The Effect of Generated Comments for
Integration Tests on Code
Comprehension

Master’s Thesis

Eveline van der Schrier






The Effect of Generated Comments for
Integration Tests on Code
Comprehension

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in
COMPUTER SCIENCE
by

Eveline van der Schrier
born in Leiden, the Netherlands

]
TU Delft

Software Engineering Research Group
Department of Software Technology
Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewl.tudelft.nl


www.ewi.tudelft.nl




The Effect of Generated Comments for
Integration Tests on Code
Comprehension

Author: Eveline van der Schrier
Student id: 4154371
Email: E.D.vanderSchrier@student.tudelft.nl

Abstract

Comments play a vital role in the comprehension of source code. To aid software
developers in code comprehension, tools have been designed for automatically gener-
ating comments. However, developers lack a tool that creates comments for integration
tests. To further improve the process of code comprehension, a novel tool is proposed
in this thesis based on TestDescriber for automatically generating comments for inte-
gration tests. For the design, the main stages in the process of generating comments are
defined. An experiment is conducted to evaluate the tool with Java developers. Two
programming tasks had to be performed, in which a test had to be rewritten. The results
show that the generated comments from the tool can improve code comprehension.

Thesis Committee:

Chair: Dr. A.E. Zaidman, Faculty EEMCS, TU Delft
Committee Member: Dr. A. Bacchelli, Faculty EEMCS, TU Delft
Committee Member: Dr. T. Abeel, Faculty EEMCS, TU Delft


E.D.vanderSchrier@student.tudelft.nl




Contents

Contents iii
List of Figures v
(I__Introduction| 1
|1.1 ~ Background and Problem Statement| . . . . .. ... ... ......... 1
M27Goalsl . . . . o oot 1
1.3 Research Questions| . . . . . . . . ... . .. .. . ... ... ... ... . 2
(L4 Thesis Structurel . . . . . . . . .. L 2
2 Generating Comments from Source Code] 3
[2.1 ~ Method(s) for Summarising Various Granularity Levels| . . . . . . . .. .. 3
[2.2  Method(s) for Summarising Code Classes| . . . . . ... .......... 6
[2.3  Method(s) for Summarising Code Methods| . . . . . ... ... ...... 6
2.4 OVEIVIEW| . . . .« v v v ittt e e e e e e 8
2.5 Additional Methodsl . . . . . . ... oo 10
3 Generating Comments for Test Code| 11
B.1 TestDescriber . . . . . . . . . . e 11
[3.2  Generating Comments for Integration Tests| . . . . ... ... ....... 13
4 Experiment| 17
M1 MainGoalsl . . . . ... ... . e 17
/ Design| . . . . . . e 17
B3 Resulls. - . oo 19
29
[5.1 Interpretation of Results| . . . . . ... ... ... ... ... ... 29
5.2 Threatsto Validity|. . . . . . . .. ... ... .. .. .. 31

6 Related Work 33

iii



CONTENTS

[7__Conclusion|

Bibliography

A~ Test Cases Used in Experiment|

B~ Survey - Version A

[C Survey - Version B|

[D " Solutions to Programming Tasks|

v

35

37

41

43

51

59



List of Figures

2.1 Process of automatic source code summarisation [14].. . . . . . . . ... ... 4
[2.2  Process of generating a methods summary [33].| . . . . ... ... ... .... 7
[2.3  Process of identifying and describing high level actions in a method [34] . .. 8
3.1 Example of a comment generated by TestDescriber [27].| . . . ... ... ... 12
3.2  Example of a comment generated for an integrationtest| . .. ... ... ... 15

4.1 Java programming and testing experience of participants in version A (left) and |

| version B (right).| . . . . . . .. o o 19
4.2 Minutes needed for performing a task & correct (green) or incorrect (red) solu- |
| tion given by participants in version A (left) and version B (right).| . . . . . .. 20
|4.3  Parts of a comment used by participants to perform task 2.| . . . . .. ... .. 21
4.4 Difficulty of festLeftArrowButton with and without comments.| . . . . . . . . . 21
4.5  Difficulty of testNearestFood with and without comments.| . . . . .. .. . .. 22
4.6 Missing full JPacman framework for testLeftArrowButton with and without |
[ COMMENES) . . . . . . o o o e e e 22
4.7 Missing full JPacman framework for testNearestFood with and without com- |
L mentS] - o oo e e 23
4.8 Easier to understand code with generated comments.| . . . . ... ... .. .. 23
4.9 First programming task would have been easier with generated comments.| . . . 24
4.10 Using comment generation functionality in own projects.| . . . . . . . . . . .. 24
.11 Using comment generation functionality in shared projects.| . . . . . . . . . .. 25
|4.12 Precision of the generated comment.| . . . . . . . . . ... ... 25
4.13 Conciseness of the generated comment.| . . . . . .. .. ... ... ...... 26
|4.14 Readability of the generated comment.| . . . . . . .. ... ... ... ..... 26
.15 Answers by participants with less than one year of testing experience,| . . . . . 27
4.16 Answers by participants with 1-2 years of testing experience. . . . . . . . . .. 27
|4.17 Answers by participants with 3-6 years of testing experience.| . . . . . . . . .. 28
[A.1 Test case testNearestFood]| . . . . . . .. . . .. ... ... ... 41
A2 ‘lest case testNearestFood with comments) . . . . . . . . ... ... ... ... 41



LI1ST OF FIGURES

|A.3 'Test case testLeftArrowButton| . . . . .. ... L0 oL 42
|A.4  Test case testLeftArrowButton withcomments.|. . . . . . . ... ... ..... 42
ID.1  Example of a comment generated for an integrationtest.| . . . . . .. ... .. 59
[D.2  Example of a comment generated for an integration test.| . . . . . ... .. .. 59
|D.3 Example of a comment generated for an integration test.| . . . .. .. ... .. 60

vi



Chapter 1

Introduction

1.1 Background and Problem Statement

Reading plays an important role in understanding source code [12]]. Since comments con-
tain the main intent behind design decisions and implementation details [3]], they can help
increase program comprehension [26] 32| 36] and make it possible for developers to im-
prove the readability of code [32, [36]. This is not only convenient for developers, since
they spend almost half of their time understanding code [§]], but it also reduces maintenance
costs [7, 136]].

Understanding source code also includes understanding tests. Up to 50 percent of code
in a project can be test code [39] and developers spend about 25 percent of their time on
writing tests [2]]. While unit tests can be easy to understand, since they test only one meth-
ods, this could be different for integration tests. Integration tests use multiple parts of a
software system i.e. multiple methods, which could make it more difficult to understand.
Although tools that aid in code comprehension have been created that generate comments
for source code and unit tests, there has never been one for integration tests. That is why in
this thesis, a novel tool is proposed that generates comments for integration tests. By pro-
viding comments, it might be possible that developers find understanding integration tests
less difficult and thus would the comments aid in code comprehension.

In [27] Panichella et al. proposed a method called TestDescriber. It creates summaries
for automatically generated unit tests. This was done because in general, generated test code
is difficult to understand and maintain. It was found that TestDescriber helps improving
understandability of test code and developers found twice as many bugs as usual during
evaluation. That is why the new tool that will be proposed here is based on TestDescriber.

1.2 Goals

The main goal of this thesis is to find out what the effect of generated comments for inte-
grations test is on code comprehension. For this a tool has to be developed that generates a
description of an integration test. This will be done based on the TestDescriber tool and the
comment generation process of other existing methods. Then an experiment has to be con-

1



1. INTRODUCTION

ducted where developers work with integration tests that contain the generated comments.
Here questions can be posed to find out what developers think about the comments and
whether or not they aid in understanding the code.

1.3 Research Questions

Based on the goals given in the previous section, research questions can be posed. The first
question concerns the design and implementation of a tool generating comments for inte-
gration tests. The second question concerns the main goal of this thesis.

RQ1: What are the main stages in the process of comment generation?

Before a comment generation tool can be designed and implemented, it needs to be known
which steps are taken in summarisation techniques. This can be done by reviewing existing
techniques and identifying the main stages in the process of code summarisation.

RQ2: What is the effect of generated comments for integration tests on code comprehen-
sion?

This question can be answered by conducting an experiment with the developed tool. Here
developers work with source code that contains comments generated by the tool. Then
questions can be asked concerning the comments and comprehension of source code.

1.4 Thesis Structure

The thesis is structured as follows. In Chapter [2|existing methods for automatically generat-
ing comments in source code are described to find out how a summarisation method should
be designed. Then in Chapter [3|a description of TestDescriber is given, the tool that creates
comments for automatically generated unit tests. Also the adaptation of this tool is shown,
which was done to make it possible to generate comments for integration tests. In Chapter
M| the experiment and its results are shown. The experiment was conducted to find out what
the effect of the generated comment of integration tests would be on code comprehension.
Then in Chapter [3] the results from the experiment are discussed and possible threats to va-
lidity are given. In Chapter [6] related work is shown. Finally in Chapter [7] conclusions are
made and possible future work is proposed.



Chapter 2

Generating Comments from Source
Code

The goal of this chapter is to find out whether main stages can be found in the process of
generating comments from source code. This will be done by discussing several existing
methods. The methods are arranged according to what is summarised (class, method, var-
ious source code entities) and they are put in a chronological order. For each method all
techniques involved in the summarisation process are given. Then an overview of the tech-
niques will be given and a comparison is made to extract the main stages in the process
of code summarisation. Finally, some additional methods are shown to verify that more
methods exist than there will be given in paragraph to[2.3]

2.1 Method(s) for Summarising Various Granularity Levels

2.1.1 Extractive Summaries from Source Code Entities

Haiduc et al. [14}[15] propose a method for automatic generation of extractive summaries
for source code entities. For summarisation, extractive summaries use (the most important)
information that is already present in a code entity. In Figure [2.1] it can be seen that the
approach is based on lexical and structural information of the source code.

Lexical information is extracted from the entity, where common English and program-
ming language keywords are removed, identifiers are split in meaningful separate words,
and stemming is used. Then the source code is transformed into a text corpus, where each
document corresponds to an entity. Text retrieval techniques are used to find out what the
n most important terms are of an entity. Together with added structural information, i.e.
the role of each term in the source code (class name, method name, etc.), the summary is
formed.

In [14]] the Latent Semantic Indexing (LSI) text retrieval technique was used in a case
study, where in [15] two variants were used, namely LSI and the Vector Space Model
(VSM). Besides text retrieval techniques, lead summarisation and random summarisation
were tested. Based on the results discussed in the next paragraph, another case study was
done combining lead summaries with VSM summaries. Lead summarisation considers the



2. GENERATING COMMENTS FROM SOURCE CODE

position of words in a document, where the first appearing terms are the most relevant. In
random summarisation n terms are randomly selected and then included in the summary.
For both LSI and VSM the first step in summarisation is to represent terms and documents
in a matrix, where a row represents a term and a column represents a document. Inside
the matrix the weight of a term in relation to a document is given. This weight consist of
a combination between a local (document) and global (corpus) weight. It was found that
the combinations log, tf-idf and binary-entropy [31]] work best for both LSI and VSM, so
these combinations were used in the case studies. Then, for VSM terms in a document are
ordered according to the given weight and the top n terms are included in the summary. For
LSI however, not the original matrix is used but it is projected to a smaller approximated
one, corresponding to the highest eigenvalues in the matrix. This means that terms and
documents could be represented in the same coordinates and similarities between terms and
documents can be computed. Cosine similarities are computed between vectors of terms in
the corpus and vectors of the document to be summarised. Then terms are ordered based on
this similarity and the top n terms are selected. Because LSI computes a different matrix,
it is possible that a summary can contain terms that do not appear in the particular sum-
marised code element, but appear somewhere else in the text corpus. This is not possible
using VSM.

