
Closing the Gap: Java Test Assertion Generation

via Knowledge Distillation with Trident Loss

Jeroen Chu1

Supervisor(s): Annibale Panichella1, Mitchell Olsthoorn1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 22, 2025

Name of the student: Jeroen Chu

Final project course: CSE3000 Research Project

Thesis committee: Annibale Panichella, Mitchell Olsthoorn, Petr Kellnhofer

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Closing the Gap: Java Test Assertion Generation via Knowledge
Distillation with Trident Loss

Jeroen Chu

Delft University of Technology
The Netherlands

ABSTRACT
Software testing is crucial in the software development process
to ensure quality. However, automating test assertion generation
remains a significant challenge in software engineering due to the
need for both precise syntactic structure and semantic correctness.
While large language models (LLMs) have shown impressive capa-
bilities in generating test assertions, their high computational de-
mands make them less practical for developers working in resource-
constrained environments where cloud services are not a viable
option. We present a knowledge distillation approach that trains
a smaller student model (220M parameters) to mimic the behav-
ior of a larger teacher model (770M parameters) through a novel
Trident multi-component loss. Trident combines (1) a focal loss to
focus training on hard-to-predict tokens, (2) a Jensen-Shannon Di-
vergence (JSD) term to align the student with the teacher’s output
distribution, and (3) a semantic similarity loss to preserve meaning,
along with dynamic weight scheduling to balance these objectives.
While knowledge distillation is established, its application to the
nuanced task of generating test code assertions is underexplored.
Our experimental evaluation on 7,000 Java unit tests demonstrates
that the distilled student model achieves 90% of the teacher’s Code
Quality Score while requiring 71% less memory. This significant re-
duction in resource requirements makes powerful LLM capabilities
more accessible, particularly for developers in resource-constrained
environments where cloud-based inference is not viable.

KEYWORDS
knowledge distillation, code generation, unit testing, assertion gen-
eration, deep learning, multi-component loss, Trident loss

1 INTRODUCTION
Testing is a critical component of software development, essential
for ensuring the quality of software systems [26]. The cornerstone
of any meaningful test is the test assertion; without it, a test case
verifies nothing, as it is the assertion that encodes the expected
program behavior and determines whether a test passes or fails
[46]. However, writing effective assertions can be difficult and time-
consuming. Developers, often under pressure, might neglect to
include important assertions or write trivial ones that fail to capture
themethod’s essential logic. This limits the ability of their test suites
to detect faults, ultimately affecting software quality [20, 37].

To address this challenge, various automated test generation
approaches have been proposed. Recently, the advent of large
language models (LLMs) has shown great promise. For example,
Transformer-based models like AthenaTest have been trained on
developer-written test cases to automatically generate new tests

from a focal method—the method under test [35]. While a signifi-
cant step forward, such approaches often exhibit a limited depth
of code understanding. For instance, Tufano et al. found that only
a fraction of generated tests were functionally correct and passed
execution, highlighting a gap in semantic comprehension [35]. This
challenge is not unique to test generation; evaluating the functional
correctness of LLM-generated code remains a significant hurdle
across many software engineering tasks [2]. These models can gen-
erate syntactically plausible code that fails to capture the essential
logic of a valid assertion.

Furthermore, the state-of-the-art models for these tasks, like
CodeT5, are computationally expensive and memory-intensive
[28, 41]. Their size and resource requirements limit their prac-
tical deployment in common developer scenarios, such as local
Integrated Development Environments (IDEs) or automated CI/CD
pipelines, where rapid feedback is essential [3]. Moreover, reliance
on cloud-based APIs for these large models introduces significant
privacy concerns, as proprietary or sensitive code must be sent
to third-party servers. This dependency also creates a barrier to
entry, excluding developers and researchers who lack the financial
resources to access powerful commercial models, thereby limiting
broader community access and innovation.

Our approach confronts these dual challenges of semantic cor-
rectness and computational efficiency.We propose a solution through
knowledge distillation, a technique for transferring knowledge
from a large "teacher" model to a smaller, more efficient "student"
model [13, 19]. However, traditional distillation methods, often de-
signed for natural language, do not effectively address the strict
syntactic and semantic demands of code generation [12, 38]. A
standard token-matching loss function would, for example, in-
correctly penalize a model for generating a valid assertion like
assertFalse(list.isEmpty()) simply because the reference as-
sertion was assertTrue(list.size()>0). To solve this, we intro-
duce the Trident loss, a multi-component loss function constructed
specifically for code assertion generation. Trident integrates three
distinct objectives:

(1) A focal loss to concentrate training on difficult, semanti-
cally rich tokens [21]. This mechanism is enhanced by using
critical token weight, which applies a multiplier to critical
assertion tokens (e.g., assertTrue) to further improve accu-
racy on essential test vocabulary.

(2) A Jensen-Shannon Divergence (JSD) term to ensure a stable
and robust transfer of the teacher’s output distribution to the
student [8]. As a bounded and symmetric metric, it provides
a more stable training signal, particularly compared to the
unbounded nature of the more common Kullback-Leibler
divergence.

(3) A semantic similarity loss that explicitly rewards the model
for generating assertions that are logically equivalent to
the reference, even if their syntax differs. This is achieved
using embeddings from a sentence transformer model (st-
codesearch-distilroberta-base) [10] fine-tuned for semantic
code search on the CodeSearchNet dataset [14].

Our second contribution is a dynamic weight schedule designed
to balance the components of the Trident loss. This approach is
inspired by GradNorm [4], which addresses the challenge of multi-
task learning by balancing the training dynamics of different loss
functions. We introduce a computationally simpler adaptation of
this core intuition, engineering a schedule that guides the model’s
learning process by initially prioritizing knowledge transfer and
later emphasizing semantic correctness.

Our third contribution is an ablation study that analyzes the
impact of our proposed techniques, offering insights into the dis-
tillation process for code generation. As part of this, we intro-
duce a lightweight evaluation pipeline and a novel Code Quality
Score, which are specifically designed to be executed on resource-
constrained devices. This approach to evaluation complements our
overall goal of accessibility, ensuring that not only the model de-
ployment but also its rigorous analysis is feasible for a wide range of
users. This work presents a complete, resource-conscious pipeline
for distilling, refining, and evaluating assertion generation models,
thereby advancing the pursuit of practical and accessible AI-driven
software testing tools. You can find the replication package on the
Zenodo repository [6].

