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Index Terms—Electrical vehicles, stochastic opti-
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integer programming.

Abstract—In power systems, demand and supply al-
ways have to be balanced. This is becoming more chal-
lenging due to the sustained penetration of renewable
energy sources and their inherit uncertain production.
Because of the increasing amount of electrical vehicles
(EVs), and the high capacity and flexibility of their
charging process, EVs are a good candidate for provid-
ing balancing services to electric systems. We propose
a stochastic optimization method for an EV aggregator
that models the uncertainty of the imbalance price,
the reserve prices and the probability of acceptance
and deployment of reserves. The model results in an
optimal charging and discharging strategy considering
day-ahead purchase, imbalance trading and reserve
bids. Unlike previous studies, the reserve bids consists
of both a quantity and an optimal price using a novel
efficient formulation for the price bids. Experimental
evaluation shows that the proposed stochastic opti-
mization method results in lower costs than determin-
istic and quantity-only bid solutions.

I. Nomenclature

The expected value of a variable is denoted by omitting
the scenario index ω. The superscript � means that either
up (�) or down (�) reserves are meant. The superscript Ù
means that either charging (Ó) or discharging (Ò) is meant.
Indices and Sets:

i P I Electric vehicles, from 1 to I.
t P T Programme time unit (PTU), from 1 to T .
hptq P H Hourly periods. Every PTU t belongs to a

specific hour hptq.
tphq P T A set of PTUs t, within one hour h.
ω P Ω Set of all scenarios, from 1 to W .
EV Parameters:

EA
i State of Charge (SOC) at arrival [kWh].

ED
i Required SOC for departure [kWh].

Ēi Battery energy capacity [kWh].
P̄ Ù

i Maximum (dis)charging speed [kW].
TA

i Time of arrival [h].
TD

i Time of departure [h].
αit Availability: αit � 1 ô t P rTA

i , T
D
i s.

ηÙi (Dis)charging efficiency [p.u.].

System Parameters:
∆ Duration of a PTU [h].
ε�ωt Deployed reserves [%].
κ Battery degradation cost [€/kWh].
λimb

ωt Imbalance market price [€/kWh].
λ�ωt Reserve capacity market price [€/kW].
λDA

h Day ahead (DA) energy price [€/kWh].
φω Probability of scenario ω.
ψ Penalization of unmet SOC demand [€/kWh].
χ�t Bid-acceptance probability (deterministic model).
First-stage Decision Variables:

b�t Reserves capacity price bid [€/kWh].
dit Charging (0) or discharging (1).
fiω Planned unmet SOC demand [kWh].
pÙit (Dis)charging power [kW].
pDA

h Energy bought in the DA market [kWh].
pimb

t Imbalance power1 bought [kW].
rÙ�it Reserves capacity bid [kW].
Second-stage Decision Variables:

eiωt State of charge (SOC) [kWh].
u�ωt Binary variable that is used to determine the price

bid b�t , according to u�ωt � 1 iff λ�ωt ¤ b�t .

II. Introduction
The balancing of supply and demand in power systems

is challenging and even more with increasing use of renew-
able resources. Because of the flexibility of the EV charging
process, and their high capacity, EVs are good candidates
for providing balancing services. In the Netherlands for
example, a number of EVs equal to approximately 0.8% of
the total Dutch car pool would suffice to solve the average
imbalance [1], [2]; and at the moment that EV share is
already 0.3%. Also, EVs can be used to attain a higher
utilization of renewable energy sources, such as wind and
solar power, which are sources of uncertainty. The result is
that fewer fossil fuel sources would be required as a backup
for these renewable energy sources [3].
An aggregator can participate on behalf of EV owners

in balance regulation by following the imbalance price
signal, but also by providing ancillary services to the power

1In reality, energy is bought/sold, not power. The amount of energy
is determined by multiplying with ∆.
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system. However, a number of uncertain parameters, such
as the energy price, and demand and supply of both the
power system and the EV fleet, make this problem chal-
lenging to solve. We propose a Stochastic Optimization
(SO) method that models electricity prices and reserve
acceptance and deployment stochastically. The method
decides on 1) what energy to buy day-ahead, 2) what
energy to buy in the imbalance market, 3) what reserve
capacity to commit, 4) what reserve price bids are made,
and 5) when to provide vehicle to grid (V2G) services.
Unlike previous studies, the reserve bids consist of both a
quantity and an optimal price.

