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The relationship between form and function in trees is the subject of a long-

standing debate in forest ecology and provides the basis for theories

concerning forest ecosystem structure and metabolism. Trees interact with

the wind in a dynamic manner and exhibit natural sway frequencies and

damping processes that are important in understanding wind damage. Tree-

wind dynamics are related to tree architecture, but this relationship is not

well understood. We present a comprehensive view of natural sway frequen-

cies in trees by compiling a dataset of field measurement spanning conifers

and broadleaves, tropical and temperate forests. The field data show that a can-

tilever beam approximation adequately predicts the fundamental frequency of

conifers, but not that of broadleaf trees. We also use structurally detailed tree

dynamics simulations to test fundamental assumptions underpinning models

of natural frequencies in trees. We model the dynamic properties of greater

than 1000 trees using a finite-element approach based on accurate three-

dimensional model trees derived from terrestrial laser scanning data. We

show that (1) residual variation, the variation not explained by the cantilever

beam approximation, in fundamental frequencies of broadleaf trees is driven

by their architecture; (2) slender trees behave like a simple pendulum, with a

single natural frequency dominating their motion, which makes them vulner-

able to wind damage and (3) the presence of leaves decreases both the

fundamental frequency and the damping ratio. These findings demonstrate

the value of new three-dimensional measurements for understanding wind

impacts on trees and suggest new directions for improving our understanding

of tree dynamics from conifer plantations to natural forests.
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1. Introduction
1.1. Natural frequencies and tree architecture
The dynamics of trees in the wind has interested observers for

centuries, but detailed studies concerning the risk of wind

damage are relatively recent [1,2]. All structures that can

sway, such as trees in the wind, possess natural frequencies—

characteristic shapes and speeds at which the motion is

concentrated. The natural frequencies of a tree are related to

its architecture [3,4] and they influence its response to wind

loading [5], thus linking form and function. However, due to

the difficulty of obtaining detailed information on tree architec-

ture, this link has remained largely unexplored (although see

[4]). Recently, terrestrial laser scanning (TLS) has revolutio-

nized the mapping of tree architecture [6], paving the way

for more detailed studies on this intriguing subject.

The lowest natural frequency, known as the fundamental

frequency ( f0), is particularly relevant for wind damage risk.

This is because wind energy is concentrated at low frequen-

cies [7] and energy will be transferred from the wind to the

tree more efficiently in trees with lower f0, a phenomenon

known as resonance [8–10]. Previous work found that the

f0 of 602 conifers in the UK and North America was accu-

rately predicted by the cantilever beam approximation [8,9],

which models the tree as a vertically oriented cylinder with

uniform radius and material properties. According to this

approximation, f0 will decrease with increasing tree height,

leading to an increased likelihood of resonant effects in

taller trees. Importantly, no field study has yet recorded the

moment a tree breaks or uproots due to wind loading [11]

and the relevance of resonant effects in wind damage is the

subject of ongoing debate in the literature [11–14].

Knowledge about the natural frequencies of a structure

allows for a detailed model of that structure’s dynamics

under loading. In the case of conifer trees in the wind, data

on f0 provided the basis for an accurate model of tree motion

under wind loading at the plot level [15]. This was possible

because the dynamics of conifers are, in uniform plantations,

dominated by f0 due to their simple architecture. However,

the dynamic properties of broadleaf trees are unlikely to

follow these simple patterns, but rather consist of multiple

significant natural frequencies and be dependent on tree

architecture and the presence or the absence of leaves [3,16].

Trees with multiple significant natural modes can exhibit

multiple resonance damping, a dynamic process whereby

dangerous energy in the stem is dissipated by the move-

ment of the branches [17,18]. The existence of this damping

mechanism demonstrates the relationship between wind

damage risk and tree architecture: trees with certain architec-

tures will dissipate dangerous sway energy more efficiently

and so reduce their risk of damage in storms. See Spatz &

Theckes [17] for a review of multiple resonance damping

(and the similar concepts of structural damping and damping

by branching).

