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Preface

This master thesis is written as a conclusion to a one-year-long research in the lab of Yke Bauke
Eisma, within the Department of Cognitive Robotics at the Mechanical Engineering Faculty of the Delft
University of Technology. Within the lab, I worked on natural ways of controlling a robot, mainly Spot
from Boston Dynamics, initially with the mode of gestures, which extended later to other modalities like
speech and gaze.

The master thesis aimed to control Spot with the aforementioned modalities, with the Augmented
Reality device the Microsoft HoloLens 2 as an integral sensory input suite, as well as visual and audio
feedback. Initially, a lot of time was put into studying deep learning pose estimation models and the
taxonomy of gestures. After this, I developed four technical implementations to control Spot. Later
in the experiment we used two of these implementations and tested them on a large user group, to
conclude the characteristics of using speech and gestures to control robots.

At this time I would like to express my gratitude towards Yke Bauke Eisma for his continuous support
and supervision of the entire thesis process, for keeping me on track to make this thesis up to the
scientific standards, and for motivating me throughout. Next all the people in the experiment team who
helped make this possible, I could not have done it without them, Renchi Zhang, Dimitra Dodou, Joost
de Winter, and again Yke Bauke Eisma. Finally, to all my family and friends for their unconditional
support and for keeping me motivated throughout the entire year.

Jesse van der Linden
Delft, February 2024
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Abstract

The increasing presence of robots calls for a more seamless and information-rich communication
method between humans and robots. This paper explores how natural user interface (NUI) modali-
ties, particularly speech and gesture controls, can be used through augmented reality (AR) to operate
robots. The increasing presence of robots calls for proper evaluation methods of how to use AR for
operating mobile robots.

The study uses the Microsoft HoloLens and the robot, named Spot, from Boston Dynamics as
primary technologies. The research consists of a user study consisting of 218 participants, one of
the largest participant pools for this field to date. The experiment consists of walking the robot over a
trajectory with discrete steps, with the perspective of following the robot or standing on a predetermined
stationary point. To support the control of the robot, visual information and feedback are included in
the HoloLens.

Speech control showed the best time performance of the experiment, regardless of the perspective
condition. Conversely, errors made during the trials were the majority for the speech condition, due
to the waiting time of the speech recognition that caused participants to repeat the commands. The
walking condition gave participants the impression that control commandsweremore intuitively mapped
to the robot’s motion. Overall, the participants preferred the speech control method while walking with
the robot, and the least preferred method was using gestures in a stationary perspective.

Even though the speech was the preferred control method and perspective-taking was preferred
by participants, this was only for the experiment and task discussed in this paper. Both control meth-
ods have different characteristics that make them favorable to be used for specific tasks. Speech
and gestures can be used for different tasks when operating a robot with Augmented Reality glasses;
preference will depend on the task at hand and the control method design.
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Introduction

Robots are becoming more present in the world every year, with the estimated number of robots in
operation tripling between 2010 and 2020, and the majority of these robots are robotics manipulators
from companies like ABB, KUKA, Fanuc, Kawasaki, and Yaskawa [55]. The market for mobile robotics
has also been increasing at a high rate with the total market expected to quadruple between 2018 and
2026[34]. This increasing presence of robots calls for more seamless and effortless ways to interact
with robots, as more information needs to be transferred between humans and robots.

Traditional interaction between robots and humans often relies on the robot’s physical or visual
feedback capabilities, such as movements [11], gaze outputs [25], gestural motion[8], physical trans-
formation [17], small displays [14] or visual feedback through lights [5]. These modalities cause key
limitations, such as the pose and form factor of robots that cannot easily be modified on demand. Visual
feedback systems like lights and displays are more flexible and are always limited to the robot design
or other technical restrictions. For example, a small screen that is relatively far away from the human,
such that text becomes unreadable [53].

To support the increasing presence of robots and address the physical limitations of giving feedback,
Augmented Reality (AR) has proven to be a useful method and a new way to enhance human-robot
interaction (HRI) and robotic interfaces [53]. With the help of AR devices it is possible to display user
interfaces, widgets, spatial visualizations, and embedded visual effects [53]. On these interfaces, we
can display internal and external robot information, show plans or activities, or virtual objects [53]. The
purpose of this visual feedback can be to facilitate programming, have real-time control, improve safety,
communicate robot intent, and increase the expressiveness of robots [53].

AR devices are not only useful for displaying information of the robot to users but also allow users
to send information to robots, frequently in the form of Natural User Interfaces (NUI) [23]. The reason
for this is that AR glasses are integral sensor suites, being able to capture communication methods like
speech, hands, and gaze. One well-known AR device is the Microsoft HoloLens 2, this device allows
for capturing all modalities at the same time [19]. Methods for humans to interact with a robot through
AR are interactable objects in the virtual space [36], speech commands [52, 20, 37], gaze tracking [39,
37], and gestures [4, 7]. All methods can be applied in various ways, but are still in the early stages of
their development cycle [53].

There have been several studies on controlling Robots with the help of AR devices. In one of the
studies, they gave high-level and descriptive instructions to drones to execute specific tasks [20]. In
another study with drones, a gesture-based control interface and a radial visual display initiate the
execution of predetermined tasks [7]. In the paper of Park et al. [37], they developed a hands-free
interaction method using multi-modal inputs, such as eye gazing, head gestures, and speech. Together
with the help of deep learning-based object detection, they could complete a pick-and-place task with
a UR3 Robot. All were technical developments of how to control robots with a NUI through AR glasses,
but these papers did not include testing the user interface on a prospective user base.

In the literature, some papers discuss user studies to control robots with natural language in immer-
sive environments. In one study, 5 different gesture-based interfaces were tested to teach robots new
tasks and behaviors from demonstration. A user study of 35 participants evaluated the performance
and experience of the data collection interfaces [22]. The study from T.A.B. de Boer et al. [6], used
teleoperation of a robotics arm from different perspectives, such as direct view, mixed reality, and 2D
video feed. 24 participants took part to again measure the user performance and experience. Sangy-
oon Lee et al. [27], developed a haptic-feedback control of a mobile robot within a virtual environment
with obstacles from a start location to a target location. In a user study with 20 participants, they found
that the number of collisions and the distance between obstacles and the robot decreased due to the
haptic feedback. In a task of space teleoperation using Virtual Reality and a wide range of NUI control
methods like gestures and speech. An experiment of 50 people showed that using these NUI control
methods performed better and was easier to learn compared to conventional control methods [29].

1
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Ever since the first research paper by R. Shepard and J. Metzler on mental rotations [48], there
have been many subsequent studies, and spatial ability (mental rotations) became a widely studied
topic in the literature [38]. In recent papers, training with augmented reality has proven to improve
spatial ability compared to conventional methods [12, 28, 30]. In 2007, a study was published on the in-
fluence of perspective taking and mental rotation abilities in space teleoperation. Mental rotation ability
showed a correlation with completion time, while perspective-taking ability was negatively correlated
[31]. Perspective taking and mental rotations within augmented reality are relevant subjects of study
for (tele-)operating robots, for the training spatial ability, and for indicating results.

1.1. Research Proposal
The user studies conducted mostly tested different gesture-based methods, only one paper made a
comparison between different modalities, i.e. voice and gesture-based methods. The robots used in
the mentioned user studies with VR or AR glasses are all robotic arm manipulators. Control of mobile
robot user studies exist [27], but not with the use of any AR devices. Further, the size of user studies
did not exceed 50 participants, giving less certainty on the statistical significance of the given studies.
Larger sample sizes (more participants) allow small numerical differences to be statistically significant
differences [24].

To address this research gap we will perform a large-scale user study that evaluates two different
input modalities, namely speech and gestures. In a simple task with three control commands, the
participant will make Spot (Boston Dynamics), a mobile robot, follow a laid-out path. The input of these
modalities will be done with an established AR platform, theMicrosoft HoloLens 2. The HoloLens allows
experimenting with visual interfaces and feedback in the operating space. But also extensive data
collection like eye gaze data, video and audio recording, and operator position and heading direction.

With this research, we hope to obtain better insight into human preference and performance be-
tween speech-based and gesture-based control. Additionally, fully understand both modalities by ob-
serving the intrinsic characteristics that make operators prefer or dislike a control method. This could
be characteristics like effort, responsiveness, and intuitiveness. The objective measures will consist of
metrics like time performance and the number of wrong commands given.