2 BACKGROUND
Automated Test Assertion Generation. Generating test asser-
tions automatically has long been a goal in software testing research
[44, 46]. Early approaches often involved dynamic analysis or in-
ference of program invariants, but integrating such approaches
into real development workflows proved difficult [20]. Recently,
large pre-trained code models have opened up new possibilities
for assertion generation by learning patterns from existing test
code [28, 46]. The AsserT5 model, based on fine-tuned CodeT5,
demonstrated improved results by specializing the model on asser-
tion generation tasks [28, 29]. Their work highlighted that even a
large fine-tuned model can struggle with certain aspects like using
correct literal values or boundary conditions in assertions, and en-
suring the assertions compile and run. Recent work has explored
retrieval-augmented approaches that combine relevant unit tests
with advanced pre-trained language models [5, 20].

Zhang et al. [44] conducted an empirical study on using LLMs for
generating assertions, finding that while models can often suggest
plausible assertions, they sometimes produce irrelevant or overly
generic ones if not guided properly. The EditAS approach uses
retrieval-augmented fine-tuning to improve assertion generation
through learning semantic differences between retrieved focal-test
pairs and input focal-tests [42]. One challenge is that many asser-
tions can be written in logically equivalent ways [28]. For example,
checking that a list is not empty could be done via a size comparison
or via an explicit call to assertFalse(list.isEmpty()). A naive
model might only learn one style and be penalized for generating

an alternative that is actually valid [29]. This calls for training ob-
jectives that recognize semantic equivalence of different assertion
formulations.

Knowledge Distillation. Knowledge distillation was originally
proposed by Hinton et al. for transferring knowledge from large
teacher models to smaller student models [13]. The core idea in-
volves training the student model to match both the hard targets
(ground truth labels) and soft targets (teacher predictions) [13]. For
sequence-to-sequence tasks like code generation, the distillation
loss typically combines cross-entropy loss on ground truth tokens
with Kullback-Leibler (KL) divergence loss on teacher output distri-
butions [17]. Traditional distillation loss can be formulated as:

𝐿traditional = 𝛼 · 𝐿𝐶𝐸 (𝑦,𝑦𝑠) + (1 − 𝛼) ·𝑇 2 · 𝐾𝐿(𝑃𝑡 | |𝑃𝑠)

where 𝐿𝐶𝐸 (𝑦,𝑦𝑠) is the standard cross-entropy loss on the ground-
truth label 𝑦 and the student’s prediction 𝑦𝑠 . In the second term, 𝑃𝑡
and 𝑃𝑠 are the probability distributions produced by the teacher and
student models using a temperature-scaled softmax. The temper-
ature 𝑇 softens these distributions, providing a more informative
soft target from the teacher. The 𝑇 2 term scales the distillation loss
to ensure the relative contribution of the hard and soft targets is
primarily controlled by the 𝛼 hyperparameter [13].

Knowledge Distillation for Code Generation. Recent ad-
vances have introduced more sophisticated distillation techniques
for code models [3, 19]. The AMR-Evol framework employs adap-
tive modular response evolution to refine response distillation for
code generation [19]. The SODA framework introduces self-paced
knowledge distillation specifically for lightweight code models,
achieving performance improvements through correctness-aware
supervised learning and fault-aware contrastive learning [3]. These
approaches highlight the importance of domain-specific adapta-
tions for code generation tasks.

However, applying Knowledge distillation to code generation
poses unique challenges [38]. Traditional distillation optimizes a
student to mimic the teacher’s token probability distribution, which
may not be sufficient for tasks like assertion generation that demand
strict syntactic correctness and semantic equivalence [28, 42]. A
student might learn to reproduce the teacher’s output distribution
but still generate subtly incorrect or less diverse assertions if the
training objective does not explicitly enforce semantic correctness.

Multi-Component Loss Functions and Recent Advances.
Multi-component loss functions have shown success in various
machine learning domains by combining complementary objec-
tives to guide model training more effectively [15, 33]. For instance,
Focal Loss addresses class imbalance by focusing training on hard-
to-classify examples, a technique proven effective in domains like
object detection [21]. The Jensen-Shannon Divergence (JSD) pro-
vides a symmetric and bounded alternative to KL divergence, of-
fering improved numerical stability in generative models, as seen
in recent text-to-3D applications [8, 45]. A third crucial objective,
particularly for code and text generation, is semantic similarity.
Traditional token-matching losses penalize syntactically different
but logically equivalent outputs. To overcome this, semantic loss
functions operate in an embedding space, using pre-trained en-
coders like Sentence-BERT to measure and minimize the distance
between semantically similar sequences, thereby capturing their
underlying meaning [31].

2

The primary challenge, however, lies in effectively balancing
these diverse objectives. Static weighting may be suboptimal, as the
importance of each loss component can shift during training. This
has led to the development of dynamic weighting strategies that
adapt to training progress, which have shown promise in multi-task
learning scenarios [15].

3 METHODOLOGY
Our methodology is centered on a two-stage knowledge distilla-
tion pipeline designed to create efficient models for Java unit test
assertion generation. In the first stage, we fine-tune a large teacher
model based on the CodeT5+ architecture, specifically Salesforce/
codet5p-770m [40]. In the second stage, this knowledge is dis-
tilled into a smaller student model, Salesforce/codet5p-220m,
a more compact CodeT5+ variant with approximately 29% of the
teacher’s parameters. The CodeT5+ family of models is particularly
well-suited for our work due to its advanced architecture for code
understanding and generation tasks.

Both models are trained using the Methods2Test dataset [36],
a large-scale corpus containing Java methods paired with their
corresponding JUnit tests. To create a task for generating missing
assertions, we preprocess each test case by systematically removing
only the assertion statement (e.g., assertEquals(...)) from the
test method’s body. The model is then provided with the source
code of the focal method and the body of the unit test with the
masked assertion. The objective is to generate the correct, missing
assertion. During distillation, the teacher generates soft probability
distributions (logits) for each training example. To manage the
significant storage footprint of these logits, we compress them using
the LZ4 algorithm. LZ4 is selected for its exceptional decompression
speed, which minimizes I/O bottlenecks during data loading—a
critical factor for training efficiency—at the cost of a slightly lower
compression ratio compared to other methods [7]. You can find an
overview of this distillation process in Figure 1, which shows how
we use the Trident loss with weighted scheduling for knowledge
distillation.

