

2024

COMPLEX PROJECTS Bodies and Building Milan AR3CP100

student

Camille Pollet

chair

Kees Kaan

CP coordinator

Manuela Triggianese

lab coordinator

Hrvoje Smidihen

group tutors Hrvoje Smidihen Martin Grech

email

infocpstudios@gmail.com

Instagram

https://www.instagram.com/ cp.complexprojects/

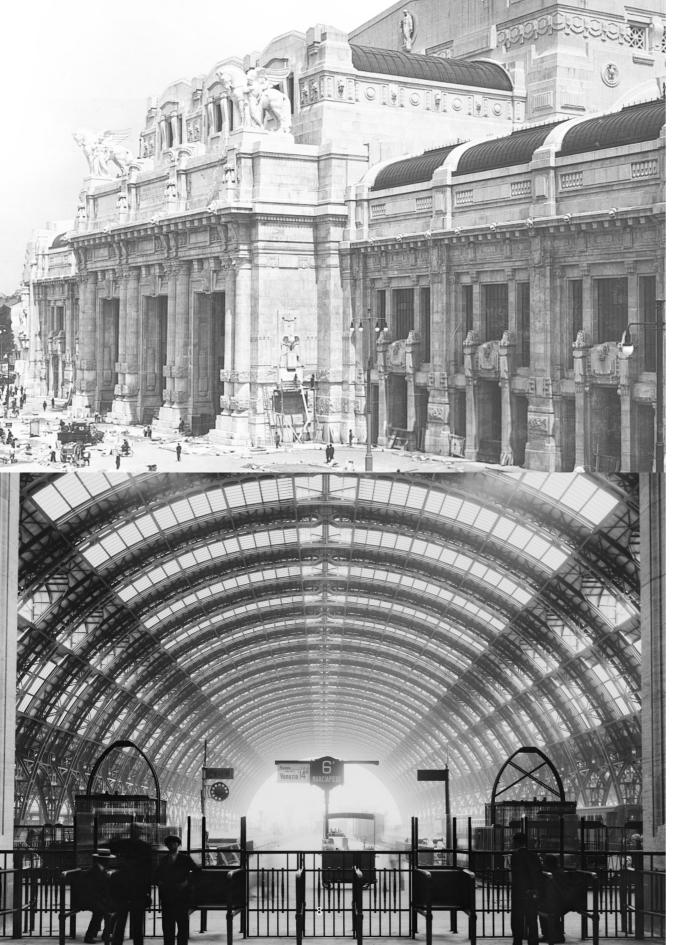
website

https://www.tudelft.nl/bk/over-faculteit/ afdelingen/architecture/organisatie/disciplines/ complex-projects/

facebook

https://www.facebook.com/CP_Complex-Projects-422914291241447

Bodies and Building Milan Health


INDEX

O1 INTRO Thesis Topic Problem Statement Research Question(s)	006
02 RESEARCH FRAMEWORK Theoretical Framework Global, Architectural and Studio Relevance of the topic	018
03 RESEARCH METHODS Framework (micro, meso, macro) Program Client	024
O4 DESIGN BRIEF Site Client Program Key Spaces	036
05 CONCLUSION	054
05 BIBLIOGRAPHY List Appendix	056

INTRODUCTION

Thesis Topic
Problem Statement
Research Question(s)

01 Research Topic

The construction of train stations dates to the Industrial age, when land transportation began to replace river transportation. Initially built to transport goods across countries and even continents, rail eventually became the main mode of travel. Traditionally, architects and engineers collaborated on station design: architects focused on spaces for people, such as entrance halls and concourses, while engineers took charge of the areas meant for trains, like platforms and tracks.

Engineers approached these projects with a futuristic vision, seeing stations as opportunities to showcase the rapid technological advances of the railways. Their work often featured grand metal structures, embodying the innovation and progress of the time so much that they were often called the "cathedrals of progress" (Aubertel, 1999). Conversely, architects responsible for the passenger areas often fear this technological shift. They typically designed imposing, temple-like stone buildings at the station's front, emphasizing tradition over innovation and almost masking the modernity of the train shed behind (Dethier, 1978).

This divergence created an architectural paradox (Bowie, 1996), splitting the station into two distinct zones: one dedicated to people and the other to train. The passenger building, with its heavy stone and monumental entrance, called the "building passengers", behind it, the "train shed" sheltered both passengers and goods during boarding.

As one of the few architectural typologies that serves two distinct users, humans and trains, the train station poses unique design challenges. If both users occupy the entire building, then the building should, in theory, be designed with both in mind. Yet historically, this has not been the case.

Figure 001 Milan central 'Building Passengers' Figure 002 Milan central 'train shed'

High-speed trains

02 Problem Statement

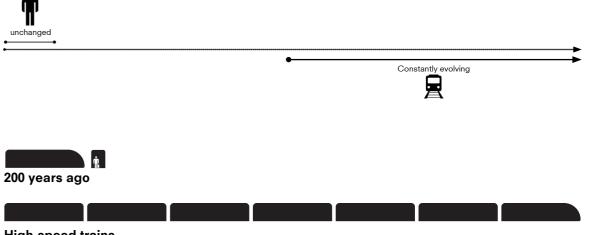
In designing a train station, should architects or engineers take the lead? Traditionally, engineers have constructed parts of the station specifically for trains, often at the expense of human scale, given that these spaces although primarily intended for trains are also used by people. This design approach can result in spaces that feel "dehumanized," meaning they lack a connection to human scale and comfort. The train station is unique as an architectural typology because it serves two types of users: humans and trains. The challenge lies in designing a space that acknowledges both, without prioritizing one over the other. Although it is crucial to recognize that the human user is ultimately more important than the train. Although train stations are primarily spaces of transit, where people are meant to move through rather than linger, this doesn't mean they should compromise on designing with human scale and comfort in mind.

passenger numbers and goods volume. The

addition of multiple 'cars' has increase the

size of train (ex of high speed train in Milan

central is 202m long) further 'separating' in


scale humans to trains.

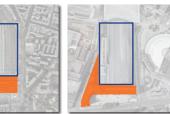
The theoretical framework of this project examines the factors contributing to the dehumanization of train stations, exploring both physical and social dimensions.

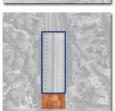
Physical Aspects

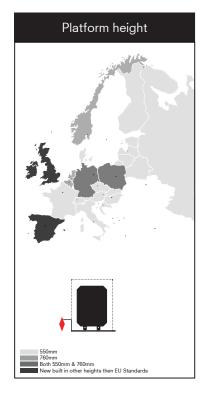
One primary factor in the dehumanization of train stations is scale. This typology must accommodate two distinct users: humans and transport vehicles, specifically trains, which differ dramatically in physical size. While trains are designed with human needs in mind, they have expanded over time to accommodate growing demand, both in

Figure 003 Diagram showing 2 distinct zones in European train stations (left) Figure 004 Humans versus trains evolution (right)

Architect









Standardization also plays a critical role in the dehumanizing process, especially through the uniformity of physical elements platform height, lauding gauge and track gauge. Much of the station's design is tailored to the physiological needs of the train itself, pushing humans to adapt to the transport vehicle-centric spatial configurations. In doing so, stations become rigid and predictable, with limited consideration for the variability of human needs.

The relationship between static and dynamic further accentuates the disconnection between humans and trains. As technology advances, the faster the train, the more humans feel disconnected from it. For instance, a person standing on a platform may feel completely removed from the experience as a high-speed train rushes by, creating a sense of being in different worlds. This introduces the notion of static versus dynamic: the larger the gap between these

two states, the more dehumanizing the environment feels.

Figure 005 Standardisation of trains physical elements across Europe

Social Aspects

The dehumanization of train stations is also shaped by the standardization of time. Since the introduction of synchronized public clocks in 1855, train stations have reinforced strict time structures, positioning themselves as "temples of time." The synchronization of personal schedules with "railway time" (Bartky, 1989) has institutionalized the need for punctuality, as trains wait for no one, forcing people to adjust their lives to fit train schedules. This forced adaptation to time-based regimentation contributes to a dehumanizing atmosphere where human rhythms must bend to the fixed, mechanical timing of train schedules.

The use of space within stations has similarly evolved to reflect a utilitarian approach that often disregards the social role stations once played. Historically, train station were vibrant public areas, supporting social interaction, commerce, and leisurely engagement. Over time, however, some parts have

become restricted, with access limited to ticketed passengers and non-passenger use increasingly constrained. This shift has isolated train stations from the broader urban social life, reducing them from hubs of community interaction to sterile, transit spaces. As a result, the station experience today often feels imposed upon rather than embraced, with many people enduring (Dethier, 1978) rather than enjoying their transit time. In contrast to their historic role as engaging public spaces, modern train stations are often perceived as transitional spaces, leaving little room for the sense of community and shared experience that once characterized them.

Figure 006 Concourse Penn Station
Figure 007 Concourse Milan centrale Station

INTRODUCTION

How can the design of train stations bridge the gap between human scale and train-centered spaces?

Sub-questions:

- How can the train station redefine the human-train interface?
- How can the historical spatial use of stations be adapted in future designs to reconnect humans and trains?
- Does monumental spaces in public buildings contribute to the dehumanization of these environments, and if so, what design elements amplify this effect?
- How can the interface between humans and transport vehicles (platforms) be reimagined

• How might the future design of Milan's train station integrate a dense high-speed rail hub, effectively replacing the domestic airport, while ensuring a comfortable, humancentered experience?

as more than mere transitional spaces,

becoming places that prioritize human scale, and in what ways can this be achieved?

• How to reconnect the central neighbourhood

of Milan to the central station? And how to ensure that the tracks and rail infrastructure

do not divide the city?

Figure 008 Shoe shiners on train station platform

RESEARCH FRAMEWORK

Theoretical Framework Global Relevance

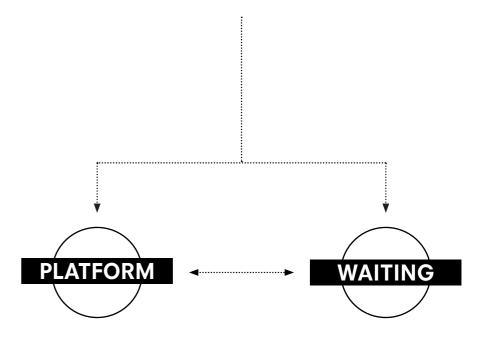
01 Theoretical Framework

This leads to a critical question: how can we design architectural spaces that respect and accommodate the vastly different scales and needs of both humans and trains?

Beyond train stations, this dilemma is also apparent in other building typologies, such as car parks and bicycle storage facilities, where spaces tend to prioritize the 'vehicle user' cars and bicycles over the human experience. In contrast, airports take a different approach, as the overall design separates humans from the transport vehicles, with airplanes physically located outside the building. Despite the large distances between gates, which are determined by the size and placement of the planes, airport design focuses more on the human scale. In the case of train stations, several elements such as platform length and height are primarily designed to meet the scale of trains, with little regard for human comfort. What architectural features, if any, are designed with human scale in mind?