Because of the relevance of spatial ability andmental rotations within the literature, two experimental
conditions are included in the experiment. In one condition the operator stands still in one location
and in the other condition the operator walks with the robot which means participants can take an
advantageous perspective at all times. This allows for discovering if the control methods are influenced
when difficult mental rotations need to be made. Within the theme of the research we formulated the
following research question:

What are the objective and subjective performances of Natural User Interface control methods,
namely speech and gestures, captured by an Augmented Reality device, while using different

perspectives to control a mobile robot?

1.2. Hypothesis
In the experimental design, the aim is to make both control methods have the same performance, by
making them equivalent in the time it takes to give a command. From this standpoint, we expect that
there will be an even performance when it comes to time to complete a trial.

Subjectively, the preference between control conditions is hard to predict as more factors contribute
to this than we can account for. When comparing gesture and speech interaction to control an in-vehicle
infotainment system it has been proven that both modalities are comparable in perceived usability,
mental workload, and mental response [2].

The perspective of being stationary in a predetermined location is predicted to cause more errors
made by participants, compared to the walking condition. This is with the knowledge that participants
can orient themselves in the same direction as the robot frame, reducing the mental rotation ability
needed for determining between left and right, making it less prone to errors.

Spatial ability and education results in engineering fields are connected [38, 12, 28, 30], therefore
we can argue that our participant pool, that consists of engineering students, has a good spatial ability.
This can be an indicator that the frequency of mistakes will not be much higher the in stationary condi-
tion, compared to the walking condition. Subjectively participants will likely review walking easier, but
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objectively there should be little difference in performance between perspective conditions.
It has also been proved that people with higher mental rotation ability, were able to complete a

robotic manipulation task in VR quicker[31]. Participants who had higher perspective-taking ability
inversely correlated with time to complete a task [31]. This could indicate that participants who have a
quick time performance have a weaker preference for a favorable perspective and respond quicker by
making mental rotations instead of taking a good perspective.

The perspective change is expected to have more impact on gestures as a control method. The
visual mapping of hand commands to the robot’s motion can be confusing as you would have to point
in the opposite direction of the rotation. However, it has been found that making ’assisting’ gestures
during a spatial visualization task does enhance performance, improving the internal computations of
transformation [9]. These ’assisting’ gestures are also allowed to be done during the speech control
method, without influencing the robot control. Therefore, speech is to be hypothesized to have less
influence from the perspective variable on objective performance.



Methodology

2.1. Experimental Setup
Because we want to test mental rotation capability while standing still and walking with the robot, we
designed a uniform trajectory depicted in figure 2.2. The trajectory is optimized to have all orientations at
least twice and a maximum of three times, making it a balanced and symmetric trajectory. Participants
will also face the robot in a mirror situation at least twice, since the third one will not require them to
make a rotation.

The experiment area was selected to be at least 5 by 5 meters, to ensure 1 meter padding on all
sides of the trajectory for participants to walk around. In the back corner, we put a desktop PC that
is needed to establish communication between Spot and the HoloLens; this is described in detail in
section 2.2. Next to it is a charger and additional battery for Spot and chargers for the two HoloLenses.

Figure 2.1: Full image of experiment ground, with the experimenter desk
on the left to start and monitor the experiment, and the full trajectory with

the experimenter explaining the experiment to a participant who is
standing in the starting position.

Figure 2.2: Trajectory for the experiment,
consisting of 13 forward movements and 10

rotations.

2.2. System Infrastructure
The equipment used to create the experimental setup mainly consists of 3 devices: Spot, the HoloLens,
and a computer. All code is collected and publicly available on GitHub.

Programming the robot is done with the help of the Spot-SDK [51], with a Python package the robot
can be controlled for getting the lease, sending movement commands, reading out the robot state, and
asking for pictures with the image client. The robot’s movements are programmed to be done within
the odometry frame of Spot. Discrete movements of 1-meter and 90-degree rotations are used for the
experiment.

The control input is completely captured with the Microsoft HoloLens 2. HoloLens allows one to
track eyes, and hands, and listen to speech input [19]. The augmented reality display also allows
giving operators feedback or instructions while controlling the robot.

The development platform for the HoloLens is Unity. The Mixed Reality Toolkit (MRTK) is the plugin
to develop for VR/AR devices. The package ROS-TCP-Connector [40] can send ROS messages from
a Unity project to any other device running ROS. This device must install the ROS package ROS-TCP-
Endpoint and run it inside the node, to receive and forward messages from the ROS-TCP-Connector.
In our experiment setup, a desktop PC is the connecting device between the HoloLens and Spot.

To optimize the communication speed between the robot, PC, and HoloLens we installed a high-
speed router to provide the network. The PC was connected through an ethernet cable to the router.

4
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Spot and The HoloLens were connected through the 2.4 GHz Wi-Fi connection. The router was placed
in an unobstructed location in the experiment ground within a short distance of all devices.

Figure 2.3: The System Infrastructure

2.3. Data Collection
Data is collected from both Spot and the HoloLens, with most of the data being capture from the
HoloLens. The data is logged with rosbags, which are storage bags that subscribe to one or more
ROS topics, in which data is stored and serialized with a UNIX timestamp [41]. After Rosbags are
captured, they are easily exported to CSV files, with the correct columns assigned to the CSV files.

The standard operating frequency of the HoloLens is 60 Hz but during the experiments, the fre-
quency of the HoloLens dropped from 60 Hz to 30 Hz. This happened due to the reduction in processing
power, which was required for the video recording of the HoloLens. This also caused the performance
of gesture control to drop because it increased the time to give a command, the gesture recognition
system is explained in section 2.6. Table 2.1 shows the overview with all data that is collected during
the experiment.

What Device Frequency [Hz] Data type Rostopic
Front camera Spot 10 video n.a.
Back camera Spot 10 video n.a.

Odometry Frame Spot 20 3D Pose /spot_odom
Vision Frame Spot 20 3D Pose /spot_odom

Control Commands HoloLens n.a. String /chatter
Video recording HoloLens 30 video n.a.
Hand Keypoints HoloLens 30 3D Position /hand_pose

Gaze Origin and Direction HoloLens 30 3D Pose /data_collection
Gaze Screen Position HoloLens 30 2D Position /data_collection

HoloLens Frame HoloLens 30 3D Pose /data_collection
Hit Objects HoloLens 30 String /gaze_hit_object

Table 2.1: All data captured during the experiment from Spot and the HoloLens
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2.4. Research Definitions
In research, variables are characteristics that take on different values. Independent variables are ma-
nipulated and dependent variables are measured to test cause-and-effect relationships [21].

• Independent variables are the predetermined experimental conditions and are expected to in-
fluence the dependent variables [10].

• Dependent variables are the effect and depend on changes in the independent variables [10].

2.4.1. Independent Variables
As previously mentioned the experimental conditions are based on the control methods and the per-
spective. There are two control methods allow participants to control the robot, and the control methods
both have the same three control commands that participants can give to the robot: walk forward, ro-
tate left, and rotate right. To make a fair comparison between the control methods, the effort and time
it takes to give them should be aligned, this is further discussed in section 2.6.

• Speech: The participant will say the command that will be recognized by the HoloLens.
• Gestures: The participant will hold their hand in the view of the HoloLens cameras and the
gesture will be recognized.

Perspectives are added to test the mental rotation capabilities of both control methods.

• Walking: The participant will be instructed that they need to follow the robot in the orientation
that makes giving commands easier.

• Stationary: The participants are instructed to stand still on the cross as seen in figure 2.1.

When combining all independent variables you get a total of four possible combinations. In the table
below is the summary of what was discussed, the condition names will be used throughout the results
section.

Condition Name Control Method Perspective
SW Speech Walking
SS Speech Stationary
GW Gesture Walking
GS Gesture Stationary

Table 2.2: Experiment conditions overview

Post-Experiment Questionnaire
From the participants, more data was obtained with a post-experiment questionnaire that can later be
used as dependent variables. For example, we can measure the difference in time performance in the
gesture conditions between Right and Left-handed participants.