Some studies on this subject have focused on determin-
istic approaches [4], [5]. Among those, Sarker et al. [4]
have developed a model that results reserves consisting of
quantity and price. Other studies have developed an SO
method [6]–[8]: Vagropoulos et al. [6] built an SO model for
an aggregator participating in the ancillary services. They
provide quantity-only reserve bids, and assume that those
bids are always accepted and deployed. Sánchez-Martín
et al. [7] model the uncertainty of consumer behavior
stochastically. They model market prices deterministically.
Alipour et al. [8], model the uncertainty of market prices,
EV driving patterns and reserve deployment. Both [8] and
[7] provide quantity-only reserve bids. Quantity-only bids
can lead to unprofitable situations, because reserves then
have to be provided for any price that is offered.

Shafie-khah et al. [9] propose an iterative approach
to identify market clearing prices, and optimal bidding
strategies. Their model captures the uncertainty associ-
ated to EV owners’ behavior, being called to provide
reserves, and other market participants behavior. In [10]
a similar problem is solved with SO. Instead of EVs,
however, their source of flexibility is an aluminum smelter,
and their main focus is on optimal DA bidding, and not
on optimal reserve bid prices.

Therefore, our main contributions are:
 An SO model for an EV aggregator that models the
uncertainty of electricity prices and reserve deploy-
ments.

 A novel method for obtaining optimal reserve price
bids by use of SO.

This remainder of this paper is organized as follows. First,
the stochastic model is introduced. This model is different
to typical stochastic models. This can be observed from
the fact that a deterministic variant cannot trivially be
obtained. So the next section explains how to obtain
a deterministic variant. The aim of the evaluation that
follows is to study the advantage of SO in comparison to
the deterministic approach, and the advantage of reserve
bids with optimal prices.

III. Stochastic optimization model
The SO model optimizes EV charging and discharging

costs for an aggregator, while providing balancing services
to the grid. The market model that is assumed here is a

general electricity market with a DA market, an imbalance
market and reserves which are committed DA. The aggre-
gator is assumed to be a price-taker. For accepted reserve
services, a capacity payment is paid, and when deployed
the imbalance price is paid. A reserve bid is considered
to be accepted only when its price is below the market
capacity clearing price. An accepted bid is deployed only
when reserves are needed.
This Stochastic model for DA, Imbalance and Reserves

(SDIR) is as follows:

min
¸

hPH
pDA

h λDA
h �

¸
tPT

pimb
t λimb

t ∆�

¸
iPI

¸
ωPΩ

φω

� ¸
tPT

�
prÓ�it � rÒ�it qpλ�ωt � ε�ωtλ

imb
ωt qu�ωt�

prÓ�it � rÒ�it qpλ�ωt � ε�ωtλ
imb
ωt qu�ωt�

ppÒit � rÒ�it ε
�
ωtu

�
ωt � rÒ�it ε

�
ωtu

�
ωtqκ

	
∆ � fiωψ

�
(1)

subject to:
¸
iPI

ppÓit � pÒitq � pDA
hptq � pimb

t @t (2)

pDA
hptqp

imb
t ¥ 0 @t (3)

pÓit � rÓ�it u
�
ωt ¤ P

Ó
i p1 � ditqαit @i, ω, t (4)

pÓit � rÓ�it u
�
ωt ¥ 0 @i, ω, t (5)

pÒit � rÒ�it u
�
ωt ¤ P

Ò
i ditαit @i, ω, t (6)