One example of architecture addressing different scales is Le Corbusier's Villa Savoye, which designed was accommodate both the human body and the Citroën car (Benton & Levinson, 1975), suggesting that architecture can indeed serve two scales simultaneously. This raises the question: can the design solution for stations be achieved by altering the size or scale of one of the users such as making the trains smaller, as with the concept of Hyperloop stations? Hyperloop trains, being shorter and closer to a human scale, might suggest one approach. However, high-speed trains, with lengths of up to 202 meters, complicate this idea.

This evolution leads to another key question: does the design of spaces for two users humans and transport vehicles depend on adjusting the scale of one, or can it be achieved


while maintaining their existing sizes? The Hyperloop project suggests a strategy of modifying the machine's scale, but does this approach does not fully address the problem. Alternatively, should humans and transport vehicles be more clearly separated, as they are in airports, where passengers and planes are physically and functionally distanced from each other? Could this separation itself be a form of humanization?

In exploring these questions, several paradoxes emerge within the train station typology:

- The architectural paradox between spaces designed for humans and spaces designed for machines.
- The paradox between static and dynamic.
- The paradox of use, where stations alternate between being empty and rushed.
- The paradox of feelings experienced in stations, such as the contrast between departing and arriving.

These paradoxes coexist within a single architectural typology, presenting the challenge of designing spaces that effectively accommodate both humans and transport vehicles. Time may serve as a potential link between the two, as humans have remained relatively unchanged over the years, while vehicles have advanced rapidly, resulting in an ever-widening gap in the human-vehicle relationship. Architecture has the potential to bridge this gap, addressing the evolving needs of both users.

The presence of these paradoxes may indeed contribute to the dehumanization of train stations, highlighting the need for design strategies that re-center the human experience within these complex environments.

Transitional spaces:

The platform, both literally and conceptually, serves as a crucial link between humans and trains, playing a unique role within train station architecture. Designed to align with the height and length of trains, platforms function primarily as transitional or "liminal" spaces, often emphasizing utility over human experience. Dutch architect Aldo van Eyck introduced the term "liminal space" in architecture, referring not simply to transitional zones but to spaces fostering "ephemeral relationships between people and spatial environments" (Smith, 2001). Van Eyck's concept emphasise the brief yet meaningful interactions people have within these spaces, suggesting that they can serve as moments for connection, contemplation, or brief encounters.

In contrast, French anthropologist Marc Augé described "non-places" as spaces lacking identity, cultural reference, or user connection, prioritizing movement and efficiency over human comfort (Augé, 1995). These impersonal, utilitarian spaces often include parts of train stations, designed more

for function than for creating a sense of place. Reimagining the train platform means challenging its role as a mere waiting area and exploring how it could embody both function and experience, transforming it into a meaningful connector within the station and even the city.

Beyond train stations, this concept applies to metro platforms, bus platforms, airport bridges, port deck any type of transitional space that links people to vehicles. Rethinking these interfaces offers an opportunity to design spaces that enhance the human experience while facilitating movement.

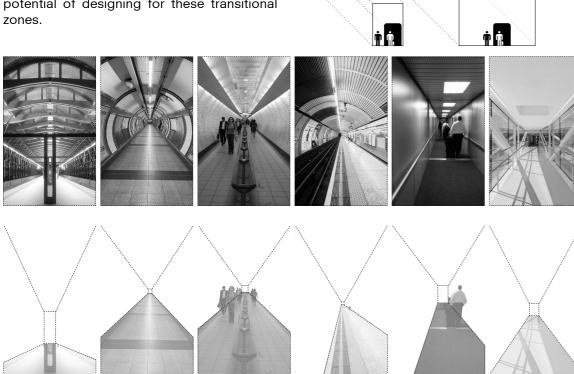
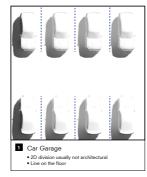
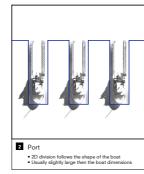
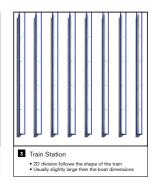
02 Global Relevance

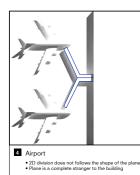
Architecture Relevance

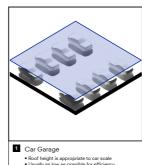
This project explores interfaces between distinct elements within architecture, particularly examining liminal spaces, the transitional gap between the human and the train. By investigating similar typologies, such as metro platforms, bus stations, airports, and port, I'm focusing on those in-between spaces that have a clear entry and exit, guiding people from one point to another allowing to depart/arrive to the vehicle. In such spaces, if one needs a momentary pause, there's often no option but to continue to the destination or turn back. This aspect of the project highlights the architectural challenges and potential of designing for these transitional

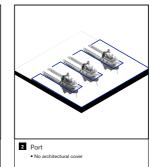
Studio Relevance

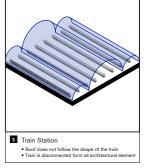
In my research, I specifically study the human scale in relation to larger transport vehicles, like the train, and how these two scales intersect within the design of train stations. A key question in my problem statement is whether these structures are genuinely designed with the human scale in mind. If they are not, I am analyzing the architectural features that contribute to their dehumanizing qualities and proposing solutions to make these spaces more human-centered.

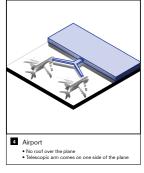






Figure 009 Transitional spaces in different typologies

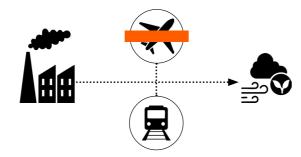

Other vehicle typology relevance







study draws comparisons with typologies such as car garages, ports, airports, and metro stations, which similarly share the coexistence of human and vehiclecentered spaces. In two-dimensional design, architecture often follows the shape of the vehicle, as seen in train tracks or parking layouts. However, in three-dimensional design, the relationship can be less defined. For example, in metro stations where the architecture fully accommodates the vehicle's shape, the integration of human and machine scales is seamless. In contrast, often in train stations, vehicles enter vast, undefined halls. It often create a sense of disconnection.

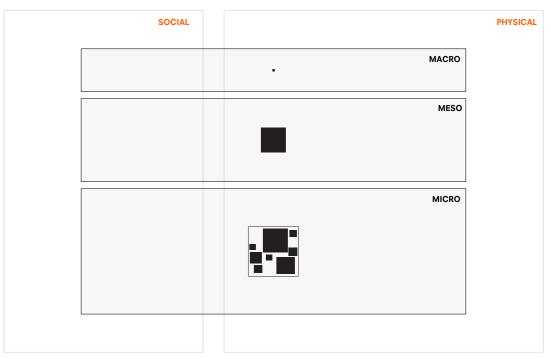

as the train appears as a foreign object within the space. This raises the question of whether architecture should more explicitly integrate the vehicle's shape into its design. If platforms and surrounding structures adopt forms that follows the shape of the vehicle, could this enhance the relationship between human and machine scales, creating a more unified and homogeneous architectural language experience? The study seeks to explore whether this approach could reduce the perceived isolation of vehicles within architectural spaces and foster a stronger connection between the two.


RESEARCH FRAMEWORK

Figure 010 Italy's high-speed railway services Figure 011 Europeans high-speed railway services from Milan Central

Sustainable and Milan Relevance

As high-speed rail infrastructure continues to expand in Italy, it's critical to rethink major train stations, which are set to become essential hubs for high-speed transportation. This project addresses how these stations can be designed to manage high densities of people and trains while still maintaining comfort for all users. By envisioning a future where high-speed trains replace domestic flights, this project proposes a sustainable alternative to air travel that could significantly reduce air pollution in Italy, particularly in Milan, a city currently suffering from some of the worst air quality in Europe.


RESEARCH METHODS

Framework (Micro, Meso, Macro)
Program
Client
Site
Conclusion

05

Figure 012 Research methods by scale Figure 013 Research methods questions

01 Framework

In my research methods, I intend to explore both social and physical aspects of the train station design across three scales: macro, meso, and micro. Each scale offers unique insights, with a particular emphasis on the physical aspect at the meso and micro scale. Although those scales will be prioritized, the broader social and spatial contexts remain essential for a complete and coherent project.

SOCIAL	Ť			PHYS
			How might the future design of Milan's train station integrate a dense high-speed rail hub, effectively replacing the domestic airport, while ensuring a comfortable, human-centered experience within the station?	
			How to reconnect the central neighbourhood of Milan to the central station ? And how to ensure that the tracks and rail infrastructure do not divide the city? MESO MESO	
How can the historical spatial use of stations be adapted in future designs to reconnect humans and trains?			Does monumental spaces in public buildings contribute to the dehumanization of these environments, and if so, what design elements amplify this effect? • How can the interface between humans and transport vehicles (platforms) be reimagined as more than mere transitional spaces, becoming places that prioritize human scale, and in what ways can this be achieved?	
	Ĵ	۱ ۱		

SOCIAL

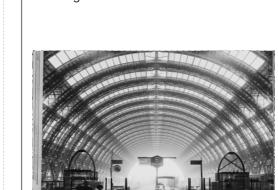
How can the historical spatial use of stations be adapted in future designs to reconnect humans and trains?

MICRO

- Human pattern behaviour
- Time spent in station
 Perception of trains by human

 - Human activity
 Human/industry gap

26


- > Investigate how people behave within a station (shopping, waiting, activity) back then vs. now.
- Archives pictures
- Existing research

- > Investigate the gap evolution between
- Theory research
- Non-places

human and industry.

Does monumental spaces in public buildings contribute to the dehumanization of these environments, and if so, what design elements amplify this effect?

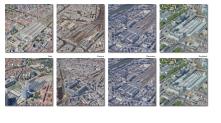
MICRO

- · Monumental spaces
- Domestic spaces
- Sense of belonging vs. monumental spaces

- > Investigate historical monumental spaces in architecture and their meaning.
- Case studies
- Existing research

- > Investigate modern monumental spaces in architecture and their meaning.
- Case studies
- Existing research

PHYSICAL


• How can the interface between humans and transport vehicles (platforms) be reimagined as more than mere transitional spaces, becoming places that prioritize human scale, and in what ways can this be achieved?

MICRO

- Platforms/liminal spaces
- Distance/proximity
- Other typology

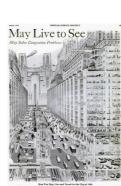
28

> Investigate the design of platfroms of both terminal and through station (8 built during industrial age and 8 in modern times).

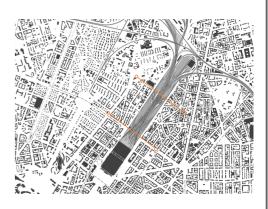
- ➤ Investigate platforms in other transport typology (+ benchmarking) the interface between bodies and transport vehicle, transitional zones.
- Theory research Metro station, bus station, airport, garage, bicycle storage, port.

