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Prof dr. M.C.J. Bliemer, beste Michiel. Dankzij jou heb ik de mogelijkheid gekregen om
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bron met uitdagende vragen. Als geen ander wist je mij wegwijs te maken in de wetenschap-
pelijke wereld van prijsbeleid en netwerkmodellen. Ik kijk met bijzonder veel plezier terug op
het onderzoek dat we in Sydney hebben gedaan.

Dr. ir. A.J. Pel, beste Adam. Bedankt voor al je hulp en het grondig reviewen van al mijn
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beantwoorden. Het wordt tijd om weer een keer de fiets te pakken.

Members of my doctoral committee. Thank you for taking place in the committee and for
your valuable feedback on my dissertation.
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Colleagues in Delft. It has been great to work together with such highly skilled and mo-
tivated people. Besides that, we had fun lunches, ping-pong tournaments and drinx. My
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NOTATION

• Finite sets (e.g., the route set, the set of modes) are denoted with calligraphic capitals
A . . .Z

• Bold letters are vectors
• Small capital sans serif NAMES are constants.
• Throughout this thesis, the product operator on sets is the standard Cartesian product.

GENERAL

R Set of real numbers
R+ Set of non-negative real numbers
| · | Operator: Number of elements in a set
δi

j Kronecker delta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .*.
,
δij =




1 if i = j

0 if i , j
+/
-E(·) Expected value

Var(·) Variance
Cov(·) Covariance

Corr(·,·) Correlation
σ(·) Standard deviation
P(·) Probability
F (·) Cumulative Distribution Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (F (·) : R→ [01])

STAKEHOLDERS

S Set of stakeholders
s Stakeholder index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (s ∈ S)

Hs Objective function of stakeholder s ∈ S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Hs : Γ→ R)
C Coalition of stakeholders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (C ⊆ S)
E Traffic assignment function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E : Π → Γ)

PRICING MEASURES

P Set of pricing measures
p Pricing measure index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (p ∈ P)

Πp Feasible prices of measure p ⊆ P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(
Πp ∈ R

)
Π Set of feasible prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(
Π =

∏
p∈P Πp

)
πp Price of p ∈ P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(
πp ∈ Πp

)
π Vector of prices, or pricing scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(
π =

{
πp

���p ∈ P
}
∈ Π

)
π∗p Resulting price of p ∈ P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(
π∗p ∈ Πp

)
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π∗ Resulting pricing scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(
π∗ =

{
π∗p

���p ∈ P
}
∈ Π

)
EFFECTS

E Set of (external) effects
e Effect index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (e ∈ E)
Γe Feasible level set of effect e ⊆ E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Γe ∈ R)
Γ Feasible effect levels set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(
Γ =

∏
e∈E Γe

)
γe Level of effect e ∈ E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (γe ∈ Γe )
γ Vector of effect levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (γ = {γe |e ∈ E} ∈ Γ)

NETWORK

L Set of links
i Link index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (i ∈ L)
N Set of nodes or intersections
n Node index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (n ∈ N )
O Set of origins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (O ⊆ N )
o Origin index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (o ∈ O)
D Set of destinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (D ⊆ N )
d Destination index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (d ∈ D)
O/D Set of Origin-Destination (O-D) pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (O/D ⊆ O×D)

o/d O-D pair index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (o/d ∈ O/D)

CHOICE ALTERNATIVES

M Set of modes
Rm

o/d
Set of routes for mode m ∈M and O-D pair o/d ∈ O/D

Rm Set of all routes for mode m ∈M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(
Rm = ∪o/d∈O/DR

m
o/d

)
Ro/d Set of all routes for O-D pair o/d ∈ O/D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(
Ro/d = ∪m∈MR

m
o/d

)
R Set of all routes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(
R = ∪o/d∈O/DRo/d

)
r Route index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (r ∈ R)
T Set of time-of-day periods
T Time-of-day period index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (T ∈ T )
Co/d Set of choice alternatives for O-D pair o/d ∈ O/D . . . . . . . . . . . . . . . . . . . . . . .

(
Co/d = T ×Ro/d

)
C Set of all choice alternatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(
C = ∪o/d∈O/DCo/d

)
c Choice alternative index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (c ∈ C)

V Systematic utility
U Utility
U Set of user-classes
u User-class index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (u ∈ U )

D(u;o/d) Total mobility demand for user-class u ∈ U for O-D pair o/d ∈ O/D . . . . .
(
D(u;o/d) ∈ R+

)
Du Vector of mobility demand (O-D-matrix)

for user-class u ∈ U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(
Du =

{
D(u;o/d) ��o/d ∈ O/D

}
∈ R |

O/D |
+

)
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Notation

τIVT-FF

(T ;r) Travel time: In-vehicle time during free flow conditions
τIVT-CONG

(T ;r) Travel time: In-vehicle time during free flow condition
τIVT

(T ;r) Travel time: General in-vehicle time (used for mode TRAIN)
τWAIT

(T ;r) Travel time: Waiting time
τA-E

(T ;r) Travel time: Access and egress time

CHOICE MODELLING

The notation for choice modelling has different contexts in Chapters 3, 4, and 7. This list
provides general notation.

εc Random variate of the analyst error of route c ∈ C
G Generating function for choice set C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(
G : R |C |+ → R+

)
yc Element of the generating vector for choice alternative c ∈ C
y Generating vector of choice set C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(
y = (y1,. . . ,y |C |)

)
Go/d Generating function for O-D pair o/d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(
Go/d : R |Co/d |+ → R+

)
µ Overall scale parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(
µ ∈ R+

)
Pc Choice probability of choice alternative c ∈ C . . . . . . . . . . . . . . . . . . . . . . . . . . . (Pc ∈ [0,1])

The following notation is specific for the overall framework:
y(T ;r;u) Vector element for choice alternative (T ;r) ∈ C of user-class u ∈ U . . .

(
y(T ;r ;u)R

−
)

y (o/d;u) Generating vector of user-class u ∈ U
for O-D pair o/d ∈ O/D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(
y (o/d;u) = {y(T ;r ;u) |T ∈ T ,r ∈ Ro/d }

)
µMODE Mode-nest specific scale parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(
µMODE ∈ R+

)
µT-O-D Time-of-day-nest specific scale parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(
µT-O-D ∈ R+

)
P(T ;r;u) Choice probability for alternative (T ;r) ∈ C for user-class u ∈ U . .

(
P(T ;r ;u) ∈ [0,1]

)
NETWORK LOADING

The given definitions below related to turns are specific for Chapter 3.
fr Number of trips for route r ∈ R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( fr ∈ R+)
fi Actual flow on link i ∈ L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( f i ∈ R+)
ki Density on link i ∈ L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (ki ∈ R+)
υi Speed on link i ∈ L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (υi ∈ R+)
Fi Fundamental diagram (density→ flow) of i ∈ L . . . . . . . . . . . . . . . . . . . . . . (Fi : R+→ R+)
W Set of turns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (W ⊆ L×L)
〈i, j〉 Turn from link i ∈ L to link j ∈ L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (〈i, j〉 ∈W )
Wr Ordered set of turns for route r ∈ R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Wr ⊆W )
≺r Turn order operator for route r ∈ R

S〈i,j〉 Demand for turn 〈i, j〉 ∈W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(
S〈i, j〉 ∈ R+

)
S Vector of turn demands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(
S = ∪〈i, j〉∈WS〈i, j〉

)
ϕi Reduction (or squeezing) factor at the exit of i ∈ L . . . . . . . . . . . . . . . . . . . . . . (ϕi ∈ (0,1])
ϕ Vector of reduction vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(
ϕ = ∪i∈Lϕi

)
Φ Node model function (turn demands→ reduction factors) . . . . .

(
Φ : R |W |+ → (0,1] |L |

)
Ψ Queuing model function

(reduction factors and route demands→ densities per link)
(
Ψ : (0,1] |L | ×R |R |+ → R

|L |
+

)
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NODE MODEL

The given definitions below related to turns are specific for Chapter 5.
I Set of inlinks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (I ⊆ L)
i Inlink index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (i ∈ I)
J Set of outlinks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (J ⊆ L)

j Outlink index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( j ∈ J n ,n ∈ N )
W Set of turns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (W ⊆ I×J )
〈i, j〉 Turn from inlink i ∈ I to outlink j ∈ J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (〈i, j〉 ∈W )

Si Demand for inlink i ∈ I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Si ∈ R+)
R j Supply of outlink j ∈ J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(
Rj ∈ R+

)
Qi Capacity of link i ∈ I ∪J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Qi ∈ R+)
qi Reduced capacity of inlink i ∈ I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(
qi ∈ R+

)
α〈i,j〉 Turning fraction of turn 〈i, j〉 ∈W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(
α〈i, j〉 ∈ [0,1]

)
fi Flow out of inlink i ∈ I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( f i ∈ R+)
f j Flow into outlink j ∈ J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(
f j ∈ R+

)
f〈i,j〉 Flow on turn 〈i, j〉 ∈W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(
f〈i, j〉 ∈ R+

)
hi Headways at the exit of inlink i ∈ I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (hi ∈ R+)
h j Headways at the entry of outlink j ∈ J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(
h j ∈ R+

)
h〈i,j〉 Headways on turn 〈i, j〉 ∈W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(
h〈i, j〉 ∈ R+

)
d〈i,j〉 Turn delay of turn 〈i, j〉 ∈W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(
d〈i, j〉 ∈ R+

)
TRANSFERABLE UTILITY GAME THEORY

S Grand coalition (equals the set of stakeholders)
v Coalition value function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(
v : 2S → R

)
(S,v) Transferable Utility (TU)-game with grand coalition S and coalition values v

χs Allocation of stakeholder s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( χs ∈ R)
χ Vector of allocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(
χ = { χs |s ∈ S} ∈ R |S |

)
Q Partition of the grand coalition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(
Q= partition of S

)
K (S,v) Core of TU-game (S,v) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(
K (S,v) ⊆ R( |S|)

)
ζ(S,v) Shapley value of TU-game (S,v) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(
ζ(S,v) ∈ R |S |

)
ωs Lower bound of stakeholder s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (ωs ∈ R)
ω Vector of lower bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(
ω = {ωs |s ∈ S} ∈ R |S |

)
Ωs Upper bound of stakeholder s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Ωs ∈ R)
Ω Vector of upper bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(
Ω = {Ωs |s ∈ S} ∈ R |S |

)
η(S,v) Compromise value of TU-game (S,v) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(
η(S,v) ∈ R |S |

)
CONSTANTS

GOV Stakeholder: National government . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (GOV ∈ S)
TRAIN Stakeholder: Train operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (TRAIN ∈ S)
AMS Stakeholder: Amsterdam city council . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (AMS ∈ S)
LH Effect: Loss hours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (LH ∈ E)

TOLL Effect: Total collected toll . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (TOLL ∈ E)
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Notation

PROFIT Effect: Profit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (PROFIT ∈ E)
CO2 Effect: CO2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (CO2 ∈ E)

E-MAX-U Effect: Expected maximum utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E-MAX-U ∈ E)
KM-INC Effect: Income from kilometre charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (KM-INC ∈ E)

CRDN-INC Effect: Income from cordon charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (CRDN-INC ∈ E)
EMIS-STUDY Effect: Total value of emission in the study area . . . . . . . . . . . . . . . . . . . . . . (EMIS-STUDY ∈ E)
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CHAPTER 1.

INTRODUCTION

This introduction describes important issues in transport such as congestion
and emissions, and proposes pricing as a solution. The reader is presented with
what they can expect from this dissertation, with the direction of the research,
and with what the main societal and scientific contributions are in the disser-
tation. That is – in short – transport pricing measures (Section 1.1) affect the
behaviours of travellers (Section 1.2). Strategic planning models (Section 1.3)
capture these responses and are used to design and evaluate new pricing poli-
cies. Challenges regarding this process define the motivation of the research
and its relevance for society (Section 1.4). Finally, the to be bridged scientific
gaps (Section 1.5) are discussed based on the outline of the dissertation.

Travel occupies a substantial part of everyday life. A person usually has several activities
each day, and if two successive activities are at different locations, one has to make a trip
between them. Irrespective of the mode of transport (e.g, walk, cycle, public transport, car,
or a combination of these), all trips together are straining the transport system. That system
is vital for the economy and needs to be shared with commuters, tourists, and commercial
transporters. Improvements and changes of mobility and transport infrastructure are frequently
discussed by governments and stakeholders.

Congestion is an undesired effect of travel. There are stretches of road on which queues
form almost every day. This over-saturation of the passenger transport system is also indicated
by high emission levels and crowded public transport. The problems associated with mobility
and passenger transport have engaged politicians, policy makers, economists, and engineers
for decades already. However, despite all the effort, sustainable accessibility and mobility is
still far from reality.

By making trips, travellers impose effects on others. One additional vehicle in a queue will
increase the travel time of all other vehicles behind it. The emissions one causes by driving
to work affect the residents and workers along that road. When one occupies the last seat
in a bus, all following passengers have to stand. These negative effects, or external effects,
travellers impose on others are not ‘paid for’ by the causer. Travel choices are generally made
out of self-interest and do not take the burden experienced by others into account.

In addition, the transport system is not efficiently utilized. Congestion is at its worst during

1



Strategic Network Modelling for Passenger Transport Pricing

peak hours, but at other times of the day there is plenty of spare capacity. Because we impose
similar working hours on ourselves, we overload the transport system all at the same time.
Another inefficiency involves the spare capacity in public transport. Since taking the car is
fast and convenient, many travellers do not take a public transport alternative if it takes longer
and involves a transfer. For the system, however, the latter is the preferred option with less
emissions and congestion.

If it were possible to have complete control and make everyone’s travel choices centrally,
then the total congestion, emissions, and other effects could be minimized jointly. That utopian
situation, in the eyes of transport planners at governments, will never be feasible. However,
policy instruments can be used to steer towards an optimal situation.

On the other hand, everyone has a different opinion about optimality. Environmentalists
would like to put everyone in emission-free public transport alternatives, and insurance com-
panies want safety on the road. But the owner of a trucking company wants high profits,
and thus guaranteed high speeds on the freeway. Profit is also the objective of privately op-
erated transit operators, while governments need to consider multiple issues at once. These
conflicting preferences complicate decision making.

1.1. PASSENGER TRANSPORT PRICING

Changing the price for mobility can contribute to the reduction of external effects. Price incen-
tives can change the behaviour of travellers and thus make the transport system more efficient.
If the peak hours are avoided and more sustainable modes are used, then the queues will shrink
and the air quality will improve. So by manipulating the travel choices by introducing a pricing
measure, policy makers can work towards their goals.

Pricing strategies have been successfully deployed in numerous places worldwide. The
cities of London, Stockholm, and Singapore charge users who want to enter the centres by
car, and have successfully improved the transport system. Insurance companies are now im-
plementing Pay-as-you-Drive policies, which primarily focus on safety and fairness – also
external effects of the transport system. Special (fast) tolling lanes where the price depends
on the number of vehicles on the (slower) main road (i.e., congestion) exist in Israel and the
United States. In the Netherlands peak avoidance projects1 are being deployed to reduce the
number of vehicles on the road for limited periods, .e.g., during road works. Frequent users of
a certain road receive a reward if they do not drive on this road during peak hours.

In addition to these innovative strategies, there are more traditional measures, such as fuel
surcharges (also known as excise taxes), annual registration fees, parking fees, road taxes, and
public transport fees. The innovative strategies are often more flexible than the traditional
strategies, because the price incentive can be tailored for specific travellers, at specific loca-
tions, and at specific times of the day. To stimulate sustainability for example, road taxes can
be differentiated towards fuel efficiency of the vehicles (i.e, economical cars have a reduced
fee). The more aspects prices can be differentiated on in a pricing measure, the more inno-
vative it is. Especially time-differentiated policies are regarded as innovative. Policy makers

1‘Spitsmijden’ in Dutch
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usually consider several measures simultaneously and are interested in their joint effect.

In the Netherlands only reward schemes (e.g. drivers are paid to avoid the peak) have been
established as an innovative measure up-to now. Despite (or thanks to) decades of political
discourse and many proposals, no innovative pricing measure has been implemented. From
toll roads, via a peak hour sticker, to a kilometre charge, everything has failed due to lack of
political support (see van der Sar and Baggen, 2005; Smaal, 2012; Ubbels, 2006).2 Low public
support also nourished the indecisiveness. Nor were the conflicts mentioned earlier between
preferences of different stakeholders beneficial; for example, the travellers’ association Royal
Dutch Touring Club (‘ANWB’) has opposed against the proposed policies in the last decade
of the previous century after they held a survey under its members.

Neglect of the conflicting preferences of stakeholders during the design and planning pro-
cess of pricing policies finally blocks the implementation of it. To determine the details of
the pricing policy only a single objective is considered, for example, the reduction of conges-
tion or other external effects. Stakeholders like an automobile association may have different
preferences, and since they represent a large part of the population their support is important.
Since political and public support are key conditions for a successful implementation, multiple
stakeholders, their preferences, and their influence have to be incorporated in planning pricing
measures.

Innovative pricing measures do have a high potential. Advances in technology allow de-
tailed and differentiated schemes that can influence the choices of specific groups of travellers.
That means that congestion and emissions at specific times and at specific places can be mit-
igated. They also allow for improvements of economic factors such as equity and welfare.
Specifically, fairness can be improved because travellers are charged for usage instead of hav-
ing to pay a flat fee, as is now the fact with registration fees and road taxes. The potential
in the Netherlands is demonstrated by peak-avoidance projects, where travellers are rewarded
(see Knockaert et al., 2010).

The European Commission stimulates user pays and polluter pays principles and studies
recommend highly differentiated kilometre charging (see van Essen et al., 2012). Furthermore,
in none of the European Union members road transport is fully paid by its users. Verhoef
et al. (2004a) conclude in their Dutch research report that pricing on the road is effective to
mitigate congestion. This is especially true when (1) the measure is strongly differentiated,
(2) perceptions of different users are taken into account, and (3) the revenue is recycled as a
compensation for negative effects and in acquisition of public support.

The electricity market and electricity network shows interesting similarities with the pas-
senger transport market and road network. The demand for electricity stems from people’s
activities, and electricity can not be stored, just like road capacity. Therefore, electricity rates
are higher during peak periods in order suppress peak demand.

2Only a few tolled tunnels exist.
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1.2. TRAVELLERS’ RESPONSES TO PRICING MEASURES

Price incentives affect several choices that travellers make (Karlström and Franklin, 2009;
Vrtic, 2009). The fact that travellers are sensitive to prices makes pricing an effective tool
to improve the performance of the transport system. In order to get insights into the effects
of pricing measures, it is important to understand these responses. One’s demand for trips is
directly derived from one’s activities; therefore, price incentives work on two levels. They
can affect activity patterns and they can affect the way trips are made. Also, not all pricing
measures are able to change all types of behaviour.

Define the travel demand of a person as the desired movements the person would like to
make. In economic terms, this demand for travel is a derived demand since travelling itself is
not beneficial. The activities performed at different locations are the satisfiers, or benefits, of
travelling. The activity patterns of a person determine the travel demand of that person. The
combined activity patterns of all people in a region represent the total travel demand for that
region.

Choices influencing activities include major life events: they are carefully considered and
based on many factors. Examples are choosing a job and choosing a place to live. These
choices are considered long-term responses to price incentives. They are closely related to
location choice (i.e. choosing where to have your activities), and an important aspect of loca-
tions is their accessibility. This accessibility is in turn highly affected by the price of mobility,
because pricing measures can increase perceived distances. Therefore, pricing measures cause
a response in long-term choices. At the same time, many other aspects, like public transport
availability, influence accessibility. Some residential areas are very well connected to the
public transport system, but more remote residences can only be reached by private transport
modes. So, transport pricing can not be solely considered to steer activity-related choices.

Choices related to consuming mobility (i.e. how to get from A to B) occur repetitively, are
often habitual, but are also sensitive to prices. They are the choices that one makes on a daily
basis, or that can at least be changed every day. These choices named travel choices and are
considered as short-term responses to price incentives. For transport pricing measures, there is
a high potential to the short-term choices because they are made so often. On the other hand,
the volatility of these choices, i.e. the ease with which travellers can change them, makes it
cumbersome to grasp them in models that try to predict these choices.

Figure 1.1 shows an example of a person’s activity pattern and travel demand on a certain
day. The person works, shops and goes to a movie on that day. All activities take place at
different locations and they are connected by trips. This spatial travel demand is related one-
to-one with the activity pattern and it is thus a derived demand. By choosing the departure
times, transport modes, and routes for each leg of the travel demand, trips are the result. The
work and shopping related trips are performed by car and follow three distinct routes. Public
transport is taken on the trips to and from the movie and different service lines are used for
each leg.
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Activity Pattern

Work Shop Movie

Travel Demand

-      :
-      :
-      :
-      :
-      :

Directly 
derived

Trips

Travel
choices

Figure 1.1.: Example of an activity pattern, its travel demand, and chosen trips.
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We can distinguish the following travel choices:
• Change departure time

Instead of leaving at the preferred departure time, one could prepone3 or postpone the
trip. Reasons for doing so can either be severe expected delays or a price incentive. Such
a price incentive comes from a time differentiated pricing measure. In the Netherlands
for example, train tariffs are time differentiated; season tickets for off-peak only are
significantly cheaper than season tickets that are valid during the peak hours as well.

• Change route
Deviating from the preferred route of a trip is very common. Frequently small detours
are taken to avoid congestion or busy intersections. Although the taken routes will
always alter, and hence there is no real standard route, introducing a toll at specific
roads will make them less travelled. So, having location differentiated pricing measures
will influence the route choice behaviour of travellers.

• Change mode
For each trip a different set of modes is feasible and the chosen mode is habitually
anchored. The modes cycling and public transport are frequently interchanged, but car
users tend to stick to their familiar mode. However, substantial price incentives, such
as high parking fees, can get drivers out of their cars and direct them towards public
transport.

• Stay at home
The do-not-travel alternative. If an activity is not mandatory, or if the activity can also
be carried out at a persons’ current location, then the choice can be to not travel at all.
Teleworking (i.e., working from home) is a great example of this, and occurs more and
more frequently. While the cost of mobility and travel is not the only reason for tele-
working (others include the working environment), prices will influence the decision.
The stay at home alternative is posted as a short term response; however, teleworking
can be either sporadic or systematic. In the latter case it could be regarded more as a
long term response.

1.3. STRATEGIC PLANNING MODELS

The decision making process of policy makers is usually supported by strategic planning mod-
els that determine medium and long-term effects of policies. These models aim to forecast,
and especially to assess the consequences of major alterations to the transport system. The
latter can be infrastructure projects, but also new policies such as transport pricing. Planning
models for pricing schemes determine expected changes in travel behaviour as well as their
impact on effects. Multiple scenarios can be compared based on their performance for sev-
eral indicators. Strategic models are often important and useful tools in the decision making
process.

An important feature of strategic transport planning models in the passenger transport pric-
ing context is the ability to reflect travellers’ responses to changes in the transport system.

3i.e., bring forward to an earlier time
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This implies that the behaviour has to be captured in mathematical equations, so that it can
predict travel choices based on hypothetical costs. Different choices are described by different
behavioural mechanisms and thus captured by different models.

Models are a simplified representation of reality, and - in transport - models can be found
for many subjects and in a wide variety of levels of detail. The essence of models is to provide
a (mathematical) abstraction of reality such that current situations can be reproduced and
hypothetical situations can be evaluated through forecasting. It is beyond question that the
transport system is complex. There is a large number of heterogeneous agents (e.g., travellers,
public transport vehicles) interacting within the transport network, which is challenging to
describe in models. The transport system itself consists of a huge number of roads sections and
intersections. It is not feasible to model every detail due to limited computer power. Therefore,
models exist at different scales, from nano-models that describe individual travellers to micro-
models that analyse individual vehicles to macro-models that consider aggregate traffic flows.

The traditional basis of strategic planning models in transport is the 4-step model (see Figure
1.2). It consists of trip generation, trip distribution, mode choice and trip assignment. These
four consecutive steps provide a very basic guide to transport modelling. Based on socio-
economic data, the trip generation step determines the activities of people and how many trips
they make. The trip distribution step then finds a destination for each activity, i.e., travel pat-
terns are determined. A travel pattern consists of sequence of trips: movements from origins
to destinations. Next, travel choices are modelled. Each trip is assigned to a mode of transport
(e.g. car or public transport): the mode choice step. Finally, the best route for each trip us-
ing the specific mode is found, and flows are loaded onto the network, resulting in traffic and
travel times.

The results from the 4-step model are the travel times for each trip, the number of cars on
each road section, and the service level of public transport. From these quantities other exter-
nal effects as emissions and noise levels can be estimated. The combined results indicate the
performance of the transport system. Policy makers base their decisions on the performance
indicators for different strategies.

Lack of realism induced countless adjustments and additions to the classical 4-step model.
The choices existing in the 4-step model are trip choice (i.e. do I travel or not), destination
choice, mode choice, and route choice. Each of them is tackled separately and has its own
limitations. For example, the aggregated approach to destination choice groups people by
location. It considers almost no individual characteristics and is not based on behavioural
principles. A second example is the standard route choice technique which considers delays
from congestion at the wrong location. To overcome these and other drawbacks, different
approaches, such as disaggregate models, have been introduced and used during the last five
decades or so.

There is a long history of transport model development4 that has left its mark on the state
of practice. Software packages are available that execute the traditional 4-step model, which
makes it easy to apply them. Governments also standardized the tool-kit, leaving little room
for innovations. However, developments due to scientific research are outstripping the state of

4For more background, see these well-known textbooks on transport modelling: (Cascetta, 2009; Ortúzar and
Willumsen, 2011)
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Trip generation (trip
choice)Socio-economic data

Number of trips to and
from each zone

Trip distribution (Desti-
nation choice)

Transport network

Number of trips between
each origin-destination
pair

Mode choice

Number of trips between
each origin-destination
pair per mode

Assignment (route
choice)

Number of trips
on each route

Travel times

Level of service

Figure 1.2.: 4-step model
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practice. It has become feasible to achieve a much higher level of behavioural realism. In the
next paragraphs three important drawbacks and potential solutions are presented.

One of the main disadvantages of traditional traffic models is their inability to identify bot-
tlenecks or queue locations. A bottleneck is a location in the network where demand exceeds
capacity. Simply stated, a bottleneck is a location in the network where more vehicles want to
pass than physically possible. That leads to congestion and thus to delays. A very important
observation is that the queue builds up before (i.e., upstream of) the bottleneck and not inside
it. In the traditional static approach, the delay is predicted inside the bottleneck. These static
models do not include a time dimension or traffic dynamics (e.g. queue formation). Modern
dynamic and quasi-dynamic models overcome this problem and thus lead to more realistic
queue formation. These models simulate the physical formation of queues.

Bottlenecks always arise at nodes in the road network (i.e., locations where homogeneous
roads link); these can range from a simple lane drop on the highway to a complex signalized
intersection. The main purpose of an node model is to identify bottlenecks by checking if
there is sufficient supply (i.e., capacity) to accommodate the demand (i.e., incoming traffic).
Furthermore, it needs to determine how severe the bottleneck is and what flow constraints to
apply. Thus it determines how many vehicles can proceed. Finding behaviourally realistic
models and solutions that reproduce intersection flows is not straightforward. For example,
flows on priority intersections are inherently non-unique. Only recently Tampère et al. (2011)
formulated the basic requirements for proper node models, and currently only two proper node
models exist. Compared to other fields in transport modelling, node models received less
attention from scientists, and one could argue that they are underdeveloped. The underlying
behaviour of the existing models is not completely clear, nor do extensive empirical validations
of the models exist.

A final disadvantage in the traditional model relates to the way choices are modelled.
Choices (e.g., route choice) are often assumed to be made between distinct alternatives, mean-
ing that modellers can enumerate the possibilities. In networks, all routes between an origin-
destination pair form such a set of alternatives. The distance between each origin-destination
pair is different. The logit model family is often used for route choice, because, compared
to the traditional deterministic approach, it can handle different preferences between trav-
ellers and uncertainty about travel time and other route characteristics. The uncertainty about
a route’s travel time is proportional to the distance between the origin and destination. The
frequently applied logit model family does not take this proportionality into account. This
behavioural property makes them less suitable for applications to transport networks.

Strategic planning models that are acting as a decision support system should run quickly;
especially when they are part of a design process. For example, let the location of a cordon
toll and the price level of the toll be two variables for a pricing scheme. If ten possible choices
exist for both, the model needs to calculate all one hundred combinations to find the optimal
choices. In reality, often much more than two dimensions exist, and the number of variants that
should be considered grows rapidly. Therefore, the running time of strategic planning models
has to be low. So, while developing strategic transport models, the computational efficiency
should always be kept in mind. This leads to a practical constraint: when one aims to increase
the realism of strategic planning models, the computation time should not be impacted much.
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1.4. SOCIETAL MOTIVATION AND RELEVANCE

The previous sections describe societal issues that are the motivation for the conducted re-
search. It can be decomposed in a problem formulation, a solution approach, and then some
underlying challenges that hamper the implementation of this solution, in summary:

PROBLEM FORMULATION

The transport system functions inefficiently and suboptimally. By travelling,
people put others at disadvantages, like congestion and emission exposure. If
travellers would make different choices, e.g., if they would avoid peak periods
or use more public transport, the total impact of the external effects would be
smaller.

SOLUTION APPROACH

Provide incentives for travellers through innovative pricing strategies to change
their behaviour. This improves the transport system and makes travellers re-
sponsible for the impacts their choices have on others. Innovative pricing strate-
gies differentiate the price level for specific travellers, for specific locations,
and/or specific times of the day. This particularly affects these travel choices:
trip choice, mode choice, time-of-day choice, and route choice.

CHALLENGES

• Public and political support for innovative pricing policies is often low.
• Strategic planning models that could support the decision making process

lack realism at several aspects.
• The computation time of strategic planning models constrains the number

of strategies that can be assessed.

The research in this thesis is motivated by these three challenges associated with transport
pricing. The way to achieve this, is through the development of new and improved meth-
ods within strategic planning models. So, the research aims to increase public and political
support by providing a strategic planning model that has increased realism at a similar compu-
tational efficiency. The focus of this disseratation is on the improvement and development of
methodology, rather than specific applications, although feasibility is demonstrated by a case
study. So, particular policy issues within the decision making process, and particular transport
pricing projects are not within the scope of the research.

The following chapters present a toolbox that can be used by analysts and decision makers
to improve public and political support. The basic principle applied to each tool is achieving a
good balance between computational efficiency and realism, making them usable for analysts
and credible for decision makers. In other words, the behavioural realism should be as high as
possible such that results are trustworthy, and the computing costs should be as low as possible
such that one is not limited in the amount of considered pricing schemes.
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The way this dissertation aims to alleviate the challenges is twofold. On the one hand by
providing a guide to model travellers’ responses to pricing measures, and on the other hand
by providing insight in the interactions at the negotiation table of decision makers. The first
is in line with traditional and current applications of strategic planning models. while the
latter is generally not part of the strategic planning models. Therefore, two main topics will
be covered: (1) travellers’ behaviour and especially their response in terms of travel choices
to pricing measures and the state of transport system, and (2) the preferences and interactions
of stakeholders at the negotiation table. The latter identifies possible conflicting interests, and
tries to provide solutions for them.

Both topics have a different ‘nature’, meaning that the types of methods and histories in de-
velopment do not overlap. Therefore, the organization of the dissertation follows the structure
of the two topics, and it is therefore organized in two parts. Part I, Traffic Assignment, allows
strategic planning models to be more realisic in terms of choice behaviour and queue formation
without making it impossible to assess many different pricing schemes. Part II, Stakeholders
& Pricing, provides a new approach to model how stakeholders negotiate, including solutions
for conflicts.

Another boundary of the scope lies within the Traffic Assignment (TA) model of Part I.
This model is limited to travellers’ choices with respect to mobility consumption. Activity
related long-term responses depend on many factors, and interact with other markets than
the transport market. Therefore, the activity pattern is input for the lower level model, and
thus assumed to be available. Mode, route, and departure time choice are modelled, and the
stay at home alternative also exists. The latter still allows a thin connection with the activity-
related responses, since the stay at home alternative can represent the economic concept of
demand elasticity. Note that throughout this dissertation, traffic assignment is the simultaneous
assignment of a mode, route and departure time to a movement of a traveller. This is contrary
to the earlier mentioned traditional notion of assignment that only involves route choice.

As will become clear, the approach of the dissertation is primarily methodological. How-
ever, despite the mathematical character of these contributions, each topic has a clear societal
relevance; they can all be retraced to the earlier mentioned challenges. One should bear in
mind that the mathematical modelling tools in the toolbox provide abstractions of behaviours
and systems, which makes them supportive in the real decision making process. Real societal
added value arises when analysts apply the tools to assess meaningful transport pricing cases.

At the same time, acknowledged strategic planning studies on transport pricing remain a
necessity to create political and societal support. The author believes that meaningful results
can be achieved by applying the methods and tools in this dissertation. Chapter 7 illustrates
this by analysing a transport pricing case study for the Randstad area in the Netherlands. It
shows how conflicts between governments and a train operator can be resolved when they
introduce a kilometre charge and change fares simultaneously.

1.5. SCIENTIFIC CONTRIBUTIONS

The scientific gaps that are addressed in this dissertation are discussed based on its outline
(see Figure 1.3) and the structure of the proposed model framework, of which the latter is first
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briefly introduced. The tools are pinned down in an extensive model framework that exists of
several sub-models. Chapter 2 sketches the outlines this framework based on a more extensive
discussion on transport pricing than is provided in this introductory chapter. It consists of two
levels; an upper level for the decision making process of stakeholders, and a lower level for
the travellers’ responses. The upper level determines a pricing scheme, and the lower level
determines the impacts of that scheme in terms of effects.

The analysis of aspects related transport pricing Chapter 2 leads to a set of requirements for
each of the two levels. It also deliberates on the several approaches to transport pricing (e.g.
economics and policy/politics), and the relation to the engineering approach of this disserta-
tion. Subsequently, the upper and lower level will be discussed in more detail in respectively
Part II and Part I. Especially Chapters 3 and 6 introduce the framework in more detail.

The scientific contributions can be subdivided into three themes: the holistic approach,
methodological advances in traditional transport modelling, and new methodology to analyse
the decision making of multiple stakeholders.

1.5.1. HOLISTIC APPROACH

This dissertation combines methods in several disciplines (such as discrete choice analysis,
traffic flow theory and game theory) into an extensive framework. All methods are available
to assess innovative pricing measures, and the related short-term travel responses of travellers.
As presented in the next chapter, many transport pricing studies’ scopes are much narrower.
Therefore, collecting and bringing together many theories within a hollistic approach is a
contribution on its own.

The bi-level transport pricing framework uses state-of-the-art sub-models and captures many
important aspects of innovative pricing measures. The upper level uses game theory and es-
pecially TU-games to address multiple stakeholders. The route, mode, and departure time
choice of travellers is modelled with discrete choice, which captures individual preferences
and perception biases. The node model satisfies the recently derived first-order requirements.
Traffic flow and propagation is more realistically tackled with kinematic wave theory than in
traditional static traffic assignment, while it is still has relatively low computational costs.

The dissertation finishes with an application of the extensive framework on the Randstad
area in the Netherlands. In Chapter 7 the methodological improvements of Part I and the new
game-theoretical multi-stakeholder approach come together in a case study in the Randstad
area in the Netherlands. This case study illustrates how this dissertation collects and unifies
leading models from different fields.

1.5.2. METHODOLOGICAL ADVANCES IN TRANSPORT MODELLING

Second, several aspects of TA-(sub)models within existing strategic planning models are anal-
ysed and improved. The basis for this is so-called Quasi-Dynamic Traffic Assignment (QDTA),
which allows to simulate more realistic queue formation, and is computationally efficient. It
satisfies many of the formulated requirements. Chapter 3 introduces this QDTA-model, while
the remainder of Part I provides in depth studies on node models and route choice models.
Two highlights of corresponding contributions are:
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the transport pricing case study of Chapter 7. Chapter 8 summarizes the conclu-
sions and adds discussion.
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1. The behavioural realism of route choice is improved because the perceived travel times
and travel costs are better simulated. The framework of Random Utility Maximization
(RUM), in which travellers choose the route with the lowest ‘cost’ (i.e. highest utility),
is used. The utility is composed of a deterministic and a random part. Instead of taking
the sum of these parts, this study takes the product. This especially allows that the
uncertainty about a routes’ travel time is not the same for short and long routes. That
this is more realistic is underpinned with empirical data. (Chapter 4)

2. Node, or intersection, models are reconsidered. In such a model the flow on an inter-
section is determined based on boundary conditions. The new framework has implicit
delays for every vehicle. That allows a much better behavioural interpretation of node
model results. (Chapter 5)

1.5.3. ANALYSIS OF MULTIPLE STAKEHOLDERS’ DECISION MAKING

Third, multiple stakeholders are included, and the potential benefit of cooperation between
them can be determined. Multiple stakeholders, their preferences, and their interaction ex-
plicitly comprise the decision making upper level component. Stakeholders each have their
own objectives in terms of effects, and also their own executive power. A game-theoretical
approach captures the interaction between them; this is presented in Chapter 6. Cooperation
and non-cooperation are two paradigms that are explicitly considered. The difference in ef-
fects between the two paradigms shows the potential improvement reached with cooperation.
Political and public support, main factors of successful measures, can increase with this multi-
stakeholder approach. It is the first to consider multiple objectives with a TU-game approach;
furthermore, the price of non-cooperation can be determined.
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CHAPTER 2.

BI-LEVEL TRANSPORT PRICING

FRAMEWORK

This chapter describes the basic mechanisms involved in passenger transport
pricing and provides a framework to simulate these mechanisms. First, several
approaches (e.g. perspectives from economics and policy) to transport pricing
are discussed and related to the engineering approach of this dissertation. Sec-
ond, relevant aspects of transport pricing are introduced and briefly discussed.
Finally, a bi-level formulation that can serve as a strategic planning model for
innovative transport pricing measures will be presented. This formulation is
accompanied by requirements for both levels. The upper level, which is the
decision making level, has the distinguishing requirement of being able to han-
dle multiple stakeholders. The lower level addresses provides a computational
platform for travel choices and takes the transport infrastructure into account;
its requirements concern primarily realism and computational efficiency.

Passenger transport pricing has been analysed extensively. Motivations for pricing have sci-
entific underpinning from multiple theories and models. They describe the underlying mech-
anisms of mobility and its price. This work is multidisciplinary because social, political, tech-
nical, and operational aspects are involved. The implementations of pricing schemes – and
the failure thereof – show the practical importance of these aspects wherein multiple research
questions remain open. This chapter analyses transport pricing based on the literature, and
uses these insights to develop a versatile modelling framework. Analysts can derive strategic
planning models for transport pricing from this framework.

The abundance of literature about transport pricing marks its importance in science, and
also depicts its versatility. Tsekeris and Voß (2009) present the state-of-the-art of the design
and evaluation of road pricing. They cite well over four-hundred articles in their review, and
point out the extensive choices for economic principles and underlying network performance
models. De Palma and Lindsey (2011) restrict their overview to road congestion pricing (i.e.,
the objective is congestion relief by means of charging vehicles); they present several types
of pricing schemes and discuss how to choose between them. Lawphongpanich et al. (2006);
Yang and Huang (2005) present several economic and mathematical models for road pricing.
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Other overview papers include (Hau, 2005a,b; Morrison, 1986; de Palma et al., 2006; Parry,
2009).

The first idea of pricing in transport was proposed by the economist Pigou (1920). In Section
2.1 his theory of marginal cost pricing is presented. All following transport pricing studies rely
on this basic economic principle, while the literature disperses over the decades to other disci-
plines as engineering, mathematics, politics/policy, and psychology. This multidisciplinarity
has increased over time.

In this chapter the most important aspects of transport pricing are topic-wise discussed.
Each of these topics is important for a successful implementation of pricing schemes. Thus
ideally, a strategic planning model takes them all into account. Therefore, this chapter also
analyses the implications of the different aspects for the framework from which the strategic
planning models are derived. This is done in terms of requirements for the framework and the
models derived from the framework. Transport pricing studies in the literature only satisfy
to a small subset of these requirements. They often present analytical results for which the
assumptions are generally very strong, and for which the transport networks are extremely
simplified. The achievable level-of-detail of the presented framework is much higher than the
level-of-detail of the established (pricing) literature.

First, several transport pricing aspects will be discussed. Second, several pricing measures
and (external) effects will be presented and discussed in order to provide more context on what
is possible with transport pricing. Third, the mathematical framework will be introduced. To
cover as many transport pricing aspects as possible, this framework will be set up holistically;
it allows multiple stakeholders, multiple pricing measures, multiple effects, multiple modes,
and multiple user-classes. This requires multiple modelling levels in the framework, with the
most important distinction between an upper level decision making model for stakeholders
and a lower level assignment model to assess the pricing scheme. The requirements for both
levels of the framework are specifically stated.

2.1. BASIC PRINCIPLE OF TRANSPORT PRICING

The basis of transport pricing is the Pigouvian toll (see Pigou, 1920), also referred to as
marginal cost pricing, or first-best pricing. The underlying principle is that travellers are
taxed on top of their private travel cost to compensate for the caused external effects. External
effects are the effects that are caused by the traveller, but for which they do not take full re-
sponsibility. They are also called externalities; examples are congestion, emissions, noise, and
unsafety. Consider Figure 2.1 with three main curves: inverse demand, private cost and social
cost. The horizontal axis contains the number of trips and the vertical axis the marginal cost
(i.e., the increase in total cost for one additional trip). The private costs are the ‘out-of-pocket’
costs for the traveller, and the social cost also include the delays of others and emissions, i.e.,
the external effects. The inverse demand curve becomes the demand curve by swapping the
axes, and then represents the amount of travellers willing to make the trip given a certain price.
The intersections of the cost curves with the inverse demand curve are the equilibria: the user
equilibrium and the social optimum.

In the user equilibrium situation there is an overconsumption of mobility, i.e., the social cost
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Figure 2.1.: Marginal cost pricing or first-best pricing. The toll equals the difference between
the marginal private cost and marginal social cost in system optimum. The green
area is the social welfare gain.
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is not completely covered for trips made. By charging a toll that equals the difference between
the marginal private cost and marginal social cost at the social optimum, the overconsumption
will be corrected. When this toll is included in the private cost, the user equilibrium and the
social optimum coincide. Furthermore, the green area in Figure 2.1 shows the gain in social
welfare under the Pigouvian toll.

This economic theory cannot be translated directly to real transport networks. First, the
toll would be different on every road segment because the social cost depends on the how
and where congestion builds up, and on who are effected by emissions. Second, the value
of time is assumed to be equal for all travellers. This is obviously not true in reality. Third,
the inverse demand curve should be known. In reality this curve depends on many factors;
think for example of O-D patterns, travel alternatives, and other markets (e.g., the labour and
housing markets).

The economic literature has dealt with several of these issues and has relaxed some of
the strict assumptions. This extended the marginal cost pricing principle in many directions.
While more detail was added, the more generalizations were achieved. As a result, the the-
ory has moved more and more from an economic to an engineering approach. Adding ‘real
world’ constraints to the pricing problem is called second-best pricing in economic terms. The
transport pricing aspects touched upon in Section 2.2 can all be considered as additional ‘real
world’ constraints. Studies in the literature generally discuss one or a few of these aspects,
while the framework in this chapter aims to capture most of them.

A seminal contribution after Pigou that has to be mentioned is the bottleneck model of
Vickrey (1969), who considers a physical queue and different departure times of travellers.
Congestion occurs because all travellers want to arrive at the same time, but this congestion
can be mitigated with a toll. He ignited a stream of studies that all take temporal dynamics into
accounts. The importance of these dynamics is beyond questioning, but the strategic network
models have not been able to capture them for a long time (see also Section 3.1). Therefore,
the time dimension, the different type of dynamics, and their relation with strategic network
models is thoroughly discussed in Section 2.2.6.

2.2. ASPECTS OF TRANSPORT PRICING

This section contains an enumeration of the most important aspects involved in transport pric-
ing. The success of implementation of pricing is affected by its political and public support.
The efficiency of pricing schemes is bounded by the price of anarchy. Price incentives cause
travellers to respond, and in their consideration the value of time is very important. The way
the time dimension is taken in, determines which temporal dynamics can be captured. The
transport system’s representation also varies along other dimensions; inclusion of multiple
transport modes provides alternatives, and the network and its traffic representation largely
influence the level of realism. Finally, charge collection technologies are an important feasi-
bility constraint.1

1The PhD thesis of Ubbels (2006) also discusses several aspects of road pricing, he takes an economic approach
and he does not relate the aspects to strategic network models.

18



Chapter 2 Bi-Level Transport Pricing Framework

The transport pricing framework focusses on the decision making process itself and the be-
havioural responses of travellers. Some aspects are important for the decision making process,
and others are related to the responses of the travellers. This section points out to which mech-
anisms the aspects apply. However, some aspects relate to neither, but since they are important
for transport pricing, they are mentioned in this section. Examples are the revenue distribution
that influences acceptability and the charge collection technology.

2.2.1. DECISION MAKING & POLITICAL SUPPORT

In general, policy makers are responsible for the implementation of pricing schemes. De-
cisions are made after an interplay of planning studies and politics. Vonk Noordegraaf et al.
(2014) identify and analyse the factors that play a role in the implementation and non-implemen-
tation of road pricing in several areas based on 106 scientific papers. Political and public
support are the most important factors, but certainly not the only ones. In Norway the road
authorities played a significant role, and in London the power of the mayor was important.
They conclude that the decision makers have to manage a broad set of factors, which can be
different for every case.

This indicates that in reality multiple stakeholders are involved, and they have different
preferences and interaction. In fact, the implementation of pricing measures in the Netherlands
has failed because of conflicts between stakeholders; in one case the negative standpoint of
(the members of) the Royal Dutch Touring Association (ANWB) was one of the reasons for
the government to abort the project.

Studies on highly simplified networks have shown that competition between stakeholders
can reduce the efficiency of the transport system. Acemoglu and Ozdaglar (2007) show on
a parallel network that monopolists can always achieve the social welfare optimum, but that
competition in oligopolistic system leads to reduced efficiency. Van der Weijde et al. (2013)
indicate that introducing dynamics in a multimodal duopolistic setting can lead to different
conclusions (i.e., prices) for the players than in the static case. This shows the importance of
realistic transport system representation.

This all shows that it is important to take decision making itself into account in strategic
planning. Multiple stakeholders (e.g., governments, public transport operators, lobbies) inter-
act, and they all have different objectives. Note that besides governments at different levels,
also different departments of the same government have different objectives. For example,
the transport department wants less congestion, and the planning department wants accessible
cities. Implementation failures of several pricing measures and the identification that eco-
nomics of the transport system changes when multiple stakeholders are active, are the main
arguments to have a multiple stakeholder approach in the framework in this dissertation. This
leads to a better understanding of conflicting interests, and might lead to higher political sup-
port.

On the contrary, the classical modelling approach sees decision making (i.e., price setting)
as a single objective optimization problem. First, an objective function is defined (e.g., social
welfare, profit), and constraints are formulated that capture the transport system. Second, an
optimization methodology is applied to determine which pricing scheme will result in the op-
timal value of the objective function. This classical approach is straightforward. Although it
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can be a highly non-linear problem and difficult to solve, it remains restricted to a single objec-
tive function. The interactions and conflicts can not be captured by a single objective function;
therefore, the currently used methods are not sufficient to model stakeholder behaviour. Only
a few studies exist that take the different preferences and interactions of stakeholders into
account, especially in combination with a network model (see e.g., Ohazulike, 2014).

2.2.2. USER EQUITY & PUBLIC SUPPORT

In addition to policy makers, the public is a major other factor of influence. As mentioned in
the previous subsection, Vonk Noordegraaf et al. (2014) find public support one of the main
factors for successful implementation of pricing schemes. Hamilton (2012) points out the im-
portance of acceptability by the public of pricing measures, and provides the most influential
decisive factors: people’s experience, how revenue is spent (revenue recycling), self-interest,
and political attitudes. Therefore, it is important that the public support is taken into account
during the design of pricing schemes.

Measures that relate to public support are social welfare and user equity. The first reports
the overall gains of pricing, while the equity measure also take into account how these gains
are distributed among the population. Levinson (2010) reviews the equity effects of road
pricing, and his message clearly addresses the issue for strategic planning: “The perception
of equity is highly subjective. A project that may appear equitable to an analyst across one
set of dimensions may not to individuals affected by the project. Achieving consensus on
decisions (thereby ensuring people believe the decision was equitable) may involve departure
from objective ‘engineering’ rationality, moving into the realm of politics.”

For strategic planning not all aspects of public support can be addressed. It is possible
to adjust people’s experiences with pricing by pilots, as done in Stockholm, and designing
implementation paths. The scenarios can be designed with planning models, but it remains
difficult to assess the change in attitude towards pricing. Further, equity depends on the costs
of a trip and on the accessibility of areas. Those measures can be addressed with planning
models. Ecola and Light (2009) advise that equity is considered in an early stage of decision
making by using planning models. As an additional remark, revenue recycling is important
for public support and part of the design of pricing schemes, but it does not directly influence
the behaviour of travellers which leaves too little grip for planning models to assess revenue
recycling.

Some studies in the literature dedicate the design to improve acceptance by the travellers.
For example, it is possible to assess acceptable pricing schemes by means of Pareto-improving
tolls (see e.g. Guo and Yang, 2010). Those consider pricing with revenue redistribution such
that no traveller is worse off. Such schemes are equitable by design and are likely to be
supported by the public. Wu et al. (2010) and Wu (2011) consider Pareto-improving pricing
on multimodal networks, and thus design equitable and acceptable schemes. They also provide
an overview of the literature on this topic.
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2.2.3. PRICE OF ANARCHY

The Price of Anarchy is an interesting (game theoretical) concept that indicates the ineffi-
ciency of the transport system. There is a difference between the performance of the system
optimum (i.e., the total cost is minimal) and the user equilibrium (i.e., each user chooses its
best alternative). The simplest illustration hereof is the welfare gain described in Section 2.1.
In general the price of anarchy can be defined as the ratio of a performance indicator, such as
social welfare, between the system optimum and the user equilibrium of some system. Usu-
ally, pricing measures are used to steer towards the system optimum. Therefore, the price of
anarchy is bounded from above by the gains of pricing measures.

The price of anarchy was initiated in 1999 in a conference paper version of Koutsoupias and
Papadimitriou (2009). The paper ‘How bad is selfish routing?’ by Roughgarden and Tardos
(2002) further introduces the topic (it provides a nice analogy with a system of strings and
springs) and provides that for a very simplified case the total travel time in user equilibrium
are at most 4/3 times the total travel time in the system optimum. It has been analysed under
less strict – but still strict – assumptions by Chau and Sim (2003); Correa et al. (2004); Han
et al. (2008); Perakis (2007); Roughgarden (2003); Schulz and Stier-Moses (2006). Maillé
and Stier-Moses (2009) investigate to what extent the price of anarchy can be resolved by
rewarding mechanisms, and Schulz and Stier-Moses (2006) provide route guidance inspired
by the price of anarchy.

Given certain pricing measures, planning models can derive the optimal strategy for a cer-
tain objective. The ratio between the original reference scenario without pricing and this
optimal strategy then provides a specific price of anarchy for the analysed measure. The price
of anarchy for transport systems seems to be more popular amongst game theoreticians and
computer scientists than amongst transport economists and engineers; however, the measure
can provide more insight in the maximum achievable gain of any transport policy, including
transport pricing. Therefore, it is worth paying attention to the price of anarchy during the
planning process of policies.

2.2.4. RESPONSES OF TRAVELLERS

Understanding the response of the traveller is an important aspect of transport pricing. The
fact of the matter is that the main working mechanism of a pricing measure is to provide an
incentive for travellers to change their behaviour. As discussed in Chapter 1 there are several
possible responses, which can be categorised into short-term and long-term responses. The
choices regarding the consumption of mobility (i.e., the short-term responses) are more im-
portant for the transport system (with respect to the interactions between them), and therefore
only those will be considered in the remainder. See Section 1.2 for a brief discussion on the
long-term responses.

As pointed out in Sections 1.2 and 1.3 the four most important choices that should be cap-
tured in strategic planning models for transport pricing are route choice, mode choice, depar-
ture time choice, and trip choice. In the past, several mechanisms have been used to capture
the different choices. The traditional 4-step model (see Section 1.3) uses aggregate approaches
to represent for example mode choice. The flexibility of the traditional approach is limited;
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for example, in these aggregate approaches it is difficult include individual characteristics and
preferences. The transport pricing studies with more economic approaches often distinguish
between fixed and elastic demand. In such an approach the multiple choice aspects (e.g.,
budget constraints, mode substitutions) are captured with a single inverse demand function.
The derivation or calibration of such functions is infeasible with the level-of-detail considered
in this thesis. Recent studies on transport pricing tend to use discrete choice models. Vrtic
(2009) uses for example stated preference data form a Swiss’ survey to analyse mode, route
and departure time choice for pricing measures. Nielsen (2004) shows empirically (with GPS
devices) what the behavioural responses to a kilometre price were in an experiment in Copen-
hagen, Denmark; the main changes were new routes, new destinations for ‘occasional trips’,
switching to off-peak, and travel less.

For strategic planning models, it is important that the interaction between the pricing mech-
anism and the corresponding travel choice is captured realistically. For example, when time-
differentiated tolls are in place, travellers should be able to change their departure time in the
planning model. In a recent cost-benefit analysis in the Netherlands, the authors conclude that
their underlying transport model was unable to sufficiently capture departure time changes
(Hilbers et al., 2015). Therefore, all expected responses of the travellers should be listed in the
early design stage of strategic planning models. In addition, appropriate modelling paradigms
should be considered to be able to capture these responses realistically.

2.2.5. VALUE OF TIME DISTRIBUTION & USER-CLASSES

As mentioned earlier in Section 2.1 regarding the transition from first-best pricing to second-
best pricing, travellers are heterogeneous; they have different budgets and they value their
time differently. Therefore, they will respond differently to pricing measures, which is a very
important aspect for road pricing. For some travellers reducing travel time (and thus delay) is
very important, and they are willing to pay a high price. Other travellers may simply minimize
cost, and will easily adapt their behaviour when price incentives are provided. This is called
taste heterogeneity in the literature.

Arnott et al. (1992) are one of the first to consider heterogeneity in a transport pricing
context. They provide a first investigation of two user-classes on a network consisting of two
parallel links. Verhoef et al. (2004b) further investigate heterogeneity and they conclude that
the potential effectiveness of pricing measures can be underestimated when heterogeneity is
ignored. That there is indeed variation in taste was confirmed by Small et al. (2005) with
empirical data; they find substantial additional benefits in value pricing when taste variation
is taken into account. Recent studies that discuss pricing for heterogeneous travellers include
(van den Berg and Verhoef, 2011; Guo and Yang, 2010; Jiang et al., 2011). The review by
Small (2012) provides an introduction to the value of travel in general, and he discusses what
is known and what should be known in the future.

In addition to heterogeneity of travellers, vehicles also differ in performance (i.e., fuel con-
sumption and emission). Distinguishing different vehicle types can also improve quantifying
effects such as emissions.

It is important that strategic planning models capture that heterogeneity in preferences of
travellers and heterogeneity in vehicles. With respect to taste heterogeneity two approaches
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are possible; either the differences are captured in continuous distributions of tastes (or will-
ingnesses to pay), or the differences are captured in discrete classes where each class contains
a part of the population that is assumed to have similar preferences.

2.2.6. TIME DIMENSION: TIME-OF-DAY & STATIC VERSUS DYNAMIC

Time plays a major role in transport systems. Conditions change over time with recurrent
patterns around rush hours. Travellers want to be on-time at their destinations with a minimal
travel time. Public transport runs with changing frequencies throughout the day. The con-
nection between travel choices and time is two-fold; (1) at the demand side, travellers choose
their departure time, and (2) at the supply side, the state of the transport system is dynamic.

Firstly, travellers choose the time they travel, and each traveller has different preferences
related to departure and arrival times. The bottleneck model of Vickrey (1969) is the first
to account for a preferred arrival time. Van Amelsfort (2009) provides an in-depth analysis
of the responses of drivers towards time-varying pricing schemes in a discrete choice frame-
work. Distinctions are made between early departures, late departures, early arrivals, and late
arrivals, and the choice model parameters have been derived from a stated choice experiment.
Bottom line is that it is possible to capture the change in departure time of travellers under
time differentiated pricing measures.

Secondly, conditions within the transport system change over time, and past conditions
influence conditions in the near future. The foremost important example hereof is congestion
that builds up and dissolves over time. It is this congestion that causes delays, and therefore
it is important to capture queue dynamics on the road. In addition, other effects, such as
emissions, also highly depend on time-varying road conditions.

The importance of the time dimension for planning models is therefore also twofold. The
travellers are able to change their departure time in response to prices, and this should be re-
flected in the framework. This choice depends on their preferred arrival and/or departure time.
And secondly, travel times are only realistic when they are based on a proper representation
of how queues build up over time. Section 3.1 provides more discussion and references on the
different models (i.e., static and dynamic) for congestion build up to determine travel times.

Note that in the literature the dynamics are categorized in within-day dynamics (that con-
tains the two aspects in this section), and day-to-day dynamics. The latter relates to the learn-
ing of travellers and corresponding equilibrium concept. See Tsekeris and Voß (2009, Section
3.2) for a discussion on transport pricing with the within-day and day-to-day classification.
Both dynamics can be incorporated in strategic planning models by using equilibrium con-
cepts.

2.2.7. TRANSPORT MODES

Chapter 1 already described that transport pricing can cause travellers to switch to alternative
modes. Some transport pricing studies incorporate no other modes than cars, and thus omit
an important effect. In the Netherlands, it is standard practice to incorporate all modes in
the strategic planning models. In addition, prices for the different modes interact with each
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other. Therefore, an integrated approach with a multi-modal transport system representation
and pricing measures for all modes are desired.

A multi-modal network model with private and public transport pricing is presented by
Hamdouch et al. (2007). Mode choice is modelled with a binomial logit model. The system
optimum only considers the net user benefit of public transport users. Several methodologies
for choosing valid tolls are discussed.

2.2.8. NETWORK REPRESENTATIONS

Economic approaches to road pricing often represent transport networks with parallel or serial
links. Each link then represents a different route, of a different mode. This simplification
allows the analyst to obtain analytical results, but substantially reduces the realism of the
study. Only very basic relations between travel demand and ‘infrastructure’ supply can be
captured (i.e., only direct mappings). However, the most important attribute for travellers to
base their decisions on is travel time. Delay is indeed a imbalance between demand and supply,
but these delays are a result of complex traffic movements with a highly dynamic nature and
with important network effects. The latter includes for example that bottlenecks in one area
can influence travel times in other areas due to spillback of congestion. Basic relationships
between demand and supply do not capture network effects, and will not assign delay to the
actually affected travellers. It is too simplistic to represent routes with serial or parallel links
as done in some economic approaches, because they will not result in realistic travel times.

2.2.9. CHARGE COLLECTION TECHNOLOGIES

A final important aspect is the way the charges are collected. While toll booths were inevitable
in the past, current technological advances make almost any type of measure practically feasi-
ble. Vehicles can be equipped with tracking and identification devices, and road-side systems
allow electronic tolling.2 Public transport operators switch to electronic fare collection sys-
tems; for example, in the Netherlands travellers check-in and check-out of the system with a
‘chip-card’ from which a kilometre-based fare is automatically deducted.