• Age
• Gender
• Right-, Left- or Mixed-Handedness
• Visual Aid
• AR Experience

2.4.2. Dependent Variables
In this section, we discuss the dependent variables we expect to obtain from the experiment. We split
these into two categories, objective and subjective metrics. Objective metrics are data that are not
dependent on the experience of the users, measured from the experiment. Subjective metrics are
metrics that are obtained from participants through evaluations.
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Objective measures
The performance methods are:

• Time performance: The time it took participants to complete the course. We measure this from
the first control command given to the last control command given. This gives the fairest results
since we start and end the scripts at inconsistent timings during the experiment. The first control
command is always done when the participant is actually ready.

• Number of control commands: The optimal amount of control commands is 23 and it cannot be
done with less. When participants give more than 23 commands, they must have made an error
somewhere in the trajectory. This gives a good indication of how many errors an experimental
condition gives.

• Errors: During the experiment the experimenter monitors the error made by the participants. For
this there are two categories for the type errors, duplicate and wrong command errors. Duplicate
errors are when the participant gives a command twice without intention. Wrong commands are
commands that did not match the trajectory, for example giving the command to rotate left, when
a right rotation was required.

• Timing control commands: For every control command given we attach a timestamp, with this
data we can study how much time participants take between a control command.

Subjective measures
Next to the collection of raw data from the devices, subjects are also asked for subjective evaluations
during and after the experiment to measure the users experience of the experimental conditions.

Intra-Experiment Questionnaire
First we want to establish a subjective score of the experimental conditions from the participants. Be-
tween experimental trials the participants were asked three questions to evaluate the condition.

• The robot properly picked up my control commands.

– Score between strongly disagree (1) and strongly agree (5).
– Gives feedback on the speed and recognition of the control method

• The mapping of my commands to the robot’s motion was intuitive.

– A score between strongly disagree (1) and strongly agree (5)
– Gives feedback on the ease of making mental rotations for both the control method and

perspective

• How do you feel at the moment?

– Based on the MSSS (Motion Sickness Severity Scale)
– Standard question when for experiments where people can get nauseous. We gave the

opportunity for a break if the score was 4 or higher.

Post-Experiment Interview
After all trials have ended we record an interview with the participants, by recording video with the
HoloLens. In this interview, we ask the questions of what conditions were their favorite and their least
favorite and elaborate on their reasons behind this decision. This has the goal of getting a qualita-
tive insight into the control methods and perspectives and record new unique and creative takes from
participants.

2.4.3. Eye Gaze Data
HoloLens allows for eye tracking at a relatively low frequency of 30 Hz, compared to high-end eye
trackers with a frequency of 2000 Hz [13]. This means we cannot analyze eye tracking data with great
detail, but does tells us what participants are looking at during the experiment. Within the Mixed Reality
Toolkit (MRTK) there is built-in tracking that tracks what digital objects the participants are looking at.
Using this we can track if the participants are looking at the following objects:

• Spatial Object Mesh
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– Robot
– Hands
– Trajectory

• Instruction Panel
• Voice and Gesture Buttons
• Questionnaire
• Background, miscellaneous objects grouped together

Between experimental conditions, we can establish what the distribution of attention is of the defined
objects. With this we can distinguish what objects are more interesting to look at for the experimental
conditions. We can tell if participants are exerting more effort when they are more focused on the task
or less when they are looking at more arbitrary objects.

2.5. Participant pool
The participant pool is a large pool of 218 people, all of them students or faculty members at Delft
University of Technology. The students are doing the course Human-Robot Interaction, and come from
Master’s programs such as Robotics, Bio-Mechanical Design, Bio-Medical Engineering, andmore. The
age range of participants is between 21 and 30. There are 194 participants that are right-handed, 18
were left-handed, and 6 were mixed-handed. Out of all participants, 160 were male, 55 were female,
and 3 preferred not to respond. 121 participants never wear any visual aids, 49 wore glasses during
the experiment, 36 wore contact lenses, and 12 usually wear glasses or contact lenses but not dur-
ing the experiment. The previous experience with augmented reality of participants was a total of 63
participants making up 23,9% of the group, 155 participants had no prior experience with augmented
reality.

The experiment received approval from the Delft Human Research Ethics Committee, approval
no. 3502, with each participant providing written informed consent before the commencement of the
experiment.

2.6. Speech and Gesture Recognition
Key components for the NUI are speech and gesture recognition. In this section, we describe the inner
workings and low-level timings of these recognition systems. Both recognition systems can detect 3
commands that are needed for the experiment: Walk forward, Rotate Right, and Rotate Left.

2.6.1. Speech
Speech recognition is built into the Mixed Reality Toolkit that is used to program the HoloLens. You can
add any command by typing the phrase in the speech commands section in Unity. The microphone on
the HoloLens is robust and resistant to outside noise and interference [50].

Based on a detailed analysis of a pilot trial for the experiment it takes a participant around 1 second
to say the speech command. The recognition of the command takes 1.3 seconds. Making the total
time it takes to recognize one speech command is around 2.3 seconds.

Figure 2.4: Timeline of giving a speech command
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2.6.2. Gesture
Custom gesture recognition is not a standard feature that can be implemented in the MRTK. To achieve
this we created our dataset of keypoints detected by the MRTK and trained a classification model. The
dataset consists of 150 examples of every gesture, recorded with the HoloLens at standard operating
frequency from only one person. The collected examples consist of the hand keypoint skeleton, which
is available in the MRTK. This skeleton consists of 25 keypoints with 3D coordinates of the location of
the joints within the HoloLens frame [16].

Preprocessing is done before the keypoints are put into the classification model. The first data
augmentation that is done is MinMaxScaler [43] from the scikit-learn package. This scales all values
between a given minimum and upper bound, the standard is between zero and one. The following
data preprocessing is the StandardScaler [42], this standardizes features by removing the mean and
scaling to unit variance.

Themodel trained is a Support Vector Machine (SVM). SVMs are good at classifying a low number of
classes, ideally binary classification [1]. Therefore it is a good candidate for classifying the 3 necessary
commands. With our training data and preprocessing, the SVM achieved a 99% accuracy and has
proven to be robust in pilot experiments, demos, and all 218 participants in the experiment.

HoloLens publishes the frequency of the hand keypoints to the Python ROS node at 60 Hz. This
allows us to recognize a hand command at 60 Hz. The frequency of the HoloLens is far too high for a
human to be able to send discrete steps to a robot, without making errors.

Therefore we introduce a sliding window recognition system. The window considers all recognition
from a predetermined window size. Every time an instance is scrutinized to a confidence threshold of
83%. If 70% of all classifications are from a single class, we send the discrete step to the robot. The
values are determined by the subjective experience of the system to minimize false positive classifica-
tions.

Figure 2.5: Workflow of how the gesture recognition system works

As discussed in section 2.4.2, we want the gesture recognition timing to be similar to the speech
recognition timing. Based on this we sized our sliding window to a size of 90, which makes the optimal
recognition time based on the publishing frequency, 1.5 seconds. The time for the recognition feedback
panel to come up after successful recognition is around 0.5 seconds. Therefore the operator will hold
the gesture at a minimum, of 2 seconds.

With Speech recognition to be measured at 2.3 seconds, both control methods are not exactly
equivalent in time. But gesture recognition is made quicker as holding a gesture for 2 seconds is more
effortful than saying a speech command for 1 second. The increase in recognition speed is given
because of the higher perceived effort required to make a gesture command.
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Figure 2.6: Timeline of giving a gesture command

2.7. (Non-) Visual Interfaces and Feedback
Next to the design of the control systems, visual interfaces and feedback are implemented to aid in the
operation of the systems.

There are two visual interfaces available to the user. The first one is an instruction panel that
indicates the different control commands, with the given movement of the robot. The experimenters
will only give the instruction once to the participant. Therefore the instruction panel should be a reminder
when the movement commands have been forgotten.

Speech panel Gesture panel

Table 2.3: Instruction panels seen during the specific experimental condition
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After every trial, we also answer the intra-experiment questions with the help of a screen within the
HoloLens visual view. This gives the comfort of keeping the HoloLens on instead of putting on and
taking off the HoloLens between every trial to answer the questionnaire.

Figure 2.7: Speech and Gesture
Recognition Feedback panel Figure 2.8: Intra-Experiment Questionnaire

Visual feedback is to let operators know their speech or gesture command is recognized. This is
done with a simple rectangular feedback panel that pops up on the bottom of the screen. The panel
should contain the text of the given control command.