PHYSICAL

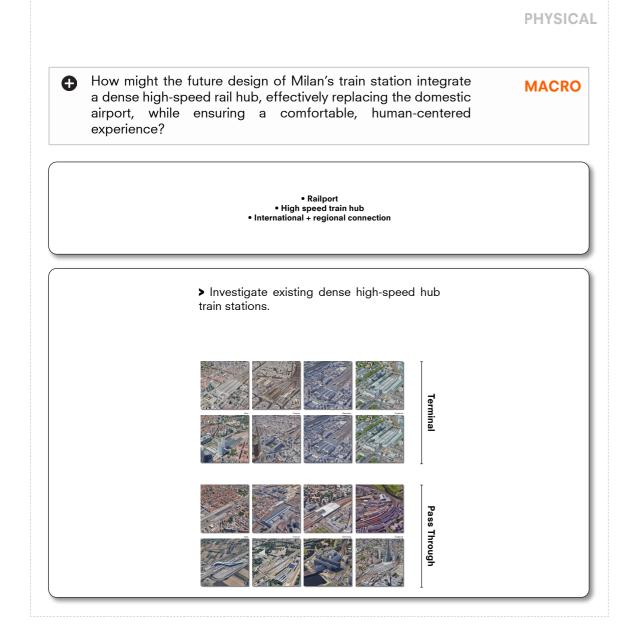
How to reconnect the central neighbourhood of Milan to the central station? And how to ensure that the tracks and rail infrastructure do not divide the city?


MESO

Layered City


Program Overlay
 No discernable surface (or ground floor)

- > Investigate the idea of 'no station' where train dissolves within the urban fabric.
- Reconnecting to the surrounding context
- Look for precedents that I have done a similar concept of 'city within the city'


- > Investigate the surrounding typologies and use of Milan central.
- Municipality websites
- Urban planning research

02 Program

The program for this project aims to redefine the train station beyond its traditional commercial and retail use, advocating instead for community-centered services and flexible spaces that meet passenger needs without focusing solely on consumption. To begin, I will analyze the existing layout of Milan's Central Station, which has undergone various transformations since its inauguration in 1931, to understand its original priorities, such as the spatial hierarchy within the station's expansive yard (explain with diagram). This analysis will be complemented by a cross-comparison of case studies of terminal and through-stations to identify key programmatic elements essential for a well-functioning train station. By examining how the layout typologies of terminal versus through-stations affect programmatic organization, I aim to determine if these differences directly impact the services and spaces offered within each type. Ultimately,

the program for the re imagined Milan station will prioritize creating a sense of belonging, transforming it from a transit space into an engaging community hub. To achieve this, my research will include a theoretical exploration of spaces that foster belonging, an analysis of the local Milan Central area to identify gaps in current uses and potential community needs, and a study of existing mixed-use train stations that successfully blend traditional station functions with other types of public amenities.

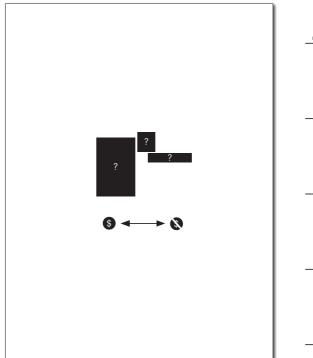
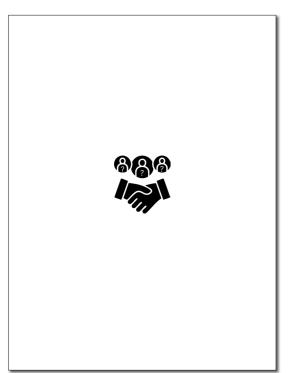



Figure 019 Research Methods for Program

04 Client

The project will also consider clients on both local and European levels. Initial research will focus on transportation companies across Europe, to gain insights into their longterm visions for high-speed rail and other transportation innovations. I will specifically investigate Italian transportation regulations and standards for train station design, especially those related to standardization, as understanding these requirements will be crucial for developing the future Milan station. Additionally, government and municipal objectives at the national and city levels will be examined to understand Italy and Milan's ambitions in sustainable development, social inclusivity, and architectural advancement, helping to ensure alignment with broader public goals.

32

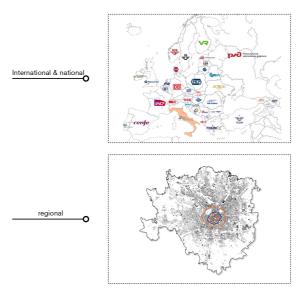
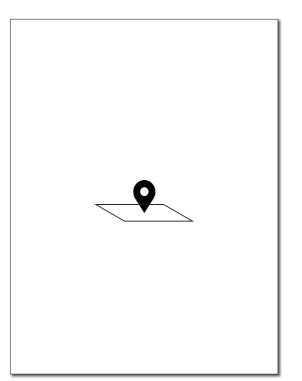



Figure 020 Research Methods for Clients

04 Site

The chosen site for this project is the current Milan Central Station. Research on this site will consist of a comprehensive analysis of its existing conditions, with the goal of understanding the relationship between the station and its surroundings, as well as how it integrates with the city. This analysis will involve site photography taken during field visit in Milan, detailed site mapping, analytical diagrams, and 3D modeling. By investigating the existing connections and examining how the future Milan Central Station might better integrate into its surrounding urban fabric, the project will challenge traditional station boundaries, envisioning a design with distributed entrances that dissolve into Milan's cityscape. This approach will support the creation of a station that not only serves as a transit hub but also enhances its role within the urban environment.

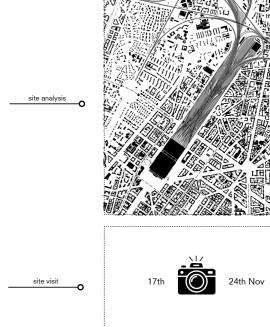
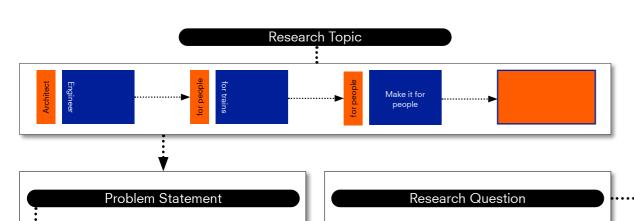
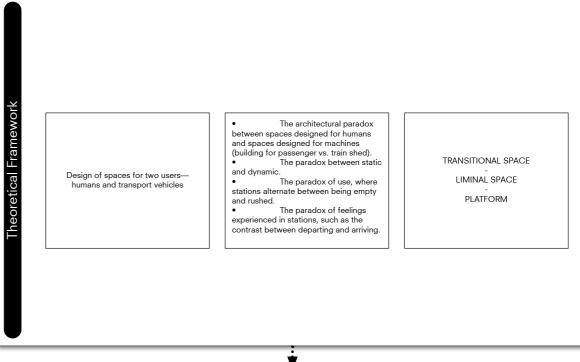



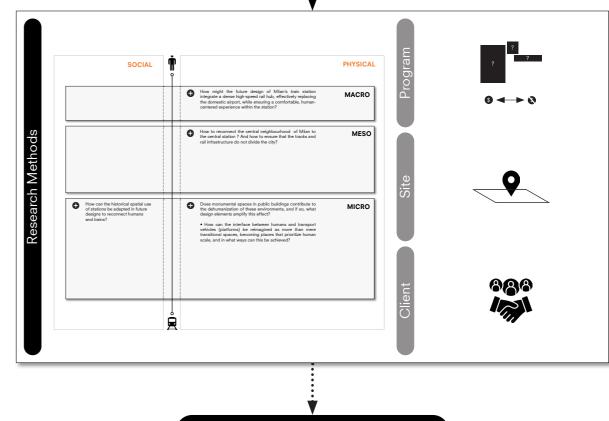
Figure 021 Research Methods for Site

34

Train station's dehumanization "Dehumanisation": refers to a space that lacks a connection to human scale.

STANDAR-DISATION STATIC VS. DYNAMIC


SCALE


TIME

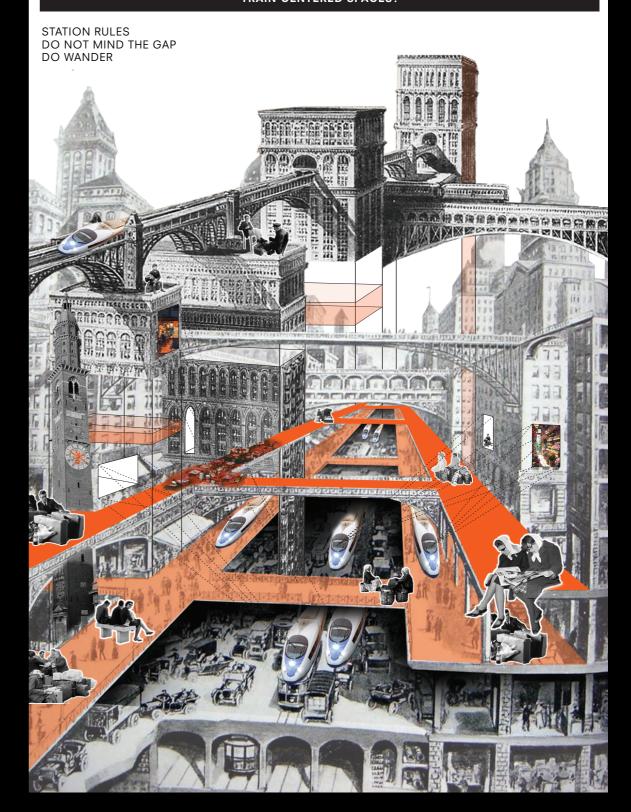
How can the design of train stations bridge the gap between human scale and train-centered spaces?

Sub-questions:

- •How can the train station redefine the human-train interface?
- •How can the historical spatial use of stations be adapted in future designs to reconnect humans and trains?
- •Does monumental spaces in public buildings contribute to the dehumanization of these environments, and if so, what design elements amplify this effect?
- •How can the interface between humans and transport vehicles (platforms) be reimagined as more than mere transitional spaces, becoming places that prioritize human scale, and in what ways can this be achieved?
- •How to reconnect the central neighbourhood of Milan to the central station? And how to ensure that the tracks and rail infrastructure do not divide the city?
- •How might the future design of Milan's train station integrate a dense high-speed rail hub, effectively replacing the domestic airport, while ensuring a comfortable, human-centered experience?

Design Brief

RESEARCH CONCLUSION


Based on this research, the future design of Milan Central Station will prioritize the integration of human-centered spaces with the station's operational infrastructure as it evolves into a high-speed transportation hub. To address the architectural paradox of accommodating both humans and transport vehicles, the station must bridge the gap between human scale and train-centered design. While human nature has remained largely unchanged over centuries, vehicles and technology have rapidly advanced, often outpacing our ability to adapt. This imbalance creates environments where humans struggle to keep up with the scale and speed of those.