Levical B :
i o Processing }—. Text Retrieval
Source code ¢
— o oo
Parsing p— Summarizer

Figure 2.1: Process of automatic source code summarisation [14].

2.1.2 Topic Modelling Approach to Source Code Summarisation

Based on the summarisation method in [[14]] Eddy et al. [6] proposed a new topic modelling
based approach to source code summarisation. It expands the former method by considering
more subjects and new summaries.

The techniques used in this new method are almost the same as the original approach,
except for the text retrieval technique. In addition to lead, random and the combination of
lead and VSM, the hierarchical Panchinko Allocation Model (hPAM) and a combination of
lead and hPAM summarisation were used in a case study. hPAM is a generative hierarchical
topic model. Terms and topics are represented as a four-level directed acyclic graph, where
the nodes represent topics and the leaves represent terms. Each node is associated with a
distribution over the vocabulary. With this graph hPAM produces the term-subtopic proba-

4



2.1. Method(s) for Summarising Various Granularity Levels

bility distribution and the subtopic-document probability distribution. In the case study this
is used to identify the most likely subtopic for a document and selecting the top n terms
of that subtopic for including in the summary. Just as with using LSI for generating sum-
maries, with hPAM it is also possible to get terms that were not present in the document
itself.

2.1.3 Code Summarisation using an Eye-Tracking Study

Rodeghero et al. [30] also take the summarisation method of Haiduc et al. [15] into account
and create a new approach. Instead of using the original VSM #f/idf as text retrieval tech-
nique for extracting keywords from source code, a new method has been designed in which
the VSM is improved by incorporating the results of the performed eye-tracking study.

In the eye-tracking study eye movements and gaze fixations of programmers have been
analysed while reviewing and summarising code. In this way it could be discovered which
sentences and identifiers developers focus on and could be used in a summary of that code.
These results were then compared with the results obtained using VSM. It turned out that
the VSM approximates about five out of ten most read keywords by programmers during
summarisation. In addition method signatures were prioritised above invocation keywords
by programmers, and invocation keywords above control flow keywords.

The newly designed approach implemented VSM but was improved by incorporating
the results of the eye-tracking study. This meant that terms in method signatures, invoca-
tions and control flow were treated differently by giving them different weights. In Table
[2.1]the different configurations are given.

Code Area VSM || Eyey | Evep | Eyec
Method Signature 1.0 1.8 2.6 4.2
Method Invocation 1.0 1.1 1.2 1.4

Control Flow 1.0 0.9 0.8 0.6
All Other Areas 1.0 1.0 1.0 1.0

Table 2.1: Weights given to terms in specific code areas [30]].

2.1.4 High-Level Functionality in Source Code Summaries

McBurney et al. [23]] designed a new method for topic model source code summarisation.
In this approach the topics are set into a hierarchy in such a way that the highest-level
functionality is near the top of the hierarchy list.

The first step is to convert a software project into a call graph. This is done by creating a
directed graph with nodes representing the code methods and edges representing the method
calls. In addition a phantom node is added as root and is connected to every other node. This
is done to make sure that the graph is fully connected. Using this graph the Hierarchical
Document Topic Model (HDTM) is used to create a topic model. For this it is necessary to
first define each node in the graph as a document in the topic model, which consist of a list
of keywords. HDTM creates a hierarchical tree structure, in which each node contains an

5



2. GENERATING COMMENTS FROM SOURCE CODE

ordered list of topics selected from the code method and descendants of that method. This
means that keywords can appear in the summary which are not present in that particular
code method.

2.2 Method(s) for Summarising Code Classes

2.2.1 Summarising Java Classes

In [24] Moreno et al. propose an approach for generating summaries of Java classes. These
summaries are made of the content and main responsibilities of a class. The resulting sum-
mary consists of four parts: a general description, a stereotype description, a behaviour
description and (if applicable) an inner class enumeration.

Before deciding on which content should be used in a summary, class elements are se-
lected that help describe the intent of a class. These elements are divided into two sets,
one set containing elements that are included in the summary directly (names of interfaces,
super classes and inner classes), and one containing elements that need further analysis
(class attributes and methods). The analysis is done based on the stereotype of a class
and its methods. For this JStereoCode [25] was designed, using predefined stereotypes
such as accessors and mutators for methods, and Entity and Controller for classes. After
stereotypes have been identified, methods are selected for summarisation using the designed
stereotype-based filter and access-level filter. The stereotype-based filter removes methods
whose stereotypes are irrelevant to the class stereotype. The access-level filter removes pri-
vate, package-protected and protected methods, so that only public methods remain. Finally
the text of the summary needs to be generated. This was done by creating templates for each
part of the summary, based on the techniques designed by Sridhara et al. [33]] described in
section[2.3.2] For the general description, the names of super classes and interfaces are used
in one of the 22 predefined templates. The stereotype description is made by using the class
stereotype and if possible some domain information, such as classes used within the class
or certain type of methods. For this description 40 different templates were designed. For
the behaviour description, relevant methods are used that were selected after applying the
stereotype-based and access-level filter. The template consists of three parts, describing the
accessor, mutator and remaining methods. Phrase generation tools from [33]] were used to
obtain natural-language fragments. Finally the optional inner class enumeration description
enumerates the declared inner classes by using their names in a predefined template. The
final summary is made by concatenating all four descriptions.

2.3 Method(s) for Summarising Code Methods

2.3.1 Summarising Java Methods

Sridhara et al. [[33]] proposed an approach for creating descriptive comments for Java meth-
ods. This is achieved by extracting the important code statements of a method and convert-
ing them into natural language, as shown in Figure [2.2]

6



2.3. Method(s) for Summarising Code Methods

Before it can be determined which statements need to be included in a summary, identi-
fiers need to be split into component words. Here camel case splitting is used, which splits
words based on capital letters, underscores and numbers. Also abbreviations are detected
and expanded. Then the selection process takes place, which consists of three phases. First,
statements are selected that call a void method or a method with the same action as the name
of the method they are in, and statements that lie at the control exit of a method. In order
to identify these statements, the method’s Abstract Syntax Tree (AST), the Software Word
Usage Model (SWUM) [16] and the Control Flow Graph (CFG) are used respectively. In
the CFG, the predecessors of the CFG’s exit node are the statements that lie at the con-
trol exit of a method. Then, for each selected statement additional statements are chosen
that assign values to variables used in the selected statements. Finally, when a selected
statement is inside an if/while/for/switch statement, the statement containing one of these
keywords gets selected. In addition, during each selection step a filter is used to remove
statements containing unnecessary information, such as exception handling and logging.
Lastly, all selected statements are ordered ascending based on the line number in a method.
Then summaries are generated using the selected statements in predefined templates. Dif-
ferent templates have been designed for single method calls, return statements, nested and
composed method calls, assignments, conditional expressions and loop expressions.

Preprocessing
Traditional

Automatic Summary Comment Generator|

Generate Text]

Mathod M

Selected
S_units

Construc
Software Word Usage Modzl

Figure 2.2: Process of generating a methods summary [33]].

2.3.2 Summarising High Level Actions within Java Methods

Based on the method summarisation described in the previous paragraph, Sridhara et al.
developed a new approach for summarising high level abstractions of actions in methods
[34]. This is done by separately analysing code fragments present in a method, of which
the process can be seen in Figure The different kinds of code fragments analysed are
sequences of statements, conditional statement blocks and loops.

The techniques used for splitting and extracting words from identifiers and expanding
abbreviations are the same as used in the former approach. Also the AST, CFG and SWUM
are used. The statement selection differs from the previous approach, since now this process
is based on the three different kinds of code fragments. For sequences, a newly designed
algorithm is used to identify statements with similar actions which contain one or more
method calls. The algorithm takes into account whether statements contain the same verb,
noun and class attribute. For conditional statement blocks, statements in the then clause are
compared with statements in the else clause. The same strategy is used, except that instead
of a verb, a predicate is taken into account. In addition not only statements with method
calls, but also return statements and assignments to variables are taken into account. For
loops, rules have been defined to identify five high level actions implemented by loops.

7



2. GENERATING COMMENTS FROM SOURCE CODE

Templates have been designed so that these actions can be identified. Once this is done, a
summary can be generated. Templates as previously defined in [33]] are used to generate the
summarising sentences for each code fragment, using the template that corresponds to the
specific type of fragment.

Figure 2.3: Process of identifying and describing high level actions in a method [34].

2.3.3 Generating Descriptive Comments for Java Method Parameters

Another variation on the method described in section[2.3.1]has been made by Sridhara et al.
in [35]. Here an approach is given for generating parameter comments, which are added to
existing method summaries as text or as a separate @param comment.

The same techniques as in the former approach are used for preprocessing statements in
methods. Unnecessary statements are removed by combining techniques from [1]] and [34]].
Then for each statement the closeness of the usage of a parameter to the computational intent
of the method is computed. This is done using predefined heuristics, ordered from closest to
farthest to computational intent: parameter already appears in the summary text, parameter
is used in an already selected statement, a ubiquitous method, link to summary via variable
in summary phrase, link to summary via variable in summary statement but not in phrase,
link to summary via intermediate variables, and use in a conditional expression not part of
the summary. Then phrases are generated using templates from [33[]. Additional templates
were made to transform phrases so that the emphasis would lay on the parameter rather
than the verb. Finally the generated phrases can be added to existing method comments or
a @param comment can be created.

2.4 Overview

Now that summarisation methods have been described, an overview of all techniques can be
given. When grouping all steps taken in the summarisation process, the division as shown
in Table[2.2can be made. All methods contain techniques for lexical preprocessing and text
retrieval, so these can be named as the first two stages in the process of comment generation.
In addition, the comment itself has to be generated. Most methods use predefined templates
as a basis and put the text obtained from the lexical preprocessing and text retrieval into the
templates. These steps can be named as the last two stages of the summarisation process.
This means that there are four main stages in the process of comment generation: lexical
preprocessing, text retrieval, summary generation and summary aggregation. This informa-
tion can be used as a basis for the design of a comment generation tool for integration tests,



2.4. Overview

Summarisation Technique

Lexical Preprocessing

Text Retrieval

Haiduc et al. [14]]

stop-word filtering, spitting, case
normalisation, stemming & cre-
ation of text corpus

LSI

Haiduc et al. [15]]

stop-word filtering, splitting, case
normalisation, stemming & cre-
ation of text corpus

log, tf-idf, binary-entropy for LSI
& VSM

Eddy et al. [6]]

stop-word filtering, splitting, case
normalisation, stemming & cre-
ation of text corpus

tf-idf for hPAM & lead + hPAM

Rodeghero et al. [30]

stop-word filtering, splitting, case
normalisation, stemming & cre-
ation of text-corpus

VSM + weights eye-tracking study

McBurney et al. [23]

project conversion to directed
graph, addition of root phantom
node & conversion of nodes to

documents

HDTM

Moreno et al. [24]

grouping class elements into ’in-
clude directly’ and ’analyse fur-
ther’

JStereoCode, stereotype-based &
access-level filter

Sridhara et al. [33]]

splitting & expanding abbrevia-
tions

AST, SWUM & CFG

Sridhara et al. [34]

splitting, expanding abbreviations
& variable lexicalisation

AST, SWUM & CFG

Sridhara et al. [35]

splitting & expanding abbrevia-
tions

SWUM, selecting statement pa-
rameters, pruning, closeness &
linking context identification

Table 2.2: Division of all techniques used in summarisation methods.

which will be shown in Chapter 3]

RQI

There are four main stages in the process of comment generation: lexical prepro-
cessing, text retrieval, summary generation & summary aggregation




2. GENERATING COMMENTS FROM SOURCE CODE

2.5 Additional Methods

More methods exist for summarising source code than shown in the previous paragraphs.
After reviewing the nine methods above, a pattern of stages in the process of summarising
code could be found. That is why it has been chosen not to discuss additional methods in
the same level of detail. To give an idea on what other methods exist, a brief explanation
for several more is given here.

