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Abstract

Learning curves are graphical representations of the relationship between dataset
size and error rate in machine learning. Curve fitting is the process of estimating
a learning curve using a mathematical formula. This paper analyzes two ways of
performing curve fitting: interpolation and extrapolation. The accuracy of the curve-
fitting procedure might be negatively influenced by the irregular shape of the curve
and the presence of noise. Our study investigates the effects of the Gaussian filter on
curve fitting and the potential to improve its performance. This is done by analyzing
multiple values of the Gaussian filter’s standard deviation parameter(Sigma) and also
a wide variety of learning curves(both smooth and noisy ones). The main finding of
this research states that the Gaussian filter can generate significant improvements in
the extrapolation process, especially when it is applied to noisy curves. On the other
hand, for the interpolation procedure, its impact is reduced, even negligible for smooth
curves. An important takeaway from this paper is that selecting the most suitable
pre-processing method for the type of curve analyzed might generate valuable findings
in the field of learning curves used in machine learning.

1 Introduction

Learning curves are study plots that analyze and interpret the correlation between the
training dataset size and the corresponding error rate in machine learning. By understanding
this relationship, learning curves provide useful insights in achieving the general purpose of
answering the question of how much data we need to acquire certain performance levels[13]
since collecting data takes time and money [9]. In particular, these curves are highly useful
in determining the efficiency of a machine learning model in shifting from the training to the
validation and testing processes by helping the analysts understand whether the model is
overfitting (it performs well on the watched data but poorly on the inconspicuous data)[16].

Curve fitting is an essential method utilized for interpreting learning curves, where a
mathematical formula is used to estimate the relationship between training dataset size
and error rate. In our particular case study, we start with a set of points provided by a
learner trained on a dataset, and the curve fitting is performed based on these observed
points. By fitting a curve to the observed data points, researchers can model the underlying
trend, making it easier to analyse and predict gaps both within and beyond those observed
points. Curve fitting serves as the foundation for further tasks such as interpolation and
extrapolation [5].

Two crucial aspects related to learning curves which will be analyzed during this re-
search are interpolation and extrapolation. Interpolation is the process of estimating the
model’s performance based on the intermediate dataset size values falling within the range
of observed points[12]. In contrast, extrapolation is the process of estimating the model’s
performance for larger dataset sizes. Both interpolation and extrapolation are highly useful
in the decision-making process which determines the most suitable dataset sizes needed to
gain a predefined performance or error rate.

However, both interpolation and extrapolation, as estimations, are not perfect and their
performance is measured by calculating a mean squared error(MSE). In the case of a noisy
learning curve, the fitting process, along with interpolation/extrapolation, might generate
inaccurate results thus altering the whole prediction process. One proposed solution for
solving this issue is applying the Gaussian filter to the raw points of the learning curve.
Afterwards, we will analyze its impact by calculating the improvement provided to the
mean squared errors of both the interpolation and the extrapolation.



An initial guess which determines us to choose the Gaussian filter as a main pre-
processing method applied to learning curves is its ability to reduce the noise of the initial
data. In our case, this might lead to smoother slopes[11] that better capture the true shape
of the curve during the fitting process. The performance of this technique also depends on
the Gaussian filter’s hyperparameter, Sigma, which represents the standard deviation of the
kernel and determines the degree of smoothing applied to the curve. Therefore, we will find
the impact of applying the Gaussian filter in improving the performance of interpolation and
extrapolation. In machine learning, this can be helpful to acquire the most reliable dataset
sizes which provide the required performance of the models.

The main research question of this paper is "What is the impact of the Gaussian filter
applied to the initial set of points before curve fitting for both interpolation and extrapola-
tion?". In order to make the path of the research clearer, it was divided into the following
2 sub-questions:

1. RQ1: Under which values of Sigma does the Gaussian filter improve the MSE of the
interpolation /extrapolation fitting process?

2. RQ2: Under which conditions (type of the learning curve - presence of noise) does the
Gaussian filter improve the MSE of the interpolation/extrapolation fitting process?

