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Intention-Aware Routing of Electric Vehicles
Mathijs M. de Weerdt, Member, IEEE, Sebastian Stein, Enrico H. Gerding, Valentin Robu, and

Nicholas R. Jennings, Fellow, IEEE

Abstract—This paper introduces a novel intention-aware rout-
ing system (IARS) for electric vehicles. This system enables
vehicles to compute a routing policy that minimises their expected
journey time while considering the policies, or intentions, of
other vehicles. Considering such intentions is critical for elec-
tric vehicles, which may need to recharge en-route and face
potentially significant queueing times if other vehicles choose the
same charging stations. To address this, the computed routing
policy takes into consideration predicted queueing times at the
stations, which are derived from the current intentions of other
electric vehicles. The efficacy of IARS is demonstrated through
simulations using realistic settings based on real data from the
Netherlands, including charging station locations, road networks,
historical travel times and journey origin-destination pairs. In
these settings, IARS is compared to a number of state-of-the-art
benchmark routing algorithms and achieves significantly lower
average journey times. In some cases, IARS leads to an over
80% improvement in queueing times at the stations and a more
than 50% reduction in overall journey times.

I. INTRODUCTION

THE expected increase in the number of electric vehicles
(EVs) necessitates novel solutions for managing the

infrastructure required to charge these vehicles [1]. While
the increase in rapid charging stations is making en-route
charging a viable option for enabling longer journeys (e.g.,
according to Tesla, its 120kW supercharger can provide a 170
miles range in 30 minutes), even the fastest chargers to date
take significantly longer compared to refueling, potentially
resulting in significant congestion at charging stations [2], [3].
In addition, such charging stations are expensive to build and
so it is important to use the existing infrastructure efficiently.
To this end, we propose a novel navigation system that predicts
congestion at charging stations based on dynamic information
about current and future demand for charging. This system
then suggests the most efficient route and station, in order
to minimise both driving time and expected queueing time at
stations.

For general (not necessarily electric) vehicles, optimal rout-
ing using real-time information about congestion is extensively
studied within the area of dynamic route guidance and infor-
mation systems (RGIS) [4, Ch.11]. RGIS nowadays have time-
dependent estimates of driving times on road segments and
work sufficiently well in practice for many routing problems.
However, there can be a significant discrepancy between the
estimated congestion, and the actual congestion when arriving
at a particular point. This is partly because, if many people use
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the same system and follow the same advice, the bottleneck is
just shifted elsewhere. In fact, it has been shown that simply
providing real-time information can, in theory, worsen overall
traffic conditions [5].

These problems are likely to become even more significant
in the case of EV charging stations, since small discrepancies
in the number of vehicles can have a significant impact on
queueing time. For example, if a station has two charging
points and charging takes 30 minutes, then every additional
vehicle would add an average of 15 minutes to the overall
journey of vehicles arriving there later. Even if the capacity
of the stations were to increase, individual vehicles would
still have a much higher impact on delays at charging stations
compared to regular road networks.

To reduce congestion at the charging stations, we propose
an Intention-Aware Routing System (IARS). In contrast to ex-
isting state-of-the-art two-way communication systems, where
a driver’s navigation system typically only communicates
the vehicle’s current position, our system communicates its
intentions, i.e., relevant (probabilistic) information about its
planned arrival times at charging stations, to a central system.
Internally, each vehicle computes a routing policy, which
takes into account uncertainty about road conditions, waiting
times and which charging stations may be used. Intentions
are then derived from this policy and constitute probabilistic
information about which stations the EV could visit and when,
thereby allowing the centralised component of the system to
accurately predict congestion (and thus waiting times) at those
stations. This information is then fed back to the EV driver’s
navigation system, which can automatically adjust its routing
policy accordingly, and send updated intentions back to the
central system.

This type of exchange of intentions is related to the dy-
namic traffic assignment (DTA) problem, where the goal is
to compute dynamic user equilibria, e.g., using an iterative
approach [6]. An equilibrium is reached when no user has
an incentive to deviate to a different route (see, e.g., [7],
[8] for an overview). Even though there are similarities, our
approach and goals are fundamentally different. First, unlike
in DTA equilibria, we do not assume full information about
the intentions of all vehicles at any given time. Rather, only
a fraction may participate in the system and, even of the
vehicles that do participate, we may only receive informa-
tion gradually over the course of a day. Thus, in order to
predict congestion, we propose a new way to combine known
intentions with historic information. Furthermore, we consider
a time-dependent stochastic traffic flow model where pure-
strategy Nash equilibria may not even exist [9], [10]. Instead
of finding equilibria, we simply periodically update routing
policies (e.g., once every minute), which may or may not
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converge to a steady state (typically not, since new vehicles
enter the system all the time). In doing so, our goal is to see
whether exchanging intentions increases overall efficiency, and
whether participating in the system is in the best interest of
the drivers.

Against this background, this paper makes the following
contributions to the existing state of the art:
• We formalise the EV routing problem as a stochastic

time-dependent problem. In doing so, we extend existing
state-of-the-art methods in stochastic vehicle routing to
include EV-specific parameters, such as the state of
charge and waiting times at charging stations.

• We propose the concept of an intention-aware routing
system (IARS), which combines three sources of infor-
mation to derive probabilistic travel times (i.e., waiting
times at charging stations): known intentions (i.e., arrival
time distributions at specific charging stations), intentions
from users who have participated in the past, and users
whose intentions are not known to the system (but who
charge at EV stations).

