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Figure 1: Snapshot of a typical social interaction area from the Confab [34] dataset. Faces blurred for privacy. 

ABSTRACT 
In this work, we propose an approach for detecting conversation 
groups in social scenarios like cocktail parties and networking 
events, from overhead camera recordings. We posit the detection 
of conversation groups as a learning problem that could beneft 
from leveraging the spatial context of the surroundings, and the 
inherent temporal context in interpersonal dynamics which is re-
fected in the temporal dynamics in human behavior signals, an 
aspect that has not been addressed in recent prior works. This moti-
vates our approach which consists of a dynamic LSTM-based deep 
learning model that predicts continuous pairwise afnity values in-
dicating how likely two people are in the same conversation group. 
These afnity values are also continuous in time, since relationships 
and group membership do not occur instantaneously, even though 
the ground truths of group membership are binary. Using the pre-
dicted afnity values, we apply a graph clustering method based 
on Dominant Set extraction to identify the conversation groups. 
We benchmark the proposed method against established methods 
on multiple social interaction datasets. Our results showed that 
the proposed method improves group detection performance in 
data that has more temporal granularity in conversation group 
labels. Additionally, we provide an analysis in the predicted afn-
ity values in relation to the conversation group detection. Finally, 
we demonstrate the usability of the predicted afnity values in a 
forecasting framework to predict group membership for a given 
forecast horizon. 

This work is licensed under a Creative Commons Attribution International 
4.0 License. 
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1 INTRODUCTION 
The automatic detection of conversation groups is an interest-
ing problem for applications ranging from social surveillance 
[12, 23, 41] to social robotics [7, 38, 48]. In social settings, such 
as cocktail parties or professional networking events, the foor for 
interactions at the venue consists of multiple conversation groups 
that dynamically adapt to the ebb and fow of the underlying human 
behaviors that determine the social interactions. Characterizing 
the interpersonal relationships (the level of spontaneous afnity 
between people) that foster individuals to freely congregate to form 
a focused encounter and exchange information could help us un-
derstand more about interaction experience and quality [27, 32]. 
However, due to the complexity and subtleties in human social dy-
namics in changing environments which are also context-specifc, 
automatically detecting conversation groups in social scenes is an 
ongoing and challenging research topic. 

For this paper, we focus on identifying conversation groups 
(more specifcally, free-standing conversation groups (FCGs) [41]) 
in a social scene where individuals physically come together to 
interact with each other. In these settings they organize them-
selves into groups that defne the physical partitions of who is 
interacting with whom. Figure 1 shows a representative scene for 
the types of social scenarios that we are interested in from an 
overhead viewpoint. People’s use of physical space is known as 
proxemics [20].The conversation groups can be of varying dura-
tion, size, and spatial arrangement. In practice, these conversation 
groups have often been conceptually formalized as facing-formation 
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(F-formations) [3, 23, 41]. As introduced and defned by Kendon 
[26], an F-formation is formed when two or more people arrange 
themselves onto a convex envelope to enclose an overlap of their in-
teraction transactional segments (i.e., space in front of them where 
sight and hearing are most efective [9]). The interactants have 
equal and exclusive access to this overlap (i.e., o-space). 

The challenges in formulating a social concept such as F-
formations into a computational task for automated machine learn-
ing methods are two-fold: (i) representation of the scene and iden-
tifying the appropriate behavior cues to capture the underlying 
social dynamics, and (ii) the potential fuzziness that exists in the 
ground truth of group membership due to the fact that interpersonal 
relationships are not exactly binary in reality. 

A social scene such as Figure 1 may be represented by an inter-
action graph with nodes representing the individuals, and edges 
representing the relationship between two individuals. Conversa-
tion groups can be deduced from the information in this interaction 
graph, where individuals in the same conversation have greater 
edge weights (afnity) with one another, and vice versa. Each indi-
viduals have behavioral cues such as positions, head/body orien-
tations, etc. that are shaped by the surroundings, and also change 
over time. Indeed, proximity with directional information could 
already be indicative of group membership if one simply consid-
ers ’who is standing with whom’. However, in social scenes such 
as Figure 1, factors such as crowdedness and furniture layout de-
fne the spatial context that afects individual cues that determines 
conversation group membership. The temporal context in the be-
havioral cues plays a role in the interactions which are dynamic in 
nature. One type of social dynamics that could be captured by move-
ment cues (e.g., change in positions and orientations) is synchrony 
and mimicry patterns which are known to be important driver for 
afliation and interpersonal rapport [17, 22, 42]. In terms of con-
versation dynamics, since multiple conversation foors are possible 
within one F-formation [33], head orientations that change during 
turn-taking or other types of conversation dynamics are especially 
relevant to conversation schisms. The schisming phenomenon may 
lead to two or more distinct conversation groups [13] and hence 
possibly form new F-formations. Therefore, in this paper, we argue 
that even though F-formation in its original defnition is a static 
concept, it is important to take into account the temporal context 
of the behavioral cues infuencing the groups. 