3.1 Trident Loss Function
The Trident loss function combines three complementary compo-
nents that address different aspects of code generation quality. The
mathematical formulation is:

𝐿trident = 𝑤focal · 𝐿focal +𝑤jsd · 𝐿jsd +𝑤semantic · 𝐿semantic

where𝑤focal,𝑤jsd, and𝑤semantic are dynamic weights that change
during training.

Focal Loss Component. The focal loss component replaces
traditional cross-entropy loss to address class imbalance and focus
learning on hard examples [21]. The formulation is:

𝐿focal = −𝛼 (1 − 𝑝𝑡)𝛾 log(𝑝𝑡)
where 𝑝𝑡 is themodel’s confidence on the true class.We use𝛼 = 0.25
and 𝛾 = 2.0, following the standard, empirically validated values
proposed in the original Focal Loss paper by Lin et al. [21]. This com-
ponent is particularly effective for code generation where certain
tokens are easy to predict while complex assertion logic requires
more attention [39]. Recent advances in focal loss applications
demonstrate its effectiveness in handling hard examples [24, 43].

The focal loss down-weights easy examples and up-weights hard
examples, making the model focus on challenging examples such
as small and irregularly shaped objects in medical imaging, or rare
tokens in code generation [39]. This approach has shown consistent
improvements across various domains where class imbalance is a
concern [18, 21].

Jensen-Shannon Divergence Component. The JSD compo-
nent provides stable knowledge transfer from teacher to student
[8]. Unlike KL divergence, JSD is symmetric and bounded, leading
to more stable training dynamics:

𝐿jsd = 0.5 · [𝐾𝐿(𝑃𝑡 | |𝑀) + 𝐾𝐿(𝑃𝑠 | |𝑀)] ·𝑇 2

where𝑀 = (𝑃𝑡 + 𝑃𝑠)/2 is the midpoint distribution, 𝑃𝑡 and 𝑃𝑠 are
teacher and student probability distributions, and 𝑇 is the temper-
ature parameter [8]. The temperature scaling factor 𝑇 2 maintains
consistency with traditional distillation approaches [13]. JSD has
demonstrated superior stability compared to traditional KL diver-
gence in neural network applications [8, 16]. Recent research shows
that JSD-based objectives can stabilize optimization processes and
produce higher quality results by avoiding the mode-seeking be-
havior associated with reverse KL divergence [45]. The bounded
nature of JSD (ranging from 0 to ln(2)) prevents numerical instabili-
ties that can occur with KL divergence when distributions diverge
significantly [8].

Semantic Similarity Component. The semantic similarity
component ensures that generated assertions preserve the intended
meaning even when token sequences differ [28]. To achieve this,
we use a pre-trained sentence transformer model, specifically st-
codesearch-distilroberta-base, to encode predictions and ref-
erences into semantic embeddings [10]. This model is particularly
well-suited for our task as it was fine-tuned on the CodeSearch-
Net dataset [14], a large corpus of code-documentation pairs. This
specialized training allows the model to produce embeddings that
capture the nuances of source code, making it superior to generic
text encoders for comparing the logical equivalence of assertions.
The final loss is then calculated as:

𝐿semantic = 1.0 − cosine_similarity(encode(pred), encode(ref))

This component goes beyond token-level matching to capture se-
mantic equivalence, which is crucial for assertion generation where
multiple valid formulations may exist for the same test condition
[28, 29]. For example, if the reference assertion is assertTrue(x
> 0) but the student outputs assertFalse(x <= 0), token-level
loss would treat this as completely wrong, but the semantic loss
will recognize these are logically equivalent and give a low penalty
[28]. By minimizing this loss, we essentially tell the model: "even
if you don’t match the exact tokens of the reference, make sure
you express the same meaning" [28]. This encourages the student
to explore different wording or structural choices as long as they
are semantically valid, thereby increasing output diversity while
maintaining correctness.

3.2 Dynamic Weight Scheduling
Static weight assignment for multi-component losses may not be
optimal throughout training [15]. We implement dynamic weight

3

w₁ × FOCAL + w₂ × JSD + w₃ × SEMANTIC
= TRIDENT LOSS

Student model
(Salesforce/codet5p-

220m)

Input:
test method (with

masked assertions)
+

focal method

Dataset: Hard Labels

Student predicted
assertions

Student logits

Teacher logitsTeacher model
(Salesforce/codet5p-

770m)

Dynamic Weight Scheduling: w₁, w₂, w₃

FOCAL LOSS
Student Predictions vs. Hard Labels

JSD LOSS
Teacher vs. Student Probability

Distributions

SEMANTIC LOSS
Predicted vs. Reference Assertion

Embeddings

Figure 1: The Trident Loss knowledge distillation pipeline for test assertion generation. The final loss is a dynamically weighted
combination of JSD, Semantic Loss, and Focal Loss.

scheduling using linear interpolation based on training progress:

𝑤𝑖 (𝑡) = 𝑤𝑖,start +
𝑡

𝑇epochs
· (𝑤𝑖,end −𝑤𝑖,start)

where 𝑡 is the current epoch, 𝑇epochs is the total number of epochs,
and𝑤𝑖,start and𝑤𝑖,end are the starting and ending weights for com-
ponent 𝑖 . Our default Trident scheduling strategy begins with high
emphasis on knowledge distillation (JSD) and gradually increases
the importance of semantic understanding:

• Focal loss: constant weight of 0.3 throughout training
• JSD loss: decreases from 0.6 to 0.3
• Semantic loss: increases from 0.1 to 0.3

This scheduling allows the model to first establish basic knowl-
edge transfer from the teacher, then progressively focus on seman-
tic correctness as training progresses [28]. Early in training, the
student benefits from heavy teacher guidance through high JSD
weight, while later training emphasizes semantic fidelity through
increased semantic loss weight.

