling with Algebraic Dynamic Multilevel method (pEDFM-ADM), which integrates an embedded
discrete fracture network representation with a fully algebraic, front-tracking-based mesh adaptation strategy.
Incorporating a fully implicit scheme, compositional thermodynamics, and algebraic multilevel operators, the
framework captures essential subsurface processes such as buoyancy-driven migration, convective dissolution,
phase partitioning, and fracture-matrix interactions under geologically realistic conditions. The method
constructs a hierarchy of multilevel grids and localized multiscale basis functions that introduce fine-scale
heterogeneities at each coarse level. Adaptive mesh refinement and coarsening are driven by local variations
in CO, mass fraction and executed through algebraic prolongation and restriction operators, enabling efficient
projection between grid levels. The framework is systematically evaluated across a sequence of test cases with
increasing complexity, including systems with low-permeability flow barriers, highly conductive fractures,
striking a trade-off between computational resource and detailed simulation accuracy. Overall, the pEDFM-
ADM framework provides a scalable, fully algebraic, and physically adaptive modeling tool for large-scale
CO, storage simulations in fractured porous media, supporting predictive simulation and risk assessment for
long-term carbon sequestration.

1. Introduction

Despite their potential, implementing CO, storage in saline aquifers
presents geological and engineering challenges. A key challenge in-

Mitigating climate change requires rapid reductions in CO, emis-
sions, making geological carbon capture and storage (CCS) essential
as a large-scale mitigation strategy (Boot-Handford et al., 2014; Bui
et al.,, 2018; Krevor et al., 2023; Bashir et al.,, 2024). Among the
available geological storage options, deep saline aquifers are particu-
larly promising due to their large storage capacities and widespread
geographical distribution. These aquifers are located at depths below
approximately 800 m, where CO, can be injected in a supercritical
phase with relatively high density. Estimates suggest that the global
total storage capacity of deep saline aquifers could range from hundreds
to thousands of gigatons, emphasizing their critical role in global
climate mitigation scenarios (Metz et al., 2005; Bachu, 2008; Alcalde
et al., 2018).

* Corresponding author.

volves managing multiphase flow dynamics and trapping mechanisms
during CO, injection and long-term storage. When CO, is injected
into a saline reservoir, it displaces resident brine and migrates up-
ward under buoyancy, while simultaneously dissolving into brine or
becoming trapped by capillary forces in pore spaces over time (Benson
and Cole, 2008; Szulczewski et al., 2012). These processes are strongly
sensitive to the heterogeneities of reservoir properties, particularly
the presence of natural fractures and faults. Fractures significantly
impact fluid migration by creating preferential pathways or barriers,
altering plume distribution and potentially influencing overall stor-
age integrity (Rutqvist et al., 2016; Sokama-Neuyam et al., 2020).
Highly conductive fractures facilitate rapid CO, migration, possibly
leading to unintended migration beyond storage boundaries, whereas
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low-permeability fractures act as flow barriers, compartmentalizing
the reservoir and impeding the migration of CO, (Berkowitz, 2002;
Rutqvist et al., 2010). Therefore, accurate prediction of CO, behavior
in fractured aquifers requires advanced modeling approaches capa-
ble of integrating fine-scale fracture details with large-scale reservoir
dynamics.

Among fracture modeling methods, Discrete Fracture Models (DFM)
employ conforming unstructured grids to explicitly represent fractures
and flow barriers at matrix interfaces (Karimi-Fard et al., 2004; Matth&i
et al., 2007; Hoteit and Firoozabadi, 2008). However, generating such
grids can be computationally intensive, particularly for complex frac-
ture networks (Sahimi, 2011; Moinfar et al., 2013; Berre et al., 2019).
As an alternative, Embedded Discrete Fracture Models (EDFMs) offer a
more practical approach by avoiding conforming grid generation (Lee
et al.,, 2001; Li and Lee, 2008). In EDFM, small-scale fractures en-
tirely contained within a matrix cell are homogenized by adjusting the
intrinsic permeability of the surrounding rock, while the remaining
fracture networks in the network are discretized independently of
the matrix grid (Hajibeygi et al., 2011; Moinfar et al., 2014). How-
ever, coupling between matrix cells and fracture cells is maintained
through flux terms, even when the grid does not explicitly conform to
the fracture geometry. Therefore, standard EDFM techniques struggle
to accurately model fractures that are fully enclosed within a cell
or have low permeability (HosseiniMehr et al., 2020). To overcome
these limitations, projection-based Embedded Discrete Fracture Model
(pPEDFM) was developed by Tene et al. (2017). When a fracture inter-
sects a matrix cell, the transmissibility with a neighboring matrix cell
is reduced proportionally to the projection of the fracture area onto
the matrix cell face. A new connection is then created between the
fracture and the neighboring matrix cell such that the permeability
of the fracture determines how readily fluid flows from one matrix
cell to the next. This correction ensures strict local mass conservation
and reduces the error observed in original EDFM for challenging con-
figurations involving low-permeability fractures (HosseiniMehr et al.,
2022). In recent years, pEDFM has been further extended to address
more complex flow mechanisms and anisotropic media, including two-
phase flow simulation using hybrid TPFA-MFD formulations (Rao et al.,
2024), and applications on unstructured tetrahedral grids for fully
three-dimensional fractured reservoirs (Cavalcante et al., 2024). Con-
sequently, it enables the development of a robust modeling strategy
for both barrier and highly conductive fractures, while facilitating
simulations of CO, migration and subsequent trapping processes from
the injection phase to the post-migration stage (Wang et al., 2022b).

Even with such advances in modeling flow and transport in frac-
tured reservoirs, simulating large-scale CO, storage remains compu-
tationally demanding, primarily due to the large spatial scales and
multiscale nature of the problem. In this context, the finite volume
method (FVM) is frequently employed for its efficiency and local con-
servation properties, making it well suited for large-scale reservoir
modeling (Wang et al., 2022a,b). However, the high-resolution grids re-
quired to accurately capture flow physics and geological heterogeneity
often make classical numerical solvers computational prohibitive (Pra-
ditia et al., 2018). Grids at the Darcy scale (on the order of centime-
ters) can generate extremely large linear systems, making conventional
methods impractical for field-scale applications. Consequently, there
is a demand for advanced numerical techniques that can preserve
fine-scale details while ensuring computationally efficiency.