Such advanced systems allow spatial, temporal and individual differentiation of prices, and
they can even be dependent on prevailing (traffic) conditions of the transport system. So,
the technology itself is not an impediment for innovative transport pricing. However, such
technologies have their price tags, and they bring privacy issues since the systems may track
and store individual trips and travel patterns. These factors are an important constraint in
the decision making process of the stakeholders. The political and public support is strongly
influenced by costs and privacy concerns.

Although collection technologies cost money and yield privacy concerns, this dissertation
does not compare different collection technologies. It is assumed that for the considered pric-
ing measures some collection technology exists with an acceptable solution for the privacy
issues. Fixed implementation and running costs can be added to the objective of the corre-
sponding stakeholder. A recent cost-benefit analyses for several congestion charging schemes

2An overview of road congestion pricing technologies can be found in (de Palma and Lindsey, 2011)
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in the Netherlands (Hilbers et al., 2015) provides estimates of the costs of different types of
charge collection technologies; also, advantages and disadvantages of different technologies
are discussed by Hilbers et al. (2015).

2.3. PRICING MEASURES

There are plenty of transport pricing measure types. This section presents an overview with
a brief explanation of the different measures. They are classified in traditional and innovative
measures. The traditional measures are widely implemented and they have been introduced at
least a century ago. The innovative pricing are generally more elaborate in design, and they
have been introduced only recently, in the last few decades. In general, innovative pricing
measures are better capable in influencing travellers’ behaviour towards a certain direction.
That is also the main reason why policy makers consider them more and more frequently.
Hensher and Bliemer (2014) refer to this as choice-pricing and no-choice-pricing.

2.3.1. TRADITIONAL PRICING MEASURES

Periodical Registration Fee Road authorities charge vehicle (usually car and truck) owners
for the use of the vehicle. This is normally done with a periodical fee, that allows the vehicle
to be used on public roads. This measure is very traditional in the sense that very little dif-
ferentiations can be made. In the Netherlands there is only a differentiation to vehicle mass
and fuel type. The measure is not suitable for paying per usage. Also, no time and spatial
differentiations are possible.

Fuel Excise Tax Another frequently deployed measure is the fuel excise tax. This levy paid
at the petrol station should, as all excise taxes do, discourage fuel usage. They are generally
based on two motives, namely (1) to reduce environmental harm, and (2) to generate revenues.
The advantages of fuel excise taxes are that it is a pay-per-usage charge, and that there is
a direct relation between fuel consumption and emissions. Fuel excise taxes differentiate
between fuel type and indirectly to vehicle type. On the other hand the fuel excise tax can
neither differentiate with respect to time-of-day nor location, and is therefore less suitable to
reduce congestion.

Toll Roads There is a long history of toll roads that dates back 2,700 years. Toll has been
levied on the Roman roads and in other ancient empires. Tolls can either be for financing the
construction and maintenance of roads, or for generating revenue on private roads. They run
frequently over bridges and through tunnels since those come with high investments. Tolls
naturally differentiate by location, and occasionally the toll depends on the time-of-day, or
even on the level-of-service. In the Netherlands there is toll in the Westerscheldetunnel (N62)
and in the Kiltunnel (N217); besides those there are also two tunnels with a shadow toll3.

3Shadow tolls appear in public private partnerships, where the government pays the private party per
user/vehicle of a road for the construction and maintenance. Shadow tolls do not influence travellers’ be-
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Public Transport Fares Tickets are required to use the public transport system. Fares de-
pend on the distance travelled (with a few exceptions: e.g., the New York subway) and some-
times on the time-of-day. Depending on the charge system, the fare structure can be con-
structed such that crowding is minimized. Public transport services can generally be exploited
more cost efficiently when its usage is high throughout the day, instead of confined to peak
hours.

Paid Parking Parking in and around dense commercial areas is often not free. There is
either a flat charge or a price per time unit spent. On-street parking is usually paid upfront,
while parking in garages is paid afterwards. The price is usually different depending on the
day of the week and the time-of-day (e.g., parking is free during the night). Charging for
parking contributes to keep commercial areas accessible.

2.3.2. INNOVATIVE PRICING MEASURES

Kilometre Charge In the Netherlands, the kilometre charge is the most well-known inno-
vative measure with a long history. The kilometre charges is, as the name suggests, a pricing
measure that is charged per driven kilometre. Since it generally uses on-board technology, it
can differentiate in a lot of manners (e.g., for road type, vehicle type, time-of-day, user). This
provides plenty of possibilities in designing optimal pricing schemes. The largest disadvan-
tages are the required advanced technology and the privacy related issues. This nourishes its
lack of public and political support.

Peak Avoidance Rewarding Several peak avoidance rewarding schemes have been imple-
mented successfully in the Netherlands. This pricing measure is often temporary (e.g., to
reduce demand during extensive roadway maintenance) and applies to regular road users. A
priori regular users of a road are identified using license plate recognition, and those are of-
fered a reward when they avoid the peak hours. The traveller can choose to stay-at-home,
switch modes, change their departure time, or possibly change route. The results of the peak
avoidance schemes are promising (Knockaert et al., 2010). The main disadvantage of such
schemes is that they are not a structural solution since it does not generate money, but rather
only costs money.

Pay-as-you-Drive Insurance Instead of regular periodical vehicle insurance fees, more and
more usage-based insurance contracts become available. This is advantageous for vehicle
owners with a low travel demand. This type of pricing aims at directly internalising the un-
safety effects of driving. Prices can be differentiated between road types, where relatively
safe highways have a lower kilometre fee than urban roads. When the fee is, besides milage
and road type, also based on driving behaviour, such as speeding or night-time driving, it is
sometimes called Pay-how-you-Drive insurance. Such contracts can also differentiate between
different driver types/‘classes’. In-car technology is required for advanced pay-as-you-drive

haviour and are therefore out of the scope of this thesis.
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insurance systems. In several countries, including the Netherlands, such insurance contracts
are available.

Cordon Charge Since economic activity is concentrated around commercial areas, desti-
nations of travellers are similar and therefore congestion is concentrated around these areas.
A cordon charge (i.e., a fee to enter such an area by car) provides an incentive to use dif-
ferent types of transport. This is especially effective when good public transport alternatives
are present. When the charge is time differentiated the departure choice can be influenced.
Stockholm and London are well-known European examples of cities with a cordon charge.

2.4. EFFECTS

Parry et al. (2007) describe the magnitude of external effects of road traffic. The most im-
portant ones in the United States and their marginal external costs (in US$ cent/km) are: con-
gestion (6.21), accidents (3.11), local pollution (1.24), oil dependency (0.37), and greenhouse
warming (0.19). They argue that “Electronic road pricing offers the only real hope of address-
ing relentlessly increasing gridlock, while encouraging a transition to mileage-based insurance
would improve highway safety more effectively [than higher fuel taxes]”. Note that the fuel
related externalities only account for a small amount of the total marginal external cost. This
is an argument to use innovative differentiated pricing measures instead of a fuel excise.

In this thesis the notion of effects of the transport system and transport pricing is considered
in a broad sense. Everything that can be valued externally from the transport system is con-
sidered as an effect. Besides the general collective (social) costs as congestion and emissions
– the external effects–, also the costs and benefits of individuals and stakeholders are called
effects. The reason for this is that the stakeholders’ objectives can be a set of effects. In the
next paragraphs several private and collective effects are mentioned.

Emissions are important external effects. The emission of Carbon Monoxide (CO) and
Carbon Dioxide (CO2) influence greenhouse warming. Local air pollution is caused by Ni-
trogen Oxides (NOX) and Particle Matter < 10 micrometre (PM10). Wismans (2012) uses the
ARTEMIS model to quantify the emissions based on network conditions. Such models are
included in strategic planning models to connect the predicted traffic conditions with the pre-
dicted emissions.

Some forms of transport are ran by private companies (e.g., private (toll) roads, public
transport operators), and those companies have a profit motive. The revenues from the pricing
mechanisms are therefore of great importance for these companies, and considered as effects
in this thesis. Private stakeholders usually have profit maximization as their objective. The
revenue is influenced by the price and the demand for the product, which is captured within
the transport pricing framework. So, the profit depends on the market effects.

Delay is another important external effect. It is probably, together with cost, the most
important dis-utility for travellers and furthermore influences the accessibility of cities and
areas. The dis-utility stemming from delay is also higher than that of normal travel time
(Abrantes and Wardman, 2011). Related to delay, and probably equally important, is the
unreliability of travel time (i.e., the variation of travel time over days). See Small (2012) for
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a review on the valuation of travel time, and see Wardman et al. (2012) for a European-wide
meta-analysis of several types of values of time.

Social welfare is a measure that combines the costs and benefits of the whole population.
The individual costs consist of the dis-utility from making the trip with travel time and travel
costs as the most important components. The individual benefits in the transport market are
not directly related to transport, but come from the activities at the different locations. So,
only when travellers decide not to travel, the benefits are reduced. This relates to the fact that
mobility is a derived demand. Besides indivudual costs and benefits there are collective costs
and benefits. Dependending on how the revenue from transport pricing is recycled, population
will benefit from these investments. The transaction associated with paying for the pricing
measure often does not influence the social welfare, since the cost for the traveller is a revenue
that cancels out. An example of collective (i.e., social) costs are emissions and noise. The
social welfare measure should be the sum of all these costs and benefits.

2.5. BI-LEVEL FRAMEWORK FORMULATION

This dissertation adopts the for transport pricing widely used bi-level modelling framework.
The two levels correspond with the decision making processes of respectively the stakehold-
ers and the travellers. The structure allows flexibility in the interpretation of both layers. The
literature sometimes refers to bi-level (optimization) models as Stackelberg games or mathe-
matical programs with equilibrium constraints. This section defines the required properties of
both levels such that the important transport pricing aspects of Section 2.2 can be captured.
Implementations of the lower and upper level are respectively presented in Chapters 3 and 6.

The upper level represents the stakeholders (i.e., the decision makers or price setters). These
stakeholders all pursue their goals, and they are aware of each others’ existence. The goal of
the upper level is therefore to grasp the tactics and strategies of the stakeholder, and to discover
which pricing scheme is the result of this ‘game’. It is not obvious how the interaction between
stakeholders will unfold, but game theoretical principles provide a direction for this. Also, it
is not easy to quantify the exact objectives of the stakeholders. However, it is often clear what
the purposes of stakeholders are, and these can generally be expressed in terms of effects. In
this chapter some basic notions and requirements of a game theoretical (quantitative) approach
to this problem will be introduced.

The stakeholders are assumed to have an objective based on the several effects (as intro-
duced in the previous paragraph). Next, they try to adjust their strategy – in terms of a price
for their ‘travel product’ – such that their objective will be optimized. To do this they have to
take the responses of the travellers into account, as well as the actions of the other stakehold-
ers. This problem formulation is much more complex than the traditional transport pricing
problems with only one stakeholder since multiple objectives exist that can conflict.

The lower level describes the behaviour of travellers and their interaction with the transport
infrastructure. This level is used to quantify the effect of the responses of the travellers towards
the pricing scheme. Those responses will be revealed by adjustments in their travel choices.
These changed choices will lead to a different demand in the transport system, and that will
be expressed in different traffic flows. Finally, the traffic flows pass through the infrastructure
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Stakeholders decision
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Figure 2.2.: Bi-level model: schematic overview

which determines the level of the effects in which the stakeholders are interested. The lower
level model quantifies all these steps, which is not straightforward since the travellers them-
selves base their choices also on the effects. Therefore, feedback is introduced and the result
of the lower level is an equilibrium.

The two levels interact by means of prices and effects, so they are mutually dependent. This
is shown in the schematic overview of the bi-level model, see Figure 2.2. This dependency
implies that is not possible to determine the optimal pricing scheme for each stakeholder
with a ‘one-shot’ calculation. The resulting effects for multiple pricing schemes need to be
determined with the lower level model to be able to have a final result of the upper level.
Besides, the lower level is a simulation model which means that few analytical properties are
available. Before these issues are discussed in more detail, the bi-level model is presented
mathematically. Although this means moving from the comfort of a text-only manuscript, this
allows a rigorous discussion on the properties of the problem formulations, and is a reference
for the requirements of both levels.

First, the notations for the overall mathematical formulation are defined, followed by the
problem definition; finally, a simple example illustrates the notation and problem formulation.
The set of pricing measures4 is denoted with P and denote the set of effects with E. Each
pricing measure p ∈ P has a set of feasible prices Πp ⊆ R and a particular price level is
written as πp ∈ Πp.5 A combination of price levels for each price is denoted with price vector
π =

{
πp

���p ∈ P
}
∈ Π , where Π =

∏
p∈P Πp.6 Each effect e ∈ E has a feasible effect level set

Γe ⊆ R and a particular effect level is written as γe ∈ Γe. A combination of levels for each effect
is denoted with effect vector γ = {γe |e ∈ E} ∈ Γ, where Γ =

∏
e∈E Γe. Futhermore, let S be the

set of stakeholders, and let Hs : Γ → R be the objective function (assume higher is better) of
stakeholder s ∈ S. Also assume that the unit of each stakeholder’s objective function is equal,
for example, a monetary unit or utility. Finally, let E : Π → Γ be a function that represents the

4The ‘complete’ pricing measure of a stakeholder can consist of multiple of these elementary pricing measures,
e.g., on-peak and off-peak prices. This will be become formal in Chapter 6

5πp is a tariff in some monetary unit.
6Here π can be interpreted as a pricing scheme and Π as the set of all feasible pricing schemes.
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TA and thus the travellers’ responses to the price and their interaction with the infrastructure.
The most elementary optimization problem associated with stakeholders setting a price by

optimizing their objective is given by this Multiple Stakeholders Problem (MSP):

max
π∈Π
{Hs (γ) |s ∈ S}

subject to γ = E(π).
(MSP)

This mathematical program is a non-straightforward bi-level problem. Since multiple objec-
tive functions are considered simultaneously the solution is ambiguous, since there is no single
(or general) solution to multi objective optimization problems. In addition, the constraint (i.e.,
lower level) is a TA problem which is a non-straightforward mathematical problem itself. The
following example with two stakeholders illustrates the use of variables, as well as the MSP.

EXAMPLE: National government and train operator

The set of stakeholders consists of the national government GOV and the train
operator TR-OP:

S = {GOV,TR-OP}

They consider following effects: loss hours LH (non-negative, in hours), total
collected toll, denoted TOLL (of which the level γLH is non-negative and in e),
and the profit of the train operator PROFIT (of which the level γPROFIT is in e):

E = {LH,TOLL,PROFIT}

ΓLH = R+

ΓTOLL = R+

ΓPROFIT = R

Γ = ΓLH×ΓTOLL×ΓPROFIT

= R+×R+×R

The government has the objective to maximise welfare and assumes a value
of time of 15 e/hour, and the train operator maximizes its profit:

HGOV

(
γLH,γTOLL

)
= −15γLH−γTOLL

HTR-OP

(
γPROFIT

)
= γPROFIT

The pricing measure of the government is a time differentiated kilometre
charge (denoted KM-ON for on-peak and KM-OFF for off-peak, both their levels in
e/km). The pricing measure of the train operator is changing the ticket price
FARE with a percentage change. The kilometre charge can only be in whole cents
with a maximum of twelve cents, while the fares can be in- and decreased by
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any percentage, as long as they not exceed ±10%, thus:

P = {KM-ON,KM-OFF,FARE}

ΠKM-ON = {0;0.01,. . . ,0.11;0.12}
ΠKM-OFF = {0;0.01,. . . ,0.11;0.12}
ΠFARE =[−10%,10%]
Π =ΠKM-ON×ΠKM-OFF×ΠFARE

= {0;0.01; . . . ;0.11;0.12}×
{0;0.01; . . . ;0.11;0.12} × [−10%,10%]

The corresponding MSP for the government and train operator becomes:

max
(πKM-ON,πKM-OFF,πFARE)∈Π




−15γLH−γTOLL

γPROFIT




such that (γLH,γTOLL,γPROFIT) = E(πKM-ON,πKM-OFF,πFARE)

Here E is not yet specified, but keep in mind that any price level can influence
any effect level. Then it is already clear that there is no straightforward solu-
tion to this problem because the interaction between the government and the
train operator is not yet specified. When the train operator adjusts the price
such that their profit is maximal, the government can respond by changing the
kilometre charge. Since that changes the profit of the train operator, its fare is
not necessarily optimal any more.

Methodology is required that can solve the multi objective character of (MSP) on Page 30
by including the interaction between stakeholders, where in addition the TA model represented
by function E contains plenty of travel behaviour and interaction between demand and supply.
The next sections therefore introduce both modelling levels further, and formulates require-
ments for them.

2.5.1. UPPER LEVEL SPECIFICATION & REQUIREMENTS

It is far from straightforward to predict the outcome of the decision making process of one
stakeholder. Although strategic planning models can indicate optimal policies, irrational be-
haviour and politics are by definition difficult to capture in a mathematical model. By intro-
ducing more stakeholders, and by observing that stakeholders respond to each other’s action
makes the modelling even less tractable. In addition, there is an ongoing discussion on the
practical implementation of planning support systems. That started exclusively positive when
the models and the computing power for large scale models became available; Clune et al.
(1999) wrote “for transport planners themselves to devise prices [...] anywhere near the best
would take (i) great effort, (ii) great insight, (iii) a long period of time, and (iv) luck”, and they
state that the ‘tools’ would be able to take over this task easily. At present, the view on this
is more balanced since it turns out that tools do not take over all the planners’ tasks, and the
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whole planning process should be analysed (i.e., by moving some emphasis from the tooling
to the whole process) (Pelzer et al., 2014, 2015).

The focus of this dissertation is also on the (mathematical) modelling of transport pricing,
and rationality of the stakeholders is still assumed. However, the main purpose of the upper
level is to support the decision making process in a more elaborate manner, by providing
arguments for the stakeholders, and by proposing solution concepts. The traditional notion
of an unambiguous single solution to the transport pricing issue will be abandoned. Instead,
paradigms will be allowed that provides different ranges of solutions that can be based on
different assumption on the interaction between the stakeholders.

The field where mathematical models and rational decision makers intersect is game theory.
This expansive field has multiple frameworks and theories about competing and cooperating
decision makers that fit the MSP. Therefore, a game theoretical approach is useful for the upper
level. The main challenge here is to numerically resolve the multiple objective functions while
it reflects real stakeholders’ interactions. The theses of Joksimovic (2007) and Ohazulike
(2014) are the first to explore the field of game theory in a multi-stakeholder setting. Based on
the discussion in Sections 2.2.1 and 2.2.2 two requirements for the upper level are formulated:

• Rational stakeholder behaviour
Stakeholders’ preferences should be reflected by their objective function. They will
act only in favour of their objective. In case of negotiations and/or cooperation, the
used strategy of each stakeholder is rational, meaning that they each optimize their own
objective.

• Reflection of different cooperation formations
The upper level should be able to analyse different mutual attitudes of stakeholders. Co-
operative and competitive behaviour is considered as endogenous. This allows analysis
of the price of competition.

2.5.2. LOWER LEVEL SPECIFICATION & REQUIREMENTS

The lower level TA function E in the MSP represents a complicated process with travellers’
choices and traffic propagating over the network. The analyses of transport pricing aspects in
Section 2.2 lead to the observation of important properties of the travellers and the transport
system. These are translated to requirements for the TA model. In addition, general require-
ments, that also hold without the pricing application, for strategic planning models exist (see
Bliemer et al., 2013). This leads to the following list of requirements:

Travel Choices
• Incorporation of differences in travellers’ responses

There is a large difference in choice behaviour between different (types of) travellers.
The model should address this by either explicitly grouping travellers according to simi-
lar characteristics, or by taking the taste heterogeneity implicitly into account by random
variates in the model.

• Incorporation of different travel time types
Travellers evaluate their time differently per mode, but also, one hour of travelling in
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congested conditions is experiences as a larger burden than one hour of travelling in
free flow conditions. Furthermore, waiting, access and egress times for pubic transport
should have different valuations.

• Capturing overlap
When two alternatives share the same characteristics (e.g., the modes or time-of-days are
equal) or when there is even physical overlap (i.e., road segments), the choice preference
of a traveller will be similar for these alternatives. The red-bus blue-bus is the textbook
example of this correlation. It is required that the choice model accounts for this overlap.

• Choice opportunities
In planning models the possible responses of the travellers are reflected by their choice
set. The larger this set, the more diverse the responses can be. In most transport sys-
tems public transport or slow modes are an attractive alternative, and so is deviating
from the preferred departure time. The framework should be able to reflect all relevant
alternatives present in the transport system in the choice set.

• Individual choices based on alternatives’ properties
Choices are made based on different observable properties (or attributes) of alternatives.
Each traveller values these alternatives’ properties in his/her own manner. Therefore,
it is required that the model determines the choice probabilities based directly on these
properties. Furthermore, travel cost and travel time of a trip are the most important
properties related to pricing, since they are likely to change under pricing regimes. In
addition, it should also be possible to capture travel time reliability of a trip. The model
has to address these aspects based on physical infrastructure and on its prevailing per-
formance given a certain pricing scheme.

Traffic Phenomena and Network Representation
• Proper identification of bottlenecks

Bottlenecks are locations in the road network where the travel demand is higher than
the capacity of the infrastructure. These occur usually at discontinuities in the transport
network, which are located at nodes in the abstraction of the network. Node models cap-
ture the traffic phenomena and conditions at nodes and are therefore a strict requirement.
Without a node model the location and severity of congestion cannot be determined.

• Queue propagation by shock waves and with spillback
Bottleneck locations and conditions alone are not sufficient to represent traffic, because
queues occupy physical space. Therefore, the spatial dimension of congestion has to
be determined. Kinematic Wave Theory (KWT) is an elegant and simple theory that al-
lows propagation of traffic conditions over links (details follow in Section 3.3.1). When
congested conditions reach the beginning of a link, the node model – with new input –
can determine the direction and severity of the spillback. A node model combined with
KWT therefore captures important traffic flow phenomena, such as queue growth and
spillback. Computational efficient methods exist that implement KWT. A traffic state
that represents traffic flow, speed, and density at every location in the network is the
provided output.

• Representative travel time calculation
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Travellers make decisions based on their foreseen travel time. One would say it is rather
simple to determine the travel times when speeds are known, and this is true when
the traffic propagation is performed with KWT as stated in the previous requirement.
However, this is listed as a separate requirement since plenty of standard models in
Static Traffic Assignment (STA) (definition follows in Section 3.1) and other heuristic
methods cannot determine these speeds appropriately under congested conditions, and
thus cannot report representative travel times.

• Representative (external) effects quantifications
For the stakeholders holds that they want to make decision about pricing measures based
on reliable estimates of effects. Quantities like air and noise pollution can – just like
travel time – be determined with traffic conditions as flow, density and speed. However,
just like travel time, these have to be realistic to get a good result. Due to the importance
of effects, also this is stated as a separate requirement.

• Varying network conditions over the day
The (average) network conditions change over the periods within the day. It is required
to capture this variability over the day by having representative time periods (e.g., hourly
intervals or different peak hours). Since the second-to-second or minute-to-minute vari-
ations are not relevant for transport pricing, a continuous or strongly discretized ap-
proach is not required.
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CHAPTER 3.

QUASI-DYNAMIC TRAFFIC ASSIGNMENT

The lower level model of the transport pricing framework (Chapter 2) is an
assignment model in which mode, route and departure time choice of travellers
have to be captured. This chapter implements the lower level by means of a
Quasi-Dynamic Traffic Assignment (QDTA) framework that combines impor-
tant traffic dynamics from Dynamic Traffic Assignment (DTA) and the compu-
tational efficiency of Static Traffic Assignment (STA). The mode, route, and
departure time choices are combined to a single choice decision. This choice
model can correct for similarities between alternatives (e.g., route overlap) and
is feasible for application on real transport networks.

The Quasi-Dynamic Network Loading (QDNL) part of this chapter uses the
theory presented in the following papers:

• Bliemer, M. C., Brederode, L., Wismans, L., and Smits, E.-S. (2012).
Quasi-dynamic traffic assignment: static traffic assignment with queue-
ing and spillback.
In The Transportation Research Board (TRB) 91st Annual Meeting, Wash-
ington DC, January 22-26, 2012 (paper no 12-0358)., pages 1 – 24

• Bliemer, M. C., Raadsen, M. P., Smits, E.-S., Zhou, B., and Bell, M. G.
(2014b).
Quasi-dynamic traffic assignment with residual point queues incorporat-
ing a first order node model.
Transportation Research Part B: Methodological, 68(0):363–384

This chapter starts with a concise introduction to different Traffic Assignment (TA) models
in the light of the specifications given in Section 2.5.2. The different types and their advantages
and disadvantages are given. Afterwards, QDTA is introduced which is a TA model that has
a good balance between realism and efficiency for transport pricing applications. Elements
hereof are a choice model which uses theory from Chapter 4 and QDNL which relies largely
on node models. The behaviour of the latter is analysed in Chapter 5.
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Figure 3.1.: Interaction between choices and network loading

3.1. TRAFFIC ASSIGNMENT INTRODUCTION

Traffic Assignment models are an important modelling tool to estimate current and predict
future traffic flows and conditions of transport systems. Traditional TA models are used to
describe travellers’ route choice behaviour and the implications these choices have for traffic
conditions. To determine the intensity, location and duration of congestion, traffic flows are
propagated over the network. Applications of TA models in general include strategic trans-
port planning (e.g., pricing of course), the design of networks, but also assessment of traffic
management techniques (e.g. ramp metering or dynamic speed limits) with more advanced ap-
proaches. This section discusses which TA models are suitable for strategic transport planning.
Typical TA models consist of two components, (1) a choice model for modelling travellers’ de-
cisions and (2) a network loading model to propagate traffic over networks. There is feedback
since the network loading determines the attractiveness of the different choice options. Figure
3.1 depicts these interactions. Note that all choices related to the consumption of mobility can
be included here, so they are not restricted to route choice, and that the specification of the
network loading is key to the type of TA that is obtained.

Wardrop (1952) is the originator of basic principles in TA. He outlines in his seminal pa-
per that “[...] speed is a function of flow, so that redistribution of traffic upsets the pattern
of speeds. The problem is to discover how traffic may be expected to distribute itself over
alternative routes, and whether the distribution adopted is the most efficient one.”. This prob-
lem has inspired generations of transport scientists, and there is a huge repertory of solution
methods. Wardrop (1952) himself already provided the two criteria on which the distribution
of routes can be based, these a currently known as the user equilibrium (also known as the
Wardrop equilibrium) and the system optimum. “The journey times on all the routes actually
used are equal, and less than those which would be experienced by a single vehicle on any
unused route.” is the equilibrium in which no user can be better off by unilaterally changing
routes. He describes system optimum as when “The average journey time is a minimum.”.

The neat connection between pricing and Wardrop’s criteria is that by pricing roads in the
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network, the system can move from the user equilibrium to the system optimum. This rea-
soning is analogous to marginal cost pricing (see Section 2.1), and indeed (Beckmann, 1965)
showed that when on every link on the network the marginal cost is levied, the system moves
from user equilibrium to system optimum. This is no reason for jubilation yet, since it is very
difficult to determine the (social) costs precisely per link. In addition, charging the marginal
costs per link is practically infeasible. This is due to the fact that no simple analytical model
exists that satisfies the requirements stated in Section 2.5.2. These and other ‘real-life’ con-
straints bring forward second-best pricing, and it becomes key to analyse the user equilibria
under such second-best prices (see also Section 2.1).

To start with the analysis, consider the network loading procedure. In real traffic on road
networks several phenomena can be identified, network loading models should be able to re-
produce these phenomena. Important phenomena include (1) congestion build up (location,
intensity and speed), (2) shockwave propagation, and (3) spillback over nodes. Presence of
these phenomena in a TA allows for a good assessment of the transport systems. Other phe-
nomena include traffic instability, hysteresis, traffic heterogeneity, and lane change behaviour.
These are considered less important in network loading for TA models, because these phenom-
ena act on a high level of detail (i.e., individual vehicles), and do not affect the representative
traffic conditions too much. Rule of thumb is that the more phenomena are modelled, the more
demanding the solution methods are – hence the longer calculation times become. Practition-
ers should therefore consider the level of detail required for their application.

The foremost classification in network loading distinguishes between static and dynamic
models. The static models typically consider a travel time function1 for every link; an increase
in flow leads to an increase in travel time. The static equilibrium model with such functions
was defined by Beckmann et al. (1956). This has been the standard for equilibrium models for
the following half-century. Nonetheless, Beckmann et al. (1956) state “The notion of static
equilibrium of flow in a network may be thought somewhat limited because of the noted pe-
riodicity of traffic during the day, week, year, and perhaps business cycle.”. They furthermore
had the foreseeing insight that “While it is not difficult, by attaching time subscripts to the
flow variables, to write down formally the equilibrium conditions [...] for a dynamic model,
this merely makes the analysis more complicated without explaining much that is new.”. This
is foreseeing since it has been attempted to add the subscript, but these results never described
physical queues adequately (Bliemer et al., 2014a, 2017). The user equilibria based on static
models have the advantage that they have nice properties; existence and uniqueness can be
proven, and efficient sophisticated solution methods are available2. On the contrary, they lack
realism by allowing flow to exceed capacity, and by completely omitting queue build-up.

Dynamic Network Loading (DNL) models do provide the required realism; they can roughly
be classified in microscopic and macroscopic models. The microscopic models simulate each
vehicle separately, while the macroscopic models consider traffic as a continuous flow. Since
microscopic modelling requires much computational power and memory storage, applica-
tions on large networks are infeasible. The advantage of microscopic simulators is that be-

1Which is usually the well-known Bureau of Public Roads (BPR) link delay function.
2A good model to use is the TAPAS method introduced by Bar-Gera (2010); Bar-Gera et al. (2012), as it is

efficient and has unique resulting route flows. Also, the algorithm by Dial (2006) provides good performance.
Recent overviews on static models and their extensions can be found in (Bliemer et al., 2014a,b, 2017).
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haviour can be specified for each vehicle. Macroscopic models have a lower level of detail,
but have more efficient solution methods. This makes them more suitable for transport models
with large scale networks. Within macroscopic models, multiple approaches exist, the by far
largest school of them relies on the Kinematic Wave Theory (KWT) developed by Lighthill and
Whitham (1955); Richards (1956). They describe how traffic propagates as kinematic waves
through the network. Traffic characteristics are flow and density which are related with the
law of conservation of vehicles. Since KWT is of significant importance, an introduction to the
main theory is provided in Section 3.3.1. For a full genealogy of traffic flow models see van
Wageningen-Kessels et al. (2014)

In this thesis, TA is not restricted to how travellers are distributed over routes as Wardrop
(1952) describes. In addition, the distribution over time and modes is included. This implies
different choices for the travellers; they can depart earlier or later, or might switch modes.
Since it is utopian to find and impose the system optimum with the required level of detail
(from Section 2.5.2) under three choice dimensions, the focus of the TA in this thesis is to
determine the user equilibrium based on the simulation of travel times and other conditions,
given a particular pricing scheme.3 Allowing travellers to distribute over time and modes
has implications for network loading. These will be touched upon briefly, before the actual
traveller’s choice behaviour will be discussed.

In the developed model, travellers can choose between different modes which increases
complexity of transport models. The ‘dynamics’ of road traffic and public transport are com-
pletely different. On the road, delays are due to congestion, while in public transport delays
are not necessarily a direct consequence of an increase in demand. However, crowding in pub-
lic transport makes this option less attractive, and crowding is a direct consequence of a high
demand. This requires different approaches per mode. Contrary to road networks, there is no
queue build-up in public transport networks with dedicated infrastructure. The public trans-
port system is based on services with either a frequency or fixed time schedule, and crowding
reveals itself by discomfort from overcrowded vehicles, and/or additional delay due to waiting
for the next vehicles if the current vehicle is full, or in the case of disruptions. Buses can
suffer from both crowding and congestion effects. de Cea and Fernández (1993); Spiess and
Florian (1989) provide user equilibrium-like models with feedback from flow; for an overview
of public transport related assignment see Ceder (2007).

Vickrey (1969) was the first to identify that travellers will distribute over time because
they have different preferences for their departure and arrival times, but also because they
avoid delays. Traffic conditions differ before, during and after peak hours. Fully dynamic
models provide these fluctuations, while static models cannot capture them. This section is
titled quasi-dynamic traffic assignment, because it does allow travellers to distribute over time,
and the traffic conditions come from KWT, but the conditions represent the averages per time
period (which is similar to static approaches). This allows the traveller to choose the time
period in which they prefer to travel, but there is no distribution within each time period.
Arnott et al. (1990a,b); Vickrey (1969) consider simple models with continuous departure

3With milder assumptions, analytical solutions for achieving the system optimum with pricing exist. Yang and
Huang (2005) provide an overview of user equilibrium problems in their Chapter 2, and they provide a series
of analytical marginal cost pricing solutions using these formulations
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times. Huang and Lam (2002) utilize the discrete time approach, but they combine this with a
simplified underlying network loading model.

The approaches of Wardrop (1952) and Beckmann et al. (1956) assume that travellers have
perfect information about the attractiveness of their options, and that they all confine to the
same choice process. However, different travellers perceive different routes in a different fash-
ion. In other words, they might not know the exact travel time, and they can have an individual
preference towards time evaluation. Stochastic models provide a method to capture this het-
erogeneity and uncertainty. The attractiveness of each option is sampled from a distribution,
and the traveller uses some choice mechanism to choose one of the options. With only few ex-
ceptions, the Random Utility Maximization (RUM) framework is used to capture these choices,
which assigns a choice probability to each travel option. Section 3.2.1 introduces this theory.
User equilibria with non-deterministic choices are called stochastic user equilibria.

Stochastic user equilibria that use static network loading models were introduced by Da-
ganzo and Sheffi (1977); Dial (1971); Fisk (1980). With logit-based choice models, the
stochastic user equilibrium has nice properties (e.g., existence and uniqueness), and such an
equilibrium can be found efficiently.4 At the other end of the spectrum, user equilibria with
a DNL model can only be approximated by means of simulations. These simulations try to
find stable (i.e., fixed) points in the TA system as described in Figure 3.1. Since they are
non-unique, the meaning of such a point is still an open question. TA models based on static
network loading are called Static Traffic Assignment (STA) models, and those based on DNL

are called Dynamic Traffic Assignment (DTA). Bliemer et al. (2014a, Section 2) describe STA

and DTA models, and show what is available in the grey area in between them. Bliemer et al.
(2017) provide a comprehensive overview of TA models for strategic planning. They classify
the models with an analogy to genetics. Each model is build up from a spatial gene, a temporal
gene, and a behavioural gene.

The QDTA model presented in this chapter, lies in between the static and dynamic ap-
proaches. The necessary traffic dynamics provided by KWT are included, but it is used to
describe the average traffic state with a time-of-day period. Since no complete travel time
profile over departure times is presented, QDTA is not a dynamic model. This simplification
allows tremendous efficiency gains compared to complete dynamic models. Compared to
static models, the level of realism is significantly larger. The user equilibrium based on QDTA

has a neat mathematical problem definition. However, existence and uniqueness properties of
this user equilibrium are not proven yet.

3.1.1. QUASI-DYNAMIC TRAFFIC ASSIGNMENT MODEL FRAMEWORK

This section constructs the delimiters of the QDTA model by defining several model compo-
nents and their interactions. So, the TA function E : Π → Γ, that maps pricing schemes to
effects, used in the Multiple Stakeholders Problem (MSP) is specified. Figure 3.2 shows the
flowchart of QDTA. The pricing scheme, travel demand, and the transport network are the

4Note that this only holds if the choice alternatives are provided a priori, as is the case in this dissertation. If
generation of choice alternatives is endogenous in the equilibrium model, an equilibrium does not necessarily
exist (Watling et al., 2015).
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Pricing scheme

Mode, time-of-day, and
route choice for each
O-D pair and each user-
class

travel demand per O-D

pair per user-class

Trips per mode per route
per time-of-day

Quasi-dynamic network
loading for every mode
and every time-of-day

Transport network

Travel times and dis-
tances per mode per
route per time-of-day

Effects

Figure 3.2.: Flowchart of the QDTA model

input, and the quantified effects are the output. Two main processes are identified: (1) the
simultaneous mode, time-of-day and route choice, and (2) the QDNL model. The latter is in-
dependently executed for each mode and time-of-day combination, which assumes that traffic
cannot transfer between modes or time-of-days. The model allows for taste heterogeneity by
allowing different preference parameters per user-class. Let U be the set of user-classes and
assume that each traveller belongs to one of the user-classes u ∈ U .

Next, the main processes are individually discussed in detail. This requires some prelimi-
naries on the notation of the input. Consider a transport network (N ,L) consisting of nodes
N , and links L. Trips start at origins O ⊆ N and terminate at destinations D ⊆ N . The set
of Origin-Destination (O-D) pairs with positive travel demand is O/D, the demand of user-class
u ∈ U for O-D pair o/d ∈ O/D is denoted with D(u;o/d) ∈ R+, and write Du =

{
D(u;o/d) ��o/d ∈ O/D

}
∈

R|
O/D |
+ for the O-D matrix for user-class u.
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3.2. MODE, ROUTE AND DEPARTURE TIME CHOICE

This section specifies the four components (i.e., choice set, systematic utility, error distribu-
tion, and utility formula) that specify a RUM model, such that it can be used as the choice
sub-model of the transport pricing framework. Extensive analyses on the error distributions
and utility formulas applied to route choice can be found in Chapter 4. In this section mode
and departure time choice are also considered, making it a generalization of Chapter 4, but
fortunately the mathematical properties remain equal. Before the application of RUM in the
QDTA-model is discussed, a basic introduction to RUM is provided in the following section.

3.2.1. RANDOM UTILITY MAXIMIZATION

Discrete choice analysis based on RUM is widespread in transport science. It provides a
method to determine choice probabilities for a set of alternatives. RUM is an important in-
gredient of the QDTA model, since it captures the behaviour of travellers. Train (2009) is an
excellent introductory book and reference work on the topic. A discrete choice model requires
the analyst to specify four components: (1) a set of choice alternatives, i.e. C, (2) a systematic
utility for each alternative based on observed attributes, (3) a randomly distributed set of error
terms, and (4) a utility formula that determines how the systematic utility and error term are
combined. The latter can for example be additive or multiplicative. Application of the RUM

principle on these four components determine the choice probabilities.
Traditional RUM models write the utility Uc for every choice alternative c ∈ C as

Uc = Vc + εc, (3.1)

where Vc is the systematic utility and εc is the error term. The systematic utility usually is a
linear combination of observed attributes of the alternative, for example travel time. The error
term contains, amongst other randomness, the unobserved attributes of the alternative. The
RUM principle is that the traveller chooses the alternative with the highest probability. The
probability that a traveller chooses alternative c ∈ C equals

P(c) = P
(
Uc ≥ Uc′��∀c′ ∈ C,c′ , c

)
. (3.2)

The interesting part for the choice modeller starts when a distribution for ε =
(
ε1,. . . ,ε |C|

)
is specified. When it is multivariate Gumbel5 distributed, the logit model arises (McFadden,
1974), and with multivariate normal distributed error terms the probit model arises (Daganzo
and Sheffi, 1977; Daganzo, 1979)6. The largest difference between them is that only the logit
model has a closed-form probability expression, namely

P(c) =
eVc∑

c′∈C eVc ′
, ∀c ∈ C. (3.3)

While for the probit model the choice probabilities have to be simulated with a Monte Carlo
method. Therefore, applications of probit on large-scale networks is not feasible.

5To be exact, multivariate extreme value type I, see Section 4.3.1
6See the Nobel lecture of McFadden (2001) for the history of RUM models.
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Furthermore, logit and probit models have different properties. The probit model offers
flexibility since the means and (co)variances can be completely specified. For the logit mod-
els on the other hand, only the means can be specified easily. The variance of each marginal
distribution has to be the same; however, covariances can be included since the work of Mc-
Fadden (1978). The achievable covariance structure is limited, and significantly less flexible
than what is achievable with probit models.7

In Chapter 4 a different type of models that is strongly related to the logit models are anal-
ysed. Instead of the additive utility formula of equation (3.1), a multiplicative utility formula
is considered:

Uc = Vc × εc, ∀c ∈ C. (3.4)

Under the assumption that the systematic utility is negative, and that ε is a multivariate re-
versed Weibull distribution, the probability formulation is again closed-form:

P(c) =

(
−1
Vc

) µ
∑

c′∈C

(
−1
Vc ′

) µ , ∀c ∈ C, (3.5)

where µ is a parameter of the model. Chapter 4 completely analyses these so called weibit
models. The flexibility is different from the logit model, since the variance of utility is com-
pletely determined by the systematic utility. Translating the theory of (McFadden, 1978) to
the weibit family provides a similar method to introduce covariances.

Chapter 4 also shows that the four ingredients of a choice model can be grasped by a choice
set C, a generating vector y = (y1,. . . ,y|C|) (which implies the systematic utility and the utility
formula) and a generating function G : R|C| → R (defines the covariances of the error terms).
The next sections provides a specific choice for each of them, such that an appropriate choice
model for QDTA unfolds.

3.2.2. CHOICE ALTERNATIVES

Consider the set of modesM containing car CAR, train TRAIN, and the stay-at-home (or telework)
alternative HOME. The latter is considered as a special mode, since no trip is actually made.
However, this is the most natural way to include it in the choice set, and it allows for some
demand elasticity. A fixed set of modes – with one private mode and one public transport mode
– is used in this dissertation, since this conveniently shows the mode specific behavioural
responses and network effects. Extensions with other modes (e.g., bicycle, bus, metro) are
straightforward. The modes introduced in this chapter also return in the case study presented
in Chapter 7. For the generalization to multi-modal trips, see the discussion in Section 8.4.
The model of Zhou et al. (2009) is another integrated approach where mode and route choice
is included; however, they exclude departure time choice, but they include trip generation and
distribution.

7Mixed logit and logit kernel models (for overviews of these models, see in Frejinger and Bierlaire, 2006;
Prashker and Bekhor, 2004) allow more flexible covariance structures; however, these models require simu-
lation of the choice probabilities and are therefore not considered (see also Section 4.4).
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For every mode m ∈ M and every O-D pair o/d ∈ O/D there is a set of routes Rm
o/d

. The set of
all routes for mode m ∈ M is Rm = ∪o/d∈O/DR

m
o/d

, and the set of all routes for O-D pair o/d ∈ O/D
is Ro/d = ∪m∈MR

m
o/d

. For mode HOME no routes exist of course; therefore we introduce a dummy
route R0, and set RHOME

o/d
= {R0} ,∀o/d ∈ O/D. By specifying as well Rm

o/d
, Rm, and Ro/d, the number

of o/d and m subscripts/indices can be reduced in the remainder of this chapter.
The departure time choice has a discrete approach. That means that it is assumed that trav-

ellers make their trip in a certain time interval. The set of those so called time-of-days is
denoted with T . This implies that the demand pattern over time is piecewise constant. Fur-
thermore it is assumed that the attributes related to each time-of-day interval T ∈ T represent
averages over that interval. Thus for example, travel time attributes should represent the aver-
age travel time on routes, and should consider average queue lengths. Models with (discrete)
time-of-day choice models appear in (Ettema et al., 2007; Hess et al., 2007; de Jong et al.,
2003). More advanced approaches to model time-of-travel preferences and corresponding
methodological issues can be found in Ben-Akiva and Abou-Zeid (2013).

Choice situations appear for every O-D pair, and each choice is the selection of a combi-
nation of a time-of-day and a route. Since routes are mode specific, choosing a route implies
mode choice as well, so there is a simultaneous mode, time-of-day and route choice. Denote
the set of choice alternatives for O-D pair o/d ∈ O/D with Co/d = T ×Ro/d,8 and denote (T ;r) ∈ Co/d

as the choice alternative consisting of time-of-day T and route r . Denote all choice alternatives
as C = ∪o/d∈O/DCo/d. The analyst can choose to add mode HOME to every time-of-day – leading to
|T | HOME alternatives –, but it is more natural to retain a single HOME alternative (since travellers
don’t choose a time-of-day when they do not travel), as done in this thesis where it is denoted
with (·,R0) ∈ C. The correct definition of the choice set is therefore

Co/d =
(
T × (Ro/d \ {R0})

)
∪ {(·,R0)}. (3.6)

This is an important choice, since generally the composition of the set of choice alternatives
itself influences the choice probabilities (see Bliemer and Bovy, 2008). The composition of
a choice set is critical for the model results. The following aspects should be borne in mind
during this process.

• When a mode is added that partly substitutes another mode, while leaving everything
else unchanged, the predicted market share of the modes combined will be overesti-
mated. This can be partly corrected by using a nested choice structure, or by changing
the mode specific constants in the systematic utility.

• When a time-of-day is added (or split), additional alternatives arise for every mode, so
there is not a direct over-/underestimation error for regular modes. However, the mode
HOME is not time-of-day specific, and its market share will decrease.

• Route set generation remains an open question in science. The composition of the route
set largely influences the choice probabilities of genuine route choice models (Bliemer
and Bovy, 2008). Ideally routes are sampled such that they represent a specified distri-
bution based on the choice model (Frejinger et al., 2009). Unfortunately, no route set
generator exists that complies to this requirement. They are either inefficient (such as

8Without loss of generality it is possible to use Co/d ⊂ T ×Ro/d , where it is possible to exclude certain mode,
time-of-day combinations.
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the sampler of Flötteröd and Bierlaire, 2013), or they are merely heuristics (see e.g.,
Bekhor et al., 2006; Bovy and Fiorenzo-Catalano, 2007; Ramming, 2002). For multi-
modal networks, van Eck et al. (2012) analyse these heuristics and show that methods
merely based on shortest paths under-perform compared to approaches with labelling.

3.2.3. SYSTEMATIC UTILITY SPECIFICATION

The systematic utility for each choice alternative (T ;r) ∈ C should contain its observed at-
tributes. In the QDTA model, the most important attributes of each alternative are travel costs
and travel times. Travel costs largely depend on the considered pricing scheme and travel times
are determined by the underlying QDNL model. Each user-class has a different value of time
and preference towards time-of-days and modes. By normalizing the taste parameter for the
cost attribute to −1, all other taste parameters read as willingness-to-pay (see Section 4.4.3).
Therefore, the travel time related parameters are values of time. Denote for each time-of-day
and route combination (T ;r) ∈ C, the systematic utility V(T ;r;u) for user-class u as,

V(T ;r;u) =




ASC(T ;CAR;u) − κ(T ;r;u) −VOTIVT-FF

(CAR;u)τ
IVT-FF

(T ;r) −VOTIVT-CONG

(CAR;u) τ
IVT-CONG

(T ;r) if r ∈ RCAR

ASC(T ;TRAIN;u) − κ(T ;r;u) −VOTIVT

(TRAIN;u)τ
IVT

(T ;r)

−VOTWAIT

(TRAIN;u)τ
WAIT

(T ;r) −VOTA-E

(TRAIN;u)τ
A-E

(T ;r) if r ∈ RTRAIN

ASC(T ;HOME;u) − κ(T ;r;u) if r ∈ RHOME,

(3.7)

where for each m ∈M,

ASC(T ;m;u) = the alternative specific constant of user-class u for alternative (T ;r) (3.8)
κ(T ;r;u) = the travel cost of alternative (T ;r) for user-class u (3.9)
τ·(T ;r) = the travel time of alternative (T ;r) (3.10)

VOT·(m;u) = the value of travel time of user-class u for mode m. (3.11)

Here, the · is a placeholder for different types of travel time; Equation (3.7) distinguishes in-
vehicle travel time during free flow conditions IVT-FF, in-vehicle travel time during congested
conditions IVT-CONG, general in-vehicle travel time IVT (here only used for mode TRAIN), waiting
time WAIT, travel time for access and egress legs A-E. These particular choices for types of travel
time are in line with the case study presented in Chapter 7; however, it is straightforward to
remove and/or add different types. Section 2.2.5 discusses the different preferences towards
these travel times.

For the used choice model it is required that the systematic utility is strictly negative. There-
fore, it is assumed that travel costs are always positive, and that the alternative specific con-
stants are always negative.

3.2.4. ERROR TERM DISTRIBUTION AND UTILITY FORMULA

Section 4.3 will analyse how choice probabilities can be derived from the distribution of the
error terms. All models with closed-form probability expressions can be captured with a single
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O-D pair o/d

TRAINCAR HOME
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· · ·rCAR
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| · · ·rCAR

1
rCAR
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o/d
| · · ·rTRAIN

1
rTRAIN

|RTRAIN
o/d
| · · ·rTRAIN

1
rTRAIN

|RTRAIN
o/d
| R0

Figure 3.3.: Choice decision tree for O-D pair o/d at the top level. Consecutive levels are mode,
time-of-day, and route.

formula for the choice probabilities, which is Equation (4.26). To specify the distribution of
random utility, merely a generating function that satisfies some requirements (see Section
4.3.1.1) and a generating vector have to be specified. The function determines the covariance
structure, while the vector determines how the systematic utility enters the general utility.

Choice situations occur for every O-D pair; the simultaneous choice is captured with a
nested structure. The choice tree for the QDTA model is shown in Figure 3.3. First the mode,
then the time-of-day, and finally, the route is chosen. The nested structure of the mode and
time-of-day choice is considered fixed. Hess et al. (2007) shows how the best nesting struc-
tures can be derived from survey data. For the lowest level, i.e., route choice, any generating
function from Section 4.3.2 can be implemented. The nested structure implies that the routes
within a time-of-day are correlated, and that in-turn the time-of-days within the modes are
correlated. Nested models can be considered as sequential multinomial models; where the
systematic utility of a group of alternatives in the lower level is a combination of each alterna-
tive’s systematic utility. Therefore, a scale parameter has to be defined for every level in the
choice tree.

Define the generating function Go/d : R|Co/d |+ → R+ for each O-D pair o/d ∈ O/D with the choice
set Co/d from Equation (3.6) as

Go/d (z) =
∑

m∈{CAR,TRAIN}

*
,

∑
T∈T

(
GROUTE

(o/d;T ;m) (z (T ;m))
) µMODE

µT-O-D +
-

µ
µMODE

+ zµR0
, (3.12)

where 0 < µ < µMODE < µT-O-D holds for respectively overall, mode-nest specific, and time-of-

day-nest specific scales µ, µMODE and µT-O-D; and for each T ∈ T and m ∈M, GROUTE

(o/d;T ;m) :R
|Rm

o/d
|

+ →

R+ is a µT-O-D-homogeneous generating function – which can be any of the Multinomial (MN),
Path-Size (PS), Paired Combinatorial (PC), or Link-Nested (LN) generating functions –, and
note that z =

(
∪m∈M ∪T∈T z (T ;m)

)
∪ zR0

.
Chapter 4 describes how different utility formulas lead to different generating vectors. Since

the model should be feasible on networks, heteroscedastic utility distributions are required
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(see Sections 2.5.2 and 4.2). Therefore, the multiplicative utility formula of Equation (3.4) is
chosen. This leads the following definition for the elements of the generating vectors:

y(T ;r;u) =
−1

V(T ;r;u)
, ∀(T ;r) ∈ C,u ∈ U . (3.13)

When these are aggregated per O-D pair per user-class, then they can be combined with Equa-
tion (3.12) to produce choice probabilities. Define y (o/d;u) = {y(T ;r;u) |T ∈ T ,r ∈ Ro/d} as the
generating vector of user-class u ∈ U for O-D pair o/d ∈ O/D, to be able to give the choice
probabilities

P(T ;r;u) =

y(T ;r;u)
∂Go/d

(
y (o/d;u)

)
∂y(T ;r;u)

µGo/d

(
y (o/d;u)

) , ∀(T ;r) ∈ C,u ∈ U . (3.14)

With the assumption that each GROUTE is the multinomial generating function (see Equation
(4.40), the choice probability for alternative (T ;r) ∈ C for user-class u ∈ U is

P(T ;r;u) =

*.....
,

∑
m′∈{CAR,TRAIN}

*....
,

∑
T ′∈T

*..
,

∑
r ′∈Rm′

o/d

(
−1

V(T ′;r ′;u)

) µT-O-D+//
-

µMODE

µT-O-D +////
-

µ
µMODE

+

(
−1

V(·;R0;u)

) µ+/////
-

−1

×

*....
,

∑
T ′∈T

*..
,

∑
r ′∈Rm

o/d

(
−1

V(T ′;r ′;u)

) µT-O-D+//
-

µMODE

µT-O-D +////
-

µ
µMODE −1

× *
,

∑
r ′∈Rm

(
−1

V(T ;r ′;u)

) µT-O-D

+
-

µMODE

µT-O-D −1

×

(
−1

V(T ;r;u)

) µT-O-D

, if r , R0, and,

P(T ;r;u) =

*.....
,

∑
m′∈{CAR,TRAIN}

*....
,

∑
T ′∈T

*..
,

∑
r ′∈Rm′

o/d

(
−1

V(T ′;r ′;u)

) µT-O-D+//
-

µMODE

µT-O-D +////
-

µ
µMODE

+

(
−1

V(·;R0;u)

) µ+/////
-

−1

×

(
−1

V(T ;r;u)

) µ
, if r = R0,

(3.15)

where m is the mode of route r and o/d is the O-D pair of route r . Finally, the demand and the
choice probabilities can be applied to obtain the number trips for each alternative:

f (T ;r) =
∑
u∈U

P(T ;r;u) D(u;o/d), ∀(T ;r) ∈ C,u ∈ U , (3.16)

where o/d is the O-D pair of route r .
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3.3. QUASI-DYNAMIC NETWORK LOADING OF VEHICULAR

TRAFFIC

The interaction between travel demand and infrastructure supply for road networks is captured
in this section. The network loading procedure for a single time-of-day will be presented;
therefore, the time-of-day indices are omitted. The resulting traffic states (e.g., speeds, travel
times and densities) represent the average conditions for that time-of-day. The section sum-
marizes the QDNL method introduced in (Brederode et al., 2010; Bliemer et al., 2012, 2014b;
Raadsen et al., 2016). This model is also known as Static Traffic Assignment with Queuing
(STAQ). Before the details of the model are discussed, a basic introduction to KWT is presented
in the next section.

3.3.1. FIRST-ORDER KINEMATIC WAVE THEORY

DNL models based on first order KWT have realistic bottleneck locations, congestion build
up by shock wave propagation and allow for spillback. Therefore these types of models are
often used in practice. The numerical solution methods used to solve the first order kinematic
wave equations can be classified in space-discretized models and models based on variational
theory or viability theory. With space-discretized models the link is divided into cells and
traffic propagates through these cells in each timestep. The other models consider the link as
a whole, leading to more efficient solution schemes.

The well known kinematic wave theory originates from the seminal papers of Lighthill and
Whitham (1955); Richards (1956) The theory is especially useful since it captures important
traffic flow phenomena like shockwaves and spillback. In Daganzo (1995a) a space-discretized
solution method for the kinematic wave equations is presented, the well known Cell Trans-
mission Model. The trilogy (Newell, 1993a,b,c) presents a simplified kinematic wave theory.
Newell achieves a major improvement in tractability and simulation speed of first order kine-
matic wave theory by applying variational theory. To propagate traffic over a link according to
Newell’s theory, the Link Transmission Model (LTM) is developed. The LTM is an elegant and
fast traffic simulation method that is not restricted to links, but also propagates traffic through
networks by making use of a node model. Descriptions are found in (Yperman, 2007; Gentile,
2008). One advantage of the LTM is that it only requires a time discretization and thus not a
space discretization.

Newell (1993a) describes how traffic on a road segment can be represented by a Moskowitz
surface. This is a surface in the three-dimensional space spanned by time, space and vehicle
number. The latter is equivalent to cumulative flow. Figure 3.4 depicts an example Moskowitz
surface of a road with a temporary bottleneck. At the start no vehicle is on the road (constant
line of the north-west boundary), and vehicles start to enter (increasing line at the south-west
boundary). Vehicles propagate with free-flow speed (iso-colour lines are trajectories). Half-
way there is a bottleneck (downstream of this bottleneck there is a flat surface), and vehicles
are in congestion in the queue in front of it. After the bottleneck is resolved vehicles flow
out with capacity (increasing slope of the line at the north-east boundary after the bottleneck’s
constant surface).
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Figure 3.4.: The Moskowitz surface representing an initially empty road segment with con-
stant inflow and a temporary bottleneck in the middle.
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Figure 3.5.: Triangular density-flow fundamental diagram

The fundamental diagram and the conservation of vehicles are the two main ingredients of
KWT; they are explained in the next paragraphs. The Moskowitz surface can be represented in
the functional form N (x,t), where N is the cumulative flow at space (i.e., position) x and time
t. The equality of the two second-order derivatives then define the conservation of vehicles
equation,

−
∂k (x,t)
∂t

=
∂2N (x,t)
∂x∂t

=
∂2N (x,t)
∂t∂x

=
∂ f (x,t)
∂x

, (3.17)

where k (x,t) is density and f (x,t) is flow at position x and time t. As the name suspects, there
is a simple interpretation of this equation. Namely, imagine one takes a helicopter for a view
on a road segment from above. Count the number of visible vehicles and keep that number in
mind; wait for a while and add one for every vehicle that enters the segment and subtract one
for every vehicle that exits the segment. Stop after some time, the number that is in mind now
equals the number of vehicles that are on the road segment at that time. This simple equality
illustrates the conservation of vehicles equation. The difference in number of vehicles on
the road before and after illustrates the left-hand side of Equation (3.17), and right-hand side
illustrates the outcome of the counting of vehicles entering and exiting the road.

Now define the fundamental diagram, that defines the relation between flow and density,
as concave function F : R+ → R+. This function can be substituted in differential equation
(3.17), which leads to

∂k (x,t)
∂t

+
∂F (k (x,t))

∂x
= 0. (3.18)

Figure 3.5 shows an example fundamental diagram with a triangular shape. The branch left
of the capacity describes free flow states (where the vehicle speed is γ), while the branch right
of the capacity describes congested states (where the vehicle speed gradually decreases to 0
at the jam density). Points on the fundamental diagram represent feasible traffic states; this
means that the first derivatives at any point of the Moskowitz surface (Figure 3.4), which are
flow and density, coincide with a point on the fundamental diagram. This is of course not true
with an empirical Moskowitz surface; therefore, the points on the fundamental diagram are
also referred to as the stable or equilibrium states of traffic.
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Also the fundamental diagram can be easily interpreted with a helicopter view. Assume that
the conditions are constant over time, observe the road segment again, and count the number
of vehicles on the segment. The fundamental diagram now prescribes how many vehicles
will enter and exit the segment during the observation. So, in the free flow branch, the more
vehicles are visible, the more will enter and exit. Up to the point when traffic breaks down and
the congested branch starts; from then, the more vehicles are visible, the slower they drive,
and the less they will enter and exit the road. When just up- or downstream of the observed
segment, the number of vehicles is different (i.e., the conditions are not constant), then the
flows over the boundaries will be influenced by both densities. KWT describes how these
states interact.

In first-order KWT only states on the fundamental diagram are feasible. Furthermore, a di-
rect transition between two states is possible, which implies an instantaneous speed change.
(Note that the speed of traffic υ is easily determined with υ = F (k)

k .) Second-order models
allow for bounded acceleration, but this comes with other undesired properties such as neg-
ative speeds (Daganzo, 1995b). For strategic network models first-order KWT is sufficient to
describe traffic dynamics since it satisfies the requirements stated in Section 2.5.2.