The second fold of the challenge is the potential problem in 
how ground truths of group membership are defned from pairwise 
afnities. Past approaches of automatic detection of conversation 
groups have identifed afnity and group memberships as binary 
and operationalized the task based on this design choice, albeit 
Zhang and Hung have investigated the subjectivity of annotating 
groups [51]. Although the assumption of the binary group mem-
bership which existing methods and ours hinge on, is valid to the 
extent of how they are refected in the ground truth annotations, 
interpersonal relationships are not binary in reality. The tempo-
rally evolving afnity between two individuals, does not change 
from zero to one, or one to zero, instantaneously [18, 19, 46]. Social 
interactions have a rite of passage, from greeting to leaving [4]. 
We aim to understand how the afnity scores change in time and 
encapsulate the changing dynamics of the behavioral cues, and 
how they afect group detection, which are not apparent in hard 

assignments of group memberships. Our paper takes a step towards 
this direction which has not been the focus in previous works. 

Following prior works [43, 45], our approach to conversation 
group detection consists of two stages: (1) we frst estimate contin-
uous pairwise afnities between all individuals in a social scene, 
and (2) we use an existing framework to cluster the individuals by 
leveraging a graph clustering based on Dominant Set (DS) to iden-
tify conversation groups [23]. In order to account for the temporal 
context in the behavioral cues, we introduce a deep learning based 
Long Short-Term Memory (LSTM) network to predict pairwise 
afnity scores that determine the F-formation membership (anno-
tated as ground truth of conversation groups in existing datasets). 
The inputs to our network are temporally aligned sequential inputs 
(including positions, and head and/or body orientation); the output 
of our network is the pairwise afnity value between one individual 
and all other members in the social interaction scene. 

In contrast to existing works that output an afnity score of 
all pairs of individuals independently which scales quadratically 
with the number of people in the scene [43, 45], our design for 
person-wise output scales linearly and follows more intuitively 
from an egocentric application point of view (i.e. social robots). DS 
clustering is applied to the afnity matrix corresponding to each 
scene to detect the conversation groups. The clique formulation in 
DS is exploited to identify clusters in the interaction graph, which 
refnes group detection since the afnity matrix (from estimated 
pairwise afnities) may not directly provide self-consistent and 
symmetric binary group memberships [21, 23, 43]. 

Additionally, as opposed to previous approaches that only use 
the intermediate afnity scores as inputs for clustering for refned 
conversation group identifcation, we show the possibility in using 
the estimated pairwise afnity values from the past to forecast 
future afnity values, which could serve as an underpinning for 
understanding how conversation groups evolve. Even without for-
mulating the problem explicitly as a future forecasting task, our 
model is able to anticipate afnity values due to the temporal con-
tinuity. Our main contributions are as follows: 

• We propose a novel LSTM-based afnity score model to ap-
proximate the likelihood of two people interacting in the 
same conversation group. The model includes a pooling mod-
ule to account for the spatial context of social interactions, 
inspired by what [43, 45] captured in their models. Using the 
proposed model that leverages (temporal) sequential input 
features in addition to a pooling module, we simultaneously 
account for the spatio-temporal context that afects pairwise 
afnities that determine the conversation groups. 

• We provide an analysis over the predicted afnity scores in 
conversation group detection, characterized by Area under 
(receiver-operating) Curve (AUC) scores, followed by quali-
tative examples showing the continuity of afnity scores. We 
also show a comparison of afnity score processing (asym-
metric vs. symmetric) for application in DS and the group 
detection performance with respect to scene dynamics. 

• We demonstrate the usability of the predicted afnity values 
via a novel forecasting framework for afnity score pre-
diction based on Gaussian Process Regression (GPR). The 
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framework also provides inferential uncertainty quantifca-
tion over the predictions of future conversation groups. 

2 RELATED WORKS 
Conversation group detection in situated interactions has been 
tackled by a variety of approaches stemming from diferent commu-
nities (computer vision [12, 36, 37, 41], human-computer interac-
tion [5, 6, 10, 21, 48], etc.). This section discusses the representative 
works in this area. Conversation groups and the more formalized F-
formation representation are analogous in terms of group detection 
in interaction scenes in past works. 

Many previous works, especially from the vision community, 
use features such as location and head/body orientations for the 
task of group detection [3, 23, 37, 41, 47]. These quantities could 
be obtained automatically from vision data using multi-camera 
surveillance setups (typically elevated side-views). 

Using these features, some methods for F-formation detection 
have been focused on optimization-based approaches to mathemati-
cally model the physical space. More concretely, a number of works 
[15, 40, 41] hypothesised that the o-space can be generated from a 
noisy representation of the instantaneous view frustrum obtained 
from the head pose. Heat maps generated from samples projected 
from each individual’s view frustrum were then used to identify 
o-spaces. Members of the F-formation were then re-identifed as 
belonging to a particular o-space based a pre-defned metric of 
closeness. 

Another class of methods have formulated social scenes as an 
edge-weighted graph where each individual represents a node and 
the edge represents the pair-wise connection between individuals. 
These methods take the part of the F-formation defnition related 
to equal mutual attention to synonymous with maximal cliques in 
edge weighted graphs. In early works, the pair-wise relationships 
were modeled using feature engineering based on location and 
orientation information [23, 47, 51, 52]. Aggregating these estimated 
pairwise afnity values, the afnity matrix serves as inputs to graph 
clustering based on Dominant Set using game-theoretic approaches 
[23, 47] to iteratively partition nodes to extract conversation groups. 
While the o-space is not explicitly modelled with these approaches, 
the maximal clique formulation implicitly models the o-space whilst 
also explicitly binding individuals to a specifc group as part of the 
Dominant Set identifcation process. However, the representation 
of pairwise afnity, particularly when only location and orientation 
is used, forces a circular shape assumption to the F-formation that 
does not always happen in practice [51, 52] 