The remainder of this paper is structured as follows: Section 2 presents our research using
the necessary information extracted from previous scientific resources; Section 3 highlights
the whole process designed by us in order to create a suitable methodology reflected in the
code-based environment; Section 4 reveals the results discovered by our study related to the
initial main research question and its sub-questions; Section 5 analyses the results presented
in the above-mentioned section by highlighting the advantages and disadvantages of applying
the Gaussian filter; Section 6 underscores this research’s ethical principles of transparency
and reproducibility; Section 7 presents the potential areas of improvement that we suggest
for further research; Section 8 presents a summary of the entire research process, focusing
on the results obtained and their potential impact.

2 Related Works

The two starting points without which this research would have been impossible are the
scientific articles by Mohr et al.[14] and the one by Viering and Loog[19]. The first one intro-
duces the Learning Curves Database(LCDB), an essential tool which provides us with a wide
range of 246 datasets and 20 learners. A specific learner trained on a specific dataset gener-
ates a learning curve which will be used as an input to conduct our experiments throughout
this project. Moreover, this article proves the benefits of LCDB by explaining how it con-
tributes to examining learning curves’ properties(monotonicity, convexity, and peaking) and
to performing the curve-fitting process using both interpolation and extrapolation. The
paper also leaves several open questions, such as whether smoothing learning curves aids in
model selection, how meta-features can predict curve behaviour, and which non-parametric
extrapolation techniques are most effective.

Now that we are familiar with how a learning curve can be generated and what it looks
like, the second article [19] explains the significance of the learning curves and the ways of
estimating them. It also presents the parametric learning curve models which are useful
for the fitting process. Furthermore, Viering and Loog provide an in-depth explanation of
ill-behaved and well-behaved learning curves and therefore helped us to understand that



the learning curves might take different shapes from case to case. The paper concludes by
highlighting the need for consistent use of learning curves in research in order to improve
algorithm evaluation and guide future studies.

Furthermore, the book by Achim Zielesny[22] played a significant role in offering us all
the necessary information related to curve fitting. It starts from illustrative examples, such
as that presented in Figure 1 and continues with evaluating the goodness of a fit, guessing
the most suitable model function and finally with problems and pitfalls of the fitting process.

Curve fitting

Figure 1: Concrete example of curve fitting [22]

The concepts of interpolation and extrapolation are described with formal definitions,
examples and formulas by Muhammad Abdul Wahab[21]. A reliable plot presenting both
interpolation and extrapolation extracted from his paper can be seen in Figure 2. In addition,
Muhammad Abdul Wahab presents multiple ways of performing interpolation, supported
by formulas and related Matlab functions, and their practical usages in Computer Graphics
and Image Processing.
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Figure 2: Concrete example of interpolation and extrapolation [21]



In addition, after dealing with the concepts of interpolation and extrapolation as ways of
performing curve fitting, Mohr et al.[14] introduce the metric of Mean Squared Error(MSE)
as a way of evaluating the performance of all these processes.

Last but not least, the whole research idea of this project evolves around the application
of the Gaussian filter (with a well-determined standard deviation hyperparameter Sigma,
as explained in Section 4) in order to obtain some benefits in the curve fitting process and
thus improve its performance. Starnes and Webster|[18] present in their article the enhanced
efficiency generated by applying Gaussian smoothing to Stochastic Gradients. The benefits
of the Gaussian filter highlighted in the above-mentioned paper include attenuating the
fluctuations, boosting robustness to noise and improving generalization. As a result, their
research represented a strong motivation to choose the Gaussian filter as the main proposed
improvement strategy in our case and analyze its impact on all types of learning curves(both
smooth and noisy ones).

3 Metholology and Experimental Setup

The research plan was divided into six key steps to systematically address the initial question
proposed by the academic staff which supervises the progress:

Software tools: The starting point of the whole methodology process was determined
by creating a software environment which best addresses our desires - as a programming
language we chose Python due to its ability to help us model and solve scientific problems|[20]
by a wide range of libraries which support the easy implementation of useful methods. As
a way of developing and running the code, the best solution was the Jupyter Notebook,
which ensures the reproducibility of our scientific results[1] and helps us keep code and
research output together. In terms of libraries and imports used, the most significant ones
are numpy for numerical computations and matplotlib.pyplot for creating visualizations
together with the imports necessary for performing curve fitting(scipy.optimize.curve _fit),
applying the Gaussian filter (scipy.ndimage.gaussian_filter) or calculating the Mean Squared
Error(sklearn.metrics.mean _squared _error).

