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Abstract

Achieving human-like action planning requires profound reasoning and context-awareness
capabilities. It is especially true for autonomous robotic mobile manipulation in dynamic en-
vironments. In the case of component failure, the autonomous robotic system requires reliable
adaptation capabilities combined with a consistent understanding of the task, environment
and the robot’s capabilities for successful task completion. Recent research has shown that
Active Inference, a unifying neuroscientific theory of the brain, has the potential to intrinsi-
cally handle substantial uncertainties in the system, resembling the adaptability of humans.
These works, however, have the following limitations: (1) no distinction is made between ac-
tions with some commonality, capable of satisfying similar tasks, and (2) actions are assumed
to be always feasible when preconditions are satisfied, regardless of their context. Given
the situation, certain actions satisfying a task might not lead to task succession. This work
proposes the AI for retail (Airet) framework, a novel extension of action planning through
Active Inference for mobile manipulation. The Airet framework uses Bayesian networks and
Ontological Reasoning to facilitate context-awareness in action planning through Active Infer-
ence. Reasoning on robot components, action-, manipulation- and environmental constraints
is facilitated through a description-logic-based reasoner and an OWL-based ontology contain-
ing concepts relevant for action selection in a retail context. The capabilities of the Airet
framework are demonstrated through the following cases (1) irrecoverable task & component
failure prevention when dealing with ill-defined tasks, (2) Selection of the best action given
the situation & the component capabilities through context-awareness (3) failure recovery &
adaptation when dealing with component failure. Lastly, these situations are compared with
research on reactive task planning through Active Inference without context-awareness. This
thesis represents a leap forward from the current state-of-the-art in Active Inference for task
planning in robotics, laying the foundations for further research in the direction of this thesis.
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Chapter 1

Introduction

This chapter introduces the motivations behind this research, presenting three fundamental
questions. Next, the main contributions of this research are highlighted. The chapter concludes
with the outline of the thesis.

1-1 Research Motivation

The latest reveal of the humanoid robot in development by Tesla, characterised as their core
product in development for the year 2022, is aligned with the surge of research and business
interest in humanoid robots designed to overcome mundane tasks currently performed by
humans 1. Many of these mundane tasks require a deep understanding of the environment to
come close to human-level adaptability and resourcefulness. This understanding of the envi-
ronment includes handling unexpected situations and uncertainties. Retail is such a dynamic
environment that is currently labour intensive and crucial for society, being dominated by
mundane tasks. Many approaches exist attempting to provide this deep understanding for
various domains, as can be found in surveys [7, 53]. Some data-driven learning approaches
use artificial intelligence methods like neural networks and deep reinforcement learning to
learn behaviour skills, often relying on data from demonstration and/or data from repeated
attempts [71, 83, 48]. One notable approach uses deep reinforcement learning [42] which
learns policies for mobile manipulation by training deep Q-functions through a variant of the
Normalised Advantage function algorithm [43], speeding up the learning process concerning
traditional deep-learning approaches. These approaches still require a significant amount of
data, which increases with the increase of task complexity. Furthermore, in case of unforeseen
events, retraining is often required to adapt to these anomalies for successful task comple-
tion or prevention of irrecoverable task failure. Another approach to obtaining a human-like
understanding of manipulation is integrating semantic knowledge and reasoning to provide

1https://www.businessinsider.nl/elon-musk-says-teslas-humanoid-robot-is-the-most-important-product-its-
working-on-and-could-eventually-outgrow-its-car-business/
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2 Introduction

deliberation. Several notable solutions are mentioned in surveys [65, 58, 69, 84, 23] 2. Among
the vast literature, promising frameworks are PMK [24, 23], KnowRob [82, 6], Skiros [76, 77]
and MROS [17, 18, 46]. PMK facilitates task and motion planning knowledge by introducing
concepts like manipulation constraints. Skiros allows for breaking down tasks into action
primitives to facilitate the reuse of actions and construction of new actions. KnowRob al-
lows for reusing episodic memories, which are recordings of actions in terms of controller
inputs, together with semantic reasoning, to provide generic service tasks. MROS provides
self-adaptation of the control architecture at run-time through meta-models encompassing
the development and reconfiguration on top of a robotic agent control system.

Despite PMK & KnowRob being good frameworks for mobile manipulation, neither of these
frameworks can provide reactive adaptation at run-time when dealing with contingencies,
which is needed for the cognitive capability of decision-making & Choice. MROS & Skiros do
allow for adaptation at run-time but lack the terminology for mobile manipulation in retail
and do not contain standardised ontologies. Furthermore, MROS only triggers adaptation
when failure has already occurred (being reactive); hence does not provide adaptation based
on knowledge & constraints of future tasks. Skiros selects actions based on satisfaction of
pre- and post-conditions, combining a hierarchical task network and a behaviour tree, which
does not distinguish between actions for adaptation through context-awareness but instead
selects them in a fixed manner. These limitations are especially important when dealing with
the presence of different controller capabilities satisfying the same tasks (e.g. servo-electric
gripper vs vacuum gripper). These limitations of adaptability (and decision-making & choice)
are unwanted for a dynamic human-centric environment like retail. Inspiration from cognitive
science can be taken to provide this reactive adaptation.

Some promising theories have been derived from cognitive science that might explain how
biological or artificial agents can govern perception, action, planning, decision-making, and
learning. One theory, in particular, stands out: the principle of Free energy & Active Inference
by Karl Friston [31, 32, 37]. This theory is based on the assumption that agents try to satisfy
expectations about sensations by minimising their free energy through observation and action-
taking [21].

With this theory alone, the capabilities of artificial agents remain limited, let alone being
close to that of humans, because it does not explicitly include common sense knowledge.
Ontological reasoning frameworks can bring the aspect of knowledge closer to reasoning,
and the combination of Active Inference and ontological reasoning can create fault recovery
capabilities in agents. To conclude, the research motivations brought to the formulation of
the following research question:

Can Ontological Reasoning be integrated into Active Inference for planning and
executing tasks for mobile manipulation in a fault-tolerant manner?

Three sub-questions are derived, which, combined, can lead to a possible approach for an-
swering the main research question. They are as follows:

2A collaboration effort of several creators of KRR frameworks for identification of major KRR frameworks
is given in the Github page.
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1-1 Research Motivation 3

• Can the Active Inference structure be exploited to allow for context-based
decision making?
Active Inference for robotics is as promising as it is intricate. To answer this question,
A look at the state-of-the-art decision-making using the Active Inference algorithm is
taken. For altering the output of the decision-making process through Active Inference,
literature points towards implementing more complex generative models. This approach
relies on learning through gaining information on the states and state transitions, lead-
ing to computational difficulties in the face of high-dimensional state-space and complex
dynamics occurring in a human-centred environment, also known as the curse of dimen-
sionality. Furthermore, a consequence of having to learn state transitions means that it
does not allow for influencing decision-making in a real-time fashion under the influence
of unexpected situations. To allow for a more reactive influence on decision-making,
research shows that one can select a prior over plans, with a factor denoting how much
the decision-making algorithm should trust this prior over the (Variational & Expected)
free energy terms. This prior over plans is taken as a constant in most works on Ac-
tive Inference, with the exception of some [81] which allow for learning the prior over
plans by looking at how frequently certain plans are chosen (through gradient descent).
These approaches also suffer from the drawbacks that come with learning not influ-
encing decision-making reactively. Furthermore, they do not distinguish between plans
based on contextual awareness but instead rely on the completeness and accuracy of
the generative model parameters subjected to learning, mainly the state transition ma-
trix and the likelihood of state-outcome matrix. The gap this thesis fills is a method
influencing the priors over plans with contextual knowledge and reasoning, populating
the generative model, breaking this dependency on the blind learning of parameters of
the generative model and the limitations that come with it.

• How can ontological reasoning contribute to context-based decision making
for task planning using Active Inference for mobile manipulation?
Literature is found on ontological reasoning for mobile manipulation, facilitating stan-
dardised terminology needed for context-awareness. This terminology is extended to
facilitate context-aware decision-making with Active Inference and concepts needed for
retail. Doing this simultaneously tackles limitations of ontological reasoning for mobile
manipulation in terms of cognitive capability for deliberation being decision-making &
choice, and drawbacks of learning targeted priors over plans for decision making facili-
tated by Active Inference.

• Will the integration of Active-inference with Ontological Reasoning frame-
works provide high-level fault-recovery and adaptation?
Past works were identified, facilitating task-planning using Active Inference. The ap-
proach of Pezzato et al. [74] stood out by allowing prevention of failure by attempting
to solve missing preconditions of tasks by prioritising tasks solving these preconditions.
This method did not facilitate failure recovery through context-awareness and had draw-
backs, one of which being alternative actions to achieve the same goal are chosen in a
fixed order. It is far from optimal since the knowledge about the environment and
interactions of the environment with the robot is missing from the action selection pro-
cess. Hence this method cannot recover from controller failure in case of component
redundancy, failure related to agents’ capabilities and task specifications. In a retail
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environment, one can think of the consequences being creating dangerous situations
for humans, irrecoverable task failure and component failure. A framework is created
by the author, extending the work of Pezzato et al. [74] on task planning for robotics
to allow for failure recovery through context-awareness. This framework proposes a
novel approach to context-aware decision-making using Active Inference. It is done
by exploiting the Active Inference structure for facilitating decision-making and using
and defining semantic knowledge and reasoning through description logics and Bayesian
Networks.

Main Contributions

• Creation of ontological reasoning framework for mobile manipulation in re-
tail, supporting Decision-making & choice

• Adding context-aware decision-making in Active Inference by dynamically
populating the prior over plans

• Adding high-level fault recovery and adaptation for mobile manipulation with
respect to previous work on Active Inference for Action Planning

1-2 Thesis Outline

The document is organised as follows. Chapter 2 and 3 serve the purpose of making this
thesis as self-contained as possible. These chapters give the necessary background on two
main topics: Active Inference and Ontological Reasoning.

Chapter 2 introduces the background information necessary to understand the equations of
Active Inference. This background information includes Bayesian Inference, Markov blankets,
the definition of Surprisal and the mathematical definition of the Kullback-Leiber divergence.
Next, the working principle of Active Inference and the meaning of the equations it is governed
by are explained. It includes perception, belief update and action selection.

Chapter 3 provides the state-of-the-art in Ontological Reasoning, namely Ontological Reason-
ing frameworks for mobile manipulation, Ontological Reasoning logic and Ontological Rea-
soning for representing uncertainty through Bayesian networks. Next, relevant works using
Active Inference for task planning in robotics are introduced with their benefits and short-
comings for planning and executing robotic tasks. A promising Task planning framework
using Active Inference is further explained and analysed, taking into account situations that
can occur in a retail store environment. Lastly, a lack of knowledge fueled action reasoning
is identified as a missing element for more fault-tolerant and intelligent task planning using
Active Inference.

In Chapter 4 an ontological reasoning framework for retail is devised, which allows for rea-
soning on mobile manipulation. The added concepts & properties of the ontology for retail
are formalised, and the concepts from standardised ontologies for mobile manipulation and
robotics are introduced in the ontology design. The reasoning logic supported by the created
reasoner is shown, of which the main factors for reasoning are the environment, the robotic
agent, the Action & Task.

Mohammed Mâachou Master thesis



1-2 Thesis Outline 5

In Chapter 5 several case studies are devised and implemented, demonstrating the capabilities
of the devised Ontological reasoning framework in a retail environment. These case studies
consist of Pick & Place tasks with the following cases.

1. Controller failure: In the presence of controller redundancy, controller failure occurs,
and controller redundancy is present. The robot has to use context-awareness through
ontological reasoning and Active Inference for failure recovery & adaptation, resulting
in successful task completion.

2. Different End-effectors: In the presence of end-effectors with different capabilities,
the robot has to reason on the most appropriate end-effector to use.

3. Action failure guaranteed: When dealing with an ill-defined task making it infeasible
due to constraints of the object, environment or robotic agent, the robot has to use
context-awareness to decline the task in a safe manner.

These cases are then tested against their counterparts, being the same cases with the Active
Inference algorithm for task planning, as devised by Pezzato et al. [74], without ontological
reasoning facilitating context-awareness.

Chapter 6 concludes the work presented in this paper and summarises the answers to the
research questions previously posed. The author then includes guidelines for future research
in the direction of this document, pointing out the main challenges and questions that remain
unanswered.
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Chapter 2

Background on Active Inference

This chapter gives an in-depth overview of the Active Inference principle, a free energy min-
imisation theory by Friston [31, 32], Initially, an introduction is given to the background
information necessary to understand the equations of Active Inference. This background in-
formation includes Bayesian inference, Markov blankets, the definition of Surprisal and the
mathematical definition of the Kullback-Leiber divergence. Next, the working principle of Ac-
tive Inference and the meaning of the equations it is governed by are explained. It includes
perception, belief update and action selection. The action selection equation is exploited in
chapter 4 to bring cognitive awareness using ontological reasoning.

2-1 Preliminaries

2-1-1 Background Information Free-energy Minimisation

In the following subsection, important concepts for understanding the concept of the Active
Inference principle are briefly introduced. For a better understanding of these concepts, the
author recommends to visit the following papers: [21, 34, 81, 8, 50].

1. Markov Blanket: Inference from observations of the outer world can be a costly
process due to the significant amount of data available to sensors from the outer world.
Much of this data can be filtered to relevant information based on the agents’ internal
model of the world and the desires that come with it. It is desired to obtain nodes with
all the relevant information agents would like to perceive. For inference of a random
variable, only a subset of variables is needed to be known which contains this useful
information. This subset is called a Markov blanket. A minimal Markov blanket,
also called a Markov boundary, has the following property: information is lost when
one variable is dropped. The ideas of Markov blankets and Markov boundaries are
formalised by Pearl [70]. A graphic depiction of a Markov blanket can be found in figure
2-1. In this figure, the Markov blanket for node {4} is the union of its parents {2,3,5}, its
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8 Background on Active Inference

children {8,9} and the children of the parents {6,7}. Node {1} and {4} are conditionally
independent given nodes 2,3,5,6,7,8,9. In other words, when knowing variables around
node {4}, the knowledge of node {1} does not provide extra information. In equation
form, node 4 is given by {4} = {2, 3, 5}

⋃
{8, 9}

⋃
{6, 7}.

As for the conditional independence, this means that P ({4}|{1}, {2, 3, 5, 6, 7, 8, 9}) =
P ({4}|{2, 3, 5, 6, 7, 8, 9}).

Figure 2-1: A graph depicting a Markov blanket with full conditionals

2. Bayes’ theorem: The conditional probability P (A | B) is defined as the probability
of an event (A) occurring, given the knowledge that another event (B) has occurred.
The joint probability P (A, B) is the probability of events A and B happening. An
example of conditional probability is the probability of a person being infected by the
SARS-CoV-2 virus, given that one performed a SARS-CoV-2 test and the virus test
results were negative (not having been infected). The joint probability would be the
probability of testing negative on the SARS-CoV-2 test and having been infected. The
joint probability is symmetric, which means that P (A, B) = P (A | B)P (B) = P (B |
A)P (A). The probability of events A and B occurring is the same as the probability
of event A occurring given event B, times the probability of event B occurring. The
same goes for the opposite when switching A and B. From this, one can derive Bayes’
theorem by dividing by probability P(B), which results in the following:

P (A | B) = P (B | A)P (A))
P (B) (2-1)

Similar Bayes theorem for P (A | B) can be obtained by dividing by P (A). The value
P (A | B) in this equation is known as the posterior probability. The denominator is
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2-1 Preliminaries 9

often referred to as the normalisation term, which ensures that P (A | B) integrates
to the value 1, i.e. for the continuous case P (B) =

∫
P (B | A)P (A))dA. Continuing

on the SARS-CoV-2 test example, let the abbreviation COV mean the event that the
SARS-CoV-2 infects one, and NEG being the event that one tests negative for the
SARS-CoV-2. Let NOC stand for not having the SARS-CoV-2. The Bayesian posterior,
determining the probability of having SARS-CoV-2 when one is tested negative, is given
by the following formula:

fP (COV | NEG) = P (NEG | COV )P (COV )
P (NEG) (2-2)

= P (NEG | COV )P (COV )
P (NEG | COV )P (COV ) + P (NEG | NOC)P (NOC) (2-3)

Notice that the probability of testing negative for SARS-CoV-2 is the sum of the prob-
abilities for testing negative while having SARS-CoV-2 and while not having SARS-
CoV-2.

3. Kullbach-Leiber (KL) divergence: As the name suggests, the Kullback-Leibler
(KL) divergence DKL was developed by Solomon Kullback and Richard Leibler in 1951
[52]. It is related to information entropy, also called Shannon entropy which is a measure
of information, choice and uncertainty [79, 75]. In bits, Shannon’s entropy can be used,
for example, to quantify the amount of information obtained [75]. It is analogous to
entropy as defined in thermodynamics. [88] The uncertainty for a set of possible states
bi with probability distribution p(bi) is given by its Shannon entropy:

H(p) = −
∑

i

p(bi) ln p(bi) (2-4)

The Kullbach-Leiber (KL) divergence can be used to measure the relative entropy be-
tween two probability distributions. In the context of machine learning, it can give an
indication of information gain for using probability distribution Q(x) over P (x). Fur-
thermore, it is used for assessing image similarity, adapting discrete neural networks for
model matching, free energy minimisation, and more [41, 94, 87]. It is the expectation of
the logarithmic difference between probability distributions Q(x) and P (x). Formally,
the discrete-time version of the KL-divergence is given as:

DKL(Q(x)||P (x)) =
∑

x

Q(x) log Q(x)
P (x) (2-5)

4. Surprisal or surprise can be comprehended as a measure of the level of the improbability
of observation when relating a sensory state with an observation or sensory sample
[36]. The time average of surprise is proportional to sensory entropy under ergodic
assumptions (the assumption that a sample of a process is equally representative of
statistical properties as the whole process when sampled for long enough) [50, 35].

5. Agent: The definition of an agent states that an agent is “Any system that displays
cognitive capacity, whether it is a human, a cognitive robot, or some other cognitive
artificial entity” [89].
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10 Background on Active Inference

6. Generative model: A representation of how the agent interacts with the world. It
allows inference of external states representing the outer world and predicts future
observations as well as consequences of actions. A simple generative model is given in
equation 2-12. In literature, more complex generative models can be found [21, 34].