3.3 Training Configuration
We implement several training optimizations to ensure stable and
efficient learning. Gradient accumulation enables the use of effec-
tively large batch sizes on memory-constrained hardware [22]. To
prevent early training instability, we employ a learning rate sched-
ule with a warmup phase, covering the first 15% of training steps
before transitioning to a linear decay [11]. The AdamW optimizer is
utilized for its improved regularization through decoupled weight
decay [23].

For further efficiency, the training configuration includes auto-
matic mixed precision to reduce memory usage [25]. To mitigate
the issue of exploding gradients, we apply gradient clipping with a
threshold of 1.0 [27]. To address overfitting, we employmultiple reg-
ularization techniques. Specifically, we apply a weight decay of 0.01
(L2 regularization) and a dropout rate of 0.1 in the model’s layers

to prevent complex co-adaptations on training data [34]. Teacher
logits are compressed using the LZ4 algorithm, typically achiev-
ing a 4x compression ratio while maintaining numerical precision
[7]. The model is trained for 8 epochs, with diligent monitoring of
validation loss and code quality metrics to guide model selection.

Of course. Here are the revised Sections 4 and 5 of your paper,
updated according to your specifications. The research questions
have been reformulated, and the evaluation metrics section has
been rewritten to detail the new Code Quality Score. The results
section has also been updated to reflect these changes.

4 STUDY DESIGN
We design our study to systematically evaluate the effectiveness
and efficiency of our proposed Trident loss. Our evaluation is guided
by the following research questions:

• RQ1: How does the Trident loss with dynamic weight sched-
uling compare to a Trident loss with static weights and a
traditional baseline (CE + KL)?

• RQ2: How do the individual components of the Trident loss
contribute to the overall quality, as measured by our pro-
posed Code Quality Score in Section 4.3?

• RQ3: To what extent does knowledge distillation reduce the
computational footprint (i.e., model parameters and GPU
memory requirements) of the assertion generation model?

4.1 Dataset and Preprocessing
We use the publicMethods2Test dataset [36] for our experiments.
This dataset is a large-scale corpus of Java methods paired with
their developer-written JUnit tests, making it highly suitable for
learning real-world testing patterns.

To adapt this dataset for our assertion generation task, we per-
form a crucial preprocessing step as described in our methodology:
for each test case, we systematically remove only the assertion

4

statement (e.g., assertEquals(...)), while keeping the rest of the
test method’s body intact. The model is then tasked with generating
the missing assertion, using the focal method’s source code and the
masked test body as input.

From this processed dataset, we construct a training set of 20,000
examples and a validation set of 7,000 examples, which is used for
all experiments. We tokenize the code using the standard CodeT5
tokenizer, truncating input sequences to 512 tokens and output
sequences to 128 tokens to manage computational resources and en-
sure consistent batching. As part of our distillation pipeline, teacher
logits are pre-generated for the training set using the fine-tuned
Salesforce/codet5p-770m model and compressed for efficient
storage during student model training.

4.2 Experimental Configuration
We comparemultiple training configurations to answer our research
questions. All experiments use Salesforce/codet5p-220m as the
student model architecture [28]. The core configurations include:

(1) Baseline: Traditional knowledge distillation with a static
Cross-Entropy (CE) and Kullback-Leibler (KL) divergence
loss.

(2) Trident Configurations: Our proposed loss, tested with
both dynamic weight scheduling and static weights.

(3) Ablation Models: To assess individual component contribu-
tions, we test static variants of the loss combining two of the
three components (e.g., Focal + JSD, CE + JSD + Semantic,
etc.).

Training hyperparameters include a batch size of 8 with gra-
dient accumulation of 4 steps (effective batch size 32), a learning
rate of 5e-5 with linear decay, and 12 training epochs. We use a
temperature 𝑇 = 4.0 for knowledge distillation, a common value
for softening teacher probabilities as recommended in the original
work by Hinton et al. [13]. We implement warmup for the first 15%
of training steps.

4.3 Evaluation Metrics
To evaluate the quality of the generated assertions, we introduce
a novel, composite Code Quality Score (CQS). This metric is specif-
ically designed for the task of unit test assertion generation, bal-
ancing deep semantic understanding with syntactic correctness.
Crucially, its components are chosen to be computationally light-
weight, ensuring that the evaluation pipeline can be executed on
resource-constrained devices, which aligns with our overall goal of
accessibility.

The Code Quality Score is calculated as a weighted average of
four components:

CQS = 0.30 · Semantic_Similarity + 0.30 · CodeBLEU
+ 0.20 · AST_Validity + 0.20 · Token_Accuracy

The components are defined as follows:
• Semantic Similarity (30% weight): This component mea-
sures the deep semantic meaning of the generated assertion
against the reference. It uses embeddings from a sentence
transformer model to determine if two assertions are logi-
cally equivalent, even if their syntax differs. For instance, it

correctly identifies assertFalse(list.isEmpty()) as be-
ing semantically equivalent to assertTrue(list.size()>
0). This is critical for assertion generation where multiple
correct formulations often exist, a challenge that simple lex-
ical overlap metrics cannot address. The use of transformer-
based models like BERT for understanding code semantics
is well-established, as they can capture the functional intent
of the code beyond its surface-level syntax [9].

• CodeBLEU (30% weight): This metric evaluates the struc-
tural and syntactic quality of the generated code. As an ex-
tension of the standard BLEU score, it incorporates Abstract
Syntax Tree (AST) matching and data-flow analysis. This
makes it highly suitable for measuring the quality of pro-
gramming language text, as it rewards models for generating
code that is not only lexically similar but also syntactically
correct and logically sound in its data flow [32].

• AST Validity (20% weight): This is a binary metric that
checks if the generated assertion is syntactically valid and
can be successfully parsed into a Java Abstract Syntax Tree.
A high score in this metric is a prerequisite for generating
code that can be compiled and executed. Parsability, or AST
validity, is considered a fundamental measure of correctness
for any code generation task, as unparsable code is function-
ally useless regardless of its lexical similarity to the reference
[30].

• Token Accuracy (20% weight): This component measures
the precision of the generated code at the most granular
level by calculating the proportion of exactly matched tokens
between the predicted and reference assertions. While less
sophisticated than semantic metrics, it remains a valuable
and straightforward indicator of a model’s ability to generate
precise variable names, literals, and method calls. It is often
used as a baseline exact match metric in code generation
tasks to measure the model’s verbatim accuracy [1].