Framework: The second step consisted of developing a framework which enables us to
import, interpret and analyze the learning curves. In the initial version, it only permitted
to visualize a raw learning curve generated by selecting a dataset index and a learner index
from the Learning Curve Database(LCDB) mentioned in Section 2.

Gaussian filter: After finding a learning curve that needs further investigation, the fol-
lowing step involves applying the Gaussian filter to the raw data of this curve. Consequently,
the initial version of the framework accommodated the addition of the Gaussian filter func-
tionality. In order to better analyze the impact of the smoothing, we decided to apply the
filter using 4 values of its standard deviation hyperparameter Sigma(1.0, 2.5, 5.0, 10.0). A
concrete example which presents the progress until this point can be seen in Figure 3. As
a short explanation, the initial shape of the learning curve can be noticed in purple and its
change after applying the Gaussian with Sigma 1.0, 2.5, 5.0 and 10.0 in blue, orange, green
and red respectively. We remark that a larger sigma smooths more drastically but may alter
the initial shape of the curve, while a smaller sigma aims to retain it but may leave some of
the noise unfiltered.
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Figure 3: Concrete example of a learning curve and its transformation after applying the
Gaussian filter with different values of Sigma

Curve fitting: After we identified the set of points representing the learning curve or the
filtered version of them (after applying the Gaussian), the next step consists of performing
the curve fitting by selecting a percentage of points which are passed to the selected model
in order to generate the best possible fitted curve which suits the respective model’s formula.
Within the scope of this research, this fitting percentage was selected to be 80 per cent, since
it is a simple and stable technique used for curve fitting[3]. The fitting model was chosen
to be pow3. This model is considered to offer a good fit in many situations[19] and has the
formula pow3(z) = a —b-x~¢, where a, b and ¢ are parameters selected by the curve fitting
algorithm.

Interpolation and Extrapolation evaluation metric: Furthermore, we have two strate-
gies already mentioned: interpolation and extrapolation. The next aspect that needs clarifi-
cation for the methodology stage is how exactly we evaluate an interpolation/extrapolation
of the curve. This is done using the Mean Squared Error(MSE) using the points seen /
not seen points during the fitting for interpolation and extrapolation respectively [14]. This
method is considered a fair measure of a fitting’s performance|7] and has two main advan-
tages in our case study: it provides a penalty for large errors and is useful for quantitative
data analysis.

Mann-Whitney U test: To answer the research question, we will propose reliable hy-
potheses and test their assumptions by conducting experiments with the datasets and learn-
ers provided. The significance of the Gaussian filter applied to the learning curves will
be measured by collecting two sets of mean squared errors(one generated from the fitting
using the original curves and the second one generated from the fitting using the filtered
curves). Afterwards, we will use a Mann-Whitney U test [4] which checks if the two samples
come from the same distribution. It also provides a significance value which guides us in
determining the impact of the Gaussian filter, as mentioned in Section 4. As a methodology



discussion, it is worth mentioning that the Mann-Whitney U test was preferred to the T-Test
[10], because the second one requires that the input data follows the normal distribution,
which was not suitable for our mean squared errors samples.

MSE scores on non fitted points (extrapolation): R.aw points
0.0049 (original) —— Fitted curve (raw)

0.0015 (filtered) Filtered points
Fitted curve (filtered)
"""" End of fitted points
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Figure 4: Extrapolation of a raw LC VS Extrapolation of a fitted LC

The plot which summarizes this section can be seen in Figure 4. As a short explanation,
it analyzes how the Gaussian filter with Sigma = 10 impacts the fitting process. In blue
one can see the original points of the learning curve and what a learning curve fitted to
them looks like. In orange, we plot the filtered points of the curve and also the fitted curve
obtained from them. Then, the evaluation process was conducted as mentioned above and
we calculated the MSE using the original points, resulting in a value of 0.0049 and also using
the filtered points leading to an MSE value of 0.0015. The next section, which highlights all
the code-based experiments, aims to answer the question of whether the improvement (in
terms of lowering the MSE) produced by applying the Gaussian smoothing is significant.