pÒit � rÒ�it u
�
ωt ¥ 0 @i, ω, t (7)

eiωt � ηÓi

�
pÓit � rÓ�it u

�
ωtε

�
ωt � rÓ�it u

�
ωtε

�
ωt

	
∆

�
1
ηÒi

�
pÒit � rÒ�it u

�
ωtε

�
ωt � rÒ�it u

�
ωtε

�
ωt

	
∆

� eiω,t�1 @i, ω, t (8)

eiω,T A
i
� EA

i @i, ω (9)
eiωt ¤ Ēi @i, ω, t (10)

eiω,T D
i
¥ ED

i � fiω @i, ω (11)

b�t ¤ λ�ωtu
�
ωt � λ̄�t

�
1 � u�ωt

�
@ω, t (12)

b�t ¥ λ�ωt

�
1 � u�ωt

�
� λ�t u

�
ωt @ω, t (13)

b�t ¤ λ�ωtu
�
ωt � λ̄�t

�
1 � u�ωt

�
@ω, t (14)

b�t ¥ λ�ωt

�
1 � u�ωt

�
� λ�t u

�
ωt @ω, t (15)

pÒit, p
Ó
it, r

Ò�
it , r

Ó�
it , r

Ò�
it , r

Ó�
it ¥ 0 @i, t (16)
eiωt ¥ 0 @i, ω, t (17)

u�ωt, u
�
ωt P t0, 1u @ω, t (18)
dit P t0, 1u @i, t (19)

The objective function (1) minimizes the expected cost
for charging the EV pool of an aggregator. This cost is
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Fig. 1. Historic price data from ERCOT[11].
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Fig. 2. Historic reserve deployment data from ERCOT[12].

subdivided in the cost of DA purchase and imbalance
trading, and the expected costs over all scenarios. The
costs per scenario consist of the reserve capacity payment,
reserve deployment payment, and battery degradation
costs. In addition, the objective function also penalizes
unmet demand. Constraint (2) balances the total charge
to the amount of energy bought and sold in different
markets. Constraint (3) guarantees that the aggregator
does not intend to sell/buy on the imbalance market what
it bought/sold DA. This is required to avoid gaming.

Constraints (4)-(7) limit the (dis)charge and up and
down reserve amounts. Each EV can be in two states
(dit � 0 means charging and dit � 1 means discharging)
and in both states it can provide up and down reserves.
The constraints guarantee that (dis)charging limits are
never exceeded.
For each scenario, (8) keeps track of the SOC. The SOC

in time step t is equal to the SOC of time step t� 1 plus
(minus) the planned (dis)charging amount and deployed
reserves. The SOC eiωt is further limited by (9)-(11), so
that it never exceeds the battery limit and is charged to
a minimum SOC at departure time. The variable fiω is
added to (11), so that the aggregator can specify the risk
it is willing to take of not fulfilling the required SOC levels.

What is most special about this model is how the
optimal price bids are obtained. The optimal reserve
capacity price bids b�t , b�t are obtained from (12)-(15)
(with λ̄�t � supω λ

�
ωt, λ�t � infω λ

�
ωt, and λ̄�t � supω λ

�
ωt,

λ�t � infω λ
�
ωt). Constraints (12) and (13) represent the

optimal down-bid by requiring that a given price bid b�t is
accepted if and only if it is lower than the market price λ�ωt,
i.e., b�t ¤ λ�ωt. Similarly, the up-bid logic is represented by
(14) and (15).

For a charging speed that depends on the SOC, one
can add (20), as proposed in [6]. The variable Ecrit

i is the
critical amount of charge from which the EV cannot be
charged at full power:

pÓit � rÓ�it u
�
ωt ¤ P̄i

Ó Ēi � eiωt

Ēi � Ecrit
i

@i, ω, t (20)

Notice that (1), (4)-(8) and (20) include multiplications
of binary and continuous variables. These can easily be
linearized, as done in [4], by introducing big-M constraints.