This research focuses on the interface linking the human and the train, the platform, a space associated with waiting. The future design envisions platforms as both everywhere and nowhere, placing them at the heart of the station and integral to the project's aim of balancing monumental and intimate spaces; while monumental areas evoke a sense of grandeur, they can also create a feeling of detachment. To counter this, Milan's future station will foster a sense of belonging,

extending beyond commercial and retail functions. By incorporating adaptable spaces for waiting, social interaction, and community engagement, the station will transform from a passive transit area into an active, vibrant environment. Inspired by Harvey Wiley Corbett's concept of the "layered city," Milan future train station will reinvent and redefines waiting areas as urban vertical spaces, where passengers are encouraged to engage in various activities, making waiting a dynamic experience rather than a passive one.

Envisioning the station as a "city layer" rather than an isolated structure, this approach proposes a station that blends horizontally and vertically with Milan's urban fabric, creating an "urban continuum." The station of the future might even dissolve conceptually within the city, with multiple access points distributed across Milan. Such a design would allow public spaces within the station to merge seamlessly with the surrounding cityscape, maintaining a balance that respects both human and train scales to foster a sustainable community urban life.

HOW CAN THE DESIGN OF TRAIN STATIONS BRIDGE THE GAP BETWEEN HUMAN SCALE AND TRAIN-CENTERED SPACES?

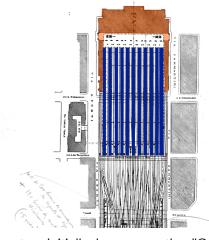
DESIGN BRIEF

DESIGN BRIEF

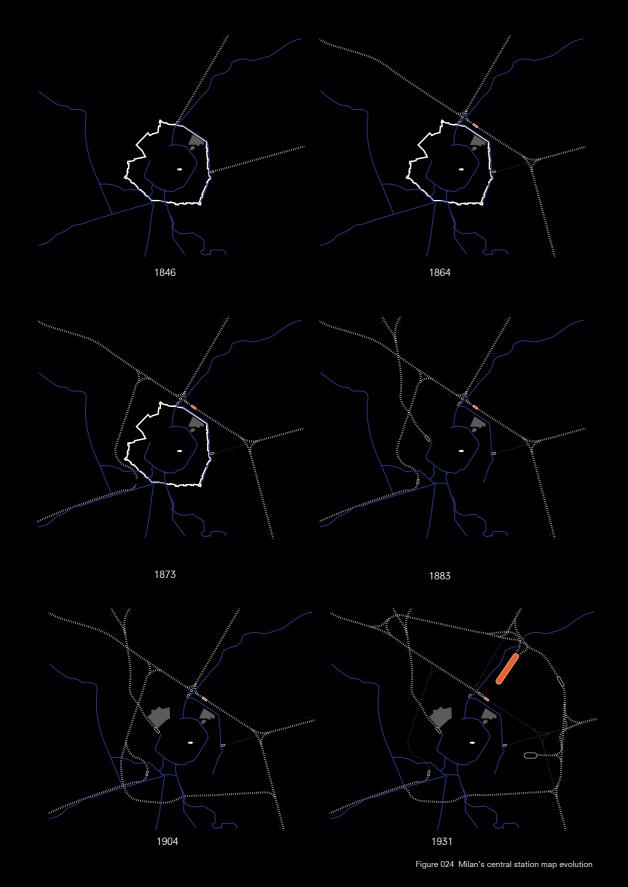
Site Client Program Key Spaces

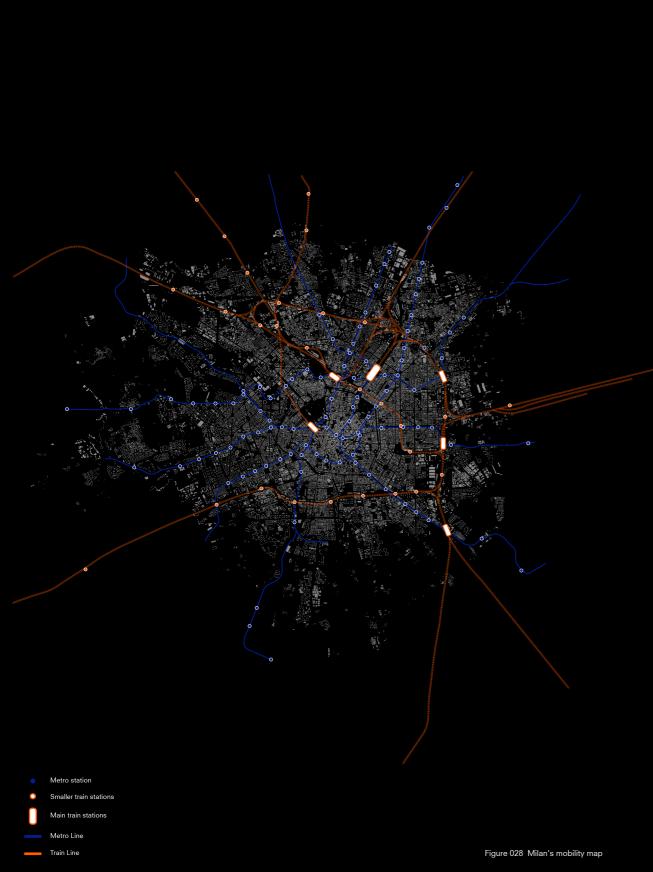
DESIGN BRIEF

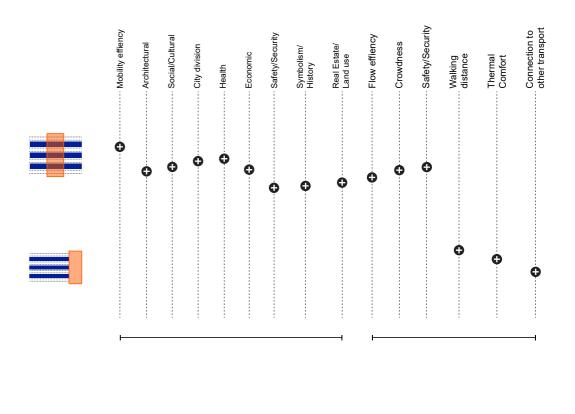
Figure 025 Milan's central through station Figure 026 Through station floor plan 1864 Figure 027 Terminal station floor plan 1931



01 Site

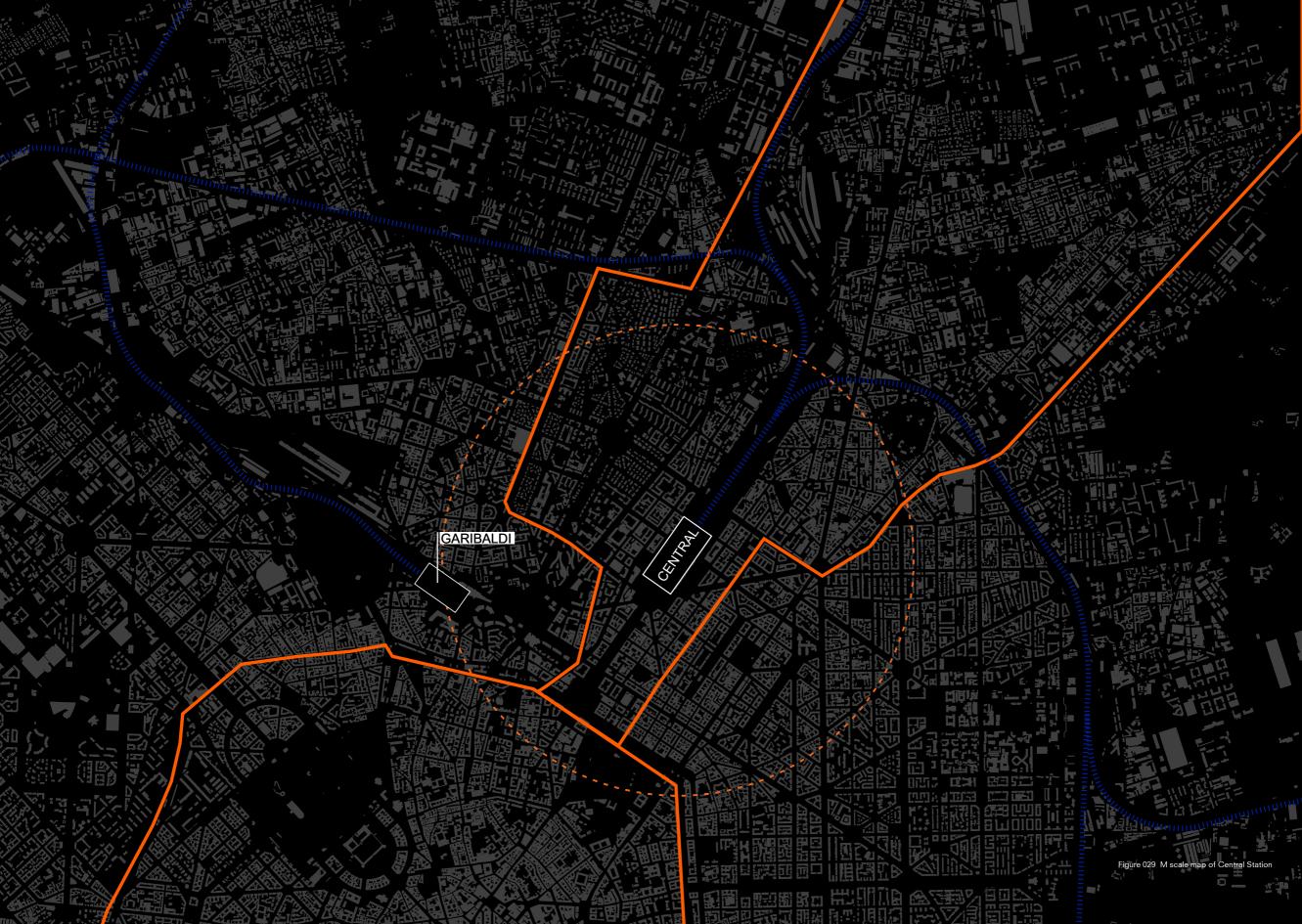

The studio has preliminarily chosen the site for the project: Milan Central Station, located in district 2, near the boundary of district 1.


In terms of mobility, Milan Central is the third-largest train station in Europe, offering direct connections to four neighbouring countries. It is also Italy's second largest train station after Rome serving as a critical transit hub for the country. The railway network is more developed in the northern regions of Italy than in the south, making Milan Central an important station for both international and domestic travel.


Originally designed as a pass-through station, Milan Central became a terminal station in 1931. This transformation not only altered its architectural design but also resulted in the station being relocated further from the city

center. Initially known as the "Gateway of the City," the station marked the city's edge, serving as a threshold for entry and exit. However, with Milan's urban expansion, the Central Station is now located at the heart of the city.