• Using experiments based on real data from road networks,
traffic conditions, and charging station locations, we show
that an IARS leads to significantly lower average journey
times than state-of-the-art routing algorithms that rely
only on historical information about driving and waiting
times (as used by some modern navigation devices).
In some cases, our approach leads to an over 80%
improvement in waiting times at charging stations and
a more than 50% reduction in overall journey times.
Moreover, we demonstrate that even when only a small
proportion of EV drivers use IARS (this can be as low
as 10%), they achieve significantly lower journey times
than those that do not.

The remainder of the paper is structured as follows. First,
Section II provides a discussion of relevant related work. Next,
Section III introduces the formal EV routing and charging
station model, while Section IV presents the concept of
an Intention-Aware Routing System applied to this model.
Section V discusses the data and experiments performed to
compare IARS against a set of benchmarks, while Section VI
concludes with a discussion.

II. RELATED WORK

In addition to RGIS and DTA mentioned above, our work
is related to a range of other areas. Specifically, this paper
builds on the state-of-the-art stochastic time-dependent net-
work model introduced by Gao and Chabini [11], [12]. Similar
to our work, they model the routing problem on a road network
with vertices and edges where travel times over the edges are
stochastic, and where their distributions depend on the time of
day. The solution of the routing problem to a destination node
is a so-called policy, which describes, for each vertex and at
each time, the best next vertex to travel to. This model can
also be seen as a Markov decision process [13]. We extend this
model by introducing the battery’s state of charge (SOC), and
having charging stations where the SOC is reset. The SOC
decreases when traversing regular roads, and so the routing
policy automatically includes a charging station when needed.

In addition, while we propose the communication of in-
tentions as a way to coordinate EVs, others have discussed
different types of coordination mechanisms. Many of these
focus on scheduling of electricity charging at home or while
parked away from home to reduce peak loads and/or satisfying
constraints of the electricity network (e.g., [14], [15], [16]).
However, this is different from our work, which coordinates
vehicles for en-route charging. Here, the main aim is to
avoid congestion at the charging stations (although knowing
the intentions could also be used to improve the scheduling
activities in other EV charging settings).

Work that specifically considers coordination to reduce
congestion includes [17], where vehicles can communicate
observations about the congestion on different road segments
to other nearby vehicles. Similarly, in [18], a system is pro-
posed in which vehicles report their location, speed and driving
times. More recently, the approach in [19] allows vehicles to
negotiate with other nearby vehicles about which routes they
are going to take. One key difference to our approach is that
these systems do not model stochastic and time-dependent
routing explicitly. More specifically, in [17], [18], [19], the
delay on each edge is encoded by a single weight, whereas
in our model the driving times on each edge are modeled
by stochastic variables, whose distributions depend on the
time of day. The advantage of our approach (and stochastic
time-dependent models in general) is that it captures realistic
situations where travel time is uncertain, and a delay on one
part of the route can affect the travel time elsewhere, possibly
making an alternative route more attractive. As a result, the
optimal solution is not a single route but a policy which
depends on the realisations of the travel times.

In contrast, others have recognised the problem of con-
gestion specifically for charging stations, but have studied
conceptually different solutions to ours, such as centralised
reservation-based approaches [20], [2], [3]. A largely un-
solved challenge for reservation-based approaches is dealing
with uncertain driving times, as delays could necessitate re-
scheduling or even re-routing to a different charging station,
invalidating the optimal schedule and existing reservations.
Instead, other work considers more decentralised approaches.
In [21], stations broadcast their ability to accept new vehicles,
based on the length of the existing queues. In contrast, in
our system it is the EVs themselves that broadcast their
driving intentions, which allows others to consider them before
they even arrive at the stations. Yet other work, e.g., [22],
[23], uses dynamic pricing or similar signalling to regulate
congestion through demand response. IARS complements
such approaches by planning further into the future. Price
differences between stations and/or times could be easily
integrated into such routing decisions. Finally, there are an
increasing number of papers, e.g., [24], [25], [26], considering
the problem of optimal deployment of the charging stations.
While this problem is beyond the scope of our current work,
our framework could be used as a model of EV decision-
making to tackle such problems, assuming some form of
coordination among EVs.
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vc vdest

Fig. 1. Example road network from the perspective of a single EV with
current position vc and destination vdest. Vertices indicate decision points,
and edges are either roads or charging stations. Charging stations are indicated
by self loops.

III. MODEL

In this section we first introduce our model of stochastic time-
dependent routing for EVs, where roads and charging stations
are abstractly represented by probability distributions of their
waiting time. This is modelled as a Markov decision process
(MDP). Given the stochastic nature of the problem, and that
the aim is to find an optimal policy, MDPs are a natural
framework to use in this setting. We then go on to present
our queueing model of the charging stations, which will be
used in Section IV to derive their waiting time probabilities,
taking into account the intentions of other EVs.

A. The EV Routing Problem

We model an EV routing domain by 〈V,E, T, P, S, C〉, with
directed edges e = (vi, vj) ∈ E and vertices vi, vj ∈ V .
Edges represent either roads or charging stations, denoted
by Estations ⊂ E and Eroads ⊂ E respectively, whereas
vertices represent decision points. An example is given in
Fig. 1. In our experiments, we represent stations as self
loops to allow vehicles to easily avoid the station, but the
framework is more general and allows any type of graph, e.g.,
to support even roadway-power vehicles (contactless charging
while driving) [27].