2-1-2 The Free Energy Principle & Active Inference

The Free Energy Principle (FEP) is based on the notion that organisms are unable to min-
imise Surprisal. Instead, they minimise free energy [50, 40, 33] which is an upper bound on
surprise to ensure preferred outcomes are realised. Surprisal cannot be controlled directly by
organisms. It is apparent for humans when being tickled compared to when tickling oneself.
The latter does not cause surprise due to the cerebellum predicting our movement. The tick-
ling action, hence, does not trigger laughter as a reaction of stimulation of the hypothalamus
through tickling. Given continuous processes, organisms have an internal model of environ-
mental states, referred to as the recognition density [8]. This internal model of environmental
states is updated through approximating Bayesian Inference on the state of its environment,
as is obtained from sensory observations. Furthermore, they rely on assumptions about how
different environmental states shape sensory input in the form of a probability density func-
tion called generative density [8]. Acquisition of knowledge and adaptation to the agents’
environment are methods of minimising surprise [36]. The benefits of free energy minimisa-
tion methods are that they can provide a mathematical foundation for adaptive behaviour
and take learning and cognition into account. Furthermore, It can give an explanation of the
biology behind the development and architecture of the brain.

The goal of the Free Energy Principle is to combine adaptive self-governing behaviour under
the idea that minimising surprise is key for the survival of an agent.

The Active Inference principle

Active Inference extends the Free Energy Principle by assuming that taking actions, next to
observing the surroundings to update the agents’ beliefs, can lead to minimising uncertainty.
Active Inference and the free energy minimisation principles have provided an understanding
of how human brains function from both a physiological and a neuronal point of view [31, 38,
39].

In this work, discrete-time Active Inference is introduced for action selection and planning in
discrete domains. Active Inference distinguishes itself from other Free energy minimisation
methods by taking, besides perception, and action into account as a method of minimising
free energy. Furthermore, the discrete-time formulation of Active Inference is chosen over con-
tinuous time. The discrete-time formulation lies closer to the application of Active Inference,
partially due to observations of the external world by robotic agents being discrete.

Unlike reinforcement learning, Active Inference does not appeal to the concepts of reward,
value and utility. Nor does it make use of the Bellman optimality equations [37]. The reward
is seen as prior probabilities, and both exploration and exploitation are shaped into two
components used to minimise the agents’ free energy to maximise expected Bayesian model
evidence [85]. These components are Variational Free Energy (VFE), which describes the
level of alignment of an internal model of an agent and past sensory observations, i.e., how
well an agent’s beliefs describe the world and Expected Free Energy (EFE), which minimises
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2-2 A Mathematical Introduction to Active Inference 11

free energy by evaluating future actions with respect to prior preferences, i.e. which actions
reduce the agents’ uncertainty of the world in the future, as predicted now [21]. Furthermore,
depending on the scenario, it can achieve similar results as reinforcement learning methods
and can be scaled up to handle more complex machine learning problems [85, 20, 37].

Free energy is a bound on surprise, with the time average of surprise being entropy. Meaning
the bound for entropy; hence the bound for surprise is obtained by a minimisation of free
energy [50].

2-2 A Mathematical Introduction to Active Inference

Before arriving at a form of Active Inference, a few assumptions and notions need to be
elaborated upon. The following assumptions are made before arriving at a formulation of
Active Inference:

• The system is at a non-equilibrium steady state (NESS). This follows from the assump-
tion that the agent can reach his preferred state after perturbation, and a steady-state
probability density function must exist.

• Markov blankets: The world as the agent sees it is likely not as detailed as the world
truly is. The agent can still, however, generalise this worldview by means of Bayesian
inference from sensory observations to extract the relevant information an agent needs
for survival. In other words, there is a boundary between the internal states of the
agent and the external states belonging to the outside world. The relevant states for
the interaction of the agent and the outside world can be seen in figure 2-2.
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12 Background on Active Inference

Model variable General definition

S Set of all possible (hidden) states,
i.e. objects and events outside of the brain that cannot be known directly

sτ Hidden state at time τ .
s1:t sequence of hidden states s1, ...., st

O set of all possible outcomes
oτ Outcome at time τ
o1:t sequence of outcomes o1, ...., ot

T Number of timestep in a trial of observation epochs under generative model
U set of all possible actions
Π set of all allowable plans, i.e. action sequences over time
π plan or actions sequence indexed over time
Q Approximate posterior distribution over latent variables of generative model
F, Fπ Variational free energy (VFE) and VFE conditioned over a plan
G Expected free energy
Cat Categorical (probability) distribution over finite set

A matrix P (oτ |sτ ). A martix encoding beliefs about the relationship
between hidden states and observable outcomes

B matrix P (sτ+1|sτ , π). A matrix encoding beliefs about how
hidden states will evolve over time (transition probabilities)

C vector P (oτ ). A vector encoding the degree to which some outcomes
are preferred over others (prior expectations over outcomes).

D vector P (s1). A vector encoding beliefs about a probability distribution
over initial hidden states

E vector P (π). A prior probability distribution over plan,
implemented as a vector

γ scalar
Encodes the precision estimate for the expected free energy over plan.
It indicates how much trust should be put on the prior E with respect to G
for plan selection, hence modulating the influence of G on plan selection.

Table 2-1: Nomenclature for understanding the equations governing the Active Inference principle
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2-2 A Mathematical Introduction to Active Inference 13

Figure 2-2: A graph depicting the states representing the interaction of the agent and the world,
through Markov blankets, taken from [21]. Free energy minimisation states with ξ being external
states representing the world, o being sensory states obtained from observations, a being active
states which express how the agent influences the environment through acting, µ being internal
states of the agent (not to be mistaken with hidden states s) and b being the blanket states
between the world and the internal states of the agent.

Starting from Bayes theorem, equation 2-6, the agent desires to know the posterior distribu-
tion P (s1:T , π|o1:t), which encodes the probability of hidden states of an agent until time T,
S1:T , and action sequence π, given observed outcomes o1:t. Computing this through the Bayes
theorem is proven to be intractable, due to the denominator term depending on complex gen-
erative models (P (o1:t) =

∑
π∈Π

∑
S1:T ∈Π P (o1:t, S1:T , π)) governing artificial and biological

systems [30].

P (s1:T , π|o1:t) = P (o1:t|s1:T , π)P (S1:t|π)
P (o1:t)

(2-6)

Instead, an option is to take an approximate prior distribution Q(S1:T , π) and optimise the
distribution over latent causes. It is done to minimise the discrepancy between the approxi-
mate prior and the true prior. The KL divergence between these two distributions, together
with the Bayes rule, shows an expression named Variational Free Energy which is able to be
minimised in order for these distributions to be closer to each other. From this expression,
one can derive that the difference between the approximate posterior beliefs and the gener-
ative model is always equal to or larger than a term that is referred to as surprise (negative
probability of all outcome sequences). In mathematical form − log P (o1:t) ≤ F [Q(s1:T,π)].

By using the product rules of statistics, a well-known expression for the VFE is rearranged
from the expression obtained by taking the KL divergence mentioned above to the expression
in equation 2-7. This complexity term can be reasoned about as follows: A simple expla-
nation for observable data Q, with few assumptions over the prior, equations 2-8, is a good
justification for data requiring minimal change for updating prior to posterior beliefs. The
accuracy term highlight how well the generative model fits the observed data.
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14 Background on Active Inference

F [Q(s1:T,π)] = DKL[Q(S1:T , π) ∥ P (S1:T , π)]︸ ︷︷ ︸
Complexity

−EQ(s1:T ,π)[log P (o1:t|S1:T , π)]︸ ︷︷ ︸
Accuracy

(2-7)

Q(S1:T , π) = Q(π)
T∏

τ=1
Q(Sτ |π) (2-8)

Q(Sτ |π) = Cat(Sπτ ) (2-9)
Q(π) = Cat(π) (2-10)

(2-11)

The generative model used in Active Inference can be described as partially observable Markov
decision processes, see equation 2-12. Cat() in these equations stands for categorical or
generalised Bernoulli distribution. Many generative models and approximate priors exist
to take into account more parameters to be learned to represent the agent’s beliefs better
and minimise uncertainty. A derivation of Active Inference with a more complex generative
model can be found in [34]. The only parameter learned in this generative model is the prior
over plans P (π) which comes in handy when integrating Active Inference with Ontological
Reasoning frameworks.

P (o1:T , s1:T , A, B, D, π) = P (π)P (A)P (B)P (D)
T∏

τ=1
P (Sτ |Sτ−1, π)P (oτ |Sτ ) (2-12)

P (oτ |Sτ ) = cat(A) (2-13)
P (Sτ+1|Sτ , π) = Cat(B(u = π(t))) (2-14)

P (s1|s0) = Cat(D) (2-15)
P (oτ ) = Cat(C) (2-16)

P (π) = σ(ln E − γ ·G(π)) (2-17)
(2-18)

Perception in Active Inference is equivalent to state estimation [34]. To infer states of the
environment, an agent must minimise VFE with respect to Q(S1:T |π) for each plan π. The
plan-specific free energy Fπ can be expressed in terms of the priors as defined in the nomen-
clature from table 2-1, obtained from the generative model, and the hidden states conditioned
on a plan, see equation 2-19.

Fπ(sπ1, ....., sπT ) =
T∑

τ=1
sT

πτ [ln sπτ − ln Bπτ−1sπτ−1 − ln AT oτ ] (2-19)

=
T∑

τ=1
sT

πτ ln sπτ −
T∑

τ=1
sT

πτ ln AT oτ − sT
π1 ln D −

T∑
t=2

sT
πτ ln Bπτ−1sπτ−1 (2-20)

By taking the gradient of the VFE conditioned upon a plan, with respect to the hidden
states, and setting this expression to zero, the posterior estimate of the state conditioned
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2-2 A Mathematical Introduction to Active Inference 15

by a plan can be found that minimised the VFE. This expression is given in equation 2-22.
Note that σ is the softmax function and for τ = 1 the first term becomes equal to D, i.e.
ln Bπτ−1sπτ−1 = ln D.

sτπ = σ(ln Bπτ−1sπτ−1 + ln Bπτ · sπτ+1 + ln AT oτ ) (2-21)

sπ(τ=1) = σ(ln D + ln BT
πτ sπτ+1 + ln AT oτ ) (2-22)

sπ(1<τ<T ) = σ(ln Bπτ−1sπτ−1 + ln BT
πτ sπτ+1 + ln AT oτ ) (2-23)

sπ(τ=T ) = σ(ln Bπτ−1sπτ−1 + ln AT oτ ) (2-24)

The Expected free energy formula is similar to the Variational free energy formula, with the
difference of minimising the free energy of beliefs about the future states of the environment,
i.e. matching Q(sτ |π) to the preferred state P (sτ |π)with τ > 1 instead of past and present
states.

Minimisation of VFE ensures that the generative model is a good predictor of its environment.
It allows the agent to accurately plan into the future by evaluating the Expected free energy
to enable the agent to realise its preferences. When an agent reaches these preferences,
the expected surprise of future states of being is minimised. This perception-action loop is
depicted in figure 2-3.

Figure 2-3: A graph depicting perception action loop of Active Inference. The variable definitions
can be found in nomenclature table 2-1.

A well-known factorisation of the expected free energy is given in equation 2-25.

G(π) = DKL[Q(oτ |π) ∥ P (oτ )]︸ ︷︷ ︸
Risk

+EQ(sτ |π)[H[P (oτ |sτ )]︸ ︷︷ ︸
Ambiguity

(2-25)
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with H[P (oτ |sτ )] = EP (oτ |sτ )[− ln P (oτ |sτ )].

Risk is the difference between predicted and apriori predictions in the future. Ambiguity
is the uncertainty associated with future observations, given the states. The best plans are
explorative and exploitative, meaning reducing risk and ambiguity, respectively.

Filling in the statistical terms from nomenclature, table 2-1, and simplifying, one obtains the
following expression for expected free energy, given in equation 2-26.

G(π, τ) = AsT
πτ [ln Asπτ − ln C]− diag(AT ln A)T sπτ (2-26)

Note that Asπτ = oπτ after minimising KL divergence between observations expected given
plan and preferred observations.

When taking the gradient of the VFE with respect to the plan this time, an expression for the
update rule of possible plan distributions can be obtained. The result of this is the expression
in equation 2-28. The initial plan distribution does not depend on the Variational Free energy
since no past or present observations are present before time T=1, see equation 2-27.

π0 = σ(ln E − γG) (2-27)
π = σ(ln E − F − γG) (2-28)

The E parameter denotes a prior over plans and can be seen as encoding ’habits’ or preferences
[81]. It tells which plans might be favoured over others, independent of current observations
and hidden states. For a human, this might be picking up objects with the left arm compared
to the right arm, assuming in this example that both arms result in the same outcome, and
the task can be equally well satisfied by both arms.

The precision parameter γ , see nomenclature 2-1 gives a measure of trust of the effects of
G on plan selection over the prior of plan E, see equation 2-28. A low value of γ indicates
that the decision process is more influenced by ’habits’ encoded in E than trust in the model
beliefs generating desired outcomes. See the work of Friston et al. for the definition of habits
and information on this precision parameter γ [81]. Action selection is determined from the
most likely plan:

πmax = max [π1, π2, ....πp], aτ = πmax
τ=1 (2-29)

2-2-1 Plan Selection Demonstrated

In the following example, the decision-making through active inference is demonstrated when
taking into account prior over plans and when negating this prior. Assume an Active inference
agent that operates in a simplified environment. This agent has two plans, π1 & π2, the first
picking up an object and the second staying idle. The agent has a preference over observation
encoded in matrix C, preferring picking up the object.

A =
[
0.9 0.1
0.1 0.9

]
, C

[
1
0

]
, sτπ1 =

[
0.95
0.05

]
, sτπ2 =

[
0.05
0.95

]
(2-30)
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2-3 Summary 17

The observations under the two plans are:

oτπ1 = Asτπ1 =
[
0.86
0.14

]
, oτπ2 = Asτπ2 =

[
0.14
0.86

]
(2-31)

When computing the expected free energy for the plans, one gets:

G(π1, τ) = AsT
π1τ [ln Asπ1τ − ln C]− diag(AT ln A)T sπ1τ (2-32)[

0.86
0.14

]T

[ln
[
0.86
0.14

]
− ln

[
1
0

]
]− diag

[0.9 0.1
0.1 0.9

]T

ln(
[
0.9 0.1
0.1 0.9

]
)

T [
0.95
0.05

]
≈ 5.08 (2-33)

Repeating this for the second plan gives us a value of 31.6037. Note that for computation,
as is done before in literature [81], a value of 10−16 is taken to approximate zero, enabling
computation since the logarithm of zero is minus infinity.

Assuming a value for the Variational Free energy [F (π1), F (π2)]T of
[
1.83
1.83

]
, when one has the

plan selection with a prior over plans having no preferences, Enp =
[
1
1

]
the plan selection is

as follows:

πnp = σ(ln Enp − F − γG) = σ

([
0
0

]
−
[
5.08
31.6

]
−
[
1.83
1.83

])
≈
[
0.99
0.01

]
(2-34)

The most likely plan to satisfy our desires over observations C is the first plan, picking up
the object. However, when suddenly a preference over plans is given, for example when
the picking action cannot take place due to controller failure, the plans for picking is made
infeasible by setting the prior over plans of this action to approximately zero. This prior over

plans Ep =
[
0
1

]
will ensure that the robot stays idle, as follows:

πp = σ(ln Ep − F − γG) = σ

([
−36.8

0

]
−
[
5.08
31.6

]
−
[
1.83
1.83

])
≈
[
0.01
0.99

]
(2-35)

One can see that the likely plan chosen is the second plan, staying idle.

2-3 Summary

Active Inference combines perception and action to minimise free energy, thus an agent’s un-
certainty about the external world. This principle can be used for learning, Action Planning
and belief updating. Active Inference provides the cognitive capabilities: Planning & Prob-
lem Solving, Decision-making & Choice and Execution & Action. Decision-making through

Master thesis Mohammed Mâachou



18 Background on Active Inference

Active Inference can be influenced by iteratively updating the prior over plans E, varying this
parameter to allow for integrating context-awareness. The next chapter explains how this
context-awareness can be created using ontological reasoning. In chapter 5, several case stud-
ies are devised showing how this context-awareness manifests into enhanced decision-making
through combining Active Inference with Ontological reasoning.
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Chapter 3

State of the Art

This chapter provides an in-depth overview and discussion of the most prominent works on
ontological reasoning and Active inference. Ontological reasoning frameworks are introduced,
as well as Bayesian network approaches facilitating reasoning with uncertainty. Furthermore,
the state-of-the-art on Active inference for task planning and fault detection, isolation &
recovery is presented, discussed and summarised. The main goal of this chapter is to find
methods which could extend action-planning with Active Inference to include knowledge &
reasoning for context-aware decision-making. This context-awareness should allow modelling
and checking of the feasibility of actions.

3-1 Active Inference for Mobile Manipulation

3-1-1 Active Inference for Fault Detection, Isolation and Recovery

The works utilising fault detection, isolation and recovery focus primarily on detecting and
recovering from a sensor failure. Fault recovery is then often performed by switching among
different available fault-specific controllers [62]. Model-based methods for fault detection rely
on mathematical models to generate residual signals to be compared to a threshold. The
thresholds for fault detection used in these works utilising Active Inference can be grouped
into using constant thresholds and probabilistic thresholds.

Pezzato et al. have developed a fault tolerance control (FTC) scheme based on Active In-
ference for robot manipulation with sensory faults [72]. Sensory prediction errors obtained
from the difference between observed and expected sensory input, the latter obtained from
the Active Inference algorithm, are used to generate residuals and thresholds for fault de-
tection and isolation. Fault recovery is achieved by setting the precision matrix (or inverse
covariants) of faulty sensors to zero. The advantage of this approach with respect to standard
fault-tolerance approaches is that Active Inference intrinsically contains the signals needed
for fault detection, isolation and recovery, hence removing the need for additional signals for
monitoring or alternating controllers. This approach does have drawbacks, one being the
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generation of false positives due to the adaptive nature of the Active Inference algorithm
being biased towards reaching desired states. False positives can occur when goals change,
leading to large sensory prediction errors which do not occur due to faulty sensors. Another
drawback is the use of a conservative static threshold for fault detection. Baioumy, Pezzato et
al. [4] have extended the works [73, 2] on adaptive control and state estimation using Active
Inference and adapted the approach of [72] on an FTC scheme based on Active Inference. The
main improvement of this approach is to introduce an unbiased Active Inference controller
by reformulating the principle to allow the free energy to depend explicitly on the control
actions and a probabilistic robust threshold (taking the Mahalobonis distance of residuals).