Another from of non-visual feedback is a sound that the HoloLens makes once the robot finishes a
discrete movement step. Participants are instructed to wait for this signal before giving the next control
command.



Results

In the result sections, we discuss visualizations forthcoming of all data collected from the 218 par-
ticipants. The aim is to understand the performance and user experience of the participants in the
experiment. We are also trying to understand some of the behaviors that can be observed from the
captured data, like eye tracking and human-robot interaction. In table 2.2, we provide the condition
abbreviations that are used in the graphs.

3.1. Objective Performance
The time performance of a condition is evaluated based on when the first control command is given and
when the last command is given. This gives every participant an even playing field in time performance,
as the timer is not always started at the same time for all participants.

3.1.1. Trial Completion Time
Figure 3.1 shows the distribution of time performances for all experimental conditions. An analysis of
variance (ANOVA) on these scores yielded significant variation among conditions, F ((3, 218) = 7.18,
p < .001. It can be seen that speechwalking (M = 133.3, SD = 24.1) and speech stationary (M = 134.0,
SD = 26.7) performed the best with an insignificant difference between them according to a post hoc
Tukey test between conditions, (F (1, 218) = 0.68, p = 0.993). The slowest performing conditions were
gesture walking (M = 148.1, SD = 27.8) and gesture stationary (M = 146.2, SD = 22.0), which also
showed insignificant difference (F (1, 218) = 1.861, p = 0.87).

Figure 3.1: Time performance of the conditions

3.1.2. Average Commands
The optimal and minimal number of commands needed to complete the course is 23. Figure 3.2 illus-
trates the average number of commands for the experimental conditions. The ANOVA test revealed
statistically significant differences across all conditions, F (3, 218) = 4.00, p = .0077. The speech con-
ditions, both walking (M = 24.2, SD = 2.27) and stationary (M = 24.3, SD = 2.62) exhibited higher
average commands, indicating a greater propensity for errors. Conversely, in the gesture conditions,
walking (M = 23.7, SD = 1.92) and stationary (M = 23.8, SD = 1.75), demonstrated an average
number of commands that were closer to the optimum.

To support the analysis of errors, the experimenters recorded the types of errors made under each
experimental condition. Table 3.1 presents the count of errors, revealing statistically significant dif-
ferences across conditions, using the Chi-square test, χ2(3, 218) = 34.4, p < .001. This proves that
the speech control method is more prone to duplicate commands and the gesture stationary condition
frequently issues wrong commands.

12
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Error types SW SS GW GS Total
Wrong command 30 32 25 48 141

Duplicate command 43 34 15 5 106
Total Condition 73 66 40 53 247

Table 3.1: Contingency table of the count of errors per error type and condition

3.1.3. Command Time evaluation
To support the converse correlation between time performance and the average number of commands,
figure 3.3 depicts the distribution of the time it took to complete a single command, excluding outliers.
Outliers were excluded due to the large sample size of commands (N = 9857) that caused excessive
outliers, masking the meaningful message of the plot without telling anything significant.

A T-test compares the single command time performance of speech versus gesture control, it re-
veals a statistically significant out-performance of speech (M = 5.75, SD = 2.06) compared to gestures
(M = 6.55, SD = 3.40), t(9857) = −20.1, p < .001.

Figure 3.2: The average number of commands given for a
condition

Figure 3.3: The distribution of the time it took to complete a
single control command

3.1.4. Learning Rate of Conditions
The comparative analysis of the time to complete the first and second trials of a control method is
displayed in figure 3.4. This does not account for the perspective, only for the chronological order
of trials done. For the control method of speech, significant improvement is shown between the first
(M = 136.1, SD = 25.6) and the second (M = 131.1, SD = 25.1) trial, t(218) = 2.00, p = 0.047.
Similarly, the control method of gestures shows a significant improvement in time performance from
the first trial (M = 151.1, SD = 25.6) to the second trial (M = 143.6, SD = 24.2), t(218) = 3.11,
p = 0.002.

Figure 3.5 shows the improvement in the time performance across all trials in chronological order,
irrespective of the experimental condition. An ANOVA test conducted on the trial outcomes showed sta-
tistical significance, F (3, 218) = 4.97, p = 0.002. A detailed comparison for the first (M = 145.9, SD =
27.1), second (M = 140.6, SD = 26.2), third (M = 138.2, SD = 23.6), and fourth (M = 137.0, SD =
26.5) trial, using a post hoc Tukey test, statistical significance can exclusively be found between the
first and third (F (1, 218) = 7.76, p = 0.011) and first and fourth (F (1, 218) = 8.91, p = 0.002) condition.
Comparison of any other pairs of trials did not yield significant differences.

3.2. Intra-Experiment User Experience
In this section, we discuss the subjective feedback that was given in the intra-experiment questionnaire.
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Figure 3.4: Learning rate for both control methods Figure 3.5: Learning rate over all trials

3.2.1. Responsiveness
The scores when asked the question: ’the robot properly picked up my control command’, are seen in
figure 3.6. For this, a scale where 1 is ’strongly disagree’ and 5 is ’strongly agree’ is used. The results
of an ANOVA test show statistically significant differences between all conditions, f(3, 218) = 23.9,
p < .001. When comparing all condition pairs with a Tukey HSD test insignificance was found within
the control methods. The conditions speech walking (M = 4.62, SD = 0.61) and stationary (M =
4.58, SD = 0.67) showed very high correlation, F (1, 218) = 0.037, p = 0.944. Also the comparison of
the pair of gesture walking (M = 4.15, SD = 0.77) and stationary (M = 4.29, SD = 0.68) were deemed
to be statistically insignificant, F (1, 218) = 0.138, p = 0.156.

3.2.2. Intuitiveness of Motion
The graph in figure 3.7 shows the same scale of evaluation as the responsiveness plot for the question:
’The mapping of my command to the robot’s motion was intuitive’. An analysis of variance (ANOVA)
across all conditions proved significant differences, F (3, 218) = 27.4, p < .001. When conducting a post
hoc Tukey test a statistical significance was found between all pairs except one. The pair of speech
stationary (M = 4.24, SD = 0.74) and gesture walking (M = 4.37, SD = 0.70) did not yield significant
differences to judge the intuitiveness of the command mapping between this pair, F (1, 218) = 0.124,
p = 0.285. Suggesting that these conditions have the same level of intuitiveness.

Figure 3.6: The robot properly picked up my control
command.

Figure 3.7: The mapping of my command to the robot’s
motion was intuitive.

3.2.3. Motion Sickness
The experienced motion sickness of participants according to every condition can be seen in figure
3.8. A statistical analysis of variance proved there to be no statistical significance between the control
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methods for motion sickness, F (2, 218) = 0.269, p = 0.848.

Figure 3.8: Distribution of motion sickness

3.3. Gaze analysis
As real-world objects like the robot, hands, trajectory, and other background objects were not present
in the digital space of the HoloLens, they could not be tracked with the gaze_hit_object rostopic. To
obtain this information, gaze data needs to be plotted on the HoloLens video recording and an object
detection or segmentation model needs to be used to classify what part of the Spatial Object Mesh the
participants are looking at. This is currently out of the scope of this thesis.

3.3.1. Hit Object Analysis
In figure 3.9 the average percentage that participants are looking at a certain object category is pre-
sented. To find out if there are any statistically significant differences between the gaze percentage
and experiment condition, every object category is analyzed with a one-way ANOVA test, the results
are displayed in table 3.2.

Object SW Mean / Std. SS Mean / Std. GW Mean / Std. GS Mean / Std. F p
Spatial Object Mesh 0.778 / 0.152 0.651 / 0.171 0.839 / 0.108 0.787 / 0.139 65.769 0.0

Questionnaire 0.048 / 0.062 0.04 / 0.044 0.047 / 0.059 0.042 / 0.057 0.461 0.709
Voice Switch 0.032 / 0.022 0.049 / 0.033 0.017 / 0.02 0.022 / 0.024 66.266 0.0

Instruction Panel 0.136 / 0.131 0.223 / 0.152 0.065 / 0.064 0.099 / 0.103 72.335 0.0
Gesture Switch 0.007 / 0.009 0.018 / 0.021 0.024 / 0.017 0.033 / 0.025 59.635 0.0
Background 0.028 / 0.045 0.044 / 0.062 0.032 / 0.061 0.043 / 0.074 3.406 0.017

Table 3.2: Statistical overview of gaze metrics per object. The mean and standard deviation of the percentage looked at the
object during a trial per condition. With the ANOVA test for all conditions per object for percentage looked at during trial

For all object categories, there is a statistical significance between the experimental conditions,
except for the questionnaire object category.