This requires the substitution rÙ�iωt � rÙ�it u
�
ωt, for all

i, ω, t. Additionally, constraint (3) needs to be rewritten
to linear constraints, by adding binary variables qh which
take care that pimb

t and pDA
hptq are either both positive or

both negative. The result is shown in (21) with Mt �°
iPI αit maxpP̄ Ò

i , P̄
Ó
i q.

pimb
t ¥ �Mtp1 � qhptqq @t

pDA
hptq ¥ �Mtp1 � qhptqq @t

pimb
t ¤Mtqhptq @t

pDA
hptq ¤Mtqhptq @t (21)

IV. Deterministic model
In order to evaluate the advantage of SO for this

problem, this section introduces a deterministic variant of
the same model, called DDIR. This deterministic model
cannot trivially be obtained from the SO model, i.e.
by using one scenario based on expected values for all
parameters. This is because of the way the price bids
are obtained in SDIR. Instead, as done in [4], DDIR
determines the bid prices from the desired bid-acceptance
probability, χ�t . The deterministic model then chooses
a price that according to historic data will obtain that
probability χ�. The values λ��t and λ�imb

t are the expected
accepted prices given the price bid, based on χ�.
The DDIR model is as follows:

min
¸

hPH
pDA

h λDA
h �

¸
tPT

pimb
t λimb

t ∆�

¸
tPT

¸
iPI

�
prÓ�it � rÒ�it qpλ��t � ε�t λ

�imb
t qχ�t �

prÓ�it � rÒ�it qpλ��t � ε�t λ
�imb
t qχ�t �

ppÒit � rÒ�it ε
�
t � rÒ�it ε

�
t qκ

	
∆ (22)

subject to (2)-(7), (9)-(11) with the ω index omitted of
the variables and parameters, with u�ωt removed from (4)-
(7), and also subject to

eit � ηÓi

�
pÓit � rÓ�it χ

�
t ε

�
t � rÓ�it χ

�
t ε

�
t

	
∆

�
1
ηÒi

�
pÒit � rÒ�it χ

�
t ε

�
t � rÒ�it χ

�
t ε

�
t

	
∆

� ei,t�1 @i, t (23)



TABLE I
Specification of the EV used in the experiments

Arrival time: 20.00h Arrival SOC: 3kWh
Departure time: 7.15h Required SOC: 27kWh
(Dis)charging speed: 7kW Battery capacity: 30kWh
(Dis)charging efficiency: 90%

V. Experimental evaluation
The aim of the experimental evaluation is to evaluate

the advantages of SO and of optimal reserve price bids.
The obtained schedules are evaluated based on resulting
charging costs and on robustness. An evaluation of the
effects of market participation and providing ancillary
services is also shown for comparison reasons.

A. Experimental setup
The experimental setup is as follows: The uncertain

parameters in the proposed models are λimb
ωt , the imbalance

price, λ�ωt, the market capacity price of down and up
reserves, and ε�ωt the proportion of a PTU during which
reserves are deployed (for every time step t and scenario
ω). Historic data of 2016 from ERCOT [11], [12] is used
to make 52 scenarios: one scenario from every week in the
historic data set. This scenario data is also shown in Fig. 1
and Fig. 2. These figures show values for λimb

ωt and ε�ωt for
one day. The SO is obtained from subsets of this whole set
of scenarios. These subsets are created in such a way that
the difference between the complete and subset mean and
variance is minimal.

Because the experiments do not consider consumer be-
havior uncertainty, all experiments are run for one EV,
with the properties as specified in Table I. Based on [13],
the battery degradation cost κ is set to €0.042/kWh.

In Fig. 3-6, the average operation costs are computed by
evaluating the schedule against all 52 scenarios. Because
all evaluated schedules are made day-ahead, they may
fail to satisfy the demand in some scenarios. Therefore,
these figures also show the average unmet demand. A more
conservative schedule results in less unmet demand. To
take the unmet demand in account when evaluating costs,
all unmet demand is penalized by €60/MWh, and added
to the other costs.