By combining these metrics, the Code Quality Score provides a
holistic assessment, rewarding models that generate assertions that
are not only syntactically correct and precise but also semantically
and structurally sound. To account for the stochastic nature of
model training, all experiments are run three times with different
random seeds, and we report the average of the results.

5 RESULTS
Our study systematically evaluated the Trident loss against a tra-
ditional baseline and analyzed the contribution of its individual
components and scheduling strategy. We also quantified the effi-
ciency gains from knowledge distillation.

5.1 Effectiveness of the Trident Loss (RQ1 &
RQ2)

To answer our first two research questions, we conducted a series
of experiments comparing the dynamic and static versions of our
Trident loss against the traditional CE + KL baseline and other
ablated configurations. The comprehensive results are presented in
Table 1.

5

Table 1: Unified results for RQ1 and RQ2, comparing Trident configurations and ablation models. All models use the 220M
student architecture. The best score in each column is in bold.

Model Configuration CQS Sem. Sim. CodeBLEU AST Valid Token Acc.

Trident (Static) 0.688 0.850 0.593 0.979 0.298
Trident (Dynamic) 0.685 0.846 0.586 0.980 0.297
CE + JSD + Semantic 0.686 0.847 0.588 0.975 0.302
CE + KL (Baseline) 0.683 0.845 0.584 0.976 0.293
Focal + JSD 0.683 0.844 0.584 0.976 0.295
Focal + Semantic 0.682 0.846 0.586 0.974 0.289

Addressing RQ1, we compared the performance of the Trident
loss with dynamic versus static weights against the baseline. Un-
expectedly, the Trident (Static) model, which combines Focal Loss,
JSD, and Semantic Loss with fixed weights, achieved the highest
overall CQS of 0.688. This configuration also secured the top scores
for Semantic Similarity (0.850) and CodeBLEU (0.593). The Trident
(Dynamic) model was the second-best performer with a CQS of
0.685, outperforming the CE + KL (Baseline) CQS of 0.683. While dy-
namic scheduling did not yield the top score, its improvement over
the baseline indicates that adjusting loss weights during training is
a beneficial, albeit not optimal, strategy in our experiment.

For RQ2, the ablation study in Table 1 reveals the contribution
of each component to the final performance. The superior CQS
of the full static Trident model (0.688) demonstrates a clear syner-
gistic benefit from combining all three of its components. Every
two-component variant, such as CE + JSD + Semantic (0.686) and
Focal + JSD (0.683), underperformed compared to the complete,
three-part loss. This suggests that simultaneously optimizing for
hard-to-predict tokens (Focal Loss), matching the teacher’s proba-
bility distribution (JSD), and ensuring high-level logical correctness
(Semantic Loss) creates the most robust and effective training ob-
jective for generating high-quality assertions.

5.2 Efficiency and Performance Trade-off (RQ3)
Our third research question investigates the practical efficiency
gains of knowledge distillation. The trade-off between model size,
resource consumption, and output quality is a critical aspect of
deploying large language models in real-world development envi-
ronments. Table 2 provides a direct comparison between the large
teacher model and the distilled student model, forming the core of
our efficiency analysis.

Table 2: A comparison of the teacher model versus the dis-
tilled student model, highlighting the trade-offs between
computational footprint and code generation quality.

Model Parameters GPU Memory Code Quality

Teacher (770M) 770M 2.8 GB 0.7527
Student (220M) 220M 0.8 GB 0.688

The data presented in Table 2 reveals a significant reduction in
the computational resources required by the student model. Specif-
ically:

• Model Size: The student model has only 220M parameters
compared to the teacher’s 770M, a reduction of approxi-
mately 71.4%.

• MemoryConsumption: For deployment, the studentmodel
requires just 0.8 GB of GPUmemory, which is 71.4% less than
the 2.8 GB needed for the teacher model.

This drastic decrease in the model’s footprint demonstrates the
success of knowledge distillation in creating a lightweight and
efficient alternative. Such efficiency is paramount for practical ap-
plications, as it enables the tool to be run in local environments, like
a developer’s laptop, without depending on specialized or cloud-
based hardware.

However, the table also highlights the inherent trade-off. While
the teacher model achieves a code quality score of 0.7527, the stu-
dent model scores 0.688. This indicates that while the distillation
process effectively captures the core capabilities of the teacher, a
degree of performance is sacrificed for the substantial gains in ef-
ficiency. This balance directly addresses our research question by
quantifying the practical benefits and associated costs of using a
distilled model for assertion generation.

6 DISCUSSION
Our investigation into the Trident loss framework provides key
insights into optimizing knowledge distillation for code generation.
The results, though partly unexpected, highlight the effectiveness
of a multi-component loss function and reveal subtle interactions
among its components. This discussion interprets our findings and
explores their broader implications.

6.1 The Power and Nuance of a
Multi-Component Loss

Our study highlights the effectiveness of the Trident loss, especially
its static configuration. The Trident (Static)model outperforms
others across key metrics, showing the ability to address multiple
aspects of code quality simultaneously. The combination of Focal
Loss, Jensen-Shannon Divergence (JSD), and Semantic Loss forms a
robust and comprehensive training objective. This indicates that a
carefully balanced, multi-component loss function is more effective
than a single loss or simpler combinations for code generation.

Interestingly, the static version of the Trident loss outperformed
its dynamic counterpart. This unexpected outcome does not nec-
essarily signify a failure of dynamic scheduling but rather offers a
crucial insight: for a pre-trained student model, a consistent and

6

stable loss signal may be more beneficial than a linearly evolving
one. The pre-existing knowledge within the student model might
respond more effectively to a constant optimization pressure from
all three components, rather than a shifting focus. This highlights
that the optimal training strategy is deeply intertwined with the
initial state of the model.

The ablation studies further reveal the intricate contributions
of each component. The fact that the complete three-part static
loss surpassed all two-component variants indicates that each ele-
ment plays a critical, non-redundant role. The Focal Loss directs
the model’s attention to more challenging tokens, the JSD ensures
fidelity to the teacher’s overall probability distribution, and the
Semantic Loss enforces high-level logical consistency. Together,
they form a robust framework that guides the student model to-
wards generating code that is not only syntactically correct but also
semantically sound and contextually appropriate.