For all conditions the majority of the attention went to the Spatial Object Mesh, better described as
the task at hand, including but not limited to the robot, the hands, and the path. Most noticeable is that
for the stationary speech (M = 0.651, SD = 0.171) condition, the gaze percentage of the spatial object
mesh is significantly lower than for all other conditions. The difference can be found in the instruction
panel taking a higher percentage of attention of 22.3%. The gesture walking (M = 0.839, SD = 0.108)
condition takes the highest percentage. The speech walking (M = 0.778, SD = 0.152) and the gesture
stationary (M = 0.787, SD = 0.139) conditions score the same for attention for the Spatial Object Mesh,
not showing any statistical significance in attention allocation, F (1, 218) = 0.010, p = 0.900.

3.3.2. Object Attention During Trial
In figures 3.10 to 3.13, the same gaze data as used in the previous section is categorized over time
steps of 10 seconds in the first 3 minutes of the experiment trial.
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Figure 3.9: Distribution of Gaze per Condition

For all conditions, in the first 10-30 seconds the participants are interacting mostly with the elements
inside the digital space of the HoloLens. This happens because of the recording of data starting before
the participants start the trial. This also explains why participants are looking at the intra-experiment
questionnaire, which will remain visible until one of the conditions is turned on by the participant.

For the walking conditions, you can see a consistent distribution of attention during the entire trial
with little changes, except for the intra-experiment questionnaire taking a larger share of attention at
the end of the trial. The stationary conditions show an increase in time spent looking at the instruction
panel halfway through the trial, with the speech control method having a larger amplification.

Figure 3.10: Distribution of Gaze Hit Object over time, SW Figure 3.11: Distribution of Gaze Hit Object over time, SS

Figure 3.12: Distribution of Gaze Hit Object over time, GW Figure 3.13: Distribution of Gaze Hit Object over time, GS
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3.4. Participant's Positioning
To study the positioning of participants during the experiment we tracked the position and orientation
of both the HoloLens (participant) and Spot (robot). As an example we made videos for all trials of the
experiment with the position and orientation, one example can be seen in this video.

With the data, we created a few visualizations in an attempt to conclude the positioning.

• Heat maps of the position of the participant for the walking conditions (SW & GW).
• The orientation offset of the participant when giving a control command, compared to the robot’s
orientation for the walking conditions.

• The average distance of a participant to the robot for all conditions/.

The results are found in appendix B but the results were not significant enough to show or draw any
major conclusions.

3.5. Qualitative Feedback Analysis
For the HoloLens video recording of the post-experiment interview, the following processing pipeline
was implemented to extract the results:

1. The interviews are cut out of the HoloLens recording video
2. The videos are converted to an audio-only format
3. The audio files are transcribed with Whisper large-v3
4. Every individual transcription is evaluated with GPT4 to get the following answers from the inter-

view:

• Favorite condition
• Least favorite condition
• Reason favorite condition
• Reason least favorite condition

3.5.1. (Least-) favorite conditions
In the last figure 3.14 the votes are shown for the most preferred and least preferred experimental
condition of all participants. The results are also shown in the contingency table A.1, which is analyzed
using the Chi-square test. The test showed results to be statistically significant, χ2(3, N = 218) =
125.83, p < .001. Proving that participants had a significant preference for the speech walking condition
and the least preference for the gesture stationary condition.

Figure 3.14: Votes for favorite and least favorite control condition

https://youtu.be/B5U6JVw4pnU
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3.5.2. Interview preference reasons
The second part of the interview was for participants to give their reasoning behind the choice of the
chosen (least) favorite conditions. This gave substantial insight into the control methods, which can be
used to make potential improvements in the future. For all reasons, we created a summary of the most
mentioned reason in appendix C, with the reasons ordered from most to least mentioned.



Discussion

In this thesis, we explored the comparison of using different control methods and perspectives to control
a robot with an Augmented Reality Device. In the discussion, the findings are discussed to answer the
research question proposed in the introduction.

What are the objective and subjective performances of Natural User Interface control methods,
namely speech and gestures, captured by an Augmented Reality device, while using different

perspectives to control a mobile robot?

4.1. Objective Performance
In the first section, we discuss the factual performance of the four conditions: speech while walking
and stationary, gesture while walking and stationary. Both conditions with speech as a control method
have a similar time performance, and the conditions with gestures as a control method also have a
similar time performance. The optimal number of commands is 23, speech commands had a high
average number of commands compared to gestures. This means errors do not contribute to the lower
time performance of gestures. Looking at the time distribution to complete a single control command,
gestures have a significantly higher time to complete a command. A big reason is because of the drop
in frequency as explained in section 2.3.

In the study by A. Matrin-Barrio et al. [29], the teleoperation of a hyper-redundant manipulator with
conventional controllers, gestures, speech, or a combination of both showed that the highest efficiency
was achieved with the gesture or speech-gesture combination control method. In an experiment similar
to ours [18], a drone was controlled with gestures, speech, and a conventional controller. The time it
took to complete the course was significantly quicker for the controller. However, the success rate in
completing the course with the NUI was the same as the controller. In this paper, no clear differences
were presented between speech and gesture control [18].

When comparing our results to the existing literature, there is no clear pattern to which control
methods it the quickest, the most secure, or most efficient for operating robots. It is obvious that the
performance of a control method is highly dependent on the given task and the design of that control
method.

For our task, with the discrete commands for movements of a mobile robot, the chosen design, and
unforeseen performance loss in gesture control, speech became the quicker control method. When
looking at other tasks like the operation of a robotic arm, gestures can be the better method because
they allow to mimic the hand position as the robot’s end effector position.

4.2. Learning rate
Both control methods showed significant improvement between their first and second trial. Within all
trials statistically significant was only present between the first and the third and the first and the fourth
trial. No significant improvements were seen between adjacent trials, only over the whole experiment.
We can conclude that both control methods are easy-to-learn systems for controlling robots. We can
attribute this to the simplistic design of the control commands.

Control methods based on natural language have previously been shown to perform better despite
having less previous experience, this makes it possible to complete an objective efficiently requiring
less previous experience [29]. A gesture interface designed to instruct a service robot to complete a
grasping task had a high ease of use, with only 3% of all experiments failing [54].

Both our study and the literature showed that natural user interfaces are easy to learn and allow for
the completion of the experiment’s task. The work of A. Matrin-Barrio et al. [29], actually compared it
to the conventional control method. While the work of S. Waldherr et al. [54] and our work only used
NUIs in the experiment. This means we cannot determine if the control methods were easier to learn
compared to the conventional controller of Spot.

19
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A substantial limitation is that the experimental task is particularly simple, which means it is unknown
what would happen when the task and environment increased in complexity. To get more insight, the
control methods can be compared with the learning rate of a conventional control method. This can
strengthen the claim that NUI control methods are easier to learn than conventional control methods.

4.3. Subjective Performance
The favorite condition according to the participants was the speech walking condition, not only in the
interview but also in the intra-experiment questionnaire on responsiveness and intuitiveness. The least
favorite condition is gestures while stationary, it scored lowest on intuitiveness but for responsiveness,
it scores lowest together with its gesture counterpart. The speech conditions also scored the same for
responsiveness, for both perspectives. For ratings of intuitiveness, the control method was again the
important factor as speech scored the highest in this regard. However, the perspective influenced the
intuitiveness scores notably, the walking condition was highly preferred when comparing this with the
stationary condition within the control methods.

For the task of hyper-redundant teleoperation of a robotic arm in VR, various control methods were
used: controller, master-slave, local gestures, remote gestures, voice commands, and combined voice
and gesture methods. The participants showed the largest preference for the combined gesture and
voice method with also lowest levels of frustration. Voice commands showed high levels of frustration,
caused by the nature of the task that only allows voice to make a rotation in a single joint [29]. The
majority of participants showed a preference for an interaction tool based on natural language over a
conventional control method [29].