Baioumy et al. further introduced a fault-tolerant control scheme based on the unbiased
active inference formulation of [4] for sensory faults in robotics manipulators using Active
inference[3]. The main difference between the former approach and the latter is that the
latter does not require a priori threshold definitions to trigger fault recovery. The authors
achieve this by modelling the precision (inverse covariance) of each sensor in their system
and by determining the probability of the sensors being healthy to be proportional to their
respective precision. This allows for determining the degree to which sensors are faulty,
compared to reasoning only on whether a sensor is faulty or not.

The discussed works can be utilised for low-level controller fault-detection and isolation.
However, no work has been found on fault-tolerant control at the task level in the context of
Active Inference. Nevertheless, past work could be used to trigger high-level fault recovery
and adaptation useful for task-planning.

3-1-2 Active Inference for Task Planning and Execution

Kaplan & Friston have successfully simulated planning and goal-directed navigation of artifi-
cial agents using Active Inference in a maze [49]. One significant constraint of their approach
is that prior beliefs had to be contextualised to generate feasible sub-goals.

Several deep Active Inference approaches exist for planning, which utilise a deep learning
model, often a recurrent neural network, to learn parameters prior to generative models.

Using Active Inference for planning, computing the free energy for each possible plan deep into
the future can lead to an explosion in a number of action sequences making it computationally
costly [21].

Tschantz et al. [85] created a model of Active Inference that builds on previous deep Ac-
tive Inference approaches[87, 10, 86, 60] to solve the curse of dimensionality and achieve
goal-directed behaviour. The purpose of their work is to enable goal-directed behaviour for
continuous control tasks and deal with high-dimensional state space and complex dynamics
in the absence of reward observations. Free energy is minimised with respect to parameters
of function approximators rather than parameters of the generative models themselves, using
the cross entropy method [13].

Catal et al. developed a model that learns the state transition model and approximate like-
lihood matrix A of a system, see nomenclature table 2-1, plans by generating and evaluating
trajectories of a search tree filled with parameters from a Monte-Carlo simulation [11]. The
simulation learns how a car on a mountainous road can reach the top by adequately giving
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3-1 Active Inference for Mobile Manipulation 21

gas. The likelihood matrix and transition model are approximated with values obtained from
a connected neural network.

Matsumoto et Tani propose a goal-directed planning scheme inspired by predictive coding and
Active Inference, investigating the problem of how agents can generate goal-directed plans
based on learning using sensory-motor experiences [59]. This scheme employs a recurrent
neural network to learn to extract the transition probability distribution of the latent state
at each timestep as a prior.

Drawbacks planning frameworks All the approaches above require training schemes for
acquiring an appropriate prior to the generative models. The work of Matsumoto and Tani
[59] even requires supervisory learning to find attainable sub-goals. The difficulties with these
approaches for robotic tasks are as follows: 1. Action preconditions cannot be taken into
account, i.e., plans with conflicting actions are not addressed. 2. The methods are strongly
limited to a certain context, hence requiring retraining for new tasks and environments. 3.
They Are often computationally expensive, and planning happens solely offline 4. They do
not have fault recovery mechanisms, i.e., after a failure, the reset button is pressed, which
is hardly applicable to robotics in dynamic environments, and 5. They often suffer from a
non-deterministic plan generation, meaning that optimal plans are hardly guaranteed.

The work of Kaplan and Friston [49] suffers from points 1, 2 and 4. A more promising and
encompassing approach to planning for robotics tasks is given in the next section 3-1-2.

Active Inference for reactive task planning framework

Background on Behaviour Trees

A behaviour tree is a directed tree consisting of nodes and links used for plan execution in
robotics. The nodes are directed from parent nodes to child nodes through edges. The root
node is the only node that is not a child of a parent node. The leaf nodes are the child nodes
and not parent nodes (i.e. have no child nodes). The execution of a behaviour tree begins
with the root node sending a tick to its child node. A tick is an activating signal that allows
for the execution of a child node. A child node returns a status to the parent node, which can
be either running, success or failure. Running denotes that the child’s execution is not yet
finalised. Success is returned upon successfully achieving the child’s goal. Failure is returned
when this goal is not attained.

Nodes in a behaviour tree can fall under control flow nodes and execution nodes. Execution
nodes contain actions or conditions.

• Action nodes perform actions and returns running, success or failure, the latter if the
action cannot be executed. They are depicted as red boxes, see figure 3-1.

• Condition nodes do not affect the environment but check if a condition is met or not.
They only return success or failure. They are depicted as orange circles, see figure 3-1

The return Control flow nodes consist of fallback, sequence, parallel or decorator nodes. The
fallback and sequence nodes are the most important control flow nodes.
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Figure 3-1: Simple behaviour tree example depicting an action, condition, sequence and root
node. The action node (red square) executes a picking action dependent on a shelf location. The
condition node specifies this location as a criterion for the picking action to be executed. If this
condition is not met, the pick action is not executed, and failure is returned to the sequence node.

• Fallback nodes tick from left to right in order to find and execute the first child that
does not fail. When this child returns success or running, the fallback node does not
tick the next child. This node can be recognised by the question mark "?" symbol as
depicted in (a) in figure 3-2.

• Sequence nodes are used to find and execute the first child that has not yet succeeded,
also running from left to right. The sequence returns success only if all the children
return success. If any child node fails, assuming there is more than one child node,
then no tick is sent to the remaining child nodes. This node can be recognised by the
horizontal right-pointing arrow "→" symbol as depicted in (b) in 3-2.

A more extensive explanation of behaviour tree formulations can be found in the work of
Colledanchise et al. [15].
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Figure 3-2: Simple behaviour trees depicting fallback nodes (a) and sequence nodess (b). (a)
place action is only executed when pick action succeeds.(b) If picking with left arm fails, then
picked with right arm will be attempted. When no failure occurs this node is skipped.

Method

Pezzato et al. showed how robotics tasks can be formulated as a free energy minimisation by
combining the strength of behaviour trees and Active Inference for reactive action planning
and execution [72]. The behaviour tree contains the flow of actions executed based on condi-
tions and observations in a system. Behaviour trees suffer from the curse of maintainability,
having to hard-code the conditions upon execution [16]. Pezzato et al.’s approach uses be-
haviour trees to contain desired states predefined offline, populating the prior preferences of
outcomes C, see the section for nomenclature 2-1. Active Inference is used for online action
selection and reporting the outcomes to populate further the prior defined in the behaviour
tree. The extended Active Inference algorithm in Pezzato et al., [74] provides local reactivity
to unforeseen situations while behaviour trees provide it on a global level. The results are
that the algorithm designed adapts online to unforeseen situations, and takes action pre-
and post-conditions into account while being context-independent; hence widely applicable
to robotic tasks and contains fewer nodes than a sole behaviour tree approach. Lastly, deep
plans are replaced with hierarchically composed shallow decision trees to handle the curse of
dimensionality mentioned above.

Example Task plan: In figure 3-3 one can see an example task plan. The plan is fulfilled
when the robotic agent moves to the location of the table, puts the milk bottle inside the
basket, lifts the basket, moves the basket to the stocking shelf, and places it on the shelf.
The behaviour tree for task T1 and T2 of figure 3-3 is given in figure 3-5. The task goals are
formulated as desires which can be encoded in the vector C, see nomenclature 2-1.
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Figure 3-3: Example plan generated through the reactive action planning framework using Active
Inference of Pezzato et a. [72]. The tasks are formulated as desire C and selected according to
the plan created by an adapted behaviour tree.

The Active Inference algorithm chooses the task actions to satisfy these goals based on obser-
vations, model action templates (including pre- and post-conditions), prior preferences over
observations C and inferred hidden states, see figure 3-4. Before a bottle of milk can be picked
up by the robot, the preconditions of action pick need to be satisfied, see figure 3-5.

This online reactivity leads to the satisfaction of precondition isReachable(Milk). After these
preconditions are satisfied, the pick task can resume, the behaviour tree ticks to the next task
and the prior preference for this precondition is removed. The post-conditions indicate what
a successful execution tells about the robot’s belief regarding the hidden states. In this case,
for reachability, the robot altered its bodily configuration to make the milk bottle within its
reach. The matrix B encodes the probability of arriving at the next state given our current
state and action taken currently. It could, for example, be the probability that the robot is
holding a milk product, compared to not holding, after picking the milk product and the milk
product being reachable.
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Figure 3-4: Active Inference for task planning scheme obtained from the work of Pezzato et
al. [72]. The symbolic perception module translates percepts into observations understandable
by the Active Inference algorithm. The model action templates include pre- and post-conditions
and priors of the generative model. The behaviour tree includes prior preferences of observations,
indicating the order of tasks to be fulfilled. The belief update of the Active Inference algorithm
occurs through perception, and the adaptive action selection module specifies which actions to
take based on pre- and post-conditions, the generative model, the hidden states inferred, and the
task goal at hand. The variable definitions can be found in nomenclature table 2-1.

Figure 3-5: Example task plan satisfying tasks T1 & T2 of figure 3-3 through the reactive action
planning framework using Active Inference of Pezzato et al. [74]. Actions and conditions are
evaluated from left to right. The root node is where the execution starts. In orange, one can
find a node containing a condition for execution. When this condition returns success, the blue
action planning nodes are executed. When failure occurs, the red action block is executed. The
preconditions stand for holding and being reachable, respectively.
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Drawbacks Reactive task planning framework

This approach does have a few drawbacks.

• The behaviour trees containing preferences of states, the action models (including pre-
and post-conditions) have to be hard-coded upon startup, which is a tedious task.

• Planning, including failure recovery, is as good as the accuracy of priors of the generative
model.

• Alternative actions to achieve the same goal are chosen in a fixed order. It is far
from optimal since knowledge about the environment and interactions with the robot
is missing from the action selection process needed for selecting the right action for
the task. For example, according to the model templates, in a pick-and-place task,
a robotic agent using the extended Active Inference algorithm will try to pick up an
object based on the first action that is thought to satisfy the task goal (desire). It can
be either picking up with the left, right or both arms. Depending on the context, one of
these actions might be more favourable than the other. E.g. with the desire to pick up a
heavy object, the robot user has to encode in the action models that picking up with two
arms is more desirable than with one. Object-specific and robotic actuators constraints
are not taken into account or have been hard-coded by the user. In case of failure,
however, one would desire to choose acting with the remaining arm that is functioning.
Furthermore, when having different grippers, one would like to match the right gripper
depending on the object properties and robot capabilities. These situations are depicted
in figure 3-6. These preferences over plans can be encoded in vector E as a prior over
plans, giving a probabilistic preference between [0,1] for each action. Currently, this
value can only be hard-coded offline a posteriori after failure has occurred.

Figure 3-6: Three situations where certain actions might be more favorable over others depending
on the situation. The left figure depicts the failure of the right arm. The middle figure shows
different picking actions depending on the object size and location (using the left arm, both arms,
or the right arm). The right figure shows different actions based on different gripper types. The
upper right picture holds an object with a vacuum gripper while the lower right holds an object
with a servo-electric gripper.

• Online adaptation of the global task plan does not consider controller failure. This
failure ideally should lead to an adaptation of the global task. For example, lifting
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heavy objects with two arms is no longer possible when one arm fails. Also, when
having different grippers on each arm, particular objects requiring a specific gripper
type cannot be picked anymore. The global task plan should be adapted online to
exclude tasks that are not feasible anymore.

Besides the approaches mentioned above, no other methods combining Active Inference for
planning have been found suitable for robotic tasks.

3-2 Knowledge Reasoning

In the previous section, the task-planning method by Pezzato et al. [74] using Active Inference
in combination with Behaviour trees stood out by allowing for local reactivity to unforeseen
situations. The drawback regarding the current state of the algorithm is choosing alternative
actions to achieve the same goal (desired prior C) with a fixed order, and that action selection
does not consider controller failure could negatively affect retail. The consequences of the first
limitation include irrecoverable task failure, for example, attempting to pick an object with
less suitable end-effectors, leading to dropping and damaging of the object, and controller
failure, for example, through picking a heavy weighing object violating the payload of the
end-effector, potentially damaging the controller. The second limitation for retail could have
monetary and social consequences due to possible task plan adaptation not occurring. It could
lead to, for example, essential products, like baby powder, not being stocked in time, resulting
in loss of productivity and image of retailers among clients. By creating context-awareness,
these drawbacks can be handled with a better understanding of the environment, the robotic
agent’s capabilities and components, and task & action constraints. The creation of context
awareness is an intricate matter. Popular ways of creating context awareness for decades have
been through knowledge representation and ontological reasoning. The following subsection
provides relevant literature regarding knowledge representation and ontological reasoning, how
this is utilised to create context awareness, and how this can be exploited for task planning
in retail.

3-3 Ontological Reasoning Under Uncertainty

3-3-1 Knowledge Representation & Reasoning (KRR) Frameworks

Previous work by the author [58] have identified several promising KRR frameworks, including
works not taken into account by previous surveys [65, 69, 84, 23]. These works are analysed,
and novel characterisation of the most prominent KRR in terms of cognitive requirements for
mobile manipulation is given in [58]. 1. Of all the KRR frameworks identified and analysed,
only the following frameworks were deemed suitable for knowledge representation & reasoning
in a retail store, with possible integration with Active Inference. These are KnowRob, PMK,
Skiros and Mros.

1A collaboration effort of several creators of KRR frameworks for identification of major KRR frameworks
is given in the GitHub page

Master thesis Mohammed Mâachou

https://daniel86.github.io/KER-robot-ontologies/


28 State of the Art

The cognitive capability of Decision-making & choice is the capability to represent different
choices in an understandable matter to a robotic agent and choose between different alterna-
tives. An example is choosing to pick an object over to place or stay idle when the robotic
agent desires to hold an object. The robotic agent should understand through pre- and post-
conditions the requirements and effects of taking this action. Robotic agents operating in
retail are exposed to many different tasks with each requirement and desired course of action
planning for task completion. Without this cognitive capability, the robotic agent jeopar-
dises the safety and financial gain. Dependent on the situation, it could fail tasks, e.g. not
being able to stock essential products which require a specific gripper type and, during con-
troller failure, cause damage to the robot’s component and environment. Several knowledge
representation & reasoning frameworks were found to

Decision-making & choice is a cognitive capability that the following frameworks possess:
OM, PMK, and Skiros.

• The OM framework runs on top of a system control module. Hence does not provide
adaptation out of the box based on the agents’ preferences of actions and task objec-
tives. To take this into account, quality attributes have to be developed, encoding a
model of the agents’ preferences over plans, created as quality attributes. Currently,
failure triggers adaptation. For mobile manipulation, in certain cases, it is desired to
choose actions beyond component failure, actions that are more likely to achieve task
succession. If this is to be implemented, quality attributes have to be designed carefully
to drop in cases besides failure and to account for situations where certain actions are
preferred over others.

Furthermore, for adaptation to occur, killing and relaunching ROS nodes needs to hap-
pen, which is not desirable when dealing in a fast-paced, dynamic environment like a
retail store. Lastly and most importantly, the current ontology does not contain TBOX
and ABOX definitions relevant for mobile manipulation, nor concepts needed in a store
environment. It also does not follow standardisation in its ontology. These concepts
would have to be defined in a separate ontology, as well as actions, action constraints,
robot constraints and components.

• PMK contains the TBOX and ABOX definitions needed to adapt actions based on rea-
soning on motion, perception and robot capabilities (sensors, grippers). Furthermore,
it does follow standardisation in its ontology. It provides adequate mechanisms for
decision-making & choice, which are centred around the ontology. However, when deal-
ing with failure, it cannot adapt the task plan or the action selection after contingencies
occur, causing controller failure during the execution phase.

• Skiros can adaptively match skills to the task at hand in an online fashion by using
a behaviour tree combined with a hierarchical task network (HTN). The downside of
this approach is that failure recovery is handled by the HTN, which mainly consists of
switching between different skills satisfying different objectives based on their pre- and
post-conditions. It does not include reactive adaptation due to unforeseen contingencies.

Mohammed Mâachou Master thesis



3-3 Ontological Reasoning Under Uncertainty 29

3-3-2 Bayesian Networks

Bayesian networks are a powerful and popular tool for efficient reasoning. Combined with on-
tologies, they can facilitate reasoning under uncertainty, which can influence decision-making
through Active Inference. Many frameworks on ontological reasoning with Bayesian Networks
exist, varying in domains, probabilistic concept representations and degrees of automation for
constructing the Bayesian networks.

Early works on connecting Bayesian networks with ontologies are as follows: Helsper et al.
[45] constructed Bayesian networks from ontologies by deriving classes and properties from
the ontology. These classes are transformed into statistical variables. Conditional probabil-
ities are not taken into account. Properties between the statistical variables are interlinked
through arcs. Expert information or data is used to create these statistical variables. Further-
more, domain expert effort is required to check and remove the arcs for correct probabilistic
independence.

Ding et al. created the BayesOWL framework [26, 25], which implemented probabilistic
constructs in OWL that can be connected to individuals, classes and properties in an on-
tology for modelling and reasoning on the uncertainty of class membership of an individual.
BayesOWL enhances OWL by adding OWL constructors like owl:intersectionOf, owl:unionOf,
"owl:com- plementOf", "owl:equivalentClass", or "owl:disjointWith, in order to assign prob-
ability values to individual concepts, properties and conceptual relations. The probabilities
are defined with the classes PriorProb, for prior probabilities, and CondProb, for conditional
probabilities. BayesOWL contains a set of rules that are converted into probabilistic anno-
tation, which can be inserted into a Bayesian network-directed acyclic graph (DAG), taking
conditional probabilities into account. Furthermore, probability constraints are taken into
account by using the iterative proportional fitting procedure (IPFP) during the construction
of the conditional probability tables of the Bayesian Network. Two significant limitations of
BayesOWL are (1) variables should be binaries, and (2) probabilities can contain a single
prior variable only.