An example is the method created by Rastkar et al. [29]. Here a summary is generated
from source code to provide information for cross-cutting source code concerns. This has
been done to make it easier for developers to perform change tasks. There are also methods
that generate a different kind of summary. Examples are summarisation by folding less
informative code [9] and generating pseudocode as a summary [11]. Other methods do
not use source code itself to create a summary. Question and answer websites are used
by Wong et al. [37] to generate summaries for open source projects. This is done by
first summarising code fragments and then linking these to similar code in the open source
projects. Finally, there are also methods that summarise fragments and use these summaries
for the fragments themselves. Pozanelli et al. [28]] summarise fragments on Stack Overflow
using information of the discussion around a fragment. Guerrouj et al. [13]] also use the
context for summarising fragments on Stack Overflow, but they focus on library identifiers
only. Fragments demonstrating the use of an API are summarised by Ying et al. [38] by
creating a fragment smaller than the original one, using only the most informative lines of
the original fragment.

10



Chapter 3

Generating Comments for Test Code

In this chapter a look will be taken at 7estDescriber and the new tool that generates com-
ments for integration tests. The difference between these two tools will be made clear,
looking at the comment itself and implementation techniques. The techniques will also be
shown in the pattern of the main stages in the process of comment generation, as discovered
in the previous chapter.

3.1 TestDescriber

Comments for automatically generated JUnit unit tests are generated by TestDescriber. In
this section the techniques used for generating test code and comments are given. Then
results of the case study are shown. After that, the techniques are filled in the main stages
of comment generation to give an overview.

3.1.1 Implementation Technique

Four steps are taken in the TestDescriber approach: test case generation, test coverage
analysis, summary generation and summary aggregation.

Test case generation is done by using EvoSuite [10]. This tool generates JUnit test cases
for Java code. It is said that using EvoSuite is not mandatory, but it has been chosen because
it reaches high structural coverage with minimal generated test cases that have the minimal
set of test assertions.

In the second step Cobertura [3] is used to collect information by looking at the branches
and statements under test in each test case. In addition a parser was developed based on
JavaParser |[18]], which extracts keywords from identifier names for building the main tex-
tual corpus. For each test case the following information is collected: the list of attributes
and methods (in)directly invoked by the test case, for each invoked method the statements
executed, attributes/variables used and calls to other methods, and lastly the boolean values
in if-statements to see which conditions are verified when covering a true/false branch.

During summary generation three steps are undertaken. First camel case splitting and
expanding abbreviations is done as preprocessing. Then part-of-speech tagging is done by

11



3. GENERATING COMMENTS FOR TEST CODE

using LanguageTool [21]], where terms are classified as verbs, nouns and adjectives. Heuris-
tics are used to generate natural language sentences. These are similar to ones defined in
[17] and the approach by Sridhara et al. described in[2.3.1] Finally the summary generation
is done using predefined templates. A summary consists of three different parts. First a
general description of the class under test is given, then a brief summary of the structural
code coverage of each JUnit test case, and lastly a fine grained description of statements
inside each test case and if-statements traversed in the executed path, to describe the flow of
operations performed during testing. The class level summarisation uses an approach based
on the one by Moreno et al. [24] described in[2.2.1} Here however, only the interface and the
attributes of a class are used as heuristics, since the behaviour and methods of the class are
described in other parts of the summary. The second part consists of a general description
of the statement coverage scores obtained by each test case. The coverage information from
Cobertura is used in a predefined template. The final part uses code elements with SWUM
[16] to generate fine-grained statement summaries. Based on the type of statement (con-
structor, method call or assertion statement) different code elements are used in customised
templates. If applicable, a method call description is extended with a summary describing
the boolean expression of an if-condition in the called method.

The final step is the summary aggregation, where all the generated information is added
to the test class. In Figure[3.1]an example of a summary is given. The general description of
the class under test is added as a block comment before the declaration of the test class (3.a).
The brief summaries of the statement coverage scores obtained by each test case is added
as block comment before the corresponding test method (3.b). Finally, the fine-grained
descriptions are inserted inside each test case as inline comments to their corresponding
statements (3.c & 3.d).

11| public class TestOption {

12] a.b
13]

14| @Test

16| public void test0() throws Throwable {

16| // The test case instantiates an "Option" with optiom 3.e
17| // equal tc and description equal to "iW|""

18| Option option0 = new Optien("", "1W|"");

19| // Then, it tests

20| // 1) whether the description of option0 is equal to 3.c
2140 /7 "WlT

22| assertEquals("iW|"", option0.getDescription());

23| // 2) whether the key of option0 is equal to ""; 3.c

24| // The execution of the metk call
26| // implieitly ers the following 1 it =
26| // - the condition "option equal to null" is FALSE;
27| assertEquals("", optionO.getKey());

28| }

291 }

in the assertion 3.d

Figure 3.1: Example of a comment generated by TestDescriber [27]].

12



3.2. Generating Comments for Integration Tests

3.1.2 Case Study

A case study was performed with a focus on the impact of test case summaries on the bug
fixing performance of developers. It was found that developers discovered twice as many
bugs when generated comments were provided. The test case summaries also significantly
improved the comprehensibility of test cases, which was found useful by developers. For
evaluation the quality of the summaries, three questions were given. These were similar to
the ones proposed in [24] and [33]. The first question concerned whether the summary was
missing important information about a class under test. The second question was about the
summary containing unnecessary information or not. In the last question it was asked if
the comments were readable and understandable. The results were that 50 percent found it
was not missing any information, 37 percent found some information was missing, and 13
percent found very important information was missing. Then 38 percent said no unneces-
sary information was present, 52 percent said some and 10 percent said a lot of unnecessary
information was present. Finally, 70 percent found that the summary was easy to read and
understand, and 30 percent found it was somewhat readable and understandable.

3.1.3 Overview

The type of summarisation steps in this approach are similar to the ones in the methods
described in Chapter 2] All four steps are present in the summarisation process. In Table
[3.1]the techniques are given in the main stages.

Stage Technique(s)

Lexical Preprocessing | camel case splitting, expansion of abbreviations, Language-
Tool

Text Retrieval SWUM, Cobertura, Java parser

Summary Generation | predefined templates, class level summarisation based on [24]],
natural language generation heuristics based on [[17] and [33]]
Summary Aggregation | filling template with retrieved text, adding comments to test
code

Table 3.1: TestDescriber’s techniques in the main stages of comment generation.

3.2 Generating Comments for Integration Tests

Based on TestDescriber a new method has been implemented that generates comments for
JUnit integration tests. This has been done to try to improve code comprehension. In this
section, first the template of the comment is shown, to give an idea of what a comment will
look like. Then the implementation techniques are described, including an overview where
the techniques are shown in the main stages of comment generation. In addition an example
of a generated comment is given.

13



3. GENERATING COMMENTS FOR TEST CODE

3.2.1 Comment Template

The generated comment consist of several parts. First, the covered classes and methods in
a test case are listed. This is done to give the developer a quick overview of what is tested.
Then, for all methods it is given to which class they belong and what the coverage percent-
age of these methods is. In this way, when more background information needs to be read,
it is known where this can be found. The coverage information could be an indication of
how big a part the method is of an integration test. In addition the Javadoc that belongs to
the methods is given as a description. By using Javadoc, the main intent behind a method
can be found and quick understanding of a method is made possible. Finally, a description
of the assert(s) is given. This helps a developer understand what is tested in the integration
test. This results in the following template:

Test case (name of test case) covers class(es) [(name of class(es))] and method(s) [(name
of method(s))]

Method (name of class).(name of method) [(coverage percentage)]:(Javadoc of method)

It tests:
(description of assert(s))

The comment only shows classes and methods that belong to the project itself, so for in-
stance no Java or external libraries. This is done to make sure that a good overview is given
of which parts of the project are tested. It also omits a description for get and set methods.
These methods might be less difficult to understand compared to other methods. So to avoid
lengthy comments and possible redundant information, these methods are left out from the
description. When there are no methods and/or asserts in a test case, these parts are not
included in the comment to avoid adding empty templates to the comment.

3.2.2 Implementation Techniques

To be able to fill in the template, first text needs to be retrieved. If necessary, lexical prepro-
cessing will be performed. Each part of the comment has information that is gathered in a
different way from multiple sources:

Classes Names of classes are obtained by using a regular expression on the body of a test
case. The body is retrieved by parsing the test’s code file.

Methods Names of methods are obtained by using TestDescriber’s functionality of parsing
a test class. Here a test case is saved as an object and in that object all called methods are
stored.

Classes of methods The class to which a method belongs is found by parsing the files of
covered classes. After this, it is checked whether a method is present in a class or not.

Test coverage percentage The coverage percentage of methods is obtained by using the
EclEmma tool for Eclipse. This tool generates an XML-file with all the coverage informa-

14



3.2. Generating Comments for Integration Tests

tion. The file is parsed and using the method name, the coverage percentage can be found.
Javadoc of methods The Javadoc belonging to covered methods is obtained by parsing
the class file of the method. When the method is found, the Javadoc is extracted, includ-
ing only the description of the method. This means that for instance @return and @param
statements are left out. This has been done to avoid lengthy comments, since the description
itself could already be quite big. Also, the description should contain the main idea behind
a method, which is what is aimed for here.

Description of asserts The assert descriptions are obtained by using TestDescriber’s func-
tionality of generating comments for asserts.

After all information is gathered, this is put into the predefined template. Then the comment
is complete and is added to the test case as a Javadoc comment. An example of a generated
comment is given in Figure[3.2]

In the original project of TestDescriber the Cobertura tool was used for obtaining cov-
erage information of test cases. Here however, EclEmma is used. Cobertura was found to
be unstable when testing TestDescriber on different projects. That is why EclEmma was
chosen instead, to make sure that the coverage information could be retrieved for multiple
projects.

* Test case testNoShertestPath tests class(gs) [Beard, Square, Direction, Navigation, Unit]
* and method(s) [parseMap, shortestPath, getBoard, squareAt].

* Method MapParser.parseMap [62%]: Parses the text representation of the board into an actual level.

* Supported characters: ' ' (space) an empty square. '#' (bracket) a wall.'.' (period) a square with a pellet.
* 'P" (capital P} a starting square for players. 'G' (capital G) a square with a ghost.

* Method Navigation.shortestPath [188%]: Calculates the shortest path. This is done by BFS.

* This search ensures the traveller is allowed to occupy the squares on the way,

* or returns the shortest path te the square regardless of terrain if no traveller is specified.

* Method Board.squareAt [45%]: Returns the square at the given <coderx,y</code> position

* It tests:

* 1) whether "path" is null.
wy
@Test
public void testNoShortestPath() {
Board b = parser.parseMap(lLists.newdArraylist("#H4", "# # #", "#HHE#")).getBoard();
Square s1 = b.squareAt(l, 1);
Square s2 = b.squareAt(3, 1);
List<Direction> path = Navigation.shortestPath(sl, s2, mock(Unit.class));
assertNull(path);

Figure 3.2: Example of a comment generated for an integration test.