Both roads and charging stations incur a probabilistic
amount of travel or waiting time, described by a probability
mass function P (more details below). These travel and
waiting times vary depending on the time of the day, and
T = {1, 2, . . . , tmax} denotes a finite set of time points (e.g.,
within a day, or over a week). Roads furthermore incur a cost
to EVs in terms of power usage, whereas charging stations
reset the EV battery to its maximum capacity level (in order
to somewhat reduce the number of parameters, in this paper we
assume that a battery will always be fully charged at a station,
but it is straightforward to include partial charges in our
model). The power available to an EV is represented by a finite
set of possible charging states S = {0, 1, . . . , smax}, where
a state represents the current state of charge of the battery,
and smax denotes a fully charged battery. Furthermore, we
introduce function C, where C(e) ∈ S are the (deterministic)

charging costs for edge e ∈ Eroads. Since we compute the route
for each vehicle separately, C and smax could, potentially, be
different for each type of EV. This charging cost is deducted
from the current state of charge when the edge is traversed.

We consider time-dependent stochastic travel and waiting
times and treat them as stochastically independent. That is,
conditional on the time of day, the distributions at edges are
uncorrelated, and we do not take into account the fact that
these distributions may be updated over time. This is common
in the stochastic routing literature [28], but in principle recent
work on predicting driving times based on current observations
could be straightforwardly implemented in our model. For-
mally, P (tb−ta|e, ta) denotes the probability mass function of
the travel/waiting time at edge e = 〈va, vb〉 ∈ E, where ta ∈ T
denotes the arrival time at vertex va, and tb ∈ T, tb ≥ ta the
arrival time at vertex vb. Thus, when e is a road, then tb − ta
is the driving time, and when e is a charging station, tb − ta
is the combined waiting and charging time.

Given this, the problem for a single vehicle is to find
an optimal routing policy π∗ which maximises the driver’s
expected utility without running out of charge at any point
during the journey. Formally, a routing policy is a function
π : V × T × S → V , which gives the next vertex (and the
corresponding edge to follow, which is the one that connects
the current and the next vertex) for each possible state. Here,
a vehicle’s current state is given by the current position or
vertex vc ∈ V , the current time at the vertex (i.e., the arrival
time) tc ∈ T , and the current state of charge sc ∈ S. Then,
given a policy π and the current state (vc, tc, sc), the next edge
to follow is given by ec = (vc, π(vc, tc, sc)) and the expected
utility for the policy π from the current state can be computed
using the following recursive formulation:

EU(ec = (vc, w), tc, sc|π) =
−∞ if sc ≤ 0∑

∆t∈T P (∆t|ec, tc) · U(tc + ∆t, s′) if w = vdest∑
∆t∈T P (∆t|ec, tc)·

EU ((w, π(w, tc + ∆t, s′)), tc + ∆t, s′|π) otherwise

where s′ = SOC(ec, sc) determines the new state of charge
when traversing edge ec, i.e.:

SOC(ec, sc) =

{
sc − C(ec) if ec ∈ Eroads

smax if ec ∈ Estations
(1)

In this model we assume that the state of charge is not
influenced by the time it takes to traverse an edge. We
argue that this is reasonable given that batteries are charged
when braking, although the formulation above can be easily
extended to make this time-dependent or even stochastic.
Furthermore, U(tc, sc) is the vehicle’s utility function for
a given arrival time tc and a state of charge sc on arrival
such that U(tc, sc) = −∞ if sc ≤ 0. Consequently, a
policy will always be chosen ensuring the vehicle will not
run out of charge (if such a policy exists). Otherwise, we
use U(tc, sc) = −tc; then maximising the expected utility
means minimising the expected time of arrival. However, other
functions describing the driver’s preferences could be easily
used instead.
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B. Charging Stations Model

In addition to the general routing problem, we explicitly model
the queues at charging stations to compute the probabilistic
waiting times (discussed in detail in Section IV). We focus
on the charging stations, since individual vehicles can have a
significant effect on waiting times. Hence there is a greater
potential benefit in knowing the intentions compared to roads.

The station’s queueing model is as follows. We assume that
each station e ∈ Estations has a fixed capacity, cape, due to
space or electricity network constraints. This capacity is the
maximum number of vehicles that can charge simultaneously.
Furthermore, for simplicity, we assume that the time to (fully)
charge a vehicle, denoted by tcharge ∈ T , is fixed (although
it is straightforward to extend the model to stochastic or
charge-dependent times). We assume a first-come-first-served
queueing model when the station is at full capacity and that
there is no queue before time t = 1. Finally, if several EVs
arrive at the same time, we assume they arrive in the order of
a randomly assigned unique identifier.

IV. INTENTION-AWARE ROUTING SYSTEM

In this section we provide an overview of an IARS to reduce
congestion at charging stations, and we explain how waiting
times are computed. The section is organised as follows. We
start in Section IV-A by discussing the system as a whole
and how the individual drivers’ navigation devices interact
via a central system. We then detail the steps to compute the
probabilistic waiting times of the charging stations. First, in
Section IV-B, we discuss how the optimal routing policy can
be computed. Then, in Section IV-C, we derive the arrival
probabilities (i.e., intentions) from a routing policy. In Sec-
tion IV-D, we discuss the computation of arrival probabilities
from historical data. Finally, we combine this information in
Section IV-E to compute the probability distributions of the
waiting times.