One class of solutions involves multiscale methods, such as the
multiscale finite element (MsFE) (Hou and Wu, 1997; Efendiev et al.,
2015) and multiscale finite volume (MsFV) approaches (Jenny et al.,
2003; Lee et al., 2008; Tene et al., 2016). These methods construct
coarse-scale pressure systems that preserve critical fine-scale infor-
mation through local basis functions. Algebraic restriction and pro-
longation operators then map the coarse-scale solution back to the
original high-resolution grid, allowing an approximate solution that
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captures essential flow details without globally refining the entire do-
main (Hajibeygi et al., 2008). Building on these concepts, the Algebraic
Dynamic Multilevel (ADM) method was introduced to handle fully
implicit (FIM) systems on dynamically updated multilevel grids (Cusini
et al., 2016, 2018). ADM addresses the coexistence of multiscale and
multilevel behaviors in pressure (elliptic or parabolic) and transport
(hyperbolic) unknowns by adaptively refining or coarsening the mesh
at each time step based on a front-tracking criterion. This ensures
that fine-scale resolution is applied only where significant gradients
and physical interactions occur. Mass conservation is enforced at all
levels by carefully designed finite-volume restriction operators, while
pressure and transport variables are interpolated using multiscale and
constant basis functions, respectively (HosseiniMehr et al., 2018).

Previously, the pEDFM and ADM methods have been applied sep-
arately to CO, flow and transport problems, but not within a unified
modeling workflow. In this study, we develop an integrated pEDFM-
ADM modeling framework specifically designed for CO, storage in
fractured deep saline aquifers. The fractures are explicitly represented
by pEDFM, allowing the study of the impact of fractures with vary-
ing permeability contrasts. ADM complements this by dynamically
adjusting computational resolution, significantly enhancing efficiency
while maintaining the impact of fine-scale heterogeneity on flow and
transport. This integrated approach captures critical fracture-induced
flow processes and large-scale reservoir dynamics, improving our pre-
dictive capability for CO, plume behavior and storage effectiveness.
Similar to the fine-scale system, the ADM dynamic grid is constructed
independently for the matrix and fractures based on a front-tracking
criterion that balances computational cost with accuracy. Mapping
solutions across different grid resolutions is performed using sequences
of restriction and prolongation operators.

The rest of the paper is organized as follows. Section 2 outlines the
governing equations for flow and transport in fractured media, as well
as the discretization and simulation approach for the fine-scale, pEDFM
model. Section 3 details the application of ADM to the fine-scale,
PEDFM model described in Section 2. Section 4 presents numerical
results demonstrating the effectiveness of the proposed approach, and
Section 5 concludes the study.

2. Fine-scale model and solution strategy

Flow and transport in porous media are governed by the con-
servation of mass, which applies to each component across multiple
coexisting phases. The representation of fluid properties relies on ap-
propriate thermodynamic constitutive relationships that describe phase
behavior under reservoir conditions. To establish a reference for sub-
sequent multiscale development, the fine-scale model considered in
this work is based on pEDFM, which resolves fracture-matrix flow
interactions.

2.1. Governing equations

In geological formations, CO, migration is strongly affected by
fracture-matrix interactions. To capture this behavior, the mass con-
servation equations for the CO,-brine system in porous media with
discrete embedded fractures, are formulated as:

9 "bh 7ph "ph
E <¢m Z xc,apasa> +V- <Z xc,txpaua> - Z Xeaa
a=1

a=1 a=1

fph
= ) el =0,
a=1
vee{l,....n.}, 2.1)

for the rock matrix m and,

9 "oh 7ph "ph
E <¢f Z xc,apaSa> +V- <Z xc,at”a“a) - Z xc,anm
a=1 a=1 a=1
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ph
— z xc_aQaff =0,
a=1
Vee {l,...,n.}, (2.2)

for the lower-dimensional fracture f. Here, ¢ denotes porosity, p,,
S,, and g, represent the density, saturation, and source/sink terms
of the phase a (wetting or non-wetting), respectively. The subscripts
a € {w,n} denote the wetting (brine-rich) and non-wetting (CO,-rich)
phases, respectively. The index c¢ identifies the components (CO, and
H,0), while x_,, is the mass fraction of component ¢ in phase a. The
terms 0"/ and Q/™ are the phase mass flux exchanges between the
rock matrix and the fractures, and Q',ff represents the phase influx
between intersecting fractures. Note that the mass conservation law

enforces the relations: [[J,, 04/ Vv = - I, Q["d A and I, 0lian=
- 4, Qi’ %4 4. The phase velocity u, is defined by Darcy’s law:

u, = -4, Vy,, (2.3)

where the phase mobility is defined as 1, = Kk’*“, with p, as the
phase viscosity, K as the rock permeability tensor, and k., as the
phase relative permeability (Abou-Kassem et al., 2013). y,, is the phase
potential, given by:

Wy = Py — Pa8hs 2.4

where g is the gravitational acceleration and A is the depth. The two
phase pressures p, and p,, are interrelated by capillary pressure P, as
follows:

Pp—Pyp =P (2.5)

Generally, the capillary pressure is a nonlinear function of the
wetting-phase saturation S,,. In addition, the model assumes that the
pore space is fully occupied by the phases, with CO, and H,O as
the only components present. This is mathematically enforced by the
conditions that the sums of phase saturations and component mass
fractions in each phase equal one:

Y S,=1, and Y xe=1L (2.6)
a=w,n ¢=C0,,H,0

2.2. Thermodynamic equilibrium equations

For a binary CO,-H,O system, thermodynamic equilibrium is
achieved when the fugacity of each component is equal in both phases
(Reed, 1982):

fc,n (pv Xc,n) - fc,w (P, xc,w) = 0’

where f,, and f, , are the fugacities of component c in the non-wetting
and wetting phases, respectively. This condition is often reformulated
in terms of equilibrium ratios, or K-values