1.1 Station Research


Milan is well-served by public transportation, with a large network of metro, bus and tram lines covering most areas of the city. The metro system includes four lines, and the city is home to six major train stations. While researching the evolution of train stations, the physical, architectural, social, and economic aspects of through stations versus terminal stations became a focus. This analysis aimed to understand the advantages of each station type and address the question:

What aspects of both through stations and terminal stations can enhance the interface between humans and trains?

The conclusion was that through stations offer several advantages, which will inform the future design. Three key aspects to implement are:

- A building embedded between tracks and rails, optimizing spatial efficiency.
- A double-entrance configuration, reducing the disconnection between the station's two sides.
- Central platform access, minimizing walking distances, an advantage over terminal stations, where access typically begins at the end of platforms.

Milan Central Station is located near Garibaldi Station, another major terminal. Both stations serve high-speed and regional trains, with Garibaldi acting as a more significant hub for metro connections. Milan Central's proximity to the central district solidifies its status as a landmark of the city, further emphasizing its importance within the urban fabric.

DESIGN BRIEF

1.1 Site Condition

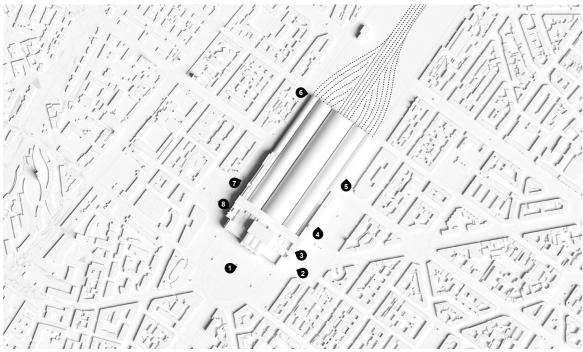


Figure 030 Site Plan

1 View from the plaza in front of the station, showcasing one of the metro entrances.

Side of the station cluttered with temporary barriers and numerous illegally parked vehicles.

Monumental side entrance, originally a car entrance in 1931, still features its open metal gate.

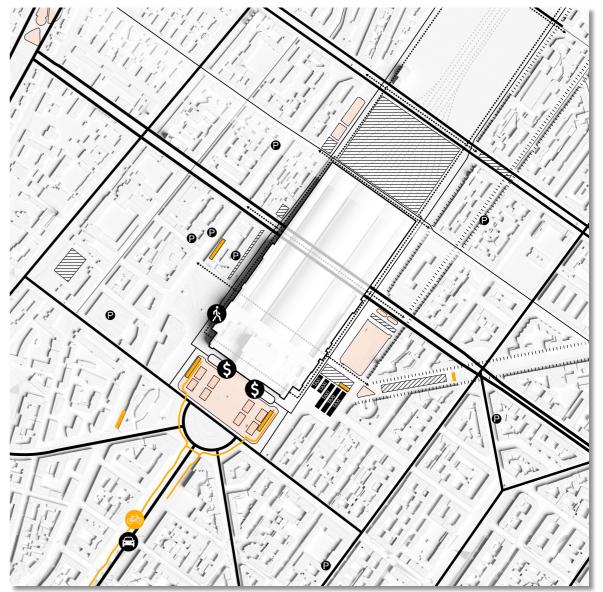
Side indoor entrance with an external weatherproof roof extension, and a new restaurant structure visible in the background.

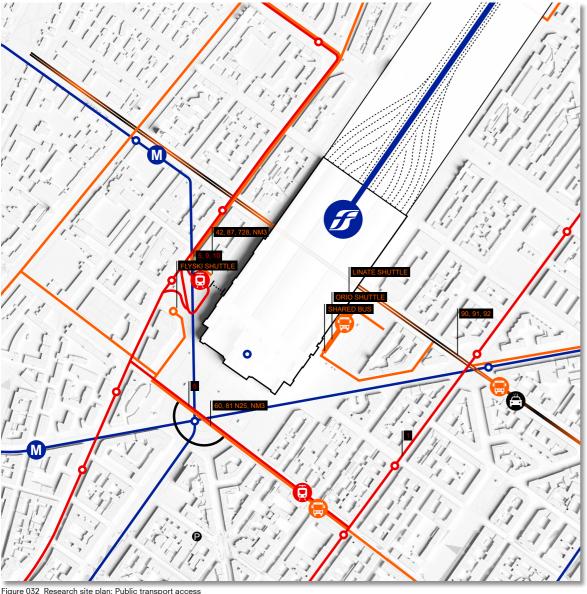
S View of a tunnel running below the tracks, featuring three entrances and 8-meter-high walls.

Restaurant in a new structure, leaving minimal space between the station wall and the street.

Station side with extremely limited parking availability.

Semi-indoor space, once a car access area, now serves as an intermediate station connection with a new underground metro link added.




Figure 031 Research site plan: car and bicycle access

1.2 Site car/Bycicle Access

Car access around the site is relatively convenient, unlike bicycle access, which is very limited due to the lack of dedicated routes. Parking options are limited, with one large parking area located beneath the tracks at the rear of the station.

Public spaces surrounding the station are limited, including a large plaza at the front, most of which remain underutilized and inactive. PEDESTRIAN ROUTE
BICYCLE ROUTE
CITY BIKE SELF SERVICE
BIG CAR AXIS
PEDESTRIAN
PARK
PARK
PARK
PARKING

STREET PARKING

1.3 Public Transports

Milan Central Station is well-served by public transport, with buses, trams, and metro lines accessible both inside and outside the building. However, these connections are scattered around the station rather than concentrated in one location, making navigation less intuitive. Walking distances to transport nodes are generally within a 5-minute range.

- TRAM STOP
- METRO STOP
- **BUS STOP**

PEDESTRIAN ROUTE **BUS ROUTE** METRO ROUTE TRAM ROUTE CAR+BUS ROUTE CAR ROUTE

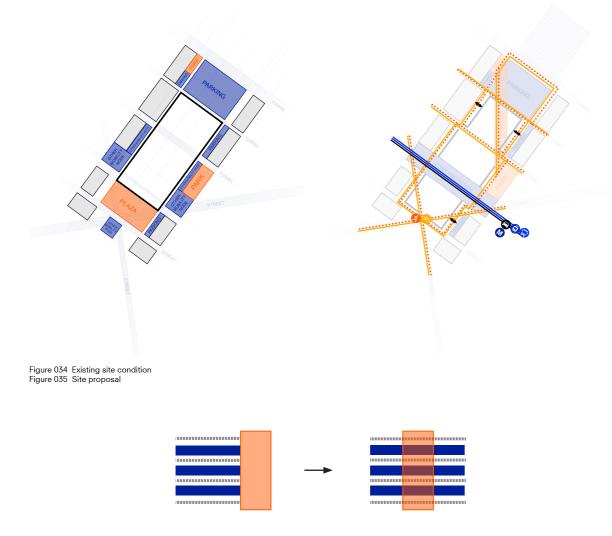
- PAYED ACCESS
- PEDESTRIAN
- UNDERGROUND PARK-

PARKING

1.4 Walking Distance

The scattered placement of transport nodes leads to congestion in certain areas, particularly on the station's left and right sides. In contrast, the plaza at the front remains underutilized and mostly empty, highlighting an imbalance in activity across the site.

TRAM STOP


METRO STOP

BUS STOP

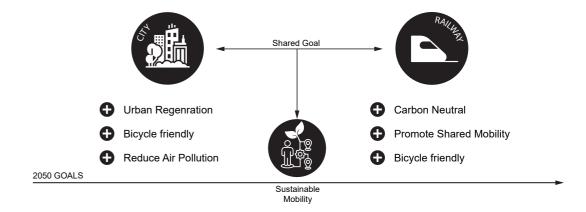
OVERALL TRAFFIC

PEDESTRIAN

PLAZA

1.5 Proposal

The current condition of the station offers limited connections for moving from one side of the building to the other. This lack of integration disrupts accessibility and flow across the site. To address this, the proposal seeks to combine transport connections, making navigation between different modes of transport easier and quicker.


In addition, improving walkability and bicycle connectivity across the site is a priority. This will be achieved by creating new pathways and reimagining underutilized public spaces, transforming them from transit-focused areas into vibrant, people-centered spaces. As part of the health group requirements, a new 'passage' will be introduced to better connect the two sides of the building. This addition will not only improve cross-site movement but also increase the availability of functional public spaces.

DESIGN BRIEF

53

02 Client

TRAIN

This project will involve key stakeholders, including both primary clients and users of the station. For the main clients, two critical entities will play a role: the Municipality of Milan and Ferrovie dello Stato (FS), the Italian railway company.

The Municipality of Milan, which also served as the client when the station was originally built, will represent the city's interests, focusing on the human and urban aspects of the project. Ferrovie dello Stato, responsible for Italy's railway network, will address the transportation and operational aspects of the station. Within FS, their urban development branch, FS Sistemi Urbani, will contribute to integrating railway infrastructure with urban planning.

Both stakeholders share a common vision

of supporting sustainable transportation. However, sustainable mobility extends beyond merely reducing CO2 emissions from trains. It also involves creating a more affordable, comfortable, and efficient travel experience.

This vision shows the need to redefine what it means to move sustainably in the future, addressing both environmental impact and user experience.

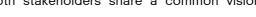
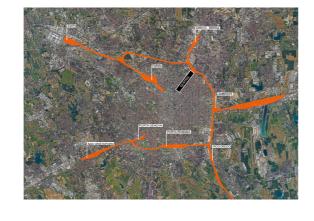



Figure 038 Bicycle new route plan from Milan municipality Figure 039 'Kilometer verde' project from Milan municipality

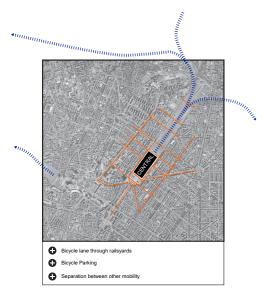


Figure 040 Extended bicycle new route plan - Proposal Figure 041 Extended 'kilometer verde' project - Proposal

Extand kilometer verde \$7 green area of plot Community + Public facilities Give back to citizen

2.1 Milan's Municipality

The Municipality of Milan is currently seeking ambitious projects aimed at transforming the city's mobility and urban fabric. One major initiative involves promoting bicycle mobility by implementing a new network of bike paths across the city. Another project, started in 2017, seeks to revitalize abandoned railyards throughout Milan.

However, as of 2025, none of these projects have been fully realized, and Milan's Central Station and its surroundings remain excluded from these efforts.

The design briefs for these initiatives, such

as the Scali Farini competition, emphasize the integration of at least 50% green space. While architects were tasked with reimagining the areas around the railyards, many projects have struggled to achieve significant integration between the yards and the broader urban architecture.

In the proposed redesign of Milan's Central Station, the aim is to extend the projects of Milan's municipality to include the station in its surroundings. This approach directly addresses my research question by bridging the gap between spaces designed for trains

and those meant for humans. By creating better connections between the station's divided sides and transforming areas initially intended for train operations into more human-centered spaces, the design will harmonize urban and transit-oriented functions.