To address this problem and enable more fexibility in modeling 
pairwise relationships given the surroundings, deep learning based 
approaches have been proposed. DANTE learns the afnity values 
by explicitly modeling dyadic and context interaction [43] by using 
relative positions and head/body orientations after preprocessing 
as inputs to the model. More recently, Thompson et al. [45] pro-
posed a graph neural network (GNN) based approach that leverages 
the more general message-passing mechanism during training to 
predict afnities using raw signal data including absolute positions, 
accelerometer readings, and image. Similar to the preceding works 
[23, 47, 51], both of these deep learning based approaches also apply 
the learned afnities values inputs to DS graph clustering. Schmuck 

and Celiktutan [39] also proposed a GNN-based approach to predict 
interpersonal links, but as opposed to using DS graph clustering, a 
greedy agreement algorithm was applied to identify groups [21]. 

Departing from using visually obtained features such as loca-
tions and orientations of individuals, some works have taken ad-
vantage of features from other modalities that have shown to be 
helpful when estimating pairwise afnities. For example, [45] take 
advantage of a combination of motion based features and visually 
obtained features. Gedik and Hung have shown that it is possible 
to estimate groups purely based on motion features as phenomena 
such as body movement synchrony in interactions are indicative of 
pairwise relationships [16]. However, in communication with the 
authors, the predicted afnities need to be signifcantly improved 
for before DS clustering would yield reasonable performance. This 
highlights that the nature of the problem lies between the modelling 
social dynamics and proxemics (i.e. positions and orientations). Ap-
proaches proposed by the ubiquitous and pervasive computing 
communities have relied on Bluetooth Smart (BLE) to measure 
proximity values in terms of Received Signal Strength Indicator 
(RSSI) values which capture distance and orientation information to 
some extent, represented by [29]. In the case of [25], data from mo-
tion sensors (accelerometer and gyroscope) were also incorporated 
with proximity features for multimodal detection of groups using 
smart phones. Other custom sensors have been developed to mea-
sure proximity, relative orientation, motion, and/or a combination 
thereof (e.g., light tags [30], Rhythm badges [28] and the Midge [1]). 
These data also capture the useful information, such as direct mea-
surement of closeness forming hypotheses of interactions already 
and the measurement of nuanced body motion, in determining 
conversation groups in social interactions, and methods developed 
based on these have the potential to scale more easily. 

The proposed method difers from early works [23, 47, 51, 52] 
in F-formation detection as it is a deep learning method where 
pairwise afnities are learned. The main limitation is that the early 
works are based on feature engineering, which is less fexible than 
deep learning models. Compared to existing deep learning methods 
[39,43,45], the proposed method simultaneously models the spatio-
temporal context in F-formation detection. We aim to capture the 
underlying evolving social dynamics by modeling the temporal 
dynamics in the input features, which has not been investigated 
before. Our method outperforms the most relevant deep learning 
baseline [43] for the ConfLab dataset, especially in scenes where 
there is high dynamicity. 

3 APPROACH 
The overview of the approach to conversation group detection is 
illustrated in Figure 2. Figure 2(a) represents an example image 
from an interaction scene. The individual attributes such as posi-
tions, head and body orientations encode spatial information of an 
individual with respect to the scene (labeled in Figure 2(b)). 

Module (b) represents the core of our contribution, which is a 
novel deep learning neural network for pairwise afnity estima-
tion, based on a joint Long Short-Term Memory (LSTM) network 
that simultaneously accounts for the temporal context of the input 
signals and spatial context in the scene with spatially-motivated 
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Figure 2: Visualization of the derivation of the interaction graph: (a): the given scene from an overhead camera; (b): each subject 
has person-wise features, such as positions, orientations, etc.; (c): the edge weights (afnity scores) between each pair of subjects 
are predicted via the proposed neural network model; and (d): using the DS [23], conversation groups are extracted as sets of 
subjects. 

context pooling. In (c), the pairwise afnities are combined to a afn-
ity matrix, and following previous approaches, Dominant Set was 
used to extract groups by iteratively identifying maximal cliques in 
edge-weighted graphs (module (d)). Our contribution focuses on 
the neural network architecture for afnity prediction, and assumes 
that the inputs are acquired and preprocessed upstream. We use the 
Dominant Set clustering method on graphs downstream of afnity 
prediction because it is state-of-the-art method for this use-case. 

The details of the neural network architecture is described in 
Sec. 3.1, and the details of the dominant set method is described in 
in Sec. 3.2. 

3.1 Afnity prediction 
For a given social interaction scene S, let �� represent the number 
of individuals in the scene at time step � ∈ {1, ...,� } where � is 
the sequence length, and � represent the maximum number of 

�,� individuals present at all scenes of concern, i.e., �� ≤ �. Let � ∈� 
R� denote the � -dimensional feature vector for the �th member of 
the scene with respect to the � th member (with 1 ≤ �, � ≤ �� and 
� ≠ � ) at the sequence step � . The feature vector is a concatenation 
of features based on the following: 

• head and/or body orientations of member � , 
• position, and head and/or body orientations of all members 

� relative to the member � , 
� • indicator mask �� = {1, 0} – denoting if member � is present 

in the scene at time � (assumed to be known a priori), 

the details of which are discussed in Section 4.4. 
Module (b) in Figure 3 demonstrates one recurrent step of the 

�,� proposed model from time � to � +1. Let � ∈ R� denote the hidden � 
representations associated with member � at sequence step � , where 
� is the dimension of hidden states (chosen as a hyperparameter). 