3.2.3 Overview

In Table [3.2] it can be seen that the new tool is designed in the same way as the other
existing comment generation methods. The techniques are given in the main stages of
comment generation. All techniques used here are not so different from the ones used in
TestDescriber, except using EclEmma instead of Cobertura. The most important difference
is what kind of information sources are used. The biggest difference is the usage of existing
Javadoc belonging to the code covered by an integration test, which is a novel approach
compared to existing methods.

15



3. GENERATING COMMENTS FOR TEST CODE

Stage

Technique(s)

Lexical Preprocessing

camel case splitting, expansion of abbreviations, Language-
Tool

Text Retrieval

SWUM, EclEmma, Java parser

Summary Generation

predefined template

Summary Aggregation

filling template with retrieved text, adding comment to test
code as Javadoc

Table 3.2: Techniques of the new tool in the main stages of comment generation.

16




Chapter 4

Experiment

In this chapter the experiment conducted for evaluating the new tool is described. First the
main goals of the experiment are given. Then the design of the experiment is shown. After
that the results are given.

4.1 Main Goals

Based on RQ2, the most important goal of the experiment is finding out what the effect of a
generated comment is on the comprehension of source code. Other goals include retrieving
information on the opinion of developers on the comment itself. A look can be taken at the
quality, considering precision, conciseness and readability. Also the comment’s usability
for performing the experiment can be looked into.

4.2 Design

Online surveys have been created for conducting the experiment. A survey consisted of a
short introduction and three main parts. The first two parts both consisted of a programming
task and a post-test questionnaire. In the third part another questionnaire was given. In the
programming task a test case needed to be changed. These test cases were based on the
JPacman framework [[19]. This is a Pacman-like game used for teaching software testing
and is written in Java. The code fragments used in the surveys can be seen in Appendix [A|
and the solutions to the exercises in Appendix [D}

Two different surveys were available, version A and version B, which can be found
in Appendix [B] and Appendix [C] respectively. The test cases used in the code fragments
and posed questions were the same in both surveys. The only difference was for which
code fragment generated comments would be included. The test cases used in both surveys
were called testLeftArrowButton and testNearestFood. For version A, only the fragment
containing testNearestFood included comments, where for version B comments were only
given for the fragment containing testLeftArrowButton. For both surveys, in the first part a
task had to be performed on the code fragment not including any comments. In the second
part, a task where the code fragment included comments had to be done. This setup is

17



4. EXPERIMENT

called one group post-test: all participants first have to perform a task and afterwards have
to answer questions.

The reason for using a one group post-test experiment setup with two different versions
was to avoid a possible learning effect. The participants had to perform their tasks on two
different test cases that tested various parts of the JPacman framework. The first task with-
out comments, the second one including comments. Another reason was that by performing
a programming task on a test case with and without generated comments, the difference in
how well a task is performed and how questions are answered can be seen, based on whether
or not a comment is provided. In addition, the two versions were assigned to participants in
such a way that there was an equal number of participants for both versions.

In the introduction a brief explanation of the survey was given. Also a screenshot of the
JPacman game had been included to give an idea about what the game looks like.

In part I the first programming task without a generated comment had to be performed.
A few sentences with a bit of context were given at the beginning of the exercise. Partici-
pants had to write down at what time they started and finished the task. Since the survey’s
styling was not appropriate for source code, participants had to copy the code to the Com-
pileJava website [4] and perform the task there. When they were done, they had to paste
their solution in the survey. Then two statements were given concerning the difficulty of the
task and whether the full source code of JPacman was missed for understanding the code
fragment. The participants had to indicate if they agreed or disagreed with these statements.
A five-level Likert scale [22] was used with the statements, ranging from strongly agree to
strongly disagree. Finally, a question was asked where the steps taken to complete the task
had to be written down. This was done to find out if a similarity in approach could be found
between participants and if so, whether a certain approach would have influence on how the
tasks were performed or how the comments would be evaluated.

In part II the second programming task with a generated comment had to be performed.
First the structure of the comment was explained, pointing out what kind of information was
included and what was left out. Then, similar as in part I, a few sentences of context were
provided and the time of starting and ending the task had to be filled in. Then Likert state-
ments were given, including the same as in part I, and additionally statements concerning:
whether the comment made it easier to understand the code, whether the task in part I would
have been easier if a similar comment was provided there, and whether this functionality of
automatically generating comments for tests would be used in projects participants work on
by themselves and/or with multiple people. After that questions were asked, again the one
where taken steps had to be given, and additionally: whether the comment was used and if
so, which parts of the comments were used, whether the comment was missing important
information, whether it contained redundant information and whether it was readable and
understandable. In the final question it could be written down how they would change the
comment if possible, and why.

In part III three background questions were asked. The first question concerned the
study or profession of a participant. The second one was about how many years of Java pro-
gramming experience someone had, and the final one about the years of testing experience.
Finally, any comments that participants wished to share could be given.

18



4.3. Results

4.3 Results

4.3.1 Participants

In total 18 participants took part in the experiment, of which 16 students, 1 software de-
veloper and 1 software engineer. Most of the students were MSc Computer Science (7).
Then there also were BSc Computer Science students (3) and MSc Human Computer Inter-
action Design students (2). The remaining 4 students were MSc Embedded Systems, MSc
Information Technology, MSc Cyber Security and Msc Security & Privacy. Most of the
participants had 3-6 years of Java programming experience (67%), followed by 1-2 years
(28%) and less than 1 year (5%). Experience in testing was less, since most of the students
had less than 1 year of experience (55%), followed by 1-2 years (28%) and 3-6 years (17%).
An overview of experience per participant is given in the figure below.

Participant | Experience | Experience Participant | Experience | Experience
in Java in Testing in Java in Testing

P1 1-2 1-2 P10 1-2 <1

P2 3-6 1-2 P11 1-2 <1

P3 1-2 3-6 P12 3-6 1-2

P4 3-6 <1 P13 3-6 <1

P5 3-6 1-2 P14 1-2 <1

P6 3-6 <1 P15 3-6 <1

P7 3-6 3-6 P16 3-6 3-6

P8 3-6 1-2 P17 3-6 <1

P9 <1 <1 P18 3-6 <1

Figure 4.1: Java programming and testing experience of participants in version A (left) and
version B (right).

For each programming task, participants had to write down which steps were taken to
complete a task. The majority of the participants only wrote down what they changed to get
the solution. They did not write every step they took for solving the task, e.g. reading all the
code first, reading the assert statement first, or looking at specific parts of the comments.

4.3.2 Execution of Programming Tasks

In total 17 out of the 36 performed tasks were solved correctly. When an answer to a task
was only partially correct, it was considered incorrect. The tasks without comments got 8
and the tasks including comments got 9 correct solutions. When looking at the test cases
used in tasks, for testLeftArrowButton 12 correct solutions were given. For testNearestFood
only 5 correct solutions could be given. In the tables in Figure .2] below, for each partici-
pant it is shown whether a task was solved correctly or not, indicated by the colour.

19



4. EXPERIMENT

The total number of minutes needed to complete a task are also given in these tables.
Here it can be seen that for tasks which included a comment, more time was spent when
comparing it to the same task without a comment. For instance task 1 in version A (not
including comments) and task 2 in version B (including comments). For task 1, 40 minutes
were needed, where 45 minutes were needed for task 2. When looking at the difference
between time spent on tasks containing containing testNearestFood or testLeftArrowButton,
it can be seen that for festNearestFood a lot more time was spent.

Participant Task 1 - Task 2 - Participant Task 1 - Task 2 -
no comments | comments no comments | comments

P1 1 7 P10 6 2

P2 7 5 P11 6 5

P3 1 3 P12 6 5

P4 4 11 P13 10 8

P5 3 8 P14 6 10

P6 10 13 P15 11 6

P7 2 2 P16 1 3

P8 4 12 P17 18 4

P9 8 12 P18 3 2

Total 40 73 Total 67 45

Figure 4.2: Minutes needed for performing a task & correct (green) or incorrect (red) solu-
tion given by participants in version A (left) and version B (right).

In version A, 8 participants used the comment to perform task 2. In version B, 6 used the
comment. This means that on average, 78.8% of the participants used the comment to solve
the exercise. In Figure[4.3] for each part of the comment the number of participants is given
that used this part to solve the exercise. The description of methods was used the most,
followed by the description of what is tested. The list of classes and coverage percentage
were used the least.

20




4.3. Results

]

7
Es
£
25
E B testNearestFood
o 4 (version A)
E 3 = testl eft ArrowButton
ER (version B)
z

1

o

list of classes  list of coverage descripion description
methods  percentage of methods of what is
tested

Figure 4.3: Parts of a comment used by participants to perform task 2.

4.3.3 Answers to Questions

After each programming exercise, first participants had to indicate for given statements
whether they (strongly) agreed, (strongly) disagreed, or neither. In Figure [4.4] and [4.5] the
perception of a task’s difficulty is given. For testLeftArrowButton, only 1 participant found
the task difficult, while for festNearestFood 3 found it difficult and 5 neither difficult nor

easy.

"I found the task easy"

]

a
]
= 7
E
% 6
'E' 5 Btest] eftArrowButton without comm ents
= (version A task 1)

4 -
; utestl eftArrowButton with comm ents
<= 3 (version B, fask 2)
=1
Z 2

1 4

o . i |

strongly agree agree neither disazree strongly disagree

Figure 4.4: Difficulty of testLeftArrowButton with and without comments.

21



4. EXPERIMENT

"I found the task easy"

® testNearestF ood without comments

(version B, task 1)

Number of Participants
T R T S - -]

o
Il

strongly agree

¥ testNearestF ood with comments

(version A task 2)

agree

neither disagree strongly disagree

Figure 4.5: Difficulty of testNearestFood with and without comments.

Whether or not participants missed the full JPacman framework is given in Figure {.6|
and For testLeftArrowButton, the framework was never missed, only 1 case neither
missed nor unmissed. For festNearestFood it was more frequent. Here the framework was
missed in 3 cases and in 1 case neither.

Btestl eftArrowButton without comm ents

(version A task 1)

mtestl eftArrowButton with comm ents

(version B, fask 2)

"To understand the fragment,
I missed the full source code of JPacman"

9
- 3
57
£
Es
=
T4
g 3
ER
= 1

0 . —

strongly agree agree neither disagree strongly disagree

Figure 4.6: Missing full JPacman framework for testLeftArrowButton with and without

comments.

22



4.3. Results

"To understand the fragment,
I missed the full source code of JPacman"

9
= 8
87
(=9
=]
E 5 WtestNearesfF ood without comments
=g (versionB, task 1)
'g 3 mtestNearestF ood with comments
Ell (version A task 2)
g
0 I e ,

strongly agree agre neither disagree strongly disagree

Figure 4.7: Missing full JPacman framework for testNearestFood with and without com-
ments.

The most important question in the survey is whether or not the comment helps under-
standing a code fragment. The answer to this are given in Figure 4.8 For festNearestFood
the majority of the participants found that the comment made it easier to understand the
code. For testLeftArrowButton however, only one third thought that the comment helped
them understanding the code. On average, 44.4% found that the comment helped for under-
standing code, 33.3% found it did not help and 22.2% found neither.