If you compare our results to the literature, it can seen that the subjective performance highly de-
pends on the task. For our experiment the preference by participants was for speech, while in another
study the preference was for gestures [29]. This difference is completely determined by the task and
the control method design.

The design of the gesture recognition system is the main contributing reason for the subjective
result, especially for responsiveness. This means that when designing a natural user interface, one
should consider what task it aims to complete and design the control methods based on this task.
When conducting an experiment, pilot experiments need to be done extensively to see that the system
operates in the way that was intended.

4.4. Gaze analysis
The gaze analysis concluded that most of the attention goes to the task at hand, which includes the
hand, the robot, and the experiment ground. When comparing the differences between the experimen-
tal conditions, in the gesture walking condition (84%) most attention goes to the task and the least for
the speech standing condition (65%). The plots that categorize the gaze object category over time
show that in the standing conditions, halfway through the experiment less time goes to the task, and
more to the instruction panel. It can be argued that standing in the same place gives a better overview,
requiring less attention for the task and more for other elements like the UI.

In the literature, metrics like gaze entropy, or fixation duration are commonly used for analysis of
eye tracking data [12]. Pupil size seems to be an important metric for monitoring workload during a
task [56, 15, 35], but cannot be measured by the HoloLens.

Our current data looks at howmuch a participant looks at a specific target, expressed in percentages.
This is a valid metric to get a lower-level understanding of what are important elements in the workspace,
but the metric does not allow to discuss differences in cognitive workload between the conditions.

The available data that consists of x and y locations on the screen, does allow us to calculate the
gaze entropy, which is a common metric for determining workload based on eye gaze data [56]. Further
analysis can be done with the existing experiment but does not fall within this paper.
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4.5. Conclusion
In this thesis, the aim was to answer the following research question. For this, a user study with 218
participants was completed while collecting objective and subjective metrics.

What are the objective and subjective performances of Natural User Interface control methods,
namely speech and gestures, captured by an Augmented Reality device, while using different

perspectives to control a mobile robot?

Based on the discussion we can conclude that speech was a better method to control a mobile
robot for the task of making discrete steps. Speech outperformed gestures based on time while con-
versely making more errors. Subjectively speech was also preferred by participants scoring higher in
responsiveness and intuition. The walking perspective allows for perspective-taking, making partici-
pants prefer this over standing on a stationary point.

The higher performance of speech can mainly be attributed to the design of the control system,
unforeseen time performance loss in the gesture method reduced the equality of the control. Overall
both control methods were received to work well with an easy learning curve.

Both methods have different characteristics that make it a good modality for robot control. Based
on the task you want to complete you should consider whether speech or gestures will be a good way
to complete the task. For a full range of robotics control through Augmented Reality device you would
have to use both modalities, while also including other ones like gaze and digital object interaction.
With this information, it can be concluded that a multi-modality system would be the end goal when
creating an AR-based robotic control interface.

4.6. Future Work
Both control methods are exciting and quickly developing new ways to interact with robots, it is an
exciting field with a lot of potential. With the continuing progress of new AR/MR/VR glasses like Apple
Vision Pro [3], Meta Quest 3 [32], and Microsoft HoloLens [33], new capabilities will emerge that will be
usable for robotics in the near future.

For this specific thesis, the data collected by the experiment has not been fully analyzed, which
means that there are more potential findings in the conducted experiment. For example, it can be
shown how gestures and commands are performed between right-handed and left-handed people.
Gaze data needs to be calibrated and plotted on the HoloLens video to study the gaze attention in
greater detail. Or more experiments can be done with shorter gesture detection windows to increase
the speed and create a closer experience for the control methods. There are a plethora of new research
questions that can be derived from this research.

In the end, a holistic implementation is envisioned, where speech is used to convey information to
the robot. Gaze tracking to show the intentions of the operator or point to locations where the robot
must execute a task. Gestures can be used for a more direct type of control like manipulative control
of the robot arm of Spot, deictic pointing to specific locations or objects, and even some semaphoric
gestures to communicate discrete information [26].
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Appendix A: Statistical Significance

In the results section, a lot of statistics are shown. In this appendix we note the statistical significance
of all plots, to verify the validity of the results from the experiment. For all evaluations, the paired-wise
t-test is used to calculate the statistical significance. For this we use the python package SciPy and the
functions “‘scipy.stats.ttest_rel“‘ [46] and“‘scipy.stats.ttest_ind“‘ [45]. The first one is relative and can
be used to test for a null hypothesis when the dataset is of equal length and represents two related
or repeated samples with identical (expected) averages [46]. The latter calculates the t-test over two
independent sample scores, to test for a null hypothesis that two independent samples have identical
average (expected) values [45]. The analysis of variance is done with the function “‘f_oneway“‘ [44].
Pair-wise comparison between the multiple groups is tested with the post hoc function “‘tukey_hsd“‘
[47]. All tests are subjected to the threshold of P < 0.05.

A.1. Chi-Square Test
The Chi-Square test is a non-parametric test used for two specific purposes [49]:

1. To test the hypothesis of no association between two or more groups, populations, or criteria (i.e.
to check independence between two variables)

2. To test how likely the observed distribution of data fits with the distribution that is expected.

The Chi-Square test only tells the probability of independence of a distribution of two categorical
variables. In simple terms, it will test whether two variables are associated with each other or not. It
will not tell how closely they are associated [49].

In the situation of the experiment, it will tell if there is a relation between the experimental conditions
being favorable or not favorable. Not the level of how favorable a condition is [49].

The Chi-Square test calculates the sum of the squared differences between observed and expected
values.

χ2 =

n∑
i=1

(Oi − Ei)
2

Ei
(A.1)

Looking at the table A.1 we see that the expected value of a condition being favorable or not, will
be 50% of the total number of votes. As an example, we calculate the Chi-Square value for the votes
for the speech walking condition to be the favorite. First, calculate the expected value.

Ei = 111 ∗ 197

393
= 55.64 (A.2)

Now we can calculate the Chi-Square score for this vote for this condition.

χspeechwalk =
(101− 55.64)2

55.64
= 36.98 (A.3)

Vote Speech Walking Speech Stationary Gesture Walking Gesture Stationary Total
Favorite 101 33 47 16 197

Least favorite 13 44 44 95 196
Condition totals 111 91 77 114 393

Table A.1: Chi-Square Pivot Table

The total Chi-Square statistic over the entire contingency table can be calculated.

χ = 125.82 (A.4)
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The degrees of freedom of a table influences the determination of the p value. The degrees of
freedom is calculated with the equation below.

degrees_of_freedom = (number_of_columns− 1) ∗ (number_of_rows− 1) (A.5)

The degrees of freedom of this table is (4− 1) ∗ (2− 1) = 4 [49]. With the given Chi-Square score
and a degree of freedom of 4. The P value is scored at P = 4.3e − 27, making it a very high level of
significance.



Appendix B: Human-Robot Interaction

This appendix discusses the data of the position and orientation of the participant and robot. An exam-
ple can be seen on this video.

B.1. Heatmap for walking conditions
Based on the walking conditions of all 218 participants the following heatmaps are created, from both
it can be seen that they are not very different from e another and no major difference can be seen. In
the speech walking condition (C0) you can see the heatmap is a bit darker. This could be because of
faulty preprocessing happening more frequently for this condition. Because the pixels on the edges
are also a darker color compared to the gesture walking condition (C2), meaning there are frequent
measurements outside of the field of view.

Table B.1: Heatmap of the experiment ground for the walking conditions

B.2. Orientation Preferences
During the walking condition participants were able to orient themselves favorably in line with the robot
frame. It has been shown by figure 3.2, that the walking condition does create an insignificant reduction
in errors made. From the plots we can draw the conclusion that the data might be faulty, the polar plot
is cut up in 8 sections and the commands seem only to be categorized in the orientation with the factor
of 90 degrees. This seems suspicious as participants were allowed to walk in any orientation they
preferred and this disparity seem to large to be realistic. No conclusions can be made until the data is
processed further to a correct representation.