Yang et al. developed OntoBayes [93], which takes a similar approach to Ding et al., albeit
Yang et al. focus on decision-making. The main differences between these works are (1) Yang
et al. improved on BayesOWL by replacing the translation rules with a formal definition of
"dependsOn", being "A dependency is a pair X → Y, where each of X and Y is either
a datatype property X.d or an object property s(X, Y ). It reads as "X depends
on Y". (2) OntoBayes models random variables as data or object properties. (3) OntoBayes
allows multivalued random variable probability encodings in the ontology. (4) OntoBayes,
opposite to BayesOWL, cannot model relationships between classes.

Costa et al. [19] created PR-OWL as a Bayesian ontology language for the semantic web.
PR-OWL allows for reasoning on OWL concepts and definition of concepts subjected to
probability by providing constructs for representing Multi-Entity Bayesian Networks. These
constructs constitute a set of (sub-)classes, objects and data properties, unlike BayesOWL,
which takes only (sub-classes) into account and OntoBayes, which takes only data Object
properties into account. It does come with the cost of introducing more undecidability and
intractability. In simple terms being intractable means a problem cannot be solved within
polynomial-time and undecidable means there does not exist an effective method for deriving
the correct answer (All true entailments cannot be found, all false entailments cannot be
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refuted). Both intractability and undecidability have drastic effects on the computational
effort it takes to find a solution to a logic problem through semantic reasoning. Both In
PR-OWL, probabilistic concepts can coexist with non-probabilistic concepts.

PR-OWL 2 [9] solves some shortcomings of the first version. One is the lack of mapping
between OWL properties and random variables used in PR-OWL [9, 56]. The other is a lack
of compatibility with existing types prior available in OWL. The mapping issue is solved in
PR-OWL 2 by having the properties of individuals correspond to random variables.

Some later works shift the focus towards creating domain-centred reasoning with ontologies
using Bayesian networks. Li et al.[57] combine Bayesian networks with SWRL rules to reason
on the evolution of emergency scenarios. Bayesian networks are used to perform conditional
probability reasoning, in which the probability depends upon whether or not a condition
specified by SWRL rules is satisfied. The construction of the Bayesian network relies on expert
knowledge. Chang et al. [12] use ontologies and a Bayesian network to diagnose depression
using the OntoBayes framework [93]. Depression symptoms are stored in the ontology, while
the Bayesian network is used to determine the likelihood of having a symptom with the
likelihood of having depression.

Numerous methods exist combining ontologies with Bayesian networks to create context
awareness, often domain-specific. Some notable ones are by Gu et al. [44], and Ko et al. [51].
Gu et al. [44] combine Bayesian Networks and ontologies to deal with uncertainty in context.
They defined two classes and two object properties, denoting conditional probabilities and
dependencies between concepts. Ko et al. [51] combine Bayesian Networks and ontologies for
context reasoning with uncertainty. Their contribution with respect to the work of Gu et al.
[44] is the reuse of knowledge from uncertainty outputted from the Bayesian network to keep
the benefit of reuse that is intrinsic with ontologies. With this framework, the output of the
Bayesian network is used to find the correct configuration of a service. An example is when
the Bayesian network outputs a high probability of the activity moving, then the probability
of the robot being the service device is the largest.

Zheng et al. [95] create an ontology containing clinical practice guidelines with uncertainty,
represented by a Bayesian network, into an ontology.

Wang et al. [92] propose using Bayesian networks with ontologies for giving personalised
recommendations of tourist attractions. The ontology contains the user’s profile as well as
touristic attractions sourced from travel websites, while the Bayesian network estimates users’
preference of attraction based on conditional probabilities dependent on age, travel motivation
and occupation.

Methods not relying on modifying ontologies to include probabilistic concepts also exist, like
the work of Fenz et al., where Bayesian networks are created based on concepts and individuals
in an ontology, with relations between concepts relying on human input [28]. Furthermore, a
conceptual scale is integrated into the ontology to estimate probabilities, consisting of terms
like "high, medium low" for assessing security threats.

To sum up, no work has been found using Bayesian networks for enhanced
decision-making using Active Inference.

The following challenges accompany the use of Bayesian networks with ontologies: (1) Identifi-
cation of relevant variables for a considered domain (2) Identification of relationships between
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identified variables (3) Creation of probability tables for each variable (in practice, conditional
distributions in a Bayesian network model are unknown. Estimates can be obtained from ex-
pert knowledge or repeated experimental trials). (4) Construction of a measure representing
the states of the identified variables. The benefit of using Bayesian networks with ontologies
is to solely provide efficient reasoning with respect to formal logic-based approaches. Fur-
thermore, ontologies with Bayesian networks can provide a method to model, account for and
handle uncertainty, both semantically as well as situational awareness, given the uncertainty
in observed data, to be used for decision making.

3-4 Summary

This chapter describes the most prominent works on ontological reasoning and Active Infer-
ence. Several works stood out for the purpose of using knowledge fueling action-planning
with Active Inference for mobile manipulation in retail. The reactive action planning frame-
work of Pezzato et al. [72] enables context-independent planning of robotic tasks with online
action adaptation, including pre- and post-conditions. This method has drawbacks, one of
which being alternative actions to achieve the same goal are chosen in a fixed order. It is
far from optimal since knowledge about the environment and interactions of this environ-
ment with the robot is missing from the action selection process. Examples of knowledge
are object, manipulation properties and robot capabilities. The planning and manipulation
knowledge framework (PMK) contains necessary knowledge classes which can be used for rea-
soning on the robot’s components and action constraints. Furthermore, the PMK ontology
follows standardised ontologies CORA and SUMO. Doing so promotes the reuse of concepts
and simplifies mapping between ontologies for different domains. However, this framework
lacks the cognitive capability of Decision-making & Choice, not being able to reactively adapt
actions given contingencies influencing the situation (e.g. controller failure). Using Bayesian
networks constructed from the ontology provides an efficient and flexible approach to con-
structing preferences over actions dependent on probabilistic variables affecting the actions
to be taken. It has the benefit over formal logic-based approaches in that uncertainty can
be accounted for, which is aligned best with a dynamic environment being retail and Active
Inference with beliefs governing this principle containing uncertainty. In the next chapter,
a novel integration of Active inference & ontological reasoning with Bayesian networks is
displayed for generating context-aware action planning. In chapter 5, several case studies
demonstrate the strength of this framework.
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Chapter 4

Active Inference for Retail (Airet)

This chapter introduces a novel framework for ontological reasoning with Task & Action Plan-
ning. This framework aims to create context-awareness for retail, leading to the best action
chosen given the situation. This framework contains standardised concepts for the robotics
domain & satisfies the most important cognitive capabilities for retail, taking reusability and
extendability into account during the design process. This work exceeds other works in provid-
ing the capability of Decision-making & Choice by including reactive task adaptation satisfying
missing preconditions, context-awareness resulting in an adaptation based on the component
failure, and actions more likely resulting in task succession. This chapter starts with proposed
novel methods by the author for integrating Active Inference with ontological reasoning. Next,
the developed framework architecture is discussed, extending the behaviour tree to include rea-
soning nodes calling the reasoner module. Then, the Airet terminology is explained, and the
terms selected for reuse from standardised ontologies and motion planning are highlighted.
After, the functioning of the Airet reasoner is explained together with the reasoning capabil-
ities and design freedom. Finally, an overview of cognitive capabilities and concepts crucial
for autonomous robotic manipulation is given for the Airet framework.

4-1 Integration of Active Inference with KRR Frameworks

Integration of Active Inference and Knowledge Representation & Reasoning frameworks can
facilitate the cognitive capability of Decision-making & Choice. Reasoning on constraints,
the environment, and contingencies of the robot’s capabilities and components and objects is
crucial to making informed decisions and selecting the right action for the task. It is especially
crucial in human-centred environments like retail, where safety and profit are crucial for daily
functioning. Selecting actions without context information can lead to dangerous situations in
retail and loss of company reputation. Examples are repeating actions with failing controllers,
making unexpected movements, and not stocking essential products which require a specific
action for their manipulation because of the product width and size. The integration of
ontological reasoning with Action Planning through active inference for robotics, as can be
seen in figure 4-1, in this chapter, is a novel contribution to scientific literature.
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The author identified and proposed two main approaches in [58], which could be exploited
to integrate Active Inference with knowledge obtained from KRR. It would bring Ontological
Reasoning closer to Action Planning with Active Inference, as shown in figure 4-1. The first
approach is data-centric, while the second approach is ontology-centric. They overlap in
that the symbolic perception module translates percepts into observations understandable
by the Active Inference algorithm. Also, the model action templates include pre- and post-
conditions, and priors of the generative model. The behaviour tree includes prior preferences
of observations, indicating the order of tasks to be fulfilled. The belief update of the Active
Inference algorithm occurs through perception, and the adaptive action selection module
specifies which actions to take based on pre- and post-conditions, the generative model, the
hidden states inferred, and the task goal at hand. The variable definitions can be found in
nomenclature table 2-1. These components are visualised as blocks in figures 4-2 and 4-3

Figure 4-1: Figure demonstrating bringing Ontological Reasoning closer to Active Inference

Data-centred approaches rely on recorded data generated from sensor and actuator informa-
tion based on the experiences of a robotic agent executing a specific task. A proposed Data
centred integration by the author in [58] can be seen in figure 4-2. A pattern matching mod-
ule has to be created to distinguish between situations occurring in the environment, taking
actions into account. The encoded habits module is the database containing these recorded
data generated from sensors and actuators, mapped to actions taken and knowledge extracted
to identify the matching situation. The author identified data-centred methods to exploit the
structure of these Ontological Reasoning frameworks for integration with Active Inference.

• KnowRob can be used to utilise the Recorded Episodic Memories (REM) containing
data like positions, percepts, control signals and poses of successfully completed actions
through real-world experiments and virtual simulations. Rem can be used to select
actions based on similar situations encountered, giving a high value of E (close to
value one) for actions stored in this database and lower values for those not stored.
Furthermore, this method can be extended to record data of failed actions fueling the E
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vector with probabilities of success and failure over the trials executed. The downside
of this approach is that pattern matching tends to be complex in order for it to handle
multiple situations, or it might fail to capture the essence of why actions fail, giving
a lower value of a plan in E for actions that could have potentially provided better
results in terms of reliability of success of an action. Another downside of this is that
the KnowRob system often re-initialises REM upon startup; hence a method of saving
REM is desired to have more data representing an adequate value for the fail-success
probabilities.

• Skiros would need a ROS service module, which has to monitor the skill managers
as well as the hierarchical task network used for planning to determine the probability
of a primitive action and skill sequence to result in success in conjunction with the
probability of successful exertion of each skill and primitive per task given. Also, another
ROS service needs to be created to monitor the task goal and all the predicates and skills
loaded with this task so that there could be a distinction between predicates applied
concerning certain goals. An example to illustrate this is a predicate ’drive forward’
might work when no obstacle is in front of the stocking shelves, but if there is a person
in front of the shelves, this is impossible to execute. However, this is no reason to
demotivate the robot to apply the skill drive forward, leading to inefficiencies.

• PMK framework can reason on the task at hand and the motion executed. An illustra-
tion in which the robot TIAGo++ is pouring a soda into a cup, provided by Diab et al.
[24], shows that the robot adapts its motion based on the cup location and the location
of itself 1. Furthermore, it keeps track of similarities between current and previously
encountered situations to determine if experimental knowledge is applicable to increase
the success of applying the said skill. A service that communicates with the situational
assessment module could be developed to determine which skills in the same situation
are more likely to have failures for this situation and to reformalise a plan where these
skills are less likely to be selected. The E matrix could then be filled with probabilities
of actions in this situation that most often led to failure.

• OM framework, as is, encodes robotic behaviours through a predefined model of the
system. This model can be used to encode information about the robotic agents’ be-
haviour. For this to happen, quality attributes have to be defined concerning objectives
that predict a drop in value before failure occurs. An option could be training a neural
network to identify and predict drops in quality attributes based on the actions taken
and quality attributes defined. Then a mapping encoding the beliefs over priors would
have to be defined with a baseline defining a successful action, fuelling the E matrix
discussed in chapter 2.

Ontology-centred approaches rely on predefined knowledge stored in an ontology and used
by a reasoning module to extract relevant information dependent on the robot’s capabilities,
actions, tasks, object properties, and more. A proposed ontology-centred integration by the
author can be seen in figure 4-3.
There is a clear winner in this ontology-centred approach which is the PMK framework. It is
mainly due to the capability to reason on the robot, objects, actions, tasks, motions and situa-
tion at hand through semantic definitions in the ontology. It is due to its primary focus being

1https://www.youtube.com/watch?v=bTmWAkjC93c
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Figure 4-2: Possible data-centred approach developed by the author in [58], to integrating Active
Inference for reactive task planning with improved decision-making based on pattern matching.
The extensions over the reactive planning framework of 3-4 are depicted in purple. The reasoning
action nodes would query the pattern matching module in the behaviour tree, also introduced
in the extension. The pattern matching module would assess similarities between situations
where similar actions have been taken and their outcome. Successful outcomes given a situation
would be stored in the database, encoding habits as a probability of success or failure of these
actions. Furthermore, it would provide the encoded prior over plan by querying the habits from
the database. The behaviour tree is extended to include knowledge retrieval action nodes.

Figure 4-3: Possible ontology-centred approach developed by the author in [58], to integrating
Active Inference for reactive task planning with improved decision-making based on Ontological
Reasoning. The extensions over the reactive planning framework of 3-4 are depicted in purple.
Reasoning on actions is possible through querying the ontology containing information on objects
and their constraints, actions, motions, robotic agents and their components. The behaviour tree
is extended to include reasoning actions.

to assist task and motion planning with knowledge. It facilitates defining constraints in the
ontology for geometric reasoning, dynamic interaction, manipulation, and action constraints.
Also, it satisfies more cognitive requirements than other frameworks, except KnowRob. Fur-
thermore, its use case is service robotics which is most aligned with the use case for retail.

Another benefit of this approach is that it follows standardisation, which the closest opponent
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KnowRob does not. Furthermore, KnowRob is known to have a bulky design suitable to infer
properties of objects and their relations but over-engineered with details not needed for task
planning in a retail environment where complexity in object definitions is not necessary.
Furthermore, it lacks flexibility in planning and employing CRAM. No other method comes
close to providing the reasoning capability on objects, object relations and motion constraints.
A significant redesign of the ontology needs to take place for other methods to be applied for
task planning using Active Inference.
Data-centred vs. Ontology-centred
Data-centred, unlike the ontology-centred approach, does not require expert information to
populate ontologies and manual encoding of logic rules to select appropriate actions given
a situation. The challenges of this approach lie primarily in designing and validating the
pattern matching module. The decision-making using this approach might be subjected to
learned features irrelevant to the context of action selection for mobile manipulation. The
data-centric approaches require a vast amount of data and many trials before achieving re-
liable desired results of actions. It is to distinguish similar actions from those applied in
different situations. Furthermore, expert knowledge in vision & machine learning is needed
for the successful selection of actions. The ontology-centred approach is favoured over the
data-centred approach since it requires the least amount of implementation efforts due to
existing reasoning capabilities on constraints and the defined ontology, needing to populate
the ontology by creating instances (ABOX) of defined classes in TBOX to fit a retail store.
In the next section, a proposed ontology-centred approach is developed utilising Bayesian
Networks. Bayesian Networks require expert knowledge or data to estimate probabilities of
events occurring. By keeping this approach ontology-centred, the ontology takes away most
of the difficulty of situational awareness for the task at hand, the knowledge of the system
and its components environment. Besides allowing for expert input, it enables more targeted
data use or pattern learning.
The following section shall propose an ontological reasoning framework based on the PMK
ontology, with a method of integrating Active Inference with Ontological Reasoning.

4-2 Framework Architecture

The context-based reasoning that is added to Action Planning with Active Inference consists of
reasoning on the environment, the robot, its characteristics & its capabilities. This reasoning
facilitates high-level failure recovery. Examples of characteristics are differences in reliable
functioning between end-effectors or robotic arms. Examples of high-level failure recovery are
choosing a functioning end-effector instead of a malfunctioning one, with the knowledge that
a task is feasible. The cognitive architecture facilitating this context-awareness through the
integration of ontological reasoning can be found in figure 4-4.

4-2-1 Airet Structure

The design of the Airet architecture, figure 4-4, takes deliberation into account. Deliberate
acting refers to acting with sound reasoning justifiable with a goal in mind [47]. The neces-
sities of deliberate acting are mentioned by Ingrand et. Ghallab, which are planning, acting,
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observing, monitoring, goal reasoning, and learning [47]. Planning is handled through the
Task, action and motion planning module. Acting is performed through the execution mod-
ule, which responds to the present through appropriate instructions from the TAMP module.
Monitoring is achieved mainly through the Active Inference algorithm, figuring out the dis-
crepancies between the world model predictions of the agent and the real-world observations.
Goal reasoning is achieved using the reasoning module with the TAMP module. It includes
monitoring progress, constraints, failures and new opportunities. It decides when and how
objectives should be updated, invalidated or discarded. Learning is facilitated using the rea-
soning module, ontology and Active Inference. These modules allow an agent to steer towards
adaptation and, with that, improvement. Experiences are crucial for the learning process to
achieve deliberate acting.

The perception module provides perceptions of the physical world to the robotic agent. Per-
ceptions are interpreted by the reasoning module and the task, action and motion planning
module (TAMP). The Airet reasoning module utilises semantic reasoning to select the ap-
propriate actions a robot should take with the environment, task, and robotic component
knowledge known to the robot. Furthermore, it checks for the feasibility of actions given a
task defined in the task planning module. Percepts entering the reasoning module allow for
identification of the object to be manipulated, reasoning on constraints from the environment
and matching between modelled knowledge (belief of the robot about its environment) and
the real-world environment. The semantic knowledge of the physical world, task and robot
components capabilities are facilitated by the Airet Ontology. Percepts being fed into the
TAMP module are interpreted in different manners for each element in the TAMP module.
The motion planner uses these perceptions to attempt to find the existence and detail of the
desired configurations for the required motion succession based on the robot controllers, ob-
stacles detected and generated from sensor data manipulation and predefined obstacles. The
task planning module consists of a behaviour tree specifying the user’s predefined task goals.
Percepts for the task planner annotate the success and failure of behaviours. An example of
these goals is "be at a location x with pose y", with x and y being Boolean array structures
containing the position and orientation of the robot. The action planner contains the Active
Inference algorithm, which uses percepts to update the robotic agent’s beliefs about the en-
vironment, select actions that lead to task succession and minimise uncertainty between the
agent’s beliefs and the percepts from the real world. The execution module obtains the tar-
get signals (e.g. joint commands) from the TAMP and contains the robot controllers, which
execute this target signal and manipulate the physical world.