"The generated comment made it easier
for me to understand the code"

]
- a3
g7
26
H g m testNearestF ood
= A (version A)
5 g m testl eftArrowButton
% 2 4 (version B)
il

0 - 1

strongly agree neither disagree slmngly disagree

Figure 4.8: Easier to understand code with generated comments.

Figure [4.9] gives information on whether the task without comments would have been
easier if generated comments would have been provided. Version A has festLeftArrowBut-
tfon in task 1, version B has festNearestFood in task 1. For version A, the majority of the
participants found that it would have been easier. In version B the opposite was found
by the majority, namely that the task would not have been easier by providing generated
comments.

23



4. EXPERIMENT

"The programming task in Part I would have been easier
if a similar comment was provided there"

9
- 3
57
g g myersion A
£
JE 4 mverson B
5 3
R
T h:

0

strongly agree neither disagree slmngly disagree

Figure 4.9: First programming task would have been easier with generated comments.

Whether or not the functionality of generating comments for tests would be used in
participant’s private project and/or shared projects is given in Figures .10/ and . T1|respec-
tively. For private projects, most of the participants in version A say that they would use
it, while in version B most indicate that they would not. When looking at shared projects,
again in version A the majority would use the functionality. This time also for version B
most of the participants would use it. On average, 50% would use the functionality on pri-
vate projects and 44.4% would not. For shared projects, 50% would use it and 27.8% would
not.

"For projects I work on by myself,
I would use this functionality of
automatically generating comments for tests'

9
8
=
“i?
56 .
-E 5 N version A
=
T a4
5] 3 Eversion B
=
g
22
. ||
o -

strongly agree agree neither disagree strongly disagree

Figure 4.10: Using comment generation functionality in own projects.

24



4.3. Results

"For projects I work on with multiple people,
I would use this functionality of
automatically generating comments for tests"

9
8
27
B
56 .
-El 5 mversion A
(=9
5 4
5] 3 Bversion B
=
El
z

) |
. - -:I
0 - T T

strongly agree agree neither disagree strongly disagree

Figure 4.11: Using comment generation functionality in shared projects.

The quality of the comment has been tested on precision, conciseness and readability.
The evaluation can be found in Figure .12} .13 and [#.14] respectively. All three aspects
of quality were higher rated in version A than in version B. The majority of participants in
version A found that the comment was not missing information and was easy to read and
understand. For conciseness, the number of participants found that it had no unnecessary
information was the same as those that found it has some unnecessary information. On
average, half of the participants found that the comment was precise and readable, while for
conciseness most found that some redundancy was present.

Verson A

VersonB

Average

0% 20 % 40 % 60 % 30 % 100 %

¥ isnot missing any information
= ismissing some inform ation

M ismissing some very im portant information

Figure 4.12: Precision of the generated comment.

25



4. EXPERIMENT

100 %

Version A
VersionB
Avwverage
o I% 20I % -‘lOI % 60I % BOI% :
¥ has no unnecessary inform ation whas some unnecessary inf ormation

B has a lot of unnecessary information

Figure 4.13: Conciseness of the generated comment.

Verson A

VersonB

Average

0% 20 % 40% 60 % 80 %

Wis easy to read and understand
wis somewhat readable and understandable

Hishard to read and understand

100 %

Figure 4.14: Readability of the generated comment.

Suggestion could be made on how participants would change the comment if they could.
For 27.8% of the participants, the comment does not have to be changed. The coverage
information would be removed by 22.2%, mainly because they did not know what it stood
for. Also a few participants indicate that the list of classes and/or methods was not useful
for them. Although it was chosen specifically not to include get-methods so that lengthy
comments and redundant information could be avoided, one participant wanted to include
these methods. Also a few participants did not want a block comment at the beginning of a
test case. Instead, they wanted the comment to be divided among the code lines.

Finally, two participants gave a remark on the functionality of generating comments for
integration tests: It can definitely help understanding the context of the project” and 1




4.3. Results

think this would really be super useful with a bit of tweaking”. Here, adding comments in
the code lines was suggested as possible tweaking.

There were a lot more participants with less than one year of testing experience com-
pared to ones with 1-2 or 3-6 years of experience. In the following figures results are shown
based on the testing experience of participants. The results belong to the statements about
generated comments: whether the task in part I would have been easier with comments,
whether the comments made it easier to understand code, whether the functionality of gen-
erating comments would be used in private and/or shared projects.

16

14

12

M part | would have been

10 easier with comments

¥ comments made it easier
to understand

6 M use comments in shared
projects
4 -
B yse comments in private
2 7 projects.
O -

strongly agree neither disagree strongly
agree disagree

Figure 4.15: Answers by participants with less than one year of testing experience.

]
7 -

W part | would have been
6 - easier with comments
5 A B comments made it easier
a4 to understand
3 4 B use comments in shared

projects

2

B use comments in private
1 projects
D - T T T T

strongly  agree  neither disagree strongly
agree disagree

Figure 4.16: Answers by participants with 1-2 years of testing experience.

27



4. EXPERIMENT

28

® part lwould have been
easier with comments

3
B comments made it easier

to understand

27 M use comments in shared
projects

1 B use comments in private
projects

0 - T T T T

strongly agree  neither disagree stronghy
agree disagree

Figure 4.17: Answers by participants with 3-6 years of testing experience.



Chapter 5

Discussion

First an interpretation of the results found in the experiment are discussed. Then threats
to the validity of this thesis are given in the framework of internal, external, and construct
validation, plus limitations.

5.1 Interpretation of Results

Correct solutions to programming tasks In total 17 out of 36 tasks were solved correctly.
For the task including festLeftArrowButton, there was no difference in the number of correct
answers based on whether or not comments were available. In both cases 6 correct answers
were given. The task with testNearestFood got 2 correct answers without comments and 3
with comments. This means that based on only the number of correct solutions, no signifi-
cant result can be found for comments helping participants solving programming tasks.
Time taken for programming tasks When comparing tasks with and without comments, a
difference in the amount of time spent can be seen. In total, it took participants 40 minutes
without comments and 45 minutes with comments for the task including festLeftArrowBut-
ton. For testNearestFood it took them 67 and 73 minutes respectively. This means that
participants needed more time for tasks including a comment, compared to the same task
without a comment. This could be due to the fact that when participants used the comment
for solving the task, more text had to be read and understood.

Difficulty level of programming tasks Several results indicate that the programming task
with testNearestFood is more difficult than the one with testLeftArrowButton. First, for
testNearestFood 5 correct solutions were given compared to 12 for testLeftArrowButton.
Second, much more time was spent on tasks with testNearestFood: 67.5% more without
comments and 62.2% more with comments. Finally, for testLeftArrowButton only one par-
ticipant found the task difficult and all others found it easy. The task with testNearestFood
was found difficult by 3 people and 5 found it neither difficult nor easy.

Based on the difficulty of a task, now it can be considered whether there is a difference
in the perception of generated comments. In survey version A the more difficult test case is
provided with comments, where in version B the more easy one is given comments. When
comparing the results regarding generated comments, the following can be seen. In version

29



5. DISCUSSION

B the comments were found not to make it easier to understand code, where in version A
it was found easier. In version B it was also thought that the task without comments would
not have been easier if they would have been provided, where in version A the opposite was
found. Also when looking at participants wanting to use the tool for their own public and/or
private projects, people in version B were less willing to use the tool compared to version A.
In addition were the generated comments used by 6 participants in version B compared to
8 in version A. This could mean that the generated comments are less useful when the test
code is easier. To confirm this, more experiments have to be done including code fragment
with different levels of difficulty.

Experience in Java programming & testing It is possible that testing experience has some
influence on the ability of solving a programming task. When participants are grouped on
their years of testing experience, and the number of correctly solved tasks are compared
with the ones that were not solved correctly, the following can be seen. For the group with
3 to 6 years of experience, 83.3% of the tasks were solved correctly. The group with 1 to
2 years of experience solved 50% of the tasks correctly. For the group with less than 1
years of experience, only 35% was solved correctly. This is an indicator that the less testing
experience a participant has, the smaller the chance is of solving a task correctly. Survey
version B might have been negatively influenced by this, since there were more participants
with less than one year of experience compared to the participants in version A.

It is also possible that less testing experience could be in favour of the generated com-
ments. With less experience it is more likely that comments are needed for understanding
code. Figure [4.15] [4.16] and [4.17] show the results related to questions about comments,
given by participants with less than one, 1-2 and 3-6 years of experience respectively. For
all statements, the answers would be in favour of the generated comments when participants
agree. Considering this, it can be seen that actually not the participants with less than one
year experience value comments the most, but the participants with 1-2 year of experience.
This indicates that less experience in testing does not automatically have to mean that gen-
erated comments will be more appreciated. Since the number of participants per group of
testing experience is not divided equally, this should be verified again with where there are
similar numbers per group of experience.

Usability of the commenting tool For project participants work on by themselves, there
was only a slightly higher preference for wanting to use the functionality of generating
comments for tests: 50% compared to 44.4%. When looking at projects on which multi-
ple people are working, however, the difference is much bigger: 50% against 27.8%. When
people work on a project by themselves, they have written all the code and test on their own.
Then they know better how everything is working and what is tested. For shared projects,
other people could have written test cases or code belonging to a test case. This means that
it is more likely for people not being able to understand the code. Here it could be useful to
have automatically generated comments.

Quality of the generated comments The quality was tested on precision, conciseness and
readability. Overall, 77.8% of the participants found that the comments were not missing
anything or only some information. None of some unnecessary information seemed present
for 83.3%. Finally, 88.9% found that the comments were (somewhat) easy to read and un-
derstand. This means that the generated comments are perceived as good quality by most

30



5.2. Threats to Validity

participants.

Content of the generated comments During the performance of programming tasks, the
descriptions of methods were used the most by participants. After these descriptions, the
description of what is tested was used most. This means that for understanding and solving
programming tasks, these parts of the comments can be considered the most useful. On the
other hand, suggestions have been made towards changing the content of comments. From
all the parts that could be removed, most participants thought this should be the coverage
information, mainly because they did not know what it meant. This was followed by the
list of classes and methods. Since the participants were only provided with a code fragment
and not the full framework, it is understandable that the coverage information and list of
classes/methods has not much use to them. This might be different when the full project
would have been provided. Another suggestion was changing the position of the comments,
namely divided among the code lines in the test case. It could be useful to place the descrip-
tion of a method above the line where it is called. Then a developer does not have to look
up and down switching between the description and method call. However, this could make
the test case look cluttered, also because sometimes Javadoc can be quite long. It could be
especially inconvenient for developers that already know how a test case works, then the
comments only make it more difficult to read a test case.

Comprehension of source code Most of the participants found that the comment made it
easier for them to understand the code. Also, more participants thought that the task without
comments would have been easier if comments were provided. This means that RQ2 can
be answered as follows:

RQ2 Generated comments for integration tests can help making it easier to understand
code.

5.2 Threats to Validity

Internal validity concerns with threats of causal conclusions based on the study performed.
There might have been a difference in difficulty of test cases used in the programming
exercises. For testNearestFood the task took much longer, was perceived as more difficult
and there were less correct solutions given. It would have been better if first a test was done
to find out what the average perception of difficulty was on multiple programming tasks.
Then two tasks could have been selected with a similar difficulty level.
External validity involves the generalisability of the results found in this study. When a
possible relation between testing experience and the approval of generated comments was
looked into, participants were divided in three groups based on their experience. There were
much more people in the group of least experienced compared to the other two groups.
Although the groups were used as if they were balanced. This means that the indication
obtained from this is not 100% correct. As said before, this test should be performed again
with equals groups. Then it can be seen whether the indication that less testing experience
is not automatically in favour of generated comments is surely true.