�,� The hidden states at � = 0 are initialized as � = 0. To capture 0
the spatial context defned by all members in the interaction scene, 
we pool the hidden states of all the members � ≠ � as follows. To 
discount for the persons absent in the scene at time � , the hidden 
state are frst processed through a masking layer (with element-
wise multiplication) to obtain intermediate masked hidden states 

�,� � �,� representation �� = �� � . Note that the masked representation � 
refects the presence of members � in the scene, which may be 
dynamically changing between diferent time steps. All masked 

�,� representations � are processed through an aggregate pooling � 

layer to obtain a scene level representation K� given by � Í �,� �� 
� ≠� 

K� 
� = Í . (1)

� 
�� 

� ≠� 

The context-pooled representation K� is then combined with each � 
�,� of the individual hidden states � through an attention mechanism � 

�,� to obtain � ,� 
�,� �,� � = �K� + (1 − �)� , (2)� � 

where � ∈ [0, 1] is a trainable parameter that adjusts the contribu-
tions from pairwise interaction and surrounding representations. 

�,� For each member � , the respective hidden state � as well as the � 
�,� concatenation of the feature �
�+1 and the processed context repre-

�,� sentation �� are passed through an LSTM cell L� (parameterized 
�,� by �) to obtain �
�+1 (i.e., the hidden states for the subsequent time 

step), 
�,� �,� �,� �,� �
� +1 = L� ( [�� +1; �� ], �� ) . (3) 

The LSTM operation L� is described by the following series of 
transformations� � �� 
�,� �,� �,� �,� �
� +1 = � W�� [�

� +1; �� ; �� ] (forget gate’s activation vector) � � �� 
�,� �,� �,� �,� �
�+1 = � W�� [�

�+1; �� ; �� ] (input gate’s activation vector) � � �� 
�,� �,� �,� �,� � = � W�� [�

� +1; �� ; �� ] (output gate’s activation vector) 
� +1 � � �� 
�,� �,� �,� �,� �̃
� +1 = tanh W�� [�

�+1; �� ; �� ] (cell input activation vector) 
�,� �,� �,� �,� �,� � = �

�+1 ⊙ � + �
� +1 ⊙ �̃ (cell state vector) 

� +1 � �+1� � 
�,� �,� �,� � = �

� +1 ⊙ tanh � (output hidden state vector),
� +1 � +1 

(4) 

where � is sigmoid activation, ⊙ denotes the Hadamard product, 
�,� �,� and � and �

� +1 denote the cell state at � and (� + 1), respec-� 
tively. W( ) denotes a linear layer with parameters indicated in · 
the subscript. The trainable parameters are contained in the set 
� = {� � , �� , �� , �� }. Importantly, the LSTM parameters � are shared 
among all the members in the scene. 

After the time roll out in each LSTM time step until � = � , the 
�,� hidden states � are passed through a linear layer parameterized 
�

by set of weights �� and biases �� to obtain the fnal pairwise 
edge predictions with respect to member � . Subsequently, they 
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Figure 3: Visualization of the methodology. (a): a scene representation of individuals and preprocessed features with respect 
to person i; (b): a graphical representation of the time roll out from � to � + 1 with the aggregate pooling layer along with 
the attention mechanism; (c) the fltering and aggregation of person-wise afnity output at � = � into an afnity matrix; (d): 
application of DS clustering for group identifcation from the afnity matrix. 

are passed through a sigmoid activation (denoted by �) to obtain 
pairwise afnity � �,� ∈ [0, 1] as 

� �,� = � (��� �,� + �� ), (5)
� 

where the values of 0 and 1 denote no and perfect pairwise afnity, 
respectively. The output of the model � �,� is strategically designed 
to be continuous, which lends naturally to a probability interpreta-
tion of pairwise interaction. We further motivate this choice, the 
performance evaluation, and the connection to downstream tasks 
such as conversation group forecasting in Section 4.3. 

To train the model, we use the mean squared error loss function 
given by ∑∑� �2 

� �,� − � �,� ℓ = , (6)
�� 

S � ≠� 

�,� where � ∈ {0, 1} represents the ground truth afnity value be-
��

tween member � and member � . 

3.2 Dominant set clustering 
As shown in Figure 3 (c), for each member � in the scene, the afnity 
prediction model predicts � − 1 pairwise afnity values with respect 
to all other members � for all time steps irrespective of whether 
they are visible at that moment or not. To evaluate the group iden-
tifcation performance, we use the output at the last time step at 
� = � . After fltering with the indicator masks, a � × � afnity 
matrix for the scene in question is obtained, where � is the actual 
number of subjects at a particular scene. 

After the predicted afnities are arranged into an afnity matrix, 
following prior approaches, [23, 43, 45, 47], the F-formations are 
extracted using Dominant Sets (DS) clustering. The resulting clus-
ters representing F-formations could be of any size. The stopping 

criterion of the optimization formulation is either when the relative 
mutual afnity of internal nodes and external nodes of a dominant 
set do not satisfy the constraints, or when the mutual afnity of a 
group is lower than a chosen threshold. The second part of the stop-
ping criterion enables improvement to detect singletons in the scene 
as it accounts for the global context (i.e., when there are only few 
people left after maximal clique extraction iterations, it is not likely 
that they are in the same group). We follow the implementation 
of F-formation clustering of [43]. For the theoretical background 
and more detailed reference to the application of Dominant Set 
Clustering for F-formation detection, please refer to [8, 23]. 