4-2-2 TAMP

This module comprises three components, task, action and motion planning, see figure 4-4.
The task planner defines the task goals and the order in which tasks will take place. The
action planner plans the actions that satisfy the goals defined by the task planner. The
motion planner plans the configurations and the respective controller inputs to perform the
action successfully. Furthermore, it also keeps track of the feasibility of executing actions.
The task planner consists of an extended behaviour tree. The modification pertains to taking
into account nodes with desired states of the robot to be reached through Action selection
with Active Inference. This is next to traditional goal states. The Airet framework extends
the behaviour tree to include reasoning action nodes, modelled as traditional action nodes
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Figure 4-4: Figure displaying the cognitive architecture of the Airet framework. Ξ are the
observations of the real environment, O are the observations translated to an understandable
manner for the robotic agent. E is the prior over plan and at are the actions.

in the behaviour tree. Reasoning action nodes are created to reason on the feasibility of
taking possible actions satisfying task goals modelled as Active Inference desired states. The
result returned from this reasoning process directly influences the decision-making for Action
Planning. Action Planning is performed by an extended Active Inference algorithm introduced
in section 3-1-2. Most notably is the plan ranking equation π = σ(ln E − F − γG) which
shows how the plan selection is influenced by a prior over plan E. In section 2-2-1 an example
demonstrating the effects of this influence on plan selection is given. The results showed that
despite the agent having a preference over observations resulting in favouring a certain plan,
when this plan is infeasible, the prior over plans can change the decision-making into making
this plan unfavourable. The work in this thesis focuses on influencing the prior over
plans E through semantic reasoning and knowledge stored in the ontology. This
prior over plans specifies which actions satisfying the same goal are more favourable, that
is, after logic-based reasoning decides if they are at all possible, through context-awareness
created by the Airet reasoner. More on this can be found in section 4-5

For motion planning, the Moveit framework [14] is used, incorporating the latest advances in
motion planning, manipulation, 3D perception, kinematics, control and navigation.
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Figure 4-5: Example behaviour tree with extended reasoning nodes for task planning using Active
Inference. The tasks are to move to a location, pick a pack of milk and place it in a basket.
The sequence node is denoted with an arrow and the fallback node with a question mark. The
action nodes (red square) execute a reasoning or execution action. The condition node (orange)
specifies a criterion for executing the action. If this condition is not met, the pick action is not
executed, and failure is returned to the sequence node. In blue, the encoded desires over outcome
nodes are depicted, encoded tasks as desires for the robotic agent to achieve.

Where TIAGo++ is the robot type, Tiago1 is the robot individual, pickObj is the ask to
be satisfied, and Hagelslag1 is the object individual to be held by the robot end-effector, as
defined in the Airet ontology. The reasoner node is compatible with reasoning on Active
Inference desired states and with standard behaviour tree action nodes.

4-3 Influencing Run-time Decision-making By Varying E

As was explained in chapter 2, the equation for plan selection π = σ(ln E −F − γG) governs
decision-making through Active Inference by ranking actions with respect to their minimisa-
tion of the Expected Free Energy. Three factors influence decision-making, namely the prior
over plans E, the Variational Free Energy F and Expected Free Energy G. The Airet reasoner
influences the decision-making by specifying and varying vector E through context-awareness
and feasibility of actions generated using the ontology and the Airet reasoner. To demon-
strate the effects of the Airet reasoner on the decision-making through Active Inference, a
snapshot is taken of the decision-making process right before selecting an action. This means
that enough observations have passed for the perception loop of Active Inference to accu-
rately depict the world, i.e. the robot’s beliefs on location and on not holding objects match
observations. In this snapshot of decision-making, F and G are constant for this timestep.
One can better understand the plan selection when looking at the terms ln E − F − γG.

Two figures demonstrating the action selection are given in 4-6 and 4-7. Only the parameter
E is varied with a range of zero to one for each action that that can successfully complete
a picking task (EP ick Left & EP ick Right), in this snapshot. By incrementally varying the
EP ick Left in an opposite manner to EP ick Right, one can see that there is a turning point
where one of these actions is preferred over the other action, as can be seen in figure 4-6.
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By varying the EP ick Left & EP ick Right in the same direction, one can see that if there are
small differences between both of these values, the value with a higher prior over plans E is
preferred over the other, given that the E values of the other actions are lower than both
EP ick Left & EP ick Right.

In figure 4-7 one can find that E values for staying idle and picking are equal to 0.37, which
is displayed as a purple asterisk. It means that with a prior over plans below 37% of action
success, the action staying idle is preferred. Above this value, the action picking with the
right arm is slightly preferred over picking with the left arm (by design). This threshold can
be varied by influencing the factor γ in equation 2-28, which indicates how much priors over
plans should be preferred with respect to the Expected free energy term. In both figures,
4-6 and 4-7, one can see that the place actions are always lower than action idle, which is
programmed by design since place actions alone cannot satisfy the desired state to be holding
(an object). Furthermore, place actions can alter the environment, which is not the case for
staying idle. In situations where both actuators fail or contextual constraints are violated, it
is best to reject this task (by choosing action: stay idle) to prevent controller damage and
unrecoverable task failure. In figure 4-6 one can see that at approximately 50, the selection
of plans picking with the right end-effector is as desired as picking with the left end-effector,
which is displayed as a red asterisk. Active Inference then chooses the action in a fixed order
as with the framework of Pezzato et al. [74]. The action with the lowest free energy is always
picked in both figures.
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Figure 4-6: Snapshot of decision-making through Active Inference for picking. The prior over
plans for picking with the left gripper are modelled to increase during each iteration with a value
of 0.01 leading up to maximum likelihood of success (value 1). The right gripper is modelled
the opposite, starting at the maximum likelihood of success and decreasing during each iteration
until it comes close to zero. The x-axis divided by 100 equals the prior over plans.
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Figure 4-7: Snapshot of decision-making through Active Inference for picking. The prior over
plans for picking with the left and right gripper are modelled to increase during each iteration
with a value of 0.01 leading up to maximum likelihood of success (value 1). The x-axis divided
by 100 equals the prior over plans of each action.
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4-4 Airet Ontology

4-4-1 The Need for Standardised Ontologies

Early works of this century on probabilistic reasoning focused on the problem of too many
ontologies being available, lacking standardisation, and no mapping existed between similar
ontologies. This made comparing ontologies in terms of their coverage of knowledge and rea-
soning capabilities difficult. Furthermore, strength of ontologies lie in their reuse capabilities,
of which reuse focused mostly on applications rather than domains. This allowed for many
ontologies to exist with overlapping definitions within the same domain, making selection of
concepts for reuse a task prone to errors.

Ontologies have gained popularity in the AI community as a way to create explicit formal
semantic shareable knowledge. It comes with the freedom of naming and classifications pro-
vided by creating ontologies. A solution to the problems mentioned above was thought to be
the creation of probabilistic mappings between ontologies, with a measure of similarity be-
tween them and the end-purpose being enabling semantic reasoning. Several of these methods
that provide a probabilistic mapping are GLUE [27], CAIMAN [54], an ontology mapper for
BayesOWL [68] and OMEN [61]. More on different types of mappers can be found in the
survey [64]. Ontology mappers often still required expert knowledge and were prone to mis-
takes. Another approach that complements mapping between ontologies during this time was
creating standardised foundational ontologies with formal definitions that are reusable and
extendable for domain-specific ontologies. This approach minimised the errors for ontology
mapping by defining higher-level concepts and properties so that these fundamental concepts
are understood by their respective scientific communities. Examples of these concepts are Ob-
ject, Task, Action, Agent, and Component. Examples of properties are member, robotPart,
dependsOn and interactsWith.

4-4-2 Ontologies for Airet

The Airet ontology is based on the PMK ontology, which is in turn based on the upper-level
ontologies SUMO, CORA, CORAX and ROA. Suggested Upper Merged Ontology (SUMO),
[63] is an upper-level ontology created by the standard upper ontology working group with
collaborates in several fields of engineering, philosophy and information science, sponsored
by IEEE. Cora was proposed to standardise core definition in robotics and automation, is
sponsored by the IEEE, and depends on concepts defined in SUMO [78]. Cora was extended
to include CORAX [29], which added concepts about the physical environment and agent-
agent interaction. Furthermore, the object property dependsOn was added, which allows
for denoting a dependency, which could, for example, be the dependency of an object on
a region or environment. RPARTS provides general concepts on robot parts, including the
purpose of parts, for example, parts for sensing, Acting and communicating. POS provides
the main concepts and relations underlying the notions of position, orientation and pose.
These mentioned extensions can be found in [29]. More recently, CORA has been enhanced
by adding the knowledge called Autonomous Robot Architecture Ontology (ROA) [67], which
defines the main concepts and relations regarding robot architecture for autonomous robots
systems. ROA provides the definitions of behaviour, function, goal, and task concepts [67].
The terminology used in the Airet ontology can be found in the table 4-1. In table 4-2 one

Mohammed Mâachou Master thesis



4-4 Airet Ontology 45

finds the coverage of the Airet ontology for relevant terms in the autonomous robotics domain.
Prior works have used this list of terms as a scale consisting of agreed terms in this domain
needed for autonomous ontological reasoning [65, 23]. As for the reasoning scope, these works
in the autonomous robotics domain use the capabilities needed for cognition as defined by
langley et al. as a measure of cognition provided through reasoning on the ontology [55, 90].
The cognitive capabilities covered by the Airet framework can be found in figure 4-3

4-4-3 Airet Terminology

Definitions of concepts of the PMK ontology [24] can be found in appendix 7-2

PickVacBox: Action type specifying the action to be performed, the controller (in this case,
a vacuum gripper) and the type of product, which in this case is of box-type.
PickServoBox: Action type specifying the action to be performed, the controller (in this
case a servo-electric gripper) and the type of product, which in this case is of box-type.
MoveBase: Action moves the base of a robot, leading to translation and/or rotating of the
robot’s whole body.
ActionType move: Class for grouping action types that deal with translation and rotation
of components and/or subsystems.
ActionType pick-place: Manipulation of an object by translating and/or rotating to grasp
and hold an object or the transverse of this manipulation, releasing an object with the desired
location and/or orientation.
Under class robot add TIAGo++: A robot class for types of robots associated with
the TIAGo++ system of Pal-Robotics. The individuals of these classes can have different
components like single arms, dual arms, servo-electric grippers and the Hey5 robotic fingers.

Under robot components, next to the preexisting arm and sensors, two-component OWL sub-
classes have been created:
Gripper: End-effector with the capability upon actuation to manipulate objects.
mobileBase: component class to specify components resulting in translation and rotation of
the robot.

Under the class constantQuantity, a subclass AlgorithParameters has been created. Algo-
rithmParameters: a class to specify parameters that can be considered constants. Example
parameters are controller targets like target velocities, accelerations and joint torques. Under
the class AlgorithmParameters, a subclass ActiveInferenceParam is created. ActiveInferen-
ceParam: subclass specifying parameters to initialise Active Inference and adapt based on
task, (robotic) agent, working environment and prior knowledge available. Two subclasses
which are used in this work are EncodedDesires: containing translations from task specifica-
tion to desired states to be perceived by the agent. PriorOverPlans: Containing the agent’s
beliefs over available plans that can be selected to satisfy encoded desires. In chapter 2 this is
also denoted by the values of E. Friston, the founder of Active Inference, who refers to these
values as habits [81].

Under the PMK class GripConstraints, a few constraint classes have been modelled. Some of
these are: MaxGripWeight: subclass of maximum weight constraints that gripper components
can handle. Individuals of these classes could be payloads of end-effectors, like a servo-electric
gripper that can pick objects with a maximum weight. MaxGripWidth: subclass of maximum
gripper width constraints that gripper components can handle or the gripping task permits.

Master thesis Mohammed Mâachou



46 Active Inference for Retail (Airet)

Individuals of these classes could be maximum extensions of end-effectors, like a servo-electric
gripper being able to pick objects with a maximum width only due to actuators not extending
beyond this width. Other individual constraints could depend on the application, e.g. the
shelf width in a retail store. MinGripWidth: subclass of minimum gripper width constraints
that gripper components require for successful gripping task performance. Individuals of these
classes could be the minimum width vacuum grippers needed for proper suction of objects for
grasping.

Airet Object properties extended The class dependsOn is taken from the CORAX [29]
an extension of CORA standardised upper ontology. It specifies the directional dependency
of physical entities. An example is the ActionType pick class depending on a physical entity
class arm. This definition adheres to standardisation and aligns with the definition created
by BayesOWL given in section 3-3-2.

hasActionType hasPriorOverPlans: An object property related to the algorithm Active In-
ference specifies the relation of having a prior over plans fitting the task at hand. It can
specify which actions are more favoured over others. Examples are the individual task "Pick
a box product with a servo-electric gripper, and a robot TIAGo++ with individual Tiago1"
has prior over plans ErightArmTiago. This prior specifies the chance of the right arm of this
specific robot functioning adequately.

Airet Data properties extended AlgorithmParam: A data property specification of pa-
rameters needed for specific algorithms. ActiveInferenceParam, a sub-property of Algorithm-
Param, is a data property specifying parameters needed by the Active Inference algorithm
introduced in chapter 2. ValuePriorPlan is a sub-property of ActiveInferenceParam, specify-
ing a value of the format double, containing the prior over plans E.

4-4-4 Implementation

The Airet ontology is designed using ontology web language (OWL) with Protégé ontology
editor 2. Since Airet is modelled using the web ontology language OWL, which is created with
description logics in mind, a description logic reasoner is preferred. The DL logic reasoner
Pellet is used for reasoning. Pellet was the first reasoner that supported all of OWL DL
[80, 22]. Furthermore, the pellet supports SWRL rules (SWRL includes a high-level abstract
syntax for Horn-like rules)3. Some drawbacks that description logics (DL) suffer from are that
all the knowledge must be represented on the abstract logical level. In many applications, one
would like to be able to refer to concrete domains and predefined predicates on these domains
when defining concepts. An example of such a concrete domain could be the set of nonnegative
integers, with predicates such as ≥ (greater-or-equal) or < (less-than). Implementing these
predicates in DL is possible. However, they often require defining concepts in the ontology
to make reasoning on them possible. Coding languages do not suffer from this limitation.
Hence a framework supplying reasoning with DL, with the programming language Python, is
a suitable choice. This framework OWLREADY2, facilitator of reasoners pellet and hermit
for python, translates OWL concepts into Python classes, extending the reasoning operations
applicable. Upon loading the concepts and properties taken from the PMK ontology into the
reasoner, major problematic definitions in the released ontology were identified. These were

2http://protege.stanford.edu
3https://www.w3.org/Submission/SWRL/
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Table 4-1: Table containing the classes, object and data properties of the Airet ontology and
their original standardised (upper) ontologies.
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Table 4-2: List of relevant terms for the autonomous robotics domain [65], and their coverage
in the Airet ontology, based on PMK[24]. Yes and No state when the term is or is not covered
by the ontology of the specific framework. Note that when the term is needed and taken from
the upper ontology used within the framework, and/or when the knowledge is captured using a
similar term, it is considered that the term is covered. If the upper ontology contains the term,
but it is not used, we consider that the term is not included.

mostly related to data, object properties and concepts being named identically. It violates the
rules of OWL for reasoning since no distinction can be made between properties and concepts
for reasoning. An example is a class On, which indicates a relation between artefacts, being
defined as an object property and an OWL concept class in the Tbox of the ontology. After
several attempts, it was decided to rebuild the Airet ontology and redefine parts taken from
the PMK ontology.

4-5 Airet Reasoner

The Airet reasoner creates context-awareness through reasoning on the environment, the
robot and its components and capabilities, the task and the action.

In figure 4-8, one can see the working principle of the reasoner. As was discussed in section
4-2-2, the reasoner is called through the reasoner action node implemented in the behaviour
tree. The reasoning action nodes have as input the robot type, individual robot name as
defined in the ontology, the desired state of Active Inference to be reached (task goal) and
parameters necessary for task execution (for example, object individually to be manipulated).

The robot type is used to identify the main components of the robot through ontological
reasoning. For example, a robot can have a move base, camera, lidar sensors, and an arm.
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The concepts related to the robot individual are the amount and types of arms and end-
effectors.

The next part of the reasoner deals with hard constraints related to the action, manipulation
and the environment. The reasoning for these hard constraints is formulated in Description
Logics, and depicted in figure 4-10 and 4-11. Figure 4-11 provides detail on the reasoning
of manipulation constraints & environmental constraints, used in figure 4-10. Examples of
hard constraints are the object width and weight not being allowed to exceed gripper width
& payload for the servo-electric gripper. For the vacuum gripper, the minimum width is set
as a constraint due to the sufficiently large gripping area needed for suction. An example
of an environmental constraint is that the object has to fit into the shelf for the task being
stocking a shelf. Some action constraints taken into account are the actions belonging to an
action type as defined in the ontology, see section 4-4-3.

• An example action type could be PickVacuumGripperCillinderProd. It is an ActionType
class for picking cylindrical products with a vacuum gripper. These action types are
relevant for constructing the nodes of the Bayesian Network. The Airet reasoner selects
the appropriate action type based on the task, object (belonging to a shape group) and
robot individual.

• An example of environment constraint that can be taken into account is the shelf width
and height. Products which violate these dimensions cannot be stocked on the shelf,
and the task should be abandoned.

• Manipulation constraints pertain mostly to the end-effector and the object properties.
Examples are the payload of a servo-electric gripper being larger than the weight of an
object to be picked.

If any constraint so far is violated, the prior over plans for the actuators satisfying actions
leading to desired states are set to approximately zero, whilst the prior over plans of other
actions like staying idle is still higher than zero. It means that the free energy minimisation
process through Active Inference will choose the plans that lower the Free Energy the most
in the future, from what is observed currently, which in the case of robot manipulation will
be returning action idle.

Any other actions like varieties of actions completing pick and place will not lead to task
succession. It can be interpreted as the situation (the robot, task and the environment)
making action success impossible.

If all the constraints are satisfied, a Bayesian Network is generated from the information of
the ontology to provide the prior over plans of suitable actions for successful task completion.
This execution scheme is depicted in figure 4-8 and through the pseudo-code for a picking
action in algorithm 3.