X

K, =", (2.8)

Xew

Ve € {CO,, H,0}, 2.7)

where x., and x., are the mass fractions of component ¢ in the
vapor and aqueous phases, respectively. These K-values are func-
tions of pressure, temperature, and salinity, and provide the basis
for equilibrium-based compositional modeling (Prausnitz et al., 1998).
Once K-values are evaluated, phase partitioning is determined by
solving the Rachford-Rice equation for vapor fraction V' (Michelsen and
Mollerup, 2004):

ne

. K. -1
y KD (2.9)
S1+V(K -1

where z, is the overall mass fraction of component c, i.e.

ph

z xc,apaSn
a=1
ph :
Z PaSq
a=1

(2.10)
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Fig. 1 illustrates representative results based on the thermodynamic
model from Spycher et al. (2003), showing the mutual solubilities of
pure CO, and H,O as functions of pressure and temperature, where
xco, denotes the CO, mass fraction in the aqueous phase and yy o
denotes the H,O mass fraction in the CO,-rich phase. This model is
adopted for consistency with the reservoir parameter range considered
in this study. At low pressure, CO, solubility in the aqueous phase is
relatively low. As pressure increases, the solubility of CO, in water
increases. However, once CO, enters a dense or supercritical phase,
its solubility becomes relatively insensitive to further pressure changes.
As for the solubility of H,O, under low-pressure conditions where CO,
exists in a vapor state, the mass fraction of H,O in the CO,-rich phase
is relatively high. As pressure increases within this regime, CO, transi-
tions to a denser phase, leading to a marked decline in H,O solubility.
Additionally, increasing temperature enhances H,O volatility, resulting
in higher water content in the CO,-rich phase, while simultaneously
reducing CO, solubility in the aqueous phase.

2.3. Fine-scale solution strategy with pEDFM

The coupled non-linear Egs. (2.1)-(2.2) for the matrix—fracture
system are discretized spatially using the two-point-flux approximation
(TPFA) finite volume method, and temporally using the backward Euler
scheme, resulting in a FIM system. Independent structured grids are
generated for a three-dimensional (3D) aquifer and a network of two-
dimensional (2D) fractures. An illustration is presented in Fig. 2 for a
simple scenario with just two fractures.

The fracture-matrix coupling terms corresponding to Egs. (2.1)-(2.2)
are modeled following the approach of Li and Lee (2008) and Hajibeygi
et al. (2011). For a matrix control volume i having an embedded
fracture element f, the flux of component ¢ in phase a across the
matrix—fracture interface is expressed as
Quif = Pa—Tis Ay, (2.11)

Ha
where the rock transmissibility between the matrix and the fracture T;
is defined symmetrically as

Ty =Ty =Cl K} (2.12)
Here, KI.’; is the harmonic average permeability between the over-
lapping matrix and fracture elements. The mobility is evaluated us-
ing a phase potential upwind scheme. CI;, denotes the connectivity
index (Hajibeygi et al., 2011), calculated as

Sy (2.13)
(dir)

where (d; ;) represents the average distance between the matrix control
volume and the fracture surface. The fracture-matrix fluxes satisfy
the local conservation property F.,;, = —F., ;. To correct for the
limitations of the original EDFM when handling fractures with generic
conductivity due to parallel transmissibilities, the pEDFM modifies
the matrix-matrix, matrix—fracture, and fracture—fracture connectivi-
ties within overlapping regions. A continuous projection path is auto-
matically established at the matrix—fracture interfaces, ensuring that
flux exchange occurs only through the physical connection between
the two domains. For each spatial direction x, € {x,y,z}, the corre-
sponding projected area fraction on the interface between cell i and its
neighboring cells (e.g., j or k) is given by:

Cly =

Sif1x, = Aif X cos(9), 2.149)

where A, is the area fraction of the fracture cell f overlapping with
the rock matrix cell i, and 6 is the angle between the fracture plane and
the interface connecting the matrix grid cell i and its neighboring cell in
the corresponding direction. Further details of the geometric projection
and transmissibility correction procedures can be found in Tene et al.
(2017).
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Fig. 1. Mutual solubilities of H,O and CO, from 20 to 100 °C and up to a pressure of 400 bar, based on the model of Spycher et al. (2003) and adapted

from (Zhao et al., 2025).
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Fig. 2. The independent numerical grids: (a) 3D grid for rock matrix and (b) 2D grids for fractures.

The discrete residual form of Eq. (2.1) for component ¢ in cell (i)
within the rock matrix is written as:
Vitn &
__0Tda 1+ o+l ' { t
e = T4 21 (xc,a,<,~>l’a,<i>5a,<,-) - xc.a,<f>’)a.<i>5a,<f>)
a=
N, "ph t+1

+ szc,apaua ‘1

j=le=l (i)

(2.15)

"1ph Ny nph
t+1 mit+1 t+1 if 1 _
- Z Xea qa,(i) - Z Z xc.a,(i)Qa,(i) =0,
a=1 f=la=1
while for the fracture space it is written as:
S 4f n
VI, "ph
(UMY 1+l o+l ' ' '
A 21 ("c,a,<f>/’a,<i>sa,<f> - xc.a,<i>”a.<i>sa,<f>)
a=

S
Fey =

t+1

N, "ph
+ Z 2 XeaPa Uy -

J=la=l (ij)

(2.16)

N, ""ph ) Ny nph )
- XZT;,<i>QZf’<’:>+l - Z 2 xf;,<f>Q;f,<’:;rl =0.

m=1 a=1 f=la=1
Here, N, denotes the number neighboring cells that surround the cell
(i) in the corresponding media. N,, and N, are the number of matrix
and of fracture cells in the entire system, respectively. The overall-
composition variable set is employed (Voskov and Tchelepi, 2012), in
which the wetting phase pressure, p,, and overall CO, mole (mass)
fraction, ¢, are used as primary variables (Wang et al., 2022b).