1.2. Objectives and structure of the paper
Our overall aim is to explore the relationship between tree

architecture and the dynamics of trees in the wind, in particu-

lar their natural sway frequencies. We employ the cantilever

beam approximation (equation (1.1)), appropriate to the

simple architecture of many conifers, as a starting point

and add additional terms to explain residual variation
caused by the complexities of broadleaf trees (equation

(1.1)). Our updated equation takes the form:

f0 /
dbh

H2

ffiffiffi
E
r

s !
A� L, ð1:1Þ

where H is tree height and dbh is the diameter at breast

height, measured at 1.3 m, and E/r is the ratio of green

wood elasticity to density. The additional terms A and L rep-

resent the effect of tree architecture and leaves, as described

below. In order to explore these additional terms, we:

(1) Collate field data on f0 for 163 broadleaf trees spanning

open-grown conditions, tropical forests, temperate forests

and a height range of 4.7–55.7 m (see electronic sup-

plementary material, table S1 for a detailed overview).

We then use this field data to test the applicability of the

cantilever beam approximation to broadleaf trees. Archi-

tectural information was not collected in these studies

and is immensely difficult to collect in the field.

(2) Explore the range of tree architecture by bringing together

TLS data for 1083 trees from previous studies spanning tro-

pical and temperate forests, cities and parks (electronic

supplementary material, table S1). We also test for covari-

ance between these architectural indices, since they are

used as explanatory variables in the next step.

(3) Quantify the architectural term, A (equation (1.1)) in a

model environment. We use finite-element analysis to

simulate f0 (figure 1) for each of the 1083 trees. We then

test how well the cantilever beam approximation predicts

the simulated f0 and whether any residual variation can

be explained by the architectural indices extracted in

the previous step.

(4) Calculate the dominance of the fundamental sway mode,

D0, based on the same finite-element simulations and test

how it is related to tree architecture. D0 is defined as the

percentage of generalized mass contained in f0. Trees with

D0 . 90% behave like a simple pendulum, with a single

dominant sway mode, while lower D0 values correspond

to an increasing significance of higher order natural sway

modes in the overall motion of the tree.

(5) Use pull and release data to explore how leaves change f0
and damping rates in deciduous broadleaf trees.

2. Material and methods
2.1. Analysis of field data
In order to extract field data on f0, we measured wind-induced

strain (extension/original length) following Moore et al. [19] for

a period of eight months (spanning winter and summer) at

1.3 m height on the trunks of 18 trees (21 stems) in Wytham

Woods, UK, and for five months on 20 trees in Danum Valley,

Malaysia. We separated the strain data into hourly blocks

and analysed them using a Welch’s power spectral density

function [20]. We smoothed the resulting spectra and extrac-

ted the peak frequencies. We then took the mean of all the

hourly frequencies. We also collated data on the f0 of trees

from previous studies (see the electronic supplementary material,

table S1 for an overview of field data). Fundamental frequency

extraction from previous studies are described in the original

publications [3,9,21–25].

To investigate the damping effect of leaves, we conducted

pull and release tests on four trees (two Acer pseudoplatanus L.,



Figure 1. Simulated fundamental sway frequency of a tree. Finite-element
simulation output showing the two extreme positions (blue and red) for a
sycamore tree (Acer pseudoplatanus) swaying at its fundamental frequency,
f0 ¼ 0.26 Hz. (Online version in colour.)
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one Fraxinus excelsior L. and one Betula spp.) in Wytham Woods

in February 2016 (leaf-off ) and June 2016 (full-leaf), repeating the

tests multiple times per tree in perpendicular directions. The

trees behaved like damped harmonic oscillators and we therefore

fit functions of the form

1 ¼ 10e�lt cosð2pf0tþ uÞ, ð2:1Þ

to the data, where 1 is strain, 10 is the initial strain, l is the decay

exponent, t is time and u is the phase offset at time t ¼ 0. The

direct effect of damping on f0 is given by

fd
0 ¼ fu

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l

2pfu
0

� �2
s

, ð2:2Þ

where f d
0 and fu

0 are the damped and undamped fundamental

frequencies, respectively.
2.2. Terrestrial laser scanning data and tree
architectural indices