Bayesian Network formation using Airet ontology

The Bayesian Network is generated through the ActionType concept in the OWL ontol-
ogy, the object property hasPriorOverPlans, data property PriorOverPlans and the relevant
actions specified through the behaviour tree. Continuing on the ActionType class PickVac-
uumGripperCillinderProd; this would be the relevant Actiontype individual for picking a
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cylindrical shaped object with the robot TIAGo++ having ID 1, and a vacuum end-effector.
It would then encode individual E values relevant for task succession using the data property
defined being ValuePriorPlans. Through using an ontology, the Bayesian Network can be
constructed automatically. Furthermore, subnodes can be generated using the same object
property hasPriorOverPlans. See figure 4-9.

The assumptions governing Bayesian Networks align with the Markov blanket assumption
governing the Active Inference algorithm, in chapter 2. The Markov boundary of a node in
a Bayesian network is the set of nodes composed of this node, the parents of this node, the
children of this node and this node’s children’s other parents. The assumption governing
Bayesian Networks is called Local Markov Independence, which states that each variable in
the joint distribution (which corresponds to a node in the graph) is independent of its non-
descendants, given its parents in the same graph, if a joint distribution factorises concerning
this directed graph. An example detailing this assumption is that factor VacuumGripTiago
is independent of RightArmTiago, (VacuumGripTiago ⊥⊥ RightArmTiago), in figure 4-9.

The pseudo-code for constructing a classical Bayesian Network can be found in algorithm
1. The Airet framework constructs the Bayesian Networks from the Airet ontology through
ontological design and the reasoner, hence modifying algorithm 1. This modified construction
of Bayesian Networks can be found in algorithm 2. The main difference between algorithm
1 and 2 is that relations between child nodes and parent nodes are directed through the
OWL object property hasPriorOverPlans and that instead of conditional probabilities, the
prior over plans are obtained. These are a subset of conditional probabilities, adhering to
the same mathematical relations and restrictions, added that they belong to parameters for
Active Inference.

Algorithm 1 Classical Bayesian Network Construction
1: Select a set of relevant of variables
2: Order these variables as (x1, x2...xN )
3: for i=1 to N do ▷ All nodes in BN
4: Add node xi to the graph
5: Set parents(xi) to be the minimal subset of {x1, ...xi−1}, such that xi is conditionally

independent of all other members of {x1, ...xi−1} given parents(xi)
6: Define Conditional Probability Tables for P (xi| assignment of parents(xi))
7: end for

After construction of the Bayesian Network graph, the final prior over plans denoting like-
lihood of an action succession is obtained through formula 4-1, where pa stands for parent
node, E stands for prior over plans and V is the set of factors influencing the action (EAction).

EAction(x) = Πi∈V Ei(xi|xpa(i)) (4-1)
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Algorithm 2 Airet Bayesian Network Construction
1: Choose a set of relevant parent node variables for ActionType from individuals of OWL

class PriorOverPlans
2: Connect these chosen set of variables to Actiontype through Object Property hasPri-

orOverPlans
3: Connect the children of parent nodes to parents through Object Property hasPriorOver-

Plans
4: Order these parent variables as (x1, x2...xN )
5: for i=1 to N do ▷ Parent nodes
6: Set xi to be the minimal subset of {x1, ...xi−1}, such that xi is conditionally indepen-

dent of all other members of {x1, ...xi−1}
7: Add parent node xi to the BN graph constructed by the Airet reasoner
8: for j=1 to k do ▷ Children nodes per parent
9: Set xi,j to be the minimal subset of {x1,j , ...xi−1,j} such that xi,j is conditionally

independent of all other members of {x1, ...xi−1} and {x1,j , ...xi−1,j}
10: Add Child node xi,j to the BN graph constructed by the Airet reasoner
11: Obtain PriorOverPlans through extracting Data Property ValuePriorPlan for

P (xi| assignment of parents(xi))
12: Obtain PriorOverPlans through extracting Data Property ValuePriorPlan for

P (xi,j |xi)
13: end for
14: end for

Figure 4-8: The reasoner action loop
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Figure 4-9: Example Bayesian network generated by the reasoner, using concepts for action
taking defined in the ontology. The nodes of the Bayesian network contain effects influencing
the final action, being a vacuum gripper part of the robot TIAGo++ picking a cylindrical object.
Failure modes are taken into account. In this example, the right arm of TIAGo++ functioning
properly for task success depends on the servomotor in the arm, the hardware controller and
the software controller. The relationship between nodes is created through the object property
hasPriorOverPlans. The Bayesian Network is automatically constructed by the Airet reasoner
using the Airet ontology.

Table 4-3: Cognitive capabilities satisfied by the Airet framework, system architectures should
contain autonomous mental capabilities as discovered by Langley et al. [55, 90]. These criteria
have been used in the autonomous robotics domain for ontology-based approaches as the industry
standard for assessing cognition [65]. The underlined cognitive capability Fault Detection, Recov-
ery & Adaptation is not a standalone capability but rather a combination of the other cognitive
capabilities. Nevertheless, it has been added by the author because it is crucial for autonomous
behaviour in a dynamic environment, such as retail.
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Figure 4-10: Reasoning formulated in Description Logic supported by the Airet ontology &
Reasoner on actions Pick and Move
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Figure 4-11: Reasoning formulated in Description Logic supported by the Airet ontology &
Reasoner on hard action constraints
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Task Failure

Figure 4-5 illustrates an extended behaviour tree including Active inference action nodes and
reasoning nodes prior to these action nodes. Within the Airet framework, several methods
exist to handle faults. The task planner (behaviour tree) handles failure through the imple-
mentation of fallback nodes, including actions executed in case of task failure as with standard
behaviour trees. The Action Planning framework used by Pezzato et al. [74] furthermore en-
codes pre- and post-conditions, which are given priority to be satisfied, if not satisfied before,
by identifying a mismatch between belief states and observed states and setting priority to
satisfy pre- and post-conditions higher than the desired task. It allows for reactivity to un-
foreseen contingencies in planning. The final method of failure recovery is handled through
the Airet reasoner, which interprets failure and gives priority to working controllers by in-
fluencing the decision-making of Active inference through the prior over plans of action. In
case of task failure, the fallback node in figure 4-5 of the behaviour tree triggers an update
of the Airet ontology. It could, for example, be setting Eservomotor equal to zero when fault
detection and isolation schemes identify malfunctioning of the right arm servomotor. Since
all the prior over policies affecting an action are multiplied, see equation 4-1, the resulting
prior over plans of ActionType PickVacCylTiago1 would be set equal to zero, meaning the
action can not be executed with the right arm. If the robot has two arms and the other
arm functions properly, the priority over plans of the other arm would be closer to a value
of 1, meaning this action would be preferred hence facilitating adaptation. Since the priors
over plans of each factor influencing action selection are stored in the Airet ontology, a more
representative likelihood of success is updated for that action primitive (i.e. Eservomotor being
a subnode of ERightArmTIAGo is lowered to approximately 0). For this to be achieved,
one can use fault detection and isolation schemes discussed in section 3-1-1. These methods
can specify component failure, to which the likelihood of success for that action primitive is
lowered.
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Algorithm 3 Simplified pseudo-code reasoner for pickaction. "A" is the set of actions avail-
able to the robot, " V" is the set of factors influencing the action and are the parent nodes of
Ei

Require: Input ← [Robot; RobotInstance; Action; TaskParam (e.g. objectID)]
1: Try:
2: Action ∈ A
3: EAction = 1 ▷ Best case Action possible
4: for All Robot components needed for Pick Action do
5: if check Robot Individual has components then
6: if check if Robot Individual Components have no error upon startup robot then
7: Get(EnvironmentConstraints)
8: Get(ArtifactManipulationConstraints)
9: if ShelfDimensions ∈ EnvironmentConstraints > ObjectDimensions ∈

ArtifactManipulationConstraints then
10: Get(GripperTypes) & Get(gripperType, Amount)
11: for GripperTypes, ArmTypes ∈ sides do
12: Get(GripperManipulationConstraints(GripperTypes,RobotIndividual))
13: Get(ArmManipulationConstraints(ArmType,RobotIndividual))
14: if GripperType ∈ GripperTypes & GripperSpecificAmount > 0 then
15: if ObjectProperties ∈ ArtifactManipulationConstraints <

GripperManipulationConstraints then
16: Get(GripperActionType(Action, GripperType, RobotIndivid-

ual))
17:
18: for GripperActionType() do
19: Get(Ei)
20: EAction(x) = Πi∈V Ei(xi|xpa(i))
21: end for
22: else EAction = 0 ▷ Worst case, action infeasible
23: end if
24: else EAction = 0
25: end if
26: end for
27: else EAction = 0
28: end if
29: else EAction = 0
30: end if
31: else EAction = 0
32: end if
33: end for
34:
35: Except: reasoner error {ERRORTYPE} occured. Missing components for

action, or action not supported by reasoner
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4-5-1 Airet Reasoner Example

In the following simplified example, the decision-making through Active Inference & the Airet
framework is demonstrated when considering a dynamically created prior over plans. Assume
an Active inference agent that operates in a simplified environment. This agent has two
plans, π1 & π2, the first being picking up an object with a servo-electric gripper and the
second picking up with a vacuum gripper. The agent prefers observation encoded in matrix
C. Furthermore, assume the object to be picked is a cereal box with a width of 20cm. Finally,
the servo-electric gripper has a width of a maximum of 15cm, and the vacuum gripper has a
minimum width of 4cm. Furthermore, assume the following:

A =
[
0.9 0.1
0.1 0.9

]
, C =

[
1
0

]
, sτπ1 =

[
0.95
0.05

]
, sτπ2 =

[
0.05
0.95

]
(4-2)

First, one checks if the hard constraints are satisfied. In this simplified example, it will
be assumed that the object width and the gripper width constraints exist. After the Airet
framework establishes that all components needed for ActionType Pick and action PickServo-
TIAGo1 are present, the width constraints are evaluated by comparing the ArtifactManipu-
lationConstraints to GripperManipulationConstraints. See figure 4-11. For action PickServo-
TIAGo1, through logic reasoning, it is found that the servo-electric gripper maximum width is
smaller than the object width, MaxServElectricWidth < ObjectWidth −→ EP ickServoT IAGo1 =
0 As for action PickVacTIAGo1, through logic reasoning, it is found that the object width is
larger than the vacuum gripper minimum width, MinServElectricWidth < ObjectWidth −→
construct Bayesian Network for EP ickV acCylT iago1.

EP ickV acCylT iago1(x) = Πi∈V Ei(xi|xpa(i))
= ERightArmT IAGo ∗ EV acuumGripT iago ∗ EV acCylP rod

= EServomotor ∗ EHardwareController ∗ ESoftwareController ∗ EV acuumGripT iago ∗ EV acCylP rod

= 0.99 ∗ 0.995 ∗ 0.995 ∗ 0.96 ∗ 0.90
= 0.85

The observations under the two plans are:

oτπ1 = Asτπ1 =
[
0.86
0.14

]
, oτπ2 = Asτπ2 =

[
0.14
0.86

]
(4-3)

When computing the expected free energy for the plans, one gets:

G(π1, τ) = AsT
π1τ [ln Asπ1τ − ln C]− diag(AT ln A)T sπ1τ (4-4)[

0.86
0.14

]T

[ln
[
0.86
0.14

]
− ln

[
0
0

]
]− diag

[0.9 0.1
0.1 0.9

]T

ln(
[
0.9 0.1
0.1 0.9

]
)

T [
0.95
0.05

]
≈ 36.7615 (4-5)
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which is the same for each plan. Note that for computation, as is done before in literature
[81], a value of 10−16 is taken to approximate zero, enabling computation since the logarithm
of zero is minus infinity.

Assuming a value for the Variational Free energy [F (π1), F (π2)]T of
[
1.83
1.83

]
, This prior over

plans as computed before is Ep =
[

EP ickServoT IAGo1
EP ickV acCylT iago1

]
=
[

0
0.85

]

π = σ(ln Ep − F − γG) = σ

([
−36.8414
−0.1625

]
−
[
1.83
1.83

]
−
[
36.7615
36.7615

])
≈
[
0.01
0.99

]
(4-6)

One can see that the likely plan chosen is the second plan, picking up with a vacuum-gripper
(PickVacCylTiago1).

4-6 Summary

This chapter introduces the essential parts of the Airet framework. The Airet framework
excels over other ontological reasoning approaches in that it allows for generating context-
awareness, including preferences over actions and handling of contingencies. This through
a novel approach using Active Inference for Action Planning, behaviour tree for task plan-
ning, ontological reasoning through Description logic & Bayesian network for computationally
efficient creation of context-awareness, extended to deal with contingencies and action pref-
erences.

The process starts with tasks encoded in the behaviour tree as Active inference desires.
Furthermore, the behaviour tree contains reasoning nodes which call upon the Airet reasoner.
Besides encoding desired tasks and reasoning nodes, the behaviour tree allows for reactive
action selection in case of missing preconditions to actions. The Airet ontology provides
terms needed for creating context awareness and adapting in case of contingencies for mobile
manipulation in retail. It includes environmental & robot constraints, robot components
and capabilities and factors influencing action selection. The Airet reasoner utilises these
terms to generate context-awareness, leading to the best feasible actions selected for a task
or task rejection if actions are infeasible. The Airet reasoner directly influences the action
selection through Active Inference by providing a solid preference for certain actions over
others, in the form of a prior over plans. This is through a combination of hard constraints &
a Bayesian Network. The hard constraints decide action feasibility upon nominal functioning
of components, taking into account the robot, the action and the environment. The Bayesian
Network considers factors influencing action success, like contingencies such as component
failure & handling of objects by robot components. The Bayesian network allows for more
efficient reasoning & a higher level of modularity & reuse when compared to using a logic-
based approach solely. Furthermore, it allows for representing uncertainty in actions which is
difficult to implement through first-order logic alone. This Bayesian network outputs a prior
over plans for each action available.

Initially, the Airet framework architecture is introduced, followed by the integration of onto-
logical reasoning into task planning. Next, concepts from important standardised ontologies
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and an ontology for mobile manipulation are reused and extended for Action Planning using
Active Inference in combination with a Bayesian network, enhancing the decision-making. The
Bayesian network is constructed automatically by the Airet reasoner, using the Airet ontol-
ogy. The ontology design is focused on reuse and the modularity of the code implementation,
allowing for significant design & development freedom. The logic base of the Airet reasoner
consists of a combination of description logic and the programming language Python. Besides
standardisation, a large number of terms for the autonomous robotics domain are covered,
together with the most crucial cognitive capabilities for deliberation.
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Chapter 5

Results & Case Studies

This section introduces four case studies with six scenarios that demonstrate the benefits of
using the novel proposed framework in chapter 4. The first case study shows how, through
context-awareness, task rejection occurs when dealing with an ill-posed task, and task suc-
cession happens when the robot has a new configuration with end-effectors satisfying the hard
constraints. The second case study demonstrates how, in certain scenarios, specific actions are
more favourable than others. The Airet reasoner enhances the likelihood of task succession by
reasoning on the feasibility of actions and selecting the best action leading to task succession.
The third case study demonstrates that under the normal functioning of both controllers and
action feasibility, some actions can still be preferred over others. For example, actions with
more reliable components are desired over those with less, based on context-reasoning facili-
tated by the Airet framework. The fourth case study deals with component failure triggering
reconfiguration through context awareness provided by the Airet framework. These cases are
compared to their counterparts, executing the same scenarios with the task planning framework
of Pezzato et al. [74]. This section starts with the system overview for implementing Airet in
a retail environment, explaining the function of all the modules supporting and/or facilitating
the Airet framework. Next, it explains how the Airet framework influences decision-making
with Active Inference, highlighting when an action is chosen over others. Lastly, it presents
the case studies are presented and discusses the results in an experimental setup in a real-world
retail environment. One case is an exception, which is simulated in a virtual environment
due to the lab AI for Retail (AIR) Lab lacking the necessary physical components.

5-1 System Overview

5-1-1 Robot Simulation

The capabilities of the Airet framework are demonstrated through experimental case studies
in a real world retail environment, as well as through virtual simulations in a simulated
retail environment, see figure 5-1. The robot used in both simulation and real world is the
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TIAGo++ Steel version (referred to as TIAGo++), which is the extended version of TIAGo
Steel (referred to TIAGo). TIAGo contains a single robotic arm with a servo-electric end
effector. TIAGo++, compared to TIAGo, contains dual robotic arms and servo-electric end-
effectors instead of a single arm and end-effector. Furthermore, it contains a move-base,
a differential drive, a longitudinally translating torso and a pan-tilt head with an RGB-D
camera. The robotic arm has 7 degrees of freedom. The base sensors contain lasers and three
ultrasounds sensors.

Modelled Vacuum Gripper

At the moment, Pal-robotics, the creator of the TIAGo++ robot, only provides a limited
amount of end-effectors. These are the Hey5 fingers, the servo-electric grippers and the
Robotiq 2F 85/140. Possibility for extension is available. In a retail environment, one can
often encounter objects that contain many sizes and shapes. Objects that are less than 1kg
yet bigger in size can be handled by the Hey5 hands and servo-electric grippers, for example,
tea boxes. Intuitively, these objects can be better handled with a vacuum gripper. Hence this
gripper is modelled in Gazebo. During the research, the TIAGo++ robot available at the AI
for Retail (AIR) Lab had component failures. One problem was the overheating of the left-
side servo-electric gripper, causing it to shut down. Other failures included arm malfunctions.
These failures were only encountered on the left side components.

5-1-2 Software

Discrete Active Inference (AI) package

The Active Inference perception module interprets percepts of the environment in an under-
standable manner for the Active Inference algorithm. See figure 5-3. This understandable
manner includes whether desired states or preconditions have been satisfied. By minimis-
ing the Variational Free Energy, it ensures that the belief state of the agent is aligned with
observations of the environment. See section 2. The AI templates encode the meaning of
these percepts and how actions influence the belief state of the agent, also known as the
Markov decision process model parameters, or the prior to the generative models. The AI
Action selection module contains the Active Inference loop selecting the appropriate actions
to decrease the uncertainty of the agent’s environment and satisfy the agent’s desired out-
come of observations by minimising the Expected Free Energy, see section 2. These desired
outcomes of observations, which can be understood as the task plans, are encoded in the
behaviour tree. A C++ behaviour tree package is used 1. These tasks could, for example, be
being at a desired location in the supermarket environment or picking a specific product. For
communication between packages, ROS service and action nodes are used. See figure 5-3.