Also in the experiment only test cases have been used based on the JPacman framework.
More experiments should be conducted where test cases from other project are chosen.

31



5. DISCUSSION

Construct validity includes the setup of the experiment. A threat to validity is that the
groups used for survey version A and B did not have an equal number of participants with
the same level of testing experience. To make sure that this could have less influence on the
results, the participants should have been divided equally over the two versions based on
their experience.

Concerning the format of the survey, the plan was to use the following format of a Lik-

ert scale item: (strongly) agree, (strongly) disagree and neither agree nor disagree. How-
ever, the format of the survey only allowed the assignment of the labels strongly agree and
strongly disagree. All labels in between could not be shown. This can for instance be seen
in Appendix [B} Part I question 4. The questions would have been more clear if all labels
could have been provided.
Limitations. The newly developed tool cannot be used together with TestDescriber. This
is because the tool generates comments for integration tests, while TestDescriber does this
for unit tests. TestDescriber is designed in such a way that information can only be ob-
tained from the main class under test. For unit tests this is only one class. For integration
tests however, multiple classes are under test, so information needs to be collected from
multiple classes. Another reason why it is not integrated in TestDescriber’s project, is that
TestDescriber uses Cobertura to retrieve test coverage information, which was found to be
unstable when testing TestDescriber on several projects. If the new tool and TestDescriber
would be run together, this could result in a failure.

Another limitation is that Javadoc needs to be present for covered code in order to get
a complete comment for an integration test. When Javadoc is not available, an explanation
of a method cannot be given. This means that a comment will be less useful when little or
no Javadoc is available.

32



Chapter 6

Related Work

As said earlier, no methods have been created before for summarising integration tests. Re-
lated work can be found in methods summarising unit tests or source code.

Summarising test code Kamimura and Murphy [20] proposed a method for generating
human-oriented summaries of test cases. Their goal was to help developers improve under-
standing unit test cases. The summaries were created by performing a static analysis on the
code belonging to test cases. The result was a method that could be seen as a starting point
for generating test case summaries.

Based on this method, Panichella et al. [27] proposed a new approach for summarising
generated unit tests: TestDescriber. This was done to find out what the effect of test case
summaries would be on bug fixing performance of developers. It was found that develop-
ers found twice as many bugs as usual. In addition the summaries also aided in test code
comprehension. Because of these positive results, the tool proposed in this thesis was de-
signed based on TestDescriber. The main difference is that this tool generates comments
for human-written integration tests instead of generated unit tests. What is also new, is that
existing Javadoc belonging to an integration test is used in the generated comments.
Summarising source code In Chapter 2] several methods have been discussed that generate
summaries for source code: [0, 9, [11} 13} 14,115} 23] 24, 25, 128, {29, 30, 133\ 134, 135, 137, 138]].
These can all be considered as related work. The main difference between these methods
and the developed tool is that all these methods have been made to generate comments for
regular source code. Also none of the methods use Javadoc as a resource of information.

33






Chapter 7

Conclusion

Comments play a vital role in the comprehension of source code. However, software devel-
opers lack a tool that creates comments for integration tests. This thesis proposes a solution.
It presents a tool that automatically generates comments for integration tests. To make this
possible, the main stages in the process of comment generation had to be defined. The first
research question was:

RQ1: What are the main stages in the process of comment generation?

There are four main stages in the process of comment generation: lexical preprocessing,
text retrieval, summary generation & summary aggregation. These stages were used in
the design of the generation tool. TestDescriber was used as a basis, because it generates
comment for unit tests. It also received good evaluation results in the case study. The
novelty of the developed tool is that unlike existing tools, it uses Javadoc as a resource.
A comment generated by the tool consists of a list of covered classes and methods, the
coverage percentage, a description of covered methods and a description of what is tested.

An experiment was conducted to evaluate the tool. The second research question was:

RQ2: What is the effect of generated comments for integration tests on code comprehen-
sion?

In the experiment Java developers performed two programming tasks in which a test
had to be rewritten. Results show that the comments generated by the tool can aid the code
comprehension of developers. In their tasks, developers preferred to have the comments
provided, and they found it easier to understand the code with them. The comments were
mostly found to be of good quality: developers thought they were precise, readable and
quite concise. Developers also indicated that they would use the tool more in collaborative
projects, involving other developers, as opposed to individual projects.

In future work, the content of the comments can be shortened: developers suggested
that the coverage information and list of classes/methods could be excluded. Further ex-

periments should be conducted to find out if developers actually perceive this as an im-

35



7. CONCLUSION

provement. Also, a variation of the experiment could be to use a whole framework, not
only code fragments. It can be interesting to compare these results with the results from
this thesis. Then, since the majority of the experiment’s participants had less than one year
of testing experience, the experiment should be repeated with a greater variety of experi-
ence. The participants also need to be equally divided over different surveys based on their
testing experience. Then the groups would be truly randomised and it can be seen if there
is a difference in the experiment’s outcome. Finally, it has been found that the usefulness
of generated comments could be dependent on the difficulty of the code it belongs to. To
confirm this, more experiments have to be done which include code fragment with different
levels of difficulty.

36



(1]
(2]

(3]

[4]
(5]

[6]

[7]

[8]

[9]

[10]

Bibliography

Thomas Ball and James R Larus. Branch prediction for free, volume 28. ACM, 1993.

Moritz Beller, Georgios Gousios, Annibale Panichella, and Andy Zaidman. When,
how, and why developers (do not) test in their ides. In Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering, pages 179-190. ACM, 2015.

Cobertura. http://cobertura.github.io/cobertura/, 2015.
CompileJava. https://www.compilejava.net/, 2016.

Anna Corazza, Valerio Maggio, and Giuseppe Scanniello. On the coherence be-
tween comments and implementations in source code. In Software Engineering and
Advanced Applications (SEAA), 2015 41st Euromicro Conference on, pages 76—83.
IEEE, 2015.

Brian P Eddy, Joshua A Robinson, Nicholas A Kraft, and Jeffrey C Carver. Evaluat-
ing source code summarization techniques: Replication and expansion. In Program
Comprehension (ICPC), 2013 IEEE 21st International Conference on, pages 13-22.
IEEE, 2013.

James L Elshoff and Michael Marcotty. Improving computer program readability to
aid modification. Communications of the ACM, 25(8):512-521, 1982.

Richard K Fjeldstad and William T Hamlen. Application program maintenance study:
Report to our respondents. Proceedings Guide, 48, 1983.

Jaroslav Fowkes, Pankajan Chanthirasegaran, Razvan Ranca, Miltiadis Allamanis,
Mirella Lapata, and Charles Sutton. Tassal: Autofolding for source code summa-

rization.

Gordon Fraser and Andrea Arcuri. Whole test suite generation. Software Engineering,
IEEE Transactions on, 39(2):276-291, 2013.

37


http://cobertura.github.io/cobertura/
https://www.compilejava.net/ 

BIBLIOGRAPHY

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]
[19]
[20]

(21]
[22]

(23]

[24]

38

Hiroyuki Fudaba, Yusuke Oda, Koichi Akabe, Graham Neubig, Hideaki Hata, Sakriani
Sakti, Tomoki Toda, and Satoshi Nakamura. Pseudogen: A tool to automatically

generate pseudo-code from source code. In Automated Software Engineering (ASE),
2015 30th IEEE/ACM International Conference on, pages 824—829. IEEE, 2015.

Adele Goldberg. Programmer as reader. IEEE Software, 4(5):62, 1987.

Latifa Guerrouj, David Bourque, and Peter C Rigby. Leveraging informal documen-
tation to summarize classes and methods in context. In Software Engineering (ICSE),
2015 IEEE/ACM 37th IEEE International Conference on, volume 2, pages 639-642.
IEEE, 2015.

Sonia Haiduc, Jairo Aponte, and Andrian Marcus. Supporting program comprehen-
sion with source code summarization. In Proceedings of the 32nd ACM/IEEE Inter-
national Conference on Software Engineering-Volume 2, pages 223-226. ACM, 2010.

Sonia Haiduc, Jairo Aponte, Laura Moreno, and Andrian Marcus. On the use of
automated text summarization techniques for summarizing source code. In Reverse
Engineering (WCRE), 2010 17th Working Conference on, pages 35—44. IEEE, 2010.

Emily Hill. Integrating natural language and program structure information to im-

prove software search and exploration. PhD thesis, University of Delaware, 2010.

Emily Hill, Lori Pollock, and K Vijay-Shanker. Automatically capturing source code
context of nl-queries for software maintenance and reuse. In Proceedings of the 31st
International Conference on Software Engineering, pages 232-242. IEEE Computer
Society, 2009.

JavaParser. https://github.com/javaparser/javaparser, 2015.
JPacman. https://github.com/SERG-Delft/jpacman-framework, 2016.

Manabu Kamimura and Gail C Murphy. Towards generating human-oriented sum-
maries of unit test cases. In 2013 21st International Conference on Program Compre-
hension (ICPC), pages 215-218. IEEE, 2013.

LanguageTool. https://github.com/languagetool-org/languagetool/, 2015.

Rensis Likert. A technique for the measurement of attitudes. Archives of psychology,
1932.

Paul W McBurney, Cheng Liu, Collin McMillan, and Tim Weninger. Improving topic
model source code summarization. In Proceedings of the 22nd International Confer-
ence on Program Comprehension, pages 291-294. ACM, 2014.

Laura Moreno, Jairo Aponte, Giriprasad Sridhara, Andrian Marcus, Lori Pollock,
and K Vijay-Shanker. Automatic generation of natural language summaries for java
classes. In Program Comprehension (ICPC), 2013 IEEE 21st International Confer-
ence on, pages 23-32. IEEE, 2013.


https://github.com/javaparser/javaparser
https://github.com/SERG-Delft/jpacman-framework
https://github.com/languagetool-org/languagetool/

Bibliography

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]
[33]

[34]

[35]

[36]

[37]

Laura Moreno and Andrian Marcus. Jstereocode: automatically identifying method
and class stereotypes in java code. In Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, pages 358-361. ACM, 2012.

Eriko Nurvitadhi, Wing Wah Leung, and Curtis Cook. Do class comments aid java
program understanding? In Frontiers in Education, 2003. FIE 2003 33rd Annual,
volume 1, pages T3C-13. IEEE, 2003.

Sebastiano Panichella, Annibale Panichella, Moritz Beller, Andy Zaidman, and Har-
ald C Gall. The impact of test case summaries on bug fixing performance: An empir-
ical investigation. Technical report, Peer] PrePrints, 2015.

Luca Ponzanelli, Andrea Mocci, and Michele Lanza. Summarizing complex devel-
opment artifacts by mining heterogeneous data. In Proceedings of the 12th Working
Conference on Mining Software Repositories, pages 401-405. IEEE Press, 2015.

Sarah Rastkar, Gail C Murphy, and Alexander WJ Bradley. Generating natural lan-
guage summaries for crosscutting source code concerns. In Software Maintenance
(ICSM), 2011 27th IEEE International Conference on, pages 103—112. IEEE, 2011.

Paige Rodeghero, Collin McMillan, Paul W McBurney, Nigel Bosch, and Sidney
D’Mello. Improving automated source code summarization via an eye-tracking study

of programmers. In Proceedings of the 36th International Conference on Software
Engineering, pages 390-401. ACM, 2014.