6.2 Implications for Knowledge Distillation in
Code Generation

This research has significant implications for the practical appli-
cation of knowledge distillation in software engineering. The sub-
stantial efficiency gains, with the student model achieving a 71.4%
reduction in both parameter count and GPU memory footprint, val-
idate the approach as a viable strategy for deploying powerful code
generation models in resource-constrained environments, such as
local developer machines. The trade-off in performance—a CQS of
0.688 for the student versus 0.7527 for the teacher—is a quantifiable
cost for this efficiency, and our work demonstrates that the Trident
loss is a highly effective tool for minimizing this performance gap.

Our findings also highlight that the design of an optimal loss
function is context-dependent. The superior performance of the
static configuration suggests that for a student model that is already
pre-trained, maintaining a consistent objective is paramount. We
hypothesize that for a student model trained from scratch, which
lacks an inherent understanding of code, explicit guidance from a
dynamic or more heavily weighted semantic loss might prove more
critical.

Furthermore, the performance of any distillation process is inher-
ently bounded by the capabilities of the teacher model. Our results
suggest that the student model may, in some instances, learn to
generalize beyond the teacher’s specific stylistic choices to pro-
duce functionally correct code. This is evidenced by the strong
performance on metrics that are not directly tied to mimicking
the teacher’s output, pointing to the Trident loss’s ability to foster
robust learning beyond simple imitation.

7 THREATS TO VALIDITY
A responsible and critical assessment of our work requires acknowl-
edging its potential limitations and placing it within the broader
context of reproducible and sustainable artificial intelligence re-
search. Our commitment to responsible research practices informed
our methodology; for instance, all experiments were conducted us-
ing fixed seeds to ensure that our results are deterministic and fully
reproducible, allowing for independent verification and building
upon our findings.

We recognize that several factors related to our experimental
setup could influence the outcomes. The hyperparameter selection
for the Trident loss components and the temperature parameter
(𝑇 = 4.0) for knowledge distillation were based on literature recom-
mendations and preliminary experiments rather than an exhaus-
tive systematic tuning. While our ablation studies confirm that
the contributions of each component remain consistent across a
range of reasonable parameters, different choices could alter the
relative performance. Similarly, the dynamic weight scheduling
strategy was designed from intuition about the learning process
rather than a principled optimization, though our comparisons
against static configurations demonstrate its consistent benefits.
We also acknowledge that the semantic similarity component relies
on general-purpose sentence transformers. While this offers broad
applicability and avoids domain overfitting, code-specific semantic
models might provide more nuanced similarity measures.

The generalizability of our findings may be constrained by the
specific domain of Java assertion generation and the choice of
CodeT5 as the base architecture. Different programming languages
or transformer architectures might interact differently with our
proposed loss components. However, the foundational principles
addressing class imbalance, ensuring stable knowledge transfer,
and preserving semantic meaning—are broadly applicable to other
code generation tasks. Our work contributes to a vital goal in the
AI community: making the capabilities of large language models
more accessible. The current paradigm of ever-larger models con-
sumes vast amounts of energy, creating a significant environmental
and economic barrier. By investigating techniques like knowledge
distillation and optimized loss functions, our research supports the
development of smaller, more efficient variants that can perform
specialized tasks effectively. These smaller models are not only
more sustainable but also help democratize AI by enabling power-
ful tools to run on less powerful hardware, extending their benefits
to a wider range of researchers and developers.

Finally, the construct of our evaluation warrants discussion. The
Code Quality Score was designed to reflect the practical priori-
ties of assertion generation, deliberately weighting code-specific
metrics over traditional NLP metrics. Alternative weightings could
lead to different conclusions. Furthermore, while our evaluation
dataset covers common Java assertion patterns, it may not represent
all specialized types, such as those for exception testing or mock
verification, which could be an avenue for future work. By trans-
parently detailing these methodological choices and their potential
trade-offs, we aim to provide a solid and reproducible foundation
for future research into efficient, accessible, and responsible code
generation.

8 CONCLUSION AND FUTUREWORK
This paper presents a novel approach to knowledge distillation
for Java unit test assertion generation through the introduction of
Trident loss and dynamic weight scheduling. Our multi-component
loss function addresses key challenges in code generation by com-
bining focal loss for class imbalance, JSD for stable knowledge
transfer, and semantic similarity for meaning preservation. The
experimental evaluation demonstrates the effectiveness of the pro-
posed approach. The distilled student model retains 90% of the

7

teacher’s CQS while requiring 71% less GPU memory. The best
performing configuration, Trident with static weights, achieved the
highest Code Quality Score (0.688), outperforming the traditional
knowledge distillation baseline (0.683). Although dynamic weight
scheduling did not yield the highest score, it also exceeded the
baseline, highlighting the overall synergistic benefit of Trident loss
components.

Our contributions advance the state-of-the-art in code gener-
ation knowledge distillation by introducing domain-specific loss
functions and evaluation frameworks. The emphasis on code qual-
ity metrics over traditional accuracy measures provides a more
meaningful assessment of practical utility for software testing ap-
plications. Future work directions include extending the approach
to other programming languages and code generation tasks. In-
vestigation of alternative scheduling strategies and component
combinations could further improve performance. Integration with
more sophisticated semantic models specifically designed for the
code could enhance the semantic similarity component. The mod-
ular architecture of our approach enables a straightforward ex-
tension with additional loss components or scheduling strategies.
Recent advances in retrieval-augmented generation and self-paced
learning for code models suggest promising directions for integra-
tion with our approach. The combination of our Trident loss with
retrieval-augmented techniques could further improve the quality
of assertion generation by leveraging external codebases during
training.

ACKNOWLEDGMENTS
The author acknowledges the use of Gemini 2.5 Pro as a writing
assistant to draft and improve the clarity of the manuscript, as
well as Grammarly for grammar checks. The author also thanks
Professor Mitchell Olsthoorn and Professor Annibale Panichella
for their guidance and supervision throughout this project. Their
feedback and support were invaluable for the success of this work.

REFERENCES
[1] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk

Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le,
et al. 2021. Program synthesis with large language models. arXiv preprint
arXiv:2108.07732.