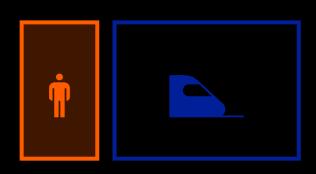
2.1 Italian's Railway

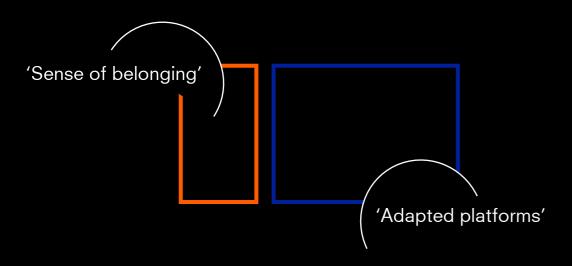
Alstom announces 63\$ million investment to boost Italy's rail infrastructure and sustainability
Published december 12, 2023
By BEI and FS

1000km/h

Under 2 hours = the train has the market

Between 2 and 6 hours, the market is split in between the 2


Above 6 hours, the aeroplane supplants the train


Today 300km/h

The main goal of the Italian Railways, Ferrovie dello Stato (FS), is to shift towards sustainable and "soft mobility" solutions while positioning train travel as the preferred alternative to domestic air travel.

Soft mobility emphasizes environmentally

friendly, energy-efficient, and low-impact transportation methods, making trains a cornerstone of this vision. By improving the accessibility, efficiency, and comfort of train travel, FS aims to reduce dependency on private cars and short-haul flights, which contribute significantly to carbon emissions.

6.9 MILLION visitors

71% italians

29% foreigners

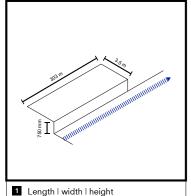
21% occasional

79% commuters

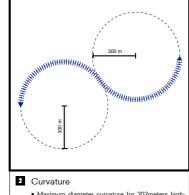
2.2 Users: People

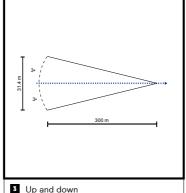
In this project, two distinct types of users are considered: humans and trains, each with differing needs and priorities. Humans seek a sense of belonging and comfort within the station, while trains require platforms that are well-adapted and efficiently designed for their operational needs.

Among the human users, we can further categorize them into passengers and visitors. Passengers can be divided into commuters, those who use the station regularly as part of their daily routine and occasional travelers, who interact with the station less frequently. Visitors, on the other hand, include individuals

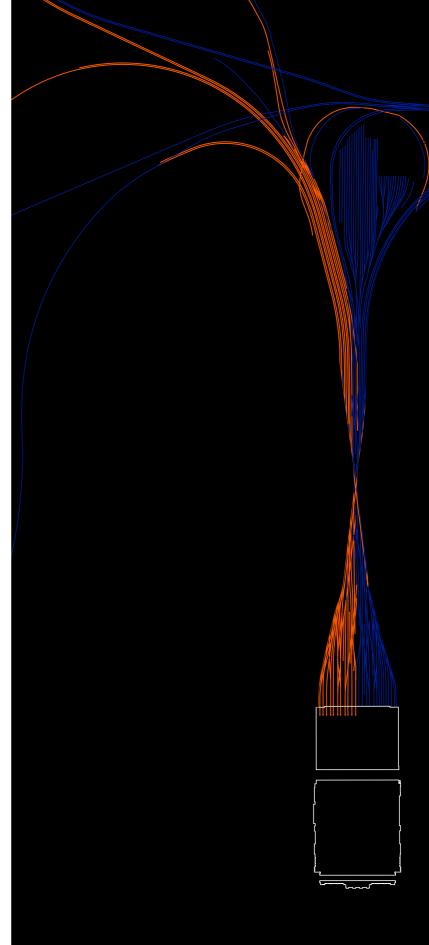

who come to the station for reasons beyond travel, such as meeting others, enjoying its amenities, or simply exploring.

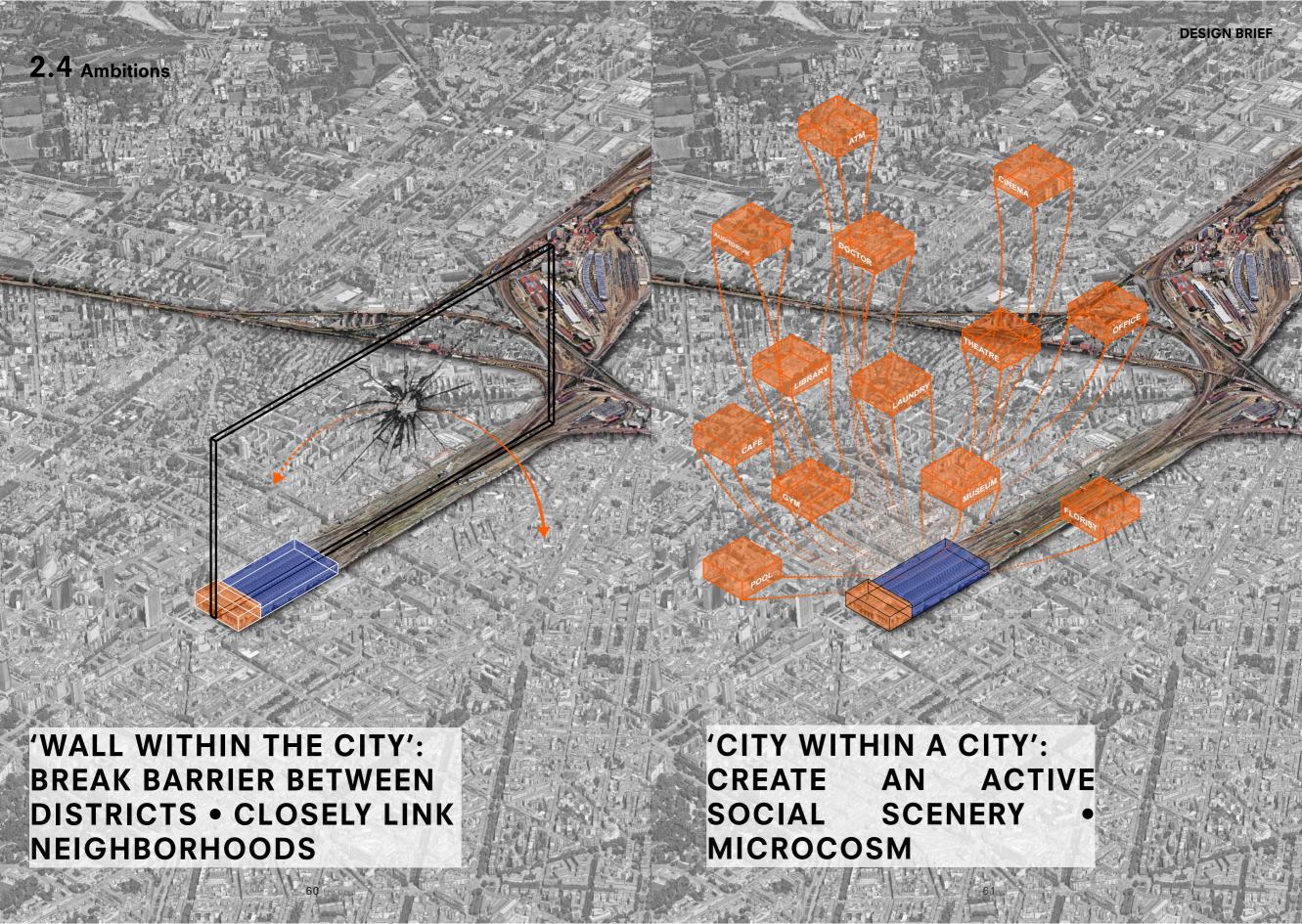
Milan Central Station predominantly serves commuters and local residents, making it a vital hub for the city's daily life. This unique user dynamic highlights the importance of designing a station that not only meets the functional demands of trains but also fosters a welcoming and inclusive environment for the people who use it most. By addressing these varied needs, the station can become a space that balances operational efficiency with human-centered design.

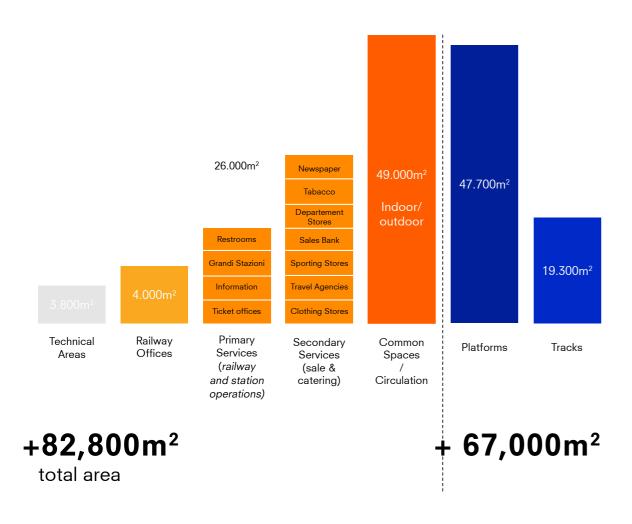



Figure 042 Split station

- Typical lauding gauge's dimensions across Europe
 Width of platforms can differ


 Maximum diameter curvature for 202meters high speed train

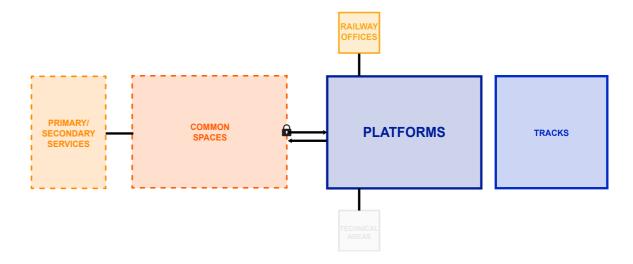


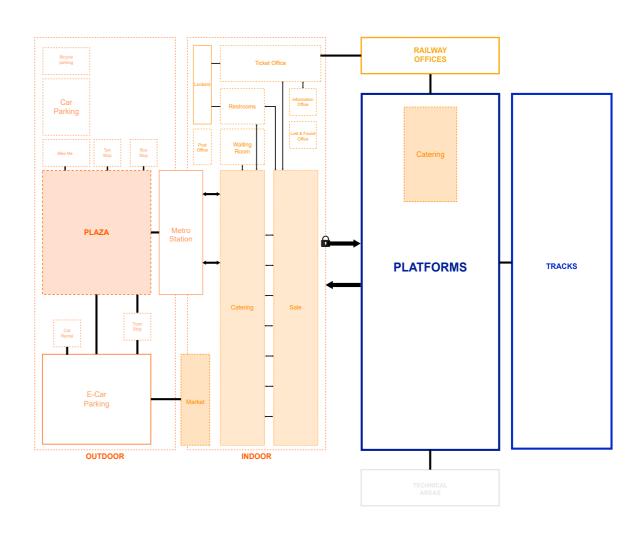

- Maximum up and down hill degree for a 202 mete long high-speed train

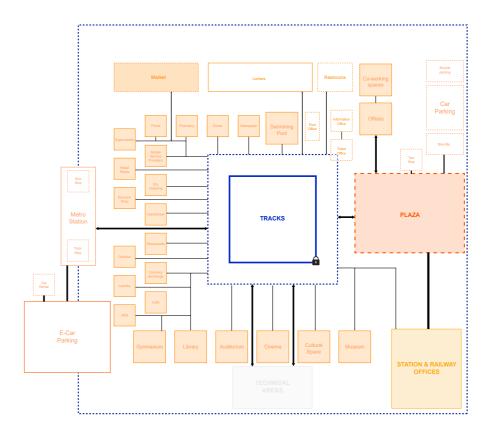
2.3 Users: Trains

For trains, platforms must meet specific requirements of dimensions, curvature, and height to function effectively. Currently, six tracks are allocated for high-speed trains, with the remainder serving regional trains. To support the shift from domestic air travel to train travel, the station will reconfigure to allocate 12 tracks each to high-speed and regional trains, achieving a balanced distribution. According to dimension and conformity studies, this reorganization could lead to the introduction of a split station design, where platforms are distributed across different levels. This approach would allow for wider platforms and the integration of additional programs within those.