B.3. Comfortable with the robot
As a study to see in which walking condition participants were more comfortable with the robot, the
average distance between the participant and the robot was calculated. In figure B.1 you can see that
the speech walking condition had on average 9 cm less distance to the robot, there was no statistical
significance to make any certain conclusion, as seen in table ??,
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https://youtu.be/B5U6JVw4pnU
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Table B.2: The orientation of participants compared to the robot frame, when giving a control command

Figure B.1: Average distance between the participant and robot for all conditions



Appendix C: Most mentioned why's for
(least) favorite conditions

In this appendix, we find the biggest reasons why a condition was a favorite or least favorite for the
participant. The mentioned reasons are ordered from most mentioned to least mentioned.

C.1. Speech Walking
C.1.1. Why Favorite

1. Intuitive: Many participants expressed that combining voice commands with walking alongside
the robot felt the most natural and required less effort to think about commands; it was akin to
walking and instructing a pet.

2. Ease of Use: Participants frequently mentioned that voice control during walking resulted in a
straightforward experience, with commands being easy to deliver and understand, as opposed
to the precision required for hand gestures.

3. Fast Response: The quick recognition of voice commands compared to gestures made this
condition preferable, as participants felt the robot picked up on voice faster, leading to more
efficient interactions.

4. Directional Orientation: Walking in the same direction as the robot simplified the cognitive load
for participants, as they didn’t need to translate the robot’s orientation to give accurate left or right
commands.

5. Natural Movement: Participants appreciated the naturalness of moving with the robot, pointing
out that walking and talking felt more enjoyable and less artificial than static gestures.

6. Less Fatigue: Participants liked not having to hold up their arm for gestures and found verbal
commands less physically demanding.

7. Interactive Experience: Walking with the robot provided an interactive dimension that partici-
pants found engaging, making the experience more enjoyable.

8. Visual Perspective: By walking along, participants could better visualize the robot’s path and
potential turns, improving their ability to issue accurate commands.

9. Efficiency: The combination of walking and speaking was often highlighted as the most efficient
method, enabling participants to control the robot effectively without repeated commands or un-
due attention.

10. Comfort: Participants expressed a sense of comfort and reduced stress when walking and using
voice commands, as opposed to stationery gestures, which sometimes caused discomfort or
required too much concentration.

C.1.2. Why Least Favorite
1. Confusion: Participants found the stationary position caused more confusion than walking, par-

ticularly when coupled with speech control.
2. Intuitive Use: The speech walking condition was considered non-intuitive and cumbersome, as

participants were unsure if the system registered their voice commands, making it a less favored
method.

3. Physical Effort: Controlling the robot with gestures while walking was tiring due to the need for
numerous gestures and the extra effort required to adjust to the robot’s movements.

4. Efficiency: Users preferred to issue voice commands while stationary, finding it less efficient to
walk and talk simultaneously, as it hindered their ability to observe the robot’s actions.
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5. Voice Recognition: Issues with voice recognition, such as the system not responding accurately
to commands or being influenced by fast speech, made this condition less reliable.

6. Control: When issuing commands on the move, the changing coordinate system was problem-
atic. Participants preferred to be stationary behind the robot for better control.

7. Reliability: The unreliability of the system in detecting voice commands when the user was
walking made the experience less favorable due to potential misinterpretations by the robot.

8. Repetition: The uncertainty of whether the robot heard commands led to repeated instructions,
which sometimes caused the robot to execute actions multiple times, resulting in a lack of control.

9. Feedback: A lack of immediate feedback, such as an audible beep or visual cue, made partici-
pants uncertain if the robot was processing their commands, contributing to the uneasiness with
the speech walking condition.

10. Cognitive Load: The speech walking condition required additional cognitive effort, as partici-
pants had to think more about the commands while also adjusting to the robot’s orientation and
movement.

C.2. Speech Stationary
C.2.1. Why Favorite

1. Comfort: Participants found controlling the robot with voice commands while standing still to be
more comfortable, avoiding awkward hand movements and physical fatigue from gestures.

2. Natural and Intuitive: Many participants felt that voice control was a natural and intuitive way to
interact with the robot, making it straightforward to direct and command.

3. Speed and Precision: The use of voice commands was mentioned as faster and more precise
for executing instructions, with quicker responses than other methods like hand gestures.

4. Safety and Trust: Some participants expressed a sense of safety, as standing still while using
voice commands reduced the need to be close to the robot, which some found slightly intimidating
due to its power.

5. Efficiency: Voice control was seen as more efficient, preventing hand fatigue over time and
avoiding the need for constant physical work when the trajectory was long.

6. Control and Oversight: Having a stationary position provided participants with a better overview
and allowed them to plan ahead, seeing the whole track and feeling more in control.

7. Reliability: Voice control was perceived to be more reliable, with the robot reacting well and the
system effectively picking up and executing voice commands.

8. Ease of Use: The simplicity of issuing voice commands was appealing, as it allowed participants
to simply say their thoughts out loud without the need for complex gestures.

9. Practice and Confidence: Familiarity with the voice command system from practice made par-
ticipants more confident and comfortable with this control method.

10. Fixed Reference Frame: Standing still provided a static frame of reference for directions such as
left and right, which made giving commands easier as opposed to when walking with the robot.

C.2.2. Why Least Favorite
1. Confusion: Participants reported confusion over when to issue commands and found translating

movements for rotation particularly unintuitive, leading to discomfort; both the timing of the beep
and the need to flip rotation in their minds were problematic.

2. Intuition and Boredom: Participants expressed that standing still while using voice commands
felt less engaging and more boring than more active interactions, and that it was less intuitive
compared to using gestures.

3. Left/Right Orientation: Multiple participants struggled with determining the robot’s left and right,
and found it hard to translate their own orientation to the robot’s perspective, leading to mixed-up
commands and unintended movements.

4. Pronunciation and Noise: Issues with pronunciation and potential interference from outside
noise affecting voice recognition werementioned, contributing to a lack of clarity and effectiveness
in issuing voice commands.
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5. Monotony: Participants found repeating the same voice commands monotonous and less inter-
esting compared to other forms of interaction.

6. Physical Discomfort: Some found physical discomfort in muscles when speaking commands,
which contrasts with using hand gestures and suggests a preference for the physical aspect of
interacting with gestures.

7. Cognitive Load: Participants highlighted that having to remember specific commands and think-
ing about each command every time is mentally taxing and contrasts with the continuity provided
by gestures.

8. Effort and Speed: Several participants found speaking to be more effortful than using gestures
and believed vocal commands took longer to process, reducing efficiency.

9. System Responsiveness: Concerns were raised about whether the system recognized voice
commands, with some participants experiencing the robot not responding as expected or not
understanding them due to pronunciation issues.

10. First-time Experience: For some, the initial experience of using voice to control the robot was
strange and less pleasant, implying that unfamiliarity with the mode of interaction contributed to
their dislike.

C.3. Gesture Walking
C.3.1. Why Favorite

1. Intuitiveness: Many participants found gestures more intuitive than voice commands, especially
when it came to identifying left and right while walking alongside the robot.

2. Ease of Use: Ease of use was a significant factor, with participants expressing that using gestures
while walking was straightforward and required less effort in controlling the robot.

3. Efficiency: Participants felt that gestures allowed for quick and efficient control over the robot,
making it simpler to indicate desired directions without the need for verbal commands.

4. Multitasking: Some participants appreciated the ability to use hand gestures to control the robot
while simultaneously walking and having the freedom to talk to others, which made the experience
more comfortable and less repetitive.

5. Orientation: Walking with the robot enhanced participants’ orientation and understanding of the
robot’s coordinate frame, which in turn made controlling it easier.

6. Visual Feedback: The visual aspect of seeing hand gestures align with the robot’s movement
provided better feedback and understanding of the robot’s intended direction.

7. Comfort: Participants mentioned feeling more at ease using gestures rather than talking con-
stantly, and walking with the robot contributed to a more comfortable interaction.

8. Fun: The fun and engaging nature of walking alongside the robot while using hand gestures was
emphasized as a preference over other modalities.

9. Control: There was a stronger sense of control when participants could gesture and move along
with the robot, as opposed to standing still and issuing commands.

10. Reduced Cognitive Load: Gestures while walking eliminated the need to translate movements
into language, reducing the cognitive load on participants who did not have to think in a non-native
language or continuously verbalize commands.