Gerard Salton and Christopher Buckley. Term-weighting approaches in automatic text
retrieval. Information processing & management, 24(5):513-523, 1988.

Diomidis Spinellis. Code quality: the open source perspective. Adobe Press, 2006.

Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori Pollock, and K Vijay-
Shanker. Towards automatically generating summary comments for java methods.
In Proceedings of the IEEE/ACM international conference on Automated software en-
gineering, pages 43-52. ACM, 2010.

Giriprasad Sridhara, Lori Pollock, and K Vijay-Shanker. Automatically detecting and
describing high level actions within methods. In Software Engineering (ICSE), 2011
33rd International Conference on, pages 101-110. IEEE, 2011.

Giriprasad Sridhara, Lori Pollock, and K Vijay-Shanker. Generating parameter com-
ments and integrating with method summaries. In Program Comprehension (ICPC),
2011 IEEE 19th International Conference on, pages 71-80. IEEE, 2011.

Ted Tenny. Program readability: Procedures versus comments. Software Engineering,
IEEE Transactions on, 14(9):1271-1279, 1988.

Elaine Wong, Jinqiu Yang, and Lin Tan. Autocomment: Mining question and answer
sites for automatic comment generation. In Automated Software Engineering (ASE),
2013 IEEE/ACM 28th International Conference on, pages 562-567. IEEE, 2013.

39



BIBLIOGRAPHY

[38] Annie TT Ying and Martin P Robillard. Code fragment summarization. In Proceed-
ings of the 2013 9th Joint Meeting on Foundations of Software Engineering, pages
655-658. ACM, 2013.

[39] Andy Zaidman, Bart Van Rompaey, Arie van Deursen, and Serge Demeyer. Studying
the co-evolution of production and test code in open source and industrial developer
test processes through repository mining. Empirical Software Engineering, 16(3):325—
364, 2011.

40



Appendix A

Test Cases Used in Experiment

In this appendix the test cases used in the experiment are given. In survey version A, the
code fragment in Figure [A3] was used in task 1 and the code in Figure [A2]in task 2. In

version B, the fragment in Figure [A.T|was used in task 1 and the code in Figure [A.4]in task
2.

private Mapparser parser;

@Before
public veid setUp() {
PacManSprites sprites = new PacManSprites();
parser = new MapParser(new LevelFactory(sprites, new GhostFactory(sprites)),
new BoardFactory(sprites));
}

@Test
public veid testMearestFood() {

Board b = parser.parseMap(Lists.newfrraylist( #2447, "# .. 2", "##832")).getBoard();
Square sl = b.squareat(l, 1});
Square s2 = b.squareAt(2, 1);

Square result = Navigation.findNearestFood(Pellet.class, sl).getSquare();
assertEquals({s2, result);

Figure A.1: Test case testNearestFood.

private Mapparser parser;

case setlp tests class(es) [Pac

ManSprites, MapParser,

evelFactory, Ghostl
@8efore
public void setUp() {
PacManSprites sprites = new PacManSprites();
parser = new MapParser(new LevelFactory(sprites, new GhostFactory(sprites)),
new BoardFactory(sprites));
}

pellet]

and returns its location. This

ard.squareAt [45%]: Returns the square at the given x,y position.

"result" is equal to "s2".

@Test

public void testNearestFood() {
Board b = parser.parseMap(Lists.newArrayList("ss=ss", "% ..¥", "ss#ez")).getboard();
Square s1 = b.squareht(l, 1);
Square s2 = b.squareht(2, 1);
Square result = Navigation.findNearest(Pellet.class, s1).getSquare();
assertEquals(s2, result);

Figure A.2: Test case testNearestFood with comments.

41



A. TEST CASES USED IN EXPERIMENT

1 private PacmanUI pacmanUI;

2 private FrameFixture window;

4 ([@Before

5 public veid setUp() {

6 JFrame frame = GuiActionRunner.execute(new GuiQuery<IFrame:() {
7 protected JFrame executeInEDT() throws FactoryException {
8 pacmanUI = new PacmanUI();

] pacmanUI.initialize();

18 return pacmanUI;

11

12 e

13 window = new FrameFixture(frame);

14 window.show(};

15

16

17 @Test

18 public void testLeftArrowButton() {

19 pacmanUI.eventHandler().start();

29

24 Tile position = pacmanUI. getGame( ). getPlayer(}.getTile();
22 int expectedX = position.getX() -

23

24 int keyCodelLeftérrow = 37;

25, window.pressAndReleasekeys({keyCodeleft);

26 int newX = pacmanUI.getGame().getPlayer().getTile().getX();
27

28 assertEquals(expectedX, newX);

29}

3@

Figure A.3: Test case testLeftArrowButton.

1 private PacmanUL pacmanUI;
2 private FrameFixture window;

* and method(s) [initialize]

* Method PacmanUI.initialize [1@8%]: Create the controllers of the UI.
/

18 @Before

11 public void setUp() {

2 JFrame frame = GuiActionRunner.execute(new GuiQuery<JFrames() {
protected JFrame executeInEDT() throws FactoryException {

pacmanUI = new PacmanUL();

pacmanUT.initialize();
return pacmanUI;

1
window = new FrameFixture(frame);
window. show(};

1
2
5 = Test case setUp tests class(es) [PacmanUI]
6
8
9

Test case testlLeftArrowButton tests class(es) [PacmanUI, Tile]
and method(s) [getGame, getPlayer, getTile, getX, eventHandler, start].

Method PacmanUI.eventHandler [180%]: Returns the mapping betwsen keyboard events and model events.
Method PacmanInteraction.start [42%]: Actually start the the controllers, and show the UI.

It tests:
1) whether "newx" is equal to "expectedx”.

@Test
public void testLeftArrowButton() {
pacmanUI.eventHandler().start();

Tile position
int expectedx

pacmanUI.getGame (). getplayer(} getTile();
position.getX() -

48 int keyCodeleftArrom = 37;

a1 window. pressandReleaseKeys (keyCodeLeft);

42 int newX = pacmanUI.getGame().getPlayer().getTile().getx();
43

a4 assertEquals(expectedX, newX);

45|}

46

Figure A.4: Test case testLeftArrowButton with comments.

42



Appendix B

Survey - Version A

In this appendix version A of the survey is shown. The survey starts on the next page.

43



B. SURVEY - VERSION A

Survey on Understanding Tests

In this survey code fragments are used based on the JPacman Framework. This is a Pacman-like game
used for teaching software testing and is written in Java. The goal of this survey is to find out what the
effect is of generated comments on understanding integration tests.

This survey consists of three parts. In the first two parts a small programming exercise needs to be
performed and some questions will be posed regarding this exercise. In the final part a few background
questions will be asked.

Thank you for participating!

*Required

| Start H Stop || Exit |

Part |

You are asked to make small changes to a code fragment. Since the styling of this survey is not
appropriate for source code, please copy paste the code fragment to https://www.compilejava.net/ and
perform the programming task there. When you are finished, paste your solution in the survey. If you want,
you can also use a program like Notepad instead of the website.

1. Please enter the current time before you start: *

Example: 8.30 a.m.

Programming Task

In the game, the player can press the arrow button on a keyboard to move Pacman. It is possible to test
whether the position of Pacman is updated after pressing these buttons.

Change the test "testLeftArrowButton” so that the following is tested:
"The position of the player changes correctly when the left arrow button is pressed twice."

Please note that you do not have to compile the code.

44



Code Fragment

private PacmanUl pacmanUl;
private FrameFixture window;

@Before
public void setUp() {
JFrame frame = GuiActionRunner.execute(new GuiQuery<JFrame>() {
protected JFrame executelnEDT() throws FactoryException {
pacmanUl = new PacmanUl();
pacmanUL.initialize();
return pacmanUl;
}
D
window = new FrameFixture(frame);
window.show();

}

@Test

public void testLeftArrowButton() {
pacmanUl.eventHandler().start();

Tile position = pacmanUl.getGame().getPlayer().getTile();

int expectedX = position.getX() - 1;

int keyCodeLeftArrow = 37;
window.pressAndReleaseKeys(keyCodeLeft);
int newX = pacmanUl.getGame().getPlayer().getTile().getX();

assertEquals(expectedX, newX);

Solution

2. Paste your solution here: *
You don't have to worry about the styling

3. Please enter the current time again when you finished the task: *

Example: 8.30 a.m.

Statements

Please enter whether you agree or disagree with the written statements.

4. "l found the task easy" *
Mark only one oval.

Strongly agree Strongly disagree

45



B. SURVEY - VERSION A

46

5. "To understand the fragment, | missed the full source code of JPacman™ *
Mark only one oval.

Strongly agree Strongly disagree

Question

6. Which steps did you take to complete the task? *

Part Il

You are asked to make small changes to a code fragment. This time an automatically generated comment
is included in the code fragment. Please use https://www.compilejava.net/ again to perform the
programming task (also copy the comment). When you are finished, paste your solution in the survey.
Again, you can also use a program like Notepad instead of the website.

The generated comment is structured as follows:

First the classes and methods that are tested are listed. Then, for all methods it is given to which class
they belong and what the coverage percentage of these methods is. In addition the Javadoc that belongs to
the methods is given as a description. Finally, it is described what is tested by giving a description of the
assert(s).

The comment only shows classes and methods that belong to the project itself, so for instance no Java or
external libraries. It also omits a description for get and set methods, since these should be clear from the

method name. When there are no methods and/or asserts in a test case, these parts are not included in the
comment.

7. Please enter the current time before you start: *

Example: 8.30 a.m.

Programming Task

In the game, Pacman can eat food. Food is visible on the board as a dot: ".". It is possible to test what the
nearest food unit is to a certain square on the board.

Change the test "testNearestFood" so that the following is tested:
"The nearest food to s1 is 2 squares away."

Please note that you do not have to compile the code.

Code Fragment

private Mapparser parser;

Je*

* Test case setUp tests class(es) [PacManSprites, MapParser, LevelFactory, GhostFactory,
BoardFactory].

*/

@Before

public void setUp() {



PacManSprites sprites = new PacManSprites();
parser = new MapParser(new LevelFactory(sprites, new GhostFactory(sprites)),
new BoardFactory(sprites));

}

o
* Test case testNearestFood tests class(es) [Board, Square, Navigation, Pellet]
* and method(s) [getSquare, findNearest, parseMap, getBoard, squareAt].

* Method Navigation.findNearest [100%]: Finds the nearest unit of the given type and returns its location.
This
method will perform a breadth first search starting from the given square.
* Method MapParser.parseMap [62%]: Parses the text representation of the board into an actual level.
Supported characters: '' (space) an empty square. '# (bracket) a wall. "' (period) a
square with a pellet. 'P' (capital P) a starting square for players. 'G' (capital G) a square with a

ghost.
* Method Board.squareAt [45%]: Returns the square at the given x,y position.

* |t tests:
* 1) whether "result" is equal to "s2".
*
@Test
public void testNearestFood() {
Board b = parser.parseMap(Lists.newArrayList("#H#HH", "# .. #", "#HHH")).getBoard();
Square s1 = b.squareAt(1, 1);
Square s2 = b.squareAt(2, 1);
Square result = Navigation.findNearest(Pellet.class, s1).getSquare();

assertEquals(s2, result);

Solution

8. Paste your solution here: *
You don't have to worry about the styling

9. Please enter the current time again when you finished the task: *

Example: 8.30 a.m.

Statements

Please enter whether you agree or disagree with the written statements.

10. "I found the task easy" *
Mark only one oval.