4 Experiments and Results

In this section, we are going to reveal the experiments conducted and the hypotheses initiated
and further validated /invalidated by the research process. The section will be split based
on the two main sub-questions mentioned in Section 1, as follows:

4.1 Under which values of Sigma does the Gaussian filter improve
the MSE of the interpolation/extrapolation fitting process?

For the first sub-question, we designed two experiments to find out the best possible values
for the standard deviation parameter of the Gaussian filter when applied for interpolation
and extrapolation processes respectively. The general strategy used for both experiments
was to perform a search using powers of 2 from the set S = {0.125, 0.25, 0.5, 1.0, 2.0, 4.0,
8.0, 16.0, 32.0, 64.0} as potential values for Sigma. In this way, we cover a wide range of



numbers by performing a limited amount of calculations, obtaining a logarithmic execution
time for our algorithm. To continue, we calculate the average MSE of the fitting process
across all curves corresponding to each combination of LCDB learner and Sigma value in
the set S. For each learner, we identify the Sigma with the lowest average MSE. The Sigma
that performs best for the most learners will be declared the winner.

Learner Best Sigma for Interpolation | Best Sigma for Extrapolation
SVC _linear 2.0 16.0
SVC _poly 2.0 16.0
SVC _rbf 2.0 16.0
SVC _sigmoid 2.0 16.0
DecisionTree 4.0 16.0
ExtraTree 0.5 16.0
LogisticRegression 4.0 16.0
PassiveAggressive 1.0 16.0
Perceptron 2.0 16.0
RidgeClassifier 1.0 16.0
SGDClassifier 2.0 16.0
MLPClassifier 2.0 16.0
LDA 2.0 16.0
BernoulliNB 1.0 16.0
GaussianNB 2.0 16.0
KNN 4.0 16.0
NearestCentroid 4.0 16.0
ens.ExtraTrees 2.0 16.0
ens.RandomForest 0.125 16.0
ens.GradientBoosting 4.0 16.0
DummyClassifier 1.0 16.0

Table 1: Comparison of learners based on the best Sigma Values obtained for the interpo-
lation and extrapolation processes.

Best Sigma for Interpolation: From Table 1, it becomes clear that the best Sigma
Value for the interpolation has the value of 2, as for 10 out of 21 learners it provides the
lowest average Mean Squared Error.

Best Sigma for Extrapolation: From Table 1, it becomes clear that the best Sigma
Value for the extrapolation has the value of 16, as for all 21 out of 21 learners it provides
the lowest average Mean Squared Error.

Before moving on to the next subsection, we would like to point out that these Sigma
values will be used for all the following experiments during this project. So, for the inter-
polation process, we will always use Sigma = 2 and for extrapolation Sigma = 16.

4.2 Under which conditions (type of the learning curve - presence
of noise) does the Gaussian filter improve the MSE of the in-
terpolation/extrapolation fitting process?

This subsection will highlight four experiments presenting the impact of the Gaussian filter
on the curve-fitting process(both interpolation and extrapolation) for the two corresponding



types of learning curves(noisy and smooth ones). Before presenting the concrete experi-
ments and their results, an important question that arises is: "How can we distinguish a
noisy learning curve from a smooth one?". In order to solve this problem, we developed an
algorithm which measures the noisiness of the curves by computing the Median Absolute
Deviation (MAD) [8] of all the slopes which compose the actual curve. As a way of inter-
preting the results of this algorithm, we would like to mention that a high MAD indicates
significant variability in the slopes, which is characteristic of a noisy curve with irregular
changes. On the other hand, a low MAD reflects consistency in the slopes, indicating a
smoother curve.

Using the MAD values of all the learning curves, we performed a sorting algorithm in
order to determine the noisiest and the smoothest learning curves. We selected the first
60 and the last 60 learning curves from this sorted array as the inputs for the upcoming
experiments as the 60 noisiest and the 60 smoothest learning curves from LCDB.