1https://www.behaviortree.dev/
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Figure 5-1: Figure displaying the lab environment where the robot TIAGo++ is operating. It
displays both stocked and empty shelves, with two ArUco markers marking the place locations of
the objects. TIAGo++ in this depiction has dual servo-electric grippers, and lasers are displayed in
blue. The table has two products with different properties on top. These products are Hagelslag
(Dutch chocolate sprinkles) and a tea box.

Airet Reasoner & Ontology Package

The Airet ontology is constructed using the OWL2 web ontology language 2. For designing the
ontology, Protégé is used 3 which provides a GUI for creating and altering ontology classes &
properties. The Airet reasoner is programmed as a service node, which utilises OWLREADY2,
a Python ontology-oriented programming package. It can load OWL 2.0 ontologies as Python
objects, modify, save and perform reasoning on them 4. The components forming the reasoner
are the 1. CRUD: deals with creating, reading, updating and deleting values in the ontology.
It is relevant when modifying object properties, the object locations and priors over plans
for action successes. For example, when a component fails, have the ontology reflect the real
world by lowering the prior over plans (a factor influencing action-selection) of this component
for action-taking. The reasoner server facilitates the service response to the reasoner client
node in the Discrete AI package. The reasoner module contains all the reasoning logic and
the code to automatically generate Bayesian Networks for decision-making, outputting the
prior over plans influencing action selection.

Retail Store Skills Package

The Retail store skills package communicates with the controller clients, sending and receiving
feedback on the action performed. The Pick & Place server receives the task, the object

2https://www.w3.org/TR/owl2-overview/
3https://protege.stanford.edu/
4https://owlready2.readthedocs.io/en/v0.37/
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Figure 5-2: Figure displaying the OctoMap in the lab environment where the robot TIAGo++
is operating. It depicts the output of an ultrasound distance sensor as a blue cone. Furthermore,
in the lower levels, the distance from obstacles is depicted in purple, red and blue, ranging in
this order from less close to obstacles to possibly hitting obstacles. On closer look, one can see
the internal model of obstacles the robot has generated through the OctoMap framework and its
sensors. The tea box and Hagelslag (dutch sprinkled chocolate) are depicted as blocks, with an
uncertainty of their size.

with its location, orientation and ArUco marker ID. Furthermore, it allows for checking the
reachability of objects based on object detection and the formation of a motion plan. It is
relevant for the perception module of Active Inference since it is a precondition to actions
pick and place that needs to be satisfied before these actions can be executed. Furthermore,
it communicates with the Grocery store Utils module servers, containing the clients to these
servers.

Grocery Store Utils Package
This package is comprised of three ROS Services. The collision obstacle server provides
services to manage the creation and deletion of collision obstacles in the Moveit Planningscene.
The server uses prior knowledge of the object’s geometry and placement of the ArUco marker.
The Grasp pose server returns a predefined grasp pose of a certain object type. The grasp
pose is specified in the frame of the detected ArUco marker.

Retail Store Simulation Package The Retail store simulation package contains the retail
store map where the robot TIAGo++ is operating. This map is generated by allowing the
robot to manoeuvre through the lab environment and detect fixed obstacles blocking move-
ments, e.g. shelves, tables and walls. The worlds module contains information needed by ROS
Gazebo to generate the world environment. This information includes details on the place-
ment of models (coordinates and rotations), their interaction with each other (e.g. a basket
placed on top of a table), world lighting and simulation parameters (e.g. friction coefficients,
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gravity coefficient and step-size used by ode integrator). The model’s folder contains sdf/dae
models of objects in the Gazebo world, including physical parameters like inertia and collision
behaviour. When executing this framework on the real robot, this package is replaced by the
actual retail store in the real world. The launch files startup the Gazebo world with all the
servers this framework requires, including the robot controller servers.

Custom End-effector package This module contains three packages needed for defining
and utilising a custom end-effector. The Dual-arm description package contains a simple
wrapper to include the URDF description of the custom end-effector, so the robotic system
knows its new configuration. The Moveit Configuration package contains configuration files
needed for Moveit to interact properly with the new end-effector. The Dual end-effector
configuration package contains configuration and launch files used by the TIAGo++ internal
architecture. It can be used to generate predefined motions for the TIAGo++ robot. Fur-
thermore, it allows for defining collision constraints for the retail store Gazebo simulation
between robotic components (e.g. a robotic end-effector is not allowed to go through the
robot’s body, as is with the real-world situations).
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Figure 5-3: This figure provides the System Overview of the packages, the ones fully developed
in green (the ontology in apple green and reasoner in olive green) and the other packages modified
and extended for context-aware mobile manipulation with Active Inference in a retail environment.
Communication between modules of packages is facilitated through the ROS platform.
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5-2 Experimental Evaluation

This section demonstrates the capabilities of the Airet framework through four case studies .
The first case study contains an ill-posed task, where an infeasible task is set to be satisfied.
As for the second case study, it shows how an infeasible task becomes feasible in the presence
of end-effectors with inherent differences in capabilities. The third case study shows how
certain controllers might be preferred over others despite the feasibility of actions that result
in task satisfaction. The final case study demonstrates the adaptation capabilities under
controller failure that come from context-awareness through the Airet reasoner. Besides the
third case study, the studies are compared to the results from executing the task with the
Active Inference for reactive task planning framework of Pezzato el. al [74], as introduced in
section 3-1-2. This framework is referred to as baseline.

The input to the Airet reasoner is as follows: [Robot;Robot individual;Task;Task parameters;].
This input is sent from the Behavior Tree reasoning action node, upon tick, in the form of a
ROS service call, to the Airet reasoner service with this input. The robot’s name is passed
to the reasoner to retrieve robot-specific information and constraints. The robot individual
is used for robot-specific configurations (e.g. having a single-arm or a dual-arm). The output
of the reasoner will be a prior over plans for each task executed with a specific robot instance
and controller, which is input into the Active inference algorithm for decision-making.

For example: a robot TIAGo++ with an individual ID defined in the ontology as Tiago1.
This robot individual has a left and right arm, with a vacuum gripper and servo-electric
gripper, respectively. The task is Pick, and the task parameter is the objectID, a Cereal box
(CerealBox1). The input to the Airet reasoner would be [Tiago; Tiago1; Pick; CerealBox1; ].
The returned priors over plans obtained from the reasoner would be:

[ELeftarm V acuum Gripper, ERightarm Servo−Electric Gripper].

5-2-1 Case Study 1: Ill-posed Task

Scenario 1-A: Irrecoverable task failure using the Baseline [74]

As discussed in section 4-3 and chapter 2, Action selection through Active inference will
prefer actions that satisfy desired states of the robot since they minimise the uncertainty of
the robot with respect to the outer world. However, this view of action selection in the real
world is too simplistic. Constraints might be present which render the task infeasible. An
example of such a constraint is the artefact to be picked having a width larger than which is
feasible to be picked by the robot gripper. Figure 5-4 shows the reasoning-action loop when
no reasoner and ontology are present. One can see in this figure that the right arm of the
robot containing a servo-electric gripper is chosen by the Active Inference algorithm solely
since this is the fixed order in which actions satisfying a desired prior are implemented. The
result of lacking the context-awareness facilitated by the ontological reasoning of the Airet
framework is irrecoverable task failure. One can see that the cereal box with the exceeding
width is tipped in an attempt to pick this product. Especially in human-robot collaborative
environments, this behaviour is unwanted as it results in compromised safety, due to the
object possibly falling from the shelf. The object could for example shatter if the object
packaging is made of glass.
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Figure 5-4: Experimental case on the real robot with a picking task, no reasoner being present,
and the task being ill-defined. It demonstrates task failure due to a lack of context-awareness,
manifested in the tipping of the product.

Scenario 1-B: Task rejection with Airet reasoner & Ontology creating context
awareness for decision-making

The same task is given to the system containing the Airet framework. The Airet reasoner
correctly identifies the artefact & robot manipulation constraint, being object width exceeding
servo-electric gripper width. The only reasonable action with the current setup of TIAGo++,
with a servo-electric actuator on both hands, is to stay idle, which is chosen as can be seen in
figure 5-5. The result is that the prior over plans for actions for both servo-electric grippers
is set to zero. This ensures that the task is recoverable when a robot is present that is
equipped with different end-effectors satisfying these constraints or when the human chooses
to complete the task.
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Figure 5-5: Experimental case with a picking task & the task being ill-defined. This case
demonstrates the reasoning capabilities of the Airet framework, applied to the real TIAGo++
robot in a retail store environment. The hard constraint pertaining to the object width being
smaller than the gripper width of the identified servo-electric gripper is not satisfied. The task is
determined to be ill-defined by the Airet reasoner, and the action selection sets the picking with
the actions using the servo-electric gripper to be approximately zero. The action of staying idle
is chosen instead.

5-2-2 Case Study 2: Choosing Suitable Gripper

Scenario 2-A: Best available gripper for the task, with Airet reasoner & ontology
creating context awareness for decision-making

In subsection 5-2-2 the reasoning-action loop of the Airet framework was demonstrated for
an ill-defined task. It was found that a servo-electric gripper will not result in successful task
completion. When equipping the robot with a vacuum gripper, the Airet reasoner checks the
presence and functioning of the robot components needed for the task. The manipulation
constraint of maximum gripper width does not apply to the vacuum gripper, although the
environmental and action constraints still hold, see figure 5-6. The object must, after all, still
fit on the correct shelf, and the robot needs to understand what kind of action it takes. After
the hard constraints are satisfied, the Bayesian network is generated for each task executed
with a specific robot instance and controller, in this case, picking a box-shaped product with
a vacuum gripper. It is done to determine the likelihood of the actuator leading to desired
task succession, see figure 5-7. The Bayesian network, next to probabilities related to action
succession, also keeps track of the probabilities of proper functioning of the components.
During ontology development, using the hasPriorOverPlans object property allows for design
freedom for factors the user desires to take into account to influence the decision-making.
These factors should, however, be consistent with the factors taken into account for similar
actions satisfying the same task. In this case, it was chosen to expand the prior over plans of
the left arm of TIAGo++, taking into account the functioning of the components of the left
arm. The prior over plans of the action using a vacuum gripper (PickVacuumGripTiago1)
resulted in a value of 0.877, while the prior over plans of the action using the servo-electric
gripper was set to approximately zero by the reasoner. This value is computed as:
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Figure 5-6: Experimental case with a picking task. This case demonstrates the reasoning capa-
bilities of the Airet framework, applied to the real TIAGo++ robot in a retail store environment.
The hard constraint pertaining to the object width is not satisfied by the aervo-electric gripper
but is satisfied by the Vacuum gripper, together with other constraints like payload. The picking
action with the vacuum gripper is executed, resulting in successful task completion.

EP ickV acGripBoxP rodT IAGo1(x) = Πi∈V Ei(xi|xpa(i))
= ELeftArmT iago1 ∗ EV acuumGripT iago1 ∗ EV acBoxP rod

= EServomotor ∗ EHardwareController ∗ ESoftwareController ∗ ERemainderMechanicalP arts

∗EV acuumGripT iago ∗ EF lexibleMaterial ∗ ESolidSubstance ∗ EUniformMaterialDensity

∗EBoxShapedP roduct ∗ EV acuumGripAction

= 0.996 ∗ 0.996 ∗ 0.99 ∗ 0.998 ∗ 0.98 ∗ 0.96 ∗ 0.99 ∗ 0.99 ∗ 0.99 ∗ 0.98
≈ 0.877

In section 4-3 the threshold for choosing an action other than Idle was set to 0.37, which
is lower than the prior over plans EP ickV acuumGripT iago1 of 0.877. Hence, the Airet reasoner
deems the vacuum gripper most suitable for the Pick task, resulting in the successful comple-
tion of picking the cereal box with the vacuum gripper.
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Figure 5-7: Bayesian Network with priors over plans demonstrating the factors influencing the
decision making for picking a box-shaped product with a vacuum gripper attached to the left arm.
The Bayesian Network is populated through the ontology. Fault detection & isolation methods
are assumed to provide information on the failed component.

5-2-3 Case Study 3: Controller Preference

Scenario 3-A: right end-effector preferred

Sometimes, even without failure or unsatisfied constraints, it could be beneficial to select
certain controllers over others. For example, one could create a prior over plans tied to the
shelf side. It could, for example, result in favouring under normal functioning picking objects
located on the left side of a shelf with the left end-effector over the right-side end-effector and
vice versa. For example, cylindrical-shaped products might be more desired to be picked with
a servo-electric gripper rather than a vacuum gripper since traction can be lost at a round
gripping surface. The product shape henceforth also can influence the decision making as is
depicted in figure 5-7. Another factor to take into account is the differences in component
functioning. It assumes all end-effectors satisfy the hard constraints for picking a specific
object; hence both actions could lead to task succession. In practice, it was found that the
left servo gripper attached to the TIAGo++ robot in the experimental setup was prone to
more frequent component failures during real-world experiments. It could have been caused
by wear and tear or inherent factory defects. One could account for this by lowering the
prior over plans of the servoGripTiago attached on the left arm through experimental trials
or expert knowledge. When this is done, the Bayesian Network of the servo-electric gripper
has the original higher value for prior over plans, resulting in this action being more favoured,
as is found in the experiment in figure 5-8.
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Figure 5-8: Picking experiment demonstrating the reasoning capabilities of the Airet framework,
applied on the real TIAGo++ robot in a retail store environment. The right arm and end-
effector are preferred over the left ones, despite satisfying the hard constraints and having the
right components for task succession. It is due to a larger value of ServoGripTiago for the right
arm compared to the left arm. It is due to the left end-effector being more prone to failure due
to factory faults and wear & tear. The factors influencing decision-making for the servo-electric
gripper of TIAGo++ can be seen in the Bayesian network of figure 5-10.
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5-2-4 Case Study 4: Component Failure

Scenario 4-A: Repeated component failure using the reactive Action Planning
framework of Pezzato et al. [74]

In a real dynamic world, contingencies can lead to task failure. Task failure due to component
failure is a crucial problem with significant consequences for retail. It could be that essential
products cannot be stocked, leading to consumer dissatisfaction and loss of profit. When the
Airet ontological reasoning is not present to create context awareness, the action selection
through Active Inference will repeatedly choose the components for actuation in a fixed order,
as long as they are both under normal functioning can result in task succession. It means
that the task repeats with the broken controller, resulting in repeated failure. Furthermore,
repeated attempts under component failure could lead to irrecoverable task failure and dam-
age to the environment and the robot controllers. It is visualised in a real-world experiment
depicted in figure 5-9. One can see that the robot arm fails unbeknown to the Active Infer-
ence algorithm for decision-making, to which the same action is attempted repeatedly with
repeated failure.

Figure 5-9: Experimental case on the real robot demonstrating the repeated picking task failure
when dealing with component failure. This is because the decision-making using Active Inference
with the task planning framework [74] selects actions that minimise uncertainty in a fixed order.
Context-awareness could distinguish between these actions to prefer functioning controllers, based
on reasoning on failure.

Scenario 4-B: Task succession despite component failure with Airet reasoner &
ontology creating context awareness

Low-level control signals can be utilised to detect & isolate controller failure. Some methods
providing fault detection & isolation through Active Inference were introduced in section 3-
1-1. This information can be used to populate the ontology further, hence taking it into
account for decision-making with Active Inference. Figure 5-10 shows how the prior over
plans constructed by the Airet reasoner for picking a box-shaped product with a servo-electric
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gripper attached to the left arm is constructed. It happens after all the hard constraints are
checked and evaluated as satisfied. Figure 5-10 also shows that the failure of the servomotor
of the left arm renders the whole picking action less likely to succeed. The prior over plans
is obtained by multiplying the prior over plans influencing the functioning of the robot’s left
arm (LeftArmTIAGo) with those influencing the end-effector ServoGripTIAGo with factors
related to gripping the object with the end-effector. The resulting value for the prior over
plans for this action is 0.0259, which is significantly less than the threshold of 0.37 in section
4-3.

EP ickServoGripBoxP rodT IAGo1(x) = Πi∈V Ei(xi|xpa(i))
= ELeftArmT iago1 ∗ EServoGripT iago1 ∗ EServoBoxP rod

= EServomotor ∗ EHardwareController ∗ ESoftwareController ∗ ERemainderMechanicalP arts

∗EServoGripT iago ∗ EF lexibleMaterial ∗ ELiquidSubstance ∗ EUniformMaterialDensity

∗EBoxShapedP roduct ∗ EServoGripAction

= 0.03 ∗ 0.996 ∗ 0.99 ∗ 0.998 ∗ 0.96 ∗ 0.96 ∗ 0.99 ∗ 0.99 ∗ 0.98
≈ 0.0259

If no other action were facilitating picking, then the action idle would have been chosen, see
figures 4-7 and 4-6. However, TIAGo++ has two end-effectors, and the hard constraints and
components needed for the task are satisfied. The same behaviour tree is constructed for
the right arm with a functioning servomotor, resulting in a prior over plans larger than the
threshold; hence chosen over other actions, resulting in picking with the right arm, as depicted
in the real world experiment in figure 5-11.
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Figure 5-10: Bayesian Network with priors over plans demonstrating the factors influencing
the decision making under component failure, with context awareness created through the Airet
framework. The Bayesian Network is populated through the Airet ontology. The third case
study presented that the servomotor of the left arm failed, causing the picking action utilising the
left arm to be less probable for achieving task succession than the functioning right arm. Fault
detection & isolation methods are assumed to provide information on the failed components.

Master thesis Mohammed Mâachou



76 Results & Case Studies

Figure 5-11: Experimental case demonstrating the reasoning capabilities of the Airet frame-
work, under component failure applied on the real TIAGo++ robot in a retail store environment.
Component failure is modelled through a signal after seemingly detecting and isolating failure
of the servomotor, which could have been obtained from the lower-level controllers. The Airet
framework correctly lowers the task succession with the broken left-side arm. The necessary com-
ponents for task succession with the right-side controllers, hard constraints of the environment,
the robot components and object properties are satisfied. The Bayesian Network for picking with
the servo-electric end-effector on the right-side arm resulted in this action being chosen as the
desired action leading to task succession.