To solve the nonlinear system at each time-step, the Newton—

Raphson method is employed, starting with a first-order Taylor series

expansion of the residual equations about the current iteration v:

or or,
v+l o v c v+1 c v+l
roRI, + —| 6p + — 5ZC02’ (21: )

opul, 9zco, |,

where v and v + 1 indicate the iteration steps. 6p¥+! and 62&’)12 are the
updates of the unknowns at iteration v + 1. This procedure leads to a

system of linearized equations that can be expressed in a matrix form:

mm mf mm mf Sp™ v+l rm v
COs.p COs. €0,.2c0, €02.2co, P O,
r

COy.py CO2.py €0y.z¢o, C0y.z¢o, P __| €O
mm mf mm mf ozMm - pm
H,0.p, H0.p,, H,0,z¢0, H,0.z¢0, €O, H,0
Im V7 Im i1 52! ;
H,0.p,, H,0.p, H,0,z¢0, H,0.z¢0, CO, "4,0

N ——— \ ,

Jv §§v+l rv
(2.18)

Here, JV is the Jacobian (derivatives) matrix, §£'*! is the vector of
unknown increments, and r¥ is the residual vector. The linearized
system is solved iteratively until convergence is reached, typically
indicated by sufficiently small changes in the primary variables or by
achieving a low residual norm. This completes the description of the
PEDFM approach used as the fine-scale model in this study. The next
section introduces the application of ADM within this framework.

3. pEDFM-ADM for CO, storage
The pEDFM-ADM framework integrates pEDFM with the ADM

method to efficiently simulate multiphase, CO,—H,O flow in fractured
saline aquifers. In this approach, the fractured aquifer is discretized
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on a Cartesian grid, with fractures embedded as lower-dimensional
features using pEDFM. The ADM component introduces a dynamic
multilevel hierarchy that enables efficient simulation by solving the
governing equations on coarser grids and reconstructing fine-scale
solutions via multiscale interpolator. This approach allows accurate
resolution of key features, such as CO, fronts or active fractures,
without globally refining the grid.

3.1. Adaptive selection of multilevel grids

At each time-step, the pEDFM-ADM framework adaptively con-
structs a multilevel solution grid by combining predefined sets of matrix
and fracture grid cells. The grid is refined or coarsened dynamically
based on the evolving physical state of the system, particularly the
movement of the CO, concentration front, which is identified according
to a user-defined threshold. For instance, the algorithm tracks the over-
all mass fraction z¢o, and applies fine resolution in regions with steep
gradients, while coarsening areas where CO, mass fracture evolves
more smoothly. This front-tracking strategy ensures efficient use of
computational resources without compromising accuracy.

For a three-dimensional aquifer, the physical domain is initially dis-
cretized into a fine-scale grid consisting of N,, cells in the rock matrix
and Ny, cells for each fracture i. Although this resolution captures
detailed CO,-brine interactions, solving fully implicit systems across
all cells becomes computationally prohibitive for large-scale problems.
To address this, pEDFM-ADM constructs a hierarchy of coarser grids,
indexed by level /, where / = 0 corresponds to the fine-scale grid. Let
N! and N, ! denote the number of control volumes at level / in the
matrix and in fracture i, respectively. The coarsening ratio y' at level /
is defined as:

1

I 1 N
F=( /)= ( N, Ni Iingrac ) 3.1
mfy? N, N’In—l’Nl—l"' Ni=L ) :
fi f”frac

This framework allows for independent coarsening strategies in the ma-
trix and individual fractures, offering flexibility. To maintain numerical
stability, the level difference between neighboring cells is restricted to
one, thereby avoiding abrupt transitions that could degrade solution
quality.

The selection of the grid resolution is guided by a threshold-based
criterion, specified as an input parameter. This refinement criterion
compares the spatial variation of z¢y, between neighboring cells. Let
Q,’ and QIJ denote two neighboring coarse grid cells at level /, and i
and j indicate the indices of fine-scale cells contained in these coarse
blocks. The maximum difference of the z¢o, is computed as:

Az; ;= max z; — z;|. (3.2)
L ieq/, je.Q,J‘ J)

If the difference Az;; for any pair of neighboring coarse blocks
exceeds a specified threshold, the block I is refined from coarse level /
to (I —1).

3.2. Solution strategy

At each Newton iteration, pEDFM-ADM constructs a reduced multi-
scale system via algebraic operators based on Eq. (2.18), defined on a
dynamic multilevel grid updated at the beginning of each time-step. In
regions where a coarse grid is employed, a fine-scale solution that ac-
counts for subgrid-scale heterogeneity can be efficiently reconstructed
from the coarse-scale solution using algebraically defined restriction
(R) and prolongation (P) operators. These operators are constructed
to ensure local mass conservation in the reconstructed fine-scale fields.
The underlying ADM methodology is described in detail by Cusini et al.
(2016). Fig. 3 provides a schematic overview of how the pEDFM-ADM
method is applied to CO, storage.
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The fully-implicit system on the fine grid is projected to a selected
coarser level / by restriction and prolongation operators:

R RO B - Pl 62 = —RI7! - R0, (3.3)

Jabm ADM

where J, and r,, are the Jacobian matrix and residual vector at the fine
scale, respectively, and ¢, is the solution at grid level /. The restriction
operators ﬁf‘l map residuals of governing equations from level / — 1 to
level /, while the prolongation operators 13;_1 interpolate the solution
in the opposite direction. Both R and P are block-diagonal matrices:

(R, 0 0 0
R-! = 0 (Rl ° ° (3.4)
! 0 0 (RO 0 ’
-1
o0 0w,
and
[(Pp)é—]]mm [( )/ l]mf 0 0
M (A PR T 0
- 0 0 [(Pz)ﬁ—l]mm 0
0 0 0 [P, .
(3.5)

Here, the subscript p and z denote the liquid pressure and overall
CO, mass fraction sub-blocks, respectively. The same finite-volume
restriction operator is typically applied to both variables to ensure
the local mass balance, meaning (Rp)f1 = (Rz)f’l. Each entry of the
restriction operator (R,)/™! is binary:

R ) 1 if cell j is inside coarser cell i, 3.6)
i,j)= .