TLS data contains highly useful information on the three-

dimensional structure of trees, but it is difficult to access directly

from the point cloud. Therefore, quantitative structure models

(QSMs), which are three-dimensional representations of the trees

as a series of cylinders, are often fit to the raw TLS data [26]. We

brought together 1083 QSMs from existing publications and

ongoing projects [27–32]. In all cases, TLS data were collected

with a Riegl VZ-400, but sampling details were study specific

(see the electronic supplementary material, table S1 for details).

We applied a simplification step in order to prepare the QSMs for

finite-element analysis. This step removes QSM branches under

2 cm diameter and child branches whose diameter is less than

30% of its parent branch diameter, since they are error prone [33].

It also replaces each pair of neighbouring cylinders with a single

cylinder with an increase their length to radius ratio and the

mean orientation and radius of the original pair. This simplifica-

tion was applied to remove most of the variation that arises from

uncertainties in the cylinder fitting process for smaller branches.

This level of simplification was chosen because the sensitivity

of the architectural indices was relatively low (see electronic supple-

mentary material, figures S6 and S7 for details). The following
architectural indices, in addition to tree height and dbh, were

extracted from the simplified QSMs:

— Crown area—maximum ground area covered by the crown

viewed from above. The crown is defined as all the cylinders

with branching order greater than one, which is given by the

QSM fitting software.

— Crown aspect ratio—ratio of maximum crown width to

crown height.

— Crown volume ratio (CVR)—ratio of total woody volume to

that in the crown. This is an inverse measure of how ‘top-

heavy’ the tree is.

— Crown volume asymmetry—the ratio of mean to maximum

woody volume contained in each segment of crown. These

segments were defined starting from the position of the

base of the tree and summing the volume of cylinders in

the crown between angles 0–458, 46–908, etc.

— Path fraction—ratio of mean to maximum base-to-twig path

length, this is considered a proxy for water use efficiency

[34,35].

— Mean branching angle—the average angle between two

cylinders at each branching point.

— Total volume—total volume of all the cylinders that make up

the tree.

No validation of these architectural indices was possible since

measuring tree architecture in the field is extremely slow and diffi-

cult. Indeed, it is exactly this difficulty that has hampered previous

studies on tree architecture, which are now possible through TLS

[6]. Previous work found that these QSMs are accurate enough

to extract architecture information sufficient to identify species in

a three-species environment [36]. Importantly, the TLS data qual-

ity differs systematically between study sites due to differences in

forest structure [33]. Simple architectural indices such as crown

area are likely to be robust, but more complex measures such as

crown asymmetry may be less accurate in tall dense forests. A

validation study of these, and other, TLS-derived architectural

indices across different forest types would be highly valuable,

albeit extremely time consuming.

2.3. Finite-element analysis
Finite-element analysis is a computational technique capable of

simulating the dynamics of complex structures. It is the de

facto investigation tool used to isolate mechanisms related to

branched structures [11,18,37,38]. The QSMs were imported

into Abaqus [39], with each cylinder represented as a beam.

First, a gravitational force was applied to the trees, which

caused a number of simulation failures due to poorly connected

beams. This reduced the sample size from 577 to 568 for the

temperate trees, 451 to 348 for the tropical trees and 56 to 52

for the open-grown trees. A subspace method [40] was employed

to extract the natural frequencies and D0 was calculated as the

percentage of generalized mass contained in the f0. This defi-

nition was chosen to give an indication of the significance of

the fundamental mode in the overall motion of the tree. Other

metrics, such as the distribution of modes in frequency space,

could be used in future studies. See Jackson et al. [41] for a

detailed description of the finite-element method applied

to QSMs.