Mohammed Mâachou Master thesis



5-3 Summary 77

Computational expense of the Airet reasoner

The majority of the computation expense is spent for initializing the Airet server with the
Airet ontology, taking a mere 0.147 seconds approximately. This is found through computing
with an AMD Ryzen 5, 3600, CPU and 16Gb of random access memory (RAM). Furthermore,
this initialization of the ROS service happens upon startup of the robot, hence will not be part
of the reasoning time on actions. Loading the Airet ontology into OWLREADY2 using Python
takes merely 10,9 miliseconds approximately. The true computational expense for reasoning
is found as follows: An example reasoning action being reasoning on picking of a cereal box
as in case study 2, see figure 5-5 took approximately 12.7 miliseconds, including construction
of the Bayesian Network by the reasoner. This value is taken after the reasoner server and
ontology is initialised upon startup. The most computationally expensive reasoning task of all
the case studies was case 6, where component failure occurred, see figure 5-11. The reasoner
took a total computational expense of 26.6 miliseconds approximately. One can conclude
that with this order of computational expense, at run-time, action selection provided through
the baseline framework remains unaffected for mobile manipulation in retail with the Airet
framework.

5-3 Summary

Ontological reasoning through the Airet framework significantly improves the decision-making
through Active Inference, leading to more reliable task execution in comparison to execution
with the framework of Pezzato et al. [74]. It is demonstrated through several case studies of
ill-defined tasks, preferences due to the situation and controller failure. The user freedom in
designing factors influencing decision-making remains large, allowing the user to group factors
and deconstruct them into subfactors, as long as consistency is maintained between available
actions satisfying the same desired task outcome. Decision-making through Active Inference
is made reliable with the Airet framework. The downside of the Airet framework is that priors
over plans of (sub-) factors influencing decision-making have to be obtained through expert
knowledge, training of neural networks or experimental data on task succession. Learning
of these priors can also be obtained through simulation. It is, however, not constraining
since these priors over plans are easily reusable, making it primarily a single investment.
Furthermore, since the hard constraints are first taken into account before constructing the
Bayesian network, more targeted learning or experimentation is achieved. The complexity of
which is left free to user design.
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Chapter 6

Conclusions & Future Work

A framework called Airet (Active Inference for retail) has been introduced, facilitating cog-
nition for mobile manipulation in a retail environment. More specifically, it satisfies the ne-
cessities of deliberate acting mentioned by Ingrand et. Ghallab, which are planning, acting,
observing, monitoring, goal reasoning, and learning [47]. This framework consists of a Task
and Motion (TAMP) planning module, an ontology containing semantic knowledge needed
for mobile manipulation for retail, a reasoning module supporting task planning and decision
making, a perception module for obtaining and interpreting percepts of the environment and
an execution module containing desired controllers for executing a task.

At the center of this framework lies planning. For this, a novel ontology-centred integration
of Active Inference and Ontological Reasoning is proposed to provide failure recovery and
improved action selection capabilities for task planning in a retail environment. Situational
knowledge is added with respect to a planning alone using Active inference [74], which is
supported by reasoning on object (manipulation) properties, task & motion planning, robot
capabilities and components, to decide the right action for the situation. This is done to
remove the major drawbacks of previous work being alternative actions to achieve the same
goal are chosen in a fixed order, lacking context-based adaptation of action selection. This
context-based adaptation is crucial when dealing with contingencies like robot component
failure.

An ontology is designed to provide semantic knowledge for action planning with Active In-
ference and knowledge for facilitating reasoning on the environment, including reasoning on
the robotic agent’s components and capabilities and objects present in a retail environment.
The ontology proposed is modelled using the web ontology language OWL and Protégé for
visualizing semantic information 1, under the standardised upper ontologies for robotics and
automation SUMO, CORA & its extensions CORAX and RPARTS. Furthermore, the on-
tology utilises knowledge from the planning & manipulation PMK framework and remains
compatible with this framework. Standardization is beneficial because it promotes reuse of
concepts agreed upon by the scientific community in their respective domains. Furthermore,

1https://protege.stanford.edu/
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it allows for comparing ontological concept coverage and makes mapping between similar
ontologies easier, since the same higher-level primitive concepts would be covered in stan-
dardization.

At the heart of the Airet framework lies the reasoner module, which integrates Description
Logic reasoners like Pellet & Hermit, with reasoning through Bayesian Networks, the output
being feasibility of actions accomplishing a task, and preferences over actions to satisfy tasks
given the environment, the task at hand, the robotic agent and unexpected occurring events
influencing actions. The reasoning process happens through two stages namely evaluating
hard constraints & generating a Bayesian Network. The hard constraints decide action fea-
sibility upon nominal functioning of components, taking into account the robot, the action
and the environment. The Bayesian Network considers factors influencing action success,
like contingencies such as component failure handling of objects by robot components. The
Bayesian network allows for more efficient reasoning & a higher level of modularity & reuse
when compared to using a logic based approach solely. Furthermore, it allows for represent-
ing uncertainty in actions which is difficult to implement through first-order logic alone. The
preferences over actions obtained from the reasoner are sent to the planning module using
Active Inference to select preferred actions given the situation at hand.

Communication between packages, including the planning module, controller clients and rea-
soning module, is provided through the ROS framework. One can find a system overview
including these interconnections in section 5-1.

The following case studies are devised and validated through experiments & simulations, to
demonstrate the capability of the Airet framework. The results found in these case studies
are summarised in table 6-1.

• Ill-posed Task.
The robotic agent has two servo-electric end-effectors. The task is ill-defined, the servo-
electric grippers cannot pick up the object due to the object properties (size) causing a
gripper constraint (maximum width) to be violated. The first scenario is the baseline
[74], which resulted in irrecoverable failure of the task by choosing picking with the
robot’s right arm. The consequence of this was the object being tipped over on the
shelf. The second scenario is through the Airet framework. The Airet reasoner correctly
identifies the robot type, its functioning components, the working environment with
environmental constraints, the robot and object properties, and failure events to decide
the appropriate action for picking a specific object. Since the object properties violate
constraints of both end-effectors, only the appropriate action of staying idle is chosen.
This is the desired outcome for an infeasible task, guaranteeing safety (no dropping
objects or movements of the robot) and allowing the task to be executed by a different
robot, having the right components for this task.

• Choosing Only Suitable Gripper.
Different end-effectors are present: one vacuum gripper and one servo-electric gripper.
The object’s properties combined with the constraints of each end-effector made for a
specific action to be preferred over the other, which is determined by the Airet reasoner
in combination with the Airet ontology. Picking with the servo-electric gripper was
not possible as it is the same task as the previous case. When planned and executed
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Table 6-1: Experimental results showing the capabilities of the Airet framework compared to
baseline [74]. RES stands for results of task execution with respect to task goal.
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with the baseline framework [74], it would be random whether the task succeeds since
it depends on the implementation of the baseline framework, which chooses actions in a
fixed order. The Airet framework identified this manipulation constraint, and checked
the constraints for the vacuum gripper. After these constraints were satisfied, a Bayesian
Network was generated to specify likelihood of task success through picking this object
with a Vacuum gripper. The Airet reasoner deemed this task feasible with the vacuum
gripper solely, hence a preference over plans of this vacuum gripper is given. The result
is successful task completion.

• Controller Preferences Available.
The robotic agent has two servo-electric end-effectors. The right servo-electric gripper
in this case preferred over the left due to its higher historical reliability, with the left
end-effector suffering from more frequent component failure. Other preferences could
also be taken into account. For example, if the product is on a certain shelf side,
the end-effector on that side is preferred. If planned and executed with the baseline
framework [72], when these preferences are not taken into account, it would be random
whether the preferred action would be chosen, due to action selection in a fixed order,
resulting in task failure being more likely.

• Component Failure Occurs.
The robotic agent has two servo-electric end-effectors. Failure of the left robotic arm
occured. The lower-level controllers communicated this to the Airet reasoner. The
Airet reasoner reasoned on the failure, updated the Airet ontology of the presence of
failure through the CRUD module and then chose the functioning end-effector resulting
in succesful task completion. When planned and executed with the baseline framework
[74], the robot kept repeating the task with the broken end-effector resulting in task
failure and compromising safety, due to repeated unexpected movements made by the
robot. This could eventually lead to damaging the robot components, resulting in loss
of profit, besides the profit loss caused by the task failure.

Note that a task is considered to have failed when the desired task goal is not achieved.
Perception through Active Inference intrinsically checks if the desired state is reached. For
picking it would be that the state holding an object is not reached after executing the action,
resulting in a higher level of surprise. Task succession is also verified through observing the
simulation and real experimental result manually, seeing whether the task goal (e.g. picking
of an object) is achieved. Due to combining hard constraints with the Bayesian Network, the
Airet framework produces a deterministic and consistent outcome of the reasoning process.
This has similarities with human thinking in that successful actions given a situation are
consistently preferred over less successful actions, after reasoning upon these actions.
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Future Work

Reasoning
Reasoning on the feasibility of actions could be enhanced by having more detailed models
of environmental constraints and object properties. For example, by integrating a neural
network with semantic reasoning, one can relate shelf regions to actions resulting in the most
suitable end-effector, robot arm and grasping orientation being chosen for that shelf region.
The framework Knowrob has implemented a similar feature that uses detailed information
from task execution like recording joint torques, observations of the environment and task
goals of successful task executions, to determine if it is safe to pick an object (if an object is
in use or not by a human) [5].
Active Inference
Other future work involves defining and reasoning on action models needed for Active Infer-
ence, allowing for a more modular specification of actions, pre- and post-conditions. Currently,
the generative model of Active inference is hard-coded but could be loaded from the ontology
after being reasoned upon by the Airet reasoner, making it dependent on the situation. An
example where this is useful is when the uncertainty of the robot about its environment in-
creases due to transitioning to a more unfamiliar part of the retail store. The Airet reasoner
could for example reason on events that are occurring in the environment, to adapt the matrix
A, which encodes beliefs between hidden states and observable outcomes, to represent obser-
vations providing more or less precise information when the agent is in a certain state. This
is especially useful in a dynamic environment like retail where uncertainty dictates observa-
tions fed into the Active inference algorithm. In sum, the Airet framework would allow for
more control on the decision-making by reasoning on the uncertainty and model parameters,
varying the generative model of Active inference to counteract this uncertainty.
Task planning
Further work could involve providing a method for online adaptation at the global task level.
This could possibly be achieved by integrating a hierarchical task network into the behavior
tree, assembling instead of skills behaviour tree branches specifying parts of a plan still feasible
after controller failure occurs. This would result in other tasks that are depending on faulty
controllers to be omitted from the task plan and the remainder to be executed. An example
of this is when a robot with one vacuum and one servo-electric gripper has a list of items
to stock. Some of these items could only be manipulated by using the vacuum gripper, as
the Airet reasoner would report. If the vacuum gripper fails, all future items to be stocked,
relying on a functioning vacuum gripper, would be removed from the task list. The result is
that the remaining tasks would still be able to be executed, increasing the profit of a store
compared to when stocking actions stop, as well as maintaining customer trust.
Lastly, a Graphical User Interface (GUI) could be developed to facilitate task planning by
encoding Active Inference desires in the behavior tree in a graphical more simplistic manner,
removing the need for expert knowledge for planning tasks. This could be represented as
task blocks being for example "Pick up a tomato can". Due to the modularity of the Airet
framework, this would require little to none changes to the Airet ontology and reasoner
structure of knowledge. This is especially useful for a retail environment, where many stores
are run by people lacking this expertise, and it is infeasible from a monetary cost perspective
to always have a technical expert present.
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Chapter 7

Appendix

7-1 Appendix A - Motivation Behind KRR: Satisfying Cognition

The definition of cognition as given by Vernon [89] points out a preliminary basis for crucial
factors influencing robotic manipulators. Vernon defines cognition as “the process by which an
autonomous system perceives its environment, learns from experience, anticipates the outcome
of events, acts to pursue goals, and adapts to changing circumstances” [89, 91]. These crucial
features system architectures should contain for autonomous mental capabilities are discovered
by Langley et al [55, 90]. These crucial cognitive capabilities are summarised as follows:

• Recognition and categorisation: the ability of a robot to recognise events or sit-
uations and categorise them as instances of known patterns. Adequate minimal level:
Recognise products, shelves, and obstacles in a retail store as well as pick-and-place
behaviour of other agents, including humans.

• Decision-making and choice: the capability to represent different choices in an
understandable matter to a robotic agent and choose between different alternatives.
Adequate minimal level: Decide which actuators to reach goals, e.g., move, pick, place,
change posture and stay idle. Changing posture is relevant when grasping objects with
locations at varying heights.

• Perception and situation assessment: sensing, perceiving, and interpreting the
environment of the robot. Next, the analysis and categorisation of this information
into a recognisable flow of events. Adequate minimal level: Perceive objects and agents,
like a shelf, a basket, a table, a human, a robotic agent, a product sold in a store,
and obstacles like shopping carts. Assessing situations includes interpreting recognised
patterns like a human moving and pillaging from broken products.

• Prediction and monitoring: using the representation of the environment, actions
and their effects in order to plan a set of actions for events that have not occurred
yet. Adequate minimal level: Predict how obstacles like human agents will move with
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respect to goal positions such as shelf and stock locations. Predict the consequences of
actions, like dropping a bottle, pushing a product on a shelf using the representation of
the environment, actions, and their effects to plan a set of actions for events that have
not occurred yet.

• Problem-solving and planning: The agent should be able to specify appropriate
sequences of actions to achieve the desired goals the agent has. Furthermore, when
in novel environments, the robot should still be able to specify actions to achieve the
desired goal. With contingencies happening, the plan to achieve this goal must be
adapted to deal with these unforeseen events, referred to as problem-solving. Adequate
minimal level: Encode a sequence of tasks to achieve goals as well as motion primitives
that lead to an action being satisfied correctly. The former often constitutes moving
from stock location, picking objects, moving to shelf, and placing objects, see figure
3-3. Pre- and post-conditions should specify whether tasks such as picking are possible,
depending on conditions such as having a free gripper, objects being reachable, and
the object weight being lower than the maximum load the controllers can handle. The
latter indicates right motion parameters for the base speed of robotic agents, and the
grasping method of objects. Also, when contingencies occur, e.g., an actuator fails, e.g.,
a robot arm, the robot should be capable of recovering and attempting to satisfy the
goal. The robot might prioritise other sub-tasks like sorting other products which it is
still capable of executing. Other recovery includes missing assertions or predicates in
the knowledge base being resolved when encountering a new product.

• Reasoning and belief maintenance: ability to form, and keep a representation of
beliefs and understand relationships between these beliefs. Furthermore, the adaptation
of this representation based on new observations should be included in the capability.
Adequate minimal level: Describe objects, robotic agent and their properties, extract
valuable information for the goal of tasks and adapt the knowledge base to a more
up-to-date version. Examples of reasoning are picking up heavy objects with both
grippers, using a vacuum gripper for picking up objects wider than a serve gripper,
putting objects in shelves where they belong, pushing objects in shelves until the shelf
is full, and updating the knowledge base when a product is bought, making the fully
stocked shelf re-stockable.

• Execution and action: the agent must be able to represent and store motor skills,
and translate them into performed commands. Adequate minimal level: being able to
perform pick, place, move, push, extend and contract actions, understand how these
actions affect other obstacles in the world.

• Interaction and communication: gaining knowledge from other agents and sending
queries back and forth with knowledge requests and discharges. Adequate minimal level:
Talk to humans and other agents and exchange information. This could be questions
regarding product locations, plans the robot should make or task goals the robot should
adapt. Information could be knowledge regarding amounts of objects present in the
store, expiration dates and locations.

• Remembering, reflection, and learning: ability to encode and store results of
cognitive tasks for retrieval at a later moment (remembering), analyse these memories
to extract useful knowledge (reflection) and generalise the rationale behind the useful
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knowledge to situations where this knowledge has a purpose (learning). Adequate min-
imal level: understand which actions cause task goals to fail e.g., dropping an object
causes irreversible damage and fails the stocking task. Understand human preferences
for product locations based on previous experiences and the importance of these prod-
ucts e.g., panic ensures when baby milk powder is not restocked.

7-2 Appendix B - PMK Classes

• Quantity: [1] Any specification of how many or how much of something there is. Accord-
ingly, there are two subclasses of quantity: number (how many) and physical quantity
(how much).

• Quantity Aggregation: A single quantity that represents a set of quantities such as Pose
that represents the 3D location of the objects in the environment.

• Attribute: [1] Abstract qualities that can not or are chosen not to be considered as
subclasses of Object.

• Artefact Component: [1] Representation of the parts of the workspace object in the
world.

• Artefact: [1] An object that is the product of a making.

• Collection: [1] Collections have members like classes, but, unlike classes, they have
a position in space-time and members can be added and subtracted without thereby
changing the identity of the collection.

• Robot Component: Representation of the parts of the robot in the world.

• Robot: [1] A device in the world that is responsible for executing the tasks.

• Robot Group: [1] A group of robots organized to achieve at least one common goal.

• Measuring Device Component: Representation of the parts of the measuring device
(sensor). Measuring Device: [1] Any device whose purpose is to measure a physical
quantity.

• Device Group: A group of measuring devices that supply the robot information to
achieve one common goal.

• Region: [1] A topographic location. Regions encompass surfaces of objects, imaginary
places, and geographic areas.

• Physical Environment: [1] A physical environment is an object that has at least one
specific part: a region in which it is located. In addition, a physical environment relates
to at least one reference object based on which region is defined.

• Semantic Environment: A physical environment with data (feature) of the artefacts.
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• Spatial Context: The circumstances that form the setting for an event that is related
to space and which can be fully understood. Specifically, a representation of the world
in terms of space.

• Temporal Context: The circumstances that form the setting for an event that is related
to time and which can be fully understood. Specifically, a representation of the world
in terms of time.

• Situation: The physical object situation in the environment that represents spatially
and temporally the relation of the objects to each others.

• Atomic Function: A representation of the processes for motion, manipulation and per-
ception, such as task planners, motion planners or perceptual algorithms. Moreover, it
includes primitive actions, pre- and post-conditions related to task planning.

• Sub-task [66] The summarisation of the typical definition is, a representation of a short-
term sequence of action.

• Task [66] The summarisation of the typical definition is, a representation of the long-
term goals of the symbolic pre-conditions and effects.
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