4 EXPERIMENTAL SETUP 

4.1 Baseline methods 
The baseline methods considered in this work are GTCG [47], GCFF 
[41], and DANTE [43]. GTCG and GCFF are both non deep learning 
based methods which rely on engineered position and orientation 
based features. GTCG models pairwise afnity values using distance 
between distributions over the plausible regions determined by the 
visual frustums, followed by a refned game theoretic approach for 
group extraction based on [23] and [11]. GCFF models the prob-
ability of individuals belonging to o-space centers (i.e. center of 
conversation groups), and uses a graph-cut approach in conjunction 
with constraint based on direct access to extract the groups. 

DANTE proposes a deep learning based approach to model pair-
wise afnities using positions and orientations, and utilizes the 
Dominant Set clustering for extracting conversation groups. During 
training of the deep learning model, DANTE uses data augmenta-
tion strategy The recently proposed graph neural network based 

174



ICMI ’22, November 7–11, 2022, Bengaluru, India Stephanie Tan, David M.J. Tax, and Hayley Hung 

approach takes advantage of image-based features and a rich collec-
tion of social action semantic labels, in addition to proxemics and 
body motion based features, for conversation group detection [45]. 
We omit comparison against this recent approach for the scope of 
the paper, since the focus of our paper is on modeling the social 
dynamics in conversation scene using temporal information rather 
than a thorough investigation of using diferent input modalities. 

4.2 Datasets 
To align with the closest state-of-the-art approaches, we compare 
our method on the same representative datasets including Cocktail 
Party [50] and SALSA [2]. We also report benchmark results on 
the recently released Confab dataset [34], capturing professional 
networking social interactions in-the-wild. 

With conversation groups annotated at 1Hz and behavioral cues 
sampled and annotated at 60Hz then summarized to 1Hz, the Con-
fab dataset is apt to investigate our research question which is 
leveraging temporal continuity in behavior cues and pairwise re-
lationships in estimating afnity scores. In comparison, the con-
versation groups and behavior cues in Cocktail Party and SALSA 
are annotated at 1/5 Hz and 1/3Hz, respectively. We hypothesize 
that the temporal continuity in the signals and the ground truth 
of these two datasets can be decimated due to this sampling and 
annotation frequency. 

Most of the existing datasets were collected to serve F-formation 
detection using visual information, i.e. using an elevated side-view. 
Bounding boxes and head/body orientations are acquired either 
through automated methods or manual annotations. For datasets 
that have a top-down view, positions and orientations are acquired 
through manual annotations because automated methods result in 
error prone inputs to subsequent models [34]. The overview of the 
datasets used is as follows: 
-Cocktail Party [50]: contains 30 minute recordings of six people 
interacting with one another, captured by four elevated side view 
cameras in the corners of the space. Positions and head orienta-
tions of the subjects are obtained automatically using a particle 
flter-based body tracking method. The conversation groups were 
annotated at 1/5 Hz. 
-SALSA [2]: contains 60 minute recordings of 18 people interacting 
with one another, captured by four elevated side view cameras in 
the corners of the space. Positions, head and body orientations, 
conversation groups of the subjects are annotated manually at 1/3 
Hz. This dataset contains wearable sensor data captured by the 
Sociometric badges. 
-Confab [34]: contains 15 minute recordings of 49 people interact-
ing with one another, captured by 5 (non-overlapping) overhead 
cameras. Positions, head and body orientations of the subjects are 
annotated manually at 60Hz. Note that even though locations and 
orientations can be acquired automatically, some previous works 
have pointed out that the automatic methods produce erroneous 
results, especially in orientation estimation [50]. To avoid confound-
ing sources of errors in these behavioral cues which are quite nu-
anced as we motivated in Section 1, we follow other works that have 
relied on provided ground truth data as inputs assuming that these 
will be provided upstream during application [44]. Conversation 
groups are annotated manually at 1Hz. 

4.3 Evaluation metrics 
We evaluate on both stages of our model: (1) pairwise afnity es-
timation and (2) group detection. For pairwise afnity prediction, 
the neural network is trained with binary ground truth, but the 
predicted afnities are continuous values between 0 and 1, which 
enables us to do further analysis using these afnity scores. Given 
the dynamic nature of the proposed model, we introduce an addi-
tional evaluation compared to the existing state-of-the-art methods. 
Existing methods (e.g., [43, 45]) omit assessing the learned afnities 
only and use them directly for F-formation detection via DS clus-
tering. We argue that there may be nuances in the learned pairwise 
continuous valued afnities that may anticipate changes in the 
group membership that may not be apparent from the hard cluster 
assignment. 

The evaluation metric for afnity estimation is the Area Under 
Curve (AUC) score of the Receiver Operator Curve (ROC). We use 
AUC due to the high imbalance of the data; there are typically far 
fewer positive pairwise memberships than negative in the entire 
scene. 