Due to the difficulty of co-locating TLS and census data, the

species of trees represented by the QSMs were generally not deter-

mined in the original studies. Therefore, green wood density and

elasticity were kept constant for all simulations at 800 kgm23 and

9.5 GPa, respectively [42]. Our sensitivity analysis (electronic sup-

plementary material, table S3) showed that this uncertainty is

unlikely to affect our predictions of f0. This is in agreement with

Sellier & Fourcaud [4] who found that the effect of material prop-

erties on tree dynamics is likely to be secondary to that of tree
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Figure 2. Workflow diagram. (Online version in colour.)
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architecture. Importantly, the same simplified model trees were

used for the finite-element simulations and to extract the architec-

tural indices, so our linear models predicting f0 and D0 from

architecture are internally consistent.

2.4. Statistical analysis
For the field data, we tested linear regression models of the form

f0 ¼ 1 þ dbh/H2 for each subset of trees (temperate forest, tropi-

cal forest, open-grown and conifer forest). For a subset of 40

broadleaf trees, those for which material properties information

was available in Niklas & Spatz [42], we tested a linear model

of the form f0 ¼ 1þ ðdbh=H2Þ
ffiffiffiffiffiffiffiffi
E=r

p
(this subset is indicated in

electronic supplementary material, table S1 and the results are

given in electronic supplementary material, table S2).

For the QSMs, for which we had both architectural information

and simulated f0 and D0, we used linear models of the form f0 ¼ 1 þ
dbh/H2 þ (A1 þ A2 þ A3) and f0 ¼ 1 þ dbh/H2 þ dbh/H2: (A1 þ
A2 þ A3) to predict f0 for each subset of trees, allowing the intercept

to vary between subsets (linear models specified in Wilkinson

notation). The same method was used for D0 except that in this

case H þ dbh was the primary predictor variable. We used ordinary

least-squares linear regression models for all the statistical analysis

in this study. We ensured this method was appropriate by inspect-

ing the residuals and testing robust regressions. The only

problematic models were those for the open-grown trees, for

which the result was highly dependent on the inclusion of 12

small trees. In these cases, we give both results and our conclusions

are necessarily tentative where open-grown trees are concerned. In

all cases, we selected the optimal model based on highest predictive

power (adjusted R2) and lowest Akaike information criteria (AIC).

See the electronic supplementary material, figures S1–4 for full

details of the linear models and their outputs.

An overview of the workflow is given in figure 2.
3. Results
3.1. Patterns in f0 from field data
In this section, we test the applicability of the cantilever beam

approximation to all of the field data on f0. We find that f0 is
strongly related to dbh/H2 for conifers, indicating that the

cantilever beam approximation is accurate (see table 1 for fit

statistics). This relationship is weaker for broadleaf trees

(figure 3a) presumably due to their more varied architectures.

This was expected, since trees with large branches clearly do

not conform to the cantilever beam approximation. Differences

between tropical and temperate forest broadleaf trees are not

statistically robust in this limited sample. For a subset of

40 trees, we found that including material properties actually

lowered the adjusted R2 from 0.33 to 0.31 (see electronic sup-

plementary material, table S2). This lack of explanatory

power is likely due to the large range of inter- and intraspecific

variation in material properties that is not accounted for in this

simplistic approach [14,42]. Surprisingly, f0 for open-grown

broadleaf trees was well predicted by the cantilever beam

approximation (table 1), even though these trees typically dis-

play the least ‘beam-like’ architecture. This is partly driven by

the large range of f0 and tree size in our open-grown tree

sample. In addition, this high predictability could be due to a

smaller range of architectures in open-grown trees.
3.2. Tree architecture
In this section, we explore our seven architectural indices

using the TLS-derived QSMs collated from previous studies.