Differential equation (3.18) can describe (i.e., estimate and predict) traffic dynamics at other
locations based on boundary conditions. Such boundary conditions are values of N (x,t) for
specific space-time locations (x,t); they can for example be the values of the cumulative flow
(only as function of time) at the start, half-way (where the bottleneck is), and the end of the
segment depicted in Figure 3.4. This means that if the traffic conditions at the start and the end
of a road segment are known, the prevailing conditions for any location of the road segment
can be determined. Mathematically, such a problem is a Hamilton-Jacobi partial differential
equation (Lax, 1957; Hopf, 1970), for which efficient solution methods exist based on varia-
tional theory. Applying variational theory on KWT has been explored by Newell (1993a,b,c);
Daganzo (2005a,b, 2006); Laval and Leclercq (2013). Recently, Claudel and Bayen (2010a,b)
proposed methods to solve Hamilton-Jacobi partial differential equations based on viability
theory (see also Aubin et al., 2011, Chapters 13&14). The network loading model in the
QDTA model is based on viability theory.

Exploration of variational and viability theory started with Newell (1993a,b,c)’s trilogy
named simplified KWT. The main contribution of Newell is that, given the past conditions at
the boundaries, the conditions for the future can be analytically determined. This approach is
particularly interesting when the fundamental diagram is piece-wise linear, or when the flows
are piece-wise constant. The first case allows efficient variational theory methods, while the
latter case allows application of viability theory. In any of these situations the future condition
is the minimum of a finite number of possibilities. For each of these possibilities a kinematic
wave is traced through time-space with its (constant) kinematic wave speed; the key property
in both theories is that the cumulative flow over this trace changes with a constant rate.

The LTM (Yperman, 2007; Gentile, 2008) uses variational theory in combination with a
node model to predict future traffic state in a road network gives the complete history of
traffic states. Daganzo (2005a,b) uses fundamental diagrams with carefully chosen kinematic
wave speeds, such that traffic conditions for a grid of points in the time-space plane can be
determined analytically.
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3.3.2. QUASI-DYNAMIC NETWORK LOADING

Brederode et al. (2010) proposed a hybrid model consisting of two phases, which was further
developed by (Bliemer et al., 2012). In the first phase a static traffic assignment model with
vertical queues and capacity constraints is applied, while in the second phase a dynamic model
is applied that propagates traffic flow states according to KWT in order to describe physical
queues. This dissertation adopts such a hybrid approach which applies a capacity constrained
traffic assignment model with residual queues proposed by Bliemer et al. (2014b)9 in the first
phase, called squeezing, and we apply the dynamic event-based algorithm proposed by Raad-
sen et al. (2016) and based on the continuous-time LTM in the second phase, called queueing.
This two phase hybrid approach will be referred to as QDNL. The squeezing phase leads to
vertical residual queues in front of bottlenecks. The queueing phase uses an event-based al-
gorithm based on variational theory propagates shock waves and allows for spillback to other
upstream links.

Figure 3.6 shows the flowchart of the QDNL model. The inputs are the travel demand per
route, and the road network. The latter specifies the links (L) and nodes (N ), and as well
fundamental diagrams per link that describe traffic characteristics (e.g., capacity, jam density)
and determine the speeds of shock waves. The output is the traffic state which can be expressed
as speeds, densities, and flows per link. Squeezing and queuing can be identified as two
sequential iterative processes.

Squeezing determines the resulting residual queues, which are revealed in the form of de-
mands for every inlink of every node; squeezing also fixes the turn fractions at every node.
This is achieved by solving a fixed point problem, where the largest challenge is to determine
input (i.e., the demands per turn) for a node model which depends on the output of all other
node models. This node model input is obtained by walking through every route, where the
‘flow’ of the route is reduced after every bottleneck. After such a reduction the demand from
that route for the following nodes is lower.

The second iterative process, queueing, propagates shockwaves for a predetermined length
of time. Given a set of past boundary conditions for the links, events predict potential changes
in these boundary conditions. A node model then determines if the potential change triggers
any actual change on any of its adjoining links, which in turn leads to new events which are
added to the event list. Figure 3.7 shows an example application of QDNL on a simple corridor
with multiple bottlenecks. The example serves as an illustration of theory presented in the
next sections. Bliemer et al. (2014b) present more examples of the squeezing phase that are
more interesting since they contain nodes that go beyond lane drops.

3.3.3. BOTTLENECK IDENTIFICATION (SQUEEZING)

As preliminary, writeWr as the ordered set of turns that belong to route r ∈ R. To be able to
test the ordering of two turns within a route define operator ≺r as

〈i, j〉 ≺r 〈i′, j′〉 ⇔ 〈i, j〉 preceeds 〈i′, j′〉 in route r ∈ R, ∀〈i, j〉,〈i′, j′〉 ∈Wr (3.19)
9Note that Bliemer et al. (2012) also contains the squeezing phase; however, the squeezing phase methodology

presented in that paper violates the conservation of turning fractions in nodes. This has been resolved in a
revised squeezing method by Bliemer et al. (2014b).
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Figure 3.6.: Flowchart of the QDNL model
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Figure 3.7.: An example of QDNL on a sequence of road segments. The squeezing phase
ensures that the capacity constraints are not violated. In each iteration reduction
factors are determined based on the demand and upstream reduction factors from
the previous iteration. The queuing phase uses KWT to propagate queues based
on events; the shock waves are only backwards in this example.
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Bottlenecks are located at the start of links with insufficient capacity to accommodate the
demand. After each bottleneck, only part of the route demand continues downstream. Such
a reduction (or squeeze) occurs only at the end of each link, and due to the first-in first-out
principle this factor of this reduction is equal for all routes on that link10. Therefore, we can
define a single reduction factor ϕi ∈ (0,1] per link i ∈ L; this factor is applied at the end of a
link, so nodes are positioned between the bottlenecks, and the locations where the reduction
factor are applied. The vector of all reduction factors is denoted with ϕ = {ϕi,i ∈ L}. The turn
demand is the sum of all reduced route demands after all their respective upstream reductions
have been applied.

S〈i,j〉 =
∑

{r∈R|〈i,j〉∈Wr }

*.
,

∏
{〈i′,j ′〉∈Wr |〈i′,j ′〉≺r 〈i,j〉}

ϕ〈i,j〉
+/
-

fr , ∀〈i, j〉 ∈W , (3.20)

where for each route, the product of all reduction factors on all preceding turns is taken. Write
S = {S〈i,j〉,〈i, j〉 ∈W} for the vector of turn demands.

To determine the reduction factors based on the turn demands, any of the node models
discussed in Chapter 5 can be used since they all satisfy the requirements for proper node
models. In this section a single function represents the application of the node model for all
nodes11 in the network. Define the node function for the squeezing phaseΦ : R|W|+ → (0,1]|L|

as
ϕ =Φ (S) . (3.21)

The turn demands alone do not suffice as input, as discussed in Chapter 5 also the supply (or
receiving flow) for each outlink of each node is required. In the squeezing phase no back-
ward shock waves are considered; therefore, the supply always equals capacity and is thus
constant. To be completely compatible with Chapter 5, which uses slightly different variables,
the turn demands have to be converted to the demand per inlink and turn fractions. This can
be achieved with a trivial rewriting per inlink.

By substituting equation (3.20) in (3.21), the squeezing phase is reduced to a fixed point
problem:

ϕ =Φ*.
,




∑
{r∈R|〈i,j〉∈Wr }

*.
,

∏
{〈i′,j ′〉∈Wr |〈i′,j ′〉≺r 〈i,j〉}

ϕ〈i,j〉
+/
-

fr ,∀〈i, j〉 ∈W



+/
-
. (3.22)

This fixed problem is solved by iterating. In general, this is very efficient – also on large-scale
networks. Bliemer et al. (2014b) prove existence of a fixed point, but it is not necessarily
unique. Stylised networks exist for which multiple fixed points exist, but these situations are
unlikely to occur in reality since a large amount of tail-biting behaviour is required, where the
input of a node is almost completely dependent on its own output.

10The first-in first-out rule is equivalent with non-overtaking behaviour and also with the conservation of turning
fraction rule which is often used in node modelling.

11Since for some nodes the supply is always sufficient (no matter which upstream situations occur), they can be
completely omitted in the squeezing phase, which leads to significant efficiency improvements (see Bliemer
et al., 2014b)
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3.3.4. QUEUE PROPAGATION (QUEUING)

This section discusses the queuing phase by explaining the underlying ideas, but without going
into the mathematical details (for that, see Bliemer et al., 2012; Raadsen et al., 2016). The
model is plainly represented by a function. The input is the fixed point of the squeezing phase,
and the output is the traffic state which is represented by density. Before the queuing phase
with event iterations starts, there is a conversion; the turn demand and squeezing factors are
converted to turn fractions which remain fixed in the remainder. Also, the squeezing factors
and turn demands are converted to the initial boundary conditions for the links, which consist
of link inflows and outflows.

For each link i ∈ L write ki as its density and denote k = {ki,i ∈ L} as the vector of densities.
Let queuing functionΨ : (0,1]|L| ×R|R |+ → R

|L|
+ be

Ψ (ϕ,S) = k . (3.23)

The queuing function represents an event-based algorithm, as depicted in Figure 3.6. An event
is the combination of a location (i.e., node) and time instance at which the traffic conditions of
a link adjacent to this node potentially changes. In other words, an event is the time instance
a shock wave reaches a node.

These conditions remain constant until the next event occurs. During an event a shock wave
can arrive at some node, and this can lead to new in- and outflow on the links adjacent to
this node. These are evaluated, and possibly events are added and removed from the event
list. Then again the next event is determined. This iterative process continues until some pre-
defined time limit is reached. This time limit is endogenous and can serve as a calibration
parameter; the higher the time limit is, the longer the queues become.

The traffic conditions at that time are derived from the cumulative in- and outflows. For a
link, the difference between them is the density, these can be translated to flows and speeds by
using the fundamental diagram of the link (Fi).

fi = Fi (ki), ∀i ∈ L, (3.24)

υi =
Fi (ki)

ki
, ∀i ∈ L. (3.25)

From the speeds, the travel time per route is calculated as

τr =
∑
i∈Lr

li

υi
. (3.26)

3.4. VARIATIONAL INEQUALITY FORMULATION

The QDTA can be seen as a simulation model, summarized by Figure 3.2. However, it can also
be written in terms of a variational inequality problem, which is preferred for analytical analy-
sis. In Section 4.4.2 the variational inequality formulations for stochastic user equilibria with
different route choice models are derived. This can be extended in a straightforward manner
to include mode and time-of-day choice into the variational inequality formulation. Contrary
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to mathematical programming formulations for user equilibria, their variational inequality for-
mulations are sporadic in the literature. Chen (1999) provides several models, amongst other
the stochastic user equilibrium under multinomial logit. Bliemer and Bovy (2003) provide a
time-discrete multi-class dynamic traffic assignment model. Huang and Lam (2002) provide
a variational inequality formulation for the time-of-day choice. Zhou et al. (2009) provide
an approach to trip generation, trip distribution, modal split, and trip assignment based on a
hierarchical model.

The variational inequality of Equation (4.87) is applied to the generating function (Equation
(3.12)) and generating vector (Equation (3.13) of the QDTA model. For notational convenience
first define the stochastic generalized cost12 for alternative (T ;r) ∈ C for user-class u ∈ U as

c(T ;r;u) ( f ) =− ln
*.....
,

*....
,

∑
T ′∈T

*..
,

∑
r ′∈Rm

o/d

(
−1

V(T ′;r ′;u) ( f )

) µT-O-D+//
-

µMODE

µT-O-D +////
-

µ
µMODE −1

+/////
-

− ln
*..
,

*
,

∑
r ′∈Rm

(
−1

V(T ;r ′;u) ( f )

) µT-O-D

+
-

µMODE

µT-O-D −1+//
-

− ln*
,
µ

(
−1

V(T ;r;u) ( f )

) µT-O-D

+
-
+ ln

(
fr
)
, if r , R0, and,

c(T ;r;u) ( f ) =− ln
(
µ

(
−1

V(T ;r;u) ( f )

) µ)
+ ln

(
fr
)
, if r = R0,

(3.27)

where m is the mode of route r and o/d is the O-D pair of route r . Here the systematic utility
is made dependent of the flow. The travel times herein for mode CAR can be retrieved by the
QDNL model. By using the fixed point solution of the squeezing phase and by substituting
Equations (3.25) and (3.23) successively in Equation (3.26) the travel time for a route is

τr ( f ) =
∑
i∈Lr

liΨi (ϕ∗ ( f ) ,S)
Fi (Ψi (ϕ∗ ( f ) ,S))

, (3.28)

where ϕ∗ ( f ) is the fixed point of Equation (3.22) based of flows f .
Consider the following variational inequality formulation of the stochastic user equilibrium

in the QDTA model; find equilibrium flow f ∗ ∈ R|C|×|U | such that∑
(T ;r)∈C

∑
u∈U

c(T ;r;u) ( f ∗)( f (T ;r;u) − f ∗(T ;r;u)) ≥ 0, ∀f ∈ Ω,

where Ω =


f ∈ R|C|×|U |

�������
f (T ;r;u) > 0;

∑
(T ;r)∈Co/d

f (T ;r;u) = D(u;o/d),∀u ∈ U ,o/d ∈ O/D


.

(3.29)

12This cost is unit-less. In some other formulations the cost is divided with the scale parameter, such that one of
the terms equals the systematic utility (only for the MNL model).
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There are several advantages of having a variational inequality formulation of the QDTA

model. First, the theory of variational inequalities allows analysis of the existence and unique-
ness of equilibria. Bliemer et al. (2014b) show that for route choice and when the queuing
phase of the QDNL model is omitted, an equilibrium exists. They also show that it is likely
that only under very specific circumstances this equilibrium is non-unique. Due to the simu-
lation character of queuing that creates a lot of dependencies between links in the network, it
will be cumbersome to retrieve analytical results, The second advantage is that the variational
inequality allows the formulation of a gap function.

3.4.1. GAP FUNCTION

Facchinei and Pang (2003); Fukushima (1992); Solodov and Tseng (2000) provide methods to
retrieve a gap functions based on variational inequalities. Gap functions provide a measure of
the distance of some solution (i.e., flows) to an equilibrium, and they can be used in iterative
methods as a stopping criterion. They are based on the fact that a generalized cost is included
in the variational inequality formulation. Using the definitions of the previous section and the
results of Section 4.4.2 that derives a gap function similar to that in (Bliemer et al., 2014b), it
follows that when f̂ → f ∗, then∑

(T ;r)∈C

∑
u∈U

f̂ (T ;r;u)

(
c(T ;r;u)

(
f̂
)
− min

(T ;r;u)∈C×U
c(T ;r;u)

(
f̂
))

∑
(T ;r)∈C

∑
u∈U

f̂ (T ;r;u) min
(T ;r;u)∈C×U

c(T ;r;u)
(
f̂
) → 0. (3.30)

This gap can be used after each loop in Figure 3.2. The travel times of the QDNL model
and the trips per route can be inserted in Equation (3.30), and when the value smaller than a
threshold, the simulation can be aborted, and the final effects can be computed.

3.5. SYNTHESIS

In this chapter an introduction to TA is presented, as well as the specific QDTA model that looks
ahead to the methodological Chapters 4 and 5. This model consists of two main components
being a simultaneous mode, time-of-day, and route choice model and a QDNL model. The
choice model uses a multiplicative utility formula which is advantageous on large networks
(see Chapter 4). Dependencies between choice alternatives are captured with a nest structure.
A special dummy mode captures the stay-at-home alternative. The QDNL model is presented
concisely and is based on the theory in (Bliemer et al., 2012, 2014b; Raadsen et al., 2014a);
in Chapter 5 the node model part hereof is further analysed. The components merge in the
variational inequality formulation of the stochastic user equilibrium. Chapter 7 will use the
QDTA model to investigate the responses of travellers to pricing measures from Chapter 2’s
upper level problem within a case study with a large real network.
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CHAPTER 4.

GENERALIZED MULTIVARIATE EXTREME

VALUE MODELS FOR EXPLICIT ROUTE

CHOICE SETS

This chapter analyses a class of route choice models with closed-form prob-
ability expressions, namely, Generalized Multivariate Extreme Value (GMEV)
models. A large group of these models emerge from different utility formulas
that combine systematic utility and random error terms. Twelve models are
captured in a single discrete choice framework. The additive utility formula
leads to the known logit family, being multinomial, path-size, paired combina-
torial and link-nested. For the multiplicative formulation only the multinomial
and path-size weibit models have been identified; this study also identifies the
paired combinatorial and link-nested variations, and generalizes the path-size
variant. Furthermore, a new traveller’s decision rule based on the multiplicative
utility formula with a reference route is presented. Here the traveller chooses
exclusively based on the differences between routes. This leads to four new
GMEV models. We assess the models qualitatively based on a generic structure
of route utility with random foreseen travel times, for which we empirically
identify that the variance of utility should be different from thus far assumed
for multinomial probit and logit-kernel models. The expected travellers’ be-
haviour and model-behaviour under simple network changes are analysed. Fur-
thermore, all models are estimated and validated on an illustrative network ex-
ample with long distance and short distance origin-destination pairs. The new
multiplicative models based on differences outperform the additive models in
both tests.
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This chapter is a revised and extended version of:
• Smits, E.-S., Bliemer, M., Pel, A., and van Arem, B. (2014).

On route choice models with closed-form probability expressions.
In The Transportation Research Board (TRB) 93rd Annual Meeting, Wash-
ington DC, January 12-16, 2014 (paper no 14-3733)., pages 1 – 24

4.1. INTRODUCTION

Route choice is important in transport applications such as network equilibrium modelling,
day-to-day route choice decisions, and route guidance. The literature describes various meth-
ods to model the route choice behaviour of travellers. They range from simple deterministic
shortest route choice to sophisticated stochastic models in which random error terms cap-
ture travel time uncertainty and taste heterogeneity amongst travellers. Commonly, the route
choice model is applied in an iterative process, for example, to reach equilibrium in a con-
gested network or for en-route decisions. For large networks the number of times route choice
has to be simulated is very high. Therefore, a good balance between realism and computa-
tional efficiency is required.

4.1.1. RANDOM UTILITY MAXIMIZATION

A common choice mechanism is that travellers consider multiple routes, assign a subjective
utility to each route, and choose the route with the highest utility. The discrete choice frame-
work based on RUM allows random components in the utility formulations. In this case the
utility of each route follows some random distribution. Observe that a route consists of a set
of links, and we assume that a route’s utility is (among other things) determined by the char-
acteristics of the corresponding links. Then the joint probability distribution of route utilities
contains dependencies when routes have overlap, and thus share (dis)utility from the same
link(s). Furthermore the distribution is heteroscedastic (i.e., the variability of utility differs
amongst routes) since routes have different lengths. Section 4.2 provides an in-depth analysis
of desired random route utility properties, that especially explores the distribution of foreseen
travel times besides the usual analyst error. This gives new insights into the variance and
covariance structure of route utility.

The Multinomial Probit (MNP) model for route choice (see Daganzo and Sheffi, 1977;
Yai et al., 1997) can easily address correlation and heteroscedasticity, but no closed-form
formulation of the route probabilities exists. The latter leads to computationally expensive
simulations. On the other hand the Multinomial Logit (MNL) model for route choice (see
Daganzo and Sheffi, 1977)1 has an elegant closed-form formulation for the route probabilities;
however, route utilities have to be independent and homoscedastic. Extensions to mixed logit
models (Bekhor et al., 2002) are possible to overcome some of the limitations, however, these
models again have to rely on numerical solution methods requiring simulations which are often

1Daganzo and Sheffi (1977, Eqn. 10) are the first to present MNL route choice probabilities, based on the
method of Dial (1971)
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infeasible on large scale networks. In addition, the thus far proposed covariance structures in
MNP and mixed logit are not in line with revealed foreseen travel times; the variance has
been assumed proportional to the mean, whereas instead, data shows a linear relation between
standard deviation and mean (see Section 4.2.1).

Several adaptations to the MNL model exist to address correlation due to route overlap
(Prato, 2009). They either insert a correction term into the utility, or exploit the more general
Multivariate Extreme Value (MEV) distribution for the error term. In Section 4.3.2 an overview
of these methods is presented. The heteroscedasticity is less addressed in the literature. In
practice, the scale parameter of MNL is sometimes considered to be proportional to the distance
between origin and destination, but this does not address heteroscedasticity within the O-D

route set (see Chen et al., 2012). Less pragmatic is the solution by Castillo et al. (2008) who
assume Weibull distributed utilities leading to the Multinomial Weibit (MNW) model. Only
slightly different is the approach of Gálvez (2002); Fosgerau and Bierlaire (2009) who use
a multiplicative error term instead of an additive error term. The probabilities of the earlier-
known Kirchhoff distribution of routes as presented by Fellendorf and Vortisch (2010) also
coincide with MNW. Recently, Kitthamkesorn and Chen (2013) included the path-size factor
into the MNW model to correct for correlation between routes.

4.1.2. GENERALIZED MULTIVARIATE EXTREME VALUE MODELS

In this paper the state-of-the-art of models with closed-form utility formulations is reviewed,
and they are gathered in a framework with a single, general form for the choice probabilities.
Two classes of MEV can be identified – each based on a different utility formula –, which are
unified in what we call Generalized Multivariate Extreme Value (GMEV). The generalization
gives rise to three undiscovered route choice models based on the multiplicative utility for-
mula. Furthermore, we recall that equivalent MEV formulations exist for models in which a
correction term is inserted in the utility formulation (e.g. Path-Size Logit). All these models
can therefore be captured in the GMEV framework based on either additive or multiplicative
utility formulas. Section 4.4 assesses these models qualitatively by analysing their distribu-
tions and comparing them with the desired properties formulated in Section 4.2.3. Additive
models prove not to be able to capture random foreseen travel time, but they do capture the an-
alyst error. On the other hand, multiplicative models can handle both errors, but based on the
same distribution (i.e., the foreseen travel time and analyst error are completely dependent).

One of the desired properties cannot be fulfilled by any existing model. Namely, in a trans-
port network model the route choice model is applied to many route sets, so it is important
that the model gives realistic results for all route sets existing in a network. In particular, the
results should remain realistic when the network and/or routes change. With respect to this,
both MNL and MNW have an undesired property. In MNL, the route probabilities will remain
equal if a constant is added to each route’s utility. In MNW, the route probabilities will remain
equal if each route’s utility is multiplied with a constant. Both these properties are unrealistic.
Therefore, Xu et al. (2015) provide a hybrid method where the choice probabilities have a
MNL en MNW component; however, this hybrid method stems from a combined impedance
function (i.e., it defines the choice probabilities based on the choice probability functions of
logit and weibit). Although the model can be useful in practice, the model does not stem from
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a utility formulation with an additive and multiplicative error term (Section 4.3.1.3 discusses
how the hybrid models would fit in the GMEV framework).

To partially overcome the shortcomings of MNW, we introduce new GMEV route choice
models based on the multiplicative utility formula and a reference route. The probability
of choosing the reference route only depends on the non-overlapping differences with other
routes, since the overlap is explicitly removed. The models fit in the same framework as the
existing models. Furthermore, they are designed to be suitable under changing networks and
routes. A qualitative assessment and a numerical benchmark on a small network example of
the existing and new models show that the new models can resemble expected behaviour under
more types of network changes than existing closed-form models can. For example, the model
performs well if all route costs are multiplied with a factor, but also if a constant cost is added
to all routes.

4.1.3. ROUTE SET GENERATION

This paper assumes that a relevant route set is explicitly given. For an overview of route set
generation techniques, see Frejinger et al. (2009); Prato (2012). However, it should be noted
that the generation and composition of the route set has a large influence on model outcomes
(Bliemer and Bovy, 2008; Cascetta et al., 2002; Prato, 2012). Another disadvantage with
explicit route sets is that a correct sample of routes is required to obtain unbiased parameter
estimates (Frejinger et al., 2009). For discussions on sampling routes based on distributions
derived from route choice models see (Frejinger et al., 2009; Flötteröd and Bierlaire, 2013;
Guevara and Ben-Akiva, 2013). Bierlaire et al. (2008) points out difficulties with selection
bias in the estimation of additive MEV models from choice based samples. A recently revisited
different approach – that overcomes route set generation/sampling related problems – is to
implicitly generate routes as done by Dial (1971); Papola and Marzano (2013); Fosgerau et al.
(2013a); Mai et al. (2015). However, these models either have a restricted route set (Dial,
1971; Papola and Marzano, 2013) (see Section 4.3.2.5), or contain all routes, even those with
loops (Fosgerau et al., 2013a; Mai et al., 2015). In addition, no methods with implicit choice
set generation that can handle non-additive travel costs are known to exist by the authors of
this paper.

Since explicit finite route sets have practical advantages, they are commonly used in traffic
assignment models to either avoid too computationally expensive (dynamic) shortest-path cal-
culations, to allow dynamic network loading of path flows, or to allow for traffic assignment
models with non-additive link costs. For example, Zhou et al. (2015) generates an a-priori
route set in a static assignment context using the deterministic method of Bekhor et al. (2006),
Bliemer et al. (2014b) generates an a-priori route set for a quasi-dynamic model using the
stochastic method of Fiorenzo-Catalano et al. (2004).

4.1.4. CONTRIBUTION

The contribution of this paper is summarized as follows. First, we describe the desired prop-
erties of random route utility which includes random foreseen travel times, and empirically
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verify the linear relation between mean and standard deviation of foreseen travel time. Sec-
ond, existing closed-form route choice models based on random utility maximization are pre-
sented in a novel GMEV framework and it is shown that all existing closed-form models with
explicit choice sets fit in the GMEV framework. Third, the unexplored area of multiplicative
MEV models gives rise to three new closed-form route choice models, and the proposed mul-
tiplicative MEV models based on a reference route give rise to another four new closed-form
route choice models. The working of this model is illustrated with a small network example,
and its behaviour with respect to network changes is compared to the behaviour of existing
models. Fourth, we show that the additive models, contrary to multiplicative models, can not
capture random foreseen travel time. Fifth, we show the strength of a unified GMEV model
by providing its stochastic user equilibrium formulation. Sixth, all twelve models (of which
seven are new) are estimated on a carefully constructed small network example with multiple
choice sets for origin-destination pairs with both short and long distances. The estimation is
done twice with two different synthetic datasets generated by MNP simulations based on the
desired properties of random route utility, this allows benchmarking the models on the other
dataset. The benchmark provides insight in the performance of the model if its applied on
different networks, without re-estimation. Overall, when the models are estimated on one
synthetic dataset and validated on the other synthetic dataset, the new models based on ref-
erence routes have a better validation than existing models. They can better approximate –
without simulations – the MNP probabilities that take, amongst others, heteroscedasticity and
correlation into account.

4.2. RANDOM ROUTE UTILITY FORMULATION

The random utility maximisation (RUM) framework is commonly used for describing route
choice. Each route alternative is associated with some utility and the traveller is assumed to
choose the route that provides the maximum expected utility. Since utility is not directly ob-
servable, analysts typically assume a structure of utility that includes measurable components
and random terms that describe unmeasurable components. This section provides a route util-
ity formulation with random foreseen travel times, that is used in Section 4.4 to assess the
GMEV models.

Let R denote the set of relevant routes between a certain O-D pair. The systematic utility Vr
for a route r ∈ R is decomposed in a part based on travel time τr , and ‘other’ systematic utility
V 0

r , thus Vr =V 0
r + βτr , where τr is a random variate representing foreseen travel time, β is the

travel time parameter. Then we write the random utility for route r ∈ R as2,

Ur = Vr + εr = V 0
r + βτr + εr , (4.1)

where εr is the analyst error. V 0
r is assumed to be deterministic and can contain all route

attributes other than the foreseen travel time, such as travel distance, running cost, number
of traffic lights encountered, number of left turns, travel time variability, etc. Typical random

2The O-D pair and individual are not indexed since they are not relevant for this study and omitting them makes
the formulas more readable.
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component εr includes attributes that are considered by travellers when choosing their routes,
but that are not included in V 0

r + βτr . Since the analyst does not have perfect knowledge on
how the traveller gathers information about its travel time, we explicitly consider foreseen
travel time as a random distribution τr in this work. In addition, travellers can have different
preferences with respect to travel time and they do not perfectly measure the actual values
of the attribute levels, but rather have a subjective perception that deviates from the actual
values. Denote the analyst’s estimate of foreseen travel time with τ̂r , which generally does not
consider all conditions (e.g., exact departure time, weather, information sources) the traveller
is aware of. The deviation between the actual and estimate of foreseen travel time is typically
larger for longer trips (see next Section). For example, when asking a traveller about the travel
time of a recent short trip, his or her expectation may be off by one or two minutes, while for
a long trip the expectation may be off by 10 minutes or more. We would like to point out that
the foreseen travel time distribution does not capture travellers’ disproportionate resilience
towards high travel time variability, which can be captured by an (un)reliability term in V 0

r .
The utility in Equation (4.1) is very general since the analyst can include any attribute in

V 0
r , and the, in our opinion, two most important sources of randomness for route utility are

captured. Extension for errors around other terms in the systematic utility can be made in a
straightforward fashion. We focus in this paper on the foreseen travel time because it is the
most important factor in route choice. In addition, data is available to support assumptions on
its structure.

Both τr and εr are random variables and are described by probability distributions. A com-
mon assumption for analyst errors εr is that they are independently and identically distributed
(i.i.d.). The next section discusses the foreseen travel time distribution in more detail. Since
τr and εr capture different sources of randomness, they can be considered independent, i.e.
Cov(τr ,εr ) = 0 for all r ∈ R.

4.2.1. STRUCTURE OF FORESEEN TRAVEL TIME

Consider two similar road segments with lengths respectively 1 and 5 kilometres, and suppose
the distribution of foreseen travel times for the 1-km road segment is known. There are two
natural ways to determine the foreseen travel time distributions of the 5-km road segments,
which impose different relations between their means and variances. The first method – used
in all previous Probit studies (e.g., Yai et al., 1997; Daganzo and Sheffi, 1977) – is based on
link-additivity and postulates that the foreseen travel time of the 5-km road segment is equally
distributed as the sum of foreseen travel times of five independent 1-km road segments. This
implies for each set of road segments for which the additivity postulate holds, that the ratio
between the mean and the variance is equal for each segment. Link-additivity is convenient
in transport networks, since overlap and heteroscedasticity of routes can automatically be
captured when the normal distributed travel costs are drawn for each link and then summed
per route. The second method is based on scaling and postulates that the foreseen travel time
of the 5-km road segment is equally distributed as five times the foreseen travel time of one
1-km road segment. This implies for each set of road segments for which the scaling postulate
holds, that the ratio between the mean and the standard deviation is equal for each segment.
Furthermore, the convenience of link-additivity does not apply under the scaling postulate.
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When an analyst wants to specify means and variances of foreseen travel times of routes,
these two postulates each imply a different structure. Under the natural assumption that the
mean equals the analyst’s estimate τ̂r , the variance is linear in τ̂r under the linear-additivity
postulate and quadratic in τ̂r under the scaling postulate. In order to examine which postulate
is more plausible, we first analyse the relationship between mean travel times and standard
deviation of travel times in two datasets, and then discuss findings in the literature related to
the postulates.

We have analysed household travel survey data from the Netherlands for the years 2010,
2011, and 2012 (Onderzoek Verplaatsingen in Nederland, OViN). In this survey, travellers are
asked to state the travel times from trips they have made during a single day. We pooled data
from trips with motorised private vehicles (i.e., car-driver, car-passenger, and motor bicycle)
per 4-digit postal code and municipality3. After excluding O-D pairs with less than 25 obser-
vations we obtained 686 municipality aggregated O-D pairs and 216 postal code aggregated
O-D pairs containing 38,106 and 8,079 trips, respectively. Figure 4.1 shows the relationship
between the average travel time and the standard deviation of the perceived travel times for
each O-D pair. The data shows a strong correlation and a linear relation between the average
travel time and the standard deviation of travel time. Under the assumption that the traveller
had complete information, the perceived travel time and foreseen travel time coincide, and the
data is then in accordance with the scaling postulate. Clearly, the spread in reported travel
times here is also the result of variations in traffic conditions and travel demand, routing, and
aggregation of different households in each O-D pair. Unfortunately, we do not have the exact
data on the foreseen travel time per route in the household travel surveys; however, we do have
data from another smaller study about route choice and information.

This second data set comes from a study where 32 commuters between The Hague and
Delft in the Netherlands were asked about the used information sources (see Ramos et al.,
2012; Ramos, 2015). Some of them were equipped with Global Positioning System (GPS)
devices for real-time information. After every trip they made, they were asked to indicate
what their expected route and foreseen travel time for their next trip are. We aggregated this
data per route per respondent, and determined the mean and standard deviation for all routes
with at least 10 entries. In total 407 entries for 21 routes from 19 respondents4 are used for
the results in Figure 4.2. This dataset also indicates a linear relationship between the average
and standard deviation. Thus both datasets indicate that the scaling postulate is more plausible
than the additivity postulate.

Mahmassani et al. (2012) investigate travel time variability based on GPS and simulated
trajectories and they conclude that a linear relation exists between the standard deviation of
observed travel times and the average travel times. They furthermore reject a square root and
quadratic relation. Mahmassani et al. (2013) provide the same conclusion at a network level,
rather than just at link level. Fosgerau (2010) and Yildirimoglu et al. (2013) use data on time-
of-day dependent relations between mean and standard deviation to show hysteresis. Their
plots also strongly suggest a linear relation. Furthermore, Hellinga et al. (2012) took a year

3The four large municipalities Amsterdam, Utrecht, The Hague and Rotterdam are subdivided in respectively
7, 3, 5 and 5 districts.

4Two respondents reported two routes at least 10 times; 17 other respondents reported one route at least 10
times.
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Figure 4.1.: Relation between the average and the standard deviation of revealed perceived
travel times for an O-D pair, shown for 216 postcode O-D pairs and 686 municipal-
ity O-D pairs from Dutch national travel survey data. Linear regression between
mean and standard deviation has a R-square of 0.9379. Linear regression between
mean and variance has a R-square of 0.8016. The linear regression line has slope
0.3859.
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Figure 4.2.: Relation between the average and the standard deviation of foreseen travel times
for a route from a respondent, shown for 21 routes from 19 respondents from trips
between Delft and The Hague. The marker size is proportional to the number
of entries per route. Linear regression between mean and standard deviation has
an R-square of 0.9300. Linear regression between mean and variance has an R-
square of 0.8401. The linear regression line has slope 0.1301.
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of measurements from loop detector data on a motorway and aggregated each day into 15-
minute averages. They also show a strong linear relationship between the standard deviation
of the observed travel times and the average travel times. Despite that none of these studies
analysed foreseen travel time distributions, they all indicate that the scaling postulate holds
for their travel times. These results, the OViN data, and the actual foreseen travel time data,
should convince that the scaling postulate is more plausible than the additivity postulate for
distributions of foreseen route travel times.

Write σ(τr ) as the standard deviation of foreseen travel time. Let this standard deviation be
proportional to τ̂r with proportionality constant θ, then σ(τr ) = θτ̂r

This finding contradicts the assumptions for MNP route choice models made by Daganzo
and Sheffi (1977) and Yai et al. (1997). Their assumption of a linear relationship between the
variance of travel times and τ̂r , stems from the additivity postulate. In these models it is prac-
tical that route travel time can be readily obtained from the summation of normal distributed
link travel times, but this seems to be unrealistic. It is possible to adjust the MNP-model to
make it compatible with the scaling postulate by directly determining the (co)variance-matrix
for all routes. However, this comes at the cost of link-additivity.

4.2.2. COVARIANCES OF FORESEEN TRAVEL TIMES

Since routes may overlap, foreseen travel times are correlated. Route overlap induces a struc-
ture of covariances between travel times. This means that if two routes are largely overlap-
ping, then also the foreseen travel time of both routes should be almost identical. Consider two
routes, r,s ∈ R. Let τ̂r = τ̂rs + τ̂r\s be the decomposed travel time estimates of route r , where
τ̂rs is the overlapping part with route s, and τ̂r\s the non-overlapping part. The covariance
between τr and τs should capture the overlap. We propose two candidate formulations for the
covariance. One based on a correlation formulation derived from the literature, and one based
on variance distribution over links.

The approaches from Daganzo and Sheffi (1977); Yai et al. (1997); Bekhor et al. (2002)
rely on the additivity postulate, and the additivity over links leads to a definition of covari-
ances. Under the scaling postulate these covariances are not directly usable due to the differ-
ent relation between mean and standard deviation. However, the corresponding correlation,
τ̂rs/
√
τ̂r τ̂s, is independent of any relationship between mean and standard deviation, and can

be used together with σ(τr ) = θτ̂r . Then from the definition of correlation it follows that

Corr(τr ,τs) =
τ̂rs
√
τ̂r τ̂s
=

Cov(τr ,τs)
σ(τr )σ(τs)

(4.2)

⇓

Cov(τr ,τs) = θ2τ̂r τ̂s
τ̂rs
√
τ̂r τ̂s
= θ2τ̂rs

√
τ̂r τ̂s . (4.3)

An alternative formulation of the covariance can be obtained by using the definition Var(τr−

τs) =Var(τr )+Var(τs)−2Cov(τr ,τs) and an approximation of variance of the non-overlapping
parts of travel time. Under the assumption that a route’s variance is equally ‘distributed’ over
the total travel time and that τr can be decomposed in independent parts, τr = τrs + τr\s, the
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variance associated with the non-overlapping part equals

Var(τr\s) =
τ̂r\s

τ̂r
Var(τr ) =

τ̂r\s

τ̂r
θ2τ̂2

r = θ
2τ̂r τ̂r\s . (4.4)

Then the covariance equals

Cov(τr ,τs) =
1
2

(Var(τr )+Var(τs)−Var(τr − τs)) (4.5)

=
1
2

(
Var(τr )+Var(τs)−Var(τr\s − τs\r )

)
(4.6)

=
1
2
θ2

(
τ̂2

r + τ̂
2
s − τ̂r τ̂r\s − τ̂s τ̂s\r

)
(4.7)

=
1
2
θ2 (

τ̂r (τ̂r − τ̂r\s)+ τ̂s (τ̂s − τ̂s\r )
)

(4.8)

= θ2τ̂rs
τ̂r + τ̂s

2
. (4.9)

Notice that the covariance formulations of Equations (4.3) and (4.9) are respectively based on
the geometric mean and arithmetic mean of travel times τ̂r and τ̂s. Note that although we base
the covariance on the travel time and its overlap, it is also possible to define it based on overlap
of distance or total systematic utility.

4.2.3. DESIRED CHOICE MODEL PROPERTIES

In summary, the assumptions on the error terms and the utility formulation in Equation (4.1)
determine the expected value, variance and covariance of the utility.

• The expected value of utility of route r ∈ R is

E(Ur ) = E
(
V 0

r + βτr + εr
)
, (4.10)

= E
(
V 0

r

)
+E

(
βτr

)
+E (εr ) , (4.11)

= V 0
r + βτ̂r +E (εr ) . (4.12)

• The variance of the utility of route r ∈ R is

Var(Ur ) = Var
(
V 0

r + βτr + εr
)
, (4.13)

= Var
(
V 0

r

)
+Var

(
βτr

)
+Var (εr ) , (4.14)

= θ2τ̂2
r +Var (εr ) . (4.15)

• The covariance between routes r,s ∈ R, Cov(Ur ,Us) = Cov(τr ,τs), equals either Equa-
tion (4.3) or (4.9).

Furthermore, when the route choice model is part of a transport network model, the follow-
ing properties are desired:

• applicability to and compatibility between all types of (changing) networks, including
those with O-D pairs with short and long distances, and including those with changing
differences and ratios between routes;

• closed-form probabilities to avoid computationally expensive simulations;
• capture correlations due to overlap.
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4.3. RANDOM ROUTE UTILITY MAXIMIZATION MODELS

WITH GENERALIZED MULTIVARIATE EXTREME VALUE

DISTRIBUTIONS

In this section an overview is given of choice models that are applicable for routes based on
Random Utility Maximization (RUM) with closed-form expressions for the probabilities. This
implies that MNP, Mixed Logit, and models with an error correction component (e.g., Logit
kernel) are not considered; we refer to (Frejinger and Bierlaire, 2006; Prashker and Bekhor,
2004) for an overview of these simulation based models. However, since the MNP model is
capable of completely capturing both the analyst error and the random foreseen travel time
(and thus heteroscedasticity and correlation)5, we will use MNP simulated data as ground truth
in the illustrative example in Section 4.7. The existing models are all based on a single random
variable, which should approximate both the analyst error and travel time distribution; Section
4.4 answers to which degree this is possible.

In this section the family of distributions will be deduced from RUM models with separable
systematic and random utility components (i.e., Ur can be written as a function of Vr and
εr). This leads to two types of Extreme Value (EV) models. First consider the additive utility
formula Ur = Vr +εr ,∀r ∈ R,where

(
ε1,. . . ,ε |R |

)
is MEV distributed (McFadden, 1978); these

models fall in the EV type I (Gumbel) category. Second, consider the multiplicative utility
formula Ur = Vrεr ,∀r ∈ R and assume that

(
− lnε1,. . . ,− lnε |R |

)
is MEV distributed (Fosgerau

and Bierlaire, 2009; Gálvez, 2002); these models fall in the EV type III (reversed Weibull)
category. The EV type II (Fréchet) is not suitable for route choice since Fréchet distributions
have a lower bound on its support (i.e., there is a maximum on the route cost/travel time if
such a model existed). The GMEV models consist of both the additive and multiplicative MEV

models. Note that in older literature the MEV models were also named Generalized Extreme
Value (GEV). GEV is a family of univariate distributions consisting of Gumbel, Fréchet and
reversed Weibull. An MEV distribution is the joint distribution of multiple random variables
with marginal distribution from one GEV type. MEV type I was discovered first by McFadden
(1978) under the name ‘The Generalized Extreme Value model’.

Other parametric approaches – not based directly on separable RUM – also exist. In (Castillo
et al., 2008; Li, 2011; Nakayama, 2013; Nakayama and Chikaraishi, 2015; Chikaraishi and
Nakayama, 2015) utilities Ur ,∀r ∈ R are independently Generalized Extreme Value (GEV)
distributed. Li (2011) captures even a larger class of models, with independent route utilities.
Fosgerau et al. (2013b) and Mattsson et al. (2014) provide the largest class of parametric
approaches, where dependencies can be included as well. Note that all these models cannot
be decomposed in systemtic and random components6. They directly parametrize the utility’s
probability distributions which is less explainable in behavioural terms. The exception is the
derivation of the revised q-generalized logit model by Chikaraishi and Nakayama (2015) from
the q-product function.

5Note that we use an adjusted MNP (compared to the literature) that is in line with the (co)variances under the
scaling postulate.

6Except for their specific cases where they fit in the GMEV type.
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4.3.1. THE TWO TYPES OF MULTIVARIATE EXTREME VALUE

DISTRIBUTIONS

MEV distributions are very flexible since they allow for correlation between their variables.
Generating functions are the core of MEV distributions and unfortunately these are not easily
interpretable, making the theory rather complex. It is well-known that MEV type I models
capture the MNL, Paired Combinatorial Logit and Link-Nested Logit models, but it is less
known that C-Logit, Path-Size Logit and Path-Size Correction Logit belong to the MEV family.
It is convenient that the latter models also fit in the generic framework since general results can
be applied to them. All these mentioned ‘logit based’ models have an additive utility formula,
so first the MEV derivation for this additive case is presented. Thereafter, the multiplicative
MEV models are derived, and we show how they both fit in the GMEV framework.

4.3.1.1. ADDITIVE MEV MODELS

The Additive (A) utility formula is UA
r = Vr + ε

A
r ,∀r ∈ R. Define the probability of choosing

route r ∈ R as

PA
r :=P

(
UA

r ≥ UA
p , ∀p , r

)
(4.16)

=P
(
Vr + ε

A
r ≥ Vp+ ε

A
p , ∀p , r

)
. (4.17)

Following McFadden (1978), assume that the joint distribution of
(
εA

1 ,. . . ,ε
A
|R |

)
follows MEV

type I distribution εMEV with cumulative distribution function

FεMEV (x1,. . . ,x |R |) = e−G(e−x1 ,...,e−x |R | ), (4.18)

where generating function G : R|R | → R satisfies
• µ-homogeneity:

G(az1,. . . ,az |R |) = aµG(z1,. . . ,z |R |), ∀a > 0 (4.19)

• Limit property:
lim

zr→∞
G(z1,. . . ,z |R |) =∞, ∀r ∈ R (4.20)

• Alternating signs:

∂ |R̂ |G(z1,. . . ,z |R |)∏
r∈R̂ ∂zr

(−1) |R̂ |−1 ≥ 0, ∀R̂ ⊆ R,R̂ , ∅. (4.21)

The alternating signs property means that the sign of G switches every time an additional
distinct partial derivative is taken. The generating function needs to satisfy the properties
in order for FεMEV to be a well-defined multivariate cumulative distribution function. With
this utility formulation and distribution the following closed-form choice probabilities can be
derived:

PA
r =P

(
UA

r ≥ UA
p , ∀p , r

)
=
yA

r Gr (yA
1 ,. . . ,y

A
|R |

)

µG(yA
1 ,. . . ,y

A
|R |

)
, (4.22)
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where Gr (x1,. . . ,x |R |) =
∂G(x1,...,x |R | )

∂xr
and yA

r = eVr ,∀r ∈ R. More details on the generating
function and the derivation of the choice probabilities can be found in (McFadden, 1978). By
using Euler’s homogeneous function theorem Equation (4.22) can be rewritten as

PA
r =

yA
r Gr (yA

1 ,. . . ,y
A
|R |

)∑
p∈R y

A
p Gp(yA

1 ,. . . ,y
A
|R |

)
(4.23)

=
eVr Gr (eV1 ,. . . ,eV|R | )∑

p∈R eVpGp(eV1 ,. . . ,eV|R | )
(4.24)

=
eVr+lnGr (eV1 ,...,eV |R | )∑

p∈R eVp+lnGp (eV1 ,...,eV |R | )
(4.25)

Since the denominator is independent of r and the formulation is similar to that of MNL, the
probabilities provided in Equation (4.25) are the easiest to interpret. In the remainder of this
paper the formulations of Equations (4.22) and (4.23) will be used because in the multiplicative
case only the definition of the yA

r ’s will change, and these can then be substituted easily.
For a route set R the combination of a generating function G and a generating vector

y = (y1,. . . ,y|R |) completely determines choice probabilities with Equation (4.22). In other
words, the route set, the generating function and the generating vector completely specify a
choice model. Therefore, we can write the choice probabilities as a function of the generating
function and generating vector for all types of GMEV models. For a choice model X applied
on route set R with µ-homogeneous generating function GX and generating vector yX , we can
write the probability of choosing route r as

PX
r (GX ;yX ) :=

yX
r GX

r (yX )
µGX (yX )

, ∀r ∈ R . (4.26)

Note that for the additive utility formula the generating vector is always equal to the expo-
nentials of systematic utilities. Therefore define yA := (eV1 ,. . . ,eV|R | ) as the additive generating
vector. This additive generating vector should be used for all MEV models with an additive
utility form, thus the generating function then defines choice probabilities.

4.3.1.2. MULTIPLICATIVE MEV MODELS

Before we present examples of the generating function, we first examine the multiplicative
utility formula. Fosgerau and Bierlaire (2009) are the first to explore this field. In their analy-
sis, the multiplicative formulation is transformed into an equivalent additive formulation. The
analysis presented here is slightly different because we allow more flexibility on the scale
parameter. The models in (Castillo et al., 2008; Kitthamkesorn and Chen, 2013; Nakayama,
2013) yield similar results for specific instances of generating functions, but the utility is
not purely the product of systematic utility and an error term; instead, the utility is directly
parametrized.

The Multiplicative (M) utility formula is

UM
r = Vrε

M
r , ∀r ∈ R, (4.27)
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where Vr < 0 and εM
r ≥ 0. This domain of the systematic utility is more restrictive than for

additive MEV; however, in the route choice context it is natural that route costs are valued
negatively, yielding negative systematic utility. By applying a log-transformation to Equation
(4.16) and some further algebra, we can derive the probability of choosing route r ∈ R as:

PM
r =P

(
Vrε

M
r ≥ Vpε

M
p , ∀p , r

)
(4.28)

=P
(
−Vrε

M
r ≤ −Vpε

M
p , ∀p , r

)
(4.29)

=P
(
ln

(
−Vrε

M
r

)
≤ ln

(
−Vpε

M
p

)
, ∀p , r

)
(4.30)

=P
(
ln (−Vr )+ ln

(
εM

r

)
≤ ln

(
−Vp

)
+ ln

(
εM

p

)
, ∀p , r

)
(4.31)

=P
(
− ln (−Vr )− ln

(
εM

r

)
≥ − ln

(
−Vp

)
− ln

(
εM

p

)
, ∀p , r

)
(4.32)

Equation (4.32) has the same structure as the choice probabilities in Equation (4.17) of the
additive choice model with systematic utilities Ṽr = − ln (−Vr ) ,∀r ∈ R and error terms ε̃A

r =

− ln
(
εM

r

)
. Therefore, we can apply the theory of the additive MEV with these variable substi-

tutions. So in the multiplicative case,
(
− lnεM

1 ,. . . ,− lnεM
|R |

)
follows MEV type I distribution

εMEV (i.e., (εM
1 ,. . . ,ε

M
|R |

) is not similar to εMEV!), this distribution of (εM
1 ,. . . ,ε

M
|R |

) is called
MEV type III. This is a multivariate distribution whose marginal distributions are of type re-
versed Weibull, and inherits the covariance structure from the generating function. So, it is
the reversed Weibull equivalent of the model of McFadden (1978). Note that all generating
functions can be applied on both types. The multiplicative generating vector, denoted with
yM, is derived from the additive generating vector and becomes

yM =
(
eṼ1 ,. . . ,eṼ|R |

)
=

(
e− ln(−V1),. . . ,e− ln(−V|R |)

)
=

(
−1
V1
,. . . ,

−1
V|R |

)
. (4.33)

The probabilities of models with multiplicative utility formulas can be derived from Equa-
tion (4.26) by simply using the multiplicative generating vector yM. By applying Euler’s
homogeneous function theorem again we can get

Pr =

−Gr (−1/V1,...,−1/V|R | )
Vr∑

p∈R
−Gp (−1/V1,...,−1/V|R | )

Vp

, (4.34)

but the form of Equation (4.26) using yM is preferred. The main advantage of the multiplica-
tive utility formula is that the utilities are automatically heteroscedastic. The standard devi-
ation of the utility is proportional with the systematic utility and thus even the multiplicative
equivalent of MNL is heteroscedastic.

A well-known property of additive models is that the probabilities are invariant under ad-
dition of a constant to all systematic utilities. Therefore, only differences in utilities matter
in the MNL model. Analogously, the multiplicative models are invariant under multiplying all
systematic utilities with the same factor (mini-proof: If λVrε

M
r ≥ λVpε

M
p then Vrε

M
r ≥ Vpε

M
p ),

and only ratios between utilities matter in the multiplicative equivalent of MNL. In Section 4.4
its properties are further analysed.
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4.3.1.3. HYBRID APPROACH

Xu et al. (2015) introduce a hybrid model directly derived from the logit and weibit choice
probability functions. This model inherits characteristics of as well logit as weibit. The model
uses two scale parameters, one from logit (µA) and one from weibit (µM), and has choice
probabilities equal to

Pr =
eµ

AVr

(
− 1

Vr

) µM

∑
p∈R eµAVp

(
− 1

Vp

) µM , ∀r ∈ R . (4.35)

Unfortunately, the model cannot be written as a RUM model with route r’s utility in the form of
Ur =Vr ×ε

M+εA with a additive error term εA and multiplicative error term εM, which would
have been a very neat solution. A straightforward hybrid approach in our framework would be
to introduce generating vector (−eV1/V1,. . . ,−eV|R |/V|R |), i.e., the element-wise multiplication
of yA and yM. This will not lead to the approach of Xu et al. (2015), since only one scale
parameter will be introduced when the vector is applied on a generating function.

However, the hybrid model of Xu et al. (2015) can be derived from either the A or M models
from our framework by introducing an additional term in the systematic utility. In the additive
form, the hybrid model of equation (4.35) is obtained with

Ur = Vr −
µM

µA ln(−x)+ εA
r , ∀r ∈ R, (4.36)

where a logarithmic term is inserted to simulate the multiplicative model (Xu et al., 2015). In
our framework, this can be represented with generating vector

y =
(
eV1−ρ ln(−V1),. . . ,eV|R |−ρ ln(−V|R | )

)
=

(
eV1

(−V1)ρ
,. . . ,

eV|R |(
−V|R |

) ρ ) , (4.37)

where ρ > 0 is a parameter representing the ratio between the scales. In the multiplicative
form, the hybrid model of equation (4.35) is obtained with

Ur = Vr × e
−
µA

µM Vr
× εM

r , ∀r ∈ R, (4.38)

where a exponential factor is inserted to simulate the additive model. In the framework again,
this becomes generating vector

y = *.
,

−1

V1e−
V1
ρ

,. . . ,
−1

V|R |e
−

V |R |
ρ

+/
-
=

*.
,

e
V1
ρ

−V1
,. . . ,

e
V |R |
ρ

−V|R |
+/
-
, (4.39)

with the same interpretation for ρ as above. The difference between the two generating vectors
lies at the estimated scale parameter. With the latter formulation µM is estimated directly from
the model and µA is derived from ρ. While with equation (4.37) µA is estimated directly and
µM is derived from ρ. There is no difference in model outcomes and/or flexibility. Using any
of the two approaches, it is possible to derive hybrid path-size, paired combinatorial, and link-
nested models (see next section). The covariance structure provided in the latter two model
instances are then only applied on the main error structure (i.e., dependent on which of the
two generating functions is chosen).
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4.3.2. GENERATING FUNCTIONS AND MODEL INSTANCES

To create instances of the family of GMEV route choice models, the generating function has
to be specified. Together with one of the two derived generating vectors, Equation (4.26) will
provide the closed-form choice probabilities of the choice model. Any function that satisfies
Equations (4.19)-(4.21) is a generating function. The cross-nested logit uses one of the most
general forms of the generating function and is analysed by Bierlaire (2006); Papola (2004).
All presented generating functions here are also special cases of cross-nested logit models.

To address overlap on links, the presented model instances assume that each link is asso-
ciated with one cost, namely systematic utility. This assumption is made for clarity reasons,
differentiation into link length, travel and other cost can easily be done, also for the various
factors and coefficients introduced below. Let L be a set of links and let the systematic utility
of link l ∈ L be Vl . For each route r ∈ R, Lr is the set of links of which r consists and the
systematic route utility equals Vr =

∑
l∈Lr

Vl .

4.3.2.1. MULTINOMIAL

The well-known MNL model (see McFadden, 1974) is based on multinomial generating func-
tion

GMN(z) :=
∑
r∈R

zµr , (4.40)

where µ > 0 is the scale parameter. The traditional (additive) MN model, denoted Additive
Multinomial (A-MN), has the following simple route choice probabilities,

PA-MN
r (GMN;yA) =

yA
r GMN

r (yA)
µGMN(yA)

=
eµVr∑

p∈R eµVp
, ∀r ∈ R . (4.41)

The multiplicative counterpart is the multinomial weibit model (or Kirchhoff distribution),
denoted with Multiplicative Multinomial (M-MN) and has route choice probabilities

PM-MN
r (GMN;yM) =

yM
r GMN

r (yM)
µGMN(yM)

=

(
− 1

Vr

) µ
∑

p∈R

(
− 1

Vp

) µ , ∀r ∈ R . (4.42)

4.3.2.2. PATH-SIZE

We will first introduce a PS generating function to define a specific MEV type, and then we will
show that models proposed in the literature are identical. For this PS generating function the
path-size factor PSr is required for each route r ∈ R; this factor depicts the amount of overlap
with other routes. Define PS generating function

GPS(z) :=
∑
r∈R

PSβ
r zµr , (4.43)

77



Strategic Network Modelling for Passenger Transport Pricing

where µ > 0 is the scale parameter and β is the path-size parameter. The Additive Path-Size
(A-PS) model has choice probabilities

PA-PS
r (GPS;yA) =

yA
r GPS

r (yA)
µGPS(yA)

=
PSβ

r eµVr∑
p∈R PSβ

p eµVp

, ∀r ∈ R . (4.44)

The path-size-like models in the literature have a logarithmic term included in the utility.
The MNL model with scale µ and systematic route utility Vr + γ ln xr leads to the same choice
probabilities as the additive MEV model with generating function GPS(z), generating vector
y = (eV1 ,. . . ,eV|R|), path-size factors PSr = xr ,∀r ∈ R, and path-size parameter β = µγ. So, C-
Logit, Path-Size Logit, and Path-Size Correction Logit can be translated into a A-PS model. C-
Logit presented by Cascetta et al. (1996) adds the term −βCFCFr to the utility, with parameter
βCF and commonality factor CFr for each route r . This is equivalent to A-PS with PSr = CFr
and β = −µβCF. Path-Size Logit presented by Ben-Akiva and Bierlaire (1999) adds the term
βPSP̃Sr to the utility, with parameter βPS and path-size factor P̃Sr for each route r . This is
equivalent to A-PS with PSr = P̃Sr and β = µβPS. Path-Size Correction Logit (see Bovy et al.,
2008) is equal in the same way. For those familiar with general cross-nested logit: note that
GPS is an instance of cross-nested logit with parametrized non-normalized inclusion factors
with a single nest per alternative.

Different choices for PSr are compared in (Frejinger and Bierlaire, 2006); they conclude
that the best formulation for the path-size factor is

PSr =

∑
l∈Lr

Vl

#l∑
l∈Lr

Vl
=

∑
l∈Lr

Vl

#l

Vr
, (4.45)

where #l = |{r ∈ R|l ∈ Lr }| is the number of routes using link l. If PSr = 1 then r has no
overlap with any other route. If PSr → 0 then r shares each link with many other routes.

The multiplicative counterpart of A-PS is denoted with Multiplicative Path-Size (M-PS) and
has route choice probabilities

PM-PS
r (GPS;yM) =

yM
r GPS

r (yM)
µGPS(yM)

=
PSβ

r

(
− 1

Vr

) µ
∑

p∈R PSβ
p

(
− 1

Vp

) µ , ∀r ∈ R . (4.46)

Path-size is also added to MNW by Kitthamkesorn and Chen (2013, 2014), but they assume
that β = 1, which thus leads to a specific instance of M-PS.

4.3.2.3. PAIRED COMBINATORIAL

The (additive) PC Logit model as presented and analysed by Chen et al. (2003); Chu (1989);
Gliebe et al. (1999); Koppelman and Wen (2000); Prashker and Bekhor (1998); Pravinvongvuth
and Chen (2005) captures correlation between each pair of routes. For each route couple a nest
is defined with a fixed nest specific scale. This scale is determined by the similarity index, de-
noted with ϕrp, for all r , p ∈ R. Define paired combinatorial generating function

GPC(z) :=
∑
r∈R

∑
p∈R\{r }

(
z

µ
1−ϕr p
r + z

µ
1−ϕr p
p

)1−ϕr p
, (4.47)
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where µ > 0 is the scale parameter. Multiple definitions for the similarity index exist, but the
most common one is

ϕrp :=

∑
l∈Lr∩Lp

Vl√
VrVp

, ∀r,p ∈ R . (4.48)

The traditional Additive Paired Combinatorial (A-PC) model has route choice probabilities

PA-PC
r (GPC;yA) =

yA
r GPC

r (yA)
µGPC(yA)

=

∑
p∈R\{r } e

µVr
1−ϕr p

(
e

µVr
1−ϕr p + e

µVp
1−ϕr p

)−ϕr p
∑

r ′∈R
∑

p∈R\{r ′}

(
e

µVr ′
1−ϕr ′p + e

µVp
1−ϕr ′p

)1−ϕr ′p
, ∀r ∈ R . (4.49)

The multiplicative counterpart Multiplicative Paired Combinatorial (M-PC) has route choice
probabilities

PM-PC
r (GPC;yM) =

yM
r GPC

r (yM)
µGPC(yM)

=

∑
p∈R\{r }

(
− 1

Vr

) µ
1−ϕr p

((
− 1

Vr

) µ
1−ϕr p +

(
− 1

Vp

) µ
1−ϕr p

)−ϕr p
∑

r ′∈R
∑

p∈R\{r ′}

((
− 1

Vr ′

) µ
1−ϕr ′p +

(
− 1

Vp

) µ
1−ϕr ′p

)1−ϕr ′p
, ∀r ∈ R .