For each experiment, we will present two ways of interpreting the data. The first one
consists of plotting a histogram that visually showcases the differences between the Mean
Squared Errors generated by the original curves in blue versus the Mean Squared Errors
generated by the filtered curves in red. The bar charts are designed to plot the correlation
between the MSES values from a range and the frequency of them in both the original
and the filtered sets of errors. The second one is defined by the results generated by a
Mann-Whitney U test[15]. It compares the two groups of mean squared errors(original vs
filtered) under the null hypothesis that they follow the same distribution. The alternative
hypothesis states that the two groups differ in distribution (e.g., medians are different). The
way of validating one of the two hypotheses is by comparing the p-value generated by the
test with the threshold of 0.05. If it is greater than the threshold, we validate the null
hypothesis. Otherwise, we validate the alternative one. For each of the four experiments
presented below, we will analyze initially the corresponding histogram and then will validate
the visual commitments by conducting a Mann-Whitney U test.

Interpolation - Noisy curves Interpolation - Smooth curves
10.0 B Filtered data MSEs B Filtered data MSEs
. B Raw data MSEs 401 B Raw data MSEs
75
5.0 20
2.5
> >
9 9
[~ c
v v 0
=] 3
o 0.0 o
4 4
e &
-25
-20
-5.0
-75
-40
0.005 0.010 0.015 0.020 0.025 0 2 4 6 8
MSE Value MSE Value le-5

Figure 5: The impact of the Gaussian filter on the interpolation process

The impact of the Gaussian filter on the interpolation process: The histogram
presented in the left part of Figure 5 indicates a high probability that the Gaussian filter



does not generate a significant performance improvement in the case of interpolation using
noisy curves, since for a lot of intervals the frequency of original and filtered Mean Squared
Errors is equal and for the other ones it mostly alternates with one interval dominated by
Blue(original MSEs), the next one by red(filtered MSES) and so on. This assumption is
further approved after performing a Mann-Whitney U test which provides us a p-value of
0.90. Therefore, the impact of the Gaussian filter in this case is considered insignificant due
to the above-mentioned aspects. The bar chart offered by the right side of Figure 5 strongly
suggests that the Gaussian filter has basically no impact on the Mean Squared Errors of
the interpolation process applied on smooth curves since for all ranges of Mean Squared
Errors the frequency of original MSES is equal to the frequency of "filtered" MSES. The
Mann-Whitney U test applied in this case generates the same conclusion with a p-value of
0.97. This extremely high p-value (1.0 is the maximum possible value) strongly supports
the conclusion that the Gaussian filter has no noticeable impact on the interpolation process
using smooth curves.

The impact of the Gaussian filter on the extrapolation process: The histogram
displayed by the left part of Figure 6 hints at a high chance of obtaining a significant
improvement generated by the Gaussian filter when dealing with the extrapolation procedure
applied on noisy curves. This statement comes from the "red" bars higher than the blue ones
at the beginning of the chart indicating that there are low values of "filtered" MSES with a
high frequency. Moreover, since in the last part of the plot we can see a strong dominance of
the blue bars, it highlights the high values of the "original" MSEs relative to the "filtered"
ones. The Mann-Whitney U test generates a p-value of 0.02 in this case which is lower than
the threshold of 0.05 validating the alternative hypothesis. Therefore, in this case, we achieve
a significant improvement produced by applying the Gaussian filter. The bar chart shown in
the right side of Figure 6 denotes a substantial probability of obtaining an inconsequential
impact provided by applying the Gaussian filter in the scope of improving the performance
of the extrapolation process using smooth curves. This hypothesis is verified by the Mann-
Whitney U test calculating a p-value of 0.63, greater than 0.05. Consequently, we can
validate the null hypothesis and state that the Gaussian filter strategy cannot significantly
increase the performance in this particular case.