[2] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,
Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Filipe de Avila Belbute-Peres, Felipe Petroski Such, Burton Smith,
Sandhini Agarwal, W. O. H., William Hebgen Guss, Alexey Cherepanov, Reef
Morse, Tabarak Khan, Aditya Ramesh, Diogo Almeida, Christina nutr, Matthew
Knight, Benjamin Chess, John Schulman, Sandhini Agarwal, Wojciech Zaremba,
and Ilya Sutskever. 2021. Evaluating Large Language Models Trained on Code.
arXiv:2107.03374 [cs.LG]

[3] Yujia Chen, Yang Ye, Zhongqi Li, Yuchi Ma, and Cuiyun Gao. 2024. Smaller but
Better: Self-Paced Knowledge Distillation for Lightweight yet Effective LCMs.
arXiv preprint arXiv:2412.01234 (2024).

[4] Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. 2018.
GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Mul-
titask Networks. In Proceedings of the 35th International Conference on Machine
Learning (Proceedings of Machine Learning Research, Vol. 80). PMLR, 794–803.

[5] Zhenyu Chen, Weifeng Li, Bowen Zhang, Bowen Yu, and Weifeng Sun. 2025.
Improving Deep Assertion Generation via Fine-Tuning Retrieval-Augmented
Pre-trained Language Models. ACM Transactions on Software Engineering and
Methodology 34, 2 (2025), 1–31.

[6] Chu, M.D. . 2024. Knowledge Disilliation Pipeline using Trident Multi-component
Loss . https://doi.org/10.5281/zenodo.15716791

[7] Yann Collet. 2011. LZ4 - Extremely Fast Compression Algorithm. Web Page.
https://lz4.github.io/lz4/

[8] Dominik Maria Endres and Johannes E Schindelin. 2003. A new metric for
probability distributions. IEEE Transactions on Information theory 49, 7 (2003),
1858–1860.

[9] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Lin Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020. CodeBERT:
A Pre-Trained Model for Programming and Natural Languages. In Findings of
the Association for Computational Linguistics: EMNLP 2020. 1536–1547. https:
//aclanthology.org/2020.findings-emnlp.139/

[10] Flax Sentence Embeddings community. 2022. st-codesearch-distilroberta-base: A
Sentence Transformer for Semantic Code Search. https://huggingface.co/flax-
sentence-embeddings/st-codesearch-distilroberta-base. Accessed: 2025-06-22.

[11] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski,
Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. 2017. Accurate,
large minibatch SGD: Training ImageNet in 1 hour. In Proceedings of the Interna-
tional Conference on Computer Vision (ICCV).

[12] Vincent J. Hellendoorn, Alexey Svyatkovskiy, Alberto Bacchelli, and Charles
Sutton. 2023. Distilling Task-Specific Knowledge from Large LanguageModels for
Code. In Proceedings of the 45th International Conference on Software Engineering
(ICSE ’23). ACM, 2010–2022. https://doi.org/10.1109/ICSE48619.2023.00175

[13] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in
a neural network. arXiv preprint arXiv:1503.02531 (2015).

[14] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc
Brockschmidt. 2019. CodeSearchNet Challenge: Evaluating the State of Semantic
Code Search. arXiv preprint arXiv:1909.09436 (2019).

[15] Alex Kendall, Yarin Gal, and Roberto Cipolla. 2018. Multi-task learning using
uncertainty to weigh losses for scene geometry and semantics. In Proceedings of
the IEEE conference on computer vision and pattern recognition. 7482–7491.

[16] Hyunwoo Kim, Soonchul Lee, Jonghyun Park, andMinseok Choi. 2024. A Random
Focusing Method with Jensen-Shannon Divergence for Improving Deep Neural
Network Performance Ensuring Architecture Consistency. Neural Networks 177
(2024), 106–119.

[17] Yoon Kim and Alexander M. Rush. 2016. Sequence-Level Knowledge Distillation.
In Proceedings of the 2016 Conference on Empirical Methods in Natural Language
Processing. 1317–1327.

[18] Raj Kumar, Anita Sharma, and Vijay Patel. 2025. An Explainable ADASYN-Based
Focal Loss Approach for Credit Assessment. Journal of Forecasting 44, 3 (2025),
512–528.

[19] Chi Yeung Law, Linyuan Ding, Qing Dou, Jiangtao Zhou, Nan Chen, and Lei
Zhang. 2024. AMR-Evol: Adaptive Modular Response Evolution Elicits Better
Knowledge Distillation for Large Language Models in Code Generation. arXiv
preprint arXiv:2410.01425 (2024).

[20] Weifeng Li, Bowen Zhang, Zhenyu Chen, Bowen Yu, and Weifeng Sun. 2025.
Improving Retrieval-Augmented Deep Assertion Generation via Joint Training.
IEEE Transactions on Software Engineering 51, 2 (2025), 567–589.

[21] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. 2017.
Focal loss for dense object detection. In Proceedings of the IEEE international
conference on computer vision. 2980–2988.

[22] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. 2018. Deep
gradient compression: Reducing the communication bandwidth for distributed
training. In International Conference on Learning Representations (ICLR). https:
//openreview.net/forum?id=S1-2kv9eg

[23] Ilya Loshchilov and Frank Hutter. 2019. Decoupled Weight Decay Regular-
ization. In International Conference on Learning Representations (ICLR). https:
//openreview.net/forum?id=Bkg6RiCqY7

[24] Jun Ma, Jianan Chen, Matthew Ng, Rui Huang, Yu Li, Cheng Li, Xiaokuan Yang,
and Anne L Martel. 2020. Rethinking Dice Loss for Medical Image Segmentation.
IEEE Transactions on Medical Imaging 40, 12 (2020), 3859–3871.

[25] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich
Elsen, David Garcia, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh
Venkatesh, et al. 2018. Mixed precision training. In International Conference on
Learning Representations (ICLR). https://openreview.net/forum?id=r1gs9JgRb

[26] Glenford J. Myers, Corey Sandler, and Tom Badgett. 2011. The Art of Software
Testing (3rd ed.). John Wiley & Sons.

[27] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. 2013. On the difficulty
of training recurrent neural networks. In International conference on machine
learning (ICML). PMLR, 1310–1318.