A. IARS Architecture

Fig. 2 presents an overview of the system. As can be seen,
the system consists of two types of components: several nav-
igation devices, henceforth called agents, who autonomously
exchange information with a central system, henceforth called
the centre. Note that the agents do not exchange intention
information directly with other agents. Instead, each agent
periodically receives updated probabilistic waiting times from
the centre, denoted by P (∆t|e, t) (see also Section III-A).1

Furthermore, using this architecture, the agents only need
to communicate their arrival probabilities for the charging
stations to the centre, and not the entire routing policy, thereby
reducing communication overhead and increasing privacy.2

Given the user input, vi,dest, the state of the vehicle (the
current position, vi, state of charge, ei, and time ti), and the
information received from the centre, each agent first computes

1In this paper, we focus on the information related to charging stations
(i.e., the waiting time probabilities for remaining edges remain fixed), but in
practice both roads and charging stations would be updated.

2In practice, the routing policy may have to be computed by the central
servers anyway, as is the case with Waze and Google Maps.

Compute optimal policy π∗
i

New information?

yes

Current state

vi, si, ti

∀i ∈ I, e ∈ Estations : P arr
i (e, t)

Agent i

Compute waiting times P (∆t|e, t), e ∈ Estations

New information?

yes

Centre

P (∆t|e, t)

History

P arr(e, t)

User input

vi,dest

∀e ∈ Estations : P
arr
i (e, t)

Compute arrival probabilities:

Fig. 2. Intention-Aware Routing System Architecture

its optimal routing policy (as described in Section IV-B).
From this policy, the agent derives the arrival probabilities
for relevant stations (see IV-C below), which are periodically
sent to the centre. Note that the set of participating agents,
denoted by I in the figure, constantly changes over time.
This is because, even if IARS is used, the user may not yet
have entered the destination. Therefore, the centre needs to
combine both currently known arrival probabilities (intentions)
of individual agents, with more generic historic information
about arrivals about agents whose intentions are not (yet)
known (which also accounts for users not using the system
at all) to compute the probabilistic waiting times (as detailed
below). This information is then fed back to the agents,
completing the cycle. In our simulations we repeat such a best-
response cycle for all agents a fixed number of times (20), but
usually there are no significant changes already after two or
three iterations. The policies converge in 85% of the cases.

B. Computing the Optimal Policy

The optimal policy from a state (vc, tc, sc) is given by:

π∗ = arg max
π∈Π

EU((w, π(vc, tc, sc)), tc, sc|π),

where Π is the set of all valid policies. Since for every
computation of EU the policy πi is required only for times
strictly later than ti (we assume ∆t > 0), the optimal
policy can be computed using dynamic programming in line
with work on Markov decision processes [13] based on the
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following recursive definition: if vi = vdest or si ≤ 0, then
there is no good decision, and otherwise:

π∗(vi, ti, si) = arg max
{e|(vi,w)∈E}

EU(e, ti, si|π∗).

All computations described above can be done in running time
bounded by O

(
|T |2 · |V | · |S| · |E|

)
. Note that the optimal

routing problem can still become computationally expensive
for large road networks. However, the routing problem is
solved for individual agents for which we only need to
consider a subset of the entire graph since not all charging
stations can be reached. In our experiments (see Section V)
we have different road networks for each agent and, for any
individual agents, we only consider routes to and from a
limited number of alternative charging stations.

C. Computing Arrival Probabilities (Intentions)
The algorithm for deriving the arrival probabilities of an EV
at stations at particular times is given in Fig. 3.

Formally, the probability P arri (e, t) that EV i arrives at
station e ∈ Estations at time t ∈ T depends on i’s current
policy π∗i and current state (vi, ti, si). Besides the probability
for each arrival time at each station, the algorithm also needs
to maintain a probability of the arrival time at all other
states, denoted by P arri (v, t, s). The initialisation sets all these
probabilities to 0, except for the probability of arriving in
the current state, which is 1. All reachable states are then
considered in turn by using a priority queue Q where states are
sorted on time. Initially, this queue contains only the current
state (see line 3). From any state taken from this queue (i.e.,
with location v, time t, and state of charge s), the policy for
this state defines the next location w. If (v, w) is a station (i.e.,
(v, w) = e with e ∈ Estations), the computed arrival probability
is added to P arri (e, t). Then, for each possible delay ∆t on
(v, w) (see line 10), we add the respective arrival probability
P (∆t|(v, w), t) · P arri (v, t, s) to the new state (i.e., updating
the state of charge, to (w,∆t+ t,SOC((v, w), s))). Any state
reached with non-zero probability is treated in the same way
by inserting it into the queue, until the policy reaches the
destination. The algorithm computes all possible futures and
their probabilities given the policy π, and from that extracts
the arrival time distribution for each charging station.