Pl / 0 otherwise.

Once the grid hierarchy is established, solving the coarser system
and then prolonging the solution back to the fine grid provides an
approximation to the fully resolved, fine-scale solution. This process
significantly reduces computational costs compared to solving the orig-
inal fine-scale system in all cells. The final step involves recovering
the fine-scale solution §¢, by iteratively applying all prolongation
operators:

88y~ 88y =P} ... P!_ 8¢/ 3.7

Previous studies have shown that an iterative procedure is needed
for highly-heterogeneous reservoirs (Hajibeygi et al., 2008). To this
end, the pEDFM-ADM method integrates two iterations of a fine-
scale smoother to reduce remaining errors to a desired tolerance. This
smoother approximates the inverse of the original fine-scale linear
operator AY, and is implemented using ILU(0) decomposition.

3.3. Fracture multilevel multiscale basis functions

In the pEDFM-ADM framework, a non-overlapping primal coarse
grid is first constructed on the fine-scale computational domain for
both the matrix and fracture cells. By connecting the coarse nodes, an
overlapping decomposition is obtained, referred to as the dual coarse
grid, as described by Cusini et al. (2016). Local basis functions are then
computed for each coarse node within its dual coarse block, following
the multilevel grid hierarchy. For hyperbolic variables (e.g., saturation
or component mass fraction), constant interpolation is adopted as the
prolongation operator, while for the elliptic pressure field, multiscale
basis functions following Tene et al. (2016) are employed to account
for heterogeneity in transmissibility.

As with the typical pEDFM method, fractures are discretized as
lower-dimensional entities embedded in the matrix grid. Coarse nodes
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Fig. 3. Schematic description of the pEDFM-ADM strategy.

are assigned in the fracture domain similarly to the matrix, ensuring
that every fracture contains its own set of coarse nodes. As a result,
basis functions are constructed not only for matrix coarse nodes but also
for fracture coarse nodes. The computation of fracture basis functions
follows a similar procedure to that of the matrix; however, the support
region of each basis function now extends across both the matrix and
fracture media.

This coupling implies that matrix basis functions are influenced
by the presence of nearby fractures, and meanwhile, fracture basis
functions are also affected by adjacent matrix cells. The resulting basis
functions are therefore termed fully coupled basis functions, as they
are solved over local dual coarse domains that include both matrix and
fracture cells, with all intermediate interactions preserved.

Mathematically, for each coarse node i, the local basis function @; is
obtained by solving the following coupled system over its local domain
Q,,ie,

—VA(XVER) £ Y i @)) + Y, B (e - o) =0,

. % . *
jeconnmf J€perf,

(3.8)

which is solved for each basis function @;*. Here, 'I}‘ is the matrix—
fracture coupling coefficient, and B} is the well index if wells are
present. The operator C(-) denotes the matrix—fracture coupling term. A
detailed description of the basis function entries can be found in Tene
et al. (2016). The solution @; is then assembled into column i of the
prolongation operator P,, which maps coarse pressures to the fine-scale
solution. These multiscale basis functions enable accurate coarse-grid
representation of flow in highly heterogeneous porous media with
complex matrix—fracture connectivity. Fig. 4 shows a surface plot of
some matrix and fracture basis functions at two different coarsening
levels for a 2D homogeneous domain.

4. Numerical results

This section presents a series of numerical simulations designed to
evaluate the effectiveness of the proposed framework. We begin by

no

analyzing the influence of fractures on CO, sequestration performance,
and then proceed to more complex scenarios to assess both the accuracy
and computational efficiency of the method.

The relative permeability curves for the matrix domain are modified
based on experimental data reported in Oak et al. (1990), and are
modeled using the Van Genuchten formulation (Van Genuchten, 1980).
Capillary pressure curves are derived from the Leverett J-function. In
this study, we assume that multiphase interactions within the fractures
are negligible. Consequently, the relative permeability in fractures
follows linear functions (Fanchi, 2005), and both capillary pressure and
hysteresis effects are neglected in the fracture domain. The primary
drainage and imbibition curves for the matrix are illustrated in Fig. 5.

We assess the accuracy of the pEDFM-ADM method by comparing
it with a reference fine-scale simulation that employs the pEDFM
method without ADM. To quantify the solution accuracy of pEDFM-
ADM method for hyperbolic variables (e.g., xco, and z¢o,), the error
at each time step ¢ is defined as Zhao et al. (2025):

N . .
2 50, = oo, et ™|

e (n ==t , (4.1)

N

where x¢o, s is the reference fine-scale solution for the CO, mass
fraction, and N is the total number of fine cells. For pressure, we define
the normalized root-mean-square error as:

N

% 2 (P,L(t) - Pti;,ref(t))2

i=1
ep(n) = P s
be

where P, ., denotes the fine-scale solution of the wetting-phase pres-
sure, and P, is a characteristic pressure scale (for instance, a bound-
ary value). The average errors over the entire simulation period are
computed to provide a global measure of solution accuracy:

(4.2)

e, = mean(e, (1)), (4.3)
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Fig. 4. Example of multilevel, fully coupled basis functions over multiple dual coarse blocks in a 2D homogeneous fractured domain. Red lines indicate the
fracture network, and the basis functions capture both matrix and fracture influences. The color scale represents the magnitude of the pressure basis function.
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Fig. 5. Illustrations of the relative permeability and capillary pressure curves used for the matrix domain. Superscripts ¢ and i denote drainage and imbibition,
respectively. Single-headed arrows indicate irreversible processes, while double-headed arrows represent reversible ones along the corresponding curves.

ep = mean(ep(?)). (4.4)

4.1. Test case 1: Impacts of fractures

To systematically investigate the full-cycle behavior of CO, storage
in a deep fractured saline aquifer, we first consider a two-dimensional
conceptual model representing a reservoir cross-section with a length
of 200 m and a height of 50 m. The domain is discretized into a
structured grid with 201 cells in the horizontal direction and 51 cells
in the vertical direction. The permeability of the rock matrix is set
to 8x1071* m2. A CO, injection well is placed on the left boundary,
injecting through the bottom 10 m of the formation, while a production

well penetrating the full vertical extent of the domain is located at the
right boundary. The production well is designed to withdraw formation
brine rather than produced CO,, in order to mitigate pressure perturba-
tions and facilitate CO, dispersal throughout the aquifer. Two inclined
fractures are embedded in the domain with identical inclination angles
but different spatial positions, as shown in Fig. 6.