For the second stage of evaluating group detection, we used the 
standard evaluation metric used in prior work [11, 23, 43, 47, 51] 
which involves considering an entire group in the ground truth as 
a single sample. A detected group � is considered to be correctly 
estimated if ⌈�ℎ� *∥�� ∥⌉ of the members are correctly estimated, 
where ∥�� ∥ indicates the cardinality or the size of the ground truth 
group, and ⌈�⌉ rounds � to the next largest integer. The threshold 
�ℎ� ∈ [0, 1] tunes the tolerance of the evaluation to the number of 
mis-attributed members in a group. It is commonly set to �ℎ� = 23 
or �ℎ� = 1, representing greater than majority overlap at 67% and 
complete overlap with the ground truth membership, respectively. 
A True positive (TP) is therefore any correctly detected group; 
false negative (FN) is a missed group; and a false positive (FP) is 
an estimated group that does not exist in the ground truth. The 
metrics for group detection performance is then computed using F1 
measure over the entire image scene which could contain multiple 
groups. 

4.4 Implementation details 
In the case of Confab, the features were extracted to align with the 
ground truth at 1Hz by averaging all 60 samples before the label. 
While it is desired to use a higher frequency signal, this prepro-
cessing step should already allow capturing of social dynamics that 
exist on a second level, such as synchrony and convergence patterns 
[24, 31], the associated postural sways [14], and some turn-taking 
dynamics (e.g., turn transitions). [49]. 

The head and/or body orientation is given by the angular di-
rection of the person’s body in ( – � , �]. The relative positions of 
the group members are given by the radial distance (measured in 
camera or pixel coordinates) and angular orientation in ( – � , �]. 
The circular mean of the body orientations of all the members in the 
scene are computed as a zero-degree reference for the scene. This 
addresses the discontinuity in angles as they wrap around ( – � , 
�]. All orientation related features are corrected by the same zero-
degree reference. All features are normalized to [0, 1] via min-max 
scaling. Labels for conversation group membership are annotated 
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manually and the annotation method are described in each dataset 
respectively. 

Similar to the experimental set up in DANTE, due to the small 
dataset size, all results are obtained by averaging the test splits 
using 5-fold cross validation. The validation split is selected such 
that it separates the training set as much as possible from the test 
data in time. The test data of a fold is used for results whereas 
hyperparameters are selected based on validation data. The hyper-
parameters are hidden representation dimension of the LSTM and 
sequence length of the input sequence. For the Confab dataset, 
experimental results are obtained for all cameras (camera 2, 4, 6, 
and 8). 

Since �� changes dynamically and the model is trained with a 
fxed size input using the maximum number of people in all scenes 
�, we pad the feature vector from �� to � with dummy values of −1. 
As part of the feature vector, the indicator mask variable represents 
if a member is present at time � such that the aggregate pooling 
layer does not account for the dummy subjects. 

5 RESULTS AND DISCUSSION 

5.1 Overview 
To ensure a fairer comparison with existing methods, we use the 
same position and head and/or body orientation based feature set 
of the individuals in the scene for all methods. Table 1 shows an 
overview of the results on baseline methods on the Cocktail Party, 
SALSA, and Confab datasets. As we expected, the proposed method 
outperforms the baseline methods on the Confab dataset because 
of the fner temporal granularity in the behavioral cues and group 
labels. As opposed to DANTE which excels in both Cocktail Party 
and SALSA dataset, the proposed method may not have leveraged 
the temporal context when the social dynamics is undersampled. 

Table 1: F1 scores comparison �ℎ� = 1 across diferent meth-
ods. Standard deviation over test samples are shown in paren-
thesis. ∗: results reported by [43]; †: results reported by [45] 

Method Cocktail Party SALSA Confab 
GTCG 0.29 (-) ∗ 0.44 (-) ∗ 0.40 (0.12) 
GCFF 0.64 (-) ∗ 0.41 (-) ∗ 0.31 (0.23) 
DANTE 0.58 (0.43) † 0.65 (-) ∗ 0.66 (0.35) 
Proposed 0.48 (0.40) 0.46 (0.23) 0.73 (0.31) 

To assess whether or not the efcacy of the proposed model 
for the Confab dataset is indeed associated to the frequency in 
conversation group labels, we subsample the Confab dataset to 1/5 
Hz, to match that of the Cocktail Party dataset. The F1 performance 
at �ℎ� = 1 on this subsampled version of the Confab dataset is 0.58 
with standard deviation 0.32. So we see that even with the same 
setting, there is a decrease in performance due to an undersampling 
of key dynamic information that is leveraged by our proposed 
model. 

We observe that results of GTFF and GTCG decrease on the Con-
fab dataset compared to Cocktail Party and SALSA. This may be 
because the number of people in the scenes of Confab are dynami-
cally changing, as opposed to the fxed number of people in both 
Cocktail Party and SALSA (6 and 18 people, respectively), it may be 

harder to model o-space and determine overlapping transactional 
segments using a single parameter (stride), as participants’ occu-
pancy of foor space changes. DANTE still performs relatively well 
on Confab as it also takes into account the spatial context of the 
surroundings. In addition to modeling the spatial context similar to 
DANTE, the proposed model relies on the sequential nature of the 
LSTM-based network to capture inherent temporal dynamics. 

With increased performance in afnity estimations (i.e., the 
model output), the performance in Dominant Set clustering for 
group extraction also improves. As we argue that the afnity estima-
tions are critical not only because they are inputs to DS clustering, 
but also contain valuable information on how pairwise relation-
ships change continuously over time, we include a more detailed 
analysis of the afnity values and their relationship with the DS 
clustering step in the next sections. 