For the aggregator it is possible to choose different
strategies concerning risks of unmet demand. Fig. 3 shows
the effect of setting the risk penalization parameter. Be-
cause of these results, the risk penalization ψ is set to
€60/MWh for the rest of the experiments.

B. Stochastic optimization and optimal price bids
SO is excepted to give better results than a determin-

istic approach. Additionally, optimal price bids should be
better than quantity-only bids. Both these statements are
evaluated here by comparing the SDIR and DDIR methods
both with optimal bids, and with quantity-only bids.

The desired bid-acceptance probability is an important
parameter
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Fig. 3. Effect of the risk penalization parameter on the expected
charging costs and unmet demand, computed with SDIR and differ-
ent numbers of scenarios.
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Fig. 4. Evaluation of an optimal bid-acceptance probability param-
eter for DDIR.

for DDIR. Fig. 4 shows the effect of this parameter on
the charging costs and the unmet demand. The results
show that DDIR gives best cost performance with χ�t � 1.
This means that DDIR performs best when providing
quantity-only bids. With χ�t � 0.2, there is a good
balance between unmet demand and charging costs. For
the following experiment, χ�t is set to 0.2.
Fig. 5 shows the average costs of the schedules obtained

by the deterministic and SO approach with increasing
number of scenarios. It also shows the effect of optimal re-
serve bids in comparison to quantity-only bids. A quantity-
only version of the models is made by forcing all uωt � 1
for the SO, and χ�t � 1 for the deterministic approach.
The effect is that the model returns reserve bids that are
always assumed to be accepted.
Fig. 5 shows that SDIR gives lower charging costs than

DDIR. Especially the results for SDIR-30 are much better,
with lower costs and less unmet demand than DDIR.
SDIR-30 with optimal bids performs better both in terms
of charging costs and unmet demand when compared to
SDIR-52 that provides quantity-only bids.

C. Effect of market participation
To put the cost benefits into perspective, Fig. 6 shows

the effect of smart charging strategies on the operational
costs for an aggregator, compared to direct charging. All
results are obtained with SDIR-30. In Fig. 6 ’Imbalance’
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Fig. 6. Effect of market participation on the operation costs for an
aggregator, computed with SDIR-30.

means that only trading on the imbalance market is
possible. The next column adds the possibility of providing
reserves, and the last column also allows for trading on
the DA market and for providing V2G. Fig. 6 shows that
each added feature decreases the operational costs of the
aggregator.

From Fig. 5 and Fig. 6 we can also conclude that the cost
savings from SO and optimal bids are also considerable
when compared to the cost savings that can be made by
including for example DA and V2G.

VI. Conclusion

This paper presents a model to minimize operational
costs for an EV aggregator that considers both electricity
prices and reserve deployment to be uncertain, by using
Stochastic Optimization (SO). The model also chooses
what energy to buy day-ahead, what energy to buy real-
time, and what reserve capacity and price to bid. As
expected, SO in comparison to the deterministic approach,
results in schedules with lower costs and better robustness.
The SO also showed the benefit of reserve bids that consist
of quantity and price, in comparison to quantity-only bids.

As a future work, we suggest to extend the evaluation
to include a rolling horizon and the possibility to update
schedules. In the evaluation presented here, no changes can
be made from the schedule which is decided day-ahead.
Also all reserve bids are now made day-ahead. A rolling

horizon evaluation would result in a better penalization of
unmet demand.
Another important extension of the model is uncertainty

in EV staying patterns. When the model is used for
multiple EVs, run time becomes also more important. The
binary variables used to obtain optimal reserve price bids
have an impact on the run time. Therefore, we suggest as
a future work to search for ways to reduce to the run time
of this model. This would enable an EV aggregator to use
the advantages of SO and optimal reserve price bids in
providing balancing services.
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