To evaluate the impact of fracture conductivity, we vary the frac-
ture permeability while keeping the fracture aperture constant. In
each scenario, we consider two logarithmic-scale fracture-to-matrix
permeability ratios, defined as log,o(k//k,,), with values of 4 and —6
representing highly conductive fractures and near-impermeable flow
barriers, respectively. The physical parameters and simulation settings
used in all scenarios are summarized in Table 1.
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Fig. 6. Schematic of 200 x 50 m computational domain and fracture configurations used in Test Case 1. The injector is shown in light blue, the producer in red,

and each fracture in dark blue.

Table 1

Physical parameters and simulation setup. (STC: standard conditions.)
Parameter Value Unit
Aquifer length 200 m
Aquifer height 50 m
Fracture length 40 m
Fracture aperture 5x 1073 m
Fracture inclination angle 45 °
Matrix porosity 0.2 -
Matrix permeability 8 x 107 m?
Initial pressure 25 MPa
Bottom hole pressure 25 MPa
Temperature 323.15 K
Injection rate 1x 10~ pore volume/day
CO, density at STC 1.98 kg/m?
H,O density at STC 998 kg/m?3
Simulation time 3.2 x 10* day
Injection time 600 day

Fig. 7 presents streamline patterns of aqueous phase under three
configurations: the base case simulation without fractures, flow barrier
fractures, and finally conductive fractures. In Fig. 7(b), streamlines are
visibly diverted around the low-permeability fractures, most clearly
near the fracture tips where stagnation zones form. Almost no stream-
lines pass through the fractures, confirming their role as effective flow
barriers. In contrast, in Fig. 7(c), where the fracture permeability is four
orders of magnitude greater than that of the matrix, flow converges
into the fractures, accelerates along their length, and re-emerges into
the matrix, creating localized acceleration of the brine through the
highly permeable pathways of the conductive fractures. The streamline
density in the surrounding matrix is noticeably reduced, indicating that
transport is dominated by flow through the conductive fractures.

The impact of fracture configuration on the evolution of CO, mass
fraction is illustrated in Fig. 8. In the base case without fractures,
gravitational instabilities develop near the top boundary due to the
density difference between CO,-rich and CO,-poor brine. These insta-
bilities give rise to downward-propagating convective fingers, which
enhance dissolution trapping by increasing the contact area between
CO, and resident brine (Voskov and Tchelepi, 2012). In the low-
permeability fracture case, some vertical finger development cannot
cross the barriers, but the overall convective pattern remains similar
to the base case. In the high-permeability case, CO,-rich fluid rapidly
enters the conductive fractures, descends to greater depths, and re-
enters the matrix, driving large-scale flow patterns on both sides of the
fracture network.

Fig. 9 further shows the temporal evolution of both dissolved and
residual trapping fractions. Dissolution increases progressively as the
CO, plume interacts with undersaturated brine. Residual trapping, on
the other hand, is primarily controlled by capillary hysteresis. After
injection stops, brine, as the wetting phase in most sedimentary for-
mations, imbibes into the trailing edge of the non-wetting CO, plume.
This imbibition process leaves disconnected and immobile CO, ganglia
behind (Juanes et al., 2006). In the conductive fracture case, the rapid
migration of CO, along connected pathways reduces its contact time

with the surrounding matrix, limiting capillary trapping and resulting
in lower residual immobilization. In contrast, dissolution trapping is
higher because the fracture-controlled flow locally enhances mixing
and interfacial contact between CO,-rich and CO,-poor brine.

4.2. Test case 2: Validation of pEDFM-ADM

Building on Test Case 1, we further evaluate the capability of the
proposed pEDFM-ADM framework in capturing the dynamics of CO,
migration and trapping in Test Case 2 by comparing with a fine-scale
solution. The pEDFM-ADM simulations employ two coarse levels, each
with a uniform coarsening ratio of 5 in both x- and z- directions.
To evaluate the sensitivity of the adaptive resolution control, we test
three threshold values for the front-tracking criterion based on local
variations in the overall CO, mass fraction, 4z¢o, € {107!,1072,1073}.
This criterion governs both refinement and coarsening during the sim-
ulation, ensuring that high resolution is applied selectively in regions
with sharp CO, gradients. Over the full simulation cycle, including both
injection and post-injection periods, the model captures key processes
such as plume propagation, convective mixing, and dissolution, while
dynamically adjusting grid resolution in response to the evolving front.

Figs. 10 and 11 present snapshots at + = 20000 days for two
contrasting fracture scenarios: one with two low-permeability fractures
acting as flow barriers (k 7 [k, = 107°), and another with two conduc-
tive fractures (k r [k, = 10%). For the barrier case, the pEDFM-ADM
simulations closely reproduce both the extent and the fine-scale mor-
phology of the plume, including fingering structures. As the refinement
threshold tightens, the error drops from 0.43% to 0.14%, accompanied
by an increase in the fraction of active grid cells (AGC) from 39%
to 91%. Here, active grid cells refer to the fine-scale cells that are
explicitly resolved in the simulation at a given time step and higher
AGC values mean finer resolution but also greater computational cost.
In the conductive-fracture case, even the coarsest setting (Azco2 =10"1
adequately captures the large-scale convection pattern with only 0.35%
error, using merely 37% of the fine-grid resolution.