5.2 Analysis of afnity values 
To uncover where the diference in group detection results in Ta-
ble 1 originates from, this section includes an analysis of where 
the proposed model difers from DANTE in terms of the predicted 
afnity value for test sets of the Cocktail Party and the Confab 
dataset. Table 2 shows a comparison of the predicted afnity value 
results from DANTE and the proposed method using the AUC met-
ric. With its data augmentation strategy and benefting from the 
pairwise output setup, the frame-based DANTE strategy works bet-
ter for the sparsely sampled Cocktail Party dataset. For the Confab 
dataset with the higher sampling frequency, the proposed approach 
takes into consideration the temporal continuity of labelled cues 
and afnity values with the data-efcient person-wise training and 
output, resulting in improved AUC scores that led to improved 
conversation group detection F1 scores. We posit that the temporal 
granularity could be too coarse in datasets such as the Cocktail 
Party for the proposed sequential model to be efective. 

Table 2: AUC results of DANTE and the proposed method for 
the Cocktail Party and Confab dataset. 

Cocktail Party Confab 

AUC (DANTE) 0.92 0.91 
AUC (Proposed) 0.83 0.93 

Figure 4 shows a qualitative example of how the afnity values 
from the proposed model change temporally as a new conversa-
tion group (Subject 2 and 3) forms. We focus on the right side of 
the interaction foor in the sequence of the scenes shown. The 
groups provided by the ground truth, predictions from the pro-
posed method, and DANTE are illustrated in the second column. 
The afnity scores between Subject 1 and 2, and Subjects 2 and 
3 from the proposed method are visualized in the third column. 
The color and value correspondence is shown in the legend. The 
pairwise afnity scores between Subject 1 and 2 decrease over time, 
whereas the score between Subject 2 and 3 increase over time. 

5.3 Afnity scores in Dominant Set clustering 
As the predicted afnity scores are continuous values, they are not 
perfect to directly extract group memberships. The pairwise values 
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Figure 4: Qualitative example of how afnity values change temporally, in relation to a newly formed conversation group. 

might difer and this results in discrepancy [21, 43]. Whether to 
symmetrize and how to symmetrize the predicted pairwise afnity 
scores is a design choice not thoroughly assessed previously. Op-
tions include using the asymmetric raw predicted afnity values, 
taking the minimum, average, or maximum of the pairwise afnity 
values. The (a)symmetry could be illustrative of the individual’s 
intention in interacting with the other person, and afect the group 
clustering performance as this factor may have also afected how 
the annotators perceived group memberships. 

In Table 3, we show the sensitivity F1 scores of symmetrizing 
the afnity matrix using diferent strategies for the Confab dataset. 
The results show that averaging the pairwise afnities leads to 
improved F1 score in group detection at �ℎ� = 1. This implies 
that while the asymmetric values are interesting in diferentiating 
people’s likelihood in interacting with each other, a symmetric and 
averaged representation is better aligned with the binary group 
membership. 

Table 3: F1 scores comparison (�ℎ� = 1) for the Confab datset 
between diferent strategies of processing the afnity scores 
as inputs to DS clustering. Standard deviation over test sam-
ples are shwon in parenthesis. 

raw average minimum maximum 

F1 0.69 (0.33) 0.73 (0.31) 0.72 (0.30) 0.65 (0.35) 

5.4 Performance with respect to scene dynamics 
We highlight the efcacy of the proposed method when estimating 
groups especially in scenes that contain more instances of group 
formations, breaking, and reforming. These events quantify scene 
dynamics as they imply changes in one or more conversation group 
reorganization. We defne these events based on group presence in 
the past and future (i.e. a new group is formed if it doesn’t exist 
before; a group is broken if it doesn’t sustain to the next time step; 

Table 4: F1 scores comparison (�ℎ� =1) for the Confab dataset 
with respect to scene dynamics quantifed by � . Standard 
deviation over test samples are shown in parenthesis. 

� = 1 � = 2 � = 3 � = 4 � ≥ 5 

DANTE 0.69 (0.36) 0.65 (0.36) 0.78 (0.27) 0.68 (0.32) 0.66 (0.23) 
Proposed 0.71 (0.34) 0.69 (0.34) 0.77 (0.31) 0.73 (0.33) 0.77 (0.32) 
Delta 0.028 (0.33) 0.037 (0.32) -0.004 (0.27) 0.039 (0.33) 0.1 (0.35) 

and a group is reformed when it exists but breaks in the past and 
now the same members reunite). 

We characterize the scenes in the Confab dataset using this mea-
sure of scene dynamics. In Table 4, we showcase the performance 
diference (indicated by Delta) of group detection performance us-
ing F1 scores at �ℎ� = 1 between DANTE and the proposed method. 
Delta is calculated by the F1 scores obtained from the proposed 
method substracted by that of DANTE. We show the results at 
diferent level of scene dynamics denoted as � , where � is the sum 
of all instances of group formations, breaking, and reformation. 
We observe a slight upward trend of the proposed method’s im-
proved performance (i.e., Delta) as scenes become more dynamic 
(with the exception of �=3). When � ≥ 5 (corresponding to high 
scene dynamics, whereas � = 0 for most of the time where groups 
are stable), the advantage of the proposed method over DANTE 
on average is at 0.1. This further shows that the temporal context 
before a group event takes place may be benefcial in estimating 
conversation groups. 