D. Historical Arrival Probabilities
As already mentioned, not all intentions of the agents are
known by the system, either because the drivers have not yet
entered their route in the system, or they are not using the sys-
tem at all. However, to compute future waiting times, agents
with unknown intentions still need to be taken into account.
We do so by using arrival probabilities based on historical
information for agents whose intentions are not known. This
facilitates the integration of known and unknown intentions
(discussed in the next part). Specifically, the system keeps
track of when and where (i.e., at what station) vehicles arrive
for charging.3 These historical arrivals are then aggregated

3For an accurate account of historic information, this includes keeping track
of vehicles not using IARS but which are still using the charging stations.
This can be achieved, for example, through sensors and/or credit card payment
information at the stations.

1 P arri (v, t, s)← 0 for all v, t, s, but P arri (vi, ti, si)← 1
2 P arri (e, t)← 0 for all t ∈ T , e ∈ Estations
3 Q← {(vi, ti, si)} // priority queue on time
4 while Q 6= ∅ do
5 (v, t, s)← pop(Q)// remove from queue
6 (v, w)← π(v, t, s)
7 if (v, w) ∈ Estations then
8 P arri ((v, w), t) += P arri (v, t, s)
9 if w 6= vdest then

10 for ∆t ∈ T do
11 P arri (w,∆t+ t,SOC((v, w), s)) +=
12 P (∆t|(v, w), t) · P arri (v, t, s)
13 if P arri (w,∆t+ t,SOC((v, w), s)) > 0 and

(w,∆t+ t,SOC((v, w), s)) 6∈ Q then
14 add (w,∆t+ t,SOC((v, w), s)) to Q

Fig. 3. An agent’s arrival probability Parr
i at each station s is derived from

its policy π by considering all possible delays on the route towards s.

to compute the probabilities P arr(e, t) which gives, for an
average EV, the probability that it arrives at station e ∈ Estations
at time t ∈ T . Note that this approach is anonymous in that it
does not compute different probabilities for different vehicles.

E. Computing Waiting Times Probabilities

We now discuss the main part of the system and show
how to compute the waiting times probability mass function,
P (∆t|e, t), by combining the historical information, P arr,
with known arrivals so far, and with the intentions-derived
probabilities, P arri , i ∈ I , where I is the set of EVs who have
(so far) reported their intentions to the system. We let n denote
the total number of unique vehicles that have charged in the
past (across stations), including both ones that use the system,
and ones that do not. For simplicity, we assume that each EV
charges en-route at most once per journey, although having
a single vehicle charge multiple times can be approximated
by considering these are different vehicles. Furthermore, let
m denote the number of vehicles which have already charged
today, and I ′ ⊆ I those vehicles with known intentions which
still need to charge (i.e., they are visiting a station with non-
zero probability). Given this, there are n −m EVs that may
still choose to charge, of which we know the intentions of |I ′|.

We then approximate the probability mass function by
drawing a number of samples from the respective probability
distributions on arrival time and simulating the resulting queue.
For each sample, we independently draw for n − m − |I ′|
vehicles a pair 〈e, t〉 ∈ (Estations × T ) ∪ {⊥} according to
the probabilities P arr(e, t|not charged), i.e., the arrival condi-
tional on not having charged before (where the probability of
charging before the current time is zero). Here, P arr(⊥)=1-∑
e∈Estations,t∈T P

arr(e, t|not charged) is the probability that
the EV does not charge at all. Similarly, we draw a single pair
〈e, t〉 from each distribution P arri (note that we do not need
to compute the conditional distribution, since it has already
been updated). Finally, we add the EVs that have already
arrived today with probability 1. Then, starting from t = 1,
we simulate the queues at each station based on the model
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described in Section III-B until the end of the day, and measure
the waiting times for each future time point. This process is
repeated for a number of times and P (∆t|e, t) is estimated by
averaging the waiting times at each station and time slot. Such
an approach using a combination of sampling and simulation
is used quite often and is called a Monte-Carlo simulation.
In the experiments in Section V we use 5000 samples, which
altogether take, on average, around 0.2 seconds on a single
core of a 2.93 GHz Core i7 iMac with 16GB RAM.

V. EXPERIMENTS

In this section, we experimentally evaluate our intention-aware
routing system in a wide range of settings. The purpose of
this is to establish and quantify the potential benefits of 1)
modelling station waiting times and 2) incorporating other
agents’ intentions into routing decisions. For ease of presenta-
tion, we assume that all agents wish to minimise their arrival
time at the destination, and therefore our primary measure of
performance is the average journey time of individual agents.
In the following, we first describe the benchmarks we test
against. We then discuss the simulation used for the evaluation
and provide details of the specific scenario. Finally, we present
the results.

A. Benchmarks
In order to provide a thorough experimental evaluation of our
approach, we implemented and evaluated a range of RGIS
strategies:
• MIN: A strategy that always minimises the expected

journey time. As such, it simulates existing state-of-the-
art navigation systems.

• LOGIT(λ): A randomised variant of MIN.
• IARS: Our proposed intention-aware routing system,

which is the main contribution of this paper.
• INFINITE CAPACITY: A lower bound on the social

optimum.
All strategies use the time-dependent stochastic model of road
travel times and include the state of charge, as discussed in
Section III. We include LOGIT, because agents employing
MIN on similar source and destination pairs will often follow
the same routes, exacerbating congestion at charging stations.
While this is an inherent problem with current routing systems,
we are interested in whether occasional randomisation may
alleviate this. The LOGIT algorithm is a good benchmark,
as it is often used to model the sub-optimal behaviour of
people [29]. As we expect this randomisation to benefit the
average journey time, in our experiments we consider a best-
case scenario where this randomisation has maximal benefit
(by optimising the λ parameter).