Fig. 12 complements these visual comparisons by reporting quan-
titative accuracy and efficiency metrics. Fig. 12(a) and (b) show the
differences in pressure and overall mass fraction between pEDFM-ADM
and the fine-scale reference solution. Both quantities remain consis-
tently small across the simulation, demonstrating that pEDFM-ADM
preserves the accuracy of the fine-scale model. The AGC curves in Fig.
12(c) highlight how the dynamic algorithm selectively refines only the
active regions. For the most stringent threshold, the algorithm retains
approximately 80% of the fine grid cells on average over the simulation
period. As the ADM threshold increases, the number of active cells
decreases, which reduces computational cost, but the error in each
primary variable correspondingly increases. In this particular test case,
the solutions for thresholds of 10~2 and 10~3 are nearly indistinguish-
able. These results demonstrate that pEDFM-ADM enables a tunable
balance between computational efficiency and accuracy. In both the
flow-barrier and conductive-fracture cases, the framework preserves
essential features such as solute fingering, and convective mixing, while
maintaining acceptable accuracy with reduced computational cost.



M. Zhao et al.

N

(a) Base case

Advances in Water Resources 207 (2026) 105200

__(c) Case with conductive fractures

base

7500 days

15000 days

=

32000 days

Fig. 8. Snapshots of CO, mass fraction at 7500, 15000, 32000 days for Test Case 1. The aspect ratio of the figures has been adjusted for improved visualization.

4.3. Test case 3: Fractures with complex geometries

To further demonstrate the effectiveness and generality of the pro-
posed pEDFM-ADM framework, we consider a more challenging sce-
nario involving a complex, irregular fracture network, as illustrated
in Fig. 13. The computational domain spans 200 m in the horizontal
direction and 50 m vertically, and contains 30 fractures with di-
verse orientations, lengths, and spatial distributions, including both
intersecting and isolated segments, as reported in Wang et al. (2022b).

As with the previous test cases, we simulate two representative
scenarios with extreme fracture-matrix permeability contrasts: a low-
permeability fracture network with log(k,/k,) = -6, and a highly
conductive network with log(k,/k,) = 4. For each case, pEDFM-
ADM simulations are again performed using three different adaptivity
thresholds based on Az, : {107!,1072,10*}. Boundary conditions and
fluid properties are consistent with those listed in Table 1.

Figs. 14 and 15 present CO, mass fraction distributions at interme-
diate (2500 days) and late (32000 days) times, comparing fine-scale

reference solutions with pEDFM-ADM results across varying adaptivity
thresholds. For the low-permeability fracture network (log(k,/k,,) =
—6), the fractures act as flow barriers that partition the domain and
inhibit vertical plume propagation. At 2500 days, the pEDFM-ADM
simulations accurately capture both the leading front and finger mor-
phology with high fidelity compared to the fine-scale solution, with an
error of e = 0.03% at Azgo, = 107", while activating only 48% of the
grid cells. At 32000 days, the plume remains largely confined by low-
permeability segments, and the pEDFM-ADM results remain consistent
with the reference solution, with e = 0.32% and 47% active cells at the
coarsest threshold.

The high-permeability fracture network (log(k,/k,,) = 4) functions
as a conduit system that channels CO, along fracture planes and
induces large-scale convective mixing patterns within the matrix. At
2500 days, these transport features are reproduced with ¢ = 0.18%
using only 37% of the fine grid at Az, = 10~1. At 32000 days, the
plume geometry becomes increasingly influenced by fracture-controlled
mixing. Resolving these structures requires finer adaptivity: the error
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Fig. 9. Temporal evolution of the fraction of injected CO, trapped by different mechanisms. The elapsed time (¢) is nondimensionalized with respect to the
duration of the injection period. The light-blue shaded region denotes the injection phase, while the light-green shaded region corresponds to the post-injection
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Fig. 10. CO, mass fraction profiles after 20000 days for the case with log(k,/k,) = —6, showing the fine and coarse grid levels.
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and active grid cell usage.

200m

J// — A /ﬁ //

Fig. 13. Schematic of computational domain and fracture geometries for Test Case 3.

decreases from e = 0.61% at Azgo, = 107! to 0.19% at tighter threshold,
with corresponding active cell fraction increasing from 30% to 82%.
These comparisons illustrate that the pEDFM-ADM concentrates resolu-
tion near the front, and that higher fracture conductivity requires finer
spatial resolution to accurately represent plume dynamics.

Fig. 16 quantifies the temporal evolution of errors and the fraction
of active grid cells used in the simulation. For the low-permeability
fracture network, plume migration is limited by the barrier effect,
producing a compact CO, plume with relatively sharp z¢, gradients
along its boundary. Since the pEDFM-ADM algorithm refines only in
regions of steep gradients, most of the reservoir can be represented
on a coarse grid, with fine-scale resolution concentrated along the
advancing front. In contrast, for the high-permeability fracture net-
work, the plume rapidly disperses throughout the reservoir, generating
large-scale mixing and numerous localized regions of CO, gradients.
Accurately resolving this transport pattern requires fine-scale resolution
across much of the domain, keeping the active cell fraction high for an
extended period. Fig. 17 aggregates the dissolved and residual trapping
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fractions to visualize the total trapping occurring in each simulation.
The conductive network exhibits much stronger dissolution due to
fracture-induced mixing and enhanced interface area. Residual trapping
primarily occurs during the post-injection period. Across all thresholds,
including Az, 107!, the pEDFM-ADM solutions closely follow the
fine-scale curves, demonstrating the framework’s capability for rapid
yet reliable quantification of trapping metrics, even under relatively
coarse adaptive thresholds.

4.4. Test case 4: Heterogeneous aquifer with mixed-conductivity fractures

In this section, we consider a complex scenario that couples het-
erogeneous matrix permeability with fractures of contrasting hydraulic
roles (i.e. both conductive fractures and flow barriers). The matrix
permeability field is derived from cropped subregion of the SPE10
benchmark dataset (‘“SPE10Bottom”), characterized by strong spatial
correlations and channelized high-permeability streaks (Christie and
Blunt, 2001). The same fracture network from Test Case 3 (composed
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Fig. 14. CO, mass fraction profiles at 2500 days for Test Case 3. Fine-scale results are compared with pEDFM-ADM solutions at thresholds 107!, 1072, 1073.

Overlaid grid lines show local coarsening levels.
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Fig. 15. CO, mass fraction profiles at 32000 days for Test Case 3. Fine-scale results are compared with pEDFM-ADM solutions at thresholds 10~1, 10-2, 10~2.