Strongly agree Strongly disagree



B. SURVEY - VERSION A

11. "The generated comment made it easier for me to understand the code”
Mark only one oval.

Strongly agree Strongly disagree

12. "To understand the fragment, | missed the full source code of JPacman" *
Mark only one oval.

Strongly agree Strongly disagree

13. "The programming task in Part | would have been easier if a similar comment was provided
there" *

Mark only one oval.

Strongly agree Strongly disagree

14. "For projects | work on by myself, | would use this functionality of automatically generating
comments for tests"” *

Mark only one oval.

Strongly agree Strongly disagree

15. "For projects | work on with multiple people, | would use this functionality of automatically
generating comments for tests" *

Mark only one oval.

Strongly agree Strongly disagree

Questions

16. Which steps did you take to complete the task? *

17. Did you use the comment for performing the task? *

If not, skip next question
Mark only one oval.

Yes
No

48



18. Which part(s) did you use?
Check all that apply
Tick all that apply.

List of classes

List of methods
Coverage percentage
Description of methods

Description of what is tested

19. Is the comment missing important information? *

The comment ...
Mark only one oval.

is not missing any information
is missing some information

is missing some very important information

20. Is the comment containing redundant information? *
The comment ...
Mark only one oval.

has no unnecessary information
has some unnecessary information

has a lot of unnecessary information

21. Is the comment readable and understandable? *
The comment ...
Mark only one oval.

is easy to read and understand
is somewhat readable and understandable

is hard to read and understand

22. If you could change the comment, what would you change and why? *

Part il

23. What are you studying / What is your
profession?
If you are a student, please also mention whether
your study is BSc/MSc/PhD

49



B. SURVEY - VERSION A

24. How many years of experience do you have in Java programming? *
Mark only one oval.

<1
1-2
3-6
7-10
>10

25. How many years of experience do you have in Java testing? *
Mark only one oval.

<1
1-2
3-6
7-10
>10

26. If you have any comments you would like to share, you can write them down here

Powered by
E Google Forms

50



Appendix C

Survey - Version B

In this appendix version B of the survey is shown. The survey starts on the next page.

51



C. SURVEY - VERSION B

52

Survey on Understanding Tests

In this survey code fragments are used based on the JPacman Framework. This is a Pacman-like game
used for teaching software testing and is written in Java. The goal of this survey is to find out what the
effect is of generated comments on understanding integration tests.

This survey consists of three parts. In the first two parts a small programming exercise needs to be
performed and some questions will be posed regarding this exercise. In the final part a few background
questions will be asked.

Thank you for participating!

*Required

[ s | [_siop | [Lean |

Part |

You are asked to make small changes to a code fragment. Since the styling of this survey is not
appropriate for source code, please copy paste the code fragment to https://www.compilejava.net/ and
perform the programming task there. When you are finished, paste your solution in the survey. If you want,
you can also use a program like Notepad instead of the website.

1. Please enter the current time before you start: *

Example: 8.30 a.m.

Programming Task

In the game, Pacman can eat food. Food is visible on the board as a dot: ".". It is possible to test what the
nearest food unit is to a certain square on the board.

Change the test "testNearestFood" so that the following is tested:
"The nearest food to s1 is 2 squares away."

Please note that you do not have to compile the code.



Code Fragment

private Mapparser parser;

@Before
public void setUp() {
PacManSprites sprites = new PacManSprites();
parser = new MapParser(new LevelFactory(sprites, new GhostFactory(sprites)),
new BoardFactory(sprites));

}

@Test

public void testNearestFood() {
Board b = parser.parseMap(Lists.newArrayList("#H#HH", "# .. #", "#HHHH")).getBoard();
Square s1 = b.squareAt(1, 1);
Square s2 = b.squareAt(2, 1);
Square result = Navigation.findNearestFood(Pellet.class, s1).getSquare();
assertEquals(s2, result);

Solution

2. Paste your solution here: *
You don't have to worry about the styling

3. Please enter the current time again when you finished the task: *

Example: 8.30 a.m.

Statements

Please enter whether you agree or disagree with the written statements.

4. "l found the task easy" *
Mark only one oval.

Strongly agree Strongly disagree

5. "To understand the fragment, | missed the full source code of JPacman" *
Mark only one oval.

Strongly agree Strongly disagree

Question

53



C. SURVEY - VERSION B

54

6. Which steps did you take to complete the task? *

Part I

You are asked to make small changes to a code fragment. This time an automatically generated comment
is included in the code fragment. Please use https://www.compilejava.net/ again to perform the
programming task (also copy the comment). When you are finished, paste your solution in the survey.
Again, you can also use a program like Notepad instead of the website.

The generated comment is structured as follows:

First the classes and methods that are tested are listed. Then, for all methods it is given to which class
they belong and what the coverage percentage of these methods is. In addition the Javadoc that belongs to
the methods is given as a description. Finally, it is described what is tested by giving a description of the
assert(s).

The comment only shows classes and methods that belong to the project itself, so for instance no Java or
external libraries. It also omits a description for get and set methods, since these should be clear from the

method name. When there are no methods and/or asserts in a test case, these parts are not included in the
comment.

7. Please enter the current time before you start: *

Example: 8.30 a.m.

Programming Task

n the game, the player can press the arrow button on a keyboard to move Pacman. It is possible to test
whether the position of Pacman is updated after pressing these buttons.

Change the test "testLeftArrowButton" so that the following is tested:
"The position of the player changes correctly when the left arrow button is pressed twice."

Please note that you do not have to compile the code.

Code Fragment

private PacmanUl pacmanUl;
private FrameFixture window;

Jox
* Test case setUp tests class(es) [PacmanUI]
* and method(s) [initialize].

* Method PacmanUl.initialize [100%]: Create the controllers of the Ul.
*/
@Before
public void setUp() {
JFrame frame = GuiActionRunner.execute(new GuiQuery<JFrame>() {
protected JFrame executelnEDT() throws FactoryException {
pacmanUl = new PacmanUl();
pacmanUL.initialize();
return pacmanUl;
}
;
window = new FrameFixture(frame);
window.show();



o
* Test case testLeftArrowButton tests class(es) [PacmanUl, Tile]
* and method(s) [getGame, getPlayer, getTile, getX, eventHandler, start].

* Method PacmanUl.eventHandler [100%]: Returns the mapping between keyboard events and model

events.
* Method Pacmaninteraction.start [42%]: Actually start the the controllers, and show the UI.

* |t tests:

* 1) whether "newX" is equal to "expectedX".

*

@Test

public void testLeftArrowButton() {
pacmanUl.eventHandler().start();

Tile position = pacmanUl.getGame().getPlayer().getTile();

int expectedX = position.getX() - 1;

int keyCodeLeftArrow = 37;
window.pressAndReleaseKeys(keyCodeLeft);
int newX = pacmanUl.getGame().getPlayer().getTile().getX();

assertEquals(expectedX, newX);

Solution

8. Paste your solution here: *
You don't have to worry about the styling

9. Please enter the current time again when you finished the task: *

Example: 8.30 a.m.

Statements

Please enter whether you agree or disagree with the written statements.

" ok

10. "I found the task easy
Mark only one oval.

Strongly agree Strongly disagree

11. "The generated comment made it easier for me to understand the code"
Mark only one oval.

Strongly agree Strongly disagree

55



C. SURVEY - VERSION B

12.

13.

14.

15.

"To understand the fragment, | missed the full source code of JPacman" *
Mark only one oval.

Strongly agree Strongly disagree

"The programming task in Part | would have been easier if a similar comment was provided
there" *

Mark only one oval.

Strongly agree Strongly disagree

"For projects | work on by myself, | would use this functionality of automatically generating
comments for tests" *

Mark only one oval.

Strongly agree Strongly disagree

"For projects | work on with multiple people, | would use this functionality of automatically
generating comments for tests" *

Mark only one oval.

Strongly agree Strongly disagree

Questions

16.

17.

56

Which steps did you take to complete the task? *

Did you use the comment for performing the task? *
If not, skip next question
Mark only one oval.

Yes
No



18. Which part(s) did you use?
Check all that apply
Tick all that apply.

List of classes

List of methods
Coverage percentage
Description of methods

Description of what is tested

19. Is the comment missing important information? *

The comment ...
Mark only one oval.

is not missing any information
is missing some information

is missing some very important information

20. Is the comment containing redundant information? *
The comment ...
Mark only one oval.

has no unnecessary information
has some unnecessary information

has a lot of unnecessary information

21. Is the comment readable and understandable? *
The comment ...
Mark only one oval.

is easy to read and understand
is somewhat readable and understandable

is hard to read and understand

22. If you could change the comment, what would you change and why? *

Part il

23. What are you studying / What is your
profession?
If you are a student, please also mention whether
your study is BSc/MSc/PhD

57



C. SURVEY - VERSION B

24. How many years of experience do you have in Java programming? *
Mark only one oval.

<1
1-2
3-6
7-10
>10

25. How many years of experience do you have in Java testing? *
Mark only one oval.

<1
1-2
3-6
7-10
>10

26. If you have any comments you would like to share, you can write them down here

Powered by
E Google Forms

58



Appendix D

Solutions to Programming Tasks

For the programming task including testNearestFood multiple correct solutions could be
found. Two examples that were submitted by participants as solutions are given in Figure

[D.IlandD.2

@Test

public void testMearestFood() {
Board b = parser.parseMap(Lists.newfrraylist( "sas84", "¢ .&", "Su##2")).getBoard();
Square sl = b.squareAt(l, 1);
Square s2 = b.squaresAt(3, 1);
Square result = Navigation.findNearestFood(Pellet.class, s1).getSquare();
assertEquals(s2, result);

Figure D.1: Example of a comment generated for an integration test.

est

blic weoid testMearestFood() {
Board b = parser.parseMap(lists.newArraylist( g2, " .. 8", "s8#2")).getBoard();
Square s1 = b.squareAt(e, 1);
Square s2 = b.squareldt(2, 1);
Square result = Navigation.findMearestFood(Pellet.class, sl).getSquare();
assertEquals({s2, result);

@r
e

Figure D.2: Example of a comment generated for an integration test.

59



D. SOLUTIONS TO PROGRAMMING TASKS

For the programming task including testLeftArrowButton, only one possible solution
could be given. The solution is shown in Figure[D.3]

{iTest
public void testLeftArrowButton() {
pacmanUI.eventHandler().start();

Tile position = pacmanUI.getGame().getPlayer().getTile();
int expectedX = position.getX({) - 2;

int keyCodeleftArrow = 37;
window.pressAndReleasekKeys({keyCodelLeft);
window.pressAndReleasekeys{keyCodeleft);

int newX = pacmanUI.getGame().getPlayer().getTile().g=tX();

assertEquals(expectedX, newX);

Figure D.3: Example of a comment generated for an integration test.

60



	Contents
	List of Figures
	Introduction
	Background and Problem Statement
	Goals
	Research Questions
	Thesis Structure

	Generating Comments from Source Code
	Method(s) for Summarising Various Granularity Levels
	Method(s) for Summarising Code Classes
	Method(s) for Summarising Code Methods
	Overview
	Additional Methods

	Generating Comments for Test Code
	TestDescriber
	Generating Comments for Integration Tests

	Experiment
	Main Goals
	Design
	Results

	Discussion
	Interpretation of Results
	Threats to Validity

	Related Work
	Conclusion
	Bibliography
	Test Cases Used in Experiment
	Survey - Version A
	Survey - Version B
	Solutions to Programming Tasks