Instantly apparent from figure 4 is the large range of architec-

tural variation in the tropical trees, as compared to the

temperate or open-grown trees. The primary axis of variation

is driven by tree size: total volume, dbh and crown area are

closely aligned and they account for much of the separation

between the relatively small trees from a temperate forest in

the UK and the large tropical trees. The second axis of vari-

ation is driven by crown properties, specifically the CVR

and crown asymmetry. This suggests that some tropical

trees have crowns that are both asymmetric and small relative

to their stem, and that this does not occur in the open-grown

trees in our sample. Instead, open-grown trees tend to have

large, wide crowns and high path fractions. Correlations
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between architectural indices are given in the electronic sup-

plementary material, figure S5 and the sensitivity of these

architectural indices to simplification are given in electronic

supplementary material, figures S6 and S7.

3.3. The effect of tree architecture on f0
In this section, we use the 1083 TLS-derived QSMs to simulate

f0 and then test whether it is well modelled by the cantilever

beam approximation, and whether the residual variation is

driven by architecture. Across all the simulations, linear

models showed that dbh/H2 was positively correlated with

f0 meaning that slender trees tend to have low f0. As in our

field data, this relationship was weakest for the tropical trees

(figure 4), presumably due to the higher range of architectures

in this sample. The architectural term, A, improves f0 predict-

ability in all samples (figure 5). The predictability increased

by approximately 40% in both temperate and tropical trees

(table 1). Trees with large crown volume ratios tended to

have lower f0, while high crown asymmetry and aspect ratio

were correlated with higher f0 (see the electronic supplemen-

tary material, figure S2 for effect sizes). In this analysis we

used the model with highest predictive power (adjusted R2)

and lowest AIC (see electronic supplementary material,

figure S1), which was a three-parameter model focusing on

crown architecture. However, all of our architectural indices

improved the predictability of f0 to different extents and the

key message is that any architectural information is useful

when attempting to predict tree dynamics.

3.4. Dominance of the fundamental sway mode
In this section, we explore the predictability of D0, the domi-

nance of the fundamental sway mode, based on simulations

of the 1083 TLS-derived QSMs. Linear models showed that

height and diameter explained 26% of the variation in D0

across all QSMs (table 1). Taller trees tended to have higher

D0, while a larger dbh was associated with lower D0 (electronic

supplementary material, figure S4). This suggests that slender

trees behave more like a simple pendulum, with the fundamen-

tal mode accounting for the majority of the motion.

Architectural indices did not substantially improve our ability

to predict of D0, accounting for only 14% of the residual vari-

ation. Within our small subset of open-grown trees, it was

possible to predict D0 from tree height, dbh and total volume

(table 1) but further open-grown tree data would be needed

to robustly explore this relationship.

3.5. The effect of leaves
The swaying behaviour of deciduous trees changes as leaves fall

in the autumn. We found that the mean f0 increased by 19.4% in

winter in Wytham Woods (figure 6). These changes are nearly

uniform and can easily be parametrized. If we define L
(equation (1.1)) as the increase of f0 in winter, then L ¼ 1.18+
0.12. We expect that the magnitude of this term will be

influenced by total leaf biomass, which varies from site to

site. For comparison with other forest plots, the leaf mass per

unit ground area in Wytham Woods was measured to be

0.35+0.02 kg m22 (dry weight) through direct measurement

of cumulative autumn litterfall.