5 Discussion

Figure 7 briefly summarizes this thesis’ results by highlighting the meaningful reduction in
terms of mean MSES generated by applying Gaussian smoothing in the case of extrapolation
using the noisiest curves. As an analysis, this phenomenon occurs as the noisy curves in
their original version are prone to generate high errors for fitting to unseen data. This
happens because the fitted curve follows a mathematical formula which provides it with a
smooth trajectory while our initial curve might continue to possess a lot of noisy data points.
Moreover, the Mean Squared Error, as a way of evaluating curve fitting, also favours the
high errors to become even higher, as it squares the differences before summing them.

When we are talking about interpolation using noisy curves, the MSES values still remain
high, but they are lower than in the previous case, as we have a mathematical model used for
fitting to seen data points and then evaluating the fit using the same points. This showcases
lower MSES in this case, which also reduces the impact of the filtering as its main strength
of eliminating high errors is diluted.

Switching to smooth curves, it is obvious that the Gaussian filter’s main improvement
in noise reduction is insignificant. This is because our research analyzes the smoothest
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Figure 6: The impact of the Gaussian filter on the extrapolation process

learning curves from LCDB. Therefore, the "original" and the "filtered" curves look very
similar, then their corresponding fitted curves will also be similar, and finally, the computed
errors will have close values. As a result, the impact of the Gaussian filtering on smooth
curves’ fitting is negligible, because their shape neutralizes the benefits of the smoothing
technique.

One of the main goals of this project was to analyze the impact of applying pre-processing
methods to learning curves. As a particular technique which was deeply studied we chose
the Gaussian filter. A comprehensive analysis includes discussing both its advantages and
disadvantages, as follows:

Advantages: The already-known benefits of the Gaussian filter in the Machine Learning
field include attenuating the fluctuations, boosting robustness to noise and improving gener-
alization. In order to compare these known results to the ones obtained during this research,
we can easily see that the first two improvements are also maintained, as Figure 3 also high-
lights the significant noise reduction in the initial curve and the removal of the fluctuations.
In addition, the correlation between curves’ noise reduction generated by the Gaussian filter
and the improved performance in terms of Mean Squared Error was fully described at the
start of this section. Moreover, the third advantage of improving generalization was also
considered during this Research and it was addressed by showing the increased performance
for the extrapolation curve fitting, which is indeed a generalization task performed in the
machine learning field(T. Viering, personal communication, January 20, 2025).

Weaknesses: A pitfall of this method might be the undesired possibility of over-smoothing
the curve. This can happen when the Gaussian applied has a Sigma value(standard devia-
tion) too high. As a result, the obtained curve might completely lose its initial shape and
thus lead to unreliable values of the Mean Squared Error. This might result in some confu-
sion during the experiments, as the performance of the fitting algorithm might seem to be
improved, but this is probably caused by a favourable situation. We added Figure 8 in order
to highlight the comparison between the curve filtered with a Sigma of 1.0 in blue and the
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Figure 7: The comparison of "original" and "filtered" MSES

same curve filtered with a Sigma of 20.0 in orange. The second one loses the characteristics
of the initial curve and its results during the fitting process might be inaccurate. Thus, this
aspect deserves increased attention from those who wish to continue this research.

It is worth mentioning that the conclusions presented in this paper are not universally
valid and they depend on the concrete learning curve(s) which need(s) to be studied. As
an example, for a collection of learning curves, the impact of applying the Gaussian filter
might be significant while for another collection the impact can be insignificant or even neg-
ative(reducing the performance). This happens because the learning curves possess really
different shapes one from another, so the influence of the Gaussian depends on the type of
learning curve and also on the technique chosen for the fitting(interpolation or extrapola-
tion).

6 Responsible Research

This research project was designed to follow all the applicable ethical considerations in the
field of Computer Science, ensuring transparency and reproducibility. This assumption is
supported by the following statements:

Section 3 of this paper which describes all the required steps to understand and rebuild
the code behind the actual research, including the Gaussian filter Sigma values utilized, the
model and the percentage of fitting points used for the curve fitting and the metric used for
evaluating the fitting.

Section 4 of this paper presents the relevant results of the code-based experiments which
might be extremely useful for the readers interested in recreating or even continuing the
actual journey of the project. Therefore, the results obtained by the reader can be easily
compared with the above-mentioned ones in order to ensure reproducibility, which according
to Gundersen|6] does not only require being able to replicate the desired experiments but
also collecting the same results.