To achieve this, we use an approach where the probability
of selecting an alternative is directly related to the expected
utility of that same alternative. This is in line with work on the
logit agent quantal response equilibrium [30] and is defined
as follows. Given a parameter λ ∈ [0,∞], the probability of
selecting an edge e is defined as:

P (e|vc, tc, sc) =
eλ·EU(e,tc,sc|π′)∑

{e′|(vc,w)∈E} e
λ·EU(e′,tc,sc|π′)

(2)

1 initialise history P arr

2 for each day do
3 initialise agents; and set currentT ime← 0
4 while (currentT ime < endOfDay) do
5 currentT ime← moveToNextState()
6 converged← FALSE; and set iter ← 0
7 while (!converged &

iter < maxNumIterations) do
8 converged← TRUE
9 for agents with known intentions i ∈ I do

10 compute π∗i
11 compute P arri (e, t)
12 compute P (∆t|e, t)
13 if π∗i has changed then
14 converged = FALSE
15 iter++
16 update history P arr;

Fig. 4. Pseudocode of the main simulation loop.

The policy π′(vc, tc, sc) is then drawn from this distribution,
and the expected utilities are computed knowing that this dis-
tribution is used in future time steps: EU((u, vc), tc, sc|π′) =∑
{e′|(vc,w)∈E} P (e′|vc, tc, sc) · EU(e′, tc, sc|π′).
Both LOGIT and MIN assume zero waiting time at charging

stations. We also implemented enhanced versions of these
strategies, denoted by the “Learning” label, to describe that the
system models (and hence “learns”) waiting times at charging
stations using historical data. Therefore, MIN and LOGIT
model situations where current standard GPS routing systems
are used that do not model queues, while MIN-Learning and
LOGIT-Learning use historical arrivals to estimate queueing
times. Finally, we compute a lower bound on the social
optimum by including a benchmark with unlimited capacity
at the charging stations, allowing every vehicle to take the
shortest path (in expectation) without any queueing time. This
is always guaranteed to be better than the social optimum.

B. Simulation

The IARS architecture explained in Section IV is entirely
decentralised and asynchronous. That is, in practice, each
agent can recompute their route and submit updated arrival
probabilities to the system independently and at different time
intervals. However, to allow for reproducible results, for the
purpose of our evaluation we use a discrete event simulation.

Specifically, the main simulation loop is given in Figure 4.
To explain, a run of the simulation starts with no history
(each station/time combination is equally likely). Then, at the
start of each simulated day a set of agents is initialised with
their journey consisting of starting time, their origin and their
destination (as detailed in Section V-C), and an initial optimal
policy given the current history. Depending on the setting, a
proportion of these agents will use IARS whereas others will
use one of the benchmark strategies from Section V-A.

The day then proceeds as follows. The function
moveToNextState() in line 5 finds the next event, where an
event is triggered by either a new agent entering the system, or
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an existing agent reaching a new vertex (i.e., decision point).
At such an event, if the agent is using IARS, it may update
its policy given the new information available, which could
trigger a cascade of changes for other agents using IARS.
Therefore, for each such event, the system proceeds with a
best-response loop (lines 7-15). Specifically, each agent with
known intentions (i.e., that has started its journey and is using
IARS) in turn updates its policy and arrival probabilities if
needed, and the resulting waiting probabilities are then updated
which could trigger changes in other agents. This procedure
is repeated until the policies converge (i.e., there are no more
changes), or a maximum number of iterations is reached. In
the experiments we set maxNumIterations to 20. Finally,
at the end of each day the historic arrival probabilities are
updated as described in Section IV-D.

We first performed an evaluation on two completely differ-
ent time-independent synthetic scenarios as described in the
conference paper [31]. This showed that IARS can realise a
significant reduction in travel time if capacity is tight. To gain
more insight whether this effect also holds in more realistic
settings, we repeat a study of this effect for 100 different
realistic time-dependent scenarios, as described in the next
section.

C. Realistic Scenario

Using the simulation we consider a realistic scenario to
evaluate the performance of IARS compared to the other
solutions. Specifically, we consider the coordination of electric
vehicle charging around the city of Utrecht in the Netherlands.
Utrecht, situated in the center of the country, is the main
transit hub in the Netherlands, and hence the location where
congestion at EV charging stations is most likely to occur. To
generate realistic traffic data, we took origin–destination pairs
with departure times from a Dutch National Survey [32]. This
survey describes over 127000 moves, from which we selected
those that were more than 50km and passed, but did not start
or end near Utrecht. To make this selection, we used a local
copy of the Open Source Routing Machine (OSRM) using data
from OpenStreetMap to create routes. This resulted in a set of
118 moves with driving times (without delays) ranging from
45 minutes to 3 hours, as displayed in Fig. 5.

In our experiments we fix the number of EVs to 50 (which
gives reasonable waiting times at stations for the road network
we consider), and we vary the congestion at the charging
stations by changing their capacity (i.e., the number of EVs
that can be charged simultaneously). We force each EV to visit
exactly one charging station for a full charge by initialising the
state of charge by 1 and requiring a charge of 3 (which is the
maximum level in this simulation) for all edges incident to the
final destination, and 0 for all other edges. For each run of the
experiment we sample the 50 agents by selecting a random
journey (with replacement) out of the above set of moves
for each agent. For the sequence of weekdays4 in a single

4Most experiments are run over 20 weekdays, to allow the agents to collect
and use historical data. Those involving IARS agents are run over 5 weekdays,
due to the more computationally expensive best-response mechanism. How-
ever, the performance of all strategies typically converges within 3–4 days,
and we only record journey times on the last simulated day.