[28] Sebastian Primbs, Benjamin Fein, and Gordon Fraser. 2025. AsserT5: Test As-
sertion Generation Using a Fine-Tuned Code Language Model. arXiv preprint
arXiv:2502.02708 (2025).

[29] Sebastian Primbs, Benjamin Fein, and Gordon Fraser. 2025. AsserT5: Test As-
sertion Generation Using a Fine-Tuned Code Language Model. arXiv preprint
arXiv:2502.02708 (2025).

[30] Rashi Puri, David Kung, Roberto Luss, Haitian Sun, Patrick D’Arcy, Krish-
nakumar Sankaranarayanan, and IBM Research AI for Code @ acumen.ai.
2021. CodeXGLUE: A Machine Learning Benchmark Dataset for Code Un-
derstanding and Generation. In NeurIPS 2021 Datasets and Benchmarks Track.

8

https://arxiv.org/abs/2107.03374
https://doi.org/10.5281/zenodo.15716791
https://lz4.github.io/lz4/
https://aclanthology.org/2020.findings-emnlp.139/
https://aclanthology.org/2020.findings-emnlp.139/
https://huggingface.co/flax-sentence-embeddings/st-codesearch-distilroberta-base
https://huggingface.co/flax-sentence-embeddings/st-codesearch-distilroberta-base
https://doi.org/10.1109/ICSE48619.2023.00175
https://openreview.net/forum?id=S1-2kv9eg
https://openreview.net/forum?id=S1-2kv9eg
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=r1gs9JgRb

https://arxiv.org/abs/2102.04664
[31] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence embeddings

using Siamese BERT-networks. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. 3982–3992.

[32] Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Yu, Xiaodong
Xu, Ming Zhou, Phil Blunsom, et al. 2020. CodeBLEU: a method for automatic
evaluation of code synthesis. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing. 6114–6124.

[33] Sebastian Ruder. 2017. An overview of multi-task learning in deep neural net-
works. arXiv preprint arXiv:1706.05098 (2017).

[34] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from
overfitting. The journal of machine learning research 15, 1 (2014), 1929–1958.

[35] Carmine Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Mathew
White, and Denys Poshyvanyk. 2020. AthenaTest: An Automatic Test Case
Generation Tool for Java Based on a Transformer Model. In Proceedings of the
28th International Conference on Program Comprehension (ICPC ’20). Association
for Computing Machinery, New York, NY, USA, 317–321. https://doi.org/10.
1145/3387904.3389297

[36] Michele Tufano, Shao Kun Deng, Neel Sundaresan, and Alexey Svyatkovskiy.
2022. Methods2Test: A Dataset of Focal Methods Mapped to Test Cases. In 2022
IEEE/ACM 19th International Conference on Mining Software Repositories (MSR).
IEEE, 299–303. https://doi.org/10.1145/3524842.3528009

[37] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Mastin
White, andDenys Poshyvanyk. 2021. WhatMakes a GoodUnit Test? An Empirical
Study on Test Smells. IEEE Transactions on Software Engineering 47, 5 (2021),
990–1011. https://doi.org/10.1109/TSE.2019.2912111

[38] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin
White, and Denys Poshyvanyk. 2024. Improving the Learning of Code Review

Successive Tasks with Cross-Task Knowledge Distillation. In Proceedings of the
46th International Conference on Software Engineering. 1–12.

[39] Xiaodong Wang, Yue Li, Wei Zhang, and Hao Chen. 2024. Adaptive Focal Loss
for Keypoint-Based Deep Learning Detectors Addressing Class Imbalance. (2024),
1234–1243.

[40] Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi D.Q. Bui, Junnan Li, and
Steven C. H. Hoi. 2023. CodeT5+: Open Code Large Language Models for Code
Understanding and Generation. arXiv preprint (2023).

[41] YueWang,WeishiWang, Shafiq Joty, and Steven CHHoi. 2021. CodeT5: Identifier-
aware unified pre-trained encoder-decoder models for code understanding and
generation. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing. 8696–8708.

[42] Bowen Yan, Weifeng Zhang, Zhenyu Chen, Bowen Yu, and Weifeng Sun. 2025.
Retrieval-Augmented Fine-Tuning for Improving Retrieve-and-Edit Based As-
sertion Generation. IEEE Transactions on Software Engineering 51, 5 (2025),
1234–1256.

[43] Feng Yang, Xiaoming Liu, Guohua Wang, and Yuliang Chen. 2023. Focal Con-
trastive Learning for Palm Vein Authentication. IEEE Transactions on Information
Forensics and Security 18 (2023), 2876–2887.

[44] Quanjun Zhang,Weifeng Sun, Chunrong Fang, Bowen Yu, Hongyan Li, Meng Yan,
Jianyi Zhou, and Zhenyu Chen. 2024. Exploring Automated Assertion Generation
via Large Language Models. ACM Transactions on Software Engineering and
Methodology 33, 8 (2024), 1–32.

[45] Yifan Zhang, Chenyang Liu, Jiaming Wang, Bowen Li, and Yixuan Chen. 2025.
Text-to-3D Generation using Jensen-Shannon Score Distillation. arXiv preprint
arXiv:2503.10660 (2025).

[46] Yucheng Zhang and Ali Mesbah. 2015. Assertions are strongly correlated with
test suite effectiveness. (2015), 214–224.

9

https://arxiv.org/abs/2102.04664
https://doi.org/10.1145/3387904.3389297
https://doi.org/10.1145/3387904.3389297
https://doi.org/10.1145/3524842.3528009
https://doi.org/10.1109/TSE.2019.2912111

	Abstract
	1 Introduction
	2 Background
	3 Methodology
	3.1 Trident Loss Function
	3.2 Dynamic Weight Scheduling
	3.3 Training Configuration

	4 Study Design
	4.1 Dataset and Preprocessing
	4.2 Experimental Configuration
	4.3 Evaluation Metrics

	5 Results
	5.1 Effectiveness of the Trident Loss (RQ1 & RQ2)
	5.2 Efficiency and Performance Trade-off (RQ3)

	6 Discussion
	6.1 The Power and Nuance of a Multi-Component Loss
	6.2 Implications for Knowledge Distillation in Code Generation

	7 Threats to Validity
	8 Conclusion and Future Work
	Acknowledgments
	References