The Gitlab repository contains the full version of the code and all the experimental
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Figure 8: Concrete example of the over-smoothing issue

data(datasets and learners) utilized during this research together with a ReadMe file which
provides all the necessary instructions and required dependencies for running the Jupyter-
Notebook file.

Since all the necessary data was collected from a public source(LCDB), our study also
guarantees privacy, as we do not access any type of personal or sensible data.

Last but not least, this research also preserves the principles of the TU Delft Vision on
Integrity 2018-2024' and the Netherlands Code of Conduct for Research Integrity 20182,
since all scientific resources that were utilized are properly referenced and the academic
integrity of the research process was also legitimately defended.

7 Future work

This section will provide some useful recommendations for further research, as follows:

The first open issue which may consist of entirely new research is analyzing the impact
of other filters(such as the Savitzky-Golay filter[17] or the Low Pass Filter|[2|) on the per-
formance of both interpolation and extrapolation processes. These filters are specifically
interesting to analyze since the first one is created to smooth the curve while preserving its
peaks and edges and the second one is to reduce fluctuations by removing high-frequency
noise. In this way, one can obtain a better understanding of how pre-processing methods
through kernel filtering can enhance learning curve fitting. Therefore, one can obtain a com-
prehensive analysis that states in which situations a specific filter provides the best possible
results.

The second extension of the actual research might be considering different fitting per-
centages(0.8 is the one currently used), different model functions utilized for the fitting

Thttps://www.tudelft.nl/over-tu-delft/strategie/integriteitsbeleid/
tu-delft-vision-on-integrity-2018-2024
’https://www.nwo.nl/en/netherlands- code-conduct-research-integrity
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process(pow3 model is used for the purpose of the current project) and also different ways
of calculating the Mean Squared Error of the fitting process(for example extrapolating to
the last anchor[14]). To effectively enhance the generalization of this research, we also
recommend validating the hypotheses of this paper by including a wider variety of learning
curves coming from different fields or studies. This paper only focuses on the learning curves
provided by LCDB.

The third way of completing this work is by paying increased attention to the values of
Sigma used for the curve fitting. We only used Sigma = 2 for all the interpolation fitting
and Sigma = 16 for all the extrapolation fitting, but from Table 1 we can derive that in some
isolated situations, the best possible results would have been obtained by using Sigma =
0.125 or Sigma = 1. This might occur in the case of a smooth curve that already produces a
low MSE value during the fitting process. Under these circumstances, even a Gaussian with
Sigma = 2 could negatively impact the fitting’s performance. Therefore, we believe that
some further research may be directed at the technique used for selecting the best possible
standard deviation values.

8 Conclusion

This thesis presents the impact of the Gaussian filter applied before curve fitting as a pre-
processing method. We analyzed its impact on both interpolation and extrapolation tech-
niques in order to determine if its main attribute of noise reduction can potentially improve
the fitting’s performance. This performance is measured using a mean squared error formula
for an individual learning curve. To generalize our findings by determining the significance
of applying Gaussian filtering, we performed multiple Mann-Whitney U tests for both in-
terpolation and extrapolation using the 60 smoothest and the 60 noisiest curves from the
Learning Curves Database(LCDB). The first result is determined by the values of Gaus-
sian’s hyperparameter Sigma which gives the best results for interpolation (Sigma = 2.0)
and for extrapolation (Sigma = 16.0). In addition, using the above-mentioned values of
Sigma, we measured the significance of applying the Gaussian filter in four main cases and
obtained the following outcomes: for interpolation, when using smooth curves, the impact
of the Gaussian is insignificant and, by switching to noisy curves, it increases a bit, but only
minor progress can be seen; for extrapolation, when analyzing noisy curves, a significant
improvement was obtained while for smooth curves we achieved a smaller impact, which
can not be considered significant according to Mann Whitney U test performed.

Last but not least, this research process was designed to follow the principles of trans-
parency and reproducibility and leaves room for improvement in the areas of validating and
generalizing its findings by applying other kernel filtering methods, ways of evaluating the
results, Sigma values or creating a new set of learning curves as the input data.
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