Fig. 5. All 118 selected routes longer than 50km passing Utrecht (satellite
image by Google Earth and Data SIO, NOAA, U.S. Navy, NGA, GEBCO)

experimental run, these agents depart with some Gaussian
noise (σ = 10 minutes) around the respective departure time
from the survey. This simulates the same people making the
same journeys on weekdays, but at slightly different times.

For each of the selected moves we find the 6 charging
stations out of the set of 906 as of June 2014 from Open
Charge Map with the smallest detour (again using OSRM),
resulting in a total of 36 relevant charging stations in or around
Utrecht. At the moment five of which are fast charging stations
(about 40kW). We set the capacities to be the same for all
stations, and we vary these from 1 to 5 per station.

We obtained speed measurement data along these routes
(including going via the charging stations) for the morning
rush hour. For this we collected the average speed for every
5 minute interval from 2800 measurement points along the
selected routes on weekdays from 5:00 to 11:00 from 3rd
February 2014 to 7th June 2014 (ignoring two days and
100 measurement points that had missing data). The speed
measurements were obtained from the Nationale Databank
Wegverkeersgegevens (NDW), a cooperation of several gov-
ernmental organisations, who together aim to collect all traffic
measurements in the Netherlands. First, for each day and for
each 5 minute interval on every day, these speed measurements
are used to derive driving times for longer road segments
by assuming the observed speeds are maintained until the
next measurement point. Then, for each time of day the
derived driving times from all 88 weekdays are combined
into a time-dependent road driving time distribution, which
has five driving times and associated probabilities (as evenly
distributed as possible) such that it has the same mean as the
driving times of the 88 days.

Each route connecting an origin or destination to a charg-
ing station initially consists of about 2000 edges. Whenever
prefixes of these routes coincide, they are combined. Each
sequence of edges and nodes with degree 2 is then com-
pressed into a single edge with the respective aggregated time-
dependent stochastic travel time distribution. This results in
a graph for each of the agents with 13 nodes and 17 such
edges. The charging station queues at their respective nodes
are shared among these agents. The experiments are then run
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Fig. 6. All (except for one) agents use LOGIT(λ) in a scenario with station
capacity of two.

with a time step size of 30 seconds and charging times are
fixed to 30 minutes.

D. Hypotheses
Our experiments are guided by the following hypotheses. The
first (H1) examines the overall benefit of modelling historical
station queueing times, the next two (H2 and H3) describe
expected differences in average journey time between the
different routing strategies, and H4 describes the uncertainty
regarding these journey times. Then, hypothesis H5 sets our
expectation on the effect of capacity and thus congestion at
charging stations. Finally, hypotheses H6 and H7 describe our
expectations regarding vehicles that decide to deviate from the
advised routing strategy.
H1: Explicitly modelling historic information on station

queues leads to a higher utility for individual agents as
well as to a lower average journey time.

H2: The average journey time for IARS is lower than for any
of the other approaches.

H3: The average journey time for LOGIT is lower than the
average journey time for MIN.

H4: The uncertainty regarding the journey time is lower for
IARS than for any of the other approaches.

H5: With increasing congestion (less charging capacity at
the stations), the effect of coordination through IARS
and randomisation through LOGIT becomes more pro-
nounced.

H6: When all agents use LOGIT, a single agent can increase
its utility by switching to MIN.

H7: When all agents use IARS, a single agent cannot increase
its utility by switching to MIN or LOGIT.

The next section describes the results of our experiments
and relates them to these hypotheses.

E. Results
In order to obtain a fair comparison for the LOGIT strategy,
we first establish the value for the randomisation parameter

Infinite Capacity
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Fig. 7. IARS results in the lowest overall journey time and performs quite
close to the lower bound with unlimited capacity at the charging stations.
LOGIT performs better than MIN.

λ that gives the best results. Given that the expected utilities
(EU) for the different routes are the negation of the journey
time, and that journey times are in the region of 100 to 300
minutes, rather small values for λ in Equation 2 give the
most sensible values for eλ·EU. We run an experiment for
λ ∈ {0, 0.001, 0.01, 0.1, 1} on a set of representative problem
instances where stations have a capacity of 2, and measure
the average journey time of all 50 vehicles using LOGIT(λ)-
Learning (we focus on the Learning variant here, but the trends
for LOGIT(λ) are similar). The results of this experiment can
be found in Fig. 6, where the green bars show the average
journey time of LOGIT(λ)-Learning and the red bars show the
average journey time of a single deviating agent that adopts
the MIN-Learning strategy (which we will discuss later). In
all results, a 95% confidence interval over 100 different runs
with 50 vehicles each is shown by the (vertical) length of an
error bar around the mean. We observe that LOGIT-Learning
performs best with the randomisation parameter value around
λ = 0.1. In further experiments, we thus show only results for
this value.