Repeated pull and release tests on the same four trees in

summer and winter determined the summer damping ratio

to be 8.6+2.2% and the winter damping ratio to be 3.9+
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1.3%. If we assume that changes in temperature and air

density do not have a significant effect on damping, we

find that the leaves contributed a damping ratio 4.7+2.5%

or approximately half the full summer damping ratio. The

direct effect of this damping on f0 is less than 1% (equation

(2.2)). This means that the change in f0 is due to the mass

of the leaves, not their aerodynamic drag.
4. Discussion
By using novel tools and sensors, particularly a large number of

detailed three-dimensional measurements of individual tree

structure across biomes, we have improved our understanding

of the dynamic behaviour of broadleaf trees. In particular,

we have introduced a new way to quantify the impact of tree

architecture on natural frequencies. The improved predicta-

bility of f0 is a step towards mechanistic modelling of wind

damage for natural broadleaf forests, which plays a vital role

in the terrestrial carbon cycle [43–45].
4.1. Tree architecture
We explored the range of tree architecture across 1083 broadleaf

trees from tropical forests, temperate forests, parks and cities

using QSMs based on TLS data. The primary axis of variation

was driven by tree size and the secondary axis of variation by

crown shape (figure 4). Interestingly, open-grown trees

tended to cluster around high path fraction, the optimum archi-

tecture for hydraulic transport [35], as we would expect in the

absence of competition for light or resources. More work is

needed to validate these architectural measures and explore

their sensitivity to TLS data processing parameters (see

electronic supplementary material, figures S6 and S7).
4.2. Beyond the cantilever beam approximation
Most trees in our sample exhibited a clear f0, which was

related to dbh/H2 as expected from the cantilever beam

approximation (equation (1.1)). However, in the case of

broadleaf trees, and especially tropical broadleaf trees, there
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was significant residual variation in f0. This variation was not

explained by material properties for a subset of 40 broadleaf

trees. Moreover, our sensitivity analysis (electronic sup-

plementary material, table S3) showed that variations in

material properties are unlikely to explain this residual vari-

ation in general, since wood density and modulus of elasticity

are strongly correlated [42]. Our modelling work shows that

tree architectural information can increase the predictability

of f0 by approximately 40% for temperate and tropical

forest broadleaf trees.

In deciduous forests, the presence of leaves caused an

18% increase in f0 and a doubling of damping efficiency,

which is similar to previous studies [22,46,47]. This increase

in f0 was due to the weight of the leaves, rather than the
increased aerodynamic damping. Additionally, both water

uptake and soil state can alter f0 [22,25]. However, predicting

leaf mass or volume of water uptake by the changes they

cause in f0 is difficult, since these changes are highly sensitive

to their distribution within the tree.

The swaying behaviour of broadleaf trees in the wind may

comprise more than a single significant natural frequency and

we defined D0, the dominance of the fundamental sway mode,

to quantify this. D0 can be thought of as an indication of the

tractability of simpler (e.g. modal dynamics) modelling

techniques [15] and as a proxy for the efficiency of multiple res-

onance damping [14]. Despite the fact that three-dimensional

tree structure was fully mapped and specified in a virtual

environment, we were not able to satisfactorily explain the

resulting variation of D0 using our architectural indices. This

result suggests that D0 is driven by finer scale properties,

such as the presence of a single large branch, that are not

captured by our tree-level architectural indices [48].
4.3. Implications and future directions
Tall, slender trees tended have lower f0 and higher D0, making

them simultaneously easier to understand using a simple

model [5] as well as potentially more vulnerable to wind

damage. These tall trees store the majority of carbon in many

tropical forests and have a high conservation value [49]. As a

result, improved predictions of the likelihood of wind

damage for tall tropical trees would be both tractable and

highly valuable.

Overall, we have shown how detailed measurements of

tree architecture gives us new insight into the dynamic proper-

ties of trees. Our work has quantified the relative importance

of tree architectural indices in predicting natural frequencies,
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while also highlighting the greater challenge of developing a

general model for energy dissipation in complex tree architec-

tures. Our modelling approach, combining TLS data with

finite-element analysis, could also be useful for valuable

open-grown trees, to inform risk assessments and test

proposed interventions in a virtual environment. With TLS-

derived tree architectural information now becoming widely

available, this is an area ripe for further inquiry.
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