(4.50)

4.3.2.4. LINK-NESTED

Vovsha and Bekhor (1998) are the first who applied the Cross-Nested Logit model to route
choice such that links represent nests. In this (additive) LN Logit a nest is created for each
link and all routes that use the link are included in the nest. The inclusion coefficient of each
route in each link (or nest) is denoted with αlr for all links l ∈ L and routes r ∈ R. Define
link-nested generating function

GLN(z) :=
∑
l∈L

*
,

∑
r∈R

αlr zµlr
+
-

µ
µl

, (4.51)

where µ > 0 is the scale parameter and µl > 0,∀l ∈ L are the link specific scale parameters. In
general, it is difficult to estimate all link specific scale parameters in large networks. More on
this topic can be found in (Bierlaire, 2006), where also the necessity of normalizing the inclu-
sion coefficients is discussed. For this study the following normalized inclusion coefficients
are applied

αlr =




Vl

Vr
if l ∈ Lr

0 otherwise
. (4.52)

The traditional Additive Link-Nested (A-LN) has route choice probabilities

PA-LN
r (GLN;yA) =

yA
r GLN

r (yA)
µGLN(yA)

=

∑
l∈L αlr eµlVr

(∑
p∈R αlpeµlVp

) µ
µl
−1

∑
l∈L

(∑
p∈R αlpeµlVp

) µ
µl

, ∀r ∈ R . (4.53)
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The multiplicative counterpart Multiplicative Link-Nested (M-LN) with route choice probabil-
ities

PM-LN
r (GLN;yM) =

yM
r GLN

r (yM)
µGLN(yM)

=

∑
l∈L αlr

(
− 1

Vr

) µl (∑
p∈R αlp

(
− 1

Vp

) µl ) µ
µl
−1

∑
l∈L

(∑
p∈R αlp

(
− 1

Vp

) µl ) µ
µl

, ∀r ∈ R .

(4.54)

4.3.2.5. JOINT NETWORK

Recently, Papola and Marzano (2013) introduced a new generating function based on an gen-
eralization of cross-nested generating functions to networks (see Daly and Bierlaire, 2006;
Newman, 2008). Because their approach is based on links instead of routes, the generating
function defines dependencies between links instead of routes. This is fundamentally differ-
ent from the GMEV models presented in this work that is based on a route set and based on
the error structure of random utility per route. The joint network formulation of Papola and
Marzano (2013) is not a member of the GMEV models for route choice in this study since it
cannot handle generic route sets as input. Their method has an implicit enumeration of routes.
This has the advantage that the problem of choice set generation is dealt with internally. Un-
fortunately, this does not allow a utility formulation per route. Furthermore, the link based
approach also delimits the routes that will be found. For their model specifically, scale pa-
rameters of ‘nodes’ depend on the shortest path to the destination. Their definition requires
that a route advances through nodes for which the shortest path towards the destination de-
creases in every step. In real networks, the remaining shortest path will often increase when
one deviates from the shortest path. This makes the model restrictive. Although a natural con-
nection between a road network and a (recursive) network based generating function seems to
be promising, Marzano (2014) suggests that the achievable covariance structure is not more
advanced than that of cross-nested generating functions.

4.4. QUALITATIVE ASSESSMENT OF THE MODELS

This section analyses the utility distribution of the GMEV models and assesses them qualita-
tively based on the desired properties presented in Section 4.2.3. The desired route utilities
have two random variables (i.e., the random foreseen travel time and the analyst error) per
route, but the models contain only one (GMEV -distributed) variable per route. We show that
this variable can only resemble the analyst error in the additive models, and that it can re-
semble both errors in the multiplicative models, however, with completely correlated foreseen
travel times and analyst errors.

4.4.1. UTILITY DISTRIBUTION

The results in this section for the additive models summarize the findings of McFadden (1978);
Daly and Bierlaire (2006), while the derivations for the multiplicative models are slightly dif-
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ferent from those in (Fosgerau and Bierlaire, 2009) that uses two scales. From the additive
utility formulation and Equation (4.18) follows the multivariate utility distribution of the ad-
ditive models:

FUA (x1,. . . ,x |R |) =Pr
(
UA

r ≤ xr , ∀r ∈ R
)

(4.55)

=Pr
(
Vr + ε

A
r ≤ xr , ∀r ∈ R

)
(4.56)

=Pr
(
εA

r ≤ xr −Vr , ∀r ∈ R
)

(4.57)

=FεMEV
(
x1−V1,. . . ,x |R | −V|R |

)
(4.58)

=e−G(e−x1+V1 ,...,e−x |R |+V |R | ) (4.59)

With some algebra, the multivariate utility distribution of the multiplicative models is written
as

FUM (x1,. . . ,x |R |) =Pr
(
UM

r ≤ xr , ∀r ∈ R
)

(4.60)

=Pr
(
Vrε

M
r ≤ xr , ∀r ∈ R

)
(4.61)

=Pr
(
−Vrε

M
r ≥ −xr , ∀r ∈ R

)
(4.62)

=Pr
(
ln

(
−Vrε

M
r

)
≥ ln (−xr ) , ∀r ∈ R

)
(4.63)

=Pr
(
ln (−Vr )+ ln

(
εM

r

)
≥ ln (−xr ) , ∀r ∈ R

)
(4.64)

=Pr
(
− ln

(
εM

r

)
≤ ln (−Vr )− ln (−xr ) , ∀r ∈ R

)
(4.65)

=FεMEV
(
ln (−V1)− ln (−x1) ,. . . ,ln

(
−V|R |

)
− ln

(
−x |R |

))
(4.66)

=FεMEV

(
ln

V1

x1
,. . . ,ln

V|R |
x |R |

)
(4.67)

=e
−G*.

,
e
− ln

V1
x1 ,...,e

− ln
V |R |
x |R | +/

- (4.68)

=e
−G

(
x1
V1
,...,

x |R |
V |R |

)
(4.69)

Then the marginal distribution for the utility of route r ∈ R is

FUA
r

(xr ) = lim
{xp→∞}p,r

FUA
(
x1,. . . ,x |R |

)
(4.70)

=e−G(e−xr+Vr 1r ) (4.71)

=e−eµ(−xr+Vr )G(1r ) (4.72)

=e−eµ(−xr+Vr )+lnG(1r )
(4.73)

=e−e
µ
(
−xr+Vr+

lnG(1r )
µ

)
, (4.74)

for the additive case, which can be identified as a Gumbel distribution, and with notation
1r := (0,. . . ,0,1,0,. . . ,0) (1 on the r-th position).7 For the multiplicative models the marginal

7Note that for µ = 1 these are reversed exponential distributions.
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distribution function of route r’s utility is

FUM
r

(xr ) = lim
{xp→0}p,r

FUM
(
x1,. . . ,x |R |

)
(4.75)

=e−G
(
xr
Vr

1r
)

(4.76)

=e−
(
xr
Vr

)µ
G(1r ) (4.77)

=e
−*

,
xr

VrG(1r )
−1
µ

+
-

µ

, (4.78)

which can be identified as a reversed Weibull distribution, where reversed means that −UM
r is

Weibull distributed .
The expected maximum utility is an important measure of choice models; it can be used to

formulate the corresponding user equilibrium. Furthermore, it is input to define duality gaps.
Denote U∗A as the maximum utility for the additive models, and U∗M as the maximum utility
for the multiplicative models. Their distributions can be written as

FU∗A (x) =FUA (x,. . . ,x) (4.79)

=e−G
(
e−x+V1 ,...,e−x+V |R |

)
(4.80)

=e−e−µxG
(
eV1 ,...,eV |R |

)
(4.81)

=e−e
µ
(
−x+lnG

(
eV1 , ...,e

V |R |
)
/µ

)
, and (4.82)

FU∗M (x) =FUM (x,. . . ,x) (4.83)

=e
−G

(
x
V1
,..., x

V |R |

)
(4.84)

=e
−(−x)µG

(
−1
V1
,..., −1

V |R |

)
(4.85)

=e

−

*....
,

x

−G

(
−1
V1

, ..., −1
V |R |

) −1
µ

+////
-

µ

, (4.86)

which can be identified as Gumbel and reversed Weibull distributions again.
Table 4.1 shows the desired expected value, variance, and expected maximum utility to-

gether with the actual expected value, variance and expected maximum utility of the models.
It is based on the identification of the marginal distributions as Gumbel and reversed Weibull,
and on systematic utility specification Vr =V 0

r + βτr . Neither the additive nor the multiplicative
formulation completely coincide with the desired result.

The expected value is not a problem for any model; any value can be achieved after normal-
ization and identification, and the location of utility is not decisive for choice probabilities.
On the other hand, the variance of the additive models is constant and the variance of the
multiplicative models is affected by V 0

r , and for the latter Var(εr ) is not directly represented.
However, as the next section describes, the constant in the systematic utility of the multiplica-
tive model does not have to be normalized. This constant will return as a constant term in
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the variance, and can thus resemble Var(εr ). Despite that the multiplicative models’ variances
can capture the variances from the foreseen travel time distribution and analyst error simulta-
neously, they are both represented by εr and thus completely dependent. This is not in line
with the desired independence.

Closed form formulations of the covariance of GMEV models are not known. Marzano et al.
(2013); Marzano (2014) present a more tractable expression and a method to calculate them for
additive MEV. The covariances of the additive models are based on the constant variance, and
will therefore not change when the systemic utility changes. However, the systematic utility
enters the variance quadratically in the multiplicative model, and therefore its covariance will
also in- and decrease together with it. Thus, the multiplicative models capture the covariances
better.

The expected maximum utility for the A-MN model indeed return in the well-known log-
sum that can by used for an hierarchical derivation of the other models. This was first identified
by Ben-Akiva (1973).

4.4.2. STOCHASTIC USER EQUILIBRIUM FORMULATION

The derived GMEV route choice models all have an equivalent stochastic user equilibrium
formulation. Mathematical programming formulation are known for all logit based mod-
els (Bekhor and Prashker, 1999; Fisk, 1980), for the M-MN and (simplified) M-PS models
(Kitthamkesorn and Chen, 2013, 2014), for the q-generalized logit model (Chikaraishi and
Nakayama, 2015), and for the hybrid logit-weibit model (Xu et al., 2015). It is straightfor-
ward to derive the variational inequality formulation – that we discuss – from a mathematical
programming formulation. Chen (1999); Guo et al. (2010) describe a stochastic user equi-
librium for the MNL model using a variational inequality. Zhou et al. (2012) provide two
variational inequality formulations for the C-logit model. Their first formulation is specific
for C-logit and a special case of the formulation we present below. Their second formula-
tion is more generic and works with any choice probability formula, but it returns different
generalised costs than the approach we present below.

Since the choice probabilities of each GMEV model can be written solely in terms of the
generating function and generating vector, this also holds for the corresponding variational
inequality formulation. Denote the demand with D, the flow for route r ∈ R as fr , and f as
the vector of flows. Since, amongst other attributes, the travel time in the systematic utility
depends on the flow, write that the generating vector now depends on y( f )8. For clarity, but
without loss of generality, only one route set (i.e., one O-D pair) is considered.

Consider the following Variational Inequality (VI) formulation; find equilibrium flow f ∗ =

8When the generating vector is substituted, just replace Vr with Vr ( f ) to denote dependency of attributes on
flow.
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( f ∗1 ,. . . , f ∗
|R|

), such that∑
r∈R

(
− ln

(
yr ( f ∗)Gr (y( f ∗))

)
+ ln( f ∗r )

)
( fr − f ∗r ) ≥ 0, ∀f ∈ Ω,

where Ω =


f ∈ R|R |

������
fr > 0,

∑
r∈R

fr = D


.

(4.87)

Define the generalized stochastic cost for route r ∈ R under flow f as9

cr ( f ) := − ln
(
yr ( f )Gr (y( f ))

)
+ ln( fr ). (4.88)

The corresponding Karush-Kuhn-Tucker system (see e.g., Facchinei and Pang, 2003, Propo-
sition 1.2.1) is then to find multipliers κ and λ1,. . . ,λ |R | for which

0 = − ln
(
yr ( f ∗)Gr (y( f ∗))

)
+ ln( f ∗r )+ κ− λr , ∀r ∈ R, (4.89)∑

r∈R

fr = D, (4.90)

0 ≤ λr , ∀r ∈ R, (4.91)
0 < fr , ∀r ∈ R, and (4.92)

0 =
∑
r∈R

λr fr (4.93)

hold. Equations (4.91), (4.92) and (4.93) imply that λr = 0 for all r ∈ R. Rewriting equation
(4.89) then gives

ln
(
yr ( f ∗)Gr (y( f ∗))

)
= ln( f ∗r )+ κ, ∀r ∈ R (4.94)

yr ( f ∗)Gr (y( f ∗)) = f ∗r eκ, ∀r ∈ R . (4.95)

Summing over routes gives∑
r∈R

yr ( f ∗)Gr (y( f ∗)) = Deκ, ∀r ∈ R . (4.96)

Finally, dividing equation (4.95) by equation (4.96) gives

yr ( f ∗)Gr (y( f ∗))∑
s∈R ys ( f ∗)Gs (y( f ∗))

=
f ∗r
D
, (4.97)

which actually coincides with the choice probability definition of Equation (4.23). Therefore,
VI problem (4.87) describes the stochastic user equilibrium with the choice model that is
defined by generating function G and generating vector y.

Such a VI formulation is useful, since the corresponding theory can be used to analyse ex-
istence and uniqueness of stochastic user equilibria (as for example done by Bliemer et al.

9Note that this cost is unit-less. For MNL, it is possible to normalize it such that the systemic utility appears as
a term.
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(2014b); Nagurney (1998)). In addition, the VI formulation provided the generalized stochas-
tic cost per route – which should all be equal in equilibrium –, that can be used in assignment
algorithms to determine duality gaps. Namely, as f̂ → f ∗, then

∑
r∈R f̂r

(
cr ( f̂ )−mins∈R cs ( f̂ )

)
∑

r∈R f̂r mins∈R cs ( f̂ )
→ 0. (4.98)

4.4.3. NORMALIZATION, IDENTIFICATION, AND INVARIANCE

The constant in the systematic utility (i.e., the alternative specific constant) of the logit-based
(i.e., additive) models has to be normalized because only differences in utility matter. Further-
more, one of the attribute parameters or the scale has to be normalized due to identification.
If the cost parameter is normalized to one, all other attribute parameters can be interpreted as
willingness to pay for its attribute.

The multiplicative models however, do not require the constant in the utility to be nor-
malized. This constant is also multiplied with the error term and thus this term is not equal
amongst alternatives. This allows the modeller to use an additional parameter. Similar as
for the additive case, one of the attribute parameters or the scale has to be normalized due to
identification.

For logit based additive models only differences between utilities matter for the choice
probabilities. Similarly, only the ratios between utilities matter for the choice probabilities in
the multiplicative models (Fosgerau and Bierlaire, 2009). This means that the additive models
are invariant under addition with a constant and the multiplicative models are invariant under
multiplication with a constant. As the next example shows, it is doubtful that these properties
are realistic and they limit both models. For the additive case consider two route sets that only
differ by a constant, one with route costs (e.g., travel time) {1,6} and one with {100,105}; it
is not expected that the choice probabilities are the same for these routes sets. Analogously,
route costs {2,3} and {40,60} should neither reflect the same probabilities for the multiplicative
case. Nevertheless, since the constant in the systematic utility does not have to be normalized,
the property is less restrictive for the multiplicative case. Section 4.6 provides further analysis.

4.5. MULTIPLICATIVE MEV MODELS WITH EXPLICIT

REMOVAL OF OVERLAP

We present an adjustment to the multiplicative model based on the decision rule that trav-
ellers only compare the non-overlapping part of routes compared to a reference route. This
relaxes the invariance properties to a certain extent, and implies a different choice mecha-
nism for travellers. Probabilities for switching to another route and staying at the reference
route are determined. This different decision rule can be retrieved from an alternative utility
formulation, which allows a qualitative analysis of the model.
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Using the systematic utility per link, and the multiplicative utility formula, let

UM
r =

*.
,

∑
l∈Lr

Vl
+/
-
εM

r , ∀r ∈ R .

The choice probability for alternative r ∈ R is

PM
r =P(UM

r ≥ UM
p ,∀p , r) (4.99)

=P
*.
,

*.
,

∑
l∈Lr

Vl
+/
-
εM

r ≥
*.
,

∑
l∈Lp

Vl
+/
-
εM

p , ∀p , r+/
-

(4.100)

=P
*.
,

∑
l∈Lr

Vlε
M
r ≥

∑
i∈Lp

Vlε
M
p , ∀p , r+/

-
(4.101)

=P
*.
,

∑
l∈Lr \Lp

Vlε
M
r +

∑
l∈Lr∩Lp

Vlε
M
r ≥

∑
l∈Lp\Lr

Vlε
M
p +

∑
l∈Lr∩Lp

Vlε
M
p , ∀p , r+/

-
. (4.102)

In this formulation, each part of random utility is associated with a part of systematic utility
according to the scaling postulate. The systematic utility that is shared amongst a pair of
alternatives appears at both sides of the inequality. The shared links for route pair r,p are
contained in Lr ∩Lp. An individual will evaluate the links independent of the alternatives
they belong to. Therefore we assume that the part of the random utility belonging to these
shared links is fully correlated. This means that for all l ∈ Lr ∩Lp the terms Vlε

M
r and Vlε

M
p

in Equation (4.102) are equal and can be subtracted from both sides of the inequality.
This can be derived in an econometrical sound fashion by reconsidering the utility formula

based on a reference route. Let r be the reference route, and denote the utility for each route
p ∈ R as

UM∆,r
p :=




∑
l∈Lr

Vlε
M
r if p = r∑

l∈Lp\Lr
Vlε

M
p +

∑
l∈Lr∩Lp

Vlε
M
r otherwise.

(4.103)

The utility that overlaps with the reference route, is multiplied with the error term of the ref-
erence route, while the remainder has its own error term. We refer to this type of probabilities
as the Multiplicative with Reference Route (M∆)-case with reference route r . The probability
of choosing route p ∈ R, conditional on reference route r is

PM∆,r
p =




P
(∑

l∈Lp\s
Vlε

M
p ≥

∑
l∈Ls\p

Vlε
M
s , ∀s , p

)
if p = r

P
(∑

l∈Lp\r
Vlε

M
p +

∑
l∈Lr∩Lp

Vlε
M
r ≥ UM∆,r

s , ∀s , p
)

otherwise,
(4.104)

with notationLr\p =Lr \Lp, and the overlapping parts are subtracted for case p= r (see Equa-
tion (4.102)). First, we analyse the case p = r . That choice probability reads that the utility
of non-overlapping links of routes s with p is smaller than the utility of the non-overlapping
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links of route p with each respective s. Thus, it is the probability that the traveller does not
benefit from swapping some links and change route. Now isolate εr on the left hand side;

if p = r , then PM∆,r
p =P

*.
,

*.
,

∑
l∈Lp\s

Vl
+/
-
εM

p ≥
*.
,

∑
l∈Ls\p

Vl
+/
-
εM

s , ∀s , p+/
-

(4.105)

=P*
,
εM

p ≤

∑
l∈Ls\p

Vl∑
l∈Lp\s

Vl
εM

s , ∀s , p+
-
. (4.106)

With the same algebra that derives Equation (4.32) from Equation (4.28), this multiplicative
formulation can be transformed to an additive formulation:

if p = r , then PM∆,r
p =P*

,
εM

p ≤

∑
l∈Ls\p

Vl∑
l∈Lp\s

Vl
εM

s , ∀s , p+
-

(4.107)

=P*
,
ln(εM

p ) ≤ ln*
,

∑
l∈Ls\p

Vl∑
l∈Lp\s

Vl
εM

s
+
-
, ∀s , p+

-
(4.108)

=P*
,
ln(εM

p ) ≤ ln*
,

∑
l∈Ls\p

Vl∑
l∈Lp\s

Vl
+
-
+ ln

(
εM

s

)
, ∀s , p+

-
(4.109)

=P*
,
− ln(εM

p ) ≥ − ln*
,

∑
l∈Ls\p

Vl∑
l∈Lp\s

Vl
+
-
− ln

(
εM

s

)
, ∀s , p+

-
(4.110)

For the case p , r we can show that;

if p , r then PM∆,r
p =P

*.
,

∑
l∈Lp\r

Vlε
M
p +

∑
l∈Lr∩Lp

Vlε
M
r ≥ UM∆,r

s , ∀s , p+/
-

(4.111)

=P*
,

∑
l∈Lp\r

Vl∑
l∈Lr\p

Vl
εM

p ≤ ε
M
r ∧

*
,

∑
l∈Lp\s

Vl∑
l∈Ls\p

Vl
εM

p ≤

∑
l∈Ls\p

Vl∑
l∈Lp\s

Vl
εM

s ,∀s , r,p+
-

+
-

(4.112)

This equality is not trivial, one should check that Equation (4.112) holds or fails for all six
orderings of Ur ,Up, and Us by using and/or substituting the condition in Equation (4.107).
So, if route p is chosen under reference route r , then it is beneficial to switch from route
r to route p, and this improvement is larger than to switch to any other route s. Equa-
tion (4.112) can be rewritten in an additive form similar to (4.110) by taking the logarithm
transformation. Assume – similar as in the M-models – that in the derived additive forms(
− ln(εM

1 ),. . . ,− ln(εM
|R |

)
)

follows MEV distribution εMEV, then we have another type of GMEV

route choice models. The generating vector is reference route specific, denoted with yM∆,r ,
and given by

yM∆,r
p =




1 if r = p∑
l ∈Lr\p

Vl∑
l ∈Lp\r

Vl
otherwise

, ∀r,p ∈ R, (4.113)
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where we used that e0 = 1 and

e
− ln

(∑
l ∈Lp\r

Vl∑
l ∈Lr\p

Vl

)
=

∑
l∈Lr\p

Vl∑
l∈Lp\r

Vl
.

Given any generating function G, reference route r and M∆ generating vector yM∆,r the choice
probabilities can be derived with Equation (4.26). By then applying Euler’s homogeneous
function theorem, the probability of choosing route p ∈ R with reference route r ∈ R is:

PM∆,r
p =

yM∆,r
p Gp(yM∆,r )

Gr (yM∆,r )+
∑
{p∈R|p,r }

∑
l ∈Lp\r

Vl∑
l ∈Lr\p

Vl
Gp(yM∆,r )

. (4.114)

Note that if no overlap exists the M∆-models collapse to the M-models (i.e., they return the
same probabilities).

The previous analysis was based on one reference route, but for applications there is not
always a (single) reference route available since the (current) reference of the travellers is not
known. The final step is to handle this uncertainty. Denote Pref(r) as the probability that route
r is the reference route. The final choice probability for route p then becomes

PM∆
p =

∑
r∈R

PM∆,r
p Pref(r). (4.115)

We consider three ways to determine the Pref(r). First, it is possible to assign every route
as reference route with the same probability (i.e., Pref(r) = 1/|R |,∀r ∈ R). This seems only
realistic when no irrelevant routes exist in the choice set, since it is not plausible that travellers
use an irrelevant route as reference. Second, it is very natural to set the probability that a
route is chosen equal to the probability that a route is the reference route. Then Equation
(4.115) becomes a system of equations: PM∆

p =
∑

r∈R PM∆,r
p PM∆

p (where PM∆
p ,p ∈ R are the

unknowns). Furthermore,
∑

p∈R PM∆
p = 1, thus this system of equations can be identified as a

Markov chain. Since PM∆,r
p > 0,∀p,r ∈ R, a steady state exists which can be found by solving

the system of equations. A third possibility is to fix one route (e.g., the fastest in free-flow
conditions) as the reference route r , and to only determine the choice probabilities of M∆,r .
This means that Pref(r) = 1 for exactly one r ∈ R. This might not be the realistic for standard
equilibrium models since this creates asymmetry. However, such an approach would be very
feasible for en-route decisions, where the current route serves as reference point. Also in
day-to-day models, the previously chosen trip can be a natural reference route.

This new family of M∆-models does not account automatically for all overlap with the multi-
nomial generating function. Any network with overlap in which all routes have the same
length, will give equal choice probabilities; the network structure does not have any influ-
ence on the choice probabilities. Also, the conditional choice situation with reference route r
does account for overlap between r and all other alternatives, but cannot capture dependencies
between all these other alternatives. So, a specific generating function that can handle these
dependencies has to be specified per reference route.
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4.5.1. MODEL INSTANCES

Using the four available generating functions we can derive several models based on multi-
plicative utility formulas based on reference routes. Here we only present the choice prob-
abilities of route r conditional on r being the reference route, i.e., using p = r in Equation
(4.114)10. The derived choice probabilities seem to be rather complex; however, that is only
due to the asymmetry of the generating vector. Basically, the choice probabilities of a M∆,r-
model are not more complex than those for a A or M model, and they can be derived easily for
applications.
Multiplicative Multinomial with Reference Route (M∆-MN): The disadvantage of indepen-

dence in basic A-MN is inherited. Not all overlap is explicitly removed in the M∆ case,
dependencies between non-reference routes maintain. The choice probabilities are

PM∆-MN,r
r (GMN;yM∆,r ) =

1

1+
∑

p∈R\{r }

(∑
l ∈Lr\p

Vl∑
l ∈Lp\r

Vl

) µ , ∀r ∈ R . (4.116)

Multiplicative Path-Size with Reference Route (M∆-PS): The path-size choice probabilities
are

PM∆-PS,r
r (GPS;yM∆,r ) =

PSβ
r

PSβ
r +

∑
p∈R\{r } PSβ

p

(∑
l ∈Lr\p

Vl∑
l ∈Lp\r

Vl

) µ , ∀r ∈ R . (4.117)

As it is possible to convert the path-size factor back into the utility formulation for the
A-PS and M-PS models (Kitthamkesorn and Chen, 2013), this is also possible for the
M∆-PS model. This will lead to:

UM∆-PS,r
p :=




∑
l ∈Lr Vlε

M
r

PSβr
if p = r∑

l ∈Lp\Lr Vlε
M
p

PSβp
+

∑
l ∈Lr∩Lp Vlε

M
r

PSβr
otherwise.

(4.118)

Having a reference route allows one to revisit the used path-size factors. These can
be obtained by excluding all links of the reference route. This will lead to a formula-
tion with reference route specific path-size parameters. Similar to equation (4.45), the
formulation for the reference route r specific path-size factor PSp,r for route p is

PSp,r =




∑
l ∈Lp\r

Vl
#l∑

l ∈Lp\r
Vl
, if p , r

1 if p = r.
(4.119)

Multiplicative Paired Combinatorial with Reference Route (M∆-PC): The paired combinato-
rial choice probabilities for in the M∆ case are

10Under the Markov chain assumption, these are the probabilities for staying in the same state.
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PM∆-PC,r
r (GPC;yM∆,r ) =∑

p∈R\{r }
*
,
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l ∈Lr\p

Vl∑
l ∈Lp\r

Vl

) µ
1−ϕr p +

-
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*
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1−ϕrr ′ +

-
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*....
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) µ
1−ϕr ′p
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Vl∑
l ∈Lp\r

Vl

) µ
1−ϕr ′p

+////
-

1−ϕr ′p
,

(4.120)

∀r ∈ R. This formula looks complicated, as the cumbersome indexing is required be-
cause the non-symmetric generating vector yM∆,r is substituted, and then some terms
collapse to 1. Without this substitution the probabilities are

PM∆-PC,r
r (GPC;yM∆,r ) =

∑
p∈R\{r }

(
yM∆

rr

µ
1−ϕr p + yM∆

rp

µ
1−ϕr p

)−ϕr p
∑

r ′∈R
∑

p∈R\{r ′}

(
yM∆

rr ′

µ
1−ϕr ′p + yM∆

rp

µ
1−ϕr ′p

)1−ϕr ′p
, ∀r ∈ R .

(4.121)
Multiplicative Link-Nested with Reference Route (M∆-LN): The link-nested choice proba-

bilities in the M∆ case are

PM∆-LN,r
r (GLN;yM∆,r ) =

∑
m∈L αmr

(
αmr +

∑
p∈R\{r } αmp

(∑
l ∈Lr\p

Vl∑
l ∈Lp\r

Vl

) µm ) µ
µm
−1

∑
m∈L

(
αmr +

∑
p∈R\{r } αmp

(∑
l ∈Lr\p

Vl∑
l ∈Lp\r

Vl

) µm ) µ
µm

, ∀r ∈ R .

(4.122)

4.5.2. MODEL PROPERTIES

Since for the M∆ case utilities are sums of two variates of the MEV distributions, it is not possi-
ble to obtain a convenient closed-form for the joint density function of the utilities. Therefore,
we cannot derive the expected maximum utility. However, from the marginal distributions of
εM it is possible to obtain the expected value and variance of the M∆ utilities conditional on a
reference route, which are:

E(UM∆,r
p ) =




∑
l ∈Lr Vl

G(1r )1/µ Γ
(
1+ 1

µ

)
if p = r(∑

l ∈Lp\Lr Vl

G(1p )1/µ +

∑
l ∈Lr∩Lp Vl

G(1r )1/µ

)
Γ

(
1+ 1

µ

)
otherwise

, and, (4.123)

Var(UM∆,r
p ) =




(∑l ∈Lr Vl )2

G(1r )2/µ

(
Γ

(
1+ 2

µ

)
−Γ

(
1+ 1

µ

)2
)

if p = r( (∑
l ∈Lp\Lr Vl

)2

G(1p )2/µ +

(∑
l ∈Lr∩Lp Vl

)2

G(1r )2/µ

) (
Γ

(
1+ 2

µ

)
−Γ

(
1+ 1

µ

)2
)

otherwise.

(4.124)
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Table 4.2.: Choice probabilities for the M∆-MN model on the simple network. The proba-
bilities conditional on reference routes, as well as the two solution methods are
provided.

Upper Middle Lower

Ref. route = Upper 2
5

1
5

2
5

Ref. route = Middle 8
17

4
17

5
17

Ref. route = Lower 5
14

4
14

5
14

Equal Pref(·) solution ≈ 0.409 ≈ 0.240 ≈ 0.350

Markov chain solution ≈ 0.401 ≈ 0.239 ≈ 0.359

Furthermore, when the reference route is fixed (i.e., Pref(r) = 1 for exactly one r ∈ R), then
SUE formulation (4.87) also holds for the M∆,r-case.

4.5.3. SIMPLE NETWORK

Origin Destination

V =3 mins. V =1 min.

V =2 mins.

V =4 mins.

Figure 4.3.: Simple three route overlap network.

To provide more insight in the working of M∆-models, the M∆-MN probabilities are provided
for a simple network. Figure 4.3 shows an origin and destination with three routes in between.
Systematic utility is assumed to equal foreseen travel time, and no route specific constant is
included. The upper and middle routes have overlap, and the upper route is faster. The lower
route has no overlap with the other two, and is equally fast as the upper route. Table 4.2 shows
the choice probabilities for each reference route based on µ= 1, as well as, the solutions based
on equal reference route probabilities and the Markov chain approach.

As expected, the slowest middle route has lowest choice probability. This choice probabil-
ity is significantly smaller than it would be under A- and M-models, which is realistic since
changing from the upper to the middle route means that the non-overlapping travel time dou-
bles. Also, the two different solution methods for dealing with multiple reference routes do
not differ that much.
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On the other hand, there is a higher preference for the upper route than for the lower route
while they have equal travel times. Based on the theory in Section 4.2, one would argue that
the opposite should be true. Having the upper or lower route as the reference route, causes no
difference in choice probabilities between the upper and lower route. Only because the middle
route exists, and since it is more ’profitable’ (i.e. the factor 2 between the non-overlapping
parts between middle and lower is higher than the factor 4/3 between middle and lower route)
to switch to the upper route, there is a slight preference for the upper route. This means that
by having routes included as reference routes, the final probabilities change (similar to what
Bliemer and Bovy (2008) show).

So, this simple example provides insight in the working of the M∆-models, but does not
show its full potential. Clearly, the M∆-models have different behaviour than all other known
route choice models. The next two sections provide more insight in the differences between
the A-, M- and M∆-models – and their suitability for traffic assignment applications –. First, we
analyse their basic behaviour under simple changes in the network configuration, and second,
we analyse all models under more complex network variations. The latter quantitative test
shows which model can best approximate the generic utility formulation of Section 4.2. These
Sections provide the full potential of the M∆-models.

4.6. BASIC MODEL BEHAVIOUR UNDER SIMPLE NETWORK

CHANGES

In this section we discuss the change in choice behaviour under three simple network adjust-
ments. Consider the four networks depicted in the first column of Table 4.3. Network A is the
basis and has 2 routes with different lengths of which the final parts overlap. In network B
the overlapping part is extended, while in networks C1 and C2 the non-overlapping parts are
extended by respectively adding a constant length and by multiplying their lengths. The mod-
els are so simple that, regardless the exact choice behaviour, the trend in choice probabilities
for the two routes is known. The trend can either be that the probabilities remain equal, con-
verge, or diverge. It is desired that choice models can reproduce the expected trend for each
network change. However, not all trends can be reproduced by all choice models. Therefore,
we analyse the behaviour of the three basic (-MN) models. We take advantage of having only
two routes for the M∆-MN model here, which avoids dealing with reference routes. However,
similar results are obtained when extending to more than two routes, as is analysed in the next
section.

Consider the switch from network A to network B. Since the non-overlapping parts remain
equal, the choice probabilities for both routes obviously also remain equal. In the A-MN model
only the difference between the routes matters, and since this difference does not change,
the probabilities also remain equal for that model. For the M-MN model however, only the
ratio between the routes matters, and this ratio changes. Because the non-overlapping part
increases, the (lower:upper)-ratio decreases, and the choice probabilities will converge. The
expected behaviour can not be reproduced by any M-MN model instance. The M∆-MN model
in the end, merely considers the ratio of the difference between routes, i.e., the ratio of the non-
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Table 4.3.: Behaviour under changing networks. Networks B, C1 and C2 are slight varia-
tions on network A. Each network has two routes; the table shows the trend of the
route probabilities when one switches for network A to any of the other three net-
works. They can either converge, diverge, or remain equal (depicted with arrows).
The expected trend and achievable trends for three models are provided (see main
text).

A
1

2

1 Expected
choice
behaviour

A-MN M-MN M∆-MN

B
1

2

2
= = 3

↓

↑
7 = 3

C1
2

3

1
↓

↑
= 7

↓

↑
3

↓

↑
3

C2

2

4

1
↑

↓

↑

↓
3

↑

↓
3

↑

↓
3
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overlapping parts. Since the non-overlapping part does not change, the choice probabilities do
not change. This holds for all M∆-MN model instances

Consider the switch from network A to network C1. When a constant length is added to both
routes, they become more similar the choice probability of the shortest route increases. So, it
is expected that the route probabilities will converge11. The difference between the two routes
will not change, therefore no A-MN model instance can reproduce the expected behaviour. On
the other hand, the M-MN and M∆-MN models will reproduce the expected behaviour since the
(lower:upper)-ratio between routes (in- and excluding the overlapping part) decreases. The
probabilities converge for all M-MN and M∆-MN model instances.

Consider the switch from network A to network C2. When a both routes are multiplied by
the same factor, the absolute detour of the longest route will increase, and will therefore be
chosen less. So, it is expected that route probabilities will diverge12. The difference between
the two routes will increase, therefore the probabilities in the A-MN models will diverge, which
coincides with the expected behaviour. The ratio of the non-overlapping parts of the routes
remains equal, but due to the overlapping part, the ratio between the whole routes changes.
This increase in the (lower:upper)-ratio will lead to the desired diverging probabilities in the
M-MN model. Of course, the divergence ‘speed’ depends on the length of the overlapping part.
However, this can be adjusted by using the constant in the systematic utility specification. This
constant is also the reason that the diverging probabilities are obtainable in the M∆-MN model;
here it also completely determines the divergence ‘speed’, which is an advantage compared
to M-MN. All M-MN model instances diverge for this network example, but the behaviour
remains dependent on the overlapping length. Almost all M∆-MN model instances will have
the expected behaviour, except for those with a constant equal to zero.

This analysis, summarized in Table 4.3, on the most simple and basic network variation
shows that only the M∆-MN model can reproduce all expected behaviours. We believe no
simple network change exists of which the expected behaviour can be captured by A-MN or
M-MN, but not by M∆-MN. Since real networks do not consist of merely simple network
changes, the next section analyses the competitiveness of all models on more comprehensive
networks based on the route utility formulation of section 4.2, including the PS, PC, and LN

variants, and including more than two routes which requires the use of reference routes for the
M∆-models.

4.7. NETWORK EXAMPLE

The route choice models are applied on a network with three routes to show the advantage of
the M∆-models compared to the others. Bliemer and Bovy (2008) compare route choice mod-
els on different route sets. They demonstrate that existing closed-form route choice models
(except for A-MN) are sensitive to irrelevant route alternatives. Hence, if the route sets in ap-
plication are different from the route sets in estimation, the results may be poor. This network

11As an easy example, consider routes with length x and x +1; the choice probabilities will become 50 %-50%
if x→∞ and 100%-0% if x→ 0

12As an easy example, consider routes with length x and 2× x; the choice probabilities will become 50 %-50%
if x→ 0 and 100%-0% if x→∞

95



Strategic Network Modelling for Passenger Transport Pricing

example considers very different choice situations and the models are estimated and validated
on different subsets of the data.

In Figure 4.4 the network with link travel times and routes is depicted. This network has
been carefully constructed to put the choice models under stress, namely with and without
overlap, and with short and long distance O-D pairs. Also, the relative influence of the analyst
and random foreseen travel time changes. The travel times of links 1, 2, 4 and 5 depend
on variable x and by varying x different choice situations are created. Each value of x can
represent a different O-D pair in a transport network. The graph shows how route travel times
increase with x; for x = 0 the difference (respectively ratio) between the slowest and fastest
routes is four minutes (respectively 0.67), and this increases to eight minutes (respectively
0.90) for x = 40. Furthermore, overlap occurs on links 1 and 5.

O. D.

lin
k 1

x

link 21.05x+12

link 4
0.95x+8

link
3

10
lin

k 5
x x

Travel time

0 40
0
812

76
84

Lower route

Upper route
Middle route

Figure 4.4.: Network and travel times. Dashed links have variable costs.

For the experiment, the probabilities from the MNP model – that can properly handle both
the analyst error and random foreseen travel time, and the desired variance-covariance struc-
ture based on the scaling postulate – are the ground truth. Thus, the route utilities are jointly
distributed following a multivariate normal distribution. This distribution is specified in line
with the random route utility of Section 4.2. Assume that there is no systematic utility other
than travel time, then identification leads to V 0

r = 0 for the A-models, and V 0
r = c for the M-

and M∆-models (see Section 4.4.3). For the normalization set the expected analyst error E(εr )
to 0 and the travel time parameter β to −1. For the proportionality parameter (regarding the
standard deviation of the foreseen travel time), linear regression on the OViN data of Figure
4.1 leads to θ = 0.3859, and linear regression on the route survey leads to θ = 0.1301; however,
the first value is too high (see Section 4.2.1) and the latter too low (since it is the response of
only one traveller), thus we assume θ = 0.2. The covariances between the random foreseen
travel times are assumed to be based on the arithmetic mean, see Equation (4.9). Note that
these definitions of the (co)variances are different from those in the literature that assume pro-
portionality between variance and mean. The standard deviation of the analyst error is set to
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σ(εr ) = 10 (minutes). This leads to the following multivariate normal utility distribution:

N

*........
,

−
*..
,

2.05x+12
2x+10

1.95x+8

+//
-︸               ︷︷               ︸

E(U )

,0.22 *..
,

(2.05x+12)2 2.025x2+11x 0
2.025x2+11x (2x+10)2 1.975x2+9x

0 1.975x2+9x (1.95x+8)2

+//
-︸                                                                   ︷︷                                                                   ︸

covariance matrix of τ

+ diag
*..
,

100
100
100

+//
-︸         ︷︷         ︸

variance matrix of ε

+////////
-

.

(4.125)
While x increases, not only the distance between origin and destination increases, but also

the influence of the randomness from foreseen travel time compared to the randomness from
the analyst error increases. For x = 0 only 3.8 percent of the variance of utility is due to the
foreseen travel time; however, for x = 40, 76.4 percent of the variance is due to the foreseen
travel time. Furthermore, the part of utility with overlap increases with x. In the development
of this network example, the link travel times were chosen given the assumptions on the errors,
and such that the route choice probabilities are more or less stable.

0 10 20 30 40
x

0.25

0.30

0.35

0.40

0.45

0.50
Probability

Upper route
Middle route
Lower route

Figure 4.5.: Ground truth probabilities based on a million multivariate normal samples for
each x ∈ {0,. . . ,40}.

For all x ∈ {0,1,. . . ,40} the choice situation is simulated a million times by sampling from
the multivariate normal distribution (Equation (4.125)), see Figure 4.5. The models are es-
timated twice; once on the dataset x = {5,. . . ,15}, and once on dataset x = {25,. . . ,35} us-
ing log-likelihood maximization. So, eleven million ‘observations’ are used to estimate each
model. For the M∆-PS the path-size formulation of equation (4.45) is chosen13. For the LN

models link specific scales are estimated for links 1 and 5; the other links – read nests – contain
only one route and thus ‘collapse’: (yµl )µ/µl = yµ. The Markov chain approach for reference
routes is chosen for M∆-MN and M∆-PS, and the ‘equal probability reference route’ approach

13This is chosen since equation (4.119) leads to much more path-size factors
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Table 4.4.: Parameter estimates for every model for the two datasets

Model Parameter estimates
Dataset x = {5,. . . ,15} Dataset x = {25,. . . ,35}

Scale µ ≈ Constant ≈ Other Scale µ ≈ Constant ≈ Other

A-MN 0.107 0.0699
A-PS 0.107 β ≈ 0.182 0.0681 β ≈ 0.501
A-PC 0.0935 0.0576
A-LN 0.0438 µ1 ≈ 0.095

µ5 ≈ 0.818
0.0225 µ1 ≈

0.0225
µ5 ≈ 1.091

M-MN 11.518 -77.635 5.593 =0
M-PS 12.932 -91.038 β ≈ 0.173 8.690 -47.403 β ≈ 0.490
M-PC 12.983 -108.293 7.809 -55.479
M-LN 0.490 -142.935 µ1 ≈

73.916
µ5 ≈

1175.47

0.319 -0.258 µ1 ≈

18.235
µ5 ≈

118.725

M∆-MN 7.475 -43.589 4.619 =0
M∆-PS 10.613 -72.889 β ≈ 0.145 7.381 -41.176 β ≈ 0.432
M∆-PC 14.328 -126.223 7.396 -62.199
M∆-LN 0.475 -111.01 µ1 ≈

58.367
µ5 ≈

7518.45

0.569 =0 µ1 ≈

15.265
µ5 ≈

61.098

is chosen for M∆-PC and M∆-LN14. For the validation, the models’ log-likelihood on the other
dataset is determined, so the parameters from the estimation on x = {5,. . . ,15} are applied to
x = {25,. . . ,35}, and vice versa.

Table 4.4 shows the estimated parameters.15 The standard errors are very low due to the
large artificial dataset and therefore not reported. Figure 4.6 shows the log-likelihoods of the
estimation and validation results. Probabilities of the models are found in Figures 4.7 and
4.8. In every graph two instances of one model and the ground truth are shown, the blue lines

14For these two models the software (Wolfram Mathematica) couldn’t find analytical soltions of the choice
probabilities using the Markov chain with unknown x. General applications do not have this parametrization
on x, and thus shouldn’t be problematic.

15The q-generalized logit model by Nakayama (2013) that captures both A-MN and M-MN has also been esti-
mated; the results are not presented since the resulting model was always equivalent to the M-MN model (i.e.,
not to A-MN)
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depict the route probabilities for the model estimated on x = {5,. . . ,15}, the red lines depict
the route probabilities for the model estimated on x = {25,. . . ,35}, and the grey lines depict
the MNP (i.e., ground truth) probabilities.

The estimation results show that the MN models have the poorest log-likelihoods of all
on the {25,. . . ,35}-data; these models cannot address the overlap of routes properly. The
validation results of the MN models are also worse than the other types, so they cannot be
transferred between short distance and long distance O-D pairs. Another remark is that the PC

models, which are designed to capture overlap, perform poorest on the {5,. . . ,15}-data; this is
due the fact that the covariance between routes is low (because the analyst error is dominating),
while the PC model always imposes dependencies.

In all cases, the A-models have the worst estimation result compared to the M and M∆-
models. Remarkably, the multiplicative models also outperform the additive models on the
{5,. . . ,15}-data, where the influence of the foreseen travel time is relatively small. The M∆-
models have better results on all four MN and PS estimations, while the M-models have better
results on three out of four PC and LN estimations. This is because the additional parameter,
the constant c, for the multiplicative models, which leads to a better fit.

The multiplicative errors capture the analyst error with constant c in the systematic util-
ity. This constant is indeed larger for the models estimated on the {5,. . . ,15}-data, where
the analyst error is dominant. Furthermore, note that all scale parameters µ are smaller for
the {25,. . . ,35}-data (i.e., the variance is higher); this reflects the heteroscedasticity of route
utility.

We would like to mention that the PC and LN estimation were problematic on other net-
work configurations that we have tried. For the multiplicative models extremely high scales
occurred, which can lead to numerical problems. They also generated very unrealistic prob-
abilities outside the area they were estimated on. As mentioned earlier, it is infeasible to
estimate all link-specific nest-scales in large networks for LN models.

4.8. CONCLUSIONS AND DISCUSSION

This paper presented twelve route choice models – of which seven are new – in a single frame-
work, and assessed them qualitatively and quantitatively. Choice probabilities for all models
have the same closed form expression, namely Equation (4.26), based on a generating function
and a generating vector. The generating function determines how route overlap is captured,
which is either multinomial (MN), path-size (PS), paired combinatorial (PC), or link-nested
(LN). The generating vector determines the utility formula, which is either additive RUM (A),
multiplicative RUM (M), or the newly presented multiplicative RUM based on reference routes
that only considers differences between routes (M∆).

For the qualitative assessment a basic structure of utility with random foreseen travel time
was presented (see Section 4.2). We base our analysis on two postulates on random travel
times of road segments that each lead to a different structure of randomness. Empirical evi-
dence provides the new insight that the foreseen travel time distribution’s mean and standard
deviation have a linear relationship, contrary to a linear relationship between its mean and vari-
ance. The homoscedastic additive models are not able to capture the random foreseen travel
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Figure 4.6.: Log-likelihoods of model instances for estimation and validation. Parameter esti-
mates of the left estimation are used for the validation in the right, and vice versa.
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time, but multiplicative models do allow for this. Furthermore, differences in normalization,
identification, and invariance are pointed out. The constant in systematic utility in multiplica-
tive models does not have to be normalized. This allows more degrees of freedom and a better
fit on the data, but makes it more difficult to compare models from the different paradigms
directly. One main advantage of the generic GMEV framework is that it can be analysed as a
whole, we show this by providing the equivalent stochastic user equilibrium formulation for
all models.

To show the distinctiveness of the M∆-models, each model’s behaviour under basic net-
work changes was analysed. Only the M∆-models can reproduce realistic behaviour when the
characteristics of parallel and serial links change.

To test the models’ potential on real networks, and to test whether they can be applied on
datasets on which they are not estimated, a carefully constructed network example was pre-
sented. Based on our analyses, we expect good performance of the M-PS and M∆-PS models
for route choice on real networks. They can capture overlap sufficiently, and they can han-
dle random foreseen travel time. Also Fosgerau and Bierlaire (2009) and Chikaraishi and
Nakayama (2015) have both compared additive with multiplicative formulations on multi-
ple datasets, and they found that the multiplicative models have a better fit for all datasets.16

However, additional empirical estimation and validation is required to conclusively assess all
models. Finally, the PC and LN models are problematic to estimate on some other networks
we tried, and they can cause numerical problems.

This chapter does not discuss the route generation or sampling related to the explicit route
sets of the models. As pointed out earlier, a correct sample of routes is required to obtain
unbiased parameter estimates (Frejinger et al., 2009). For econometrically sound applications,
sampling techniques as presented by (Frejinger et al., 2009; Flötteröd and Bierlaire, 2013;
Guevara and Ben-Akiva, 2013) have to be adapted for the new models. Models with implicit
route sets (Dial, 1971; Fosgerau et al., 2013a; Papola and Marzano, 2013; Mai et al., 2015)
do not have this issue, but they might lead to unrealistic routes. The connection between the
link-based MEV model of (Papola and Marzano, 2013) with the route-based GMEV framework
does not seem feasible due to the different base units, but if it exists, it might lead to new
GMEV model instances. On the other hand, Prato (2012) points out conceptual and empirical
reasons that plea for the explicit approach.
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CHAPTER 5.

A FAMILY OF MACROSCOPIC NODE

MODELS

The family of macroscopic node models which comply to a set of basic re-
quirements is presented and analysed. Such models are required in macro-,
mesoscopic traffic flow models, including dynamic network loading models
for dynamic traffic assignment. Based on the behaviour of drivers approaching
and passing through intersections, the model family is presented. The headway
and the turn delay of vehicles are key variables. Having demand and supply as
input creates a natural connection to macroscopic link models. Properties like
the invariance principle and the conservation of turning fractions are satisfied.
The inherent non-uniqueness is analysed by providing the complete set of fea-
sible solutions. The node models proposed by Tampère et al. (2011); Flötteröd
and Rohde (2011); Gibb (2011) are members of the family. Furthermore, two
new models are added to the family. Solution methods for all family members
are presented, as well as a qualitative and quantitative comparison. Finally, an
outlook for the future development of empirically verified models is given.

5.1. INTRODUCTION AND BACKGROUND TO MACROSCOPIC

NODE MODELS

This paper is a slightly adapted version of:
• Smits, E.-S., Bliemer, M. C., Pel, A. J., and van Arem, B. (2015).

A family of macroscopic node models.
Transportation Research Part B: Methodological, 74:20–39

A core component of every dynamic transportation model is to compute the time-varying
traffic conditions (described by, e.g., flows, densities, headways, speeds, travel times, etc.) on
a network once the dynamic travel demand from origins to destinations is given. This traffic
simulation procedure is often referred to as DNL. Hence, the main purpose of DNL models is to
determine the emerging traffic conditions as a result of the interaction between infrastructure
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supply and travel demand. To this end, DNL models typically consist of a link model and a
node model.

The link model computes the dynamic traffic flow propagation along homogeneous road
stretches, while the node model computes the traffic conditions at discontinuities in the net-
work, such as bottlenecks and intersections. For the link model, fundamental diagrams are
used to describe the traffic dynamics and underlying driving behaviour. Depending on the
level of aggregation in the representation of traffic, models can be categorised as microscopic,
mesoscopic, or macroscopic, and similarly the fundamental diagrams describe relationships
for pace-headway, spacing-speed, and density-flow (Laval and Leclercq, 2013).

Unfortunately, for nodes no general driving behaviour representative (as the fundamental
diagram is for links) is known. Nevertheless, this study shows that cumulative flow curves on
the incoming links, turns, and outgoing links of a node can be derived and provide a complete
representation of the traffic dynamics. Furthermore, this paper shows how these cumulative
flow curves can be used to describe driving behaviour at nodes in terms of time-headways.
The benefit hereof is twofold. First, this newly introduced way to represent traffic at nodes
allows to derive and analyse the full family of node models consistent with the requirements
for the Generic Class of first-order Node Models (GCNM) as presented by Tampère et al.
(2011). Second, this representation of traffic based on a time-headway relationship yields
descriptive variables that can be interpreted at the level of individual driving behaviour. Hence,
earlier developed models belonging to the GCNM can now be analysed according to their
assumptions on the underlying driving behaviour at nodes. Furthermore, new models fulfilling
the requirements for the GCNM can be derived based on explicit behavioural assumptions.

In the transition from static to dynamic transportation models, the field of traffic flow the-
ory has studied the propagation of traffic dynamics along homogeneous road stretches (links)
exhaustively. However, where the link model propagates these traffic conditions along the
links, the node model determines most congestion seeds where queues originate (due to insuf-
ficient downstream capacity) as well as the direction (i.e. the upstream links) towards which
these queues spill back. The validity of the node model is therefore particularly important for
traffic assignment studies and traffic flow on dense (urban) networks. Although node mod-
els have been studied in several papers through the last decades, they received significantly
less attention than link models. Early contributions on node models include (Daganzo, 1995a;
Lebacque, 1996), and were in the next decade followed by (Jin and Zhang, 2003, 2004; Ni and
Leonard II, 2005; Bliemer, 2007; Jin, 2010, 2012a).

Several studies have posed requirements for the validity of a node model. Lebacque and
Khoshyaran (2005) identified two invariance principles to ensure consistency between traffic
flows on links and nodes. The first invariance principle requires that when spillback occurs on
an upstream link, the outflow of that link is invariant to an increase of the upstream demand.
The second invariance principle requires that when the supply (or capacity) is not fully utilized
at a downstream link, the inflow of that link is invariant to a decrease in the supply. Later,
Tampère et al. (2011) constructed a complete set of requirements for node models including
these invariance principles as well as demand and supply constraints, requirements for the
conservation of turning fractions (due to first-in first-out), and individual flow maximization.
Also general applicability, i.e. any number of in- and outlinks, is a requirement. If a node
model satisfies these requirements it belongs to the earlier mentioned GCNM; call this set the
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generic requirements.
Tampère et al. (2011) argue that if any of the generic requirements is violated, the model is

either not applicable on general networks, or does not comply with basic traffic characteristics.
Therefore, the generic requirements are necessary to ensure the behavioural validity of a gen-
erally applicable node model with any number of in- and outlinks. At present only two node
models exist that satisfy the generic requirements, namely the model presented by Tampère
et al. (2011) and Flötteröd and Rohde (2011), and another model by Gibb (2011). The generic
requirements are not sufficient to guarantee a unique solution. In order to create a specific
node model, additional constraints need to be introduced. Those determine how the down-
stream supply is distributed. In the capacity proportional model of Tampère et al. (2011) and
Flötteröd and Rohde (2011) the capacity of outgoing links is divided among competing flows
proportional to the capacity1 of the corresponding incoming links. This is achieved in (Tam-
père et al., 2011) by adding a capacity proportional supply constraint interaction rule (SCIR)
to the total flow maximization problem. In (Flötteröd and Rohde, 2011) instead, the incre-
mental transfer principle is used where the incremental node model solution is the stationary
point of a dynamic system. Notwithstanding that these two models are derived from different
principles, their solutions are identical. In the capacity consumption equivalence model by
Gibb (2011) the underlying assumption is that traffic towards a saturated (downstream) link
consumes more capacity of its (upstream) link. Although both node models satisfy all re-
quirements, they lack behavioural foundation (the first model to a larger extent than the latter),
complicating a assessment of their validity. Furthermore, non-iterative and non-repetitive2

solution methods are lacking for both models which, especially in Gibb’s case, lead to long
calculation times. Finally, the formulations of these models are not compatible as they build
on different (algorithm driven) variables, making it impossible to capture one model in the
others’ framework.

This paper (i) presents the representation of traffic flows at nodes according to the time-
headway relationship and turn delays (a concept that will be introduced in more detail in this
paper) as decision variables (ii) shows how all models belonging to the GCNM (i.e., satisfying
the generic requirements) fit into this framework yielding a family of node models where the
challenge for each model is to find a set of turn delays, (iii) presents two new node models, (iv)
shows how the two existing node models by Tampère et al. (2011) and Flötteröd and Rohde
(2011), and by Gibb (2011) are specific cases of the family, (v) presents the mathematical
optimization problem for the node model family as multi-objective optimization problem and
discusses Pareto optimality and the output relevant feasible solution set3, (vi) provides solution
methods for all models, and (vii) analyses the family of node models (including specific cases)
on an illustrative three-leg node.

In the past other models are presented that do no satisfy all generic requirements. Corthout
(2012, Chapter 3) provides an extensive literature overview of all models that do not satisfy
all requirements; Table 3-1 shows which models satisfy which requirements. It should be
noted that the problem was already solved for merges and diverges4 by Daganzo (1995a).

1More precisely, the directed capacity, as explained in depth in Section 5.4.3
2I.e., does not repeat similar calculations.
3Section 5.5.1 clarifies what output relevant solutions are.
4These are the most important nodes at highways, and widely used in traffic flow theory.

107



Strategic Network Modelling for Passenger Transport Pricing

These nodes have respectively one outgoing or one incoming link. For the merge a priority
parameter is required. Node models that do not satisfy the invariance principles may lead to
non-stationary turn flow rates in kinematic wave models. For example, calculating an exact so-
lution to the first-order kinematic wave model in continuous time with a node model that does
not satisfy the first invariance principle, and using an event-based algorithm such as presented
in Raadsen et al. (2014b) leads to an infinite number of events being generated because of
flip-flopping flow rates. Finding an approximate solution using the cell transmission model is
problematic since it can take long before the flows stabilize. The converge speed furthermore
depends on the discretization of space, which is undesirable. Clearly, dynamic network load-
ing procedures that do not average traffic conditions over space, such as the link transmission
model, can not handle unstable flow rates and require node models that satisfy the invariance
principles.

The focus of this paper is on non-signalized intersections with no detailed geometrical spec-
ification. The presented theory serves as fundamental for more specific intersection types.
Furthermore the intersection is considered as a point, contrary to spatial extensions. The latter
could result in flip-flop effects (see Corthout et al., 2012, Fig. 7), and non-uniqueness remains
an issue.

5.2. DESCRIPTIVE VARIABLES FOR TRAFFIC

REPRESENTATION AT NODES

To present the traffic representation at nodes, it is helpful to start by introducing the recent
analysis by Laval and Leclercq (2013) on the traffic representation on links. Here traffic is
represented by a surface in the three-dimensional space spanned by time, location and cumu-
lative flow5. Key is that all three dimensions are continuous, including the cumulative flow or
‘vehicle number’. The fact that cumulative flow is represented as continuous is not an assump-
tion nor restrictive for the representation because individual vehicle characteristics are derived
by the discretization with interval one. In fact, through this discretization the relations between
microscopic and macroscopic models can be explored. Time t, location x and cumulative flow
n are continuous, and any of the three variables can be expressed uniquely as a function of the
other two. This yields three functional representations of the Moskowitz-surface relating to
macroscopic, microscopic, and mesoscopic model formulations.

First, writing the cumulative flow n = N (x,t) as a function of location x and time t is
the most common form, for which the two partial derivatives represent negative density:
−k = ∂N (x,t)/∂x and flow: f = ∂N (x,t)/∂t. The density-flow fundamental diagram is thus a
functional relation between the partial derivatives of N (x,t). Also note that the identity of the
two second-order derivatives yields the conservation law:

−
∂k
∂t
=
∂2N (x,t)
∂x∂t

=
∂2N (x,t)
∂t∂x

=
∂ f
∂x
. (5.1)

5This surface is often referred to as the Moskowitz-surface. See (Newell, 1993a) for historical notes on this
representation.
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Therefore, N (x,t) and the density-flow fundamental diagram represent the well-known first-
order kinematic wave theory model of Lighthill and Whitham (1955); Richards (1956) (LWR).
The relation between cumulative flow and the LWR theory was first identified by Newell
(1993a).