62


03 Program


The existing Central Station covers a total area of 149,000 sqm, with the largest portion dedicated to the platforms and indoor/outdoor circulation and common spaces. In fact, the majority of the station's area is devoted to transit and circulation functions.

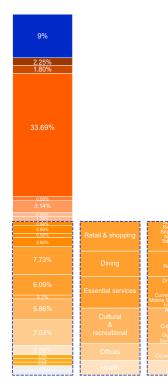

Currently, the platforms have restricted access, with a single entrance for passengers and a separate exit. The architecture distinctly separates the indoor and outdoor programs.

A plaza in front of the building helps channel circulation towards other public

transportation stations. Commercial spaces are spread throughout the station, including within the platforms. The station appears to prioritize commercial use, offering a wide variety of retail and services to passengers and visitors before their travels.

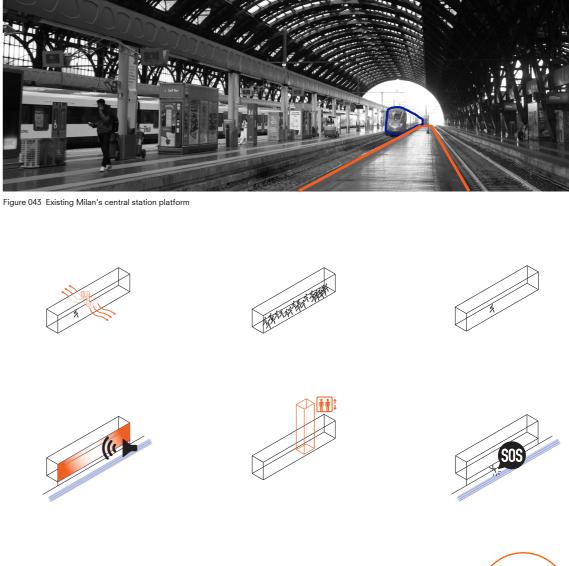
3.3 Proposal

The proposed program spans a total of 151.900m², which is 2.100m² larger than the existing station. However, its distribution will be quite different. A significant change is the reimagining of the platforms, which, rather than being a distinct, isolated area, are now integrated throughout the station. This approach aligns with the research, where platforms exist both nowhere and everywhere at the same time.

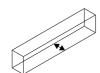

The concept of a "city within a city" is embodied by the inclusion of programs that reflect the daily and weekly needs of urban life. These are integrated into the station as part of its 'second services' and include:

- Retail & Shopping 6.600m²
- Dining 5.200m²
- Essential Services 600m²
- Cultural & Recreational 5.000m²
- Offices 6.000m²
- Health 2.200m²

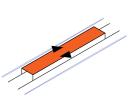
These services, many of which already exist in the current station, will be dispersed throughout the platforms, providing multiple access points and transforming the experience of 'waiting'. Instead of simply waiting, passengers will engage with their time in various ways, making the station a dynamic, multifunctional space.

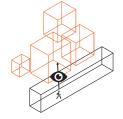


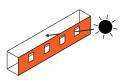
DESIGN BRIEF



3.4 Interface Design

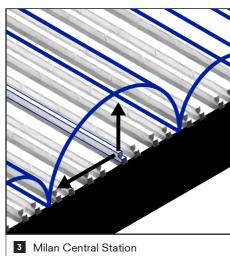


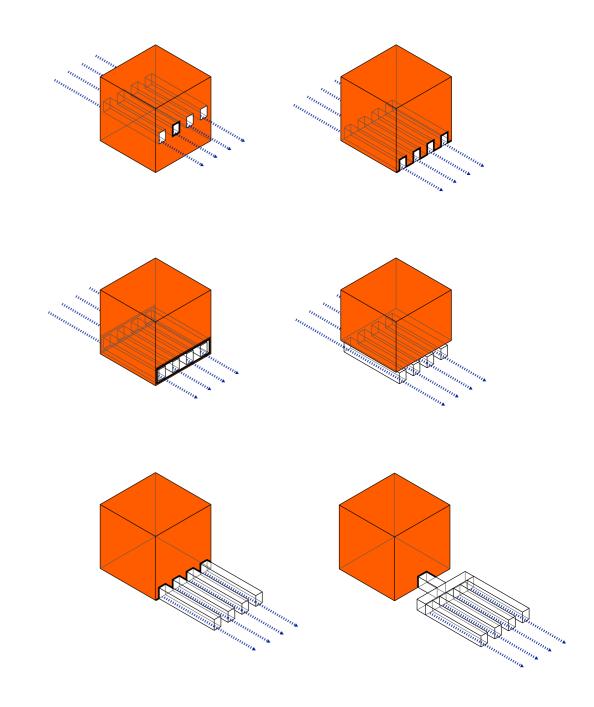




The design of a successful platform involves understanding both physical and social aspects. Physical aspects can be directly controlled through design decisions, while social factors, such as crowd behaviour and noise, are influenced indirectly. The key is to create a platform that balances these elements, ensuring functionality and comfort. These aspects can be categorized into physical elements, social dynamics, and scale considerations. By thoughtfully addressing these, an architect can design a space that enhances user experience while indirectly influencing social behaviour. The challenge lies in understanding what can be directly controlled through design and what outcomes it will produce.

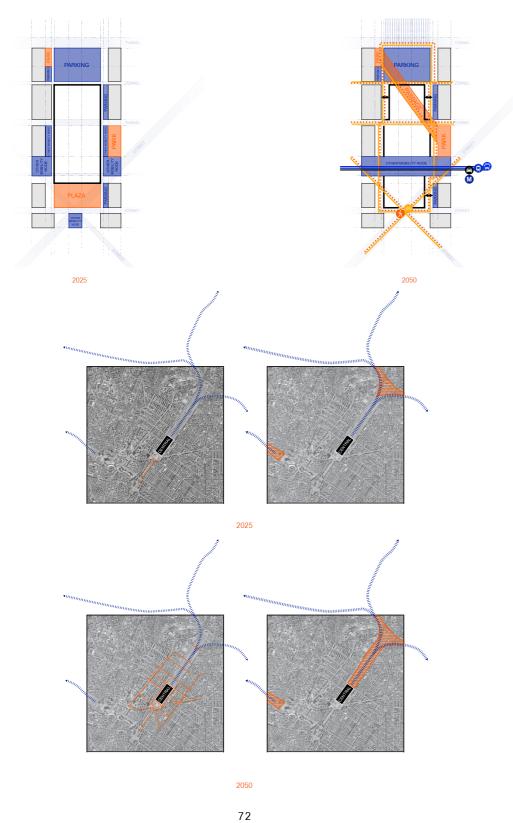
66

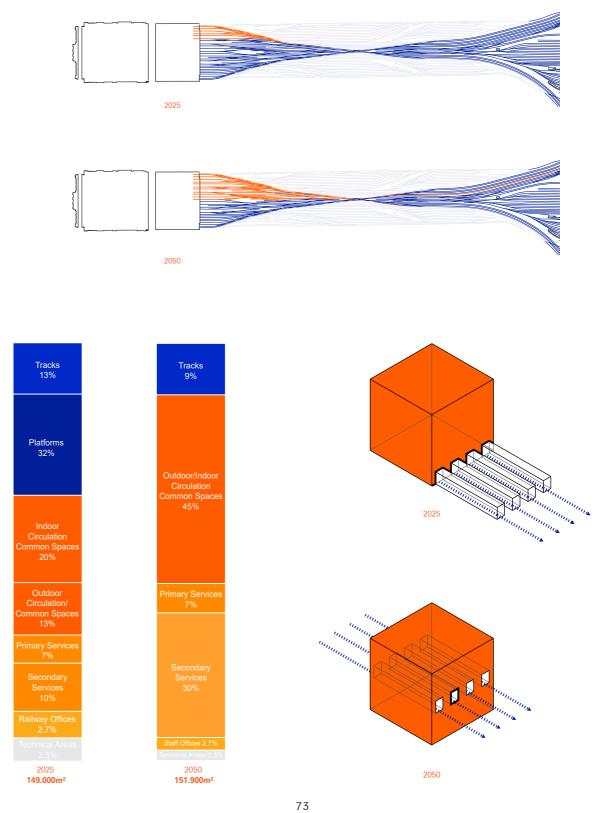


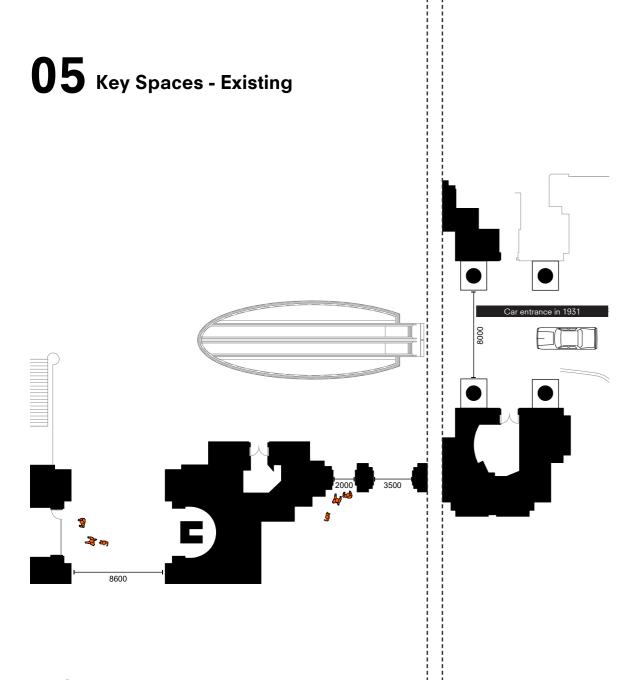

Figure 044 Elizabeth line metro station in London metro station Figure 045 Milan's central station

3.5 Form follows user

While studying the architectural language of Milan Central Station, both in the passenger building and the train shed, one question arises: Does form follow the user? In this context, it asks whether the architecture, particularly the building, should respond to the scale and form of the train, which is a key element of the station. In Milan Central, for example, the roof of the train shed does not align with the shape of the train, while in some metro stations, the architecture tends to follow the form of the subway trains. To explore this, I researched by design, drawing various options for how the passenger building could connect, meet, or intersect with the train shed. This research is critical to my thesis, as it addresses the challenge of designing architecture that accommodates two distinct types of users: passengers and trains.