C.3.2. Why Least Favorite
1. Uncomfortable Gestures: Participants found the gestures, especially signaling ’right’, to be

uncomfortable and unnatural, causing strain and difficulty in maintaining the correct posture.
2. Inconsistency: The gesture control was reported to be inconsistent and unreliable, often not

recognizing the intended commands both while standing and walking.
3. Distractions: Users were distracted by having to focus on both their hand gestures and the

environment, leading to less efficient control of the robot.
4. Lack of Intuition: Participants noted that the use of gestures while walking was less intuitive,

and turning in the correct direction felt less natural compared to other forms of control like voice
commands.
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5. Disorientation: Some users experienced disorientation as the gestures required to control the
robot did not align with their own body’s orientation, leading to confusion and errors.

6. Lagging Response: Many participants mentioned a lag in the system’s response to gestures,
causing delays in action and contributing to the overall challenge of using this mode of control.

7. Extra Effort: Gesture control required extra attention and effort, particularly when walking, which
detracted from the focus on steering and made the experience more challenging.

8. Physical Discomfort: Holding and positioning the hand in view for an extended period was tiring,
and certain gestures were noted to be physically demanding.

9. Technical Limitations: There were multiple mentions of technical issues such as the VR head-
set not tracking properly, the system’s failure to accurately read hand position, and the virtual
representation not matching actual hand movements.

10. Learning Curve: The condition was new and more complex, making it hard for participants to
get accustomed to the hand positioning and movement quickly, leading to a preference for other,
more straightforward control methods.

C.4. Gesture Stationary
C.4.1. Why Favorite

1. Ease of Communication: Participants found the Gesture Stationary condition facilitated easier
communication of commands like rotating left and right without confusion; this was due to both a
visual connection and straightforward command execution with the robot maintaining its orienta-
tion.

2. Intuitiveness: The Gesture Stationary condition was perceived as more intuitive, especially in
public settings where participants preferred not to vocalize commands, providing a clearer indi-
cation of the robot’s direction of movement.

3. Less Delay: Participants appreciated being able to give the next command before the current one
was executed, which they found allowed for faster interaction without waiting for voice command
recognition.

4. Clarity in Direction: When standing stationary, users found it easier to maintain the same orien-
tation as the robot, thus reducing confusion over directional commands such as ’my right is his
left.’

5. Efficient Planning: The stationary condition allowed participants to plan the robot’s path and
think ahead about the required commands, ultimately finding the process quicker and smoother
as they could issue multiple signals.

6. Less Physical Interference: Walking while commanding the robot sometimes led to issuing in-
correct commands due to the participant’s body movements, which was avoided when stationary.

7. Increased Familiarity: Over time, as participants became more accustomed to the robot, they
found it easier to synchronize their commands with the robot’s auditory cues and movements in
the gesture stationary condition.

8. Predictability: Gesture control was seen as more predictable since the robot responded once to
each command, which participants found easier to manage compared to other control methods.

9. Visual Feedback: Seeing their hands in the robot’s lens or screen was considered cool and
contributed to a sense of direct control that was much more intuitive than other interfaces like VR
or joysticks.

10. Better Perspective: The stationary condition gave participants a better perspective of the field,
allowing for an easier and more repetitive workflow with the gestures, which participants found
led to a more efficient commanding experience.

C.4.2. Why Least Favorite
1. Intuitiveness: The condition was described as counterintuitive and confusing, especially when it

came to performing gestures that were spatially inconsistent with the robot’s perspective, leading
to wrong commands and extra cognitive effort.
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2. Comfort: Participants frequently cited discomfort and awkwardness while performing the ges-
tures, particularly with certain movements like turning the wrist, which could be physically uncom-
fortable or lead to muscle strain.

3. Response Time: Many reported that hand gestures seemed slower and less responsive, noting
delays in the system recognizing their gestures, which sometimes required repeating or holding
poses for an extended time.

4. Effort: There was a significant mention of the additional effort required to perform gestures cor-
rectly, which includes both the physical aspect of reaching out or holding hands up and the mental
load of having to transform their orientation to match that of the robot’s.

5. Ergonomics: Ergonomically, the condition was not favored due to the need for twisting hands or
maintaining them in an uncomfortable position, with some gestures not being picked up well by
the system.

6. Cognitive Load: Participants expressed that the condition demandedmore focus and pre-calculation,
increasing cognitive load as they had to adapt their framework to the robot’s and think more about
the gestures.

7. Feedback Loop: There was an issue with feedback, as users had to continuously switch their
gaze between their hand and the robot, disrupting their focus and creating a less favorable feed-
back loop.

8. Engagement: Standing still while using gestures was seen as less engaging and boring com-
pared to more dynamic interactions like walking or using voice commands.

9. Physical Discomfort: Some participants experienced physical discomfort such as wrist pain,
shoulder discomfort, or general fatigue from having to hold their arms out.

10. Functionality: There were various mentions of the gestures not being picked up well or recog-
nized by the robot when they were standing still, which led to frustration and a feeling that the
system was less effective compared to other methods of interaction.



Appendix D : Work done

Literature review
Initial gesture recognition from Spot arm camera
Initial speech recognition with microphone
Switch to HoloLens
Due to the many sensors needed to capture gestures, speech, and gaze, I decided to switch to
HoloLens as it allowed me to input all desired modalities in one system.

Setting up architecture
This took me quite a while to figure out, I would say around 4 weeks of work.

• Connect Spot to a central network
• Spot connection within ROS node
• ROS node in Docker Image
• ROS-TCP-Connection to ros node

Implementations
Trying to implement every technical solution, following points were the goals:

• Speech
• Semaphoric Gestures (static gesture)
• Manipulative Gestures (direct arm)
• Deictic Gestures (pointing)
• Pinching gestures
• Direct control with impedance arm, manipulative gestures
• attempt at Static gesture recognition with HoloLens keypoints or sending the HoloLens camera
over ROS.

• Deictic gaze/gesture movement commands

– First with HTC Vive Tracker
– Second time with internal Spot odometry

• Calibration of HoloLens position and orientation scripts

Decided to do the experiments in the HRI course, further technical developments
Wedecided to do the experiment for the HRI course, at the end of September, twomonths of preparation
time. What was working at that time was speech, direct arm control, and pinching gestures.

• Static gesture recognition (Renchi)
• Data collection inside ros node (Jesse)

– Chatter
– data_collection
– spot Odom

• tried to automate starting video recording within‘HoloLens (Renchi & Jesse)
• Make GazeProvider give gaze instead of head direction (Renchi)
• data collection with rosbags, with UNIX timestamp (Renchi & Jesse)

– Chatter
– data_collection

35



36

– compressed_data
– gaze hit object
– hand keypoints
– spot Odom

• PS4 controller for discrete steps with controller (Jesse)
• ...

Experiment preparations
For the experiment, we used only the implementation of Speech, gesture recognition, data collection,
and Gaze Provider. Not sure about all the assignments of names on tasks, but filled them in to the best
of my ability/memory.

• experimental design (All)
• write protocols (Renchi & Dimitra)
• write instructions (Renchi & Dimitra)
• UI design (Dimitra & Jesse)
• intra-experiment questionnaire (Joost & Dimitra)
• Getting the location for experiments (All)
• trajectory design (Jesse)
• buttons for turning on and off control methods (Renchi)
• consent forms (Dimitra)
• preparing experiment ground (Yke, Dimitra, Renchi, Jesse)
• signup and remarks document (Dimitra)
• Post experiment questionnaire (Joost & Dimitra)
• Ethics committee approval (Yke & Dimitra, Joost?)

Doing the experiments
5 weeks of experiments, 3 weeks before the Christmas break, and 2 weeks after the Christmas break.

Table D.1 shows how many experiments every experimenter did.

Name Experiments Done
Renchi 184
Dimitra 125
Jesse 153

Table D.1: Experiments done by experimenters

Writing and Data analysis
A week equivalent of writing and data analysis during two weeks of the Christmas holiday.

The last two experiment weeks I also spend more time for writing and data analysis as the experi-
ments were done by one person.

3 weeks of data analysis after the experiments, up to today (31-01-2024).
Almost everything that is done on data analysis is within the paper/thesis. There also is a GitHub

Repository with all scripts for the data analysis, ask Jesse for an invite.
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