Second, writing location x = X (n,t) as a function of cumulative flow and time has par-
tial derivatives representing negative spacing: −s = ∂X (n,t)/∂n and speed: v = ∂X (n,t)/∂t,
which in turn are functionally related by the spacing-speed fundamental diagram. This resem-
bles car-following models, and in particular the theory in (Newell, 2002).

Third, writing time t =T (n,x) as a function of cumulative flow and location is less common.
The partial derivatives represent time-headway: h = ∂T (n,x)/∂n and pace: p = ∂T (n,x)/∂x,
which can be functionally related with a pace-headway fundamental diagram. The model of
Leclercq and Bécarie (2012) is based on this representation.

The strength of these three different representations is that the behaviour of the traffic flow is
specified through the relationship of two variables with clear physical meaning (i.e., the funda-
mental diagrams). The first-order dynamics can be solved with the theory of Hamilton-Jacobi
differential equations. Besides that the approach is very elegant, it also renews the qualifica-
tion of macro-, meso-, and microscopic approaches6. Macroscopic models correspond with
the N (x,t) representation. Mesoscopic models correspond with the T (n,x) representation.
And microscopic models correspond with the X (n,t) representation.

The majority of existing link models can be derived in this manner from the Moskowitz-
surface and a fundamental diagram. Unfortunately, a straightforward extension of the ap-
proach of Laval and Leclercq (2013) towards node models is not possible due to the fact that
location is not a continuous variable at nodes. This is a crucial difference, since it means that
all earlier presented partial derivatives with a differential of x in the enumerator or denomina-
tor only exist in the limit on link extremes, but not on the node itself. Locations that can be
identified at nodes are the exits of incoming (upstream) links, the entries of outgoing (down-
stream) links, and the turns (as the virtual point where a pair of incoming and outgoing links is
connected). Location is therefore a discrete variable at nodes. Note that the turns are identified
as points, so the node is not spatially expanded. Although location is not continuous, traffic
can still be represented by a curve in the time-cumulative flow space at each of these discrete
locations, such as shown in Figure 5.1. These curves can then be represented by either one of
the functional forms n = N (t) or t = T (n). This means that flow f = dn/dt and time-headway
h = dt/dn are the only descriptive variables that can be derived from the traffic representation
at nodes .

For reasons of brevity, in the remainder of this paper when we write headway, we are re-
ferring to the time-headway (as opposed to the distance-headway). Disregarding the spatial
dimension, flow and headway are each other’s reciprocals. That is,

dn
dt
×

dt
dn
= 1. (5.2)

If flow is positive, i.e., dN (t)/dt > 0, then N (t) and T (n) are each other’s inverse functions.
6Note that with this qualification, some models that are currently labelled as mesoscopic become different dis-

cretizations of micro- or macroscopic models. We follow the mesoscopic definition of Leclercq and Bécarie
(2012).
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For zero flow the functional form T (n) is not well defined, and the headway would be infinite.
So, for all n and t with positive flow we have

dT (n)
dn

= h(n) =
1

f (t)
=

(
dN (t)

dt

)−1

, (5.3)

where the headway is strictly given as a function of n, but can be easily rewritten as a function
of t by h(t) = dT (N (t))/dn. As the flow is also given as a function of t, thus the descriptive
variables (or functions) for the traffic representation at nodes are h(t) and f (t).

To further clarify the traffic representations at a node in terms of flows f (t) or headways
h(t) we consider the topology of the node. Let I denote the set of incoming (upstream) links
(inlinks) and J denote the set of outgoing (downstream) links (outlinks) of a node (where
for sake of simplicity the index for the node is omitted). Furthermore, we define a turn 〈i, j〉
for each pair of inlink i ∈ I and outlink j ∈ J , and let W = {〈i, j〉|i ∈ I, j ∈ J } be the
set of all turns. The flows and headways on turns are then defined as f〈i,j〉(t) and h〈i,j〉(t)
respectively. Note that the traffic representation on the node is given on turn level, but can be
easily aggregated for inlinks and outlinks, where by definition it holds that

fi (t) =
∑
j∈J

f〈i,j〉(t), ,∀i ∈ I and, f j (t) =
∑
i∈I

f〈i,j〉(t) ,∀ j ∈ J , (5.4)

and it follows that

hi (t) =
1∑

〈i,j〉∈W+
i

1
h〈i, j〉(t)

, ∀i ∈ I, and, (5.5)

h j (t) =
1∑

〈i,j〉∈W+
j

1
h〈i, j〉(t)

, ∀ j ∈ J , (5.6)

whereW+
i ⊆W is the set of turns with positive flow exiting inlink i, andW+

j ⊆W is the set
of turns with positive flow entering outlink j, and we can defineW+ ⊆W as the set of turns
with positive flow. Note that these ‘+-sets’ can change over time with varying travel demand.

Figure 5.1 shows the traffic representation of a three-legged node without U-turns. The
time-cumulative flow curves for the individual turns are presented. Both the flows and head-
ways on inlinks, outlinks, and turns can be read from the figure. Note that for each turn
〈i, j〉 ∈ W+ both N (t) and T (n) yield a valid functional representation of the vehicles that
pass the turn. The difference between these two representations is that the axes are inverted.

As mentioned earlier, in a node model the demand and supply constraints are given while
the flows or headways on the turns are to be computed. Note that the demand and supply con-
straints for the link extremes are given from the conditions at the boundaries of the links. More
precisely, the demand is the maximum outflow of the upstream inlinks (without downstream
supply constraints), while the supply is the maximum inflow of the downstream outlinks (with-
out upstream demand constraints) (see also Lebacque and Khoshyaran, 2005). In this paper
we focus on the node model and thus assume that the demand, turning fractions (as deter-
mined by the route choice model), and supply7 are exogenously given as input. Therefore the
challenge is to find the resulting flows or headways on turns (and links).

7Note that spillback from downstream links is captured in this supply.
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In this paper we argue that for behavioural interpretation the headway lends itself better for
clear analysis and explanation (which we will come back to in the next section). Hence, in
the ensuing we discuss the traffic representation and traffic dynamics in terms of headways.
Recall that speed and density (and their reciprocals pace and spacing) are rejected as potential
variables to describe behaviour at nodes due to the discontinuity of vehicle speeds and distance
headways at nodes.

5.3. FAMILY OF NODE MODELS SATISFYING THE GENERIC

REQUIREMENTS

This section introduces turn delays as descriptive variables, and then shows how all generic
requirements (i.e., the requirements for the GCNM in (Tampère et al., 2011)) can be captured
in a concise optimization problem in terms of turn delays.

5.3.1. CONCEPT OF TURN DELAYS

In the ensuing, as in most node model formulations, the time index is dropped. This can be
done because the problem either considers a time interval or specific time instance, where
the solution only depends on the prevailing conditions (i.e., the problem is memory-less).
Furthermore, let Qi be the capacity of link i ∈ I ∪J . Let Si > 0 be the demand (or sending
flow) from inlink i ∈ I, and let R j be the available supply (or receiving flow) at outlink j ∈ J .
Turnfraction α〈i,j〉 is the fraction of flow coming from inlink i ∈ I which is heading for outlink
j ∈ J , so

∑
j∈J α〈i,j〉 = 1,∀i ∈ I. Note that α〈i,j〉 = 0 if 〈i, j〉 <W+, which is thus a simple test

to determine membership ofW+.
With the traffic representation in terms of headways presented in the previous section we

can now introduce the concepts of occupancy times and turn delays (that will later enable the
behavioural interpretation of the specific cases within the family). The occupancy time of a
vehicle on an inlink is defined as the time that the vehicle ‘occupies’ the exit of the inlink
in the sense that no other vehicle can exit the inlink during that time. The occupancy time
includes the time that the vehicle physically occupies the end of the inlink when passing to
the next downstream outlink link, as well as the time that the vehicle virtually occupies the
end of the inlink to ensure a safe headway. More formal: the occupancy time interval of
a vehicle at a location x starts at the moment x is included in its safety headway, and ends
when its rear bumper crossed x.8 In case of no downstream restrictions, the occupancy time
equals 1/Qi, that we will call the capacity occupancy. Note that the capacity occupancy is
a lower bound on the occupancy time, as the occupancy time of vehicles on an inlink can
increase in case of downstream restrictions. This increase in occupancy times (additional to
the capacity occupancy) that vehicles experience due to downstream restrictions for a specific
turn is defined as the turn delay.

8In strict free flow conditions there will be gaps between occupancy time intervals of successive vehicles, while
in congested conditions, these intervals are adjoined.
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Figure 5.2.: Occupancy of an inlink exit for four possible traffic flows. For each vehicle the
time interval it occupies the inlink is presented. Three turns are used: left (25%,
vehicles 1,5,9,. . .), straight (50%, vehicles 2,4,6,. . .), and right (25%, vehicles
3,7,11,. . .). Situations A and B have a lower demand than C and D. Situations B
and D have a delay for left-turning vehicles. Spillback occurs only in situation D.
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To illustrate these concepts, consider the four situations depicted in Figure 5.2. The figure
shows the occupancy times of a stream of vehicles in four different situations. The demand is
equal in situations A and B, as well as in situations C and D, where the demand is higher for
the latter two cases. Furthermore, the occupancy times are equal to the capacity occupancy
in situations A and C, while in situations B and D the left-turning vehicles (directions are
indicated by the arrows inside the blocks) experience a turn delay. Note that in situations A
and C no spillback occurs and the (average) headways are determined by the demand on the
upstream inlink (i.e., the flow exiting the inlink is restricted by the demand, but not by the
downstream supply). In situation B the headways are affected by the delay times of the left-
turning vehicles, however, the delay times are not sufficient to sustain a queue and generate
spillback. Hence, the average headways are still determined by the demand on the upstream
inlink. Only in situation D spillback occurs due to the combination of high demand (i.e.,
shorter inter-arrival times) and delay times (for left-turning vehicles). In this situation the
(average) headways are no longer only dependent on the demand, but instead restricted by the
(downstream) supply constraints. Note that in this representation spillback may also occur
when the demand is relatively low, but the fraction of left-turning vehicles with delay time is
sufficiently high.

Another way to describe this behaviour is that the slack-time – the white space between
vehicles in situations A and C – is sufficient to accommodate a delay to the left in the first case
(i.e., transition from situation A to B), but insufficient in the second case (i.e., transition from
situation C to D).

Assume that the turn delays d〈i,j〉 are known for all turnsW+. Then it is possible to deter-
mine whether the combination of demand and turn delays will result in spillback. In case of
no spillback, the average headway is completely determined by demand and equals hi = 1/Si.
In case of spillback, the average headway is determined by the capacity occupancy and turn
delays per turn with

hi =
1

Qi
+

∑
〈i,j〉∈Wi

α〈i,j〉d〈i,j〉, (5.7)

where the summation term is the average delay per vehicle. In case the average headway
exceeds the vehicle inter-arrival time for the demand on that inlink, spillback occurs. It is
important to note that here the average (or expected) headway is determined. In reality the
arrival process of vehicles is not uniformly distributed over time. However, the computation
of the average headway is consistent with the manner in which aggregated macroscopic link
flow models also consider average (or expected) link flows, c.q. demand.

Since the candidate solutions for spillback and non-spillback situations both yield lower
bounds for the headway, we can determine the resulting headway at inlinks by taking the
maximum. Thus

hi =max



1
Qi
+

∑
〈i,j〉∈Wi

α〈i,j〉d〈i,j〉,
1
Si



, ∀i ∈ I. (5.8)

The concept of turn delays and equation (8) show that (occupancy times and) turn delays
determine the headways on turns and inlinks, yielding a complete representation of the traffic
dynamics on a node. Furthermore, the concept of turn delays allows for behavioural interpre-
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tation. The key point of a node model is therefore to find turn delays that adequately describe
driving behaviour at nodes. These turn delays can be based on capacity restrictions on the
downstream outlink (where vehicles have to wait until enough space is available) as well as
based on, for instance, priority rules, traffic signals, or internal capacity restrictions. Before
discussing the challenges related to determining proper turn delays, we first elaborate more on
the behavioural interpretation, and secondly, we formulate the generic requirements (based on
the GCNM) in terms of our newly proposed traffic representation and show how these require-
ments together with equation (5.8) fully specify the complete family.

5.3.2. OBSERVING DELAYS AND OCCUPANCIES

The introduction of occupancy times and turn delays allow a behavioural interpretation of
node models. The previous section described the effect of delays at inlinks. This section
shows how to observe delays and occupancy on complete nodes. The main difficulty in this
is that, as pointed out before, the headways describe average behaviour. Given the layout
of an intersection and a set of corresponding turn delays, it is not straightforward to retrieve
collision-free vehicle trajectories. This is because the description does not take the ‘synchro-
nisation’ between in- and outlinks into account. For a merge however, the trajectories can
easily be determined as shown next.

Figure 5.3 shows the relation between the occupancy times and the actual traffic at a sym-
metrical merge. Recall that the occupancy time of a vehicle consists of the time its safety
headway and the vehicle itself occupy a location. Vehicles at inlink-1 and -2 proceed to the
outlink in turn. After a vehicle proceeds to the end of the inlink, it has to wait until the out-
link becomes available. During that time it still occupies the inlink, and the follower has to
wait in the queue on the link. The lower part of the figure depicts the traffic situation for
time instances 4 and 5 (note that it shows space-headways, which are significantly different
from time-headways). At time=4 vehicle #3 just arrived at the front of the inlink-1 and starts
waiting, while vehicle #2 just cleared from inlink-2 which allows vehicle #4 to proceed to
the front. At time=5 vehicle #3 is halfway its wait (i.e. delay), and vehicle #4 is halfway its
occupancy time.

To be able to validate models, the occupancy times and especially the delays have to be
observed. Real traffic does not depict the average situations, but is subject to arrival processes
and rather fluctuates. Therefore measurements have to be averaged over a time period. For
every vehicle in such an interval its turn delay and its turn direction have to be measured; of
which the latter is straightforward. The capacity occupancy can be derived directly from the
capacity of the inlink. So when the occupancy time can be measured, the turn delay is acquired
by subtracting the capacity occupancy.

So the remaining question is how to measure the occupancy times. A distinction can be
made between situation A+C, B, and D from Figure 5.2. Situation D is the most important one
because it describes spillback, and it is also the easiest situation to determine the occupancy
times since no slack time exists; the occupancy time equals the time between two successive
rear-bumper passages at the end of the inlink. If all inlinks are in situations A and C no supply
constraint is active, and therefore all turn delays are zero and nothing has to be measured. If
it can not be observed that no supply constraint is active, or if situation B occurs, then the
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Figure 5.3.: Occupancy times at a merge where the capacity of each link is 1800 vehicles per
hour, and traffic spills back to both inlinks. The occupancy times consist of a
capacity occupancy and the turn delay (see also Figure 5.2), and are shown with
white ellipses for each vehicle. The empty area in front of each vehicle represents
its safety headway.
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difficulty is to determine when a vehicles occupancy time begins (since this starts when the
exit of the inlink is part of the safety headway). One approach to solve this is taking a fixed
safety headway, and subtract this from the time the front bumper passes the exit of the inlink9.
Section 5.7 suggests future research on this topic.

The existing models that go beyond merges and diverges lack this link with observed traffic,
where only Flötteröd and Rohde (2011) verify their model for one conflict point at a signalized
intersection. This shows feasibility for continuous models and models with small time steps.
There is a need for more empirical verification or calibration of macroscopic point-wise node
models for specific intersections. The connection to observed traffic is an important property
of the formulation in terms of turn delays, and therefore an important contribution in this
paper.

5.3.3. GENERIC REQUIREMENTS

The requirements that form the first-order GCNM as described in (Tampère et al., 2011) can
be stated in terms of flows and headways. The original formulation is based on flows. In this
section the requirements are formulated based on headways, and are interpreted by observing
what happens at inlinks (since inlinks are particularly interesting as this is where queues can
start and spillback can occur). For a full derivation of the requirements, we refer to Tampère
et al. (2011). For reasons of clarity, the requirements follow in the same order as in (Tampère
et al., 2011).

General applicability, irrespective of the number of incoming and outgoing links. As stated
by Tampère et al. (2011): “node models should be applicable to any combination of num-
ber of incoming and outgoing links”. This requirement relates to the mathematical problem
formulation of the node model, and is independent of the traffic representation at the node.

Maximizing flows. The flow maximization requirement has this explanation: “each flow
should be actively restricted by one of the constraints, otherwise it would increase until it hits
some constraint”. The underlying behavioural assumption is that drivers accelerate whenever
possible. In terms of turn delays the equivalent formulation is behaviourally more elegant and
intuitive, namely that turn delays are minimized,

min
{
d〈i,j〉

���〈i, j〉 ∈W
}
. (5.9)

This multi-objective problem minimizing individual delays is in accordance with the indi-
vidual flow maximization formulated by Tampère et al. (2011). However, note that in their
mathematical formulation the sum of flows is maximized, which appears less realistic from a
behavioural perspective.

Non-negativity. As traffic does not flow upstream, flows are required to be non-negative.
Equivalently, we can state that headways are non-negative,

h〈 j,j〉 ≥ 0, ∀〈i, j〉 ∈W+. (5.10)

9However, in this case the occupancy time becomes completely dependent on the speed and length of the vehicle
which might not be realistic.
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Conservation of vehicles. Since the node is not a source or sink for traffic, the total flows
from the inlinks should equal the total flows into the outlinks. Considering that flow and
headway are inversely related, the equivalent requirement in terms of headways can be simply
stated as, ∑

i∈I

1
hi
=

∑
j∈J

1
h j

(5.11)

Note that the conservation of vehicles is guaranteed through the definitions in equations (5.5,5.6).
Satisfying demand and supply constraints. Once again considering the inverse relationship

between flow and headway, we can state that the demand constraint requires the headway on
an inlink not to be smaller than the inverse of the demand (or sending flow) for that inlink,

hi ≥
1
Si
, ∀i ∈ I, (5.12)

and the supply constraint requires the headway on an outlink not to be smaller than the inverse
of the available supply (or receiving flow) for that outlink,

h j ≥
1
R j
, ∀ j ∈ J . (5.13)

Obeying conservation of turning fractions. The conservation of turning fractions (due to
the first-in-first-out assumption at links and that turning fractions are exogenously determined
by the route choice model) and equation (5.5) give a very straightforward relation between
headways on exits of inlinks and on turns, that satisfy the conservation of turning fractions
constraint, namely

h〈i,j〉 =
hi

α〈i,j〉
, ∀〈i, j〉 ∈W+. (5.14)

Compatibility with link traffic flow dynamics: satisfaction of the invariance principles. The
derivation of headways at inlinks in equation (5.8) resolves the first invariance principle (re-
lated to inlinks) in a natural way. Under the assumption that the demand is only included
as the constraints in equation (5.12), the headways are determined by demand if and only if
there is no spillback on that link. In other words, only when term 1/Si is smaller than term
1/Qi+

∑
〈i,j〉∈Wi

α〈i,j〉d〈i,j〉 spillback will occur; the resulting headways are then independent of
demand Si. For the second invariance principle it is required that the supply is only included
as the constraint in equation (5.13). In the next section we show that this supply constraint
can be written in terms of turn delays and that a set of turn delays is the solution of a node
model. When for such a solution the supply constraint holds with strict inequality, we can
remove this supply constraint without changing the solution. Therefore the second invariance
principle holds if the supply is only used as supply constraint. (Note that this argument also
holds for the demand constraints related to the first invariance principle).

5.3.4. PROBLEM FORMULATION BASED ON TURN DELAYS

With the newly introduced traffic representation at nodes and the generic requirements, the
family of node models can be formulated as a mathematical optimization problem where the
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turn delays are the only unknowns. As discussed above, most requirements are automatically
satisfied with the definition of turn delays and by equation (5.8). The remaining requirements
are the supply constraints and flow maximization. The former constraints can be added in the
latter optimization problem. That leads to a mathematical problem which completely reflects
the generic requirements and where the unknown variables are the turn delays.

Equation (5.8) can be rewritten by substituting equations (5.6), (5.14), and (5.8) in that
order, which results in:

1

∑
i∈I

*
,

max
{

1
Qi
+
∑
〈i, j ′〉∈Wi

α〈i, j ′〉d〈i, j ′〉,
1
Si

}
α〈i, j ′〉

+
-

−1 ≥
1
R j
, ∀ j ∈ J . (5.15)

This can be rewritten as∑
i∈I

min
{
α〈i,j〉Si,

α〈i,j〉Qi

1+Qi
∑
〈i,j ′〉∈Wi

α〈i,j ′〉d〈i,j ′〉

}
≤ R j , ∀ j ∈ J . (5.16)

These constraints can be combined to form a single constraint by observing that the minimum
difference between the right-hand-side and left-hand-side should be positive,

min
j∈J




R j −
∑
i∈I

min
{
α〈i,j〉Si,

α〈i,j〉Qi

1+Qi
∑
〈i,j ′〉∈Wi

α〈i,j ′〉d〈i,j ′〉

}

≥ 0. (5.17)

Then the turn delay minimization requirement is captured in the multi-objective optimiza-
tion Node Problem (NP)

min
d〈i, j〉≥0,〈i,j〉∈W

{
d〈i,j〉

���〈i, j〉 ∈W
}

such that

min
j∈J




R j −
∑
i∈I

min
{
α〈i,j〉Si,

α〈i,j〉Qi

1+Qi
∑
〈i,j ′〉∈Wi

α〈i,j ′〉d〈i,j ′〉

}

≥ 0.

(NP)

This problem formulation is completely consistent and equivalent with the GCNM. Also,
when the turn delays d〈i,j〉 are computed, then the headways at inlinks and outlinks follow
directly, and can be translated to flow with:

fi =min
{

Qi

1+Qi
∑

j∈J α〈i,j〉d〈i,j〉
,Si

}
, ∀i ∈ I, (5.18)

f j =
∑
i∈I

α〈i,j〉 fi, ∀ j ∈ J . (5.19)

However, (NP) has multiple objectives, and thus multiple solutions, and it has a very non-
linear constraint. All Pareto optimal solutions of (NP) are solutions consistent with the generic
requirements. Because the problem is underspecified and does not have a unique solution, ad-
ditional behavioural assumptions and accompanying constraints should be added to make the
problem tractable and to provide a unique solution. The way that these additional constraints
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are chosen then determines the specific case of a node model within the node model family.
Many assumptions can be made, yielding different additional constraints, and hence are differ-
ent specific members of the family. Note however that such constraints can not depend directly
on the demand or the supply due to the invariance principles.10 Existing and new node models
can be analysed by specifying their additional constraint and the corresponding underlying
behavioural assumption in terms of turn delays. In the next section the characteristics of four
members of the node model family are analysed.

5.4. NEW AND EXISTING MEMBERS OF THE FAMILY

At present, the only node models satisfying the generic requirements are the models presented
in the papers by Gibb (2011) and Tampère et al. (2011) (equivalent to the node model presented
by Flötteröd and Rohde (2011)). In this section we show how these models are captured as
specific cases within the node model family, and which additional constraints are added to
(NP). Furthermore, two new members of the family are introduced based on two different
behavioural assumptions.

5.4.1. SINGLE SERVER

The first new member is the first-come-first-serve single server node. In this simple model ve-
hicles have to take turns to pass the node, and they all get a delay – regardless of the possibility
that their outlink is freely available. Such a situation could occur on highly saturated nodes,
where the middle of the intersection is blocked by vehicles. In this case, the additional infor-
mation (i.e., constraints) for (NP) is that the delays are inversely proportional to the capacity
with the same proportionality constant for every turn, i.e.

d〈i,j〉Qi = d〈i′,j ′〉Qi′, ∀〈i, j〉,〈i′, j′〉 ∈W . (5.20)

The reason that delays are inversely proportional with the capacity in such a system is best
understood when thinking of two competing inlinks. Inlink-1 has one lane, and inlink-2 has
two lanes. Traffic arriving at the end of inlink-2 can take its turn when the single lane of
inlink-1 is not occupied anymore. On the other hand, an arriving vehicle at the end of inlink-1
can take its turn when both lanes of inlink-2 become free. Therefore, the delay at inlink-1
is twice as long as the delay at inlink-2. This behaviour is equivalent to the capacity-based
weighted fair queuing principle for merges of Ni and Leonard II (2005) (see Section 5.5.4).

In order to combine equation (5.20) and problem (NP), introduce delay constant c such
that d〈i,j〉 = c/Qi,∀〈i, j〉 ∈ W . This constant can be interpreted in terms of occupancy time
and capacity occupancy introduced in Section 5.3.1. For every turn, the occupancy time is a
multiple of the capacity occupancy, and the multiplication constant is equal, namely 1+ c. So,
if the delay constant c = 1, then the occupancy time is twice its capacity occupancy.

10This is why the model by Jin and Zhang (2003) does not satisfy the first invariance principle. Their priority
parameters depend directly on the demand.
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Equation (5.20) actually connects (i.e. weighs) all turn delays with each other such that
(NP) becomes single objective. Substituting the turn delays with the delay constants leads to
the following Single Server node Problem (SSP):

min
c≥0

c such that

min
j∈J




R j −
∑
i∈I

min
{
α〈i,j〉Si,

α〈i,j〉Qi

1+ c

}

≥ 0.

(SSP)

It has become equivalent to minimize delay constant c now, because the turn delays are strictly
increasing in c.

5.4.2. EQUAL DELAY AT OUTLINK

A more natural member of the family emerges when turn delays are equal for every outlink.
In other words, that for each turn towards an outlink the turn delays are equal; this leads to the
following additional constraints for (NP):

d〈i,j〉 = d〈i′,j〉, ∀〈i, j〉,〈i′, j〉 ∈Wj ,∀ j ∈ J . (5.21)

These constraints have a clear and straightforward behavioural interpretation, namely that each
vehicle has to wait the same amount of time to enter a particular outlink. Denote the turn delay
towards outlink j ∈ J as d̃ j . Then the Equal Delay node Problem (EDP) becomes

min
d̃ j≥0,j∈J

{
d̃ j

��� j ∈ J
}

such that

min
j∈J




R j −
∑
i∈I

min


α〈i,j〉Si,

α〈i,j〉Qi

1+Qi
∑
〈i,j ′〉∈Wi

α〈i,j ′〉d̃ j ′






≥ 0.

(EDP)

The number of objectives is reduced significantly since turn delays are fixed to each other;
however, the solution is not straightforward as will be shown later.

5.4.3. DIRECTED CAPACITY PROPORTIONAL

The node model by Tampère et al. (2011) and Flötteröd and Rohde (2011) assumes directed
capacity proportionality when supply is distributed over demand at outlinks. Directed capacity
is defined for each turn, and equals the proportion of its inlink’s capacity that is assigned to
that turn (i.e. α〈i,j〉Qi,∀〈i, j〉 ∈ W). The proportionality at outlinks means that the supply is
divided among competing flows proportional to the directed capacity of the corresponding
turns. The second assumption is that the flow at an inlink is completely determined by either
its demand or one supply constraint. This implies that only one turn of each inlink can have a
positive delay.

As already mentioned in Section 5.1 of this paper, both papers have a different approach
to reach the same result. The equivalent solutions are repeated procedures that fix at least
one inlink at every step/repetition. So, the models are computationally efficient since nodes
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generally do not have more than four inlinks (and thus at most four repetitions are required).
In every step two scenarios can occur: (1) For some inlinks it is guaranteed that no supply
constraint can restrict them (i.e. no turn delay will ever be big enough to cause spillback), and
thus the flow is set to demand. (2) The final turn delays for an outlink can be determined; this
fixes all inlinks connected to that outlink. In the latter scenario the turn delays have to be deter-
mined according to the directed capacity proportionality principle. To do that the inlinks that
are already marked ‘demand constrained’ by the first scenario and the ones already blocked
by another supply constraint are omitted (i.e. not competing). Therefore, the proportionality
only holds for inlinks that are actively blocked during that step.

The relation with turn delays, and thus with traffic behaviour, can be analysed in a similar
fashion as for the single server model. However, the translation from flow to headways needs
to be made, and the fact that inlinks can only be blocked by one outlink has to be taken into
account. Whenever a supply constraint becomes active at an outlink it will determine all
(positive) delays for turns going into that link. As the previous paragraph describes, some of
the competing inlinks are already fixed, and the remaining ones are resolved with the directed
capacity proportionality rule. This rule can be written as

f〈i,j〉
α〈i,j〉Qi

=
f〈i′,j〉

α〈i′,j〉Qi′
, ∀〈i, j〉,〈i′, j〉 ∈ Ŵj ,∀ j ∈ J , (5.22)

where Ŵj is the set of competing turns; note that Ŵj ⊆W
+
j holds because turns with no flow

cannot compete. These equalities can be rewritten in terms of headways as

h〈i,j〉α〈i,j〉Qi = h〈i′,j〉α〈i′,j〉Qi′, ∀〈i, j〉,〈i′, j〉 ∈ Ŵj ,∀ j ∈ J . (5.23)

Since each of these inlinks is constrained by this supply only the headway can – in this case –
be written as

h〈i,j〉 =
1

(α〈i,j〉Qi)
+ d〈i,j〉, ,∀〈i, j〉 ∈ Ŵj . (5.24)

Note that this is only possible because all other turn delays are equal to zero, otherwise
1/α〈i,j〉Qi (the rate which vehicles can arrive at turn 〈i, j〉 when the inlink is congested) would
be affected by these delays. Substituting Equation (5.24) in Equation (5.23) leads to

1+ d〈i,j〉α〈i,j〉Qi = 1+ d〈i′,j〉α〈i′,j〉Qi′, ∀〈i, j〉,〈i′, j〉 ∈ Ŵj ,∀ j ∈ J . (5.25)

When the ones at both sides are removed, this shows that the turn delays and the directed
capacity are inversely proportional with the same proportionality constant. Introduce, simi-
larly as for the single server node, c j as the delay constant at outlink j ∈ J such that d〈i,j〉 =
c j/(α〈i,j〉Qi). When this is finally substituted in (NP), then, by using that only the most re-
strictive delay constant is ‘active’, the Directed Capacity Proportional node Problem (DCPP)
becomes

min
cj≥0,j∈J

{
c j

���, j ∈ J
}

such that

min
j∈J




R j −
∑
i∈I

min


α〈i,j〉Si,

α〈i,j〉Qi

1+max{ j ′ |〈i,j ′〉∈W+
i }

c j ′






≥ 0.

(DCPP)
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Again, it is equivalent to minimize the delay constants because each turn delay is strictly
increasing in its c j .

Now it is interesting to analyse the behavioural meaning of constants c j . Where the inverse
proportionality at the single server node was induced by turn-taking behaviour, the underlying
behaviour here is more unusual, especially when the turn flow is a small part of the total
demand of the inlink. Gibb (2011) also points this out with a more detailed example. Assume
some c j > 0 for some outlink, and assume that two inlinks with equal capacity are competing.
The inlinks are saturated and thus have a demand equal to capacity. Ten percent of the vehicles
at inlink-1, and all vehicles at inlink-2 bound towards the outlink. The ratio between the
directed capacities is then 1 to 10. This means that the experienced turn delay of vehicles
from inlink-1 is ten times larger than the experienced turn delay of vehicles from inlink-2. If
c j = 1, then each vehicle at inlink-1 has to wait for ten vehicles to pass from inlink-2. This is
unrealistic when one remembers that the capacities of both inlinks are identical. Furthermore,
the vehicles towards other directions at inlink-1 are affected by the long delay of this particular
turn.

The challenge of the model is to find the correct c j’s, which is solved by Tampère et al.
(2011) as well as Flötteröd and Rohde (2011). Tampère et al. (2011) look for capacity to flow
restriction factors β j . The relations between β j and c j are

c j =
1− β j

β j
, β j =

1
1+ c j

, ∀ j ∈ J .

Instead of directed capacity proportionality other priority coefficients can be included (Flöt-
teröd and Rohde, 2011; Tampère et al., 2011; Corthout et al., 2012). The coefficients are inlink
specific and should be calibrated to model specific intersections11. However, the flexibility of
this approach is limited since such coefficients are often turn specific instead of inlink spe-
cific. Flötteröd and Rohde (2011) also provide a fixed point method to include additional node
supply constraints that can for example represent conflicting turns. Similar additional internal
node constraints are also presented in (Tampère et al., 2011; Corthout et al., 2012), but no
concrete solution method is provided. Uniqueness in terms of flow is not guaranteed for these
generalizations (see Section 5.5.2).

The generalizations in the latter paragraph still have the very restrictive property that flows
at inlinks can only be constrained by a single constraint (either demand, supply, or internal).
Interaction between multiple supply constraints at an inlink can be achieved with the notion
of turn delays.

5.4.4. CAPACITY CONSUMPTION EQUIVALENCE

The node model by Gibb (2011) is based on capacity consumption equivalence, assuming that
traffic towards an outlink that operates at supply consumes more capacity of its inlink. The
capacity consumption of a vehicle depends on the outlink j it is heading towards. Denote per
outlink j ∈ J capacity consumption factor e j ≥ 1. The factor equals 1 if the supply is not fully

11Note that this calibration can be cumbersome because only observed flows and predicted flows can be com-
pared.
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utilized on the outlink. The factor determines for each vehicle the time it occupies the inlink
(i.e. the length of the vehicle ‘blocks’ in Figure 5.2). A vehicle on turn 〈i, j〉 ∈W occupies the
end of the inlink e j/Qi time units, that is e j times the capacity occupancy. Gibb uses this time
to determine a new ‘demand’ with increased capacity consumption for each inlink i ∈ I via∑
〈i,j〉∈Wi

e jα〈i,j〉Si. If this ‘demand’ is larger than capacity, then a reduction factor is applied
to the demand, this factor equals

θi =min
{

Qi∑
〈i,j〉∈Wi

e jα〈i,j〉Si
,1

}
, ∀i ∈ I. (5.26)

The resulting flows of Gibb’s model are fi = θiSi,∀i ∈ I. By using that flow and headway are
reciprocals, and by using equation (5.26) the headways can be written as

hi =max



∑
〈i,j〉∈Wi

α〈i,j〉
e j

Qi
,

1
Si



, ∀i ∈ I, (5.27)

which is very similar to equation (5.8). By observing that the first elements of the max op-
erators are equal, the relation between turn delays and capacity consumption factors can be
derived, which is

d〈i,j〉 =
e j −1

Qi
, ∀〈i, j〉 ∈W . (5.28)

The Capacity Consumption Equivalence node Problem (CCEP) is derived by substituting
equation (5.28) in NP:

min
e j≥1,j∈J

{
e j

��� j ∈ J
}

such that

min
j∈J




R j −
∑
i∈I

min
{
α〈i,j〉Si,

α〈i,j〉Qi∑
〈i,j ′〉∈Wi

α〈i,j ′〉e j ′

}

≥ 0.

(CCEP)

It has become equivalent to minimize to capacity consumption factors because each turn delay
is strictly increasing in its determining e j .

5.5. ANALYSIS OF THE NODE MODEL FAMILY

As mentioned earlier, each set of turn delays that is a Pareto optimal solution of (NP) satis-
fies all generic requirements. Indeed, each of these sets of turn delays resembles different
behaviour at the node. The discussed members of the family add mechanisms and constraints
to select a single solution. However, (EDP), (DCPP), and (CCEP) still have multiple objectives,
and it is not straightforward to show that they lead to a unique solution. It is actually true that
multiple Pareto optimal solutions of these problems exist. Despite this, their result in terms of
resulting flows is always the same. That multiple Pareto optimal solutions of the turn delays
can yield the same resulting flows (at inlinks and outlinks) is clarified in the following section.
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5.5.1. REDUCED CAPACITY AND MODEL EQUIVALENCE

Because multiple sets of turn delays can lead to the same flows on a node, the result (or
output) relevant set of solutions is analysed. Due to the conservation of turning fractions the
ratio between the flows on two turns exiting the same inlink is equal for each solution; so when
the flow at the inlinks is known, then the flows at the outlinks are also known. In addition, the
resulting flows at inlinks are solely determined with equation (5.18). This equation consists of
two terms, the demand (which is input), and the maximum flow in case of spillback under the
turn delays. The latter will be called the reduced capacity qi,i ∈ I, and is defined with

qi =
Qi

1+Qi
∑
〈i,j〉∈Wi

α〈i,j〉d〈i,j〉
, ∀i ∈ I. (5.29)

This is exactly the reciprocal of the average headway at inlinks during spillback as defined in
equation (5.7). The reduced capacity is determined by the capacity of the inlink and the delays
at all turns connected to the inlink.

Two Pareto optimal solutions of (NP) yield the same flows if and only if the reduced capacity
of the inlinks with spillback are equal. In other words, the results of two sets of turndelays,
{d〈i,j〉 |〈i, j〉 ∈W} and {d′

〈i,j〉 |〈i, j〉 ∈W} are equivalent when

Qi

1+Qi
∑
〈i,j〉∈Wi

α〈i,j〉d〈i,j〉
=

Qi

1+Qi
∑
〈i,j〉∈Wi

α〈i,j〉d′〈i,j〉
, ∀i ∈ Î, (5.30)

where Î is the set of inlinks in spillback conditions under either set of turn delays.
By using the reduced capacities, the result relevant solutions set can be analysed. The

number of ‘unknowns’ is much lower than when turn delays are considered. By substituting
equation (5.29) in the constraint of (NP), the feasible set of reduced capacities is determined
by

min
j∈J




R j −
∑
i∈I

min
{
α〈i,j〉Si,α〈i,j〉qi

}

≥ 0, (5.31)

furthermore, 0 < qi ≤ Qi,∀i ∈ I due to non-negativity and finiteness of turn delays. In Section
5.5.5 the feasible region for an example node problem is presented.

5.5.2. NON-UNIQUENESS

Models can be unique at three different levels. First, they can be unique in terms of resulting
flows; this is a desirable property for applications. Second, they can be unique in terms of
turn delays. This latter is a less important model property for application, because two sets of
turn delays can lead to the same flows. And third, uniqueness in any of the other describing
variables, such as reduced capacity, can be determined. Since this in general has no important
behavioural interpretation, we analyse uniqueness only in terms of flow and turn delay.

Corthout et al. (2012) analyse non-uniqueness based on flows. They show that for a gener-
alisation of the directed capacity proportional node model with arbitrary priority parameters
(i.e., not directed capacity), multiple solutions exist. This type of non-uniqueness is subsistent
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in traffic, and they reproduce this with microscopic simulations. The four models in the node
model family in this paper are all unique in terms of flows, which is discussed per model in
the next section.

The single server problem is unique in terms of turn delays as well. For the models, a
symmetrical diverge with spillback does not have unique solutions in terms of turn delays (see
also discussions in next section). For the directed capacity proportional model for example, a
delay exists only towards the outlink that is considered first in the algorithm, which is arbitrary
(see Sections 5.4.3 and 5.5.3.3). Ideally, the additional behavioural constraints of a model are
such that they determine the turn delays uniquely; in that case the connection to underlying
behaviour is unambiguous.

5.5.3. SOLUTION METHODS

Before the methods are presented for finding the solution for each member, an overview of
the additional assumptions is presented. Table 5.1 contains the unknowns, reduced capacity
definitions, turn delay definitions, and some remarks of every known member of the node
model family.

Key in finding the solution of the node problem is the analysis of the constraint of (NP).
Obviously, when d〈i,j〉 ≡ 0 is feasible, then it is the solution. In this case no spillback occurs
and the supply is sufficient to accommodate the demand. Otherwise, a solution has to be
found that lies on the boundary of the constraint (i.e., for the solution the constraint holds
with equality). The problem then becomes finding a point on this boundary that satisfies the
additional constraints as defined for each member of the family. The solution methods below
focus on problems with non-trivial solutions (i.e., ∃d〈i,j〉 > 0).

5.5.3.1. SINGLE SERVER

The single server problem (SSP) is the only model with one unknown. Finding c is equivalent
to finding 1/(1+ c) which will be denoted with y. The solution can be found by solving

min
j∈J




R j −
∑
i∈I

min
{
α〈i,j〉Si,α〈i,j〉Qiy

}

= 0, (5.32)

which is firstly rewritten to

max
j∈J



−R j +

∑
i∈I

−α〈i,j〉Qi max
{
−y,−

Si

Qi

}

= 0. (5.33)

This is a polynomial equation over the algebraic structure (R,max,+) (i.e. the max-plus alge-
bra). Linear time algorithms to rewrite and solve polynomial equations in the max-plus algebra
are presented in Cuninghame-Green and Meijer (1980) and Cuninghame-Green (1995).

First, rewrite the inner sum of maximizations in equation (5.33) to a minimization of sums.
Assume that I = {1,. . . , |I |} is sorted such that −Si/Qi ≤ −Si+1/Qi+1 for i = 1,. . . , |I | − 1.
Define for all j ∈ J the constants gi j =

∑i
i′=1−α〈i′,j〉Qi′ for i = 1,. . . , |I |, and g0 j = 0; and
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υi j = −R j +
∑|I |

i′=i+1α〈i′,j〉Si′ for i = 0,. . . , |I | − 1, and υ|I | j = −R j . Then in the same line12

as Lemma 6.1 and its preceding theory in Cuninghame-Green (1995) equation (5.33) can be
written as

max
j∈J

min
{
υ0 j ,min

i∈I
υi j −gi j y

}
= 0. (5.34)

The left-hand-side is a piece-wise linear function in y. Because the gi js are non-positive, the
min {· · · } part is a non-decreasing function which is equal to constant υ0 j for large enough
y. Solving this for equality to 0 leads to no solution for y if υ0 j < 0, to y = maxi∈I υi j/gi j if
υ0 j > 0, and all y ∈ [maxi∈I υi j/gi j ,∞) are solutions if υ0 j = 0. Unfortunately, this would lead
to division by 0 if gi j = 0, however, all these terms can be omitted since its corresponding υi j
equals υ0 j , and those are already included. By using this intermediate result equation (5.34) is
easily solved. Additionally note that y = 1 for the trivial solution, thus the solution of problem
(SSP) is

y =min



min
j∈J

max
{i∈I |gi j>0}

υi j

gi j
,1



, (5.35)

from which c = (1− y)/y and d〈i,j〉 = c/Qi,∀〈i, j〉 ∈W can be retrieved.
The complexity of this method is O(|I | ln |I |+ |I | |J |); first the inlinks have to be sorted,

and then the additional constants (i.e., the gs and υs)13, and the solution can be determined
in linear time. This complexity means that the method is very efficient. Especially because
the number of turns is generally low, no computational efficiency issues are expected for large
scale road networks. Obviously, equation (5.35) is single valued and based on input constants,
thus the solution is unique.

5.5.3.2. EQUAL DELAY AT OUTLINK

The equal delay at outlinks problem (EDP) is more complicated than the single server problem.
Delays at every outlink influence the occupancy time at every inlink. Furthermore, multiple
unknowns are involved and thus uniqueness is not trivial. A fixed point method that iter-
atively determines the headways at every turn and successively the delays at every outlink
is presented. Given a set of delays

{
d̃ j , j ∈ J

}
, equations (5.8) and (5.14) provide that the

headways as a function of the delays are

h〈i,j〉
({

d̃ j , j ∈ J
})
=max




1
α〈i,j〉Qi

+

∑
〈i,j ′〉∈Wi

α〈i,j ′〉d̃ j ′

α〈i,j〉
,

1
α〈i,j〉Si



, ∀〈i, j〉 ∈W+. (5.36)

However, these headways might violate the supply constraints. Therefore, the delay at each
outlink is updated based on current headways. These current headways at outlinks consist of
the inter-arrival time of a vehicle from any inlink to that outlink plus the current delay for that

12The difference is that −Si/Qi is always negative in this case, so the resulting canonical form is based on a
minimization instead of a maximization.

13Note that these can be constructed incrementally, without evaluating the sum completely every time (see
Cuninghame-Green, 1995).
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outlink. Hence, for a given set of headways
{
h〈i,j〉,〈i, j〉 ∈W+

}
and ‘old’ delays

{
d̃′j , j ∈ J

}
,

the inter-arrival time at outlink j ∈ J equals (using equation (5.6))

1∑
〈i,j ′〉∈W+

j

1
h〈i, j ′〉

− d̃′j
, ∀ j ∈ J . (5.37)

The renewed delay d̃ j has to be added to this term, and set such that the supply constraint
(equation (5.13)) is satisfied. Thus, the delays as a function of headways and previous delays
become

d̃ j
({

h〈i,j〉,〈i, j〉 ∈W+
}
,
{
d̃′j , j ∈ J

})
=max




0, d̃′j +
1
R j
−

1∑
〈i,j ′〉∈W+

j

1
h〈i, j ′〉



. (5.38)

Since these new delays do not take the changed delays at other outlinks into account, the
inter-arrival time is not consistent anymore, and new headways have to be determined. Substi-
tuting equation (5.36) into equation (5.38) provides a fixed point problem in terms of delays
at outlinks.

This fixed point problem can be solved by iterating over the delays, which may converge
quickly (only a few steps) if there is only one supply constraint active, or slowly when multiple
supply constraints are active. The delays at outlinks are not necessarily unique for symmet-
rical problems; however, it seems that the resulting reduced capacities in the solution are
always unique. Proofs for convergence and uniqueness of reduced capacity are left for future
research.14

5.5.3.3. DIRECTED CAPACITY PROPORTIONAL

Solution methods for the directed capacity proportional problem (DCPP) can be found in (Flöt-
teröd and Rohde, 2011; Tampère et al., 2011). For the convenience of the reader, Algorithm
1 provides the method with the variables names used in this paper to retrieve the capacity to
flow restriction factors (i.e. β js). The equations in Section 5.4.3 can be used to convert the
reduction factors to turn delays, reduced capacities, and resulting flows.

The complexity of the method is O(|I |2 |J |); the outer-loop iterates at most |I | times and
within this loop several loops over all turns are made. Tampère et al. (2011) and Flötteröd and
Rohde (2011) prove that this algorithm converges to a unique point in terms of resulting flow.

5.5.3.4. CAPACITY CONSUMPTION EQUIVALENCE

A solution method for the capacity consumption equivalence problem (CCEP) can be found
in Gibb (2011). Similar to the solution of the equal delay model, a fixed point approach is
used. Given a set of capacity consumption factors

{
e′j , j ∈ J

}
, new capacity consumption

14Proof methods similar to those in Gibb (2011) are very likely to work as well for this model. Also, the low-
dimensionality of Pareto optimal solutions (see Section 5.5.5) can be used to prove uniqueness.
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Algorithm 1 Directed Capacity Proportional Model: Solution Method
1: while I , ∅ do
2: for all j ∈ J do
3: β j ←

Rj∑
i∈I α〈i, j〉Qi

# Determine potential outlink restriction factors
based on competing inlinks

4: end for
5: j∗← argmin j∈J β j

6: Î ←
{
i ∈ I���β j∗α〈i,j∗〉Qi > α〈i,j∗〉Si

}

# Î is the set of all inlinks that exceed demand if
restricted by j∗

7: if Î , ∅ then
8: for all i ∈ Î do
9: for all j ∈ J do

10: R j ← R j −α〈i,j〉Si #
Update supply j by subtracting the demand from i

11: end for
12: I ← I \ {i}

# i will not compete anymore, it is guaranteed de-
mand constrained

13: end for
14: else
15: I∗←

{
i ∈ I���α〈i,j∗〉 > 0

}

# I∗ is the set of all inlinks that compete for j∗, and
will be completely determined by j∗

16: for all i ∈ I∗ do
17: for all j ∈ J do
18: R j ← R j − β j∗α〈i,j∗〉Qi

# Update supply at other outlinks j by subtracting
the final flow on turn 〈i, j〉.

19: end for
20: I ← I \ {i}

# i will not be considered anymore, its flow is guar-
anteed determined by j∗

21: end for
22: J ← J \ { j∗}

# j∗ will not be considered anymore, and β j∗ is
definitive

23: end if
24: end while
25: return

{
β j

��� j ∈ J
}
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equivalence factors can be determined with

e j
({

e′j , j ∈ J
})
=max




1,
e′j

∑
i∈I α〈i,j〉Si min

{
1, Qi∑

j ′∈J e′
j ′
α〈i, j ′〉Si

}
R j




, ∀ j ∈ J . (5.39)

Solving this fixed point problem iteratively converges to a unique solution in terms of reduced
capacities (for proofs, see Gibb, 2011). The capacity consumption equivalence factors can be
easily converted to turn delays, reduced capacities, and resulting flows with the equations in
Section 5.4.4.

5.5.4. DIVERGES AND MERGES

Node models for merges and diverges are easier to solve because they lack the interaction
between multiple in- and outlinks. Daganzo (1995a) has solved the problem for merges and
diverges. Recently, Jin (2010) has analysed merges based on the demand-supply framework,
and Jin (2012b) has analysed merge-diverge networks further based on kinematic wave theory.
The diverge is straightforward since the result is completely determined by a single supply
constraint. Due to the conservation of turning fractions and the fact that only one inlink exists
– thus there is no competition – there is only one reduced capacity that solves (NP) for diverges.
All the models in this paper provide indeed the same result for diverges. On the other hand,
competition is involved at merges, which requires additional priority information.

The priority parameters of Daganzo (1995a) describe how competing inlinks share the sup-
ply. Either none, all, or a strict subset of inlinks will be in spillback conditions15, and those
are the competing inlinks. The connection between the priority parameters and the framework
of this paper is simple: the ratio between the priority parameters of inlinks equals the ratio of
the reduced capacities of those inlinks.

Ni and Leonard II (2005) introduce capacity-based weighted fair queuing where the priority
parameters equal the capacities of the inlinks; they verify this with empirical data. It can easily
be seen that the ratio between two reduced capacities – in case of a merge – for problems (SSP),
(DCPP), and (CCEP) equal the ratio of the capacities of the two inlinks. So these three models
coincide with the model of Ni and Leonard II (2005) in case of a merge.

Problem (EDP) with the equal delays is different because the priority parameters depend on
the severity of the bottleneck. The ratio between the reduced capacities of two inlinks at a
merge, say q1/q2, equals

Q1+Q1Q2d
Q2+Q1Q2d

, (5.40)

with only one delay d for all turns. So if the turn delay is very low (i.e., d → 0), then the
solution coincides with that of Ni and Leonard II (2005), but if the delay increases the ratio
tends towards 1. In the latter case all inlinks have equal priority.
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Inlink-1

Outlink-1 Inlink-3

Outlink-3

Inlink-2 Outlink-2

Figure 5.4.: Topology of the three-legged node

Table 5.2.: Example node input variables: demand, capacity and supply (all in vehicles per
hour)

from
to Demand

Capacity
1 2 3 all

Demand

1 0 1200 600 1800 2000
2 300 0 600 900 1000
3 1200 600 0 1800 2000

all 1500 1800 1200

Capacity 1000 1000 1000
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Figure 5.5.: Feasible reduced capacities, Pareto optimal solutions, and solutions of the known
GCNM family members for the three-legged node example

5.5.5. THREE-LEGGED NODE EXAMPLE

To point out the differences between the models, a simple three-legged example is presented.
Consider the node in Figure 5.4; there are three inlinks and three outlinks, and there are no
U-turns, so in total six turns are present. Table 5.2 contains the capacity, demand and supply
(equal to capacity in this case) for every link. The turn fractions can also be derived from the
directional demand. For example, α〈2,3〉 = 2/3, S3 = 1800, R1 = 1000. It is clear that there
is a conflict at every outlink since the supply is insufficient to accommodate all demand, so
spillback will occur at at least one inlink.

Figure 5.5 shows the boundary of the feasible solutions in terms of reduced capacities (i.e.,
qi,i ∈ I). Because merely the feasible reduced capacities are plotted it is possible to show it in
a three dimensional space. All reduced capacities on the shown polyhedron are feasible, also
all strictly positive reduced capacities within the area between the origin and the surface are
feasible. However, the latter are obviously not Pareto optimal. More than that, not all points
on the surface are Pareto optimal either. Only the points on the dashed lines are in fact Pareto
optimal solutions in terms of reduced capacities; this will be explained in the next paragraph.

Each of the faces in Figure 5.5 represents a constraint, and are labelled with a letter. Face (a)
represents the supply constraint at outlink-2; inlink-1 and -3 are actively constrained; however,
any interior point of this face is not Pareto optimal since reduced capacity q2 can be increased.
Face (b) and (c) represents the supply constraint corresponding with outlink-3; inlink-1 is

15This relates one-to-one to Daganzo’s causality regimes.
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actively constrained at faces (b) and (c), while inlink-2 is only actively constrained at face (b).
Here as well, any interior point of these faces is not Pareto optimal since reduced capacity
q1 and/or q2 can be increased. Face (d) reflects q2 ≤ 1000 due to positiveness of turn delays;
on its interior, q1 and q2 can be increased and those points are thus neither Pareto optimal.
Finally, faces (e) and (f) represent the supply constraint at outlink-1, and analogously to faces
(b) and (c) reduced capacities q2 and/or q3 can be increased. The points on the edge between
faces (a) and (c) & (e) are neither Pareto optimal because q2 can be increased.

While looking at the solutions of the GCNM family members in Figure 5.5, the single server
solution is remarkable because it does not reflect a Pareto optimal solution. The reason for
this is the added constraint that all turn delays are proportional to each other, and thus that
each vehicle encounters a delay (also those heading to outlink-3). Therefore, the solution of
the single server problem can be found so efficiently; it is the intersection between the surface
and the vector with direction (1/Qi,i ∈ I).

The solutions for all models on the example are listed in Table 5.3. The resulting flows, as
well as the turn delays and reduced capacities are given. The characteristics of every model as
presented in Section 5.4 can be identified in the results:

• The Single Server result is completely determined by the supply at outlink-2. It has
equal delays for turns originating at inlink-1 and -2, which have the same capacity. This
is also the only model with positive turn delays towards outlinks that are not at capacity.
Therefore, the total throughput is lowest, and the result is not a Pareto optimal solution
of the original problem (NP).

• The Equal Delay at Outlink model has positive delays towards outlink-1 and -2 that are
indeed equal for each of them. The behaviour at inlink-2 is also interesting because
its capacity is reduced from 1000 to 913, but the demand is still decisive. Thus this is
the only inlink in situation type B of Figure 5.2. This model also has the highest total
throughput in this example.

• The Directed Capacity Proportional model is again completely determined by the sup-
ply outlink-2. Note that only one positive turn delay exists for every inlink. Turn 〈3,2〉
has the longest delay of all models for this example, which eventually also hampers
vehicles at turn 〈3,1〉 due to spillback.

• The Capacity Consumption Equivalence model has positive delays towards outlink-1
and -2. It shows many similarities with the Equal Delay at Outlink model, but inlink-2
is also in spillback condition in this model. This is due to different capacity of inlink-2
and -3, which results in a larger delay at turn 〈2,1〉

Note as well that the results of the different models are close to each other; this is result of
selecting an example that clearly depicts the characteristics of each model. In other examples,
especially those in which small turn fractions exist, the results of the different models are
significantly different.

5.6. CONCLUDING REMARKS

This chapter has presented the Generic Class of first-order Node Models (Tampère et al.,
2011) as a family of models based on turn delays. A turn delay is the additional time a vehicle
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Table 5.3.: Solutions of the three-legged node for the GCNM family members: flow, reduced
capacities (both in vehicles per hour), and turn delays (in seconds per vehicle)

Single Server

from
to Flow Reduced

capacity from
to Turn delay

1 2 3 all 1 2 3

Flow

1 0 667 333 1000 1000
Turn
delay

1 1.8 1.8
2 167 0 333 500 500 2 3.6 3.6
3 667 333 0 1000 1000 3 1.8 1.8

all 833 1000 667

Equal Delay at Outlink

from
to Flow Reduced

capacity from
to Turn delay

1 2 3 all 1 2 3

Flow

1 0 650 325 925 925
Turn
delay

1 2.84 0
2 300 0 600 900 913 2 1.02 0
3 700 350 0 1050 1050 3 1.02 2.84

all 1000 1000 925

Directed Capacity Proportional

from
to Flow Reduced

capacity from
to Turn delay

1 2 3 all 1 2 3

Flow

1 0 667 333 1000 1000
Turn
delay

1 2.7 0
2 300 0 600 900 1000 2 0 0
3 667 333 0 1000 1000 3 0 5.4

all 967 1000 933

Capacity Consumption Equivalence

from
to Flow Reduced

capacity from
to Turn delay

1 2 3 all 1 2 3

Flow

1 0 643 322 965 965
Turn
delay

1 2.90 0
2 286 0 572 858 858 2 1.79 0
3 714 357 0 1071 1071 3 0.90 2.90

all 1000 1000 894
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occupies an inlink when it heads for a certain direction, and is thus easily interpretable. The
complete family is represented by multi-objective optimization problem (NP). Any model
that finds a Pareto optimal solution of (NP) is a member of the family.16 The new single
server and equal delay at outlink models are presented as well as the existing directed capacity
proportional (Flötteröd and Rohde, 2011; Tampère et al., 2011) and capacity consumption
equivalence (Gibb, 2011) models. Their four problem formulations are respectively given in
(SSP), (EDP), (DCPP), and (CCEP).

It is shown that solving these problems is not straightforward due to multiple objectives and
unknowns. For (SSP) a very efficient solution method based on the theory of polynomials in
the max-plus algebra is presented. The known method for (DCPP) is slightly less efficient.
These are the only two models for which the exact solution can be found in finite time, and
can thus be incorporated in large scale DNL models. On the other hand, they have reduced
behavioural realism. The single server model assumes that all vehicles have to wait, also those
heading to an empty outlink; this assumption is only realistic under very saturated conditions
where the intersection is blocked. The directed capacity proportional model can lead to very
high delays on turns with little demand.

The other two models have fixed point methods that can only determine the solution up to
convergence. This is a major drawback when the models have to be applied repetitively in
(large) DNL problems. Some convergence criterion (e.g., the flows of consecutive iterations
differ less than one vehicle) should be set to terminate the iterations. However, their underlying
behavioural assumptions are plausible.

Several sets of turn delays leading to the same resulting flows can be found. The notion
of reduced capacity helps to identify whether two results are equivalent. It is shown that for
diverges all family members are equivalent and that three out of four members yield identical
results at merges. The relation between priority parameters at merges and the family is also
presented. The additional relations between turn delays, required to select a Pareto optimal
solution in terms of reduced capacities, imply a part of the behaviour at intersections. Espe-
cially at a supply constraint, the relation between competing turns should be determined in
terms of delays.

5.7. FUTURE RESEARCH AND EMPIRICAL VALIDATION

The turn delays are key in finding new models, which should be based on data analysis. By
observing traffic at intersections under different spillback configurations, the capacity occu-
pancy, turn delays, and – most important – the relations between turn delays can be retrieved.
Because problem (NP) is underspecified, additional information about the behaviour of traffic
at intersections is required, and it can only be included through data analysis. This not only ap-
plies to uncontrolled equal-priority intersections, but particularly to intersections with priority
rules, traffic signals, roundabouts, and other infrastructures. These are actually the members
of the family that are really required for good applications.

16Note that if additional constraints are added the solution is not necessarily Pareto optimal for (NP); however, it
is Pareto optimal for the specific problem. (SSP) is an example of this.
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Section 5.3.2 introduces how occupancy times and turn delays can be observed. The dis-
crepancy between average headways used in the models and vehicle trajectories is not com-
pletely solved. What are the exact locations (i.e. where is the exit of an inlink exactly), where
should headways should be measured, and how should multiple lanes be captured? The first
should be defined such that when a vehicle clears the inlink, it does not hamper its follower
that wants to take another turn. The latter can be solved by either modelling the different lanes
as different links, or by an integrated approach.