5.5 Conversation group forecasting 
Using the temporal context of pairwise afnity scores, we further 
introduce a conversation group forecasting framework. Given a 

sequence of edge weights edge  � where � = 0, 1, ....,� � , which is the av-
eraged � � 

 value between each pair of individuals � and � (i.e., �,� + �,� 
2 ), 
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Table 5: Performance of forecasting conversation groups at diferent future time steps for the Confab dataset (cam 6). Note 
that the column � = � indicates the detection results. Uncertainty quantifed by standard deviation across all scenes are shown 
in parenthesis. 

t = T t = T+1 t = T+2 t = T+3 t = T+5 t =T +10 

F1 @ �ℎ� = 2/3 0.90 0.88 (0.03) 0.86 (0.04) 0.84 (0.05) 0.80 (0.07) 0.76 (0.08) 
F1 @ �ℎ� = 1 0.76 0.73 (0.06) 0.69 (0.06) 0.69 (0.08) 0.66 (0.10) 0.62 (0.11) 

we edge edge edge  predict � + , � + , ..., � where � is the   
� 1 � 2 � +� time forecast hori-

zon. edge  For each �� sequence, we ft a Gaussian Process Regressor 
(GPR) to provide uncertainty measure over the predictions. 

GPR assumes a kernel that determines the covariance over target 
functions and uses the observations to obtain a likelihood function. 
A new posterior distribution can be computed based on Bayes’ the-
orem. The choice of kernel characterized by a covariance function 
that measures the similarity between data points is an essential 
component in GPR. For the purpose of this study, this covariance 
function is chosen to be the popular Radial Basis Function (RBF). 
For more technical background on GPR, please refer to [35]. 

For each GPR corresponding to an edge, we use the observed 
samples �edge,t to optimize the length-scale hyperparameter in the 
RBF kernel based on maximum-log-likelihood estimation. Using 
the ftting regressor function, a set of posterior samples up to the 
maximal forecast time horizon are predicted. Leveraging the prob-
abilistic nature of GPR, we evaluates � samples drawn from the 
GPR at given inputs (in our case, a time step in the future). These 
� samples drawn from the Gaussian distribution at given � provide 
a range of values for the edge weight, and ultimately result in an 
uncertainty quantifcation of group membership (after aggregat-
ing edge forecasts into afnity matrix and application of the DS 
clustering � times). 

From the validation sets of the data, we found that a sequence 
length of 10 was the optimal hyperparameter for afnity prediction 
and hence, we set � = 10 to acquire corresponding observed sam-
ples of afnity scores to ft the GPR for this forecasting task. The 
forecast horizon � represents the time steps beyond � (measured in 
seconds for the Confab dataset). Note that the ftted GPR could be 
sampled continuously; we chose a set of discrete time steps beyond 
� for the scope of this paper. Table 5 shows the forecasting results 
of predicting the conversation groups in Confab (cam 6) using 
the aforementioned approach. We report the averaged F1 scores 
from evaluating the � afnity matrix instances of each scene (i.e. 
aggregated from using the � samples of afnities drawn from each 
edge) for all scenes. The results show that there is a decreasing 
trend in the group detection performance as the forecast horizon 
extends, while the uncertainty in the group prediction in future 
scenes increases. 

6 CONCLUSION AND FUTURE WORKS 
In this work, we introduce and evaluate a deep learning joint-LSTM 
based neural network for pairwise afnity prediction, followed by 
DS clustering approach, for the task of conversation group detection 
in social settings such as cocktail parties and networking events. We 
motivate this LSTM-based approach to leverage the inherent tem-
poral dynamics of human behaviors who could afect interactions 

and conversation groups. We showed that for the Confab dataset 
(which has more temporal granularity compared to other existing 
datasets), our method shows improved performance in pairwise 
afnity predictions and therefore, leading to improved performance 
of conversation group detection. We further showed an analysis 
of the predicted afnity predictions and how they change over-
time, which could be indicative of moments leading up to group 
formations and breaking. Lastly, we provide a forecasting frame-
work based on our approach which predicts conversation groups 
at future time steps. 

One of the limitations of this work include its performance in 
sparsely labelled data, such as for the Cocktail Party and SALSA 
dataset. The lower annotation frequency implies more varied con-
versation groups between time steps, and that the continuously 
changing group behavior in real life is not captured in the ground 
truth. Moreover, our use of ground truth features was partially mo-
tivated by what was provided in the existing datasets, and allows us 
to investigate the model performance without potential confound-
ing sources of errors. However, this choice also does not shed light 
on the sensitivity of the performance with automatically acquired 
features, which would ultimately be more relevant in automatic 
systems (e.g., a social robot). 

The model architecture could be further revised to take advan-
tage of multimodal data at full sampling rates, for video, audio, and 
body movement motion. We note that the Confab dataset contains 
manually annotated positions and orientations at 60Hz, as well 
as full 9 Degrees-of-Freedom IMU motion data captured at 56Hz 
sampling rate and speaking status annotations at 60Hz. While the 
trade-of among the difculty of acquiring all of these data in an 
application setting, building and deploying a larger model, and the 
potential increase in performance should be considered, we believe 
that using more expressive modalities at fner temporal resolution, 
conversational group dynamics may be more thoroughly captured. 

For further extension, the proposed forecasting framework 
presents an opportunity for researchers to detect individuals’ in-
tent to interact with others. More socially intelligent automated 
systems can be built if they are able to forecast afnities as a proxy 
for intention. Based on whether or not the predictions align with 
what actually occurs in the future, applications that are cognizant 
of what humans plan or want to do can be designed to enable better 
social interactions. 
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