Overlaid grid lines show local coarsening levels.

of 30 fractures) is superimposed on this field. As shown in Fig. 18,
white lines denote highly conductive fractures with k, = 8.0 x 10710
m?, while black lines represent low-permeability barriers with k ;=80
x 10720 m2. This setup reflects a more geologically realistic subsurface
environment where both matrix and fracture heterogeneity influence
flow behavior.

Figs. 19 and 20 show CO, mass fraction fields at early time (600
days) and late time (20000 days), respectively, comparing fine-scale
reference solutions with pEDFM-ADM results under different refine-
ment thresholds. At 600 days, the plume evolution is primarily gov-
erned by the heterogeneous matrix permeability field, with migration
strongly aligned along high-permeability pathways and hindered by
low-permeability zones. Conductive fractures serve to locally enhance
transport where they intersect permeable matrix channels, whereas
barrier-type fractures alter flow paths and create compartmentaliza-
tion. The adaptive pEDFM-ADM approach successfully reproduces these
early-stage features: even at the coarsest setting (4z¢o, = 1071), the
error remains as low as ¢ = 0.10% while activating only 46% of fine
grid cells.

By 20000 days, the CO, plume exhibits a substantially more com-
plex structure, shaped by long-range interactions between the under-
lying matrix heterogeneity and fracture connectivity. The presence of
conductive fractures facilitates deep plume penetration and sustains
extensive fracture-controlled mixing. At the coarsest refinement level
(Az¢o, = 1071), pEDFM-ADM captures large-scale plume distribution
but fails to resolve finer structural details, with a error of 0.40% and
only 26% of the fine grid cells active. Tighter thresholds (4z¢o, = 1072
and 10~3) recover progressively more fine-scale features, with errors of
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0.10% and 0.02% and activate 81% and 99% of the grid, respectively.
While this demonstrates the framework’s ability to focus resolution in
physically significant regions such as fracture intersections and sharp
fronts, the trade-off between accuracy and efficiency becomes apparent:
the Azgo, = 1073 case achieves near fine-scale accuracy but offers
minimal computational savings due to the high active grid cell count.

As seen in Fig. 21, both pressure and CO, mass fraction errors
are reported alongside the temporal evolution of the active grid cell
fraction, providing a quantitative assessment of solution accuracy and
grid activation for this test case. Errors consistently decrease with
tighter refinement thresholds, while temporal variations reflect gradual
accumulation as the plume interacts with increasingly complex regions
of the domain. The averaged metrics in Fig. 21(d) further confirm
the accuracy-efficiency trade-off: loose thresholds greatly reduce active
fine cell usage but lose fine-scale detail, whereas the tightest threshold
achieves near fine-scale accuracy with minimal computational savings
because the active grid fraction remains close to 100% for most of the
simulation.

Finally, Fig. 22 illustrates the temporal evolution of CO, storage
mechanisms, including dissolved and residual trapping fractions. Across
all thresholds, including the coarsest setting, the pEDFM-ADM frame-
work accurately reproduces the evolution of global storage metrics
and maintains close agreement with the fine-scale reference. These
results confirm the method’s robustness and predictive capability for
simulating multiphase, multicomponent flow in complex geological do-
mains containing both matrix heterogeneity and mixed fracture types,
reinforcing its potential for practical applications in geological CO,
sequestration.
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phase.

5. Conclusions

This study presented a multiscale simulation framework, Projection-
based Embedded Discrete Fracture Modeling with Algebraic Dynamic
Multilevel method (pEDFM-ADM), for efficient and accurate model-
ing of CO, storage in fractured deep saline aquifers. The framework
combines an embedded representation of discrete fractures with an
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algebraic, front-tracking-based dynamic mesh adaptation strategy, al-
lowing for both grid refinement and coarsening in response to evolving
plume fronts during CO, migration and trapping.

The method constructs a hierarchy of multilevel grids and localized
multiscale basis functions for both matrix and fracture cells. These
basis functions are extended to incorporate fracture effects, ensuring
accurate matrix—fracture coupling through algebraic prolongation and
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Fig. 18. Log-permeability field In(K) of the matrix and fracture configuration for Test Case 4. White segments represent highly conductive fractures, while black

segments denote low-permeability barriers.
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Fig. 19. CO, mass fraction profiles after 600 days for Test Case 4. For the pEDFM-ADM simulations, the dynamically refined grid is overlaid as white lines.
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Fig. 20. CO, mass fraction profiles after 20 000 days for Test Case 4. For the pEDFM-ADM simulations, the dynamically refined grid is overlaid as white lines.

restriction operators, which enable efficient projection between grid
levels.

Through a series of progressively complex test cases, the proposed
approach demonstrated its capability to capture multiphase, multicom-
ponent flow phenomena features, including fracture-controlled trans-
port, barrier-induced compartmentalization, dissolution-driven convec-
tion, and residual trapping. In scenarios dominated by low-permeability

14

fractures, the method resolved the redirection of flow around low
permeability fractures and localized density-driven fingering. In con-
trast, for highly conductive fractures, the model captured preferential
transport and large-scale convective mixing. In all cases, the adaptive
mesh strategy ensures that computational resolution is concentrated
in physically significant regions, such as plume fronts and fracture
intersections, while preserving coarser resolution elsewhere to reduce
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Fig. 22. Temporal evolution of CO, trapping mechanisms in Test Case 4. Results are expressed as fractions of the injected CO, retained in immobile and dissolved
states over dimensionless time. The light-blue shaded region denotes the injection phase, while the light-green shaded region corresponds to the post-injection

phase.

computational cost, thereby providing a trade-off between simulation
accuracy and computational efficiency.

Importantly, the method preserves key storage metrics across all
thresholds, including dissolved and residual CO,, fractions, thereby con-
firming its reliability in capturing long-term trapping behavior. These
results highlight the potential of projection-based multiscale embedded
fracture models as a scalable and predictive tool for assessing CO,
migration and storage performance in geologically realistic formations.
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