Additional infrastructure, priorities, and/or conflict points are ideally captured by additional
constraints on the turn delays. For additional infrastructure and conflict points these con-
straints are either likely to have the same form as the supply constraints (see equation (5.13)),
or as direct functional relation between couples or groups of turn delays. Priorities are of a
different nature and we expect that the delays at yielding turns can be expressed in the head-
ways on the priority road. Such a relation could be found by using gap acceptance theories
and conflict theory. Finally, the geometric design of a turn could cause the driver to increase
its safety headway; this would induce a lower bound on the considered turn. Important for all
of these additional constraints is that they cannot directly include the demand or the supply be-
cause otherwise an invariance principle can be violated. However, it is possible to incorporate
the headways on inlinks, turns, and outlinks by using equation (5.8).

As we already pointed out in Section 5.5.2, Corthout et al. (2012) have shown that when
turns of the same inlink have different priorities at different constraints non-uniqueness in
flows can occur. This is a subsistent characteristic of traffic. Thus adding realism with con-
straints can lead to non-uniqueness. Therefore, in the search of new node models, a balance
needs to found between two desired properties: realism and uniqueness.

Where data of course contributes in identifying realistic members of the family, also method-
ological advances in the field of max-plus polynomials will help. (SSP) is now solved by find-
ing the root of a univariate max-plus polynomial. If the root of a multivariate min-max-plus
polynomial could be found efficiently, the Pareto optimal solutions of (NP) in terms of reduced
capacities can be found (i.e. solve equation (5.31) for equality)(see de Schutter and de Moor,
1996).
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CHAPTER 6.

GAME THEORETICAL APPROACH FOR

MULTIPLE STAKEHOLDERS

This chapter introduces the game theoretical approach to solve the upper
level problem of the transport pricing framework presented in Chapter 2. This
approach with multiple stakeholders assumes that each stakeholder has control
over some pricing mechanism. The analysis starts with non-cooperative be-
haviour, which then provides input for cooperative solution concepts. The the-
ory of cooperative Transferable Utility (TU)-games provides a framework that
allows to capture the preferences and interactions between stakeholders, but
requires details about each coalition that can be formed between stakeholders.
Therefore, for different coalition settings (non-cooperative) Nash-equilibria are
defined and analysed. This analysis of competition provides all resources to de-
fine a cooperative TU-game. Multiple solution concepts of TU-games exist, and
the three most important of them will be discussed, namely the core, the Shap-
ley value and the compromise value. Besides the solutions based on cooper-
ation between stakeholders from TU-games, also the non-cooperative solution
rolls out, which is the equilibrium without any cooperation and without the for-
mation of any coalition. The theory is illustrated with several examples, and
characteristics of solution concepts are provided.

As discussed in Chapter 2.5, solving the Multiple Stakeholders Problem (MSP) is not straight-
forward due to the presence of (possibly opposing) multiple objectives. No approach exists
that can solve it in a satisfying manner. Especially, little insight in negotiation processes is
available. Therefore, this chapter starts with an overview of the available literature and subse-
quently introduces a novel approach to multiple stakeholders in transport pricing. Notice that
the literature on transport pricing with multiple stakeholders varies in detail and methodology.
It would be unfeasable to capture them in a unified framework.

The PhD theses of Joksimovic (2007) and Ohazulike (2014) present a game theoretical
multi-level approach to road pricing. Joksimovic (2007) considers a single stakeholder and
identifies the monopoly game, Stackelberg game and Cournot game. The first assumes the
leader (i.e., the road authority) determines the responses of the travellers (e.g., their route

141



Strategic Network Modelling for Passenger Transport Pricing

choice). As such, this could reflect the best possible outcome fot the system – conform a sys-
tem optimum –. This is unrealistic since travellers will act based on their own preferences,
and they will respond to implemented pricing measures. Therefore, the monopoly game does
not reflect a realistic situation. The Stackelberg game allows travellers to respond as followers
to the prices imposed by the leader. In the Stackelberg setting both the road authority and
travellers act based on their preferences. The road authority determines the prices, and the
travellers respond by making their travel choices. Ohazulike (2014) includes multiple stake-
holders by analysing Nash-equilibria between stakeholders. In a Nash-equilibrium no player
can be better off by changing its own strategy (Nash et al., 1950; Nash, 1951); the user equi-
librium in Traffic Assignment (TA) is also a Nash-equilibrium. He also adds another level on
top of the stakeholders, the grand leader, that can induce a mechanism to the bi-level game
to steer towards the optimal Nash-equilibrium. Such a situation can arise when local govern-
ments interact; the national government can than resemble the grand leader. However, it is
not feasible that such a grand leader always exists in reality. Also, Levinson (1998) discusses
multiple stakeholders in his dissertation. He analyses how jurisdictions choose to finance their
roads. He considers decision making on two levels (i.e., to tax or to toll?, and what is the
price?), and he makes notice of different outcomes under cooperation and non-cooperation.
Of these three theses, only Ohazulike (2014) provides a solution to the MSP.

Levinson (2005) has a different game theoretical approach to pricing, where the travellers
are the players. Two players can choose to depart early, on-time, or late, and based on these
(pure1) strategies congestion can occur. The approach shows similarities with the well-known
prisoners’ dilemma. Also, Levinson (1999) provides a prisoner’s dilemma analogy with tolling
at frontiers. In a non-game-theoretical setting, Levinson and Chang (2003) provide a model
for optimizing electronic toll collection systems.

Several economic studies analyse competition between multiple stakeholders. In general
they provide analytical ‘solutions’ to the pricing question; however, their models have too
many assumptions to serve as practical strategic planning models. The simple transport con-
nections are not explicitly represented by the transport system and network. See de Borger
and Proost (2012b); Ubbels and Verhoef (2008) for literature overviews of these economic
approaches. An exception to these is the simulation study of Proost and Sen (2006) that
considers a model of Brussels under different types of behaviour of regional and local govern-
ments. Nevertheless, the transport network is represented by a single link. The review papers
do not include Zhang et al. (2011) who compare competitive, cooperative and Stackelberg
congestion pricing for multiple regions on simple networks. Different from these approaches
is the political economy model of de Borger and Proost (2012a) that considers the decisions
of voters based on pricing schemes in a highly simplified manner.

All previous models either assume competition between stakeholders or a clear hierarchy
of authority. Other forms of interaction (such as collaboration and coalition formation) have
not been investigated. None of the models mentioned above use a rigorous mathematical
framework based on game theory that includes coalition formation and interactions between
stakeholders. Such an approach is provided in this chapter; it is based on the notion of Nash-

1Pure strategies involve deterministic choices, contrary to mixed strategies where stakeholders can make deci-
sions with a certain probability.
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equilibria for (groups of) stakeholders and the corresponding TU-games. It allows an (elab-
orate) underlying transport model with a user equilibrium that models the ‘game’ travellers.2

Sets of stakeholders can form coalitions, which means that they optimize their combined ob-
jectives. This provides more insights in the stakes at the negotiation table of the stakeholders.

From an economics (first-best pricing) perspective, an optimal transport pricing strategy
would only show up if all individuals join the negotiation table, and if unlimited monetary
transfers between them would be possible. With that assumption it is sufficient to consider
one stakeholder with one objective function (i.e., social welfare). However, reality is more
complex. Not every individual participates at the negotiations and governments generally rep-
resent the interests of large groups of individuals. In turn, governments make their decisions
also based on politics, rather than only social welfare arguments (see Section 2.2.1). In this,
it is not true that if all stakeholders cooperate, one ends up in a system optimum – in which
social welfare is optimal –. In addition, social welfare is the objective sum of all individual
interests, that does not imply that at the system optimum, individuals (or groups of individuals,
or stakeholders) experience their own optimum. Welfare can be very unevenly distributed over
individuals in the optimal situation.3 Since no ‘grand leader’ exists that can rule and divide
welfare, but rather multiple governments and organisations with power exist – that represent
individuals and each optimize their own objectives –, the eventual ‘system’ is the result of ne-
gotiations between them. Hereby, not all individuals are equally represented at the negotiation
table, which means that the optimum from an economics perspective will not be realized.

Therefore, the approach presented in this chapter aims to provide insight in what may hap-
pen at the negotiation table. What is the effective power of each stakeholder? Which argu-
ments can be put down? What can be achieved by cooperating? How to form coalitions, and
what is the value of coalitions? This multi-stakeholder framework delivers knowledge about
the effectiveness and feasibility of pricing measures, compared to when only a single welfare
optimizing stakeholder is considered. In other words: the approach researches a ‘second-best’
solution in which the ‘first-best’ assumption that one actor with one objective – from the per-
spective that every individual is equally represented at the negotiation table – is released, and
in which the negotiation table is interpreted with all its participating stakeholders.

6.1. PROBLEM FORMULATION

Chapter 2 has introduced the MSP (see page 30); this problem formulation will be analysed
and addressed in this chapter.4 It is the starting point of the game theoretical analysis of the
interactions between stakeholders. That general problem formulation does not define which
stakeholder can set which pricing measure. In the following it is assumed that each stakeholder
has full control over its own, and only its own, pricing measure(s). This assumption implies

2Travellers’ behaviour is not discussed in this chapter, but it is taken implicitly into account in the TA. The
resulting equilibrium is considered as a constraint here.

3Welfare may also include equity concerns where the interest of some target groups is weighed higher than
that of others, or where measures such as the Gini-index are included. However, that objective is then still
pursued by, e.g., a government that represents individuals.

4The notation of Chapter 2 is adopted in this chapter.
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that each measure has one rationale (i.e., underlying goal), and it is captured with this slightly
more specific problem formulation,{

max
πps ∈Πps

Hs (γ)
�����
s ∈ S

}
subject to γ = E(π),

(6.1)

where ps represents the pricing measures controlled by stakeholder s, with corresponding
feasible price levels Πps .

5 Pricing measures per stakeholders are now easily distinguished.
With this formulation, the market power of each stakeholder is completely determined by the
pricing measures that it controls. For example, if a government introduces a kilometre charge,
other stakeholders can only influence the government by setting its own price.

In the problem formulation (Equation 6.1), several optimizations exist in parallel with one
shared constraint. The primary solution of problem (6.1) is the resulting pricing scheme
π∗ ∈ Π which is the set of resulting prices per stakeholder

{
π∗p

���p ∈ P
}
. The secondary re-

sults are the achievements of each stakeholder that primarily consists of its objective function,
but which may also contain other components (e.g., monetary transaction) as the result of
negotiations with other stakeholders.

Note that the word ‘optimal’ is deliberately avoided because optimality in multi-objective
optimization is usually associated with Pareto-optimal solutions. A solution is Pareto-optimal
if no objective can be improved without degrading any other objective. Many Pareto-optimal
solutions can exist, and without any preference information, it is difficult to choose between
them. Although it is interesting to identify the Pareto-optimal solutions, also called the Pareto-
frontier, it might not provide sufficient insight in the underlying mechanisms.

6.1.1. ASSUMPTIONS

The earlier mentioned assumption that each stakeholder has full control over its own, and only
its own, pricing measure(s), is an important difference with the MSP of Chapter 2. Although,
it does not explicitly make a hierarchy or ranking between stakeholders’ market power, the
‘power’ of the measures implicitly reflects the power of each stakeholder. Each stakeholder’s
power is defined by the difference it can make with the pricing measures he controls. In
addition to this assumption, the approach that will be presented in this chapter makes the
following assumptions:

• Each stakeholder has perfect information over the other stakeholders’ objectives.
• Each stakeholder has perfect information over the outcome of the mapping from price

levels to effect levels (i.e., the outcome of the underlying transport model).
• Stakeholders have pure strategies (rather than mixed stategies).
• Each stakeholder has a ‘fixed’ objective function. I.e., the stakeholder arrive at the

negotiation table with predefined objective functions. They do not adjust their objective
functions for strategic purposes. The latter would add another strategic layer to the
game.

5To be complete, assure that every pricing measure is controlled by exactly one stakeholder, i.e., ∪s∈Sps = P,
and ps1 ∩ ps2 = ∅,∀s1 , s2 ∈ S
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• There are no costs or gains involved when stakeholders enter or leave coalitions.

6.2. APPROACH TOWARDS TU-GAMES

This section analyses the interaction between stakeholders, and introduces a novel connec-
tion between cooperative and non-cooperative game theory. Nash equilibria and cooperative
Transferable Utility (TU) games are the main ingredients. Branzei et al. (2008); Peters (2008)
provide extensive introductions to cooperative game theory. As its name suggest the theory
assumes that stakeholders cooperate when they come to a solution; however, they still pursue
their own, and only their own, objective. To get insight in the interaction between stakeholders
and in the negotiation positions, TU-game theory analyses coalitions of stakeholders. Define a
coalition as a set of stakeholders that cooperate. Cooperating stakeholders decide together the
price levels of all their available pricing measures, and they are willing to compensate each
other (by monetary transfers). The grand coalition is the coalition in which all stakeholders
reside, so the grand coalition equals the set of stakeholders S.6 In total 2|S| coalitions can be
formed.7 For a TU-game a certain value is assigned to each coalition C ⊆ S, this coalition
value is defined with function v(C) : 2S → R.8 The analysis considers the residency of stake-
holders in multiple coalitions. The coalition value represents the combined surplus value of
the stakeholders in the coalition. The values reflect the negotiation positions of stakeholders
in the coalition. The pair (S,v) formally defines a TU-game.

A standard example of coalition values are two merchants that each have a batch of re-
spectively left-handed and right-handed gloves. A ‘coalition’ with one merchant will have
zero value since he cannot sell anything. However, the coalition of both merchants will be
equal to market value of all pairs of gloves that can now be sold. Determining the value of
coalitions in the context of transport pricing and the MSP is much less trivial. To achieve this
Nash-equilibria between stakeholders have to be analysed. Also, the behaviour of stakehold-
ers outside the coalition (and the behaviour of the travellers) has to be considered. This section
first works towards a coalition value for each stakeholder and then discusses how these can be
used with TU-game theory to find solutions.

6.2.1. THE VALUE OF A COALITION

To the author’s knowledge, no method exists that can translate the MSP into coalition values.
In this section such a method is provided. It is natural to base the value of a coalition on
the best achievable objective function values of the coalition’s stakeholders. This raises two
questions that should be answered. Firstly, “what is best achievable for a coalition?”, and
secondly, “which pricing scheme is in place?”, because the latter completely determines the
objective function values. In addition, each stakeholder – in- and outside the coalition – will
employ its power (to set the price of its own pricing measure(s)) in favour of its own objective.

6In game theory the grand coalition is usually denoted with N ; in this thesis the names grand coalition and set
of stakeholders can be used interchangeably and are both denoted with S

7This includes the empty coalition ∅ that has a formal role in TU-game theory.
82S is the power set of S and contains all possible coalitions.

145



Strategic Network Modelling for Passenger Transport Pricing

This can lead to the situation where some seemingly achievable objective values for a coalition
are infeasible in reality, because one or more stakeholders outside the coalition influence the
outcome by changing their price. The following definition of a coalition value considers such
scenarios.

Remember that all stakeholder’s objective functions have the same unit (e.g., a monetary
unit), and that objective values can thus be compared and added. The result of a coalition
given some pricing scheme is the sum of the corresponding objective function values, i.e. in
shorthand

∑
s∈C Hs. This sum differs with each pricing scheme and, more specifically, with the

price level of each pricing measure. To assign a value to the coalition one needs to find a result
that corresponds to a pricing scheme that satisfies a stakeholders equilibrium condition. This
is defined in such a manner that it answers the question which pricing schemes could be in
place. The corresponding equilibrium condition for this question states that no stakeholder, in-
or outside the coalition, wants to change its price and thereby the coalition’s result. Above all,
note that the stakeholders outside the considered coalition can also form coalitions; therefore,
also all possible coalition formations have to be considered. To deal with this complexity, two
definitions will be introduced that together provide the formal equilibrium. The first definition
considers the stability of a single coalition, and the second definition incorporates the coalition
forming process. The former is:

Definition 6.1 (Pricing scheme stability for coalition). A pricing scheme π is stable for coali-
tion C if the combined objective function of stakeholders in C, i.e.,

∑
s∈C Hs (γ), where γ =

E(π), cannot be increased by changing the price level πp of pricing measures p ∈ ∪s∈C ps
controlled by a stakeholder in coalition C.

A stable pricing scheme for a coalition could be seen as a conditioned optimum, with the
condition that stakeholders outside the coalition do not act. However, to reach an equilibrium
the stakeholders outside the coalition should also be considered, since they can influence the
coalitions outcome as is described before. And since those stakeholders can also form one or
more coalitions which can change their preferences, it is important to consider all possibilities
of coalition formation. Therefore denote partition Q as a mathematical partition (i.e., a set of
coalitions) of the grand coalition S; a partition divides the stakeholders into coalitions, and
satisfies

∪C∈Q = S (6.2)
C , ∅,∀C ∈ Q (6.3)

C1∩C2 = ∅,∀C1,C2 ∈ Q s.t. C1 , C2. (6.4)

For a grand coalition with three stakeholders, say {A,B,C}, the following five partitions are pos-
sible: {{A},{B},{C}}, {{A,B},{C}}, {{A,C},{B}}, {{A},{B,C}}, and {{A,B,C}}. The following definition
of the Nash-equilibrium ensures that, given a partition, no coalition wants to adjust the price
level of any of its involved stakeholders.

Definition 6.2 (Nash-equilibrium for partitions). A pricing scheme π is a Nash-equilibrium
for the partition Q when π is stable for all coalitions C ∈ Q.
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Note that multiple Nash-equilibria can exist for the MSP, and that this multiplicity has two
bases. First, multiple pricing schemes can be in equilibrium for a given partition. Second, mul-
tiple partitions are possible for which equilibria can exist. To define the value of a coalition,
all Nash-equilibria – within and between9 partitions – have to be considered. It is logical to
choose the worst-case equilibrium (i.e., the one with the lowest value for the coalition) within
the partition, since the other competing coalitions can steer towards it by adjusting their pricing
levels. Also between partitions the worst-case equilibrium is chosen, because coalition form-
ing process of the other stakeholders is not controlled. This leads to the following definition
of the value of a coalition:

Definition 6.3 (Coalition value). The value of non-empty coalition C ⊆ S is

v(C) = min
{Q|C∈Q∧Q is a partition of S}

min
{π∈Π |π is a Nash-equilibrium for Q}

∑
s∈C

Hs (γ)

such that γ =E(π)
(6.5)

Note that the value of the grand coalition, v(S), equals the maximum over all pricing
schemes of the sum of all stakeholders’ objective functions.10 Two notes have to be made.
The first regards the well-definedness of equation (6.5) since at least one Nash-equilibrium
has to exist for a partition that includes C.11 If no Nash-equilibria exist for any of the par-
titions where the coalition is part of, assume that the value of this coalition equals zero.12

Secondly, Definition 6.3 does not address the value of the ‘empty coalition’ since that never
appears in a partition; therefore, it is defined separately:

Definition 6.4 (Empty coalition value). The value of the empty coalition (C = ∅) is

v(∅) = 0. (6.6)

The Nash-equilibria and the coalition value are a first step to solve the MSP, and problem
(6.1) in particular. The concept of the Nash-equilibrium provides the preconditions for a

9Note that coalitions can appear in multiple partitions, in the previous example coalition {A} appears in two
partitions.

10This is because the grand coalition appears in only one partition, without any stakeholder outside the coalition.
11This existence will be assumed in the remainder of this chapter. Its detailed analysis is out of the scope of this

thesis, but here some leads are provided. The existence cannot easily be proved. The pricing measures and
underlying transport model can be so complex that it is likely that carefully constructed counter examples
are possible if no further assumptions are made (e.g., see example ‘Three conflicting players’ later in this
chapter). Game theory provides some insight in existence in more controlled situations. If the price levels are
discrete, existence cannot be proved; however, if mixed strategies are allowed (i.e., stakeholders can set prices
with a certain probability) then Nash’s theorem can be applied to show existence. In the case of continuous
price levels, existence can be shown under a quasi-concavity condition. This condition can be released again
when mixed (continuous) strategies are allowed (by using Glicksberg’s theorem)(Sion and Wolfe, 1957).

12One could allow for mixed strategies to avoid this situation; however, the computation of the equilibria will
become complex and the interpretation of stable pricing schemes becomes more abstract. Moreover, for the
transport pricing analysis performed in Chapter 7 at least one Nash-equilibrium exists per coalition.
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pricing scheme to be a feasible outcome. While in addition, the coalition value starts to include
competition between coalitions, and provides the negotiation position of each coalition. The
last step is to resolve these negotiations, and to provide the (or a) cooperative solution to
problem (6.1) by using TU-game theory solution concepts. Note that the Nash-equilibria can
also be used to analyse the non-cooperative solutions.

6.3. SOLUTION CONCEPTS

The coalition values from Definitions 6.3 and 6.4 determine a complete TU-game (S,v); they
are the building blocks of general TU-games for which a wide variety of solution concepts
exist, and which are extensively discussed in the literature. Although that the Nash-equilibria
that lead to the coalition values are an indication of what realistic pricing schemes are, they
do not directly allow for an unique ultimate solution of the TU-game. The different solution
concepts lead to multiple possibilities. Such a solution consists of the allocations χs for
all stakeholders s ∈ S, and is called the allocation vector χ ∈ R|S|+ which equals { χs |s ∈ S}.
Another frequently used name for allocation vector is payoff vector. Since multiple solution
concepts are available, no unique and nor an optimal allocation vector exists. It is not even
guaranteed that an allocation vector exists that all stakeholders will accept. On the other
hand, the ‘played’ or resulting pricing scheme is the pricing scheme π∗ that corresponds to
the value of the grand coalition v(S), because the stakeholders cooperate and π∗s leads to
largest aggregate objective. The difference between each stakeholder’s allocation χs and each
stakeholder’s individual objective Hs under π∗ will be settled with monetary transactions.

So the negotiation table in TU-games is all about monetary transfers between stakeholders.
After all, the played pricing scheme is the best scheme for the grand coalition. The discussion
is therefore on the allocation for each stakeholder, or in other words, on how to share the
cake. Solution concepts for TU-games seek for allocation vectors that are accepted by all
stakeholders and all coalitions of stakeholders, and they often include a fairness argument. For
some TU-games no allocation vector exists that is not objected to by one or more stakeholders
or coalitions. Those situations bring the negotiations to a deadlock.

This chapter discusses three TU-game solution concepts and thereby provides insight in so-
lutions for the MSP. The core, the Shapley value, and the compromise value will be discussed.
The core stands out from the other two since it describes a set of the allocation vectors that
satisfy several basic properties (and it does not choose a single allocation from this set), as
will be described in the next paragraph. The other two determine specific allocation vectors.
Another solution concept for TU-games is the nucleolus. However, its calculation is cumber-
some (Guajardo and Jornsten, 2014) and its interpretation is abstract. Therefore, this concept
is considered not applicable to the MSP.

6.3.1. CORE

The core, introduced by Gillies (1959) in its modern form, defines allocations that are feasible
outcomes of the negotiation. This means that the stakeholders are efficient (the payoff of the
grand coalition, v(S), is allocated) and no coalition wants to deviate from the grand coalitions.
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Coalitions will deviate from the grand coalition if their total allocation is less than its coalition
value. So, the core K (S,v) of TU-game (S,v) is defined by

K (S,v) =


χ ∈ R|S|+

������

∑
s∈S

χs = v(S)∧
∑
s∈C

χs ≥ v(C),∀C ⊂ S


. (6.7)

The core is stable regarding coalition dissidence; no coalition has a rightful argument to object
towards any of the allocations in the core because their allocated value is at least as high as its
coalition value. This also means that none of the stakeholders wants to deviate from the grand
coalition (since this also holds for single stakeholder coalitions).

6.3.2. SHAPLEY VALUE

The Shapley value derives the allocated value for each stakeholder on what it can contribute
to existing coalitions. It is a concept first presented by Shapley (1952) and it leads to a single
solution. Each stakeholder receives the average of its marginal contributions over all different
orderings in which the stakeholders can enter the grand coalition. The marginal contribution
is the additional value a stakeholder brings to the table when it is added to the coalition, i.e.,
v(C) − v(C \ {s}) is the marginal contribution of stakeholder s to coalition C. To calculate
the Shapley value marginal values for each stakeholder for each permutation13 of the grand
coalition are determined. The Shapley value is the average over all |S|! possible permutations.
The Shapley value is unique.

For the transport pricing problem MSP, the marginal contribution of a stakeholder to a coali-
tion is not directly intuitive. The coalition values arise from Nash-equilibria in which per
definition all stakeholders are involved. Comparing the definition of the marginal contribu-
tion with Definition 6.5, reveals that the marginal value of a stakeholder will depend on the
magnitude of its objective function (since this enters into the total). In addition, one can see
that its marginal contribution also lies in the external influence the stakeholder can exert on the
coalition it is about to enter. When that happens the potential partition that forced the coalition
to minimal objective value(s) is cancelled.

6.3.3. COMPROMISE VALUE

The compromise value, introduce by Tijs (1981), is an allocation in which all stakeholders
perform equally ‘well’ according to their own frames of reference – i.e., all stakeholder hold
the same position compared to their best and their worst achievable result. To achieve this,
for every stakeholder an upper and lower bound for the allocation is determined that can
reasonably be negotiated.

The upper bound Ωs for stakeholder s is the marginal contribution of the stakeholder when
it is added as the final stakeholder to the grand coalition, i.e.,

Ωs = v(S)− v(S \ {s}). (6.8)

13Permutations are unique orderings in which stakeholders enter one by one to a coalition.
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This is the best possible result because when the stakeholder claims more, coalition S \ {s}
will separate from the stakeholder and will leave him behind with less than he claims. Denote
the vector of upper bounds as Ω = {Ωs |s ∈ S}.

For the lower bound ωs of stakeholder s consider the remaining value for a stakeholder in
all possible coalitions and when all competitors took as much as possible – their upper bound.
The maximum over the remaining value per coalition is the lower bound. That is

ωs = max
{C |s∈C}



v(C)−

∑
{s′∈C,s′,s}

Ωs′



. (6.9)

For intuition, imagine that a stakeholder chooses with which other stakeholders he starts ne-
gotiating. They consider how much they can divide, and all other stakeholders get their max-
imum (based on their upper bound) and the stakeholder himself claims the remainder. This
remainder is always achievable since the other parties are 100% satisfied. Denote the vector
of lower bounds as ω = {ωs |s ∈ S}.

Finally, the compromise value η(S,v) of TU-game (S,v) is the unique and equal convex
combination of upper and lower bounds for all stakeholders such that the allocation is efficient,
i.e.,

η(S,v) = αΩ+ (1−α)ω

with α =
v(S)−

∑
s∈Sωs∑

s∈S Ωs −
∑

s∈Sωs
.

(6.10)

For example, when stakeholder A and stakeholder B have bounds of respectively [0,10] and
[10,20], and the total budget is 14, then both stakeholders will end up at 20% of their reach:
A receives 2 and B receives 12. The compromise value is unique. Note that the compromise
value only exists for compromise admissible TU-games.14 The from the MSP derived games
in this thesis are all compromise admissible. In the literature, the compromise value is also
known as the τ-value (Tijs, 1981; Tijs and Otten, 1993).

6.4. PROPERTIES OF SOLUTION CONCEPTS

Each solution concept satisfies several properties that are relevant for analysts, policy mak-
ers, and other users of this method. The purpose of this section is to provide a reference for
the properties. For details on the analysis of the several solution concepts, and for additional
solution concepts, we refer to Peters (2008) for the core and Shapley value and Tijs and Ot-
ten (1993) for the compromise value. In the next section multiple illustrative examples are
provided that should provide more insight in the working and characteristics of the solution
concepts.

14A game is compromise admissible if for each stakeholder the upper bound is larger than or equal to the lower
bound (ωs ,∀s ∈ S), and if the value of the grand coalition lies between the sum of lower bounds and sum of
upper bounds (α ∈ [0,1] in Equation (6.10)).
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6.4.1. CORE

The core’s important properties can be derived directly from its definition. Let (S,v) be a
TU-game. Its core K (S,v) has the following properties:

• Efficiency: The payoff of the grand coalition is allocated, i.e.,
∑

s∈S χs = v(S),∀χ ∈
K (S,v).

• Coalition rationality: The total allocation of each coalition is at least as much the
coalition value: ∑

s∈C

χs ≥ v(C), ∀C ⊆ S, ∀χ ∈ K (S,v). (6.11)

• The core can be empty.

6.4.2. SHAPLEY VALUE

The Shapley value and its correponding allocation ζ(S,v) = χ have the following properties:
• Efficiency: The payoff of the grand coalition is allocated, i.e.,

∑
s∈S χs = v(S).

• Symmetry: The stakeholders of whose marginal contributions to each coalition is equal
– these stakeholders are equivalent – have an equal allocation.

• Dummy player: For all stakeholders s ∈ S that have marginal contributions equal
to v({s}) to all coalitions (i.e., v(C ∪ {s}) = v(C) + v({s}),∀C ⊆ S \ {s}), it holds that
ζs (S,v) = v({s}).

• Linearity: This mathematical property says that if a linear combination of games is
studied, the Shapley value can be retrieved directly from the linear combination. For-
mally, let (S,v), (S,v′) be TU-games and let a,b ∈ R, then

ζ(S,av+ bv′) = aζ(S,v)+ bζ(S,v′). (6.12)

• Zero player: A player s that adds no value to any coalition (i.e., all its marginal contri-
butions are zero), then the allocated value of the Shapley value is also zero (χs = 0).

• Existence: The Shapley value can always be calculated and always exists.
• The Shapley value is not necessarily part of the core. Possibly, coalition rationality is

not satisfied

6.4.3. COMPROMISE VALUE

The compromise value and its correponding allocationη(S,v) = χ has the following properties
(Tijs and Otten, 1993):

• Efficiency: The payoff of the grand coalition is allocated, i.e.,
∑

s∈S χs = v(S).
• Individual rationality: The allocation of each stakeholder is at least as much as its

single-stakeholder coalition value:

χs ≥ v(s), ∀s ∈ S. (6.13)

• Symmetry: The stakeholders of whose marginal contributions to each coalition is equal
– these stakeholders are equivalent – have an equal allocation.
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• Dummy player: For all ‘dummy’ stakeholders s ∈ S that have marginal contributions
equal to v({s}) to all coalitions (i.e., v(C ∪ {s}) = v(C) + v({s}),∀C ⊆ S \ {s}), it holds
that ηs (S,v) = v({s}).

• Covariance: This mathematical property says that if a game is multiplied with a positive
constant, and a vector is added, then the compromise value can be retrieved directly from
the combination. Formally, let a ∈ R and b ∈ R|S|, then

η(S,av+ b) = aη(S,v)+ b. (6.14)

• The compromise value only exists for compromise admissible TU-games (see Footnote
14 on page 150).

More properties (dummy out, complementary monotonicity, restricted proportionality, and
minimal right) of the compromise value are presented by Tijs and Otten (1993).

6.5. ILLUSTRATIVE EXAMPLES

In this section the solution concepts are illustrated with some example MSP instances. Con-
tinuous as well as discrete price levels are covered. The general approach is to find all stable
pricing measures for each coalition, and then to analyse the possible partitions with Nash-
equilibria. From these the coalition values can be derived. Finally, the solution concepts can
be computed. For explanation purposes the objective values are directly written in terms of
price levels, i.e., the underlying transport model is very simple and the intermediate effect
levels are not named.

The purpose of the first example is to show how coalition values can be determined on a
setting with continuous price levels, and simple objective functions. Only two stakeholders
exist, so one can easily handle coalition formation. Using mathematical analysis the exact
value of each coalition can derived.

EXAMPLE: Two players with continuous price levels

Consider grand coalition S = {A,B}, with ΠA = ΠB = [0,1],

HA(πA,πB) = −(πA−0.25)2−
(πB−0.25)2

2
, and (6.15)

HB(πA,πB) = −
(πA−0.75)2

4
− (πB−0.75)2. (6.16)

First, analyse the stable pricing schemes for each coalition.
For coalition {A} the stable pricing schemes can be found with ∂HA/∂πA = 0

(since HA is continuous and concave). This implies that stakeholder A always
plays πA = 0.25, regardless the action of stakeholder B. Note that the absolute
optimum for A lies at (πA,πB) = (0.25,0.25). This is illustrated in Figure 6.1
below.
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HA
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Figure 6.1.: Objective function contour plot for the coalition with stable pricing
schemes (red line) and optimal point (red cross).

For coalition {B} a similar analysis can be made leading to its stable price
level πB = 0.75 and optimal point (πA,πB) = (0.75,0.75). See Figure 6.2 below.
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HB
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Figure 6.2.: Objective function contour plot for the coalition with stable pricing
schemes (red line) and optimal point (red cross).

Obviously, none of these single-stakeholder coalitions can reach their opti-
mal point because the other stakeholder will move him away from the opti-
mum. The only partition in which any (and both) of the single-stakeholders
coalitions exist is {{A},{B}}. The only pricing scheme for which both these
coalitions are stable is (πA,πB) = (0.25,0.75), i.e., the point where the two red
lines in Figures 6.1 and 6.2 intersect. This is the only Nash-equilibrium for
this partition, and the objectives correspond with HA(0.25,0.75) = −1/8 and
HB(0.25,0.75) = −1/16.

For partition with the grand coalition {{A,B}} the combined objective function
HA+HB has to be analysed to find stable pricing schemes. The grand coalition
controls all pricing measures, and can thus set the pricing scheme equal to its
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optimal value. By solving these equations,

∂(HA(πA,πB)+HB(πA,πB))
∂πA

= 0, (6.17)

∂(HA(πA,πB)+HB(πA,πB))
∂πB

= 0, (6.18)

one can find resulting scheme π∗ = (πA,πB) = (7/20,7/12), with corresponding
value −2/15 of the combined objective function. For all TU-game solution
concepts, this pricing scheme is eventually played by the stakeholders under
cooperation, see Figure 6.3 for an illustration.
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Figure 6.3.: Objective function contour plot for the coalition with optimal point
(red cross).

Applying the definition of coalition values leads the coalition values in Table
6.1.
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Table 6.1.: Coalition values

C v(C)

∅ 0
{A} −1

8
{B} − 1

16
{A,B} − 2

15

The TU-game theoretical analysis of the game presented in Table 6.1 is rather
straightforward since only two stakeholders are involved. Therefore, just the
results are presented; the next examples aim to provide more insight in the
computation and intuition of these solution concepts. Although, note that due
to the negative coalition values this game is rather to split losses than to share
profit. The core equals

K (S,v) =
{
χA, χB ∈ R

�����
χA+ χB = −

2
15
∧ χA ≥ −

1
8
∧ χB ≥ −

1
16

}
(6.19)

The Shapley- and compromise value coincide and equal allocation

( χA, χB) =
(
−

47
480

,−
17

480

)
≈ (−0.0979,−0.0354). (6.20)

Remember that the differences per stakeholder between the stakeholder’s ob-
jective values in the optimal pricing scheme of the grand coalition and the cho-
sen allocation resemble the resulting (monetary) transfers. In this game the
stakeholder’s objective values for the optimal pricing scheme are HA(7/20,7/12) =
−59/900≈−0.656 and HB(7/20,7/12) =−61/900≈−0.678. This means stake-
holder A has to compensate stakeholder B substantially if the single-point solu-
tion concepts’ allocation is effectuated.

In the following example, three stakeholders are considers. Instead of continuous price lev-
els, the example deals with discrete price levels. By enumerating all different pricing schemes,
the computation of coalition values based on all Nash-equilibria is illustrated.

EXAMPLE: Three players with binary price levels

Consider grand coalition S = {A,B,C} with ΠA = ΠB = ΠC = {0,1}, so each stake-
holder can either implement their pricing scheme or not, but no specific level

156



Chapter 6 Game Theoretical Approach for Multiple Stakeholders

can be set. They consider the following objective functions:

HA(π) =
∑
s∈S

πs (6.21)

HB(π) =πB (6.22)
HC(π) =− πB− πC (6.23)

Table 6.2.: Coalition objective function values for all pricing schemes

Pricing schemes Coalition objectives
∑

s∈C Hs (π) for C =
πA πB πC {A} {B} {C} {A,B} {A,C} {B,C} S

0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 -1 1 0 -1 0
0 1 0 1 1 -1 2 0 0 1
0 1 1 2 1 -2 3 0 -1 1
1 0 0 1 0 0 0 1 0 1
1 0 1 2 0 -1 1 1 -1 1
1 1 0 2 1 -1 2 1 0 2
1 1 1 3 1 -2 3 1 -1 2

Table 6.2 presents all eight possible pricing schemes with resulting objec-
tive functions. Note that especially C has conflicting interests with the other
stakeholders.

By applying Definition 6.1 on this table, the stable pricing schemes for each
coalition can be retrieved. Fix the price levels of the stakeholders outside the
coalition and check if the objective can not be improved by switching the own
price levels. Table 6.3 shows the results. Note that pricing scheme (πA,πB,πC) =
(1,1,0) is stable for all coalitions.
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Table 6.3.: Stable coalitions per pricing scheme

Pricing schemes Pricing scheme stability for coalition C =
πA πB πC {A} {B} {C} {A,B} {A,C} {B,C} S

0 0 0 X X

0 0 1
0 1 0 X X X

0 1 1 X

1 0 0 X X X X

1 0 1 X X

1 1 0 X X X X X X X

1 1 1 X X X X X

Now all Nash-equilibria (see Definition 6.2) can be retrieved by looking up
per pricing scheme and per partition if all involved coalitions are stable. Table
6.4 shows all Nash-equilibria for this game. Only three pricing schemes corre-
spond to Nash-equilibria, while for all partitions a Nash-equilibrium exists.

Table 6.4.: All Nash-equilibria

Pricing schemes Nash-equilibrium for partition Q =
{A}

{B} {A,B} {A,C} {B,C}

πA πB πC {C} {C} {B} {A} S

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0 X

1 0 1
1 1 0 X X X X X

1 1 1 X X

Finally, the TU-game can be defined by considering the worst Nash-equilibrium
(see Definition 6.3) for each coalition. In this case each coalition has to con-
sider its combined objective under scheme (πA,πB,πC) = (1,1,0), while coali-
tions {A,C}, {B} and S also have to consider scheme (πA,πB,πC) = (1,1,1), and
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coalitions {B,C} and {A} also have to consider scheme (πA,πB,πC) = (1,0,0). Ta-
ble 6.5 shows the complete TU-game.

Table 6.5.: Coalition values

C v(C)

∅ 0
{A} 1
{B} 1
{C} -1
{A,B} 3
{A,C} 1
{B,C} 0
S 2

Note that for the grand coalition the two equilibria correspond to the same
value. So, two indifferent resulting pricing schemes π∗ are possible; choosing
one of them will only affect the eventual monetary transfers. Next, consider
the several solution concepts starting with the core. For this TU-game the core
equals

K (S,v) = {χ |
χA+ χB+ χC = 2,

χA ≥ 1,
χB ≥ 1,
χC ≥ −1,

χA+ χB ≥ 3,
χA+ χC ≥ 1,
χB+ χC ≥ 0},

(6.24)

which boils down to this single point core: K (S,v) = {( χA, χB, χC) = (2,1,−1)}.
Next, the marginal contributions (v(C)−v(C \ {s})) of stakeholders entering the
coalition one-by-one is calculated to obtain the Shapley value. This is done for
each permutation (i.e., ordering in which stakeholders can enter) of the grand
coalition. Table 6.6 shows the results, including the average over the orderings,
which equals the Shapley value.
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Table 6.6.: Shapley value calculation

Marginal contributions
Ordering A B C

A→ B→ C 1 2 -1
A→ C→ B 1 1 0
B→ A→ C 2 1 -1
B→ C→ A 2 1 -1
C→ A→ B 2 1 -1
C→ B→ A 2 1 -1

ζ(S,v) 12
3 11

6 −5
6

Note that only for the orderings in which A enters first erratic marginal con-
tributions appear. This is due to the coalition value of {B,C}, which is the only
two-stakeholder coalition for which no surplus is generated when the stake-
holders cooperate (i.e., v({A,B}) = v({A}) + v({B}) + 1 and similar for {A,C}, but
not for {B,C}).

It is remarkable that the Shapley value ζ(S,v) =
(
12

3 ,1
1
6 ,−

5
6

)
is not in the

core of the game. In general the Shapley value does not have to be stable
against coalition deviations, which is here also the case. Coalitions {A,B} and
{A,C} can make rightful objections against the allocation of the Shapley value,
since their coalition value is not met.

The final analysed solution concept is the compromise value. Computing
equations (6.8) and (6.9) lead to rather boring bounds as shown in Table 6.7.
There is no need to use Equation (6.10), nor to calculate the α.

Table 6.7.: Compromise value of TU-game (S,v̄) for each stakeholder s ∈ S

s Ω ω η(S,v)

A 2 2 2
B 1 1 1
C -1 -1 -1

The compromise value lies in – actually equals – the core. The Shapley value
and compromise value are not equal for this TU-game.

In the final example, a similar discrete price level setting is provided, but the players have
more conflicting objectives. Not for all coalitions a Nash-equilibrium exists, meaning that
these coalitions will have zero value. In addition, the core of game in this example is larger
than a single point (as it was in the previous example). This allows – literately – an illustration
of the differences between the solution concepts.
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EXAMPLE: Three conflicting players

Again, consider grand coalition S = {A,B,C} with ΠA = ΠB = ΠC = {0,1}, but now
the stakeholders consider the following objective functions:

HA(π) =−2× (−1)
∑

s∈S πs (6.25)

HB(π) =(−1)
∑

s∈S πs (6.26)

HC(π) =
∑
s∈S

πs (6.27)

Table 6.8.: Coalition objective function values for all pricing schemes

Pricing schemes Coalition objectives
∑

s∈C Hs (π) for C =
πA πB πC {A} {B} {C} {A,B} {A,C} {B,C} S

0 0 0 -2 1 0 -1 -2 1 -1
0 0 1 2 -1 1 1 3 0 2
0 1 0 2 -1 1 1 3 0 2
0 1 1 -2 1 2 -1 0 3 1
1 0 0 2 -1 1 1 3 0 2
1 0 1 -2 1 2 -1 0 3 1
1 1 0 -2 1 2 -1 0 3 1
1 1 1 2 -1 3 1 5 2 4

Table 6.8 presents all eight possible pricing schemes with resulting objec-
tive functions. Note that all objective values only depend on the number of
prices ‘implemented’ and that stakeholders A and B have completely conflicting
objectives. The stable pricing schemes for each coalition (see Table 6.9) are
therefore also ‘spread out’ over the pricing schemes.
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Table 6.9.: Stable coalitions per pricing scheme

Pricing schemes Pricing scheme stability for coalition C =
πA πB πC {A} {B} {C} {A,B} {A,C} {B,C} S

0 0 0 X

0 0 1 X X X X

0 1 0 X X

0 1 1 X X X

1 0 0 X X X

1 0 1 X X X

1 1 0 X X

1 1 1 X X X X X

Table 6.10 shows all Nash-equilibria for this game. Only three Nash-equilibria
exist, which only involve partitions {{A,B},{C}} and S, and pricing schemes
(0,0,1) and (1,1,1). This means that not all partitions have corresponding
Nash-equilibria, and the majority of coalitions can not even be associated with
stable pricing schemes. This has its influence on the TU-game coalition values
(presented in Table 6.11) where these coaltions will have a value equal to zero.
The resulting pricing scheme equals π∗ = (1,1,1).

Table 6.10.: All Nash-equilibria

Pricing schemes Nash-equilibrium for partition Q =
{A}

{B} {A,B} {A,C} {B,C}

πA πB πC {C} {C} {B} {A} S

0 0 0
0 0 1 X

0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1 X X
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Table 6.11.: Coalition values

C v(C)

∅ 0
{A} 0
{B} 0
{C} 1
{A,B} 1
{A,C} 0
{B,C} 0
S 4

Next, the solution concepts are analysed and visualised. The core equals

K (S,v) = {χ ∈ R3 |

χA+ χB+ χC = 4,
χA ≥ 0,
χB ≥ 0,
χC ≥ 1,

χA+ χB ≥ 1,
χA+ χC ≥ 0,
χB+ χC ≥ 0},

(6.28)

which is a (non-empty) polyhedron in R3. This non-empty core means that
although the objective functions are conflicting, still allocations exist for which
no coalition has a valid argument to object. Table 6.12 shows the Shapley value
computation. The Shapley value assigns equal allocations to all stakeholders
because each of them appears in exactly one coalition (other than the grand
coalition) with coalition value equal to one, while the other values equal zero.
No distinction is made between the stakeholders.
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Table 6.12.: Shapley value calculation

Marginal contributions
Ordering A B C

A→ B→ C 0 1 3
A→ C→ B 0 4 0
B→ A→ C 1 0 3
B→ C→ A 4 0 0
C→ A→ B -1 4 1
C→ B→ A 4 -1 1

ζ(S,v) 4
3

4
3

4
3

The final solution concept is the compromise value, see Table 6.13. In this
case α equals 0.3. Stakeholders C has a slight advantage over the other two
stakeholders here. v({A,B}) = 1 limits C’s upper bound to 3, but v({C}) = 1 pro-
vides a good lower bound. Since the budget (4) is closer to the lower bound
than to the upper bound, C’s differences ultimately lead to an advantage.

Table 6.13.: Compromise value of TU-game (S,v̄) for each stakeholder s ∈ S

s Ω ω η(S,v)

A 4 0 6
5

B 4 0 6
5

C 3 1 8
5

Games with |S| = 3 have the advantage that the core (and the solution con-
cepts that lie in the core) can be nicely visualised. Figure 6.4 provides this
illustration for the game. The core is symmetrical for A and B, which is also
reflected in the one-point solution concepts. At the negatiation table, stake-
holder C has the advantage that it is associated with more Nash-equilibria as a
single-stakeholder coalition, which provides him arguments (i.e., the compro-
mise value) to receive a higher amount than the other stakholders. On the other
hand, the pricing scheme of the grand coalition’s equilibrium (i.e., π∗) leads to
direct objective values of 2, −1 and 3 for respectively A, B and C. If the final al-
location ends up close to the Shapley or compromise value, it is inevitable that
stakeholder B receives a monetary compensation from both other stakeholders.
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Figure 6.4.: A graphical representation of the solution concepts for the TU-
game (S,v) with the core (white area, K), Shapley value (ζ), and
compromise value (η). The drawn plane is

∑
s∈S χs = v(S) = 4,

also the equalities that define the boundaries of the core are de-
picted.

6.6. EXTENSIONS

In this section three possible extensions of the approach are provided and discussed.

6.6.1. COST OF COALITION FORMATION

One of the assumptions of the approach is that no costs are involved when stakeholders enter
or leave coalitions. Perhaps surprisingly, introducing such costs can provide more ‘stable’
solutions. By allowing the analyst (i.e., ’game leader’) to impose a cost when a stakeholders
enters or leaves the grand coalition, the analysis of the TU-game would become simpler since
then epsilon-Nash-equilibria can be enforced (which always exist).

6.6.2. MULTIPLICITY OF EFFECTS

Notice that if effect levels appear in multiple objective function, then they are counted multiple
times in the combined objective function of, e.g., the grand coalition. This is not problematic
for the approach, since this price level adds to the objective of each individual stakeholders
of which the total sum will be optimized, but it can be counter-intuitive. Especially ‘societal
wide’ (external) effects (i.e., those effects that represent utility of populations) demonstrate
this. For example, if social welfare of a region is included in as well its covering national
government’s as its own (regional) government’s objective function, it will appear twice in the
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objective function of all coalitions in which they both appear. This diminishes the influence of
other effect levels by these and other stakeholders in the coalition. On the other hand, effects
that read as ‘a celebration will take place’, which is added to multiple stakeholders’ objectives
as ‘participate in the celebration’, it is completely logical to repeat the effect in the coalition’s
objective.

Since in general stakeholders have their own rationale of existence and their own execu-
tive power; there is no bias in the TU-game derived from an MSP. However, if the additive
behaviour of effect levels is undesirable (i.e., weighting factors in combined objective func-
tions become erratic), then the framework can easily be adjusted by defining coalition specific
objective functions. 15

6.6.3. GENERALIZATION TO SHARED PRICING MEASURES

In reality, not all pricing measures ae controlled by a single stakeholders. For example, trav-
ellers’ association like the Dutch ANWB do have influence on policy making, but do not have
control. If such ‘lobbies’ are key to analyse, then additional structures have to be introduced.
The easiest way to approach this is to add a term in the objective function of the empowered
stakeholder of the pricing measure. For example, by introducing a penalty (or veto) if a lobby
group does not agree. Another approach is to introduce an intermediate layer in which mul-
tiple stakeholders have to decide on the measure. The latter will require a different form of
modelling decision making that is out of the scope of this thesis.

6.7. SYNTHESIS

This chapter has introduced a solution method to approach the MSP, and aimed at bridging
the gap between multi-objective optimization and cooperative game theory. From objective
functions and pricing measures per stakeholder, a TU-game has been defined by using Nash-
equilibria as an intermediate result. The solution concepts core, Shapley value, and compro-
mise value to TU-games are presented. This section discusses practical aspects and policy
implications of this framework.

Compared to the traditional social welfare optimization, a more detailed view on possible
gains and losses of each stakeholder is provided, under cooperation as well as under compe-
tition. The assumptions of first-best pricing and social welfare optimization that every indi-
vidual of a population participates in the negotiations and that unlimited mutual transactions
between them can exist are relaxed. The provided framework provides a concrete interpreta-
tion of the negotiation table. The resulting game theoretical solutions provide more feasible
and more realistic ‘maximum achievements’, than can be obtained under merely social welfare
optimization.

The negotiation table is made concrete in the following manner. Each stakeholder arrives
with an objective function and pricing measure(s) (with feasible price levels). The market
power of a stakeholder is completely determined by the pricing measures it controls. Based

15Instead of defining stakeholder objective functions Hs ,∀s ∈ S and deriving coalition objective functions im-
plicitly by H ′C :=

∑
s∈C Hs ,∀C ⊆ S, these coalition objectives H ′C can be defined directly.
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on all possible pricing schemes that can be constructed out of the pricing measures, the corre-
sponding objective value of each stakeholder becomes clear. Subsequently, combined objec-
tives of coalitions of stakeholders are computed. The provided notions of stability and equilib-
rium provide each stakeholder (and the coalitions it belongs to) with arguments. Finally, the
TU-game solution concepts provide suggestions for final allocations. The stakeholders have to
discuss and negotiate on those allocations to reach the final result. It is strongly suggested to
implement resulting pricing scheme π∗, since then the grand coalition’s objective is optimal.
Unfortunately, if the core is empty, it will be difficult to reach an agreement, since then there
exists a stakeholder or coalition that will object to it.
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CHAPTER 7.

CASE STUDY: THE RANDSTAD

The case study in this chapter considers three stakeholders and three pricing
measures in the Randstad area in the Netherlands. It uses a hypothetical setting
to show how the tools provided in this dissertation can be brought to practice.
The methodological advances in traffic assignment described in Part I are ap-
plied on a large real network. Based on the new stakeholders model described
in Chapter 6 the interaction between stakeholders is analysed. In addition the
impact of the pricing schemes on the transport system is determined in terms of
congestion and emissions. The case study reveals that transport pricing is an ef-
fective measure to mitigate external effects, and it reveals that the governments
and train operator have conflicting objectives. Finally, the computed price of
competition (i.e., the difference between non-cooperative and cooperative out-
comes) exposes a remarkable impact on social welfare when stakeholders start
to cooperate.

This chapter is a translated and extended version of:
• Smits, E.-S., Pel, A., van Nes, R., and van Arem, B. (2016).

Modelleren mobiliteitsbeprijzing met meerdere actoren.
Tijdschrift Vervoerwetenschap.
ISSN 1571-9227

The Randstad is a metropolitan area in the Netherlands that covers multiple cities (among
them are Amsterdam, Rotterdam, The Hague, and Utrecht) with more than 7 million inhabi-
tants. The densely populated urban areas are connected with road and rail networks. Conges-
tion, crowding and emissions cause hinder on a daily basis. Innovative pricing measures, such
as a kilometre charge, have never been deployed due to lack of political and public support
(see e.g., Smaal, 2012; Vonk Noordegraaf et al., 2014). A kilometre charge, cordon charge,
and/or different train tariffs could change the mobility consumption pattern of travellers.

The purpose of the case study is to show how the theories and methods presented in this
dissertation can be brought to practice. The aim is to use a large network and as much ‘real’
data as possible; this shows that the methods are practically applicable given their computa-
tion time. The pricing measures and objectives of the stakeholders are hypothetical, and are
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chosen to illustrate how possibly conflicting interests could be handled. Therefore, the policy
implications of the game theoretical approach are conditional to these hypotheses as well.

The case study presented in this chapter studies different pricing measures and models the
preferences of the train operator, and national and local governments. The Amsterdam city
council aims to reduce congestion and to improve its economic position by introducing a
cordon charge. The national government wants to reduce travel times and emissions and to
improve the social welfare by introducing a kilometre charge. The train operator wants to
spread the demand to reduce the number of costly additional services in the peak, and thereby
maximizes its profit. All pricing measures are time differentiated for the peak and shoulder
periods.

7.1. SET-UP

Following the line of Chapter 2, the model has two levels. The three stakeholders and their
pricing measures are captured in the upper level, while the lower captures the responses of
the travellers regarding their used mode, time-of-day, and route. The upper level stakeholders
model determines pricing schemes which are evaluated in the lower level assignment model.
The returned effects are travel times, emission levels, expected maximum utility of each trav-
eller, modal splits, time-of-day splits, route usage, profit, and revenues from pricing measures.
The scope of the case study is the morning commute in the year 2020. All reported values
represent a single morning commute.

The upper level model adopts the game theoretical approach as presented in Chapter 6.
Based on the objective per stakeholder, the formation of coalitions and notions of stability
and equilibrium a TU-game will be formulated. This game is analysed and the core, Shapley
value and compromise value are computed. In addition to the TU-game, the Pareto-frontier is
presented and the price of competition is discussed.

The lower level adopts the Quasi-Dynamic Traffic Assignment (QDTA) model of Chapter
3. The main data source for the transport model is the Nederlands Regionaal Model (Dutch
Regional Model) (NRM). The morning peak Origin-Destination (O-D) demand and the road
network from the NRM-west version form the basis. The NRM-west is one of the four NRM

versions, and it covers the western part of the Netherlands which contains the Randstad area
as well. Travellers consider mode, time-of-day, and route choices. Traffic is propagated using
hybrid quasi-dynamic network loading model described in Section 3.3, and is available in
the OmniTRANS software package under the name Static Traffic Assignment with Queuing
(STAQ). Mode and time-of-day choice are modelled simultaneously, but separately from route
choice. Because a route choice equilibrium model is integrated within STAQ, this is a more
practical approach. O-D matrices and travel times are used to connect both choice models.
The structure of the models is derived from the framework developed in this thesis. Model
parameters and calibration data come from multiple sources, such as the original NRM-west,
socio-economic statistics, and willingness to pay studies.

The network, see Figure 7.1, reaches till outside the Netherlands and contains 87 504 links.
There are 3 608 zones of which 2 122 are within the study area. The train network is just
considered indirectly by copying travel times and costs fron the NRM-west. The modelled
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Influence area 
Outside area
Outside area foreign

Study area

Figure 7.1.: Road network, the blue area indicates the study area

area and network are not restricted to the study area to be able to model the influence from
trips starting or ending outside the study area. However, the resulting effects are determined
for the study area only.

7.1.1. STAKEHOLDERS AND PRICING MEASURES

The three stakeholders each have their own pricing measure to obtain their objective. Each
objective function is a weighted sum of effect levels. Since objective functions are compared in
the TU-game approach, they are monetized. This allows monetary transfers when the solution
concepts are considered. The objectives of the stakeholders are introduced briefly. After
the underlying TA-model is introduced, the effect levels and objective functions are further
formalized.

National Government The national government, denoted with GOV, considers a kilometre
charge which is assumed to affect all roads. During peak and shoulder periods, different
price levels can be determined. It is assumed that the price per kilometre in the shoulder
is never higher than the price in the peak to reduce the amount of feasible pricing schemes.
The (on-)peak kilometre charge is denoted as KM-ON, and the shoulder kilometre charge is
denoted as KM-OFF. Each of the associated levels can be either e0.00, e0.05 or e0.10, i.e.,
ΠKM-ON = ΠKM-OFF = {0,0.05,0.1}. It is assumed that on-board technology is available to collect
the charges. Its objective function contains expected maximum utility of each commuter, the
income from the kilometre and cordon charge, the emissions, and the loss hours of other
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Figure 7.2.: Cordon around Amsterdam

travellers.

Municipality of Amsterdam The local government in Amsterdam, denoted with AMS, con-
siders a cordon charge to improve the economic position of the city. Figure 7.2 shows the
location of the cordon. Travellers have to pay when they enter the cordon, e.g., by use of
electronic toll gates. The peak hour toll is denoted as CRDN-ON and the shoulder toll is de-
noted as CRDN-OFF. Each of the associated levels can be either e0.00, e4.00 or e8.00, i.e.,
ΠCRDN-ON = ΠCRDN-OFF = {0,4,8}. Also for the cordon charge it is assumed that the shoulder price
can not exceed the peak price to reduce the numver of feasible pricing schemes. The objective
function of AMS is deliberately different from social welfare to create contrast in interests be-
tween GOV and AMS; it contains the following effects: Accessibility of Amsterdam, loss due to
missed economic activity, and emissions within Amsterdam. Since the cordon charge revenues
will be recycled in the transport system, it is not part of Amsterdam’s objective.

Train Operator The train operator, denoted by TR-OP, considers the train fares. Both the peak
and shoulder fare, denoted respectively with FARE-ON and FARE-OFF, can be in- and decreased with
20%. The feasible price levels are written as a factor compared to the original prices from the
reference model: ΠFARE-ON = ΠFARE-OFF = {0.8,1,1.2}. The shoulder fare can not increase more
than the peak fare. The objective equals profit, so the objective function is the difference
between income from ticket sales and costs. The costs consist of operating costs, where it is
relatively expensive to run additional services during the peak to accommodate higher peak
demand. Subsidies from the government are assumed constant in this case study; therefore,
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they do not affect the train operator’s objective.

7.2. UNDERLYING TRAFFIC ASSIGNMENT MODEL

The focus of the case study is on a typical 2020 morning commute. Therefore, the considered
set of time-of-days is T = {PEAK,SHOULDER}, in which time-of-day PEAK lasts from 07:00 AM
to 09:00 AM, and time-of-day SHOULDER consists of two time intervals: 04:00 AM to 07:00
AM, and 09:00 AM to 12:00 AM (see Figure 7.3). The choice model determines the total
demand for each time-of-day, the hourly matrices are respectively obtained by division with
2 (PEAK) and 6 (SHOULDER). The hourly demands are considered representative or each time-of-
day. Furthermore, the simplifying assumption is made that average network conditions are
equal for both shoulders.

04h00 09h0007h00 12h00

ShoulderShoulder Peak

Figure 7.3.: Peak and shoulder time-of-days

Since the lengths of the time-of-days differ, the choice model should correct for this by
adding a correction term (Ben-Akiva and Abou-Zeid, 2013). It is not straightforward to cal-
culate this constant for nested Generalized Multivariate Extreme Value (GMEV)-models. As
explained later in this section, a time-of-day alternative specific constant is used in the case
study. As a pragmatic solution, it is assumed that this constant contains the correction term.

Set of modesM = {CAR,TRAIN,HOME} contains car, train, and stay-at-home alternatives. Modes
CAR and TRAIN can be combined with both time-of-days (PEAK and SHOULDER), and thus four al-
ternatives are available. However, special mode HOME is not related to a time-of-day choice,
therefore, it leads to a single alternative. Route choice is only modelled for mode CAR, and is
determined separately from the main choice model. Route choice for mode TRAIN is omitted
because route choice effects due to pricing are expected to be minimal; the train tariffs are not
differentiated per train service, and crowding is not incorporated as an attribute in the choice
model.