Having established a good value for λ, we are set to com-
pare all strategies on a series of instances. To this end, Fig. 7
shows the average journey times for all RGIS strategies tested
in the same setting as before. Here, all approaches that use
historic information about station queues clearly outperform
those that do not, confirming H1. IARS outperforms all other
strategies by significantly reducing queueing times, confirming
H2 and both LOGIT approaches lead to consistently lower
journey times than their MIN counterparts, confirming H3.

In terms of run-time, IARS is significantly more expensive
than the other strategies, taking about 3.5 minutes of computa-
tion time per vehicle per day on a 2.6 GHz Intel Sandybridge
running on a single core with 4 GB of RAM.5 All other

5Note that this includes all best-response iterations whenever new informa-
tion becomes available. In practice, these could be performed less frequently
to save computation time.
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Fig. 8. For high congestion and thus little capacity at charging stations,
IARS significantly reduces the average journey time (by almost 50% in some
occasions), but when there is an overcapacity (e.g. for capacity 3, there are
108 places to charge around Utrecht for only 50 vehicles), the gain is relatively
small (≈ 10%).

strategies take a few seconds or less.
Next, Fig. 8 displays the average journey times of the 50

vehicles for each of the strategies for different charging station
capacities: ranging from 1 to 5 charging bays at a station.
From this figure we can make several observations. First,
the strategies using historic information (i.e., MIN-Learning,
and LOGIT-Learning) perform significantly better than their
non-learning counterparts, again confirming hypothesis H1.
Second, IARS performs better than LOGIT, which in its turn
is better than MIN. This is significant until a capacity of
four (confirming H2 and H3). Third, this experiment simulates
increasing congestion by decreasing capacity at the charging
stations. Here we see that average journey times significantly
increase for increasing congestion (smaller capacities) and that
this makes the differences between the different strategies
more pronounced, confirming H5. The figure also shows that
IARS is very close to the lower bound for capacities above
two, proving that IARS is very close to optimal.

Next, to investigate H4, for each run of the simulation
we record the standard deviation of the journey times for
all 50 agents. This indicates how much the journey times
vary between agents and, when comparing between different
strategies, a higher standard deviation indicates higher uncer-
tainty about the journey time of a randomly chosen agent.
The average standard deviation is shown in Fig. 9 with 95%
confidence intervals. Here, we see that this is significantly
lower for IARS than for the other approaches. This means
that the uncertainty for drivers regarding the journey time is
typically smaller, confirming H4.

An important issue when introducing a new strategy for
navigation systems is that there must be an incentive for drivers
to use it. We therefore compare average journey times also
when only a part of the drivers use a particular system. In our
experiments we study IARS versus MIN (results in Fig. 10),
IARS versus LOGIT (results in Fig. 11), and we have already
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Fig. 9. The standard deviation is significantly lower for IARS than for any
of the other approaches.
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Fig. 10. In a scenario with station capacity of two, the more agents use
IARS, the lower the average journey time (if other agents use MIN).

seen some results on LOGIT versus MIN (in Fig. 6). Figures 10
and 11 clearly show that no matter what strategy the current
population of drivers use, any driver is better off using IARS,
and such a switch further reduces the average journey time,
confirming hypothesis H7. However, the opposite is the case
for LOGIT: Fig. 6 shows that any individual driver is better
off not using LOGIT (confirming H6).

VI. CONCLUSION AND FUTURE WORK

The main contribution of this paper is the concept of an
intention-aware routing system (IARS) to coordinate the en-
route charging of electric vehicles, together with a realistic
evaluation of this system. The evaluation considers actual
charging station locations, time-dependent road travel time dis-
tributions based on historic traffic information, and an origin-
destination pair distribution for the vehicles created from a
country-wide survey. The experiments show that individual
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Fig. 11. In a scenario with station capacity of two, the more agents use
IARS, the lower the overall journey time (if other agents use LOGIT).

drivers are better off using the navigation advice from IARS
than with classic route guidance systems, even when these
learn time-dependent waiting times at charging stations, and
even when an optimal perturbation is mixed in according to
the Logit model. Overall, IARS leads to significantly shorter
journey times (up to 50% with high congestion), and also
has significantly less uncertainty than existing benchmarks,
which is a highly desirable property. The observed trends
are in line with the results of our previous experiments
on artificially constructed road networks where all vehicles
depart simultaneously (reported in a conference paper [31]).
However, given the extensive experiments in this paper based
on real data, we are now able to show the effect of an intention-
aware routing system in practice.

There are several directions for future work. First, while
the focus of this paper is on the use of an IARS to reduce
congestion at charging stations, it would be interesting to
investigate whether the approach could be extended to coor-
dinate general road usage. Second, while we have compared
IARS to adaptive route guidance systems that use historic in-
formation, these benchmarks could be extended to additionally
use real-time queueing information. Third, it is interesting to
investigate whether there are (significant) incentives to misre-
port intentions, and study potential ways to discourage such
behaviour. Fourth, future work could consider a principled
comparison between IARS and reservation-based systems.
Our hypothesis is that, in settings where driving time (and
therefore arrival time at the station) is uncertain, reservation
systems are less efficient than IARS due to the frequently
required changes and/or cancellations of reservations. Another
possible extension of this work is to consider the dynamics
and efficiency of settings with multiple competing IARS
providers, and where agents can choose to participate in one
or more of such systems. Finally, as the uptake of electric
vehicles increases, we would like to explore a real deployment
of IARS.
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