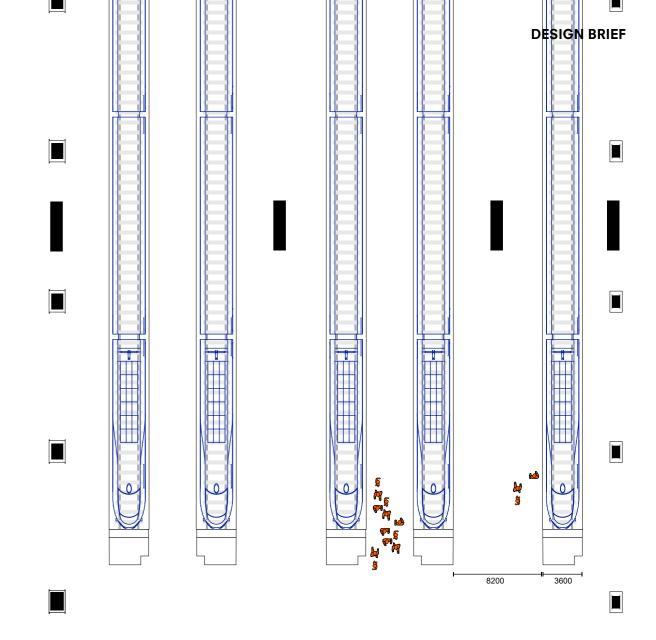

- Train shed does not follow train shape
- Train shed 10 meters high




chiusa al pubblico i martedi e venerdi fino alle ore 14,30 per le "MATTINATE DEL COMPRATORE, Benarrivati! 12-27 APRILE

DESIGN BRIEF

04 Now & Then



5.1 Human

Milan Central Station has multiple entrances at the front of the building, designed to accommodate the flow of passengers. These entrances vary significantly in size, with widths ranging from 8 meters to 2 meters. Notably, the two entrances on either side of the building were originally intended as driveways for cars, allowing vehicles to access the station directly. However, with the shift to pedestrian-only use, these former car

entrances have been repurposed as pathways for human movement. The imposing scale and varying dimensions of the entrances reflect a deliberate design choice, not only to manage the high volume of passengers and ensure smooth circulation but also to echo the architectural values of the era in which the station was built, marked by the monumental aesthetics of Italy's Fascist regime.

5.2 Train

The train enters the station through the train shed and its designated tracks, which function as the "entrance doors" for the train. The loading gauge, precisely 3600 mm wide, perfectly matches the train's dimensions. In contrast, entrances for humans are deliberately much larger than the human body to allow for greater comfort and flow.

CONCLUSION

Plaza

Building passenge

ain shec


118.700 m²

The total area for the project is 118,700 m². Through research and analysis of the site, clients, and program, massing models have been developed to align with the project's goals and ambitions.


The massing strategy for the site integrates aspects of a through station within a terminal station, bringing together various modes of transport and creating a more compact station where all programs are in close proximity to each other. For the program, the massing reflects the concept of a "city within a city," with different functions scattered across the site, mimicking a small urban fabric.

Over the next few months, these nine massing models will be refined, building upon previous research to shape the final design.

BIBLIOGRAPHY

ARTICLES:

Aubertel, P. (1999). Les gares: deux ou trois choses que les chercheurs m'ont apprises. *Flux*, *15*(38), 39-46. https://doi.org/10.3406/flux.1999.1290

Bartky, I. R. (1989). The adoption of standard time. *Technology and Culture*, 30(1), 25–56. https://doi.org/10.1353/tech.1989.0144

Baron, N., & Roseau, N. (2016). Les gares au miroir de l'urbain. *Flux*, *15*(103/104), 1-8. https://doi.org/10.3406/flux.2016.1290

Bowie, K. (1996). De la gare du XIXe siècle au lieu-mouvement, évolution ou rupture? Les Annales de la Recherche Urbaine, (71), 14-23. https://doi.org/10.3406/aru 1996 1950

Foster, G. D. (2012). Waiting and the architecture of pre-occupation (Architecture Thesis Prep, Syracuse University). SURFACE. https://surface.syr.edu/architecture tpreps/214

Franta, J. (n.d.). The role of railway stations in the formation of a new quality of indoor and outdoor public space in the defined urban structure of downtown Milan. Cracow University of Technology.

Friedman, D. (2004). [Review of the book *Grand Central: Gateway to a Million Lives*, by J. Belle & M. R. Leighton]. *APT Bulletin: The Journal of Preservation Technology,* 35(1), 61. https://www.jstor.org/stable/1504841

Ng, V., & Lim, J. P. (2018). Tracing liminality: A multidisciplinary spatial construct. *Journal of Engineering and Architecture*, *6*(1), 76–90. https://doi.org/10.15640/jea.v6n1a8

Polino, M.-N. (2010). Stéphanie Sauget, À la recherche des pas perdus: Une histoire des gares parisiennes, Paris, Tallandier, 2009, 241 p. Revue d'histoire du XIXe siècle, (40), 157-158. https://doi.org/10.4000/rh19.4010

Riot, E. (2012). "Après-demain" ou avant-hier? Les projets de transformation de la gare centrale de Milan: un révélateur de la ville. École des Ponts ParisTech. https://shs.hal.science/halshs-00848686

Riot, E. (2015). L'agencement des grandes gares historiques pour le marché ferroviaire européen: Analyse comparée de l'intégration des principes concurrentiels dans l'aménagement et la gestion des gares de London St Pancras, Paris Nord et Milano Centrale [Doctoral dissertation, Université Paris-Est]. HAL. https://pastel.hal. science/tel-01398417v1

BIBLIOGRAPHY

Riot, E. (2016). Un tournant patrimonial: New York Grand Central (1903–1978). *Flux*, 103/104, 21-31. https://doi.org/10.3917/flux1.103.0021

Smith, C. (2001). Looking for liminality in architectural space. Retrieved from https://www.researchgate.net/publication/326675016_Looking_for_Liminality_in_Architectural Space

Triggianese, M., Cavallo, R., Baron, N., & Kuijper, J. (Eds.). (2018). Stations as nodes—Exploring the role of stations in future metropolitan areas from a French and Dutch perspective. Delft University of Technology.

Augé, M. (1995). Non-places: Introduction to an anthropology of supermodernity. Verso.

Bertolini, L., & Spit, T. (1998). Cities on rails: The redevelopment of railway station areas. E & FN Spon.

Castro, C., & Ouvrard, J. (1996). Euralille: The making of a new city center. Birkhäuser.

Dethier, J. (1978). *Le temps des gares*. Centre Georges Pompidou.

Kalla-Bishop, P. M. (1971). *Italian railways*. David & Charles

Maggi, S. (2007). Le ferrovie. Il Mulino.

Meeks, C. L. V. (1956). *The railroad station: An architectural history.* Dover Publications.

WEBSITES:

European Union Agency for Railways. (n.d.). *Technical Specifications for Interoperability (TSIs)*. Retrieved November 11, 2024, from https://www.era.europa.eu/domains/technical-specifications-interoperability_en Ferrovie dello Stato Italiane. (n.d.). FS Italiane. Retrieved October 11, 2024, from https://www.fsitaliane.it/content/fsitaliane/en.html

Ferrovie dello Stato Italiane. (n.d.). FS Italiane photo album [Photograph collection]. Flickr. Retrieved November 11, 2024, from https://www.flickr.com/photos/ferroviedellostato/albums/72157633600803646

International Union of Railways. (n.d.). UIC: *The worldwide railway organisation*. Retrieved October 11, 2024, from https://uic.org/

Lamming, C. (2019, November 30). La gare du Nord: monument historique mais grande gare européenne. Train Consultant Clive Lamming. https://trainconsultant.com/2019/11/30/la-gare-du-nord-monument-historique-et-grande-gare-europeenne/

Lamming, C. (2023, June 29). Quai haut, quai bas: Deux siècles de débats en boucle. *Train Consultant Clive Lamming*. https://trainconsultant.com/2023/06/29/quai-haut-quai-bas-deux-siecles-de-debats-en-boucle/

VIDEO:

Benton, T. (Writer), & Levinson, N. (Director). (1975, June 14). A305/13: *Le Corbusier: Villa Savoye* [Television broadcast]. BBC/Open University.

FIGURES:

Figure 001 FS Italiane. (n.d.). Stations: hubs of the future [Photograph]. FS Italiane. Retrieved November 01, 2024, from https://www.fsitaliane.it/content/fsitaliane/en/innovation/integrated-mobility/stations--hubs-of-the-future.html

Figure 002 Ferrovie dello Stato Italiane. (n.d.). FS Italiane photo album [Photograph collection]. Flickr. Retrieved September 26, 2024, from https://www.flickr.com/photos/ferroviedellostato/albums/72157633600803646

Figure 003 Original Illustration

Figure 004 Original Illustration

Figure 005 Original Illustration

Figure 006 Edited by Author

Figure 007 Edited by Author

Figure 026 Edited by Author

Figure 027 Edited by Author

Figure 008 Ferrovie dello Stato Italiane. (n.d.). FS Italiane photo album [Photograph collection]. Flickr. Retrieved September 26, 2024, from https://www.flickr.com/photos/ferroviedellostato/albums/72157633600803646

Figure 009 Original Illustration	Figure 028 Original Illustration
Figure 010 Original Illustration	Figure 029 Original Illustration
Figure 011 Original Illustration	Figure 030 Original Illustration
Figure 012 Original Illustration	Figure 031 Original Illustration
Figure 013 Original Illustration	Figure 032 Original Illustration
Figure 014 Original Illustration	Figure 033 Original Illustration
Figure 015 Original Illustration	Figure 034 Original Illustration
Figure 016 Original Illustration	Figure 035 Original Illustration
Figure 017 Original Illustration	Figure 036 Original Illustration
Figure 018 Original Illustration	Figure 037 Original Illustration
Figure 019 Original Illustration	Figure 038 Original Illustration
Figure 020 Original Illustration	Figure 039 Original Illustration
Figure 021 Original Illustration	Figure 040 Original Illustration
Figure 022 Original Illustration	Figure 041 Original Illustration
Figure 023 Original Illustration	Figure 042 Edited by Author
Figure 024 Original Illustration	Figure 043 Original Illustration
Figure 025 Edited by Author	Figure 044 Edited by Author

Figure 045 Original Illustration

Figure 046 Edited by Author