Consider the set of user-classesU = {PEAK-PREF,NO-PREF}. The only distinction in user-classes
for this case study is the preferred time-of-day. Having two user-classes simplifies the case
study, but allows stating and discussing all preferences and prices.1 User-class PEAK-PREF has
the preference to travel during time-of-day PEAK, for example due to fixed working hours, or
habit. The choice model penalizes alternatives during the SHOULDER time-of-day for this user-
class. On the other hand, user-class NO-PREF has no preference for either travelling during the
PEAK or the SHOULDER.

Figure 7.4 depicts the flowchart of the underlying assignment model. The doubly iterative
process maps a pricing scheme to a set of effects. The outer iterative process searches for an

1More realistic case studies should contain more user-classes with different time valuations.
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Pricing scheme
• Kilometre fee
• Cordon toll
• Train fares

Mode and time-of-day
choice for each O-D

pair and each user-classAverage train travel
times and cost per O-D

pair

Travel demand per O-D

pair per user-class

Hourly car trips per
time-of-day per O-D pair

Train trips per time-of-
day per O-D pair

Route choice equilib-
rium for each time-of-
day

Route choice

Quasi-dynamic
network loading

Car network

Average car travel times
and distances per time-
of-day per O-D pair

Effects
• Travel times
• Emissions
• Expected maximum utility
• Travellers per mode,

time-of-day, and route
• Income from pricing measures

Figure 7.4.: Flowchart of the underlying traffic assignment model
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equilibrium in mode and time-of-day choice. In every iteration the simultaneous mode and
time-of-day choice model2 computes hourly car trip matrices per time-of-day that is input
for the route choice equilibrium model3, which translate into travel impacts in the form of
travel times and distances. The latter is input for the choice model again. The route choice
equilibrium model is the inner iterative process; it iterates route choice and network loading.

The outer process is repeated 12 times with the method of successive averages (with di-
minishing weighting factors). The inner process is initiated with a ‘warm start’: the fully
converged route choice probabilities of the zero-pricing scheme are used for the first network
loading procedure. For the first eight outer iterations, 25 inner iterations are used, for the fi-
nal four outer iterations, 50 inner iterations are used. After each step the duality gap for the
simultaneous mode and time-of-choice model is computed, see Equation (3.30).

7.2.1. MODE AND TIME-OF-DAY CHOICE

This section develops the main choice model in the case study that captures mode and time-
of-day choice. The route choice model within STAQ in the OmniTRANS software package is
described in the next section, which we simply adopt in this case study. The choice probability
for each alternative is determined using the Random Utility Maximization (RUM) framework
and its methods from Chapter 4.4 Recall that the combination of a set of alternatives, a gen-
erating vector, and a generating function completely determine the choice probabilities. A
nested-logit structure captures correlations between alternatives with the same mode. Further-
more, a multiplicative error term formulation ensures the heteroskedasticity of random utilities
of alternatives.

According to the framework in Chapter 35 the set of choice alternatives C is a subset of
time-of-day and route combinations (i.e., T ×R). By grouping the alternatives per O-D-pair,
the relevant choice sets Co/d are formed. In that framework, the mode is a characteristic of
a route. Since for this main choice model route choice is exogenous, it considers a single
route per mode per O-D pair o/d. Average travel times and average travel costs reflect all routes
per mode per O-D-pair, and are captured with so called representative routes CARo/d and TRAINo/d

(∈ R) for respectively modes CAR and TRAIN, and for each o/d ∈ O/D. This leads to five choice
alternatives per O-D-pair, i.e.

Co/d =
{
(PEAK,CARo/d); (PEAK,TRAINo/d); (SHOULDER,CARo/d); (SHOULDER,TRAINo/d); (·;R0)

}
, (7.1)

where the dot · means that no time-of-day is specified for route R0, which is the dummy route
for mode HOME (see Section 3.2). Denote all CAR representative routes as CAR = ∪o/d∈O/DCARo/d, and
all TRAIN representative routes as TRAIN = ∪o/d∈O/DTRAINo/d.

Using representative routes is a pragmatic approach that disconnects the route choice from
the other choices. Ideally, one uses the expected maximum utility of the route choice model

2Implemented in Matlab
3Available in OmniTRANS
4Although the scope of that chapter is route choice, the methodology with multiplicative utility formulations is

used here. Chapter 3 explains how the application of its theory can be applied to simultaneous mode, route
and time-of-day choice. To keep route choice exogenous, representative routes are used for each mode.

5The notation from that chapter is adopted here.
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under equilibrium (see Table 4.1 for its closed form formulas for GMEV-models). This ex-
pected maximum utility can then be substituted for all route-sums in Equation (3.15). Since
STAQ does not use the exact generating vector and generating function as described in Section
3.2.4, this pragmatic approach is taken. Note, that all averages for representative routes cal-
culated from the route choice equilibrium model are weighted with the internal route choice
probabilities. These are dependent on the time-of-day of course.

Recall that the used systematic utility, adopted from Equation (3.7), is:

V(T ;r;u) =




ASC(T ;CAR;u) − κ(T ;r;u) −VOTIVT-FF

(CAR;u)τ
IVT-FF

(T ;r) −VOTIVT-CONG

(CAR;u) τ
IVT-CONG

(T ;r) if r ∈ CAR

ASC(T ;TRAIN;u) − κ(T ;r;u) −VOTIVT

(TRAIN;u)τ
IVT

(T ;r)

+VOTWAIT

(TRAIN;u)τ
WAIT

(T ;r) +VOTA-E

(TRAIN;u)τ
A-E

(T ;r) if r ∈ TRAIN

ASC(T ;HOME;u) − κ(T ;r;u) if r = R0

(7.2)

The alternative specific constants include two elements: a penalty for travelling outside the
preferred time-of-day and the mode specific constant. The latter completely represents the
systematic utility of mode HOME. The constants are determined with calibration as described in
the next section. To avoid an underspecified system in the calibration proces, the alternative
specific constants for mode TRAIN

6 and time-of-day PEAK are normalized to zero. This is the
general formulation for the alternative specific constant for time-of-day T ∈ T , mode m ∈M,
and user-class u ∈ U :

ASC(T ;mr ;u) = δ
SHOULDER

T δPEAK-PREF
u ASCSHOULDER+ δCAR

m ASCCAR+ δHOME

m ASCHOME (7.3)

The route choice and the mode and time-of-day choice models are separated. Existing
routines of the OmniTRANS software package are used to perform the route choice in an
iterative manner with the Quasi-Dynamic Network Loading (QDNL). The mode and time-
of-day choice uses the framework of Chapter 4, and is simulated in Matlab. As concluded
in that chapter, the multiplicative utility formulation is more suitable for large real networks.
Therefore, we use the generating vector yM as defined in Equation (4.33). Furthermore, a
nested structure is assumed to capture correlation between the two time-of-day alternatives
for each mode. The generating function (see Section 3.2.4; Equation (3.12)) for each choice
set Co/d is defined as

G(z) =
∑

m∈{CAR,TRAIN}

*.
,

∑
T∈{PEAK,SHOULDER}

zµ
MODE

(T,m)
+/
-

µ
µMODE

+ zµR0
. (7.4)

The choice probabilities are similar to Equation (3.15), but do not include the route choice

6Testing both options showed that ASCCAR < ASCTRAIN, and since a negative systematic utility is required,
ASCTRAIN – and not ASCCAR – is normalized.
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nesting. This leads to the following choice probabilities:

P(T ;r;u) =
*..
,

∑
m′∈{CAR,TRAIN}

*.
,

∑
T ′∈T

*
,

−1
V(T ′;rm′ ;u)

+
-

µMODE

+/
-

µ
µMODE

+

(
−1

V(·;R0;u)

) µ+//
-

−1

× *
,

∑
T ′∈T

(
−1

V(T ′;r;u)

) µMODE

+
-

µ
µMODE −1

×

(
−1

V(T ;r;u)

) µMODE

, if r , R0, and,

P(T ;r;u) =
*..
,

∑
m′∈{CAR,TRAIN}

*.
,

∑
T ′∈T

*
,

−1
V(T ′;rm′ ;u)

+
-

µMODE

+/
-

µ
µMODE

+

(
−1

V(·;R0;u)

) µ+//
-

−1

×

(
−1

V(T ;r;u)

) µ
, if r = R0,

(7.5)

with r ∈ {CARo/d,TRAINo/d,R0}, rCAR = CARo/d, and rTRAIN = TRAINo/d, where o/d is the O-D-pair that corre-
sponds with route r . By applying the choice probabilities to the demand, one can obtain the
number of trips for each mode and time-of-day combination:

f (T ;r) =
∑
u∈U

P(T ;r;u) D(u;o/d), ∀(T ;r) ∈ C,u ∈ U , (7.6)

where o/d is the O-D pair corresponding to (representative) route r . Note that the

7.2.2. ROUTE CHOICE EQUILIBRIUM MODEL

The route choice equilibrium model is available in the OmniTRANS software. The route
choice model is the Multinomial Logit (MNL) model, i.e., the Additive Multinomial (A-MN)
model of Chapter 4, see Equation (4.39). The utility formulas are determined internally based
on the pricing measures and travel times. The network propagation model is STAQ, as de-
scribed in Section 3.3. The used node model is the directed capacity proportional node model
that solves the (Directed Capacity Proportional node Problem (DCPP)) on page 122. More
details can be found in Section 5.4.3.

OmniTRANS reads the O-D trip demands per time-of-day and produces travel times, costs,
and distances per time-of-day. These are averaged (weighted by route choice probabilities)
per O-D-pair to retrieve the attributes needed in Equation (7.2). To determine the cordon costs
per route, the number of passages over the cordon is computed. For the kilometre charge, the
distance of each route is computed.

The NRM network was not directly feasible for STAQ, since priorities on roundabouts are
not automatically realised in the used node model. That caused gridlocks on roundabouts.
Therefore, the capacity of roundabouts (i.e., the four small link arches) have been doubled.
This implies that traffic on the roundabout has priority over other traffic.
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Input for the model is the flow/demand f (T ;r) for both time-of-days T ∈ T , and all CAR rep-
resentative routes r ∈ CAR from Equation (7.6); these are converted to hourly matrices. In ad-
dition, freight traffic and non-commuter traffic are included as exogenous fixed O-D-matrices
for both time-of-days (PEAK and SHOULDER). These matrices come directly from the NRM-west
model. Only route choice is modelled for trucks and non-commuters, which is equal to the
commuters’ route choice. The passenger car equivalent of a truck is 1.75; this means that
every truck is counted as 1.75 cars in the network loading model. Trucks and non-commuters
are exogenous in the pricing model, which is a simplification of the case study.

Output of the model are the related variables in the systematic utility for all CAR represen-
tative routes r ∈ CAR, i.e., the route costs κ(T ;r;u) per user-class u7 and time-of-day T , and the
free-flow and congested travel times τIVT-FF

(T ;r) and τIVT-CONG

(T ;r) per time-of-day T . These travel impacts
are generated for the reference route per O-D-pair. To aggregate the individual route data per
O-D-pair, the travel times and travel costs are averaged with weights per route equal to the
choice probabilities. In addition, OmniTRANS determines and exports the emission levels
per link and area.

7.2.3. CALIBRATION

The total travel demand per user-class, the scale parameters, and the alternative specific con-
stant are calibrated using market shares. Data from the Dutch Central Bureau of Statistics
(CBS) is used to determine the market share of each mode - time-of-day combination. The
hourly matrix for mode CAR during time-of-day PEAK is obtained from the NRM-west. This ma-
trix acts as the main O-D data source, and is up-scaled to the two total travel demands for each
user-class (based on the choice model probabilities).

The used market shares are assumed to represent user-class PEAK-PREF. No figures are avail-
able on the number of travellers that have a preference to travel in the peak period. Therefore,
it is assumed that 10% of the commuters has no preference for the time-of-day he or she trav-
els in, i.e. they belong to user-group NO-PREF. The other 90% belongs to user-group PEAK-PREF.
Almost one third (32%) of the Dutch commuters have the possibility to work from home
(Beerepoot and Dijkers, 2013). The commuters that decide to stay-at-home, work at average
6 hours per week from home. We estimate that this leads to the average avoidance of one leg
per week (e.g., by working from home one day per two weeks). This leads to a market share
of 3.2% for mode HOME. The estimated amount of travellers that avoid the peak varies over
studies (Schaap et al., 2014). Based on matrix totals from the NRM, data from the Dutch CBS,
and expert judgement, the market shares in Table 7.2 are derived.

Based on these market shares and the f (PEAK;CAR) (from NRM-west) several parameters of the
choice model are calibrated. By means of the method of least squares, three alternative specific
constants (ASCCAR, ASCSHOULDER, and ASCHOME) and the scale parameter µ are computed. The
non-linear optimization toolbox of Matlab has been used to perform the optimization. See
Table 7.1 for the results. An additional product of this calibration is the total demand Du per
user-class u. The demands Du have been post-processed to assure that for each O-D-pair the
total demand is either zero or at least one. This is done by geographical grouping and avoids

7Note that costs are actually not dependent on user-classes in this case study.
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Table 7.1.: Parameter values for the choice model. Each value (except for the scales) can be
interpreted as negative willingness-to-pay.

Parameter Value Description

ASCSHOULDER −3.205 Penalty (in e) for travelling in the shoulder by user-
class PEAK-PREF. Obtained by calibration.

ASCCAR −1.505 Penalty (in e) for travelling by mode CAR. Obtained
by calibration.

ASCHOME −29.91 Penalty (in e) for the stay-at-home mode HOME. Ob-
tained by calibration.

VOTIVT-FF

(CAR;u) −9.25 Value of time (in e/hour) for in-vehicle time in the
car during free-flow conditions. Retrieved from Warf-
femius (2013).

VOTIVT-CONG

(CAR;u) −14.245 Value of time (in e/hour) for in-vehicle time in the
car during congested conditions. Based on a factor
1.54 on top of the free-flow travel time (Abrantes and
Wardman, 2011, Table 13).

VOTIVT

(TRAIN;u) −11.50 Value of time (in e/hour) for in-vehicle time in the
train. Retrieved from Warffemius (2013).

VOTWAIT

(TRAIN;u) −26.74 Value of time (in e/hour) for waiting for the train.
Based on a factor 2.32 on top of the in-vehicle time of
the train (Abrantes and Wardman, 2011, Table 14).

VOTA-E

(TRAIN;u) −16.445 Value of time (in e/hour) for access and egress times
to the train. Based on a factor 1.43 on top of the
in-vehicle time of the train (Abrantes and Wardman,
2011, Table 13).

µ 3.856 Overall scale. Obtained by calibration.
µMODE 9.498 Mode-specific scale. Fixed at µ/0.406, where 0.406

is the ratio between general and mode-specific scales
in the nested logit structure of the NRM for com-
muters.

Table 7.2.: Market shares for user-class with a preference to travel in the peak period.

Mode Time-of-day Market share

CAR PEAK 75.97%
CAR SHOULDER 7.48%
TRAIN PEAK 12.15%
TRAIN SHOULDER 1.20%
HOME · 3.20%
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Figure 7.5.: Histogram of the number of routes per O-D-pair.

many computations with small amounts of traffic in the simulation.
The final step of the set-up is to generate routes of each O-D-pair with a positive demand.

This is done by means of a Static Traffic Assignment (STA) equilibrium using the volume
averaging method in OmniTRANS, allowing up to twelve routes per O-D-pair. For the almost
350 000 O-D-pairs with positive demand, a total of almost 840 000 routes has been generated,
see Figure 7.5 for the distribution of number of routes. In the calibrated QDNL-model the
travellers of the two user-classes experience more than 110 000 loss hours each morning, of
which almost 90 000 are experienced in the PEAK period.

7.3. CASE STUDY PROBLEM FORMULATION

In the previous section almost all ingredients have been presented to describe the overall prob-
lem formulation of the transport pricing case study for the Randstad. The lower level and its
notation is summarized in Figure 7.6; this is same flow chart as presented earlier, but it now
shows the corresponding resources. The last ingredient is the formalization of the effects with
their levels and the formulation of the stakeholders’ objective functions.

National Government
• Expected maximum utility of each commuter. (E-MAX-U) The utility function for each

traveller is normalized such that its unit is euro. This utility contains regular travel time,
delay, and travel costs. Since travelling is associated with disutility, this component
will be negative. By the way, the benefits of travelling are taken into implicitly since a
stay-at-home alternative exists with a strong disutilty. Based on the distribution of the
maximum utility of multiplicative choice models (see Equation (4.86)), the expected
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π

Equations (7.2), (7.5),
and (7.6)

τIVT

(T ;r), τ
WAIT

(T ;r), τ
A-E

(T ;r),
κ(T ;r;u), ∀r ∈ RTRAIN

Du = ∪o/d∈O/DD(u;o/d),
∀u ∈ U

f (T ;r)/2, ∀r ∈ CAR

f (T ;r), ∀r ∈ TRAIN

Section 3.3, Chapter 5

Equation (4.39)

Equations (3.22),
(3.23), (3.26)

L,N ,O,D

τIVT-FF

(T ;r) , τIVT-CONG

(T ;r) , κ(T ;r;u),
∀r ∈ CAR

γ

Figure 7.6.: Flowchart identical to the flowchart of Figure 7.4, but now with corresponding
variables and equations.
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maximum utility can be derived. Denote

Umax

(o/d;u) = Emax
c∈Co/d

U(c,u) (7.7)

as the expected maximum utility of user-class u ∈ U for O-D-pair o/d ∈ O/D. Its closed
formula is provided in the last row and last column of Table 4.1. Then define the effect
level as:

γE-MAX-U =
∑
u∈U

∑
o/d∈O/D

Umax

(o/d;u) D(u,o/d) . (7.8)

• Income from the kilometre charge. (KM-INC) Assume that the revenue of the kilometre
charge is recycled in the transport system. For example, by lowering other taxes, such as
the annual registration fee.8 The charge accounts negatively in the expected maximum
utility of the travellers. But since it is recycled, it has a neutral influence on social wel-
fare. Therefore, this component is introduced to compensate for the disutility. Let l(T ;r)
be the length of route r ∈ CAR (the weighted average from the route choice equilibrium
model) for time-of-day T (it depends on the time-of-day due to the weighting), then the
effect level is denoted as

γKM-INC =
∑

r∈CAR

∑
T∈T

lr f (T ;r) . (7.9)

• Income from the cordon charge. (CRDN-INC) Similar as above. In spite of the fact that
the municipality controls the cordon charge, also these revenues are recycled. Therefore
also the cordon charge is neutral with respect to social welfare. Let n(T ;r) be the number
of times route r ∈ R enters the cordon for time-of-day T (again the weighted average
over all O-D-pair routes), then the effect level γCRDN-INC is computed by:

γCRDN-INC =
∑

r∈CAR

∑
T∈T

nr f (T ;r) . (7.10)

• Total emissions in the study area. (EMIS-STUDY) In the study area, emissions of vehic-
ular traffic are modelled according to the ARTEMIS model (see Wismans (2012) for
more details on this emission model). The detriment per emission type is e26.60 per
tonne Carbon Monoxide (CO), e25.00 per tonne Carbon Dioxide (CO2), e10.60 per
kilogram Nitrogen Oxides (NOX), and e64.80 per kilogram Particle Matter < 10 mi-
crometre (PM10) (according to de Bruyn et al., 2010, Table 50). Denote its effect level
with γEMIS-STUDY.

• Total value of loss hours for the other travellers. (LH-OTHER) The choice behaviour of
non-commuters is not addressed in this case study. This is a small group of travelers that
is exogenous to the choice model, but that does experience travel time. This group is
therefore neither included in the maximum expected utility. To compensate for this the
value of travel time of this group is also included separately. Let ρ(T ;r) be the number
of other travellers for the O-D-pair that belongs to r ∈ R during time-of-day T , then the
effect level γLH-OTHER is computed by:

γLH-OTHER =
∑

r∈CAR

∑
T∈T

ρ(T ;r) ×VOTIVT-CONG

(CAR;u) × τ
IVT-CONG

(T ;r) . (7.11)

8Assume that the recycling does induce a change in travel behaviour.
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Finally, the objective function of GOV is rather simple because all effect levels are already
monetized. It equals

HGOV(γ) = γE-MAX-U+γKM-INC+γCRDN-INC+γEMIS-STUDY +γLH-OTHER. (7.12)

Municipality of Amsterdam
• Accessibility: value of loss hours of traffic towards Amsterdam. (ACCESS) For all

traffic that has its destination within Amsterdam, the delay is monetized. Since the
morning commute is considered, this is a good indication of the accessibility of the city.
Let ρr be as above and let O/DAMS ⊂ O/D be the O-D-pairs for which it holds that destination
d is within Amsterdam, and define the effect level as

γACCESS =
∑
u∈U

∑
o/d∈O/DAMS

∑
{(T ;r)∈Co/d |r∈CAR}

(
ρ(T ;r) +P(T ;r;u) D(u;o/d)

)
×VOTIVT-CONG

(CAR;u) × τ
IVT-CONG

(T ;r) .

(7.13)
• Loss of e15.- for missed economic activity. (LOSS) When commuters decide to work

from home, less economic activity occurs in the city. Less office space is occupied
and less expenses are made within the city. The value of this loss (e15.-) is a coarse
estimation by the author. It is only assigned to travellers with (intentional) destination
Amsterdam. Let O/DAMS as above, and define the effect level as

γLOSS =
∑
u∈U

∑
o/d∈O/DAMS

∑
{(T ;r)∈Co/d |r=R0}

15×P(T ;r;u) D(u;o/d) . (7.14)

• Total emissions within Amsterdam. (EMIS-AMS) Similar as for social welfare, but now
only for traffic within the city’s boundaries. Also here the detriment per emission type
is e26.60 per tonne CO, e25.00 per tonne CO2, e10.60 per kilogram NOX, and e64.80
per kilogram PM10 (according to de Bruyn et al., 2010, Table 50). Denote its effect level
with γEMIS-AMS.

Finally, the objective function of AMS equals

HAMS(γ) = γACCESS+γLOSS+γEMIS-AMS. (7.15)

Train Operator
• Income from ticket sales. (TRAIN-INC) The income is based on the number of travellers,

the original price in NRM-west, and the price factor. Let π̃r be the current fare for route
r ∈ TRAIN, then the total income is denoted as

γTRAIN-INC =
∑

r∈TRAIN

πFARE-ONπ̃r f (PEAK;r) + πFARE-OFFπ̃r f (SHOULDER;r) . (7.16)

• Costs. (TRAIN-COST) Using the status quo, marginal costs for passenger kilometres during
the peak and shoulder periods are derived. From the assumption that spare capacity
exists in the shoulder, and that creating additional capacity in the peak period is costly,
the marginal costs per passenger kilometre are e0.14 in the peak and e0.04 in the
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shoulder. It is assumed that currently no loss or profit is made by setting γTRAIN-COST =

γTRAIN-INC := γ0
TRAIN-COST

, i.e., the income under the zero-scenario. And let f 0
(T ;r) be the flows

under the scenario for route r ∈ TRAIN during time-of-day T ∈ T . This effect level is then
defined as

γTRAIN-COST = *
,

∑
r∈TRAIN

∑
T∈T

(
f (T ;r) − f 0

(T ;r)

)
× (0.14δPEAK

T +0.04δSHOULDER

T )+
-
−γ0

TRAIN-COST
. (7.17)

The difference between income and cost, i.e., profit, is the objective function of TR-OP:

HTR-OP(γ) = γTRAIN-INC+γTRAIN-COST. (7.18)

The corresponding MSP of the case study can now be formulated, and equals:{
max

πpGOV
∈ΠpGOV

HGOV(γ); max
πpAMS

∈ΠpAMS

HAMS(γ); max
πpTR-OP

∈ΠpTR-OP

HTR-OP(γ)
}

subject to γ = E(π),
(7.19)

Note that by applying Equations (3.27) and (3.29), function E can be captured in a variational
inequality problem formulation. The next section will analyse this problem formulation.

7.4. RESULTS

For all 216 possible pricing schemes the underlying traffic assignment model has been sim-
ulated. The calculation time to reach an equilibrium was about 23 hours for each pricing,
and it was possible to analyse three schemes in parallel on an Intel i5 3.2 GHz, 16GB RAM
machine. First, consider the results when only a single stakeholder is active. Tables 7.3, 7.4
and 7.5 show the effect of the respectively stakeholder GOV’s, AMS’s and TR-OP’s pricing mea-
sure on its objective function. Note that the shown results are relative to the zero scenario in
the remainder of this chapter, i.e. Hs (π) := Hs (π) −Hs (π0),∀s ∈ S, with π0 ≡ 0. Also note
that these first results assume that the other stakeholders do not act. All results represent one
morning commute.

For each of the stakeholders, time differentiated price levels are more beneficial. The na-
tional government is best off with a peak charge of e0.10 and a shoulder charge of e0.05. For
the municipality of Amsterdam it holds that a peak hour cordon charge of e8 combined with
a e4 cordon charge during the shoulder period leads to highest improvement in its economic
position. Finally, the profit of the train operator is maximized when the fare is increased with
20 % in the peak period only. In general, one could state time differentiated prices are better
than constant prices. This indicates that there is indeed spare capacity in the transport system
during the shoulder period, and that it is beneficial to give an incentive to travellers to switch
to the shoulder in order to reduce external effects in the peak period. Another remark is that
for stakeholders GOV and TR-OP it is beneficial to employ their maximum pricing level during
the peak period; it could be interesting to investigate even higher prices, although those might
not be acceptable. These basic results do not show what happens when they are introduced
simultaneously.
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Table 7.3.: Social welfare improvement by introducing a kilometre charge (in ke)

KM-ON

KM-OFF e0.00 e0.05 e0.10

e0.00 0 901 1 161
e0.05 — 572 1 202
e0.10 — — 795

Table 7.4.: Improvement of the economic position of Amsterdam by introducing a cordon
charge (in ke)

CRDN-ON

CRDN-OFF e0.00 e4.00 e8.00

e0.00 0 68 47
e4.00 — 47 69
e8.00 — — 51

Table 7.5.: Shift in profit by adjusting a train fares (in ke)

FARE-ON

FARE-OFF −20% 0% 20%

−20% −174 2 130
0% — 0 139

20% — — 135
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Figure 7.7.: Scatter plot to indicate relation between objective functions (in e). Large dots lie
in the Pareto frontier based on all three stakeholders.

Figures 7.7, 7.8 and 7.9 each show scatter plots of two out of three objective functions based
on the pricing schemes’ simulation results. Also the Pareto-optimal solutions are shown; these
are the point for which no objective can be improved without worsening any of the other objec-
tives. This points form the so-called Pareto-frontier, which – contrary to the Nash-equilibrium
– does not account for which stakeholder controls which pricing scheme. However, it does
give a good overview of which pricing schemes are ‘good’ and ‘stable’. With three variables,
the Pareto-frontier is a (curved) plane in R3. Figures 7.7, 7.8 and 7.9 provide frontal, side and
top views of this space. Notice that for HTR-OP constantly three groups (or clouds) of points can
be identified; these are constituted by the train fare during peak hours. Additionally, HGOV and
HAMS are positively correlated, while HTR-OP is negatively correlated with both other stakehold-
ers’ objective functions. This negative correlation points at conflicting interests of the train
operator with the other stakeholders.

7.4.1. THE TU-GAME

Next, the theory of Chapter 6 is applied. Table 7.6 provides an overview of the results of all
coalitions for all relevant pricing schemes; the first columns define the pricing schemes, and
the latter columns provide the combined objective function values for coalitions. A pricing
scheme is called relevant (and is thus included) if it provides the overall maximum objective
of a coalition, or if it is used to derive the TU-game coalition values (i.e., when a Nash-
equilibrium exists for the pricing scheme). The rows are sorted on the objective function of
the grand coalition. So, the first row shows the resulting pricing scheme π∗. A total sum of
1 397 ke can be allocated by the cooperative solution concepts. The results table shows again
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Figure 7.8.: Scatter plot to indicate relation between objective functions (in e). Large dots lie
in the Pareto frontier based on all three stakeholders.
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Figure 7.9.: Scatter plot to indicate relation between objective functions (in e). Large dots lie
in the Pareto frontier based on all three stakeholders.
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Table 7.6.: Overview of the most important pricing schemes

Pricing schemes Coalition objectives
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0.10 0.05 0 0 1.2 0.8 1 143 55 199 1 198 1 342 254 1 397
0.10 0.05 0 0 1.2 1 1 109 51 216 1 160 1 325 266 1 376
0.10 0.05 4 4 1.2 0.8 1 077 55 215 1 132 1 292 270 1 347
0.10 0.00 4 4 1.2 1 1 057 62 204 1 119 1 261 267 1 324
0.10 0.05 0 0 0.8 0.8 1 330 73 −330 1 403 1 000 −256 1 074
0.10 0.00 4 4 0.8 0.8 1 240 84 −307 1 324 934 −223 1 018
0.10 0.10 8 4 1.2 1 491 36 267 527 758 303 794
0.10 0.10 8 8 1.2 1 402 26 275 428 677 302 703

that stakeholder TR-OP’s interests are conflicting with the other two.
Using Definitions 6.1 and 6.2 the stability and equilibrium conditions of the objective values

are determined. Table 7.7 shows all stable coalitions per pricing scheme and Table 7.8 shows
all Nash-equilibria.

The second row shows, amongst others, the Nash-equilibrium with competition between all
stakeholders. When it is assumed no cooperation exists between stakeholders and TU-game
theory is omitted, then this pricing scheme is the resulting scheme. It is remarkable that (1)
the only strategic difference between the cooperative and non-cooperative solutions is the train
fare in the shoulder, and (2) that no cordon charge will be implemented around Amsterdam.
The latter is due to the large improvement of the city’s accessibility and economic position by
solely implementing the kilometre charge. The additional delay reduction by a cordon charge
is not profitable against the additional economic loss by the increasing amount of travellers
that decide not to travel towards Amsterdam.

Table 7.9 shows the TU-game with the coalition values based on Definition 6.3. Only the
first four rows will be used to determine the coalition values. For each partition, and thus for
each coalition, at least one Nash-equilibrium exists.9 Therefore all coalition values can be re-
trieved from the simulation results, and no coaltion will be assigned with zero value. For coali-
tion {GOV} and {AMS} the minimum over partition’ Nash-equilibria actually compared multiple
pricing schemes (respectively over rows 2&4 and rows 2&3). The second row corresponds
with each for coalition {TR-OP} relevant partition’s Nash-equilibrium. All other coalitions ap-
pear in only one partition.

For the calculation of the solution concepts it is more convenient to work with zero-normalized

9This implies that no issues with existence of equilibria are apparent for the case study.
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Table 7.7.: Stable coalitions per pricing scheme
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Table 7.8.: Nash-equilibria per pricing scheme
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Table 7.9.: The TU-game coalition values and the zero-normalized game v̄

C v(C) v̄(C)

∅ 0 0
{GOV} 1 057 0
{AMS} 51 0
{TR-OP} 216 0
{GOV,AMS} 1 160 0
{GOV,TR-OP} 1 292 19
{AMS,TR-OP} 267 52
S 1 397 73

games in which every single-stakeholder coalition has zero value. Therefore, Table 7.9 also
provides the equivalent zero-normalized game (S,v̄), with v̄(C) := v(C) −

∑
s∈C v({s}),∀C ⊆

S.

7.4.2. COOPERATIVE SOLUTION CONCEPTS

The cooperative solution concepts for TU-game (S,v) as defined in Table 7.9 lead to possible
allocations ( χGOV, χAMS, χTR-OP) ∈ R3. The Shapley and compromise value are computed based
on zero-normalized game (S,v̄); solution concept on original and zero-normalized games are
equivalent. If χ̄ is an allocation of (S,v̄), then the corresponding (S,v)-game allocation equals
χs = χ̄s + v({s}),∀s ∈ S.

The core of the original game equals

K (S,v) = {χ |
χGOV+ χAMS+ χTR-OP = 1 397,

χGOV ≥ 1 057,
χAMS ≥ 51,
χTR-OP ≥ 216,

χGOV+ χAMS ≥ 1 160,
χGOV+ χTR-OP ≥ 1 292,
χAMS+ χTR-OP ≥ 267}.

(7.20)

The Shapley value computation for the zero-normalized game is presented in Table 7.10,
which also presents the Shapley value of the original game. Determining upper and lower
bound before applying Equation (6.10) to compute the compromise value leads to the results
in Table 7.11 (with α = 36/73).

With exactly three stakeholders elegant visualisations of the solution concepts can be made
by drawing the intersection of R3 with efficient allocations. This is done in Figure 7.10, where
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Table 7.10.: Shapley value computation of TU-game (S,v̄)

Marginal contributions
Ordering GOV AMS TR-OP

GOV→ AMS→ TR-OP 0 52 21
GOV→ TR-OP→ AMS 0 54 19
AMS→ GOV→ TR-OP 52 0 21
AMS→ TR-OP→ GOV 73 0 0
TR-OP→ GOV→ AMS 19 54 0
TR-OP→ AMS→ GOV 73 0 0

ζ(S,v̄) 361
6 262

3 101
6

ζ(S,v) 1 0931
6 772

3 2261
6

Table 7.11.: Compromise value computation of TU-game (S,v̄) for each stakeholder s ∈ S

s Ω ω η(S,v̄) η(S,v)

GOV 73 0 36 1
148 1 093 1

148
AMS 54 0 2647

74 7747
74

TR-OP 21 0 10 53
148 226 53

148
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(1130,51,216)
(1057,51,289)
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Figure 7.10.: Cooperative game theory solution concepts presented in the plane in R3 defined
by

∑
s∈S χs = v(S). The light grey area represents all efficient and stakeholder

rational allocations (i.e., the so-called imputations); the dark grey area represents
the core; the white crosses lie very close to each other and represent the Shapley
and compromise values. The lines represent the inequalities that define the core.
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the labeled lines correspond with coalition dissidence constraints from the core (Equation
7.20)): a→ {GOV}, b→ {AMS}, c→ {TR-OP}, d→ {AMS,TR-OP}, e→ {GOV,TR-OP}, and f→ {GOV,AMS}.
The light grey triangle, determined by lines a, b and c, represents the so-called imputations. In
every corner one of the stakeholder receives it maximal achievable allocation when the others
claim their minimum. These allocation are labelled ( χGOV, χAMS, χTR-OP). The set of imputations
does not consider coalitions. As shown, the core in this game is not empty, which means that
there are stable allocations. The Shapley value and the compromise value are almost equal
and also depicted in the plot.

As discussed in Section 6.4, both the Shapley and compromise value can be derived from
axioms and/or fairness criteria. For this case study the Shapley value lies within the core,
which is desirable, but not true in general. The fact that ζ(S,v) and η(S,v) are almost equal,
makes this allocation very favourable. The fairness criteria of both values hold. So, the average
marginal contributions and the compromise between the upper and lower bound are almost
similar. When this allocation is compared to the actual objectives retrieved by resulting pricing
scheme π∗ (Table 7.6, first row), then it becomes clear that GOV has to pay around 50 ke to the
other stakeholders (23 ke to AMS, 27 ke to TR-OP).

Some other characteristics of the resulting pricing scheme π∗ – compared to the zero-
scenario – is that the loss hours decline with 60% in the peak period and 45% overall; the
emissions inside the study area declines with about 6%; stay-at-home alternative mode HOME

increases with 60%; and there is an increase of 58% of train passengers. These results do of
course come with the disclaimer that the purpose of the case study is to show the working of
the applied methods, and to get insight in how stakeholders interact. Some assumptions need
to be released and more details need to be modelled, before the case study is a direct tool to
assist Dutch policy makers.

7.4.3. THE PRICE OF COMPETITION

Finally, consider the price of competition for this case study. This concept is similar to the
price of of anarchy as discussed in Section 2.2.3. The price of competition can be interpreted
as the price of anarchy with respect to cooperation and competion between stakeholder (i.e.,
decision makers). This is different from the original price of anarchy that analyses the ratio
between the user equilibrium and system optimum assignments, which is not considered here.
One could say that the price of competition resembles the price of stakeholder anarchy, versus
the original price of travellers anarchy.

Assume that in the cooperative game the stakeholders accept the single point solution con-
cepts and that they agree on allocation χ∗ = (1 093,78,226), and remember that resulting
pricing scheme π∗ equals the first row of Table 7.6. If there was no cooperation whatsoever,
then competition would lead to the Nash-equilibrium on the second row of 7.6; denote the
corresponding pricing scheme for competition as π̃. Although that the difference between π∗

and π̃ is small, the difference in outcomes is substantial. Table 7.12 summarizes these results.
The overall price of competition is small in the relative sense (101.45%); however, still 18

ke is saved every morning and similar results might apply to the afternoon/evening. Remark-
able are the prices of competition per stakeholder. TR-OP can improve with about 5% under
cooperation. AMS on the other, has rather low resulting objective functions compared to the
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Table 7.12.: The cooperative solution, the non-cooperative solution, and the price of competi-
tion for each stakeholder s ∈ S

s Hs (π∗) χ∗ Hs (π̃) Price of Competition

GOV 1 143 1 093 1 109 98.56%
AMS 55 78 51 150.98%
TR-OP 199 226 216 104.63%

Total 1 397 1 397 1 379 101.45%

resulting allocation, and has a large price of competition of 150.98%. Finally, the most re-
markable result is that GOV does not benefit from cooperation and has a price of competition
lower than 100%. The questions that rise are: “How is it possible that χ∗

GOV
is smaller than

HGOV(π̃∗)? ” and “Why does GOV accept this allocation?”. The answers lie in the coalition that
can be formed by AMS and TR-OP. In the non-cooperative equilibrium, this coalition is not al-
lowed to be formed because all stakeholders compete. This causes GOV to end up in a relatively
good situation. In the cooperative setting coalition {AMS,TR-OP} is not stable for π̃; therefore,
GOV can not guarantee its objective value that corresponds to π̃ when the others cooperate.

7.5. SYNTHESIS AND DISCUSSION

The case study presented in this chapter has formulated and analysed a bi-level MSP for the
Randstad area in the Netherlands. Three stakeholders were involved that want to implement
three different pricing measures (a kilometre charge, a cordon charge, a train fare adjustment).
The upper level has used the cooperative game theory framework presented in Chapter 6. To
map pricing schemes onto effect levels in the lower level a comprehensive traffic assignment
model has been used. The basis for this is QDTA as presented in Chapter 3. The travellers’
response to the pricing measures was captured in terms of mode choice, time-of-day choice,
and route choice with GMEV models (see Chapter 4). Amongst other, the external effects
emissions and delay were computed in detail; this has allowed a fairly detailed calculation of
the welfare effects.

The main results of the case study are the core, Shapley value and compromise value. Both
the values lie inside the core – meaning that no stakeholder or coalition has a direct objection
– and they are almost equal. So this allocation satisfies multiple fairness criteria. In addition,
the non-cooperative Nash-equilibrium (i.e., the result under competition) and an analysis of
the price of competition, which is not significant, is provided. A remarkable result is that one
of the stakeholders, the national government, is worse off under cooperation. Paradoxically,
cooperation leads to a social welfare reduction due to the power of the other stakeholders.

It has become clear that the national government and the train operator have conflicting
interests. However, under cooperation its combined objective is maximized. The insights
based on the game theoretical solution concepts would not have been retrieved from traditional
social welfare optimization. In addition, more realism is obtained with the chosen assignment
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model, and the calculation of delay and emissions. As much as possible, data from the NRM-
west-model is used; this model is extensively estimated and calibrated.

However, the case study uses simplifying assumptions and has hypothetical objectives of
stakeholders. For this reason, the policy implications have to be regarded in the correct con-
text. Some important simplyfying assumptions include: (1) The population is differentiated
into only two user-classes; therefore, taste heterogeneity between commuters is limited. In
future studies, (simultaneous) choice models should be estimated with more user-classes to
provide more realism. (2) Future studies should also have feedback from public transport
crowding in the choice models. (3) The objective functions, especially that of the stakeholder
TR-OP should be more detailed, and they should be set up in dialogues with each stakeholder.
(4) The costs of implementing and operating new transport pricing systems has not been con-
sidered. These costs could be a substantial, and could therefore suppress welfare gains.
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CHAPTER 8.

CONCLUSIONS AND DISCUSSION

This final chapter summarizes the findings and conclusions of the presented
research by assessing to which extent the requirements for strategic planning
models for passenger transport pricing are satisfied. The tools provided in this
dissertation can be used to satisfy these requirements. The added value of
the research for practice and policy makers is stated separately, as well as the
methodological contributions. Finally, future directions for strategic network
modelling for passenger transport pricing are provided that show which chal-
lenges still exist.

The introductory chapter described how the transport system functions inefficiently and sub-
optimally. By travelling, people put others at disadvantages, like congestion and exposure to
emissions. If travellers would make different choices, e.g., if they would avoid peak periods or
use more public transport instead of the car, the total external effects and their impacts would
be smaller. By providing incentives for travellers – through innovative pricing strategies – to
change their behaviour, the performance of the transport system could improve. By innovative
pricing, travellers can be made responsible for their caused effects. However, practically ap-
plicable strategic planning models that could support the decision making process lack realism
at several aspects. In addition, public and political support for innovative pricing policies is
often low.

The research presented in this dissertation addresses aspects of strategic planning models for
transport pricing. The aim has been to increase realism of existing strategic transport planning
tools, while at the same time not significantly increasing the computational complexity of
these models in order to keep them practically applicable on large scale networks. This could
improve the credibility of strategic planning models, and could increase public and political
support. The presented holistic framework allows to incorporate most relevant travel responses
to pricing measures, and a stakeholder model is included that can identify potential conflicts
of interest between multiple stakeholder. The latter game theoretical model also provides
solution concepts to settle identified conflicts.

This dissertation has adopted the for transport pricing widely used bi-level modelling frame-
work presented in Chapter 2, see Figure 8.1. The two levels correspond with the decision mak-
ing processes of respectively the stakeholders and the travellers. The upper level (presented in
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Stakeholders decision
making process

Pricing
scheme

Travellers’ behaviour
and interaction with
transport infrastructure

Effects

Figure 8.1.: Bi-level model: schematic overview

Part II) represents the stakeholders (i.e., the decision makers or price setters). The stakehold-
ers all have objectives based on several effects (e.g., congestion, emissions). They set their
strategy such that their objective will be optimized. To do this they have to take the responses
of the travellers into account, as well as the actions of the other stakeholders. This problem
formulation extends the traditional transport pricing problems with only one stakeholder, and
is resolved with Transferable Utility (TU)-game theory. This theory provides multiple solution
concepts.

The lower level describes (presented in Part I) the behaviour of travellers and their interac-
tion with the transport infrastructure. A Quasi-Dynamic Traffic Assignment (QDTA) approach
is adopted here that is used to quantify the effect of the responses of the travellers towards a
pricing scheme. It consists of a travel behaviour component, and a network loading compo-
nent.

The first component describes and simulates how travellers make their choices. This will
ultimately be expressed in different traffic flows. The component makes use of Generalized
Multivariate Extreme Value (GMEV) models that consider mode, route and time-of-day choice
simultaneously. For the network loading component we use Static Traffic Assignment with
Queuing (STAQ) as a Quasi-Dynamic Network Loading (QDNL) procedure in OmniTRANS
that propagates traffic flows by applying capacity constraints following from a proper node
model. Both components are applied in an iterative fashion to establish stable solution called
a user equilibrium in which no traveller can improve their utility by unilaterally changing
route, mode, or time-of-day it travels.

The upper and lower level meet in the case study for the Randstad area presented in Chapter
7. The study considers three stakeholders, contains time-differentiated pricing measures, con-
tains multiple modes, contains a large road network, considers two user-classes, and compares
multiple solution concepts. The case study illustrates the application of developed methodolo-
gies, and feasibility of ‘large-scale’ modelling for transport pricing.
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8.1. ASSESSMENT OF THE REQUIREMENTS

In Sections 2.5.1 and 2.5.2 several requirements for the bi-level strategic planning model have
been identified. This section repeats those requirements and assesses how they can be satisfied
in the provided modelling framework. The requirements were categorized into three types: the
upper level as a whole, and the travel choices and traffic representation of the lower level. For
each of the requirements the accompanying sections in the dissertation are provided.

Upper level
• Rational stakeholder behaviour

“Stakeholders’ preferences should be reflected by their objective function. They will
act only in favour of their objective. In case of negotiations and/or cooperation, the
used strategy of each stakeholder is rational, meaning that they each optimize their own
objective.”
SECTION 2.5 The Multiple Stakeholders Problem (MSP) is defined such that it uses an

objective function for each stakeholder, and each of these objectives is optimized.
This implies rational stakeholder behaviour.

SECTION 6.3 The presented solution concepts of the TU-game seek for solutions of
the MSP that is accepted by all stakeholders. If a stakeholder can ‘claim’ more
than the amount that is assigned to it in some solution, the stakeholder will reject
the solution. However, differences in solution concepts still exist. Section 6.4
describes relevant (mathematical) properties of the concepts.

• Reflection of different cooperation formations
“The upper level should be able to analyse different mutual attitudes of stakeholders.
Cooperative and competitive behaviour is considered as endogenous. This allows anal-
ysis of the price of competition.”
CHAPTER 6 The theory of TU-games is based on cooperation between players. There-

fore, this framework is very well suited to reflect cooperative stakeholder behviour.
SECTION 7.4.3 Solutions based on non-cooperative behaviour are a side product of

the TU-game framework. Within the case study a specific comparison between
cooperation and competition has been carried out. This has led to the so-called
price of competition.

SECTION 6.2.1 A new method is presented to translate the MSP into a TU-game for-
mulation. This translation considers stability of pricing schemes for coalitions and
Nash-equilibria for partitions. This ensures that the value (i.e., ‘profit’) of a coali-
tion resembles worst-case behaviour of all stakeholders outside the coalition.

Lower level: Travel Choices
• Incorporation of differences in travellers’ responses

“There is a large difference in choice behaviour between different (types of) travellers.
The model should address this by either explicitly grouping travellers according to simi-
lar characteristics, or by taking the taste heterogeneity implicitly into account by random
variates in the model.”
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SECTION 3.1.1 The QDTA distinguishes different user-classes. Each of them can have
different valuations of time.

SECTION 4.2 The desired utility formulation of each choice alternative contains a dis-
tribution of foreseen travel times. Section 4.4 shows that the multiplicative Mul-
tivariate Extreme Value (MEV) models resemble all systematic components in the
utility formulation as random variates.

• Incorporation of different travel time types
“Travellers evaluate their time differently per mode, but also, one hour of travelling in
congested conditions is experienced as a larger burden than one hour of travelling in
free flow conditions. Furthermore, waiting, access and egress times for pubic transport
should have different valuations.”
SECTION 3.2.3 The systemic utility specification used throughout the dissertation uses

two types of travel time for cars (viz., free-flow and congested), and three types of
train related travel time (viz., in-vehicle, waiting, and access-egress). Analysts can
easily increase or reduce the number of travel time types.

• Capturing overlap
“When two alternatives share the same characteristics (e.g., the modes or time-of-days
are equal) or when there is even physical overlap (i.e., road segments), the choice pref-
erence of a traveller will be similar for these alternatives. The red-bus blue-bus is the
textbook example of this correlation. It is required that the choice model accounts for
this overlap.”
SECTION 4.3.2 Within the family of GMEV models, generating functions determine

dependence between choice alternative’s utility distributions. Therefore, the gen-
erating function determines how overlap is handled. This dissertation discusses
multinomial (i.e., no depedencies between alternatives), path-size (i.e., a correc-
tion of the systematic utility), and two nested (i.e., impose actual covariance struc-
tures) generating functions. The latter are bounded in covariance structure by re-
strictions on the generating function that are required to obtain a sound Random
Utility Maximization (RUM) model.

SECTION 3.2.4 The transport pricing application presented in this dissertation uses a
nested structure to correct for overlap (see Fig. 3.3). The travel modes reside in
the first level, the time-of-days reside in the second level, and the routes reside
in the last level. The framework allows an (additional) generating function (e.g.,
path-size) to correct for overlap on the route choice level.

• Choice opportunities
“In planning models the possible responses of the travellers are reflected by their choice
set. The larger this set, the more diverse the responses can be. In most transport sys-
tems public transport or slow modes are an attractive alternative, and so is deviating
from the preferred departure time. The framework should be able to reflect all relevant
alternatives present in the transport system in the choice set.”
SECTION 3.2 Any number of modes, times-of-day and routes can be modelled with

the QDTA model. The associated choices are identified as the most important ones
for transport pricing assessment. The transport pricing applications in this disser-
tation contains modes car, train, and a stay-at-home alternative; two time-of-day
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alternatives (viz., on-peak and off-peak); and, a variable number of routes per
Origin-Destination (O-D)-pair.

• Individual choices based on alternatives’ properties
“Choices are made based on different observable properties (or attributes) of alterna-
tives. Each traveller values these alternatives’ properties in his/her own manner. There-
fore, it is required that the model determines the choice probabilities based directly on
these properties. Furthermore, travel cost and travel time of a trip are the most impor-
tant properties related to pricing, since they are likely to change under pricing regimes.
In addition, it should also be possible to capture travel time reliability of a trip. The
model has to address these aspects based on physical infrastructure and on its prevailing
performance given a certain pricing scheme.”
SECTION 3.2 By choosing the RUM framework for choice model, this requirement has

been satisfied. In specific, Equation (3.7) shows which attributes of alternatives are
included in the applications of this dissertation. Reliability has not been included
as an attribute.

Lower level: Traffic Phenomena and Network Representation
• Proper identification of bottlenecks

“Bottlenecks are locations in the road network where the travel demand is higher than
the capacity of the infrastructure. These occur usually at discontinuities in the transport
network, which are located at nodes in the abstraction of the network. Node models cap-
ture the traffic phenomena and conditions at nodes and are therefore a strict requirement.
Without a node model the location and severity of congestion cannot be determined.”
SECTION 3.3 The QDTA-model uses the a QDNL-model for vehicular traffic propaga-

tion that is named STAQ. The squeezing phase of this model adds capacity con-
straints stemming from bottlenecks identified by node models to Static Traffic As-
signment (STA). The traffic flow downstream of such a bottleneck is reduced,
meaning that downstream nodes are less likely to be considered wrongfully as bot-
tlenecks.

CHAPTER 5 The chapter on node models shows how the confrontation of demand and
supply occurs at discontinuities or intersections. The underlying behaviour (i.e.,
the delay drivers experience when they cross a node) of four node model instances
have been compared. Although no empirical validations of the node models exist
yet, the research provides directions on how to execute such validations.

• Queue propagation by shock waves and with spillback
“Bottleneck locations and conditions alone are not sufficient to represent traffic, because
queues occupy physical space. Therefore, the spatial dimension of congestion has to
be determined. Kinematic Wave Theory (KWT) is an elegant and simple theory that
allows propagation of traffic conditions over links. When congested conditions reach
the beginning of a link, the node model – with new input – can determine the direction
and severity of the spillback. A node model combined with KWT therefore captures
important traffic flow phenomena, such as queue growth and spillback. Computational
efficient methods exist that implement KWT. A traffic state that represents traffic flow,
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speed, and density at every location in the network is the provided output.”
SECTION 3.3 The QDTA-model uses the a QDNL-model for vehicular traffic propaga-

tion that is named STAQ. The queueing phase of this model propagates shockwaves
over the network, and resembles spillback. However, full dynamic models remain
more realistic in terms of dynamic growth of queue and temporal differences. Also,
queueing phase does not consider second order effects (e.g., the capacity drop).
Still, QDNL has a realistic average queue representation over time-of-days – espe-
cially when compared to traditional static models.

• Representative travel time calculation
“Travellers make decisions based on their foreseen travel time. One would say it is
rather simple to determine the travel times when speeds are known, and this is true when
the traffic propagation is performed with KWT as stated in the previous requirement.
However, this is listed as a separate requirement since plenty of standard models in
STA and other heuristic methods cannot determine these speeds appropriately under
congested conditions, and thus cannot report representative travel times.”
SECTION 3.3 The simulated traffic state of the network is directly derived from the

fundamental diagrams for each link. Travel times are easily deduced from the
traffic state of each link and are (potentially) observable; travel times are thus
representative.

• Representative (external) effects quantifications
“For the stakeholders holds that they want to make decisions about pricing measures
based on reliable estimates of effects. Quantities like air and noise pollution can –
just like travel time – be determined with traffic conditions as flow, density and speed.
However, just like travel time, these have to be realistic to get a good result. Due to the
importance of effects, also this is stated as a separate requirement.”
SECTION 7.3 The case study uses emissions as an important external effect. These are

quantified with an off-the-shelf model that bases the emission levels on density
and flow.

• Varying network conditions over the day
“The (average) network conditions change over the periods within the day. It is required
to capture this variability over the day by having representative time periods (e.g., hourly
intervals or different peak hours). Since the second-to-second or minute-to-minute vari-
ations are not relevant for transport pricing, a continuous or strongly discretized ap-
proach is not required.”
SECTION 3.2 Any number of time-of-days can be included in the QDTA-model. The

applications in this thesis distinguish on-peak and off-peak traffic. However, con-
tinuous time representations are not possible with the QDTA-model, and successive
time periods are independent. It is not possible to consider residual traffic to tran-
fer from period to period. Still, travel times and e.g. emission levels represent
averages over specific times-of-day.
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8.2. CONTRIBUTIONS FOR PRACTICE AND POLICY MAKERS

The framework and methods provided in this thesis are a toolbox to design strategic planning
models for transport pricing. Such a model can provide (necessary) insights in the impacts of
innovative pricing measures. Besides more detailed forecasts of traditional indicators as ac-
cessibility and emissions, also potential conflicts between stakeholders can be identified. The
game theoretical upper level approach provides multiple solution concepts on which stake-
holders (i.e., decision makers) can base and/or alter their decisions. It suggests allocations
that define monetary transfers between them.

When innovative pricing measures are considered often many alternatives have to be stud-
ied, or price levels need to be optimized. This leads to many different model runs. The work
presented in this thesis seeks a good balance between realism and computation time. With the
presented methodological advances, more detailed and more accurate analyses of innovative
pricing measures become feasible. Strategic planning models for decision support can cover
multiple modes, multiple stakeholders and large networks. This is illustrated by the case study
presented in Chapter 7.

Lack of public and political support are two of the main hurdles of innovative pricing mea-
sures. This research could alleviate these obstacles by providing models that provide insight in
possible conflicts between stakeholders on one hand, and provide more realism – and therefore
more credible results – on the other hand. The main improvement in realism is realized by us-
ing the QDTA-model (see Chapter 3). This model calculates averages per time-of-day, which is
similar to traditional static models, but with the main advantages that (1) capacity constraints
are calculated much more accurately due to the inclusion of a proper node model, and (2)
queues are placed upstream of the bottleneck (instead of inside the bottleneck). In addition,
the QDTA-model works with state-of-the-art choice models (e.g., all logit and weibit based
models). This also includes some newly presented choice models that have some favorable
properties (e.g., it resembles expected behaviour under simple network changes). Further-
more, insight is provided in which models can be applied to other O-D-pairs than they were
estimated on, without having re-estimate the parameters. See Chapter 4 for more analyses and
details on choice models.

The case study for the Randstad area in the Netherlands presented in Chapter 7 illustrates the
earlier mentioned improvements. Three stakeholders were involved that want to implement
three different pricing measures (a kilometre charge, a cordon charge, a train fare adjustment).
The underlying network is large (3 608 zones, almost 90 000 road links), and travellers could
choose between modes, whether to travel during the peak, and between multiple routes. For
216 feasible pricing schemes a network equilibrium was computed with the QDTA-model.
Three solution concepts from TU-game theory have been analysed: the core, the Shapley
value and the compromise value. Each of them satisfies multiple fairness criteria.

The case study uses hypothetical stakeholder objectives and more simplifying assumptions
have been made. So note that policy implications presented here can only be made conditional
to these hypotheses and assumptions. One of the results is that the national government and
the train operator have conflicting interests. These insights – based on the game theoretical
solution concepts – would not have been retrieved from traditional social welfare optimization.
Another remarkable result is that one of the stakeholders, the national government, is worse
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off under cooperation, than under competition. Paradoxically, cooperation leads to a social
welfare reduction due to the power of the other stakeholders.

8.2.1. TOOLS FOR PRACTITIONERS

By using the theories and methods in this dissertation, practitioners (i.e., model developers and
consultants) can improve their advice to policy makers. The theory allows for the following
possibilities:

• Innovative pricing measures can be assessed. That means that pricing schemes can be
differentiated over times of the day, locations, and/or user-classes. The response of the
traveller to such a pricing scheme is determines with respect to mode, time-of-day, and
route choice. Innovative pricing measures have more potential to improve the efficiency
of the transport system than traditional pricing measures. For example, charges that
differentiate between on-peak and off-peak could motivate travellers to travel off-peak,
and thus alleviate on-peak congestion, while this is not possible with flat charges.

• The QDTA has extended traditional STA-models by adding capacity constraints from
proper bottleneck identification. In addition, physical queues are simulated upstream of
each bottleneck, under the assumption that they all start to grow at the same moment.
At the same time, computational costs remain reasonable. This provides practitioners
realistic travel times and emission levels to respond on. The QDNL model, or parts
thereof, has been implemented in commercial packages (e.g., as STAQ in OmniTRANS),
and is therefore available to practitioners.

• The QDTA model identifies bottlenecks with node models. The presented family of
node models provides behavioural insight in the origin and cause of the bottleneck. The
framework provides the delay per direction on intersections. This can for example be
used to validate the used node model, and to develop new node models.

• Practitioners can use the GMEV framework to easily implement and analyse different
types of choice models. All currently known logit- and weibit-based models with ex-
plicit route sets fit in the framework. A generating function and a generating vector are
the only ingredients to retrieve close form choice probability formulas. Also, a new
model type (M∆) is presented, that is the only model that resembles expected behaviour
under all simple network changes.

• The decision making process can be supported with the game theoretical multiple stake-
holder approach. The possible arguments put down at the negotiation table are used to
derive several solution concepts. The theory also takes the formation of coalitions into
account. Conflicting interests between stakeholders are tackled by looking for Nash-
equilibria. This approach is more comprehensive than single objective transport pricing
approaches, such as social welfare optimization. As a side products, the practitioner can
get insight in the price of competition.
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8.3. METHODOLOGICAL CONTRIBUTIONS

This section provides a list of methodological contributions of the research. The contributions
are grouped per topic.

Traffic Assignment (TA)-models for transport pricing (Chapters 2 and 3)
• For the transport pricing application as presented in Chapter 2, the choice model uses a

multiplicative utility formula which is advantageous on large networks (see Chapter 4).
Dependencies between choice alternatives are captured with a nest structure. A special
dummy mode captures the stay-at-home alternative. A simultaneous mode, time-of-day,
and route choice model with a multiplicative utility formula has not been applied before.
Any of the multiplicative Multinomial (MN), Path-Size (PS), Paired Combinatorial (PC),
or Link-Nested (LN) can be substituted for the lowest route nests.

• The used QDNL-model based on the hybrid approach presented by Brederode et al.
(2010); Bliemer et al. (2012) consisting of a squeezing phase and a queueing phase pro-
vides a balanced trade-off between efficiency and realism. The ultimately used squeez-
ing phase is presented by Bliemer et al. (2014b) and extends STA with capacity con-
straint stemming from a node model. The ultimately used queueing phase is presented
by Raadsen et al. (2014a) and provides a Dynamic Traffic Assignment (DTA)-model.
The author has contributed to the development of the problem formulation and solution
algorithms of the queueing phase (Bliemer et al., 2014b). This QDNL-model has not
been applied to transport pricing problems before, and is integrated within the equilib-
rium formulation in the modelling framework.

• The variational inequality formulation of the QDTA-model has been presented. This
allows the calculation of a gap function that shows to what extent an equilibrium has
been achieved in each iteration of the computations.

Discrete Choice Modelling: the GMEV route choice models (Chapter 4)
• Twelve route choice models – of which seven are new – have been presented in a single

framework. All models have the same closed form expression for the choice probabili-
ties. They have been assessed on multiple criteria. No framework existed that includes
all these models.

• Empirical evidence has provided this new insight: The foreseen travel time (i.e., the
travel time on which travellers base their decision) distribution’s mean and standard
deviation have a linear relationship, contrary to a linear relationship between its mean
and variance. The additive models (i.e., the logit family) are not able to capture the
random foreseen travel time in this manner, but multiplicative models (i.e., the weibit
family) do allow for this.

• The constant in systematic utility of multiplicative models does not have to be normal-
ized. This allows more degrees of freedom and a better fit on the data.

• One main advantage of the generic framework is that it can be analysed as a whole,
we show this by providing the equivalent stochastic user equilibrium formulation for all
models. This is done in the form of a variational inequality.
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• Four out of seven new models are based on a different decision rule: the Multiplicative
with Reference Route (M∆)-models. Those are the only ones that can reproduce realistic
behaviour under three different basic network changes. The (logit based) Additive (A)-
models cannot handle a change of parallel links’ characteristics, and the (weibit based)
Multiplicative (M)-models cannot handle a change of serial links’ characteristics.

• The models Multiplicative Path-Size (M-PS) and Multiplicative Path-Size with Refer-
ence Route (M∆-PS) are expected to have the best behaviour on real networks. They
can capture overlap sufficiently, and they can handle random foreseen travel time. Fur-
thermore, they perform good on tests with carefully constructed toy networks. The
models have been estimated on one dataset and validated on another dataset to assess
transferability. However, additional empirical estimation and validation is required to
conclusively assess all models.

Node models (Chapter 5)
• The Generic Class of first-order Node Models (Tampère et al., 2011) can be formulated

as a family of models based on turn delays in the form of a multi-objective optimization
problem. A turn delay is the additional time a vehicle occupies an inlink when it heads
for a certain direction, and is thus easily interpretable. Two existing (viz., directed
capacity proportional and capacity consumption equivalence) and two new node models
are member of the family.

• Two new models have been presented: the single server model where all vehicles hinder
each other at an intersection, and the equal delay at outlink model where each vehicle
with same destination undergoes an equal amount of delay.

• Solving these problems is not straightforward due to multiple objectives and unknowns.
For the single server model a very efficient solution method based on the theory of
polynomials in the max-plus algebra is presented.

• It holds for each currently known model that a balance between plausibility of the un-
derlying behaviour and computational efficiency has to be made.

• Several sets of turn delays leading to the same resulting flows can be found. The notion
of reduced capacity has been introduced to help identifying whether two results are
equivalent.

• It has been shown that for diverges all family members are equivalent and that three
out of four members yield identical results at merges. The relation between priority
parameters at merges and the family is also presented.

• The main advantage of the node model family is the behavioural interpretability of the
models due to the use of turn delays. The additional relations between turn delays,
required to select a Pareto optimal solution in terms of reduced capacities, imply a part
of the behaviour at intersections. Especially at a supply constraint, the relation between
competing turns should be determined in terms of delays.

Game Theory with Multiple Stakeholders (Chapter 6)
• The gap between multi-objective optimization (i.e., the MSP) and cooperative TU-game

theory has been bridged. By taking notion of coalitions and by using Nash-equilibria –
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based on the optimization of stakeholders’ objective functions – a TU-game with coal-
tion values has been derived.

• The solution concepts core, Shapley value, and compromise value to TU-games have
been presented in general (i.e., without the transport pricing application). The practical
aspects and policy implications of these solution concepts have been presented.

• Compared to the traditional social welfare optimization, the TU-game approach provides
a more detailed view on possible wins and losses of each stakeholder, as well under co-
operation as under competition. The assumptions of first-best pricing and social welfare
optimization that every individual of a population participates in the negotiations and
that unlimited mutual transactions between them can exist are released. The provided
framework provides a concrete interpretation of the negotiation table. The resulting
game theoretical solutions provide more feasible and more realistic ‘maximum achieve-
ments’, than can be obtained under merely social welfare optimization.

8.4. FUTURE DIRECTIONS

This final section discusses open problems in transport pricing and strategic network mod-
elling. It covers topics that have not been in the scope of this thesis, but that deserve some
words. Suggestions for research and a look forward is provided.

Origins and Destinations There are plenty of sources of error and uncertainty in strategic
network models. For example, parameters of choice models and network loading models have
to be calibrated with care, and the uncertain forecasts of socio-economic indicators and data
are the basis for future demand. The latter is included in – and given as – the travel demand
per O-D-pair in this thesis. The amount of unknowns in such a matrix equals the square of the
number of considered zones in the network. This amount of unknowns is much higher than
the amount of available data. Even when traffic is counted on every road, there is – by far –
not enough data.

Therefore, it is valuable to investigate other approaches than those with O-D matrices. A
possible direction is to consider sampling methods that sample trips and their travel choices
simultaneously. Then a ‘true’ O-D matrix is not required anymore. Davidson (2011) proposes
such an approach. The major disadvantage would be that the modelling results are merely
one draw/sample from a distribution of outcomes. Since that implies that the outcome can be
an outlier (or black swan), some repeated simulation by means of a Monte Carlo method is
required.

Another direction would be to take a data-driven approach. Floating car data become more
and more available. Such data contains trajectories (i.e., origin, destination, route, mode,
time) of trips which are very rich. The penetration grade of floating car data providers might
be limited, and the sample might be biased (e.g., towards highway users), but the data might
be rich enough to deduce travel demand. Unfortunately, such data does not provide insight
in the underlying behaviour, e.g. the choice process, so it is more difficult to assess future
scenarios.
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Networks and Intersections The case study in this thesis has shown that the network con-
figuration and specification is extremely important for the QDNL model. Since congestion
builds up upstream of bottlenecks, and spills back over intersections, it is important that the
direction (over an intersection) to which queues build up is correct. For example, at round-
abouts the queues quickly form a gridlock (in a model) because the vehicles entering the
roundabout do not give way. The QDNL model was only usable when this was resolved. Also,
several errors in the road capacity and intersection configuration were present in the Neder-
lands Regionaal Model (Dutch Regional Model) (NRM)-network. They also had to be resolved
to avoid wrongly placed and overly long queues. Compared to traditional static models, ca-
pacity constrained models are more sensitive to changes in capacity. Models with spillback
also propagate the erroneous traffic states and therefore affect larger parts of the network.

Since the node model is the mechanism that determines the severity and direction of queues,
node models need to be realistic. It should be possible to calibrate them using observations
at intersections. For highways, lane drops, merges, diverges and weaving sections can cause
bottlenecks. Empirical evidence should be provided which of the node models presented in
this thesis has the best ‘fit’ to observed traffic states. For urban road networks, a similar
approach can be taken for unsignalized and/or prioritized intersections and roundabouts. For
signalized intersections, information of the layout and priorities within the controller could be
exploited.

The node model family with turn delays presented in this thesis, can be used to develop new
models that are based on data analysis. By observing traffic at intersections under different
conditions, relations between turn delays on different turns can be retrieved. This additional
information is required, and it can only be included through empirical analysis. Section 5.3.2
introduces how occupancy times and turn delays can be observed.

Section 5.5.2 and Corthout et al. (2012) have shown that when turns of the same inlink have
different priorities at different conflicts non-uniqueness within the node model can occur. This
is a subsistent characteristic of traffic. Thus adding realism by adding a conflict, can lead to
non-uniqueness. Therefore, in the search of new node models, a balance needs to found
between two desired properties: realism and uniqueness.

Big Data The large amounts of data that are becoming more and more available will help to
make strategic network models more realistic. Road networks can be generated automatically,
which avoids manual coding errors. GPS, GSM and other data from personal devices will
allow a better estimation and calibration of the models.

On the other hand, big data will not be the holy grail. This has several reasons:
• In transport it is very important to know what the non-chosen alternatives are. The latent

demand for a road when its number of lanes is doubled can not be retrieved by big data.
And – more related to this thesis – the non-chosen alternatives of a choice set can not be
observed. Big data can only reveal chosen alternatives

• Big data is associated with privacy concerns. The main hurdle is the fact that movements
could be mapped one-to-one to individuals. That is one reason why data providers
hesitate to provide raw data (another is based on commercial reasons).
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Prediction uncertainty Big data, travel surveys, and other sources can measure, validate,
and calibrate the base year scenario in order to approximate reality better and better. However,
future scenarios always rely on the predictive power of the model, and even with all the knowl-
dge of the world, there is always a limit to the accuracy of the prediction. The magnitude of
the congestion problems in the Netherlands are in line with the economic recession and its res-
olution. No model has predicted the economic development over the last recession correctly.
Therefore, one should be careful with predictions; one could for example use bandwidths or
ensembles of model outcomes.

Multimodal trips TA-models become way more complex when multiple modes are in-
cluded. Especially, when multiple modes can be combined within a single trip. In this disser-
tation the train mode has separate access and egress modes, but there is no full flexibility on
combining modes. For example, a cordon charge or increased parking fees might stimulate
park and ride facilities. An extension of the model to allow multimodal trips would therefore
be of added value for the evaluation of innovative pricing measures. Recent research has pro-
vided more insight on this topic. Van Eck et al. (2014) describe these model complexities
and formulate requirements for multimodal transport networks. Solehmainen (2011) uses a
unified discrete choice framework for multimodal trips.

Choice sets This dissertation has an explicit choice set, which assumes that all choice al-
ternatives are given exogenously. Especially, for route sets it is difficult to determine these
a priori. When the transport system changes, excluded routes might become attractive alter-
natives. Many route generation algorithms and some route sampling approaches exist. It is
important to work with a correct sample of routes is required, for example, to obtain unbiased
parameter estimates of choice models (Frejinger et al., 2009). So, for econometrically sound
applications, sampling techniques as presented by (Frejinger et al., 2009; Flötteröd and Bier-
laire, 2013; Guevara and Ben-Akiva, 2013) have to be adapted to generate choice sets. Since
practical route generation algorithms usually do not produce correct samples, and sampling
approach are practically less feasible, it often remains a practical challenge to produce choice
sets. Section 3.2.2 also points out the importance of the composition of the choice set.

Another approach is to avoid the use of a priori generated choice sets. Route choice models
with implicit route sets (Dial, 1971; Fosgerau et al., 2013a; Papola and Marzano, 2013; Mai
et al., 2015) have endogenously generated routes that can more easily satisfy desired econo-
metrical properties. Unfortunately, these routes are not always realistic, and can sometimes
contain loops. So, both approaches have their advantages and disadvantages. Future develop-
ments in both approaches will tell which one is the best for practical applications.

Mutual influence of stakeholders The provided game theoretical approach to solve the
MSP assumes that each stakeholder has complete power over its own pricing measure. In
reality, there is not a single decision maker nor a single objective function. An example hereof
are lobby groups that influence politics. If such ‘lobbies’ are key to analyse, then additional
structures have to be introduced to the framework. Tripsigala (2014) allows these influences
within the TU-game framework by providing veto power to stakeholders without their own
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pricing measure. Another approach is to introduce an intermediate (decision) layer in which
multiple stakeholders have to decide on the measure. The latter will require a completely
different form of modelling decision making than provided this thesis.

Travel time reliability Travel time realibility (i.e., the certainty by which one can plan a trip
using some travel time) becomes more and more important for policy evaluations. Innovative
pricing measures could also be used to pursue travel time reliability. For example, Tirachini
et al. (2014) accounts for travel time variability in the setting of optimal car and bus pricing;
furthermore, they provide a literature review on travel time reliability with a focus on pricing.
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219



Strategic Network Modelling for Passenger Transport Pricing

Levinson, D. (2010). Equity effects of road pricing: A review. Transport Reviews, 30(1):33–
57.

Levinson, D. and Chang, E. (2003). A model for optimizing electronic toll collection systems.
Transportation Research Part A: Policy and Practice, 37(4):293–314.

Levinson, D. M. (1998). On whom the toll falls: A model of network financing. PhD thesis,
Institute of Transportation Studies, University of California at Berkeley.

Levinson, D. M. (1999). Tolling at a frontier: A game theoretic analysis. In Ceder, A., editor,
Proceedings of the 14th International Symposium on Transportation and Traffic Theory,
pages 173–187.

Li, B. (2011). The multinomial logit model revisited: A semi-parametric approach in discrete
choice analysis. Transportation Research Part B: Methodological, 45(3):461–473.

Lighthill, M. J. and Whitham, G. B. (1955). On kinematic waves. ii. a theory of traffic flow on
long crowded roads. Proceedings of the Royal Society of London. Series A, Mathematical
and Physical Sciences, 229(1178):pp.317–345.

Mahmassani, H., Hou, T., and Dong, J. (2012). Characterizing travel time variability in ve-
hicular traffic networks. Transportation Research Record: Journal of the Transportation
Research Board, 2315:141–152.

Mahmassani, H., Hou, T., and Saberi, M. (2013). Connecting network-wide travel time re-
liability and the network fundamental diagram of traffic flow. Transportation Research
Record: Journal of the Transportation Research Board, In Press:1–22.

Mai, T., Fosgerau, M., and Frejinger, E. (2015). A nested recursive logit model for route
choice analysis. Transportation Research Part B: Methodological, 75:100 – 112.

Maillé, P. and Stier-Moses, N. E. (2009). Eliciting coordination with rebates. Transportation
Science, 43(4):473–492.

Marzano, V. (2014). A simple procedure for the calculation of the covariances of any gener-
alized extreme value model. Transportation Research Part B: Methodological, 70(0):151–
162.

Marzano, V., Papola, A., Simonelli, F., and Vitillo, R. (2013). A practically tractable expres-
sion of the covariances of the cross-nested logit model. Transportation Research Part B:
Methodological, 57:1–11.

Mattsson, L.-G., Weibull, J. W., and Lindberg, P. O. (2014). Extreme values, invariance and
choice probabilities. Transportation Research Part B: Methodological, 59:81–95.

McFadden, D. (1974). Conditional logit analysis of qualitative choice behavior. In Zarembka,
P., editor, Frontiers in Econometrics, pages 105–142. Academic Press, New York.

220



Bibliography

McFadden, D. (1978). Modelling the choice of residential location. In Karlqvist, A.,
Lundqvist, L., Snickars, F., and Weibull, J., editors, Spatial Interaction Theory and Plan-
ning Models. North Holland.

McFadden, D. (2001). Economic choices. The American Economic Review, 91(3):pp.351–
378.

Morrison, S. A. (1986). A survey of road pricing. Transportation Research Part A: General,
20(2):87–97. Special Issue Road Pricing.

Nagurney, A. (1998). Network economics: A variational inequality approach, volume 10.
Springer.

Nakayama, S. (2013). q-generalized logit route choice an network equilibrium model. Pro-
cedia - Social and Behavioral Sciences, 80:753–763. 20th International Symposium on
Transportation and Traffic Theory (ISTTT 2013).

Nakayama, S. and Chikaraishi, M. (2015). A unified closed-form expression of logit and
weibit and its application to a transportation network equilibrium assignment. Transporta-
tion Research Procedia (of ISTTT21), 7:59–74.

Nash, J. (1951). Non-cooperative games. Annals of mathematics, pages 286–295.

Nash, J. F. et al. (1950). Equilibrium points in n-person games. Proc. Nat. Acad. Sci. USA,
36(1):48–49.

Newell, G. (1993a). A simplified theory of kinematic waves in highway traffic, part i: General
theory. Transportation Research Part B: Methodological, 27(4):281–287.

Newell, G. (1993b). A simplified theory of kinematic waves in highway traffic, part ii: Queue-
ing at freeway bottlenecks. Transportation Research Part B: Methodological, 27(4):289–
303.

Newell, G. (1993c). A simplified theory of kinematic waves in highway traffic, part iii: Multi-
destination flows. Transportation Research Part B: Methodological, 27(4):305–313.

Newell, G. (2002). A simplified car-following theory: a lower order model. Transportation
Research Part B: Methodological, 36(3):195–205.

Newman, J. P. (2008). Normalization of network generalized extreme value models. Trans-
portation Research Part B: Methodological, 42(10):958–969.

Ni, D. and Leonard II, J. D. (2005). A simplified kinematic wave model at a merge bottleneck.
Applied Mathematical Modelling, 29(11):1054–1072.

Nielsen, O. A. (2004). Behavioral responses to road pricing schemes: Description of the
danish akta experiment. Journal of Intelligent Transportation Systems, 8(4):233–251.

221



Strategic Network Modelling for Passenger Transport Pricing

Ohazulike, A. (2014). Road Pricing Mechanisms: A Game Theoretic and Multi-level Ap-
proach. PhD thesis, University of Twente.

Ortúzar, J. d. D. and Willumsen, L. G. (2011). Modelling Transport. John Wiley & Sons, Ltd.

Papola, A. (2004). Some developments on the cross-nested logit model. Transportation Re-
search Part B: Methodological, 38(9):833–851.

Papola, A. and Marzano, V. (2013). A network generalized extreme value model for route
choice allowing implicit route enumeration. Computer-Aided Civil and Infrastructure En-
gineering, 28(8):560–580.

Parry, I. W. (2009). Pricing urban congestion. Annual Review of Resource Economics,
1(1):461–484.

Parry, I. W. H., Walls, M., and Harrington, W. (2007). Automobile externalities and policies.
Journal of Economic Literature, 45(2):pp.373–399.

Pelzer, P., Geertman, S., van der Heijden, R., Hu, H., Hooimeijer, P., Huang, L., and Kang, J.
(2015). Knowledge in communicative planning practice: a different perspective for plan-
ning support systems. Environment and Planning B, pages 0–0.

Pelzer, P., Geertman, S., van der Heijden, R., and Rouwette, E. (2014). The added value
of planning support systems: A practitioner’s perspective. Computers, Environment and
Urban Systems, 48(0):16–27.

Perakis, G. (2007). The "price of anarchy" under nonlinear and asymmetric costs. Mathemat-
ics of Operations Research, 32(3):614–628.

Peters, H. (2008). Game Theory: A Multi-Leveled Approach. Springer-Verlag.

Pigou, A. C. (1920). The economics of welfare. McMillan&Co., London.

Prashker, J. and Bekhor, S. (1998). Investigation of stochastic network loading procedures.
Transportation Research Record: Journal of the Transportation Research Board, 1645(-
1):94–102.

Prashker, J. N. and Bekhor, S., S. (2004). Route choice models used in the stochastic user
equilibrium problem: A review. Transport Reviews, 24(4):437–463.

Prato, C. G. (2009). Route choice modeling: past, present and future research directions.
Journal of Choice Modelling, 2:65–100.

Prato, C. G. (2012). Meta-analysis of choice set generation effects on route choice model
estimates and predictions. Transport, 27(3):286–298.

Pravinvongvuth, S. and Chen, A. (2005). Adaptation of the paired combinatorial logit model
to the route choice problem. Transportmetrica, 1(3):223–240.

222



Bibliography

Proost, S. and Sen, A. (2006). Urban transport pricing reform with two levels of government:
a case study of brussels. Transport Policy, 13(2):127–139.

Raadsen, M. P., Bliemer, M. C., and Bell, M. G. (2014a). An efficient event-based algorithm
for solving first order dynamic network loading problems. Technical Report ITLS-WP-
14-10. ISSN 1832-570X, Institute of Transport and Logistics Studies, The University of
Sydney.

Raadsen, M. P., Bliemer, M. C., and Bell, M. G. (2014b). An efficient event-based algo-
rithm for solving first order dynamic network loading problems. In Proceedings of the 5th

International Symposium on Dynamic Traffic Assignment, Salerno, Italy.

Raadsen, M. P., Bliemer, M. C., and Bell, M. G. (2016). An efficient and exact event-based
algorithm for solving simplified first order dynamic network loading problems in continuous
time. Transportation Research Part B: Methodological, 92, Part B:191 – 210. Within-day
Dynamics in Transportation Networks.

Ramming, M. S. (2002). Network knowledge and route choice. PhD thesis, Massachusetts
Institute of Technology. Dept. of Civil and Environmental Engineering.

Ramos, G. M. (2015). Dynamic Route Choice Modelling of the Effects of Travel Information
using RP Data. PhD thesis, Delft University of Technology.

Ramos, G. M., Frejinger, E., Daamen, W., and Hoogendoorn, S. (2012). A revealed preference
study on route choices in a congested network with real-time information. In Proceedings
of the 13th International Conference on Travel Behaviour Research-Toronto, pages 15–20.

Richards, P. I. (1956). Shock waves on the highway. Operations Research, 4(1):42–51.

Roughgarden, T. (2003). The price of anarchy is independent of the network topology. Journal
of Computer and System Sciences, 67(2):341–364. Special Issue on STOC 2002.

Roughgarden, T. and Tardos, E. (2002). How bad is selfish routing? J. ACM, 49(2):236–259.

Schaap, N., Jorritsma, P., Derriks, H., and Berveling, J. (2014). Meer tijd- en plaatsonafhanke-
lijk werken: kansen en barrières. Technical report, Kennisinstituut voor Mobiliteitsbeleid.

Schulz, A. S. and Stier-Moses, N. E. (2006). Efficiency and fairness of system-optimal routing
with user constraints. Networks, 48(4):223–234.

Shapley, L. S. (1952). A value for n-person games. Technical report, DTIC Document.

Sion, M. and Wolfe, P. (1957). On a game without a value. Contributions to the theory of
games, 3:299–306.

Smaal, M. (2012). Politieke strijd om de prijs van automobiliteit. PhD thesis, Tilburg Univer-
sity.

Small, K. A. (2012). Valuation of travel time. Economics of Transportation, 1(1Ű2):2–14.
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SUMMARY

STRATEGIC NETWORK MODELLING FOR PASSENGER

TRANSPORT PRICING

In the last decade the Netherlands has experienced an economic recession. Now, in 2017,
the economy is picking up again. This growth does not only come with advantages because
economic growth demands more from the transport system. Congestion is increasing again,
the capacity of the train system is now insufficient during peak hours, and the world faces
environmental challenges that are partly due to emissions caused by travellers. These negative
effects worsen as travellers make rational choices, which could be undesirable from a system,
or social welfare, perspective. For example, car drivers do often not choose public transport
options, because it costs them more effort; however, if they choose public transport options,
then the system improves since congestion and emissions will reduce. Or another example,
if travellers choose to avoid peak hours, they might not arrive at their desired time, but then
they do not contribute to peak hour congestion or crowding. In addition, the capacity of the
transport system is more effectively used if travellers spread out over the day.

Passenger transport pricing can be an incentive for travellers to change their choices, and
can therefore be used to mitigate congestion, emissions, and other undesirable effects. Passen-
ger transport pricing is the umbrella term for measures that make passengers pay for their trav-
els. Traditional pricing measures are for example: fuel excise taxes, public transport fares, and
periodical registration fees for vehicles. More innovative measures are cordon charges (e.g.,
in London, Stockholm, and Singapore), special tolling lanes, and peak avoidance projects.
When such an innovative measure has different prices for times of the day, and for different
locations (i.e., it is time- and space-differentiated), travellers’ choices related to route, mode
and departure time can be influenced. By changing these choices, the overall performance of
the transport system can improve. Travellers have differences regarding time valuation, pre-
ferred departure or arrival times, and car ownership. Therefore, a measure can become even
more effective if it also allows to differentiate amongst characteristics of travellers.

However, innovative pricing measures have not been implemented widely across the globe,
despite their potential to reduce congestion and emissions. This is primarily due to lack of
public and political support. The Netherlands has experienced decades of political discourse
and many failed proposals. Low public support did not contribute to (political) agreement
either, because it has always fuelled the discussion with dissenting opinions. In the process
of designing policies and making decisions, strategic planning models usually estimate (or
forecast) the effects of the policy. The preferences of travellers and the transport system are
captured by mathematical equations. Such models are always a simplified representation of
reality. To apply them to asses pricing measures, they should capture the underlying mecha-
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nisms that are important for transport pricing as realistic as possible.
This dissertation identifies disadvantages of current strategic network models for passenger

transport pricing and provides methodological advances to resolve them. This is done with
a holistic approach that combines game theory, discrete choice analysis, traffic flow theory,
and tranport economics into one modelling framework. This framework has many sub-models
and provides a toolbox for analysts to determine the effects of innovative pricing schemes.
The basic principle for each tool is to make them realistic (so that the results are credible for
decision makers), and computationally efficient. The latter means that many different pricing
schemes can be computed within reasonable time. By providing the methodological advances,
that are briefly discussed in the next sections, this dissertation aims to improve public and
political support. For example, the preferences of multiple stakeholders can be considered,
the possible conflicts between them can be identified, and solutions based on concepts that
aim to resolve these conflicts can be computed.

QUASI-DYNAMIC TRAFFIC ASSIGNMENT

The holistic model framework consists of two parts. The upper level discusses the price setting
and decision making; this leads to a certain pricing scheme. The lower level, Quasi-Dynamic
Traffic Assignment (QDTA), is presented in Part I of this dissertation. It calculates the effects
of the pricing scheme in terms of effect levels. Examples of these effects are congestion,
emissions, and revenues. Usually, the effect levels can be retrieved from the conditions within
the transport system. To determine these, the model computes the choices that travellers make.
The QDTA model includes mode, route and departure time choice. The consequences of these
choices are subsequently calculated by the Quasi-Dynamic Network Loading (QDNL) model
that determines where vehicles have to queue and how much congestion occurs.

The embedded choice model is a Random Utility Maximization (RUM) model that models
route, mode, and time-of-day choice simultaneously. Contrary to traditional logit models,
the error term enters the utility formulation as a factor. Dependencies between choices are
captured with a nest structure. A special mode represents the stay-at-home alternative. This
provides trip choice (i.e., do I travel or not?) for travellers implicitly. By having these choices
available, the models is able to capture the most important short-term responses of travellers
to innovative pricing measures.

The used QDNL model takes a hybrid approach that extends static assignment models (e.g.,
models based on travel time functions) with capacity constraints. This means that there is a
limit on the number of vehicles that enter a road. If for some road more vehicles want to enter
than it has as capacity, this road is called a bottleneck. In reality queues will form upstream
of bottlenecks. Traditional static models calculate delays – inside – the bottleneck. Therefore,
it is difficult to calculate plausible delay times, and vehicles are potentially assumed to be
unaffected. The first phase of the QDNL model identifies bottlenecks in the network. The
second phase determines how long the queues upstream of each of the bottlenecks are. This
approach makes the representation of congestion more realistic, with a limited increase in
computation costs.

Finally, the QDTA model, that combines the simultaneous choice model and the network
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loading model, is presented as a variational inequality. This is a mathematical problem for-
mulation that allows derivation of analytical properties. For example, the duality gap can be
computed that allows the model developers to determine the accuracy of the simulated solu-
tions, which in turn can be used to improve the solution algorithms.

GENERALIZED MULTIVARIATE EXTREME VALUE CHOICE MODELS

To select a choice model for the QDTA model, an in-depth analysis of various RUM-based route
choice models has been performed. RUM is a frequently used framework to analyse discrete
choices of travellers. It assumes that travellers assign a utility to each choice alternative,
and that they subsequently choose the alternative with the highest utility. Since the utilities
are random variates, the choices become probabilities. The group of analysed route choice
models consists of those models for which the routes are known in advance, and for which the
choice probability formula is closed-form (i.e., no simulation is required to calculate them).
These types of route choice models are frequently used in practice.

Several ongoing challenges exist for these models. It is not straightforward to handle route
overlap with such models. This is important because similar alternatives should not be ac-
counted as independent. To see this, consider the classical red bus, blue bus example. Assume
a commuter chooses between a red bus and the train with equal probability. If a blue bus is
introduced which is the same as the red bus, except for the colour, then it is expected that
the commuter chooses between train and any of the buses with equal probability. So, with a
probability of 25% for each bus. Choice models that do not account for overlap assume that
all three alternatives are independent, meaning that each alternative has a choice probability
of 1/3, which is not expected. Another challenges is that the uncertainty of a long route’s
utility is higher than the uncertainty of a short route’s utility. So, the variance of route utility
depends on the length of the route. If one would like apply the same choice model on all
possible origin-destination pairs in a network, the variance of route utilities should depend on
the distance between the origin and destination.

In this dissertation, twelve models are analysed on, amongst others, these characteristics. In
addition, seven of the twelve presented models are new. De described models are all Gener-
alized Multivariate Extreme Value (GMEV)-models. The models differ in how the error terms
enter the utility formulation, and in how the dependencies are introduces between error terms
for different routes. The error terms can either enter as a term (additive models), or as a factor
(multiplicative models); in addition, the dissertation presents multiplicative models that are
relative to a reference route, for which the error only enter as a factor for the non-overlapping
parts with the reference route. Four different structures of dependency can be added to the
error terms, leading to four model types (viz., multinomial, path-size, paired-combinatorial,
and link-nested). All models are assessed qualitatively and quantitatively.

The qualitative assessment is based on desired properties of the random utility formulation.
An important – empirically validated – property is the linear relation between the average and
the standard deviation of travel time. This contradicts the assumption of previously often used
route choice models that a linear relation between the average and the variance of travel time
exists. Analysis of the behaviour of the models under simple network changes shows that only
the multiplicative models based on reference routes can reproduce the expected behaviour.
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The quantitative assessment constitutes the estimation and validation of the models on two
route sets in a carefully constructed network. This network has overlapping routes, and short
and long distances. All models are estimated on the first route set and then validated on the
second set and vice versa. The assessment shows that good performance on real networks can
be expected from both multiplicative path-size models (with and without reference routes).
Additional empirical validation is required to conclusively assess all models.

MACROSCOPIC NODE MODELS

An important part of the QDNL model is the node model. Such a model computes the flow at
for example merges, diverges, lane drops, and intersections in the road network. Node models
are also used to identify bottlenecks in the network. Only in 2011 a set of requirements for
node models has been formulated. Compared to link models (i.e., models that propagate
traffic over homogeneous road stretches), node models have not received a lot of attention
in the literature. In addition, no complete insight on the underlying behaviour of vehicles at
nodes is known for existing models.

This dissertation analyses and discusses four node models – of which two are new – that
satisfy the recently formulated requirements. Discussion on the representation of traffic at
nodes leads to the concept of turn delays, which are the additional time vehicles have to
stay at the node. Turn delays are variables in which node models can be formulated, and
that simultaneously provide a behavioural interpretation of the underlying mechanisms of the
model.

The set of requirements is reformulated in terms of turn delays. This leads to a family of
node models represented by a multi-objective optimization problem. Any method that finds a
Pareto optimal solution of this problem is member of the node model family. Two different
sets of turn delays can lead to the same traffic flows over the node. Therefore, also the notion
of reduced capacity is introduced to show if two results are equivalent. It turns out that for
diverges, all four models are equivalent, and that for merges three out of four models are
equivalent.

One existing and one new model have efficient solution methods. The new model calculates
the turn delays based on the theory of polynomials in the max-plus algebra. On the other hand,
these two models have less behavioural realism than the other two. Unfortunately, the latter
use fixed point methods that require much more computation time. So, while choosing a node
model, one has to make a trade-off between computation time and realism.

GAME THEORY FOR MULTIPLE STAKEHOLDERS

The upper level of the holistic model framework is the decision making level that represents
the interactions between multiple stakeholders, and is presented in Part II of this disserta-
tion. An important characteristic is that each stakeholder pursues its goal by applying some
strategy. The latter consists of a price for their ‘travel product’. The stakeholders need to
consider the responses of the travellers, and the resulting effects, when they determine their
strategy. This response is captured in the lower level QDTA-model. Transport economists

234



Summary

sometimes use social welfare optimization and first-best pricing to resolve the upper level.
The multi-stakeholder approach in this dissertation relaxes their assumption that every indi-
vidual participated at the negotiation table, and unlimited transactions between them can exist.
This is done by exploring game theories that have not been applied to similar problems before.

The corresponding mathematical optimization problem of the upper level is a multi-objective
optimization problem with equilibrium constraints. This means that solutions are not straight-
forward to determine. This dissertation uses game theory to retrieve a solution for this prob-
lem. Game theory allows one to capture the behaviour of interacting stakeholders at the ne-
gotiation table. Stakeholders can form coalitions, and stakeholders in coalitions can cooper-
ate to thwart other stakeholders and coalitions. This dissertation introduces a method using
Nash-equilibria and the notion of coalition formation to convert the multi-objective problem
formulation to a Transferable Utility (TU)-game. In such a game every coalition has a certain
value that it can bring to the negotiation table.

Game theory provides multiple solution concepts for TU-games. The core, Shapley value,
and compromise value are presented as potential solutions for the upper level. The pricing
scheme that optimizes the sum of all stakeholders’ objectives is played in all solutions of the
TU-game. Each of the solution concepts suggests monetary transfers that should be fair for all
of the stakeholders. Some stakeholders could be compensated for missed gains in the overall
best pricing scheme. Each concept uses a different interpretation of what is ‘fair’.

CASE STUDY: THE RANDSTAD

To show the feasibility of the holistic model framework approach for real applications, a case
study of the Randstad area is presented. All methodological advances come together in the
case study. Compared to traditional static models, realism has been added in the lower level
QDTA-model, without requiring much more computation time. Multiple stakeholders, their
objectives, and their possible conflicts at the negotiation table, can be analysed with the game
theory-based upper level. Three stakeholders are involved, each with a different objective and
pricing measure. The national government aims to improve social welfare by implementing
a kilometre charge. The municipality of Amsterdam wants to improve its economic position
with a cordon charge. Finally, the train operator optimizes revenues by changing the train
fares. All stakeholders can differentiate their prices for peak and shoulder periods. Although
the objectives of the stakeholders are hypothetical, most of the used sources are from existing
strategic planning models and empirical research. Almost 90 000 links exist in the road net-
work. Travellers can choose between car and public transport (train) options, between peak
and shoulder periods to travel, or they can choose to stay at home. In addition, car drivers have
many route alternatives.

The QDTA-equilibrium, with a multiplicative nested choice model and the QDNL-model,
has been computed for 216 feasible pricing schemes. This forecasts, amongst others, the con-
gestion levels, emission levels, and revenues for each stakeholder under each pricing scheme.
Based on these evaluations, a TU-game is formulated. Successively, three solution concepts
from TU-game theory are analysed (viz., the core, Shapley value and compromise value). They
provide possible arguments that can be used by the stakeholders at the negotiation table.

Despite the case study uses some simplifying assumptions and hypothetical stakeholder
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objectives, it provides some interesting results. The national government and the train operator
have conflicting interests. After negotiations, the national government has to compensate the
train operator. Also, if the stakeholders are not allowed to cooperate, the national government
will be better off. This might sound paradoxically, but the explanation lies in the coalition that
can be formed between the municipality of Amsterdam and the train operator. This coalition
can use its combined pricing measures to steer away from the good situation of the national
government.

Comparing the zero-scenario with the solutions under pricing, shows the potential of the
innovative pricing measures. In the morning peak, pricing achieves a reduction of 60% of
loss hours. Overall, a 45% reduction is possible. The emissions in the Randstad area can
be reduced by about 6%. This is primarily due to a large modal shift towards the train, and
a steep increase of passengers that choose not to travel. The sum of the three stakeholders’
objectives (i.e., social welfare, economic position of Amsterdam, and the profit of the train
operator) increases with 1.4 Me during each morning commute.

The conclusion of the case study is primarily that it is feasible to assess innovative pricing
measures in a multi-stakeholder setting and by means of model components for which the
realism has been improved. To retrieve conclusive results on the effects of pricing, and the
interactions between stakeholders, a more detailed study has to be set up, with more modes,
user-types, and stakeholder objectives that stem from interviews.
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STRATEGISCHE NETWERKMODELLERING VOOR BEPRIJZING

VAN PERSONENVERVOER

Gedurende het afgelopen decennium kende Nederland periodes van economische recessie.
Tegenwoordig, in 2017, groeit de economie weer. Dit brengt niet alleen voordelen met zich
mee, want de economische groei leidt ook tot een zwaardere belasting van het vervoerssys-
teem. De congestie neemt weer toe, de capaciteit van het treinsysteem is nu onvoldoende tij-
dens de spits, en de wereld staat voor milieuproblematiek waar de emissies veroorzaakt door
reizigers gedeeltelijk debet aan zijn. Deze negatieve effecten verslechteren omdat reizigers
rationeel hun keuzes maken, welke vanuit het oogpunt van het systeem of sociale welvaart
ongewenst is. Bijvoorbeeld, automobilisten kiezen niet voor alternatieven met het openbaar
vervoer omdat deze meer inspanning vergen; daarentegen zouden files en de uitstoot van
schadelijke gassen afnemen wanneer vaker voor het openbaar vervoer gekozen wordt. Een
ander voorbeeld is dat als reizigers ervoor kiezen buiten de spits te reizen, dat ze dan wellicht
niet op hun gewenste aankomsttijd arriveren, maar dat ze dan geen bijdrage leveren aan de
congestie of volle treinen. Bovendien wordt de capaciteit van het vervoerssysteem beter benut
wanneer reizigers zich spreiden over de dag.

Beprijzing van personenvervoer kan als stimulans dienen voor reizigers om hun keuzes
aan te passen, en prijsbeleid kan daarom gebruikt worden om congestie, emissies en andere
ongewenste effecten te verminderen. Beprijzing van personenvervoer is een overkoepelende
term voor maatregelen die reizigers laten betalen voor het gebruik van het vervoerssysteem.
Traditionele beprijzingsmaatregelen zijn bijvoorbeeld: accijnzen, tarieven van het OV en pe-
riodieke motorrijtuigbelasting. Meer innovatieve maatregelen zijn cordon heffingen (e.g., in
London, Stockholm en Singapore moet betaald worden om de stad in te rijden), speciale rij-
stroken met tol, en spitsmijden projecten (waarbij reizigers beloond worden om niet in de stpits
te rijden). Indien de tarieven voor zulke innovatieve maatregelen onderscheiden zijn tussen
spits- en dalperiodes, en tussen verschillende locaties (i.e., de prijzen zijn gedifferentieerd in
tijd en ruimte), dan kunnen de keuzes van reizigers met betrekking tot route, vervoerswijze en
vertrektijdstip beïnvloed worden. Door deze keuzes te veranderen kan de prestatie van het ver-
voerssysteem verbeterd worden. Reizigers zijn daarnaast verschillend met betrekking tot hoe
ze tijd waarderen, hun gewenste vertrek- en aankomsttijd, en of ze een auto bezitten. Daarom
kunnen maatregelen nog effectiever worden gemaakt wanneer ze onderscheid maken tussen
reizigers met verschillende eigenschappen.

Echter, innovatieve beprijzingsmaatregelen zijn wereldwijd niet standaard geïmplementeerd
– ondanks hun potentie om congestie en emissies te verminderen–. Dat komt hoofdzake-
lijk door het gebrek aan politieke en publieke steun. Nederland heeft de afgelopen decennia
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ruime ervaring opgedaan met politiek discours en vele mislukte voorstellen. Dat er weinig
publieke steun was heeft niet begedragen aan het bereiken van een (politiek) akkoord omtrent
innovatieve maatregelen. Dat heeft slechts de discussie gevoed met afwijzende meningen.
Gedurende het proces van beleidsontwikkeling en besluitvorming worden doorgaans strategi-
sche planningsmodellen gebruikt om de effecten van het beleid te schatten (of te voorspellen).
Het vervoerssysteem en de reizigersvoorkeuren worden daarin beschreven met wiskundige
vergelijkingen. Zulke modellen zijn altijd een versimpelde weergave van de werkelijkheid.
Om ze toe te kunnen passen om beprijzingsmaatregelen te evalueren, dienen de onderliggende
mechanismen die belangrijk zijn voor het beprijzen zo realistisch mogelijk worden meegeno-
men, want alleen dan kunnen ze door beleidsmakers als geloofwaardig worden gezien.

Dit proefschrift identificeert de nadelen van huidige strategische netwerkmodellen die ge-
bruikt worden voor het beoordelen van beprijzing van personenvervoer en levert methodo-
logische ontwikkelingen om deze op te lossen. Dit wordt gedaan met een holistische aan-
pak waarin speltheorie, analyse van discrete keuzes, verkeersstroomtheorie en vervoersec-
onomie gecombineerd worden binnen één raamwerk. Dit raamwerk bevat verscheidende deel-
modellen en levert een gereedschapskist voor analisten op, die daarmee de effecten van inno-
vatieve beprijzingsmaatregelen kunnen bepalen. Het uitgangspunt bij ieder instrument is dat
deze zowel realistisch (zodat ze geloofwaardig zijn voor beleidsmakers) als rekenefficiënt zijn.
Het laatste betekent dat veel verschillende beprijzingsschema’s doorgerekend kunnen worden
binnen afzienbare tijd. Door het leveren van methodologische ontwikkelingen, welke in de
volgende paragrafen beknopt worden toegelicht, richt dit proefschrift zich op het verbreden
van politieke en publieke steun voor innovatieve beprijzingsmaatregelen. Zo kunnen bijvoor-
beeld de voorkeuren van meerdere actoren meegenomen worden, hierdoor is het mogelijk
eventuele conflicten tussen actoren te identificeren en oplossingen op basis van verschillende
concepten voor deze conflicten te berekenen.

QUASI-DYNAMISCHE VERKEERSTOEDELING

Het holistische raamwerk bestaat uit twee onderdelen (of niveaus). Het bovenste niveau be-
spreekt het bepalen van de prijs en de besluitvorming. Het onderste niveau, Quasi-Dynamische
Verkeerstoedeling (Quasi-Dynamic Traffic Assignment (QDTA) in het Engels), wordt bespro-
ken in Deel (Part) I van dit proefschrift. Het berekent de effecten van een beprijzingsschema
en levert deze op in termen van effect niveaus. Voorbeelden hiervan zijn congestie, emissies
en (tol-)opbrengsten. Doorgaans kunnen deze effecten worden afgeleid uit de condities die
gelden binnen het vervoerssysteem. Om deze te kunnen bepalen berekent het model de keuzes
die reizigers maken. Het QDTA model bevat vervoerswijze, route en verstrektijdstip keuze. De
consequenties van deze keuzes worden vervolgens berekend middels een Quasi-Dynamisch
Netwerkbelasting (Quasi-Dynamic Network Loading (QDNL) in het Engels) model dat bepaalt
welke voertuig in een wachtrij komen te staan en hoeveel vertraging daarbij opgelopen wordt.

Het ingebouwde keuzemodel is een stochastisch nutsmaximalisatie (Random Utility Max-
imization (RUM) in het Engels) model dat route, vervoerswijze en periode (i.e., moment van
de dag) simultaan modelleert. In tegenstelling tot traditionele logit modellen komt de fout-
term als een factor terecht in de nutsformulering. Afhankelijkheden tussen de keuzeopties zijn
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opgevangen met een nest-structuur. Een speciale vervoerswijze representeert het thuisblijf-
alternatief, welke impliciet een reiskeuze (i.e., ga ik wel of niet op pad?) levert. Door deze
verschillende keuzes voorhanden te hebben, is het mogelijk alle belangrijke korte termijn re-
acties van reizigers op innovatieve beprijzingsmaatregelen mee te nemen binnen het model.

Het gebruikte QDNL model bestaat uit een hybride aanpak die statische toedelingsmodellen
(e.g., modellen die op gebaseerd zijn op reistijdfuncties) uitbreid met capaciteitsrestricties.
Dat betekent dat er een limiet zit aan het aantal voertuigen dat een weg op kan rijden – de
capaciteit. Indien voor een bepaalde weg de verkeersvraag in voertuigen hoger is dan de
capaciteit, dan is die weg het zogeheten kiemlocatie. In werkelijkheid zullen de wachtrijen
stroomopwaarts van deze kiemlocaties ontstaan. De traditionele statische modellen berekenen
de vertraging – binnenin – de kiemlocatie. Daarom is het lastig daarmee plausibele vertra-
gingstijden te berekenen, en kan het zo zijn dat wordt aangenomen dat voertuigen onterecht
niet beïnvloed zijn. De eerste fase van het QDNL model identificeert alle kiemlocaties in het
netwerk. De tweede fase bepaalt hoe lang de wachtrijen stroomopwaarts van de kiemlocaties
zijn. Deze aanpak verbetert de manier waarop congestie gerepresenteerd wordt in modellen
aanzienlijk, terwijl de afname van rekenefficiëntie slechts beperkt is.

Tenslotte is het QDTA-model, dat het simultane keuzemodel en de het netwerkbelasting
model combineert, geformuleerd als een variationele ongelijkheid. Dat is een wiskundige
formulering die het mogelijk maakt eigenschappen van het model analytisch te herleiden. Zo
is het bijvoorbeeld mogelijk het dualiteitsgat te berekenen dat de ontwikkelaar in staat stelt
om de nauwkeurigheid van de oplossing te bepalen, wat vervolgens weer gebruikt kan worden
om oplossingsalgoritmes te verbeteren.

GEGENERALISEERDE MULTIVARIATE EXTREME WAARDE

KEUZEMODELLEN

Om een keuzemodel te selecteren voor het QDTA-model is een uitgebreide analyse uitgevoerd
van verschillende RUM-gebaseerde routekeuzemodellen. RUM is een veelgebruikt raamwerk
om de discrete keuzes van reizigers te analyseren. Het gaat er vanuit dat een reiziger een
bepaalde hoeveelheid nut toekent aan ieder keuzealternatief, en dat deze vervolgens het alter-
natief kiest met het hoogste nut kiest. Aangezien het nut stochastisch is, wordt ieder alternatief
met een bepaalde kans gekozen. De groep van routekeuzemodellen die meegenomen zijn bin-
nen de analyse, zijn die modellen waarvan wordt aangenomen dat de routes vooraf bekend
zijn, en waarvoor de keuzekans formule een gesloten vorm heeft (i.e., er zijn geen simulaties
nodig om deze te berekenen). Dit type routekeuzemodellen zijn vaak gebruikt in de praktijk.

Er zijn meerdere uitdagingen voor deze modellen. Het is niet eenvoudig om overlappende
routes goed mee te nemen in deze modellen. Dat is belangrijk omdat op elkaar lijkende al-
ternatieven niet als onafhankelijk mogen worden gezien. Beschouw het volgende klassieke
voorbeeld met een rode bus en een blauwe bus. Neem aan dat een forens met gelijke kans
kiest tussen een rode bus en een trein. Wanneer er nu een blauwe bus wordt geïntroduceert die
volledig, op de kleur na dan, gelijk is aan de blauwe bus, dan is verwachting dat de forens met
gelijke kans kiest tussen de trein en één van de bussen. Dus, de keuzekans voor iedere bus is
25%. Keuzemodellen die deze overlap, of gelijkenis, niet corrigeren gaan er vanuit gaan dat
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alle drie de alternatieven onafhankelijk zijn, wat leidt tot een keuzekans van 1/3 voor ieder
alternatief, wat niet in de lijn der verwachting ligt. Een andere uitdaging is dat de onzekerheid
over het nut van een korte route kleiner is dan de onzekerheid over het nut van een lange route.
Dus, de mate van variantie van route-nut hangt af van de lengte van de route. Als men het-
zelfde routekeuzemodel wil toepassen op alle mogelijke herkomst-bestemmings-paren binnen
een netwerk, dan dient de variantie van het route-nut af te hangen van de afstand tussen de
herkomst en de bestemming.

In dit proefschrift worden twaalf modellen geanalyseerd op deze en andere eigenschap-
pen. Bovendien zijn zeven van de twaalf modellen nieuw. De beschreven modellen zijn allen
gegeneraliseerde multivariate extreme waarde keuzemodellen. Het verschil tussen de model-
len wordt gekenmerkt door hoe de foutterm terugkomt in de nutsformulering, en hoe afhanke-
lijkheid tussen fouttermen voor verschillende routes wordt toegevoegd. De foutterm kan als
term (additieve modellen), of als factor (multiplicatieve modellen) worden toegevoegd aan de
nutsformule. Daarnaast introduceert dit proefschrift multiplicatieve modellen die relatief zijn
aan een referentieroute, daarbij komt de foutterm allen terug als factor op niet-overlappende
gedeeltes met de referentieroute. Vier verschillende structuren van afhankelijkheden tussen
de fouttermen kunnen worden toegevoegd, wat leidt tot vier model types (viz., multinomiaal,
pad-grootte, paarsgewijs-gecombineerd, en schakel-genest). Alle modellen zijn kwalitatief en
kwantitatief beoordeeld.

De kwalitatieve beoordeling is gebaseerd op gewenste eigenschappen van de stochastische
nutsformulering. Een belangrijke – empirisch gevalideerde – eigenschap is het lineaire ver-
band tussen het gemiddelde en de standaard deviatie van reistijd. Dit is tegenstrijdig met de
aanname van eerder veelgebruikte routekeuzemodellen die zegt dat er een lineair verband is
tussen het gemiddelde en de variantie van de reistijd. Onderzoek naar het gedrag van de mo-
dellen onder eenvoudige netwerkaanpassingen laat zien dat alleen de multiplicatieve modellen
gebaseerd op referentieroutes het verwachte gedrag kan reproduceren.

De kwantitatieve beoordeling beslaat het schatten en valideren van de modellen op routever-
zamelingen binnen een zorgvuldig geconstrueerd netwerk. Dit netwerk heeft overlap tussen
routes en er bestaan zowel kleine als grote afstanden. Alle modellen zijn geschat op de
eerste routeverzameling en zijn vervolgens gevalideerd op de tweede routeverzameling, en
vice versa. De beoordeling laat zien dat van beide multiplicatieve pad-grootte modellen (met
en zonder referentieroute) een goede prestatie verwacht kan worden op echte netwerken. Om
echter een definitief oordeel te vellen over alle modellen is verdere empirische validatie van
alle modellen vereist.

MACROSCOPISCHE KNOOPMODELLEN

Een belangrijk onderdeel van het QDNL model is het knoopmodel. Een dergelijk model
berekent de stromen over bijvoorbeeld samenvoegingen, splitsingen, wegversmallingen, en
kruispunten in het wegennetwerk. Knoopmodellen worden ook gebruikt om kiemlocaties in
het netwerk te identificeren. Pas in 2011 is een verzameling eisen opgesteld waar knoopmo-
dellen aan dienen te voldoen. In vergelijking met schakelmodellen (i.e., modellen die verkeer
propageren over homogene stukken weg) hebben knoopmodellen weinig aandacht gekregen
in de wetenschappelijke literatuur. Bovendien is er geen compleet beeld van het onderliggende
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voertuiggedrag bij knopen voor de bestaande modellen.
Dit proefschrift analyseert en bespreekt vier knoopmodellen – waarvan er twee nieuw zijn

– die voldoen aan de recent geformuleerde eisen. Het behandelen van de representatie van
verkeer op knopen leidt tot het concept van richtingsvertragingen. Richtingsvertragingen zijn
variabelen waarin het knoopmodel geformuleerd kan worden, en die tegelijkertijd een gedrags-
matige interpretatie geven van de onderliggende mechanismen van het model.

De verzameling eisen wordt herformuleerd in termen van richtingsvertragingen. Dat leidt
tot en familie van knoopmodellen die gerepresenteerd worden door een optimalisatieprob-
leem meer meerdere doelfuncties. Elke methode die een Pareto-optimale oplossing vindt van
dit probleem is lid van de knoopmodel-familie. Twee verschillende verzamelingen van richt-
ingsvertragingen kunnen leiden tot dezelfde verkeersstromen over de knoop. Daarom wordt
ook de notie van gereduceerde capaciteit geïntroduceerd, welke laat zien wanneer resultaten
gelijkwaardig zijn. Het blijkt dat voor splitsingen van wegen alle vier de modellen gelijk-
waardig zijn, en dat voor samenvoegingen van wegen drie van de vier modellen gelijkwaardig
zijn.

Één bestaand en één nieuw model kennen efficiënte oplossingsmethodes. Het nieuwe model
berekent de richtingsvertragingen op basis van de theorie van polynomen in de max-plus al-
gebra. Anderzijds zijn deze modellen in gedragsmatig opzichten minder realistisch dan de
andere twee modellen. Helaas gebruiken de andere twee modellen dekpuntmethodes die veel
meer rekentijd vergen. Dit komt er op neer dat wanneer met een knoopmodel kiest, men een
afweging dient te maken tussen rekentijd en realisme.

SPELTHEORIE VOOR MEERDERE ACTOREN

In het bovenste niveau van het holistische modelraamwerk bevindt zich de besluitvorming die
wordt gerepresenteerd door de interacties tussen meerdere actoren; dit wordt beschreven in
Deel (Part) II van dit proefschrift. Een belangrijke eigenschap is dat iedere actor zijn eigen
doel nastreeft door een bepaalde strategie toe te passen. Deze strategie bestaat uit het bepalen
van de prijs van hun ‘reisproduct’. De actoren dienen rekening te houden met de reacties van
de reizigers en de resulterende effecten wanneer de strategie bepaald wordt. De reactie wordt
behandeld binnen het onderste niveau, het QDTA-model. Vervoerseconomen gebruiken soms
sociale welvaartsoptimalisatie en zogeheten ‘first-best’ beprijzing om het bovenste niveau in
te vullen. Twee aannames daarbij zijn dat iedereen deelneemt aan de onderhandelingstafel en
dat er onbeperkt transacties tussen individuen plaats kunnen vinden. De multi-actor aanpak in
dit proefschrift haalt deze aannames weg door speltheoriën te verkennen die nog niet eerder
zijn toegepast op dergelijke vraagstukken.

Het bijbehorende wiskundige optimalisatieprobleem van het bovenste niveau heeft meerdere
doelfuncties en kent onderliggende evenwichtsvoorwaarden. Dat betekent dat het niet een-
voudig is oplossingen te bepalen. Dit proefschrift gebruikt speltheorie om oplossingen van
het probleem te achterhalen. Met speltheorie heeft men de mogelijkheid het gedrag en de
interacties van actoren aan de onderhandelingstafel mee te nemen. Actoren kunnen coali-
ties vormen en actoren binnen coalities kunnen samenwerken om andere actoren en coalities
tegen te werken. Dit proefschrift introduceert een methode om middels Nash-evenwichten en
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de notie van coalitieformering het wiskundige optimalisatieprobleem om te zetten in een spel
van overdraagbaar nut (Transferable Utility (TU) in het Engels). In zo’n TU-spel heeft iedere
coalitie een bepaalde waarde die meegebracht kan worden naar de onderhandelingstafel.

Speltheorie biedt meerdere oplossingsconcepten voor TU-spellen. De kern, de Shapley
waarde en de compromiswaarde worden gepresenteerd als potentiële oplossingen voor het
bovenste niveau. Het beprijzingsschema dat de som van de doelen van alle actoren opti-
maliseert wordt uiteindelijk uitgevoerd bij ieder oplossingsconcept voor TU-spellen. Ieder
oplossingsconcept stelt vervolgens geldtransacties tussen actoren voor welke eerlijk zijn voor
alle actoren en coalities. Sommige actoren kunnen daarbij gecompenseerd worden voor gemiste
inkomsten binnen het algeheel beste en gekozen beprijzingsschema. Ieder concept levert een
oplossing die gebaseerd is op andere eerlijkheidsprincipes (i.e., andere interpretaties van wat
‘eerlijk’ is).

CASESTUDIE: DE RANDSTAD

Om de haalbaarheid van het holistische modelraamwerk voor echte toepassingen aan te tonen
wordt een casestudie van de Randstad gepresenteerd. Alle methodologische ontwikkelingen
komen samen binnen deze casestudie. In vergelijking met traditionele statische modellen is
er realisme aan het QDTA-model in het onderste niveau van het raamwerk toegevoegd zonder
dat er veel meer rekentijd nodig is. Meerdere actoren, met hun doelen en hun mogelijke con-
flicten aan de onderhandelingstafel, kunnen geanalyseerd worden met behulp van speltheorie
in het bovenste niveau van het raamwerk. Er zijn drie actoren binnen de casestudie, ieder met
hun eigen doel en beprijzingsmaatregel. De nationale overheid streeft ernaar om de sociale
welvaart te verbeteren door een kilometerheffing te implmenteren. De gemeente Amsterdam
wil haar economische positie verbeteren door een cordonheffing in te voeren. De spoorwegen
willen tenslotte hun bedrijfsresultaat maximaliseren door de traintarieven aan te passen. Alle
actoren kunnen onderscheid maken met hun prijzen tussen de spits- en de dalperiode. Ondanks
dat de gekozen doelfuncties van de actoren hypothetisch zijn, zijn zoveel mogelijk (data-)
bronnen uit bestaande strategische planningsmodellen gehaald. Het wegennetwerk bestaat uit
bijna 90 000 schakels. Reizigers kunnen kiezen uit auto en openbaar vervoer (trein) opties,
tussen de spits- en dalperiode, of ze kunnen besluiten thuis te blijven. Bovendien zijn er met
de auto veel verschillende routes mogelijk.

Het QDTA-evenwicht, met een multiplicatief genest keuzemodel en het QDNL-model, is
berekend voor 216 mogelijke beprijzingsschema’s. Dit model voorspelt onder andere het con-
gestieniveau, emissieniveau’s en baten voor iedere actor. Op basis van deze evaluaties is een
TU-spel geformuleerd. Vervolgens zijn drie oplossingsconcepten voor TU-spellen geanaly-
seerd (viz., de kern, de Shapley waarde en de compromiswaarde). Deze leveren mogelijke
argumenten die de actoren kunnen gebruiken aan de onderhandelingstafel.

Ondanks dat de casestudie een aantal versimpelende aannames kent en hypothetische doel-
functies van de actoren gebruikt, komen er interessante resultaten uit. De nationale overheid
en de spoorwegen hebben conflicterende belangen. Na onderhandelingen dient de nationale
overheid de spoorwegen te compenseren. Daarnaast is het zo dat wanneer het niet is toegestaan
om samen te werken, de nationale overheid beter af is. Dit klinkt misschien paradoxaal, maar
de verklaring moet gezocht worden in de coalitie die gevormd kan worden tussen de gemeente
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Amsterdam en de spoorwegen. Deze coalitie zal door het combineren van hun beprijzings-
maatregelen de oplossing wegsturen van de voor de nationale overheid goede situatie.

Het vergelijken van het nul-scenario met de oplossingen met beprijzingsmaatregelen laat
de potentie van innovatief prijsbeleid zien. In de ochtendspits kan beprijzing de verliesuren
met 60% verminderen. Algeheel gezien is een vermindering van 45% mogelijk. De uitstoot
binnen de Randstad kan met 6% verminderd worden. Dit wordt met name bereikt doordat
er een vervoerwijzeverschuiving is richting de trein, en er een sterke groei is van het aantal
personen dat besluit helemaal niet meer te reizen. De som van de doelfuncties van de actoren
(i.e., socale welvaart, de economische positie van Amsterdam en het bedrijfsresultaat van de
spoorwegen) stijgt met 1,4 Me tijdens iedere ochtendspits.

De hoofdconclusie van de casestudie is dat het mogelijk is innovatief prijsbeleid waarbij
meerdere actoren betrokken zijn te beoordelen. Dat gaat middels modelonderdelen waarvan
het realisme verbeterd is. Om een eindoordeel te verkrijgen over de effecten van prijsbeleid
en de interacties tussen actoren zal een meer gedetailleerde studie opgezet moeten worden,
met meer vervoerswijzen en gebruikerstypes, en waarbij doelfuncties van de actoren worden
gebruikt die verkregen zijn middels interviews.
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